Jacqueline Kuo, Dataiku | WiDS 2023
(upbeat music) >> Morning guys and girls, welcome back to theCUBE's live coverage of Women in Data Science WIDS 2023 live at Stanford University. Lisa Martin here with my co-host for this segment, Tracy Zhang. We're really excited to be talking with a great female rockstar. You're going to learn a lot from her next, Jacqueline Kuo, solutions engineer at Dataiku. Welcome, Jacqueline. Great to have you. >> Thank you so much. >> Thank for being here. >> I'm so excited to be here. >> So one of the things I have to start out with, 'cause my mom Kathy Dahlia is watching, she's a New Yorker. You are a born and raised New Yorker and I learned from my mom and others. If you're born in New York no matter how long you've moved away, you are a New Yorker. There's you guys have like a secret club. (group laughs) >> I am definitely very proud of being born and raised in New York. My family immigrated to New York, New Jersey from Taiwan. So very proud Taiwanese American as well. But I absolutely love New York and I can't imagine living anywhere else. >> Yeah, yeah. >> I love it. >> So you studied, I was doing some research on you you studied mechanical engineering at MIT. >> Yes. >> That's huge. And you discovered your passion for all things data-related. You worked at IBM as an analytics consultant. Talk to us a little bit about your career path. Were you always interested in engineering STEM-related subjects from the time you were a child? >> I feel like my interests were ranging in many different things and I ended up landing in engineering, 'cause I felt like I wanted to gain a toolkit like a toolset to make some sort of change with or use my career to make some sort of change in this world. And I landed on engineering and mechanical engineering specifically, because I felt like I got to, in my undergrad do a lot of hands-on projects, learn every part of the engineering and design process to build products which is super-transferable and transferable skills sort of is like the trend in my career so far. Where after undergrad I wanted to move back to New York and mechanical engineering jobs are kind of few and fall far in between in the city. And I ended up landing at IBM doing analytics consulting, because I wanted to understand how to use data. I knew that data was really powerful and I knew that working with it could allow me to tell better stories to influence people across different industries. And that's also how I kind of landed at Dataiku to my current role, because it really does allow me to work across different industries and work on different problems that are just interesting. >> Yeah, I like the way that, how you mentioned building a toolkit when doing your studies at school. Do you think a lot of skills are still very relevant to your job at Dataiku right now? >> I think that at the core of it is just problem solving and asking questions and continuing to be curious or trying to challenge what is is currently given to you. And I think in an engineering degree you get a lot of that. >> Yeah, I'm sure. >> But I think that we've actually seen that a lot in the panels today already, that you get that through all different types of work and research and that kind of thoughtfulness comes across in all different industries too. >> Talk a little bit about some of the challenges, that data science is solving, because every company these days, whether it's an enterprise in manufacturing or a small business in retail, everybody has to be data-driven, because the end user, the end customer, whoever that is whether it's a person, an individual, a company, a B2B, expects to have a personalized custom experience and that comes from data. But you have to be able to understand that data treated properly, responsibly. Talk about some of the interesting projects that you're doing at Dataiku or maybe some that you've done in the past that are really kind of transformative across things climate change or police violence, some of the things that data science really is impacting these days. >> Yeah, absolutely. I think that what I love about coming to these conferences is that you hear about those really impactful social impact projects that I think everybody who's in data science wants to be working on. And I think at Dataiku what's great is that we do have this program called Ikig.AI where we work with nonprofits and we support them in their data and analytics projects. And so, a project I worked on was with the Clean Water, oh my goodness, the Ocean Cleanup project, Ocean Cleanup organization, which was amazing, because it was sort of outside of my day-to-day and it allowed me to work with them and help them understand better where plastic is being aggregated across the world and where it appears, whether that's on beaches or in lakes and rivers. So using data to help them better understand that. I feel like from a day-to-day though, we, in terms of our customers, they're really looking at very basic problems with data. And I say basic, not to diminish it, but really just to kind of say that it's high impact, but basic problems around how do they forecast sales better? That's a really kind of, sort of basic problem, but it's actually super-complex and really impactful for people, for companies when it comes to forecasting how much headcount they need to have in the next year or how much inventory to have if they're retail. And all of those are going to, especially for smaller companies, make a huge impact on whether they make profit or not. And so, what's great about working at Dataiku is you get to work on these high-impact projects and oftentimes I think from my perspective, I work as a solutions engineer on the commercial team. So it's just, we work generally with smaller customers and sometimes talking to them, me talking to them is like their first introduction to what data science is and what they can do with that data. And sort of using our platform to show them what the possibilities are and help them build a strategy around how they can implement data in their day-to-day. >> What's the difference? You were a data scientist by title and function, now you're a solutions engineer. Talk about the ascendancy into that and also some of the things that you and Tracy will talk about as those transferable, those transportable skills that probably maybe you learned in engineering, you brought data science now you're bringing to solutions engineering. >> Yeah, absolutely. So data science, I love working with data. I love getting in the weeds of things and I love, oftentimes that means debugging things or looking line by line at your code and trying to make it better. I found that on in the data science role, while those things I really loved, sometimes it also meant that I didn't, couldn't see or didn't have visibility into the broader picture of well like, well why are we doing this project? And who is it impacting? And because oftentimes your day-to-day is very much in the weeds. And so, I moved into sales or solutions engineering at Dataiku to get that perspective, because what a sales engineer does is support the sale from a technical perspective. And so, you really truly understand well, what is the customer looking for and what is going to influence them to make a purchase? And how do you tell the story of the impact of data? Because oftentimes they need to quantify well, if I purchase a software like Dataiku then I'm able to build this project and make this X impact on the business. And that is really powerful. That's where the storytelling comes in and that I feel like a lot of what we've been hearing today about connecting data with people who can actually do something with that data. That's really the bridge that we as sales engineers are trying to connect in that sales process. >> It's all about connectivity, isn't it? >> Yeah, definitely. We were talking about this earlier that it's about making impact and it's about people who we are analyzing data is like influencing. And I saw that one of the keywords or one of the biggest thing at Dataiku is everyday AI, so I wanted to just ask, could you please talk more about how does that weave into the problem solving and then day-to-day making an impact process? >> Yes, so I started working on Dataiku around three years ago and I fell in love with the product itself. The product that we have is we allow for people with different backgrounds. If you're coming from a data analyst background, data science, data engineering, maybe you are more of like a business subject matter expert, to all work in one unified central platform, one user interface. And why that's powerful is that when you're working with data, it's not just that data scientist working on their own and their own computer coding. We've heard today that it's all about connecting the data scientists with those business people, with maybe the data engineers and IT people who are actually going to put that model into production or other folks. And so, they all use different languages. Data scientists might use Python and R, your business people are using PowerPoint and Excel, everyone's using different tools. How do we bring them all in one place so that you can have conversations faster? So the business people can understand exactly what you're building with the data and can get their hands on that data and that model prediction faster. So that's what Dataiku does. That's the product that we have. And I completely forgot your question, 'cause I got so invested in talking about this. Oh, everyday AI. Yeah, so the goal of of Dataiku is really to allow for those maybe less technical people with less traditional data science backgrounds. Maybe they're data experts and they understand the data really well and they've been working in SQL for all their career. Maybe they're just subject matter experts and want to get more into working with data. We allow those people to do that through our no and low-code tools within our platform. Platform is very visual as well. And so, I've seen a lot of people learn data science, learn machine learning by working in the tool itself. And that's sort of, that's where everyday AI comes in, 'cause we truly believe that there are a lot of, there's a lot of unutilized expertise out there that we can bring in. And if we did give them access to data, imagine what we could do in the kind of work that they can do and become empowered basically with that. >> Yeah, we're just scratching the surface. I find data science so fascinating, especially when you talk about some of the real world applications, police violence, health inequities, climate change. Here we are in California and I don't know if you know, we're experiencing an atmospheric river again tomorrow. Californians and the rain- >> Storm is coming. >> We are not good... And I'm a native Californian, but we all know about climate change. People probably don't associate all of the data that is helping us understand it, make decisions based on what's coming what's happened in the past. I just find that so fascinating. But I really think we're truly at the beginning of really understanding the impact that being data-driven can actually mean whether you are investigating climate change or police violence or health inequities or your a grocery store that needs to become data-driven, because your consumer is expecting a personalized relevant experience. I want you to offer me up things that I know I was doing online grocery shopping, yesterday, I just got back from Europe and I was so thankful that my grocer is data-driven, because they made the process so easy for me. And but we have that expectation as consumers that it's going to be that easy, it's going to be that personalized. And what a lot of folks don't understand is the data the democratization of data, the AI that's helping make that a possibility that makes our lives easier. >> Yeah, I love that point around data is everywhere and the more we have, the actually the more access we actually are providing. 'cause now compute is cheaper, data is literally everywhere, you can get access to it very easily. And so, I feel like more people are just getting themselves involved and that's, I mean this whole conference around just bringing more women into this industry and more people with different backgrounds from minority groups so that we get their thoughts, their opinions into the work is so important and it's becoming a lot easier with all of the technology and tools just being open source being easier to access, being cheaper. And that I feel really hopeful about in this field. >> That's good. Hope is good, isn't it? >> Yes, that's all we need. But yeah, I'm glad to see that we're working towards that direction. I'm excited to see what lies in the future. >> We've been talking about numbers of women, percentages of women in technical roles for years and we've seen it hover around 25%. I was looking at some, I need to AnitaB.org stats from 2022 was just looking at this yesterday and the numbers are going up. I think the number was 26, 27.6% of women in technical roles. So we're seeing a growth there especially over pre-pandemic levels. Definitely the biggest challenge that still seems to be one of the biggest that remains is attrition. I would love to get your advice on what would you tell your younger self or the previous prior generation in terms of having the confidence and the courage to pursue engineering, pursue data science, pursue a technical role, and also stay in that role so you can be one of those females on stage that we saw today? >> Yeah, that's the goal right there one day. I think it's really about finding other people to lift and mentor and support you. And I talked to a bunch of people today who just found this conference through Googling it, and the fact that organizations like this exist really do help, because those are the people who are going to understand the struggles you're going through as a woman in this industry, which can get tough, but it gets easier when you have a community to share that with and to support you. And I do want to definitely give a plug to the WIDS@Dataiku team. >> Talk to us about that. >> Yeah, I was so fortunate to be a WIDS ambassador last year and again this year with Dataiku and I was here last year as well with Dataiku, but we have grown the WIDS effort so much over the last few years. So the first year we had two events in New York and also in London. Our Dataiku's global. So this year we additionally have one in the west coast out here in SF and another one in Singapore which is incredible to involve that team. But what I love is that everyone is really passionate about just getting more women involved in this industry. But then also what I find fortunate too at Dataiku is that we have a strong female, just a lot of women. >> Good. >> Yeah. >> A lot of women working as data scientists, solutions engineer and sales and all across the company who even if they aren't doing data work in a day-to-day, they are super-involved and excited to get more women in the technical field. And so. that's like our Empower group internally that hosts events and I feel like it's a really nice safe space for all of us to speak about challenges that we encounter and feel like we're not alone in that we have a support system to make it better. So I think from a nutrition standpoint every organization should have a female ERG to just support one another. >> Absolutely. There's so much value in a network in the community. I was talking to somebody who I'm blanking on this may have been in Barcelona last week, talking about a stat that showed that a really high percentage, 78% of people couldn't identify a female role model in technology. Of course, Sheryl Sandberg's been one of our role models and I thought a lot of people know Sheryl who's leaving or has left. And then a whole, YouTube influencers that have no idea that the CEO of YouTube for years has been a woman, who has- >> And she came last year to speak at WIDS. >> Did she? >> Yeah. >> Oh, I missed that. It must have been, we were probably filming. But we need more, we need to be, and it sounds like Dataiku was doing a great job of this. Tracy, we've talked about this earlier today. We need to see what we can be. And it sounds like Dataiku was pioneering that with that ERG program that you talked about. And I completely agree with you. That should be a standard program everywhere and women should feel empowered to raise their hand ask a question, or really embrace, "I'm interested in engineering, I'm interested in data science." Then maybe there's not a lot of women in classes. That's okay. Be the pioneer, be that next Sheryl Sandberg or the CTO of ChatGPT, Mira Murati, who's a female. We need more people that we can see and lean into that and embrace it. I think you're going to be one of them. >> I think so too. Just so that young girls like me like other who's so in school, can see, can look up to you and be like, "She's my role model and I want to be like her. And I know that there's someone to listen to me and to support me if I have any questions in this field." So yeah. >> Yeah, I mean that's how I feel about literally everyone that I'm surrounded by here. I find that you find role models and people to look up to in every conversation whenever I'm speaking with another woman in tech, because there's a journey that has had happen for you to get to that place. So it's incredible, this community. >> It is incredible. WIDS is a movement we're so proud of at theCUBE to have been a part of it since the very beginning, since 2015, I've been covering it since 2017. It's always one of my favorite events. It's so inspiring and it just goes to show the power that data can have, the influence, but also just that we're at the beginning of uncovering so much. Jacqueline's been such a pleasure having you on theCUBE. Thank you. >> Thank you. >> For sharing your story, sharing with us what Dataiku was doing and keep going. More power to you girl. We're going to see you up on that stage one of these years. >> Thank you so much. Thank you guys. >> Our pleasure. >> Our pleasure. >> For our guests and Tracy Zhang, this is Lisa Martin, you're watching theCUBE live at WIDS '23. #EmbraceEquity is this year's International Women's Day theme. Stick around, our next guest joins us in just a minute. (upbeat music)
SUMMARY :
We're really excited to be talking I have to start out with, and I can't imagine living anywhere else. So you studied, I was the time you were a child? and I knew that working Yeah, I like the way and continuing to be curious that you get that through and that comes from data. And I say basic, not to diminish it, and also some of the I found that on in the data science role, And I saw that one of the keywords so that you can have conversations faster? Californians and the rain- that it's going to be that easy, and the more we have, Hope is good, isn't it? I'm excited to see what and also stay in that role And I talked to a bunch of people today is that we have a strong and all across the company that have no idea that the And she came last and lean into that and embrace it. And I know that there's I find that you find role models but also just that we're at the beginning We're going to see you up on Thank you so much. #EmbraceEquity is this year's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sheryl | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Jacqueline | PERSON | 0.99+ |
Kathy Dahlia | PERSON | 0.99+ |
Jacqueline Kuo | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Dataiku | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Taiwan | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
last week | DATE | 0.99+ |
two events | QUANTITY | 0.99+ |
26, 27.6% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
this year | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Dataiku | PERSON | 0.99+ |
New York, New Jersey | LOCATION | 0.99+ |
tomorrow | DATE | 0.99+ |
2017 | DATE | 0.99+ |
SF | LOCATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
78% | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Ocean Cleanup | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
next year | DATE | 0.98+ |
International Women's Day | EVENT | 0.97+ |
R | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Californians | PERSON | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
one day | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
WIDS | ORGANIZATION | 0.89+ |
first introduction | QUANTITY | 0.88+ |
Stanford University | LOCATION | 0.87+ |
one place | QUANTITY | 0.87+ |
Nancy Wang & Kate Watts | International Women's Day
>> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE been profiling the leaders in the technology world, women in technology from developers to the boardroom, everything in between. We have two great guests promoting in from Malaysia. Nancy Wang is the general manager, also CUBE alumni from AWS Data Protection, and founder and board chair of Advancing Women in Tech, awit.org. And of course Kate Watts who's the executive director of Advancing Women in Tech.org. So it's awit.org. Nancy, Kate, thanks for coming all the way across remotely from Malaysia. >> Of course, we're coming to you as fast as our internet bandwidth will allow us. And you know, I'm just thrilled today that you get to see a whole nother aspect of my life, right? Because typically we talk about AWS, and here we're talking about a topic near and dear to my heart. >> Well, Nancy, I love the fact that you're spending a lot of time taking the empowerment to go out and help the industries and helping with the advancement of women in tech. Kate, the executive director it's a 501C3, it's nonprofit, dedicating to accelerating the careers of women in groups in tech. Can you talk about the organization? >> Yes, I can. So Advancing Women in Tech was founded in 2017 in order to fix some of the pathway problems that we're seeing on the rise to leadership in the industry. And so we specifically focus on supporting mid-level women in technical roles, get into higher positions. We do that in a few different ways through mentorship programs through building technical skills and by connecting people to a supportive community. So you have your peer network and then a vertical sort of relationships to help you navigate the next steps in your career. So to date we've served about 40,000 individuals globally and we're just looking to expand our reach and impact and be able to better support women in the industry. >> Nancy, talk about the creation, the origination story. How'd this all come together? Obviously the momentum, everyone in the industry's been focused on this for a long time. Where did AWIT come from? Advancing Women in Technology, that's the acronym. Advancing Women in Technology.org, where'd it come from? What's the origination story? >> Yeah, so AWIT really originated from this desire that I had, to Kate's point around, well if you look around right and you know, don't take my word for it, right? Look at stats, look at news reports, or just frankly go on your LinkedIn and see how many women in underrepresented groups are in senior technical leadership roles right out in the companies whose names we all know. And so that was my case back in 2016. And so when I first got the idea and back then I was actually at Google, just another large tech company in the valley, right? It was about how do we get more role models, how we get more, for example, women into leadership roles so they can bring up the next generation, right? And so this is actually part of a longer speech that I'm about to give on Wednesday and part of the US State Department speaker program. In fact, that's why Kate and I are here in Malaysia right now is working with over 200 women entrepreneurs from all over in Southeast Asia, including Malaysia Philippines, Vietnam, Borneo, you know, so many countries where having more women entrepreneurs can help raise the GDP right, and that fits within our overall mission of getting more women into top leadership roles in tech. >> You know, I was talking about Teresa Carlson she came on the program as well for this year this next season we're going to do. And she mentioned the decision between the US progress and international. And she's saying as much as it's still bad numbers, it's worse than outside the United States and needs to get better. Can you comment on the global aspect? You brought that up. I think it's super important to highlight that it's just not one area, it's a global evolution. >> Absolutely, so let me start, and I'd love to actually have Kate talk about our current programs and all of the international groups that we're working with. So as Teresa aptly mentioned there is so much work to be done not just outside the US and North Americas where typically tech nonprofits will focus, but rather if you think about the one to end model, right? For example when I was doing the product market fit workshop for the US State Department I had women dialing in from rice fields, right? So let me just pause there for a moment. They were holding their cell phones up near towers near trees just so that they can get a few minutes of time with me to do a workshop and how to accelerate their business. So if you don't call that the desire to propel oneself or accelerate oneself, not sure what is, right. And so it's really that passion that drove me to spend the next week and a half here working with local entrepreneurs working with policy makers so we can take advantage and really leverage that passion that people have, right? To accelerate more business globally. And so that's why, you know Kate will be leading our contingent with the United Nations Women Group, right? That is focused on women's economic empowerment because that's super important, right? One aspect can be sure, getting more directors, you know vice presidents into companies like Google and Amazon. But another is also how do you encourage more women around the world to start businesses, right? To reach economic and freedom independence, right? To overcome some of the maybe social barriers to becoming a leader in their own country. >> Yes, and if I think about our own programs and our model of being very intentional about supporting the learning development and skills of women and members of underrepresented groups we focused very much on providing global access to a number of our programs. For instance, our product management certification on Coursera or engineering management our upcoming women founders accelerator. We provide both access that you can get from anywhere. And then also very intentional programming that connects people into the networks to be able to further their networks and what they've learned through the skills online, so. >> Yeah, and something Kate just told me recently is these courses that Kate's mentioning, right? She was instrumental in working with the American Council on Education and so that our learners can actually get up to six college credits for taking these courses on product management engineering management, on cloud product management. And most recently we had our first organic one of our very first organic testimonials was from a woman's tech bootcamp in Nigeria, right? So if you think about the worldwide impact of these upskilling courses where frankly in the US we might take for granted right around the world as I mentioned, there are women dialing in from rice patties from other, you know, for example, outside the, you know corporate buildings in order to access this content. >> Can you think about the idea of, oh sorry, go ahead. >> Go ahead, no, go ahead Kate. >> I was going to say, if you can't see it, you can't become it. And so we are very intentional about ensuring that we have we're spotlighting the expertise of women and we are broadcasting that everywhere so that anybody coming up can gain the skills and the networks to be able to succeed in this industry. >> We'll make sure we get those links so we can promote them. Obviously we feel the same way getting the word out. I think a couple things I'd like to ask you guys cause I think you hit a great point. One is the economic advantage the numbers prove that diverse teams perform better number one, that's clear. So good point there. But I want to get your thoughts on the entrepreneurial equation. You mentioned founders and startups and there's also different makeups in different countries. It's not like the big corporations sometimes it's smaller business in certain areas the different cultures have different business sizes and business types. How do you guys see that factoring in outside the United States, say the big tech companies? Okay, yeah. The easy lower the access to get in education than stay with them, in other countries is it the same or is it more diverse in terms of business? >> So what really actually got us started with the US State Department was around our work with women founders. And I love for Kate to actually share her experience working with AWS startups in that capacity. But frankly, you know, we looked at the content and the mentor programs that were providing women who wanted to be executives, you know, quickly realize a lot of those same skills such as finding customers, right? Scaling your product and building channels can also apply to women founders, not just executives. And so early supporters of our efforts from firms such as Moderna up in Seattle, Emergence Ventures, Decibel Ventures in, you know, the Bay Area and a few others that we're working with right now. Right, they believed in the mission and really helped us scale out what is now our existing platform and offerings for women founders. >> Those are great firms by the way. And they also are very founder friendly and also understand the global workforce. I mean, that's a whole nother dimension. Okay, what's your reaction to all that? >> Yes, we have been very intentional about taking the product expertise and the learnings of women and in our network, we first worked with AWS startups to support the development of the curriculum for the recent accelerator for women founders that was held last spring. And so we're able to support 25 founders and also brought in the expertise of about 20 or 30 women from Advancing Women in Tech to be able to be the lead instructors and mentors for that. And so we have really realized that with this network and this individual sort of focus on product expertise building strong teams, we can take that information and bring it to folks everywhere. And so there is very much the intentionality of allowing founders allowing individuals to take the lessons and bring it to their individual circumstances and the cultures in which they are operating. But the product sense is a skill that we can support the development of and we're proud to do so. >> That's awesome. Nancy, I want to ask you some never really talk about data storage and AWS cloud greatness and goodness, here's different and you also work full-time at AWS and you're the founder or the chairman of this great organization. How do you balance both and do you get, they're getting behind you on this, Amazon is getting behind you on this. >> Well, as I say it's always easier to negotiate on the way in. But jokes aside, I have to say the leadership has been tremendously supportive. If you think about, for example, my leaders Wayne Duso who's also been on the show multiple times, Bill Vaas who's also been on the show multiple times, you know they're both founders and also operators entrepreneurs at heart. So they understand that it is important, right? For all of us, it's really incumbent on all of us who are in positions to do so, to create a pathway for more people to be in leadership roles for more people to be successful entrepreneurs. So, no, I mean if you just looked at LinkedIn they're always uploading my vote so they reach to more audiences. And frankly they're rooting for us back home in the US while we're in Malaysia this week. >> That's awesome. And I think that's a good culture to have that empowerment and I think that's very healthy. What's next for you guys? What's on the agenda? Take us through the activities. I know that you got a ton of things happening. You got your event out there, which is why you're out there. There's a bunch of other activities. I think you guys call it the Advancing Women in Tech week. >> Yes, this week we are having a week of programming that you can check out at Advancing Women in Tech.org. That is spotlighting the expertise of a number of women in our space. So it is three days of programming Tuesday, Wednesday and Thursday if you are in the US so the seventh through the ninth, but available globally. We are also going to be in New York next week for the event at the UN and are looking to continue to support our mentorship programs and also our work supporting women founders throughout the year. >> All right. I have to ask you guys if you don't mind get a little market data so you can share with us here at theCUBE. What are you hearing this year that's different in the conversation space around the topics, the interests? Obviously I've seen massive amounts of global acceleration around conversations, more video, things like this more stories are scaling, a lot more LinkedIn activity. It just seems like it's a lot different this year. Can you guys share any kind of current trends you're seeing relative to the conversations and topics being discussed across the the community? >> Well, I think from a needle moving perspective, right? I think due to the efforts of wonderful organizations including the Q for spotlighting all of these awesome women, right? Trailblazing women and the nonprofits the government entities that we work with there's definitely more emphasis on creating access and creating pathways. So that's probably one thing that you're seeing is more women, more investors posting about their activities. Number two, from a global trend perspective, right? The rise of women in security. I noticed that on your agenda today, you had Lena Smart who's a good friend of mine chief information security officer at MongoDB, right? She and I are actually quite involved in helping founders especially early stage founders in the security space. And so globally from a pure technical perspective, right? There's right more increasing regulations around data privacy, data sovereignty, right? For example, India's in a few weeks about to get their first data protection regulation there locally. So all of that is giving rise to yet another wave of opportunity and we want women founders uniquely positioned to take advantage of that opportunity. >> I love it. Kate, reaction to that? I mean founders, more pathways it sounds like a neural network, it sounds like AI enabled. >> Yes, and speaking of AI, with the rise of that we are also hearing from many community members the importance of continuing to build their skills upskill learn to be able to keep up with the latest trends. There's a lot of people wondering what does this mean for my own career? And so they're turning to organizations like Advancing Women in Tech to find communities to both learn the latest information, but also build their networks so that they are able to move forward regardless of what the industry does. >> I love the work you guys are doing. It's so impressive. I think the economic angle is new it's more amplified this year. It's always kind of been there and continues to be. What do you guys hope for by next year this time what do you hope to see different from a needle moving perspective, to use your word Nancy, for next year? What's the visual output in your mind? >> I want to see real effort made towards 50-50 representation in all tech leadership roles. And I'd like to see that happen by 2050. >> Kate, anything on your end? >> I love that. I'm going to go a little bit more touchy-feely. I want everybody in our space to understand that the skills that they build and that the networks they have carry with them regardless of wherever they go. And so to be able to really lean in and learn and continue to develop the career that you want to have. So whether that be at a large organization or within your own business, that you've got the potential to move forward on that within you. >> Nancy, Kate, thank you so much for your contribution. I'll give you the final word. Put a plug in for the organization. What are you guys looking for? Any kind of PSA you want to share with the folks watching? >> Absolutely, so if you're in a position to be a mentor, join as a mentor, right? Help elevate and accelerate the next generation of women leaders. If you're an investor help us invest in more women started companies, right? Women founded startups and lastly, if you are women looking to accelerate your career, come join our community. We have resources, we have mentors and who we have investors who are willing to come in on the ground floor and help you accelerate your business. >> Great work. Thank you so much for participating in our International Women's Day 23 program and we'd look to keep this going quarterly. We'll see you next year, next time. Thanks for coming on. Appreciate it. >> Thanks so much John. >> Thank you. >> Okay, women leaders here. >> Nancy: Thanks for having us >> All over the world, coming together for a great celebration but really highlighting the accomplishments, the pathways the investment, the mentoring, everything in between. It's theCUBE. Bring as much as we can. I'm John Furrier, your host. Thanks for watching.
SUMMARY :
in the technology world, that you get to see a whole nother aspect of time taking the empowerment to go on the rise to leadership in the industry. in the industry's been focused of the US State Department And she mentioned the decision and all of the international into the networks to be able to further in the US we might take for Can you think about the and the networks to be able The easy lower the access to get and the mentor programs Those are great firms by the way. and also brought in the or the chairman of this in the US while we're I know that you got a of programming that you can check I have to ask you guys if you don't mind founders in the security space. Kate, reaction to that? of continuing to build their skills I love the work you guys are doing. And I'd like to see that happen by 2050. and that the networks Any kind of PSA you want to and accelerate the next Thank you so much for participating All over the world,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kate | PERSON | 0.99+ |
Nancy | PERSON | 0.99+ |
Teresa | PERSON | 0.99+ |
Bill Vaas | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Malaysia | LOCATION | 0.99+ |
Kate Watts | PERSON | 0.99+ |
Nigeria | LOCATION | 0.99+ |
Nancy Wang | PERSON | 0.99+ |
Wayne Duso | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Moderna | ORGANIZATION | 0.99+ |
Wednesday | DATE | 0.99+ |
American Council on Education | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Lena Smart | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Vietnam | LOCATION | 0.99+ |
Borneo | LOCATION | 0.99+ |
Emergence Ventures | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
2016 | DATE | 0.99+ |
United Nations Women Group | ORGANIZATION | 0.99+ |
Decibel Ventures | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
United States | LOCATION | 0.99+ |
Southeast Asia | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
2050 | DATE | 0.99+ |
MongoDB | ORGANIZATION | 0.99+ |
US State Department | ORGANIZATION | 0.99+ |
next year | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
25 founders | QUANTITY | 0.99+ |
Seattle | LOCATION | 0.99+ |
North Americas | LOCATION | 0.99+ |
AWS Data Protection | ORGANIZATION | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
three days | QUANTITY | 0.99+ |
seventh | QUANTITY | 0.99+ |
Bay Area | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
next week | DATE | 0.99+ |
30 women | QUANTITY | 0.98+ |
One aspect | QUANTITY | 0.98+ |
Thursday | DATE | 0.98+ |
this year | DATE | 0.98+ |
about 40,000 individuals | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
last spring | DATE | 0.98+ |
this week | DATE | 0.98+ |
Tuesday | DATE | 0.98+ |
Sue Barsamian | International Women's Day
(upbeat music) >> Hi, everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. As part of International Women's Day, we're featuring some of the leading women in business technology from developer to all types of titles and to the executive level. And one topic that's really important is called Getting a Seat at the Table, board makeup, having representation at corporate boards, private and public companies. It's been a big push. And former technology operating executive and corporate board member, she's a board machine Sue Barsamian, formerly with HPE, Hewlett Packard. Sue, great to see you. CUBE alumni, distinguished CUBE alumni. Thank you for coming on. >> Yes, I'm very proud of my CUBE alumni title. >> I'm sure it opens a lot of doors for you. (Sue laughing) We're psyched to have you on. This is a really important topic, and I want to get into the whole, as women advance up, and they're sitting on the boards, they can implement policy and there's governance. Obviously public companies have very strict oversight, and not strict, but like formal. Private boards have to operate, be nimble. They don't have to share all their results. But still, boards play an important role in the success of scaled up companies. So super important, that representation there is key. >> Yes. >> I want to get into that, but first, before we get started, how did you get into tech? How did it all start for you? >> Yeah, long time ago, I was an electrical engineering major. Came out in 1981 when, you know, opportunities for engineering, if you were kind, I went to Kansas State as an undergrad, and basically in those days you went to Texas and did semiconductors. You went to Atlanta and did communication satellites. You went to Boston or you went to Silicon Valley. And for me, that wasn't too hard a choice. I ended up going west and really, I guess what, embarked on a 40 year career in Silicon Valley and absolutely loved it. Largely software, but some time on the hardware side. Started out in networking, but largely software. And then, you know, four years ago transitioned to my next chapter, which is the corporate board director. And again, focused on technology software and cybersecurity boards. >> For the folks watching, we'll cut through another segment we can probably do about your operating career, but you rose through the ranks and became a senior operating executive at the biggest companies in the world. Hewlett Packard Enterprise, Hewlett Packard Enterprise and others. Very great career, okay. And so now you're kind of like, put that on pause, and you're moving on to the next chapter, which is being a board director. What inspired you to be a board director for multiple public companies and multiple private companies? Well, how many companies are you on? But what's the inspiration? What's the inspiration? First tell me how many board ships you're on, board seats you're on, and then what inspired you to become a board director? >> Yeah, so I'm on three public, and you are limited in terms of the number of publics that you can do to four. So I'm on three public, and I'm on four private from a tech perspective. And those range from, you know, a $4 billion in revenue public company down to a 35 person private company. So I've got the whole range. >> So you're like freelancing, I mean, what is it like? It's a full-time job, obviously. It's a lot of work involved. >> Yeah, yeah, it's. >> John: Why are you doing it? >> Well, you know, so I retired from being an operating executive after 37 years. And, but I loved, I mean, it's tough, right? It's tough these days, particularly with all the pressures out there in the market, not to mention the pandemic, et cetera. But I loved it. I loved working. I loved having a career, and I was ready to back off on, I would say the stresses of quarterly results and the stresses of international travel. You have so much of it. But I wasn't ready to back off from being involved and engaged and continuing to learn new things. I think this is why you come to tech, and for me, why I went to the valley to begin with was really that energy and that excitement, and it's like it's constantly reinventing itself. And I felt like that wasn't over for me. And I thought because I hadn't done boards before I retired from operating roles, I thought, you know, that would fill the bill. And it's honestly, it has exceeded expectations. >> In a good way. You feel good about where you're at and. >> Yeah. >> What you went in, what was the expectation going in and what surprised you? And were there people along the way that kind of gave you some pointers or don't do this, stay away from this. Take us through your experiences. >> Yeah, honestly, there is an amazing network of technology board directors, you know, in the US and specifically in the Valley. And we are all incredibly supportive. We have groups where we get together as board directors, and we talk about topics, and we share best practices and stories, and so I underestimated that, right? I thought I was going to, I thought I was going to enter this chapter where I would be largely giving back after 37 years. You've learned a little bit, right? What I underestimated was just the power of continuing to learn and being surrounded by so many amazing people. When, you know, when you do, you know, multiple boards, your learnings are just multiplied, right? Because you see not just one model, but you see many models. You see not just one problem, but many problems. Not just one opportunity, but many opportunities. And I underestimated how great that would be for me from a learning perspective and then your ability to share from one board to the other board because all of my boards are companies who are also quite close to each other, the executives collaborate. So that has turned out to be really exciting for me. >> So you had the stressful job. You rose to the top of the ranks, quarterly shot clock earnings, and it's hard charging. It's like, it's like, you know, being an athlete, as we say tech athlete. You're a tech athlete. Now you're taking that to the next level, which is now you're juggling multiple operational kind of things, but not with super pressure. But there's still a lot of responsibility. I know there's one board, you got compensation committee, I mean there's work involved. It's not like you're clipping coupons and having pizza. >> Yeah, no, it's real work. Believe me, it's real work. But I don't know how long it took me to not, to stop waking up and looking at my phone and thinking somebody was going to be dropping their forecast, right? Just that pressure of the number, and as a board member, obviously you are there to support and help guide the company and you feel, you know, you feel the pressure and the responsibility of what that role entails, but it's not the same as the frontline pressure every quarter. It's different. And so I did the first type. I loved it, you know. I'm loving this second type. >> You know, the retirement, it's always a cliche these days, but it's not really like what people think it is. It's not like getting a boat, going fishing or whatever. It's doing whatever you want to do, that's what retirement is. And you've chose to stay active. Your brain's being tested, and you're working it, having fun without all the stress. But it's enough, it's like going the gym. You're not hardcore workout, but you're working out with the brain. >> Yeah, no, for sure. It's just a different, it's just a different model. But the, you know, the level of conversations, the level of decisions, all of that is quite high. Which again, I like, yeah. >> Again, you really can't talk about some of the fun questions I want to ask, like what's the valuations like? How's the market, your headwinds? Is there tailwinds? >> Yes, yes, yes. It's an amazing, it's an amazing market right now with, as you know, counter indicators everywhere, right? Something's up, something's down, you know. Consumer spending's up, therefore interest rates go up and, you know, employment's down. And so or unemployment's down. And so it's hard. Actually, I really empathize with, you know, the, and have a great deal of respect for the CEOs and leadership teams of my board companies because, you know, I kind of retired from operating role, and then everybody else had to deal with running a company during a pandemic and then running a company through the great resignation, and then running a company through a downturn. You know, those are all tough things, and I have a ton of respect for any operating executive who's navigating through this and leading a company right now. >> I'd love to get your take on the board conversations at the end if we have more time, what the mood is, but I want to ask you about one more thing real quick before we go to the next topic is you're a retired operating executive. You have multiple boards, so you've got your hands full. I noticed there's a lot of amazing leaders, other female tech athletes joining boards, but they also have full-time jobs. >> Yeah. >> And so what's your advice? Cause I know there's a lot of networking, a lot of sharing going on. There's kind of a balance between how much you can contribute on the board versus doing the day job, but there's a real need for more women on boards, so yet there's a lot going on boards. What's the current state of the union if you will, state of the market relative to people in their careers and the stresses? >> Yeah. >> Cause you left one and jumped in all in there. >> Yeah. >> Some can't do that. They can't be on five boards, but they're on a few. What's the? >> Well, and you know, and if you're an operating executive, you wouldn't be on five boards, right? You would be on one or two. And so I spend a lot of time now bringing along the next wave of women and helping them both in their career but also to get a seat at the table on a board. And I'm very vocal about telling people not to do it the way I do it. There's no reason for it to be sequential. You can, you know, I thought I was so busy and was traveling all the time, and yes, all of that was true, but, and maybe I should say, you know, you can still fit in a board. And so, and what I see now is that your learnings are so exponential with outside perspective that I believe I would've been an even better operating executive had I done it earlier. I know I would've been an even better operating executive had I done it earlier. And so my advice is don't do it the way I did it. You know, it's worked out fine for me, but hindsight's 2020, I would. >> If you can go back and do a mulligan or a redo, what would you do? >> Yeah, I would get on a board earlier, full stop, yeah. >> Board, singular, plural? >> Well, I really, I don't think as an operating executive you can do, you could do one, maybe two. I wouldn't go beyond that, and I think that's fine. >> Yeah, totally makes sense. Okay, I got to ask you about your career. I know technical, you came in at that time in the market, I remember when I broke into the business, very male dominated, and then now it's much better. When you went through the ranks as a technical person, I know you had some blockers and definitely some, probably some people like, well, you know. We've seen that. How did you handle that? What were some of the key pivot points in your journey? And we've had a lot of women tell their stories here on theCUBE, candidly, like, hey, I was going to tell that professor, I'm going to sit in the front row. I'm going to, I'm getting two degrees, you know, robotics and aerospace. So, but they were challenged, even with the aspiration to do tech. I'm not saying that was something that you had, but like have you had experience like that, that you overcome? What were those key points and how did you handle them and how does that help people today? >> Yeah, you know, I have to say, you know, and not discounting that obviously this has been a journey for women, and there are a lot of things to overcome both in the workforce and also just balancing life honestly. And they're all real. There's also a story of incredible support, and you know, I'm the type of person where if somebody blocked me or didn't like me, I tended to just, you know, think it was me and like work harder and get around them, and I'm sure that some of that was potentially gender related. I didn't interpret it that way at the time. And I was lucky to have amazing mentors, many, many, many of whom were men, you know, because they were in the positions of power, and they made a huge difference on my career, huge. And I also had amazing female mentors, Meg Whitman, Ann Livermore at HPE, who you know well. So I had both, but you know, when I look back on the people who made a difference, there are as many men on the list as there are women. >> Yeah, and that's a learning there. Create those coalitions, not just one or the other. >> Yeah, yeah, yeah, absolutely. >> Well, I got to ask you about the, well, you brought up the pandemic. This has come up on some interviews this year, a little bit last year on the International Women's Day, but this year it's resonating, and I would never ask in an interview. I saw an interview once where a host asked a woman, how do you balance it all? And I was just like, no one asked men that. And so it's like, but with remote work, it's come up now the word empathy around people knowing each other's personal situation. In other words, when remote work happened, everybody went home. So we all got a glimpse of the backdrop. You got, you can see what their personal life was on Facebook. We were just commenting before we came on camera about that. So remote work really kind of opened up this personal side of everybody, men and women. >> Yeah. >> So I think this brings this new empathy kind of vibe or authentic self people call it. Is remote work an opportunity or a threat for advancement of women in tech? >> It's a much debated topic. I look at it as an opportunity for many of the reasons that you just said. First of all, let me say that when I was an operating executive and would try to create an environment on my team that was family supportive, I would do that equally for young or, you know, early to mid-career women as I did for early to mid-career men. And the reason is I needed those men, you know, chances are they had a working spouse at home, right? I needed them to be able to share the load. It's just as important to the women that companies give, you know, the partner, male or female, the partner support and the ability to share the love, right? So to me it's not just a woman thing. It's women and men, and I always tried to create the environment where it was okay to go to your soccer game. I knew you would be online later in the evening when the kids were in bed, and that was fine. And I think the pandemic has democratized that and made that, you know, made that kind of an everyday occurrence. >> Yeah the baby walks in. They're in the zoom call. The dog comes in. The leaf blower going on the outside the window. I've seen it all on theCUBE. >> Yeah, and people don't try to pretend anymore that like, you know, the house is clean, the dog's behaved, you know, I mean it's just, it's just real, and it's authentic, and I think that's healthy. >> Yeah. >> I do, you know, I also love, I also love the office, and you know, I've got a 31 year old and a soon to be 27 year old daughter, two daughters. And you know, they love going into the office, and I think about when I was their age, how just charged up I would get from being in the office. I also see how great it is for them to have a couple of days a week at home because you can get a few things done in between Zoom calls that you don't have to end up piling onto the weekend, and, you know, so I think it's a really healthy, I think it's a really healthy mix now. Most tech companies are not mandating five days in. Most tech companies are at two to three days in. I think that's a, I think that's a really good combination. >> It's interesting how people are changing their culture to get together more as groups and even events. I mean, while I got you, I might as well ask you, what's the board conversations around, you know, the old conferences? You know, before the pandemic, every company had like a user conference. Right, now it's like, well, do we really need to have that? Maybe we do smaller, and we do digital. Have you seen how companies are handling the in-person? Because there's where the relationships are really formed face-to-face, but not everyone's going to be going. But now certain it's clearly back to face-to-face. We're seeing that with theCUBE as you know. >> Yeah, yeah. >> But the numbers aren't coming back, and the numbers aren't that high, but the stakeholders. >> Yeah. >> And the numbers are actually higher if you count digital. >> Yeah, absolutely. But you know, also on digital there's fatigue from 100% digital, right? It's a hybrid. People don't want to be 100% digital anymore, but they also don't want to go back to the days when everybody got on a plane for every meeting, every call, every sales call. You know, I'm seeing a mix on user conferences. I would say two-thirds of my companies are back, but not at the expense level that they were on user conferences. We spend a lot of time getting updates on, cause nobody has put, interestingly enough, nobody has put T&E, travel and expense back to pre-pandemic levels. Nobody, so everybody's pulled back on number of trips. You know, marketing events are being very scrutinized, but I think very effective. We're doing a lot of, and, you know, these were part of the old model as well, like some things, some things just recycle, but you know, there's a lot of CIO and customer round tables in regional cities. You know, those are quite effective right now because people want some face-to-face, but they don't necessarily want to get on a plane and go to Las Vegas in order to do it. I mean, some of them are, you know, there are a lot of things back in Las Vegas. >> And think about the meetings that when you were an operating executive. You got to go to the sales kickoff, you got to go to this, go to that. There were mandatory face-to-faces that you had to go to, but there was a lot of travel that you probably could have done on Zoom. >> Oh, a lot, I mean. >> And then the productivity to the family impact too. Again, think about again, we're talking about the family and people's personal lives, right? So, you know, got to meet a customer. All right. Salesperson wants you to get in front of a customer, got to fly to New York, take a red eye, come on back. Like, I mean, that's gone. >> Yeah, and oh, by the way, the customer doesn't necessarily want to be in the office that day, so, you know, they may or may not be happy about that. So again, it's and not or, right? It's a mix. And I think it's great to see people back to some face-to-face. It's great to see marketing and events back to some face-to-face. It's also great to see that it hasn't gone back to the level it was. I think that's a really healthy dynamic. >> Well, I'll tell you that from our experience while we're on the topic, we'll move back to the International Women's Day is that the productivity of digital, this program we're doing is going to be streamed. We couldn't do this face-to-face because we had to have everyone fly to an event. We're going to do hundreds of stories that we couldn't have done. We're doing it remote. Because it's better to get the content than not have it. I mean it's offline, so, but it's not about getting people to the event and watch the screen for seven hours. It's pick your interview, and then engage. >> Yeah. >> So it's self-service. So we're seeing a lot, the new user experience kind of direct to consumer, and so I think there will be an, I think there's going to be a digital first class citizen with events, so that that matches up with the kind of experience, but the offline version. Face-to-face optimized for relationships, and that's where the recruiting gets done. That's where, you know, people can build these relationships with each other. >> Yeah, and it can be asynchronous. I think that's a real value proposition. It's a great point. >> Okay, I want to get, I want to get into the technology side of the education and re-skilling and those things. I remember in the 80s, computer science was software engineering. You learned like nine languages. You took some double E courses, one or two, and all the other kind of gut classes in school. Engineering, you had the four class disciplines and some offshoots of specialization. Now it's incredible the diversity of tracks in all engineering programs and computer science and outside of those departments. >> Yeah. >> Can you speak to the importance of STEM and the diversity in the technology industry and how this brings opportunity to lower the bar to get in and how people can stay in and grow and keep leveling up? >> Yeah, well look, we're constantly working on how to, how to help the incoming funnel. But then, you know, at a university level, I'm on the foundation board of Kansas State where I got my engineering degree. I was also Chairman of the National Action Council for Minorities in Engineering, which was all about diversity in STEM and how do you keep that pipeline going because honestly the US needs more tech resources than we have. And if you don't tap into the diversity of our entire workforce, we won't be able to fill that need. And so we focused a lot on both the funnel, right, that starts at the middle school level, particularly for girls, getting them in, you know, the situation of hands-on comfort level with coding, with robot building, you know, whatever gives them that confidence. And then keeping that going all the way into, you know, university program, and making sure that they don't attrit out, right? And so there's a number of initiatives, whether it's mentoring and support groups and financial aid to make sure that underrepresented minorities, women and other minorities, you know, get through the funnel and stay, you know, stay in. >> Got it. Now let me ask you, you said, I have two daughters. You have a family of girls too. Is there a vibe difference between the new generation and what's the trends that you're seeing in this next early wave? I mean, not maybe, I don't know how this is in middle school, but like as people start getting into their adult lives, college and beyond what's the current point of view, posture, makeup of the talent coming in? >> Yeah, yeah. >> Certain orientations, do you see any patterns? What's your observation? >> Yeah, it's interesting. So if I look at electrical engineering, my major, it's, and if I look at Kansas State, which spends a lot of time on this, and I think does a great job, but the diversity of that as a major has not changed dramatically since I was there in the early 80s. Where it has changed very significantly is computer science. There are many, many university and college programs around the country where, you know, it's 50/50 in computer science from a gender mix perspective, which is huge progress. Huge progress. And so, and to me that's, you know, I think CS is a fantastic degree for tech, regardless of what function you actually end up doing in these companies. I mean, I was an electrical engineer. I never did core electrical engineering work. I went right into sales and marketing and general management roles. So I think, I think a bunch of, you know, diverse CS graduates is a really, really good sign. And you know, we need to continue to push on that, but progress has been made. I think the, you know, it kind of goes back to the thing we were just talking about, which is the attrition of those, let's just talk about women, right? The attrition of those women once they got past early career and into mid-career then was a concern, right? And that goes back to, you know, just the inability to, you know, get it all done. And that I am hopeful is going to be better served now. >> Well, Sue, it's great to have you on. I know you're super busy. I appreciate you taking the time and contributing to our program on corporate board membership and some of your story and observations and opinions and analysis. Always great to have you and call you a contributor for theCUBE. You can jump on on one more board, be one of our board contributors for our analysts. (Sue laughing) >> I'm at capacity. (both laughing) >> Final, final word. What's the big seat at the table issue that's going well and areas that need to be improved? >> So I'll speak for my boards because they have made great progress in efficiency. You know, obviously with interest rates going up and the mix between growth and profitability changing in terms of what investors are looking for. Many, many companies have had to do a hard pivot from grow at all costs to healthy balance of growth and profit. And I'm very pleased with how my companies have made that pivot. And I think that is going to make much better companies as a result. I think diversity is something that has not been solved at the corporate level, and we need to keep working it. >> Awesome. Thank you for coming on theCUBE. CUBE alumni now contributor, on multiple boards, full-time job. Love the new challenge and chapter you're on, Sue. We'll be following, and we'll check in for more updates. And thank you for being a contributor on this program this year and this episode. We're going to be doing more of these quarterly, so we're going to move beyond once a year. >> That's great. (cross talking) It's always good to see you, John. >> Thank you. >> Thanks very much. >> Okay. >> Sue: Talk to you later. >> This is theCUBE coverage of IWD, International Women's Day 2023. I'm John Furrier, your host. Thanks for watching. (upbeat music)
SUMMARY :
Thank you for coming on. of my CUBE alumni title. We're psyched to have you on. And then, you know, four years ago and then what inspired you And those range from, you know, I mean, what is it like? I think this is why you come to tech, You feel good about where you're at and. that kind of gave you some directors, you know, in the US I know there's one board, you and you feel, you know, It's doing whatever you want to But the, you know, the right now with, as you know, but I want to ask you about of the union if you will, Cause you left one and but they're on a few. Well, and you know, Yeah, I would get on a executive you can do, Okay, I got to ask you about your career. have to say, you know, not just one or the other. Well, I got to ask you about the, So I think this brings and made that, you know, made that They're in the zoom call. that like, you know, the house is clean, I also love the office, and you know, around, you know, and the numbers aren't that And the numbers are actually But you know, also on that you had to go to, So, you know, got to meet a customer. that day, so, you know, is that the productivity of digital, That's where, you know, people Yeah, and it can be asynchronous. and all the other kind all the way into, you know, and what's the trends that you're seeing And so, and to me that's, you know, Well, Sue, it's great to have you on. I'm at capacity. that need to be improved? And I think that is going to And thank you for being a It's always good to see you, John. I'm John Furrier, your host.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Meg Whitman | PERSON | 0.99+ |
Ann Livermore | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Hewlett Packard Enterprise | ORGANIZATION | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Sue Barsamian | PERSON | 0.99+ |
1981 | DATE | 0.99+ |
Texas | LOCATION | 0.99+ |
40 year | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
31 year | QUANTITY | 0.99+ |
National Action Council for Minorities in Engineering | ORGANIZATION | 0.99+ |
$4 billion | QUANTITY | 0.99+ |
35 person | QUANTITY | 0.99+ |
two daughters | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
five days | QUANTITY | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
Sue | PERSON | 0.99+ |
International Women's Day | EVENT | 0.99+ |
US | LOCATION | 0.99+ |
First | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
three days | QUANTITY | 0.99+ |
Atlanta | LOCATION | 0.99+ |
hundreds | QUANTITY | 0.99+ |
seven hours | QUANTITY | 0.99+ |
one problem | QUANTITY | 0.99+ |
one opportunity | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Kansas State | LOCATION | 0.99+ |
this year | DATE | 0.98+ |
one model | QUANTITY | 0.98+ |
second type | QUANTITY | 0.98+ |
80s | DATE | 0.98+ |
2020 | DATE | 0.98+ |
two-thirds | QUANTITY | 0.98+ |
one board | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
five boards | QUANTITY | 0.98+ |
one topic | QUANTITY | 0.98+ |
first type | QUANTITY | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
two degrees | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.97+ |
50/50 | QUANTITY | 0.96+ |
early 80s | DATE | 0.96+ |
four years ago | DATE | 0.96+ |
four class | QUANTITY | 0.95+ |
nine languages | QUANTITY | 0.95+ |
pandemic | EVENT | 0.95+ |
ORGANIZATION | 0.93+ | |
once a year | QUANTITY | 0.92+ |
27 year old | QUANTITY | 0.91+ |
today | DATE | 0.88+ |
Adam Wenchel, Arthur.ai | CUBE Conversation
(bright upbeat music) >> Hello and welcome to this Cube Conversation. I'm John Furrier, host of theCUBE. We've got a great conversation featuring Arthur AI. I'm your host. I'm excited to have Adam Wenchel who's the Co-Founder and CEO. Thanks for joining us today, appreciate it. >> Yeah, thanks for having me on, John, looking forward to the conversation. >> I got to say, it's been an exciting world in AI or artificial intelligence. Just an explosion of interest kind of in the mainstream with the language models, which people don't really get, but they're seeing the benefits of some of the hype around OpenAI. Which kind of wakes everyone up to, "Oh, I get it now." And then of course the pessimism comes in, all the skeptics are out there. But this breakthrough in generative AI field is just awesome, it's really a shift, it's a wave. We've been calling it probably the biggest inflection point, then the others combined of what this can do from a surge standpoint, applications. I mean, all aspects of what we used to know is the computing industry, software industry, hardware, is completely going to get turbo. So we're totally obviously bullish on this thing. So, this is really interesting. So my first question is, I got to ask you, what's you guys taking? 'Cause you've been doing this, you're in it, and now all of a sudden you're at the beach where the big waves are. What's the explosion of interest is there? What are you seeing right now? >> Yeah, I mean, it's amazing, so for starters, I've been in AI for over 20 years and just seeing this amount of excitement and the growth, and like you said, the inflection point we've hit in the last six months has just been amazing. And, you know, what we're seeing is like people are getting applications into production using LLMs. I mean, really all this excitement just started a few months ago, with ChatGPT and other breakthroughs and the amount of activity and the amount of new systems that we're seeing hitting production already so soon after that is just unlike anything we've ever seen. So it's pretty awesome. And, you know, these language models are just, they could be applied in so many different business contexts and that it's just the amount of value that's being created is again, like unprecedented compared to anything. >> Adam, you know, you've been in this for a while, so it's an interesting point you're bringing up, and this is a good point. I was talking with my friend John Markoff, former New York Times journalist and he was talking about, there's been a lot of work been done on ethics. So there's been, it's not like it's new. It's like been, there's a lot of stuff that's been baking over many, many years and, you know, decades. So now everyone wakes up in the season, so I think that is a key point I want to get into some of your observations. But before we get into it, I want you to explain for the folks watching, just so we can kind of get a definition on the record. What's an LLM, what's a foundational model and what's generative ai? Can you just quickly explain the three things there? >> Yeah, absolutely. So an LLM or a large language model, it's just a large, they would imply a large language model that's been trained on a huge amount of data typically pulled from the internet. And it's a general purpose language model that can be built on top for all sorts of different things, that includes traditional NLP tasks like document classification and sentiment understanding. But the thing that's gotten people really excited is it's used for generative tasks. So, you know, asking it to summarize documents or asking it to answer questions. And these aren't new techniques, they've been around for a while, but what's changed is just this new class of models that's based on new architectures. They're just so much more capable that they've gone from sort of science projects to something that's actually incredibly useful in the real world. And there's a number of companies that are making them accessible to everyone so that you can build on top of them. So that's the other big thing is, this kind of access to these models that can power generative tasks has been democratized in the last few months and it's just opening up all these new possibilities. And then the third one you mentioned foundation models is sort of a broader term for the category that includes LLMs, but it's not just language models that are included. So we've actually seen this for a while in the computer vision world. So people have been building on top of computer vision models, pre-trained computer vision models for a while for image classification, object detection, that's something we've had customers doing for three or four years already. And so, you know, like you said, there are antecedents to like, everything that's happened, it's not entirely new, but it does feel like a step change. >> Yeah, I did ask ChatGPT to give me a riveting introduction to you and it gave me an interesting read. If we have time, I'll read it. It's kind of, it's fun, you get a kick out of it. "Ladies and gentlemen, today we're a privileged "to have Adam Wenchel, Founder of Arthur who's going to talk "about the exciting world of artificial intelligence." And then it goes on with some really riveting sentences. So if we have time, I'll share that, it's kind of funny. It was good. >> Okay. >> So anyway, this is what people see and this is why I think it's exciting 'cause I think people are going to start refactoring what they do. And I've been saying this on theCUBE now for about a couple months is that, you know, there's a scene in "Moneyball" where Billy Beane sits down with the Red Sox owner and the Red Sox owner says, "If people aren't rebuilding their teams on your model, "they're going to be dinosaurs." And it reminds me of what's happening right now. And I think everyone that I talk to in the business sphere is looking at this and they're connecting the dots and just saying, if we don't rebuild our business with this new wave, they're going to be out of business because there's so much efficiency, there's so much automation, not like DevOps automation, but like the generative tasks that will free up the intellect of people. Like just the simple things like do an intro or do this for me, write some code, write a countermeasure to a hack. I mean, this is kind of what people are doing. And you mentioned computer vision, again, another huge field where 5G things are coming on, it's going to accelerate. What do you say to people when they kind of are leaning towards that, I need to rethink my business? >> Yeah, it's 100% accurate and what's been amazing to watch the last few months is the speed at which, and the urgency that companies like Microsoft and Google or others are actually racing to, to do that rethinking of their business. And you know, those teams, those companies which are large and haven't always been the fastest moving companies are working around the clock. And the pace at which they're rolling out LLMs across their suite of products is just phenomenal to watch. And it's not just the big, the large tech companies as well, I mean, we're seeing the number of startups, like we get, every week a couple of new startups get in touch with us for help with their LLMs and you know, there's just a huge amount of venture capital flowing into it right now because everyone realizes the opportunities for transforming like legal and healthcare and content creation in all these different areas is just wide open. And so there's a massive gold rush going on right now, which is amazing. >> And the cloud scale, obviously horizontal scalability of the cloud brings us to another level. We've been seeing data infrastructure since the Hadoop days where big data was coined. Now you're seeing this kind of take fruit, now you have vertical specialization where data shines, large language models all of a set up perfectly for kind of this piece. And you know, as you mentioned, you've been doing it for a long time. Let's take a step back and I want to get into how you started the company, what drove you to start it? Because you know, as an entrepreneur you're probably saw this opportunity before other people like, "Hey, this is finally it, it's here." Can you share the origination story of what you guys came up with, how you started it, what was the motivation and take us through that origination story. >> Yeah, absolutely. So as I mentioned, I've been doing AI for many years. I started my career at DARPA, but it wasn't really until 2015, 2016, my previous company was acquired by Capital One. Then I started working there and shortly after I joined, I was asked to start their AI team and scale it up. And for the first time I was actually doing it, had production models that we were working with, that was at scale, right? And so there was hundreds of millions of dollars of business revenue and certainly a big group of customers who were impacted by the way these models acted. And so it got me hyper-aware of these issues of when you get models into production, it, you know. So I think people who are earlier in the AI maturity look at that as a finish line, but it's really just the beginning and there's this constant drive to make them better, make sure they're not degrading, make sure you can explain what they're doing, if they're impacting people, making sure they're not biased. And so at that time, there really weren't any tools to exist to do this, there wasn't open source, there wasn't anything. And so after a few years there, I really started talking to other people in the industry and there was a really clear theme that this needed to be addressed. And so, I joined with my Co-Founder John Dickerson, who was on the faculty in University of Maryland and he'd been doing a lot of research in these areas. And so we ended up joining up together and starting Arthur. >> Awesome. Well, let's get into what you guys do. Can you explain the value proposition? What are people using you for now? Where's the action? What's the customers look like? What do prospects look like? Obviously you mentioned production, this has been the theme. It's not like people woke up one day and said, "Hey, I'm going to put stuff into production." This has kind of been happening. There's been companies that have been doing this at scale and then yet there's a whole follower model coming on mainstream enterprise and businesses. So there's kind of the early adopters are there now in production. What do you guys do? I mean, 'cause I think about just driving the car off the lot is not, you got to manage operations. I mean, that's a big thing. So what do you guys do? Talk about the value proposition and how you guys make money? >> Yeah, so what we do is, listen, when you go to validate ahead of deploying these models in production, starts at that point, right? So you want to make sure that if you're going to be upgrading a model, if you're going to replacing one that's currently in production, that you've proven that it's going to perform well, that it's going to be perform ethically and that you can explain what it's doing. And then when you launch it into production, traditionally data scientists would spend 25, 30% of their time just manually checking in on their model day-to-day babysitting as we call it, just to make sure that the data hasn't drifted, the model performance hasn't degraded, that a programmer did make a change in an upstream data system. You know, there's all sorts of reasons why the world changes and that can have a real adverse effect on these models. And so what we do is bring the same kind of automation that you have for other kinds of, let's say infrastructure monitoring, application monitoring, we bring that to your AI systems. And that way if there ever is an issue, it's not like weeks or months till you find it and you find it before it has an effect on your P&L and your balance sheet, which is too often before they had tools like Arthur, that was the way they were detected. >> You know, I was talking to Swami at Amazon who I've known for a long time for 13 years and been on theCUBE multiple times and you know, I watched Amazon try to pick up that sting with stage maker about six years ago and so much has happened since then. And he and I were talking about this wave, and I kind of brought up this analogy to how when cloud started, it was, Hey, I don't need a data center. 'Cause when I did my startup that time when Amazon, one of my startups at that time, my choice was put a box in the colo, get all the configuration before I could write over the line of code. So the cloud became the benefit for that and you can stand up stuff quickly and then it grew from there. Here it's kind of the same dynamic, you don't want to have to provision a large language model or do all this heavy lifting. So that seeing companies coming out there saying, you can get started faster, there's like a new way to get it going. So it's kind of like the same vibe of limiting that heavy lifting. >> Absolutely. >> How do you look at that because this seems to be a wave that's going to be coming in and how do you guys help companies who are going to move quickly and start developing? >> Yeah, so I think in the race to this kind of gold rush mentality, race to get these models into production, there's starting to see more sort of examples and evidence that there are a lot of risks that go along with it. Either your model says things, your system says things that are just wrong, you know, whether it's hallucination or just making things up, there's lots of examples. If you go on Twitter and the news, you can read about those, as well as sort of times when there could be toxic content coming out of things like that. And so there's a lot of risks there that you need to think about and be thoughtful about when you're deploying these systems. But you know, you need to balance that with the business imperative of getting these things into production and really transforming your business. And so that's where we help people, we say go ahead, put them in production, but just make sure you have the right guardrails in place so that you can do it in a smart way that's going to reflect well on you and your company. >> Let's frame the challenge for the companies now that you have, obviously there's the people who doing large scale production and then you have companies maybe like as small as us who have large linguistic databases or transcripts for example, right? So what are customers doing and why are they deploying AI right now? And is it a speed game, is it a cost game? Why have some companies been able to deploy AI at such faster rates than others? And what's a best practice to onboard new customers? >> Yeah, absolutely. So I mean, we're seeing across a bunch of different verticals, there are leaders who have really kind of started to solve this puzzle about getting AI models into production quickly and being able to iterate on them quickly. And I think those are the ones that realize that imperative that you mentioned earlier about how transformational this technology is. And you know, a lot of times, even like the CEOs or the boards are very personally kind of driving this sense of urgency around it. And so, you know, that creates a lot of movement, right? And so those companies have put in place really smart infrastructure and rails so that people can, data scientists aren't encumbered by having to like hunt down data, get access to it. They're not encumbered by having to stand up new platforms every time they want to deploy an AI system, but that stuff is already in place. There's a really nice ecosystem of products out there, including Arthur, that you can tap into. Compared to five or six years ago when I was building at a top 10 US bank, at that point you really had to build almost everything yourself and that's not the case now. And so it's really nice to have things like, you know, you mentioned AWS SageMaker and a whole host of other tools that can really accelerate things. >> What's your profile customer? Is it someone who already has a team or can people who are learning just dial into the service? What's the persona? What's the pitch, if you will, how do you align with that customer value proposition? Do people have to be built out with a team and in play or is it pre-production or can you start with people who are just getting going? >> Yeah, people do start using it pre-production for validation, but I think a lot of our customers do have a team going and they're starting to put, either close to putting something into production or about to, it's everything from large enterprises that have really sort of complicated, they have dozens of models running all over doing all sorts of use cases to tech startups that are very focused on a single problem, but that's like the lifeblood of the company and so they need to guarantee that it works well. And you know, we make it really easy to get started, especially if you're using one of the common model development platforms, you can just kind of turn key, get going and make sure that you have a nice feedback loop. So then when your models are out there, it's pointing out, areas where it's performing well, areas where it's performing less well, giving you that feedback so that you can make improvements, whether it's in training data or futurization work or algorithm selection. There's a number of, you know, depending on the symptoms, there's a number of things you can do to increase performance over time and we help guide people on that journey. >> So Adam, I have to ask, since you have such a great customer base and they're smart and they got teams and you're on the front end, I mean, early adopters is kind of an overused word, but they're killing it. They're putting stuff in the production's, not like it's a test, it's not like it's early. So as the next wave comes of fast followers, how do you see that coming online? What's your vision for that? How do you see companies that are like just waking up out of the frozen, you know, freeze of like old IT to like, okay, they got cloud, but they're not yet there. What do you see in the market? I see you're in the front end now with the top people really nailing AI and working hard. What's the- >> Yeah, I think a lot of these tools are becoming, or every year they get easier, more accessible, easier to use. And so, you know, even for that kind of like, as the market broadens, it takes less and less of a lift to put these systems in place. And the thing is, every business is unique, they have their own kind of data and so you can use these foundation models which have just been trained on generic data. They're a great starting point, a great accelerant, but then, in most cases you're either going to want to create a model or fine tune a model using data that's really kind of comes from your particular customers, the people you serve and so that it really reflects that and takes that into account. And so I do think that these, like the size of that market is expanding and its broadening as these tools just become easier to use and also the knowledge about how to build these systems becomes more widespread. >> Talk about your customer base you have now, what's the makeup, what size are they? Give a taste a little bit of a customer base you got there, what's they look like? I'll say Capital One, we know very well while you were at there, they were large scale, lot of data from fraud detection to all kinds of cool stuff. What do your customers now look like? >> Yeah, so we have a variety, but I would say one area we're really strong, we have several of the top 10 US banks, that's not surprising, that's a strength for us, but we also have Fortune 100 customers in healthcare, in manufacturing, in retail, in semiconductor and electronics. So what we find is like in any sort of these major verticals, there's typically, you know, one, two, three kind of companies that are really leading the charge and are the ones that, you know, in our opinion, those are the ones that for the next multiple decades are going to be the leaders, the ones that really kind of lead the charge on this AI transformation. And so we're very fortunate to be working with some of those. And then we have a number of startups as well who we love working with just because they're really pushing the boundaries technologically and so they provide great feedback and make sure that we're continuing to innovate and staying abreast of everything that's going on. >> You know, these early markups, even when the hyperscalers were coming online, they had to build everything themselves. That's the new, they're like the alphas out there building it. This is going to be a big wave again as that fast follower comes in. And so when you look at the scale, what advice would you give folks out there right now who want to tee it up and what's your secret sauce that will help them get there? >> Yeah, I think that the secret to teeing it up is just dive in and start like the, I think these are, there's not really a secret. I think it's amazing how accessible these are. I mean, there's all sorts of ways to access LLMs either via either API access or downloadable in some cases. And so, you know, go ahead and get started. And then our secret sauce really is the way that we provide that performance analysis of what's going on, right? So we can tell you in a very actionable way, like, hey, here's where your model is doing good things, here's where it's doing bad things. Here's something you want to take a look at, here's some potential remedies for it. We can help guide you through that. And that way when you're putting it out there, A, you're avoiding a lot of the common pitfalls that people see and B, you're able to really kind of make it better in a much faster way with that tight feedback loop. >> It's interesting, we've been kind of riffing on this supercloud idea because it was just different name than multicloud and you see apps like Snowflake built on top of AWS without even spending any CapEx, you just ride that cloud wave. This next AI, super AI wave is coming. I don't want to call AIOps because I think there's a different distinction. If you, MLOps and AIOps seem a little bit old, almost a few years back, how do you view that because everyone's is like, "Is this AIOps?" And like, "No, not kind of, but not really." How would you, you know, when someone says, just shoots off the hip, "Hey Adam, aren't you doing AIOps?" Do you say, yes we are, do you say, yes, but we do differently because it's doesn't seem like it's the same old AIOps. What's your- >> Yeah, it's a good question. AIOps has been a term that was co-opted for other things and MLOps also has people have used it for different meanings. So I like the term just AI infrastructure, I think it kind of like describes it really well and succinctly. >> But you guys are doing the ops. I mean that's the kind of ironic thing, it's like the next level, it's like NextGen ops, but it's not, you don't want to be put in that bucket. >> Yeah, no, it's very operationally focused platform that we have, I mean, it fires alerts, people can action off them. If you're familiar with like the way people run security operations centers or network operations centers, we do that for data science, right? So think of it as a DSOC, a Data Science Operations Center where all your models, you might have hundreds of models running across your organization, you may have five, but as problems are detected, alerts can be fired and you can actually work the case, make sure they're resolved, escalate them as necessary. And so there is a very strong operational aspect to it, you're right. >> You know, one of the things I think is interesting is, is that, if you don't mind commenting on it, is that the aspect of scale is huge and it feels like that was made up and now you have scale and production. What's your reaction to that when people say, how does scale impact this? >> Yeah, scale is huge for some of, you know, I think, I think look, the highest leverage business areas to apply these to, are generally going to be the ones at the biggest scale, right? And I think that's one of the advantages we have. Several of us come from enterprise backgrounds and we're used to doing things enterprise grade at scale and so, you know, we're seeing more and more companies, I think they started out deploying AI and sort of, you know, important but not necessarily like the crown jewel area of their business, but now they're deploying AI right in the heart of things and yeah, the scale that some of our companies are operating at is pretty impressive. >> John: Well, super exciting, great to have you on and congratulations. I got a final question for you, just random. What are you most excited about right now? Because I mean, you got to be pretty pumped right now with the way the world is going and again, I think this is just the beginning. What's your personal view? How do you feel right now? >> Yeah, the thing I'm really excited about for the next couple years now, you touched on it a little bit earlier, but is a sort of convergence of AI and AI systems with sort of turning into AI native businesses. And so, as you sort of do more, get good further along this transformation curve with AI, it turns out that like the better the performance of your AI systems, the better the performance of your business. Because these models are really starting to underpin all these key areas that cumulatively drive your P&L. And so one of the things that we work a lot with our customers is to do is just understand, you know, take these really esoteric data science notions and performance and tie them to all their business KPIs so that way you really are, it's kind of like the operating system for running your AI native business. And we're starting to see more and more companies get farther along that maturity curve and starting to think that way, which is really exciting. >> I love the AI native. I haven't heard any startup yet say AI first, although we kind of use the term, but I guarantee that's going to come in all the pitch decks, we're an AI first company, it's going to be great run. Adam, congratulations on your success to you and the team. Hey, if we do a few more interviews, we'll get the linguistics down. We can have bots just interact with you directly and ask you, have an interview directly. >> That sounds good, I'm going to go hang out on the beach, right? So, sounds good. >> Thanks for coming on, really appreciate the conversation. Super exciting, really important area and you guys doing great work. Thanks for coming on. >> Adam: Yeah, thanks John. >> Again, this is Cube Conversation. I'm John Furrier here in Palo Alto, AI going next gen. This is legit, this is going to a whole nother level that's going to open up huge opportunities for startups, that's going to use opportunities for investors and the value to the users and the experience will come in, in ways I think no one will ever see. So keep an eye out for more coverage on siliconangle.com and theCUBE.net, thanks for watching. (bright upbeat music)
SUMMARY :
I'm excited to have Adam Wenchel looking forward to the conversation. kind of in the mainstream and that it's just the amount Adam, you know, you've so that you can build on top of them. to give me a riveting introduction to you And you mentioned computer vision, again, And you know, those teams, And you know, as you mentioned, of when you get models into off the lot is not, you and that you can explain what it's doing. So it's kind of like the same vibe so that you can do it in a smart way And so, you know, that creates and make sure that you out of the frozen, you know, and so you can use these foundation models a customer base you got there, that are really leading the And so when you look at the scale, And so, you know, go how do you view that So I like the term just AI infrastructure, I mean that's the kind of ironic thing, and you can actually work the case, is that the aspect of and so, you know, we're seeing exciting, great to have you on so that way you really are, success to you and the team. out on the beach, right? and you guys doing great work. and the value to the users and
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Adam Wenchel | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Red Sox | ORGANIZATION | 0.99+ |
John Dickerson | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Adam | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
Capital One | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
13 years | QUANTITY | 0.99+ |
Snowflake | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
five | DATE | 0.99+ |
today | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
four years | QUANTITY | 0.99+ |
Billy Beane | PERSON | 0.99+ |
over 20 years | QUANTITY | 0.99+ |
DARPA | ORGANIZATION | 0.99+ |
third one | QUANTITY | 0.98+ |
AWS | ORGANIZATION | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
University of Maryland | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
US | LOCATION | 0.97+ |
first | QUANTITY | 0.96+ |
six years ago | DATE | 0.96+ |
New York Times | ORGANIZATION | 0.96+ |
ChatGPT | ORGANIZATION | 0.96+ |
Swami | PERSON | 0.95+ |
ChatGPT | TITLE | 0.95+ |
hundreds of models | QUANTITY | 0.95+ |
25, 30% | QUANTITY | 0.95+ |
single problem | QUANTITY | 0.95+ |
hundreds of millions of dollars | QUANTITY | 0.95+ |
10 | QUANTITY | 0.94+ |
Moneyball | TITLE | 0.94+ |
wave | EVENT | 0.91+ |
three things | QUANTITY | 0.9+ |
AIOps | TITLE | 0.9+ |
last six months | DATE | 0.89+ |
few months ago | DATE | 0.88+ |
big | EVENT | 0.86+ |
next couple years | DATE | 0.86+ |
DevOps | TITLE | 0.85+ |
Arthur | PERSON | 0.85+ |
CUBE | ORGANIZATION | 0.83+ |
dozens of models | QUANTITY | 0.8+ |
a few years back | DATE | 0.8+ |
six years ago | DATE | 0.78+ |
theCUBE | ORGANIZATION | 0.76+ |
SageMaker | TITLE | 0.75+ |
decades | QUANTITY | 0.75+ |
ORGANIZATION | 0.74+ | |
MLOps | TITLE | 0.74+ |
supercloud | ORGANIZATION | 0.73+ |
super AI wave | EVENT | 0.73+ |
a couple months | QUANTITY | 0.72+ |
Arthur | ORGANIZATION | 0.72+ |
100 customers | QUANTITY | 0.71+ |
Cube Conversation | EVENT | 0.69+ |
theCUBE.net | OTHER | 0.67+ |
Manish Singh, Dell Technologies & Doug Wolff, Dell Technologies | MWC Barcelona 2023
>> Announcer: theCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Welcome to the Fira in Barcelona, everybody. This is theCUBE's coverage of MWC 23, day one of that coverage. We have four days of wall-to-wall action going on, the place is going crazy. I'm here with Dave Nicholson, Lisa Martin is also in the house. Today's ecosystem day, and we're really excited to have Manish Singh who's the CTO of the Telecom Systems Business unit at Dell Technologies. He's joined by Doug Wolf who's the head of strategy for the Telecom Systems Business unit at Dell. Gents, welcome. What a show. I mean really the first major MWC or used to be Mobile World Congress since you guys have launched your telecom business, you kind of did that sort of in the Covid transition, but really exciting, obviously a huge, huge venue to match the huge market. So Manish, how did you guys get into this? What did you see? What was the overall thinking to get Dell into this business? >> Manish: Yeah, well, I mean just to start with you know, if you look at the telecom ecosystem today, the service providers in particular, they are looking for network transformation, driving more disaggregation into their network so that they can get better utilization of the infrastructure, but then also get more agility, more cloud native characteristics onto their, for their networks in particular. And then further on, it's important for them to really start to accelerate the pace of innovation on the networks itself, to start more supply chain diversity, that's one of the challenges that they've been having. And so there've been all these market forces that have been really getting these service providers to really start to transform the way they have built the infrastructure in the past, which was legacy monolithic architectures to more cloud native disaggregated. And from a Dell perspective, you know, that really gives us the permission to play, to really, given all the expertise on the work we have done in the IT with all the IT transformations to leverage all that expertise and bring that to the service providers and really help them in accelerating their network transformation. So that's where the journey started. We've been obviously ever since then working on expanding the product portfolio on our compute platforms to bring Teleco great compute platforms with more capabilities than we can talk about that. But then working with partners and building the ecosystem to again create this disaggregated and open ecosystem that will be more cloud native and really meet the objective that the service providers are after. >> Dave Vellante: Great, thank you. So, Doug the strategy obviously is to attack this market, as Manish said, from an open standpoint, that's sort of new territory. It's like a little bit like the wild, wild west. So maybe you could double click on what Manish was saying from a, from a strategy standpoint, yes, the Telecos need to be more flexible, they need to be more open, but they also need this reliability piece. So talk about that from a strategy standpoint of what you guys saw. >> Doug: Yeah, absolutely. As Manish mentioned, you know, Dell getting into open systems isn't something new. You know, Dell has been kind of playing in that world for years and years, but the opportunity in Telecom that came was opening of the RAN, the core network, the edge, all of these with 5G really created a wide opening for us. So we started developing products and solutions, you know, built our first Telecom grade servers for open RAN over the last year, we'll talk about those at the show. But you know, as, as Manish mentioned, an open ecosystem is new to Telecom. I've been in the Telecom business along with Manish for, you know, 25 plus years and this is a new thing that they're embarking on. So started with virtualization about five, six years ago, and now moving to cloud native architectures on the core, suddenly there's this need to have multiple parties partner really well, share specifications, and put that together for an operator to consume. And I think that's just the start of really where all the challenges are and the opportunities that we see. >> Where are we in this transition cycle? When the average consumer hears 5G, feels like it's been around for a long time because it was hyped beforehand. >> Doug: Yeah. >> If you're talking about moving to an open infrastructure model from a proprietary closed model, when is the opportunity for Dell to become part of that? Is it, are there specific sites that have already transitioned to 5G, therefore they've either made the decision to be open or not? Or are there places where the 5G transition has taken place, and they might then make a transition to open brand with 5G? Where, where are we in that cycle? What does the opportunity look like? >> I'll kind of take it from the typology of the operator, and I'm sure Manish will build on this, but if I look back on the core, started to get virtualized you know, back around 2015-16 with some of the lead operators like AT&T et cetera. So Dell has been partnering with those operators for some years. So it really, it's happening on the core, but it's moving with 5G to more of a cloud-like architecture, number one. And number two, they're going beyond just virtualizing the network. You know, they previously had used OpenStack and most of them are migrating to more of a cloud native architecture that Manish mentioned. And that is a bit different in terms of there's more software vendors in that ecosystem because the software is disaggregated also. So Dell's been playing in the core for a number of years, but we brought out new solutions we've announced at the show for the core. And the parts that are really starting that transition of maybe where the core was back in 2015 is on the RAN and on the edge in particular. >> Because NFV kind of predated the ascendancy of cloud. >> Exactly, yeah. >> Right, so it really didn't have the impact that people had hoped. And there's some, when you look back, 'cause it's not same wine, new bottle as the open systems movement, there are a lot of similarities but you know, you mentioned cloud, and cloud native, you really didn't have, back in the nineties, true engineered systems. You didn't really have AI that, you know, to speak of at the sort of volume of the data that we have. So Manish, from a CTO's perspective, how are you attacking some of those differences in bringing that to market? >> Manish: Yeah, I mean, I think you touched on some very important points there. So first of all, the duck's point, a lot of this transformation started in the core, right? And as the technology evolution progress, the opportunities opened up. It has now come into the edge and the radio access network as well, in particular with open RAN. And so when we talk about the disaggregation of the infrastructure from the software itself and an open ecosystem, this now starts to create the opportunity to accelerate innovation. And I really want to pick up on the point that you'd said on AI, for example. AI and machine learning bring a whole new set of capabilities and opportunities for these service providers to drive better optimization, better performance, better sustainability and energy efficiency on their infrastructure, on and on and on. But to really tap into these technologies, they really need to open that up to third parties implementation solutions that are coming up. And again, the end objective remains to accelerate that innovation. Now that said, all these things need to be brought together, right? And delivered and deployed in the network without any degradation in the KPIs and actually improving the performance on different vectors, right? So this is what the current state of play is. And with this aggregation I'm definitely a believer that all these new technologies, including AI, machine learning, and there's a whole area, host area of problems that can be solved and attacked and are actually getting attacked by applying AI and machine learning onto these networks. >> Open obviously is good. Nobody's ever going to, you know, argue that open is a bad thing. It's like democracy is a good thing, right? At least amongst us. And so, but, the RAN, the open RAN, has to be as reliable and performant, right, as these, closed networks. Or maybe not, maybe it doesn't have to be identical. Just has to be close enough in order for that tipping point to occur. Is that a fair summarization? What are you guys hearing from carriers in terms of their willingness to sort of put their toe in the water and, and what could we expect in terms of the maturity model of, of open RAN and adoption? >> Right, so I mean I think on, on performance that, that's a tough one. I think the operators will demand performance and you've seen experiments, you've really seen more of the Greenfield operators kind of launch. >> Okay. >> Doug: Open RAN or vRAN type solutions. >> So they're going to disrupt. >> Doug: Yeah, they're going to disrupt. >> Yeah. >> Doug: And there's flexibility in an open RAN architecture also for 5G that they, that they're interested in and I think the Brownfield operators are too, but let's say maybe the Greenfield jump first in terms of doing that from a mass deployment perspective. But I still think that it's going to be critical to meet very similar SLAs and end user performance. And, you know, I think that's where, you know, maturity of that model is what's required. I think Brownfield operators are conservative in terms of, you know, going with something they know, but the opportunities and the benefits of that architecture and building new flexible, potentially cost advantaged over time solutions, that's what the, where the real interest is going forward. >> And new services that you can introduce much more quickly. You know, the interesting thing about Dell to me, you don't compete with the carriers, the public cloud vendors though, the carriers are concerned about them sort of doing an end run on them. So you provide a potential partnership for the carriers that's non-threatening, right? 'Cause you're, you're an arms dealer, you're selling hardware and software, right? But, but how do you see that? Because we heard in the keynote today, one of the Teleco, I think it was the chairman of Telefonica said, you know, cloud guys can't do this alone. You know, they need, you know, this massive, you know, build out. And so, what do you think about that in terms of your relationship with the carriers not being threatening? I mean versus say potentially the cloud guys, who are also your partners, I understand, it's a really interesting dynamic, isn't it? >> Manish: Yeah, I mean I think, you know, I mean, the way I look at it, the carriers actually need someone like Dell who really come in who can bring in the right capabilities, the right infrastructure, but also bring in the ecosystem together and deliver a performance solution that they can deploy and that they can trust, number one. Number two, to your point on cloud, I mean, from a Dell perspective, you know, we announced our Dell Telecom Multicloud Foundation and as part of that last year in September, we announced what we call is the Dell Telecom Infrastructure Blocks. The first one we announced with Wind River, and this is, think of it as the, you know, hardware and the cashier all pre-integrated with lot of automation around it, factory integrated, you know, delivered to customers in an integrated model with all the licenses, everything. And so it starts to solve the day zero, day one, day two integration deployment and then lifecycle management for them. So to broaden the discussion, our view is it's a multicloud world, the future is multicloud where you can have different clouds which can be optimized for different workloads. So for example, while our work with Wind River initially was very focused on virtualization of the radio access network, we just announced our infrastructure block with Red Hat, which is very much targeted and optimized for core network and edge, right? So, you know, there are different workflows which will require different capabilities also. And so, you know, again, we are bringing those things to these service providers to again, bring those cloud characteristics and cloud native architecture for their network. >> And It's going to be hybrid, to your point. >> David N.: And you, just hit on something, you said cloud characteristics. >> Yeah. >> If you look at this through the lens of kind of the general world of IT, sometimes when people hear the word cloud, they immediately leap to the idea that it's a hyperscale cloud provider. In this scenario we're talking about radio towers that have intelligence living on them and physically at the base. And so the cloud characteristics that you're delivering might be living physically in these remote locations all over the place, is that correct? >> Yeah, I mean that, that's true. That will definitely happen over time. But I think, I think we've seen the hyperscalers enter, you know, public cloud providers, enter at the edge and they're dabbling maybe with private, but I think the public RAN is another further challenge. I think that maybe a little bit down the road for them. So I think that is a different characteristic that you're talking about managing the macro RAN environment. >> Manish: If I may just add one more perspective of this cloud, and I mean, again, the hyperscale cloud, right? I mean that world's been great when you can centralize a lot of compute capability and you can then start to, you know, do workload aggregation and use the infrastructure more efficient. When it comes to Telecom, it is inherently it distributed architecture where you have access, you talked about radio access, your port, and it is inherently distributed because it has to provide the coverage and capacity. And so, you know, it does require different kind of capabilities when you're going out and about, and this is where I was talking about things like, you know, we just talked, we just have been working on our bare metal orchestration, right? This is what we are bringing is a capability where you can actually have distributed infrastructure, you can deploy, you can actually manage, do lifecycle management, in a distributed multicloud form. So it does require, you know, different set of capabilities that need to be enabled. >> Some, when talking about cloud, would argue that it's always been information technology, it always will be information technology, and especially as what we might refer to as public cloud or hyperscale cloud providers, are delivering things essentially on premises. It's like, well, is that cloud? Because it feels like some of those players are going to be delivering physical infrastructure outside of their own data centers in order to address this. It seems the nature, the nature of the beast is that some of these things need to be distributed. So it seems perfectly situated for Dell. That's why you guys are both at Dell now and not working for other Telecom places, right? >> Exactly. Exactly, yes. >> It's definitely an exciting space. It's transformed, the networks are under transformation and I do think that Dell's very well positioned to, to really help the customers, the service providers in accelerating their transformation journey with an open ecosystem. >> Dave V.: You've got the brand, and the breadth, and the resources to actually attract an ecosystem. But I wonder if you could sort of take us through your strategy of ecosystem, the challenges that you've seen in developing that ecosystem and what the vision is that ultimately, what's the outcome going to be of that open ecosystem? >> Yeah, I can start. So maybe just to give you the big picture, right? I mean the big picture, is disaggregation with performance, right, TCO models to the service providers, right? And it starts at the infrastructure layer, builds on bringing these cloud capabilities, the cast layer, right? Bringing the right accelerators. All of this requires to pull the ecosystem. So give you an example on the infrastructure in a Teleco grade servers like XR8000 with Sapphire, the new intel processors that we've just announced, and an extended array of servers. These are Teleco grade, short depth, et cetera. You know, the Teleco great characteristic. Working with the partners like Marvel for bringing in the accelerators in there, that's important to again, drive the performance and optimize for the TCO. Working then with partners like Wind River, Red Hat, et cetera, to bring in the cast capabilities so you can start to see how this ecosystem starts to build up. And then very recently we announced our private 5G solution with AirSpan and Expeto on the core site. So bringing those workloads together. Similarly, we have an open RAN solution we announce with Fujitsu. So it's, it's open, it's disaggregated, but bringing all these together. And one of the last things I would say is, you know, to make all this happen and make all of these, we've also been putting together our OTEL, our open Telecom ecosystem lab, which is very much geared, really gives this open ecosystem a playground where they can come in and do all that heavy lifting, which is anyways required, to do the integration, optimization, and board. So put all these capabilities in place, but the end goal, the end vision again, is that cloud native disaggregated infrastructure that starts to innovate at the speed of software and scales at the speed of cloud. >> And this is different than the nineties. You didn't have something like OTEL back then, you know, you didn't have the developer ecosystem that you have today because on top of everything that you just said, Manish, are new workloads and new applications that are going to be developed. Doug, anything you'd add to what Manish said? >> Doug: Yeah, I mean, as Manish said, I think adding to the infrastructure layers, which are, you know, critical for us to, to help integrate, right? Because we kind of took a vertical Teleco stack and we've disaggregated it, and it's gotten a little bit more complex. So our Solutions Dell Technology infrastructure block, and our lab infrastructure with OTEL, helps put those pieces together. But without the software players in this, you know, that's what we really do, I think in OTEL. And that's just starting to grow. So integrating with those software providers with that integration is something that the operators need. So we fill a gap there in terms of either providing engineered solutions so they can readily build on or actually bringing in that software provider. And I think that's what you're going to see more from us going forward is just extending that ecosystem even further. More software players effectively. >> In thinking about O-RAN, are they, is it possible to have the low latency, the high performance, the reliability capabilities that carriers are used to and the flexibility? Or can you sort of prioritize one over the other from a go to market and rollout standpoint and optimize one, maybe get a foothold in the market? How do you see that balance? >> Manish: Oh the answer is absolutely yes you can have both We are on that journey, we are on that journey. This is where all these things I was talking about in terms of the right kind of accelerators, right kind of capabilities on the infrastructure, obviously retargeting the software, there are certain changes, et cetera that need to be done on the software itself to make it more cloud native. And then building all the surrounding capabilities around the CICD pipeline and all where it's not just day zero or day one that you're doing the cloud-like lifecycle management of this infrastructure. But the answer to your point, yes, absolutely. It's possible, the technology is there, and the ecosystem is coming together, and that's the direction. Now, are there challenges? Absolutely there are challenges, but directionally that's the direction the industry is moving to. >> Dave V.: I guess my question, Manish, is do they have to go in lockstep? Because I would argue that the public cloud when it first came out wasn't nearly as functional as what I could get from my own data center in terms of recovery, you know, backup and recovery is a perfect example and it took, you know, a decade plus to get there. But it was the flexibility, and the openness, and the developer affinity, the programmability, that attracted people. Do you see O-RAN following a similar path? Or does it, my question is does it have to have that carrier class reliability today? >> David N.: Everything on day one, does it have to have everything on day one? >> Yeah, I mean, I would say, you know, like again, the Greenfield operators I think we're, we're willing do a little bit more experimentation. I think the operators, Brownfield operators that have existing, you know, deployments, they're going to want to be closer. But I think there's room for innovation here. And clearly, you know, Manish came from, from Meta and we're, we've been very involved with TIP, we're very involved with the O-RAN alliance, and as Manish mentioned, with all those accelerators that we're working with on our infrastructure, that is a space that we're trying to help move the ball forward. So I think you're seeing deployments from mainstream operators, but it's maybe not in, you know, downtown New York deployment, they're more rural deployments. I think that's getting at, you know, kind of your question is there's maybe a little bit more flexibility there, they get to experiment with the technology and the flexibility and then I think it will start to evolve >> Dave V.: And that's where the disruption's going to come from, I think. >> David N.: Well, where was the first place you could get reliable 4K streaming of video content? It wasn't ABC, CBS, NBC. It was YouTube. >> Right. >> So is it possible that when you say Greenfield, are a lot of those going to be what we refer to as private 5G networks where someone may set up a private 5G network that has more functions and capabilities than the public network? >> That's exactly where I was going is that, you know, that that's why you're seeing us getting very active in 5G solutions that Manish mentioned with, you know, Expeto and AirSpan. There's more of those that we haven't publicly announced. So I think you'll be seeing more announcements from us, but that is really, you know, a new opportunity. And there's spectrum there also, right? I mean, there's public and private spectrum. We plan to work directly with the operators and do it in their spectrum when needed. But we also have solutions that will do it, you know, on non-public spectrum. >> So let's close out, oh go ahead. You you have something to add there? >> I'm just going to add one more point to Doug's point, right? Is if you look on the private 5G and the end customer, it's the enterprise, right? And they're, they're not a service provider. They're not a carrier. They're more used to deploying, you know, enterprise infrastructure, maintaining, managing that. So, you know, private 5G, especially with this open ecosystem and with all the open run capabilities, it naturally tends to, you know, blend itself very well to meet those requirements that the enterprise would have. >> And people should not think of private 5G as a sort of a replacement for wifi, right? It's to to deal with those, you know, intense situations that can afford the additional cost, but absolutely require the reliability and the performance and, you know, never go down type of scenario. Is that right? >> Doug: And low latencies usually, the primary characteristics, you know, for things like Industry 4.0 manufacturing requirements, those are tough SLAs. They're just, they're different than the operator SLAs for coverage and, you know, cell performance. They're now, you know, Five9 type characteristics, but on a manufacturing floor. >> That's why we don't use wifi on theCUBE to broadcast, we need a hard line. >> Yeah, but why wouldn't it replace wifi over time? I mean, you know, I still have a home phone number that's hardwired to align, but it goes to a voicemail. We don't even have handset anymore for it, yeah. >> I think, well, unless the cost can come down, but I think that wifi is flexible, it's cheap. It's, it's kind of perfect for that. >> Manish: And it's good technology. >> Dave V.: And it works great. >> David N.: For now, for now. >> Dave V.: But you wouldn't want it in those situations, and you're arguing that maybe. >> I'm saying eventually, what, put a sim in a device, I don't know, you know, but why not? >> Yeah, I mean, you know, and Dell offers, you know, from our laptop, you know, our client side, we do offer wifi, we do offer 4G and 5G solutions. And I think those, you know, it's a volume and scale issue, I think for the cost structure you're talking about. >> Manish: Come to our booth and see the connected laptop. >> Dave V.: Well let's, let's close on that. Why don't you guys talk a little bit about what you're going on at the show, I did go by the booth, you got a whole big lineup of servers. You got some, you know, cool devices going on. So give us the rundown and you know, let's end with the takeaways here. >> The simple rundown, a broad range of new powered servers, broad range addressing core, edge, RAN, optimized for those with all the different kind of acceleration capabilities. You can see that, you can see infrastructure blocks. These are with Wind River, with Red Hat. You can see OTEL, the open telecom ecosystem lab where all that playground, the integration, the real work, the real sausage makings happening. And then you will see some interesting solutions in terms of co-creation that we are doing, right? So you, you will see all of that and not to forget the connected laptops. >> Dave V.: Yeah, yeah, cool. >> Doug: Yeah and, we mentioned it before, but just to add on, I think, you know, for private 5G, you know, we've announced a few offers here at the show with partners. So with Expeto and AirSpan in particular, and I think, you know, I just want to emphasize the partnerships that we're doing. You know, we're doing some, you know, fundamental integration on infrastructure, bare metal and different options for the operators to get engineered systems. But building on that ecosystem is really, the move to cloud native is where Dell is trying to get in front of. And we're offering solutions and a much larger ecosystem to go after it. >> Dave V.: Great. Manish and Doug, thanks for coming on the program. It was great to have you, awesome discussion. >> Thank you for having us. >> Thanks for having us. >> All right, Dave Vellante for Dave Nicholson and Lisa Martin. We're seeing the disaggregation of the Teleco network into open ecosystems with integration from companies like Dell and others. Keep it right there for theCUBE's coverage of MWC 23. We'll be right back. (upbeat tech music)
SUMMARY :
that drive human progress. I mean really the first just to start with you know, of what you guys saw. for open RAN over the last year, When the average consumer hears 5G, and on the edge in particular. the ascendancy of cloud. in bringing that to market? So first of all, the duck's point, And so, but, the RAN, the open RAN, the Greenfield operators but the opportunities and the And new services that you and this is, think of it as the, you know, And It's going to be you said cloud characteristics. and physically at the base. you know, public cloud providers, So it does require, you know, the nature of the beast Exactly, yes. the service providers in and the resources to actually So maybe just to give you ecosystem that you have today something that the operators need. But the answer to your and it took, you know, a does it have to have that have existing, you know, deployments, going to come from, I think. you could get reliable 4K but that is really, you You you have something to add there? that the enterprise would have. It's to to deal with those, you know, the primary characteristics, you know, we need a hard line. I mean, you know, I still the cost can come down, Dave V.: But you wouldn't And I think those, you know, and see the connected laptop. So give us the rundown and you know, and not to forget the connected laptops. the move to cloud native is where Dell coming on the program. of the Teleco network
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Doug | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Fujitsu | ORGANIZATION | 0.99+ |
ABC | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Doug Wolf | PERSON | 0.99+ |
OTEL | ORGANIZATION | 0.99+ |
CBS | ORGANIZATION | 0.99+ |
Manish Singh | PERSON | 0.99+ |
NBC | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
David N. | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Marvel | ORGANIZATION | 0.99+ |
AirSpan | ORGANIZATION | 0.99+ |
Brownfield | ORGANIZATION | 0.99+ |
Telefonica | ORGANIZATION | 0.99+ |
Greenfield | ORGANIZATION | 0.99+ |
Teleco | ORGANIZATION | 0.99+ |
Manish | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Expeto | ORGANIZATION | 0.99+ |
Wind River | ORGANIZATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Dave V. | PERSON | 0.99+ |
Manish | PERSON | 0.99+ |
MWC 23 | EVENT | 0.99+ |
Doug Wolff | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
Dell Telecom Multicloud Foundation | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
September | DATE | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
25 plus years | QUANTITY | 0.99+ |
O-RAN | ORGANIZATION | 0.99+ |
Telecos | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
Meagen Eisenberg, Lacework | International Women's Day 2023
>> Hello and welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. Got a variety of interviews across the gamut from topics, women in tech, mentoring, pipelining, developers, open source, executives. Stanford's having International Women's Day celebration with the women in data science, which we're streaming that live as well. Variety of programs. In this segment, Meagen Eisenberg, friend of theCUBE, she's the CMO of Laceworks, is an amazing executive, got a great journey story as a CMO but she's also actively advising startups, companies and really pays it forward. I want to say Meagen, thank you for coming on the program and thanks for sharing. >> Yeah, thank you for having me. I'm happy to be here. >> Well, we're going to get into some of the journey celebrations that you've gone through and best practice what you've learned is pay that forward. But I got to say, one of the things that really impresses me about you as an executive is you get stuff done. You're a great CMO but also you're advised a lot of companies, you have a lot of irons in the fires and you're advising companies and sometimes they're really small startups to bigger companies, and you're paying it forward, which I love. That's kind of the spirit of this day. >> Yeah, I mean, I agree with you. When I think about my career, a lot of it was looking to mentors women out in the field. This morning I was at a breakfast by Eileen and we had the CEO of General Motors on, and she was talking about her journey nine years as a CEO. And you know, and she's paying it forward with us. But I think about, you know, when you're advising startups, you know, I've gathered knowledge and pattern recognition and to be able to share that is, you know, I enjoy it. >> Yeah. And the startups are also fun too, but it's not always easy and it can get kind of messy as you know. Some startups don't make it some succeed and it's always like the origination story is kind of rewritten and then that's that messy middle. And then it's like that arrows that don't look like a straight line but everyone thinks it's great and you know, it's not for the faint of heart. And Teresa Carlson, who I've interviewed many times, former Amazon, now she's the president of Flexport, she always says, sometimes startups on certain industries aren't for the faint of heart so you got to have a little bit of metal, right? You got to be tough. And some cases that you don't need that, but startups, it's not always easy. What have you learned? >> Yeah, I mean, certainly in the startup world, grit, creativity. You know, when I was at TripActions travel company, pandemic hits, nobody's traveling. You cut budget, you cut heads, but you focus on the core, right? You focus on what you need to survive. And creativity, I think, wins. And, you know, as a CMO when you're marketing, how do you get through that noise? Even the security space, Lacework, it's a fragmented market. You've got to be differentiated and position yourself and you know, be talking to the right target audience and customers. >> Talk about your journey over the years. What have you learned? What's some observations? Can you share any stories and best practices that someone watching could learn from? I know there's a lot of people coming into the tech space with the generative AI things going on in Cloud computing, scaling to the edge, there's a lot more aperture for technical jobs as well as just new roles and new roles that haven't, you really don't go to college for anymore. You got cybersecurity you're in. What are some of the things that you've done over your career if you can share and some best practices? >> Yeah, I think number one, continual learning. When I look through my career, I was constantly reading, networking. Part of the journey is who you're meeting along the way. As you become more senior, your ability to hire and bring in talent matters a lot. I'm always trying to meet with new people. Yeah, if I look at my Amazon feed of books I've bought, right, it kind of chronicle of my history of things I was learning about. Right now I'm reading a lot about cybersecurity, how the, you know, how how they tell me the world ends is the one I'm reading most recently. But you've got to come up to speed and then know the product, get in there and talk to customers. Certainly on the marketing front, anytime I can talk with the customer and find out how they're using us, why they love us, that, you know, helps me better position and differentiate our company. >> By the way, that book is amazing. I saw Nicole speak on Tuesday night with John Markoff and Palo Alto here. What a great story she told there. I recommend that book to everyone. It goes in and she did eight years of research into that book around zero day marketplaces to all the actors involved in security. And it was very interesting. >> Yeah, I mean, it definitely wakes you up, makes you think about what's going on in the world. Very relevant. >> It's like, yeah, it was happening all the time, wasn't it. All the hacking. But this brings me, this brings up an interesting point though, because you're in a cybersecurity area, which by the way, it's changing very fast. It's becoming a bigger industry. It's not just male dominated, although it is now, it's still male dominated, but it's becoming much more and then just tech. >> Yeah, I mean it's a constantly evolving threat landscape and we're learning, and I think more than ever you need to be able to use the data that companies have and, you know, learn from it. That's one of the ways we position ourselves. We're not just about writing rules that won't help you with those zero day attacks. You've got to be able to understand your particular environment and at any moment if it changes. And that's how we help you detect a threat. >> How is, how are things going with you? Is there any new things you guys got going on? Initiatives or programs for women in tech and increasing the range of diversity inclusion in the industry? Because again, this industry's getting much wider too. It's not just specialized, it's also growing. >> Yes, actually I'm excited. We're launching secured by women, securedbywomen.com and it's very much focused on women in the industry, which some studies are showing it's about 25% of security professionals are women. And we're going to be taking nominations and sponsoring women to go to upcoming security events. And so excited to launch that this month and really celebrate women in security and help them, you know, part of that continual learning that I talked about, making sure they're there learning, having the conversations at the conferences, being able to network. >> I have to ask you, what inspired you to pursue the career in tech? What was the motivation? >> You know, if I think way back, originally I wanted to be on the art side and my dad said, "You can do anything as long as it's in the sciences." And so in undergrad I did computer science and MIS. Graduated with MIS and computer science minor. And when I came out I was a IT engineer at Cisco and you know, that kind of started my journey and decided to go back and get my MBA. And during that process I fell in love with marketing and I thought, okay, I understand the buyer, I can come out and market technology to the IT world and developers. And then from there went to several tech companies. >> I mean my father was an engineer. He had the same kind of thing. You got to be an engineer, it's a steady, stable job. But that time, computer science, I mean we've seen the evolution of computer science now it's the most popular degree at Berkeley we've heard and around the world and the education formats are changing. You're seeing a lot of people's self-training on YouTube. The field has really changed. What are some of the challenges you see for folks trying to get into the industry and how would you advise today if you were talking to your young self, what would you, what would be the narrative? >> Yeah, I mean my drawback then was HTML pages were coming out and I thought it would be fun to design, you know, webpages. So you find something you're passionate about in the space today, whether it's gaming or it's cybersecurity. Go and be excited about it and apply and don't give up, right? Do whatever you can to read and learn. And you're right, there are a ton of online self-help. I always try to hire women and people who are continual learners and are teaching themselves something. And I try to find that in an interview to know that they, because when you come to a business, you're there to solve problems and challenges. And the folks that can do that and be innovative and learn, those are the ones I want on my team. >> It's interesting, you know, technology is now impacting society and we need everyone involved to participate and give requirements. And that kind of leads my next question for you is, like, in your opinion, or let me just step back, let me rephrase. What are some of the things that you see technology being used for, for society right now that will impact people's lives? Because this is not a gender thing. We need everybody involved 'cause society is now digital. Technology's pervasive. The AI trends now we're seeing is clearly unmasking to the mainstream that there's some cool stuff happening. >> Yeah, I mean, I think ChatGPT, think about that. All the different ways we're using it we're writing content and marketing with it. We're, you know, I just read an article yesterday, folks are using it to write children's stories and then selling those stories on Amazon, right? And the amount that they can produce with it. But if you think about it, there's unlimited uses with that technology and you've got all the major players getting involved on it. That one major launch and piece of technology is going to transform us in the next six months to a year. And it's the ability to process so much data and then turn that into just assets that we use and the creativity that's building on top of it. Even TripActions has incorporated ChatGPT into your ability to figure out where you want when you're traveling, what's happening in that city. So it's just, you're going to see that incorporated everywhere. >> I mean we've done an interview before TripAction, your other company you were at. Interesting point you don't have to type in a box to say, I'm traveling, I want a hotel. You can just say, I'm going to Barcelona for Mobile World Congress, I want to have a good time. I want some tapas and a nice dinner out. >> Yes. Yeah. That easy. We're making it easy. >> It's efficiency. >> And actually I was going to say for women specifically, I think the reason why we can do so much today is all the technology and apps that we have. I think about DoorDash, I think about Waze you know, when I was younger you had to print out instructions. Now I get in the car real quick, I need to go to soccer practice, I enter it, I need to pick them up at someone's house. I enter it. It's everything's real time. And so it takes away all the things that I don't add value to and allows me to focus on what I want in business. And so there's a bunch of, you know, apps out there that have allowed me to be so much more efficient and productive that my mother didn't have for sure when I was growing up. >> That is an amazing, I think that actually illustrates, in my opinion, the best example of ChatGPT because the maps and GPS integration were two techs, technologies merged together that replace driving and looking at the map. You know, like how do you do that? Like now it's automatically. This is what's going to happen to creative, to writing, to ideation. I even heard Nicole from her book read said that they're using ChatGPT to write zero day exploits. So you seeing it... >> That's scary stuff. You're right. >> You're seeing it everywhere. Super exciting. Well, I got to ask you before you get into some of the Lacework things that you're involved with, cause I think you're doing great work over there is, what was the most exciting projects you've worked on in your career? You came in Cisco, very technical company, so got the technical chops, CSMIS which stands for Management of Information Science for all the young people out there, that was the state of the art back then. What are some of the exciting things you've done? >> Yeah, I mean, I think about, I think about MongoDB and learning to market to developers. Taking the company public in 2017. Launching Atlas database as a service. Now there's so much more of that, you know, the PLG motion, going to TripActions, you know, surviving a pandemic, still being able to come out of that and all the learnings that went with it. You know, they recently, I guess rebranded, so they're Navan now. And then now back in the security space, you know, 14 years ago I was at ArcSite and we were bought by HP. And so getting back into the security world is exciting and it's transformed a ton as you know, it's way more complicated than it was. And so just understanding the pain of our customers and how we protect them as is fun. And I like, you know, being there from a marketing standpoint. >> Well we really appreciate you coming on and sharing that. I got to ask you, for folks watching they might be interested in some advice that you might have for them and their career in tech. I know a lot of young people love the tech. It's becoming pervasive in our lives, as we mentioned. What advice would you give for folks watching that want to start a career in tech? >> Yeah, so work hard, right? Study, network, your first job, be the best at it because every job after that you get pulled into a network. And every time I move, I'm hiring people from the last job, two jobs before, three jobs before. And I'm looking for people that are working hard, care, you know, are continual learners and you know, add value. What can you do to solve problems at your work and add value? >> What's your secret networking hack or growth hack or tip that you can share? Because you're a great networker by the way. You're amazing and you do add a lot of value. I've seen you in action. >> Well, I try never to eat alone. I've got breakfast, I've got lunch, I've got coffee breaks and dinner. And so when I'm at work, I try and always sit and eat with a team member, new group. If I'm out on the road, I'm, you know, meeting people for lunch, going for dinner, just, you know, don't sit at your desk by yourself and don't sit in the hotel room. Get out and meet with people. >> What do you think about now that we're out of the pandemic or somewhat out of the pandemic so to speak, events are back. >> Yes. >> RSA is coming up. It's a big event. The bigger events are getting bigger and then the other events are kind of smaller being distributed. What's your vision of how events are evolving? >> Yeah, I mean, you've got to be in person. Those are the relationships. Right now more than ever people care about renewals and you are building that rapport. And if you're not meeting with your customers, your competitors are. So what I would say is get out there Lacework, we're going to be at RSA, we're going to be at re:Inforce, we're going to be at all of these events, building relationships, you know, coffee, lunch, and yeah, I think the future of events are here to stay and those that don't embrace in person are going to give up business. They're going to lose market share to us. >> And networking is obviously very key on events as well. >> Yes. >> A good opportunity as always get out to the events. What's the event networking trick or advice do you give folks that are going to get out to the networking world? >> Yeah, schedule ahead of time. Don't go to an event and expect people just to come by for great swag. You should be partnering with your sales team and scheduling ahead of time, getting on people's calendars. Don't go there without having 100 or 200 meetings already booked. >> Got it. All right. Let's talk about you, your career. You're currently at Lacework. It's a very hot company in a hot field, security, very male dominated, you're a leader there. What's it like? What's the strategies? How does a woman get in there and be successful? What are some tricks, observations, any data you can share? What's the best practice? What's the secret sauce from Meagen Eisenberg? >> Yes. Yeah, for Meagen Eisenberg. For Lacework, you know, we're focused on our customers. There's nothing better than getting, being close to them, solving their pain, showcasing them. So if you want to go into security, focus on their, the issues and their problems and make sure they're aware of what you're delivering. I mean, we're focused on cloud security and we go from build time to run time. And that's the draw for me here is we had a lot of, you know, happy, excited customers by what we were doing. And what we're doing is very different from legacy security providers. And it is tapping into the trend of really understanding how much data you have and what's happening in the data to detect the anomalies and the threats that are there. >> You know, one of the conversations that I was just having with a senior leader, she was amazing and I asked her what she thought of the current landscape, the job market, the how to get promoted through the careers, all those things. And the response was interesting. I want to get your reaction. She said interdisciplinary skills are critical. And now more than ever, the having that, having a set of skills, technical and social and emotional are super valuable. Do you agree? What's your reaction to that and what would, how would you reframe that? >> Yeah, I mean, I completely agree. You can't be a leader without balance. You've got to know your craft because you're developing and training your team, but you also need to know the, you know, how to build relationships. You're not going to be successful as a C-level exec if you're not partnering across the functions. As a CMO I need to partner with product, I need to partner with the head of sales, I need to partner with finance. So those relationships matter a ton. I also need to attract the right talent. I want to have solid people on the team. And what I will say in the security, cybersecurity space, there's a talent shortage and you cannot hire enough people to protect your company in that space. And that's kind of our part of it is we reduce the number of alerts that you're getting. So you don't need hundreds of people to detect an issue. You're using technology to show, you know, to highlight the issue and then your team can focus on those alerts that matter. >> Yeah, there's a lot of emerging markets where leveling up and you don't need pedigree. You can just level up skill-wise pretty quickly. Which brings me to the next question for you is how do you keep up with all the tech day-to-day and how should someone watching stay on top of it? Because I mean, you got to be on top of this stuff and you got to ride the wave. It's pretty turbulent, but it's still growing and changing. >> Yeah, it's true. I mean, there's a lot of reading. I'm watching the news. Anytime something comes out, you know, ChatGPT I'm playing with it. I've got a great network and sharing. I'm on, you know, LinkedIn reading articles all the time. I have a team, right? Every time I hire someone, they bring new information and knowledge in and I'm you know, Cal Poly had this learn by doing that was the philosophy at San Luis Obispo. So do it. Try it, don't be afraid of it. I think that's the advice. >> Well, I love some of the points you mentioned community and network. You mentioned networking. That brings up the community question, how could people get involved? What communities are out there? How should they approach communities? 'Cause communities are also networks, but also they're welcoming people in that form networks. So it's a network of networks. So what's your take on how to engage and work with communities? How do you find your tribe? If someone's getting into the business, they want support, they might want technology learnings, what's your approach? >> Yeah, so a few, a few different places. One, I'm part of the operator collective, which is a strong female investment group that's open and works a lot with operators and they're in on the newest technologies 'cause they're investing in it. Chief I think is a great organization as well. You've got a lot of, if you're in marketing, there's a ton of CMO networking events that you can go to. I would say any field, even for us at Lacework, we've got some strong CISO networks and we do dinners around you know, we have one coming up in the Bay area, in Boston, New York, and you can come and meet other CISOs and security leaders. So when I get an invite and you know we all do, I will go to it. I'll carve out the time and meet with others. So I think, you know, part of the community is get out there and, you know, join some of these different groups. >> Meagen, thank you so much for spending the time. Final question for you. How do you see the future of tech evolving and how do you see your role in it? >> Yeah, I mean, marketing's changing wildly. There's so many different channels. You think about all the social media channels that have changed over the last five years. So when I think about the future of tech, I'm looking at apps on my phone. I have three daughters, 13, 11, and 8. I'm telling you, they come to me with new apps and new technology all the time, and I'm paying attention what they're, you know, what they're participating in and what they want to be a part of. And certainly it's going to be a lot more around the data and AI. I think we're only at the beginning of that. So we will continue to, you know, learn from it and wield it and deal with the mass amount of data that's out there. >> Well, you saw TikTok just got banned by the European Commission today around their staff. Interesting times. >> It is. >> Meagen, thank you so much as always. You're a great tech athlete. Been following your career for a while, a long time. You're an amazing leader. Thank you for sharing your story here on theCUBE, celebration of International Women's Day. Every day is IWD and thanks for coming on. >> Thank you for having me. >> Okay. I'm John Furrier here in theCUBE Studios in Palo Alto. Thank you for watching, more to come stay with us. (bright music)
SUMMARY :
you for coming on the program Yeah, thank you for having me. That's kind of the spirit of this day. But I think about, you know, and it can get kind of messy as you know. and you know, be talking to the right What are some of the how the, you know, I recommend that book to everyone. makes you think about what's happening all the time, wasn't it. rules that won't help you you guys got going on? and help them, you know, and you know, that kind and around the world and the to design, you know, webpages. It's interesting, you know, to figure out where you Interesting point you That easy. I think about Waze you know, and looking at the map. You're right. Well, I got to ask you before you get into And I like, you know, some advice that you might have and you know, add value. You're amazing and you If I'm out on the road, I'm, you know, What do you think about now and then the other events and you are building that rapport. And networking is obviously do you give folks that just to come by for great swag. any data you can share? and the threats that are there. the how to get promoted You're using technology to show, you know, and you got to ride the wave. and I'm you know, the points you mentioned and you can come and meet other and how do you see your role in it? and new technology all the time, Well, you saw TikTok just got banned Thank you for sharing your Thank you for watching,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Teresa Carlson | PERSON | 0.99+ |
Nicole | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
General Motors | ORGANIZATION | 0.99+ |
Meagen Eisenberg | PERSON | 0.99+ |
European Commission | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Meagen | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
100 | QUANTITY | 0.99+ |
Lacework | ORGANIZATION | 0.99+ |
nine years | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
two jobs | QUANTITY | 0.99+ |
eight years | QUANTITY | 0.99+ |
Tuesday night | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Flexport | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
John Markoff | PERSON | 0.99+ |
three jobs | QUANTITY | 0.99+ |
13 | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Eileen | PERSON | 0.99+ |
14 years ago | DATE | 0.99+ |
two techs | QUANTITY | 0.99+ |
ArcSite | ORGANIZATION | 0.99+ |
securedbywomen.com | OTHER | 0.99+ |
TripActions | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
today | DATE | 0.99+ |
first job | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
ChatGPT | TITLE | 0.98+ |
200 meetings | QUANTITY | 0.98+ |
three daughters | QUANTITY | 0.98+ |
11 | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
YouTube | ORGANIZATION | 0.98+ |
8 | QUANTITY | 0.98+ |
Laceworks | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.97+ |
about 25% | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.97+ |
ORGANIZATION | 0.97+ | |
Bay | LOCATION | 0.96+ |
TripAction | ORGANIZATION | 0.95+ |
One | QUANTITY | 0.94+ |
Meagen Eisenberg | ORGANIZATION | 0.93+ |
a year | QUANTITY | 0.93+ |
RSA | ORGANIZATION | 0.92+ |
This morning | DATE | 0.92+ |
Navan | ORGANIZATION | 0.91+ |
MongoDB | TITLE | 0.91+ |
zero day | QUANTITY | 0.91+ |
this month | DATE | 0.9+ |
DoorDash | ORGANIZATION | 0.89+ |
IWD | ORGANIZATION | 0.88+ |
Atlas | TITLE | 0.87+ |
Luis Obispo | ORGANIZATION | 0.86+ |
CSMIS | ORGANIZATION | 0.85+ |
theCUBE Studios | ORGANIZATION | 0.83+ |
around zero day | QUANTITY | 0.82+ |
hundreds of people | QUANTITY | 0.82+ |
Waze | TITLE | 0.81+ |
Supercloud Applications & Developer Impact | Supercloud2
(gentle music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto, California for our live stage performance. Supercloud 2 is our second Supercloud event. We're going to get these out as fast as we can every couple months. It's our second one, you'll see two and three this year. I'm John Furrier, my co-host, Dave Vellante. A panel here to break down the Supercloud momentum, the wave, and the developer impact that we bringing back Vittorio Viarengo, who's a VP for Cross-Cloud Services at VMware. Sarbjeet Johal, industry influencer and Analyst at StackPayne, his company, Cube alumni and Influencer. Sarbjeet, great to see you. Vittorio, thanks for coming back. >> Nice to be here. >> My pleasure. >> Vittorio, you just gave a keynote where we unpacked the cross-cloud services, what VMware is doing, how you guys see it, not just from VMware's perspective, but VMware looking out broadly at the industry and developers came up and you were like, "Developers, developer, developers", kind of a goof on the Steve Ballmer famous meme that everyone's seen. This is a huge star, sorry, I mean a big piece of it. The developers are the canary in the coal mines. They're the ones who are being asked to code the digital transformation, which is fully business transformation and with the market the way it is right now in terms of the accelerated technology, every enterprise grade business model's changing. The technology is evolving, the builders are kind of, they want go faster. I'm saying they're stuck in a way, but that's my opinion, but there's a lot of growth. >> Yeah. >> The impact, they got to get released up and let it go. Those developers need to accelerate faster. It's been a big part of productivity, and the conversations we've had. So developer impact is huge in Supercloud. What's your, what do you guys think about this? We'll start with you, Sarbjeet. >> Yeah, actually, developers are the masons of the digital empires I call 'em, right? They lay every brick and build all these big empires. On the left side of the SDLC, or the, you know, when you look at the system operations, developer is number one cost from economic side of things, and from technology side of things, they are tech hungry people. They are developers for that reason because developer nights are long, hours are long, they forget about when to eat, you know, like, I've been a developer, I still code. So you want to keep them happy, you want to hug your developers. We always say that, right? Vittorio said that right earlier. The key is to, in this context, in the Supercloud context, is that developers don't mind mucking around with platforms or APIs or new languages, but they hate the infrastructure part. That's a fact. They don't want to muck around with servers. It's friction for them, it is like they don't want to muck around even with the VMs. So they want the programmability to the nth degree. They want to automate everything, so that's how they think and cloud is the programmable infrastructure, industrialization of infrastructure in many ways. So they are happy with where we are going, and we need more abstraction layers for some developers. By the way, I have this sort of thinking frame for last year or so, not all developers are same, right? So if you are a developer at an ISV, you behave differently. If you are a developer at a typical enterprise, you behave differently or you are forced to behave differently because you're not writing software.- >> Well, developers, developers have changed, I mean, Vittorio, you and I were talking earlier on the keynote, and this is kind of the key point is what is a developer these days? If everything is software enabled, I mean, even hardware interviews we do with Nvidia, and Amazon and other people building silicon, they all say the same thing, "It's software on a chip." So you're seeing the role of software up and down the stack and the role of the stack is changing. The old days of full stack developer, what does that even mean? I mean, the cloud is a half a stack kind of right there. So, you know, developers are certainly more agile, but cloud native, I mean VMware is epitome of operations, IT operations, and the Tan Zoo initiative, you guys started, you went after the developers to look at them, and ask them questions, "What do you need?", "How do you transform the Ops from virtualization?" Again, back to your point, so this hardware abstraction, what is software, what is cloud native? It's kind of messy equation these days. How do you guys grokel with that? >> I would argue that developers don't want the Supercloud. I dropped that up there, so, >> Dave: Why not? >> Because developers, they, once they get comfortable in AWS or Google, because they're doing some AI stuff, which is, you know, very trendy right now, or they are in IBM, any of the IPA scaler, professional developers, system developers, they love that stuff, right? Yeah, they don't, the infrastructure gets in the way, but they're just, the problem is, and I think the Supercloud should be driven by the operators because as we discussed, the operators have been left behind because they're busy with day-to-day jobs, and in most cases IT is centralized, developers are in the business units. >> John: Yeah. >> Right? So they get the mandate from the top, say, "Our bank, they're competing against". They gave teenagers or like young people the ability to do all these new things online, and Venmo and all this integration, where are we? "Oh yeah, we can do it", and then build it, and then deploy it, "Okay, we caught up." but now the operators are back in the private cloud trying to keep the backend system running and so I think the Supercloud is needed for the primarily, initially, for the operators to get in front of the developers, fit in the workflow, but lay the foundation so it is secure.- >> So, so I love this thinking because I love the rift, because the rift points to what is the target audience for the value proposition and if you're a developer, Supercloud enables you so you shouldn't have to deal with Supercloud. >> Exactly. >> What you're saying is get the operating environment or operating system done properly, whether it's architecture, building the platform, this comes back to architecture platform conversations. What is the future platform? Is it a vendor supplied or is it customer created platform? >> Dave: So developers want best to breed, is what you just said. >> Vittorio: Yeah. >> Right and operators, they, 'cause developers don't want to deal with governance, they don't want to deal with security, >> No. >> They don't want to deal with spinning up infrastructure. That's the role of the operator, but that's where Supercloud enables, to John's point, the developer, so to your question, is it a platform where the platform vendor is responsible for the architecture, or there is it an architectural standard that spans multiple clouds that has to emerge? Based on what you just presented earlier, Vittorio, you are the determinant of the architecture. It's got to be open, but you guys determine that, whereas the nirvana is, "Oh no, it's all open, and it just kind of works." >> Yeah, so first of all, let's all level set on one thing. You cannot tell developers what to do. >> Dave: Right, great >> At least great developers, right? Cannot tell them what to do. >> Dave: So that's what, that's the way I want to sort of, >> You can tell 'em what's possible. >> There's a bottle on that >> If you tell 'em what's possible, they'll test it, they'll look at it, but if you try to jam it down their throat, >> Yeah. >> Dave: You can't tell 'em how to do it, just like your point >> Let me answer your answer the question. >> Yeah, yeah. >> So I think we need to build an architect, help them build an architecture, but it cannot be proprietary, has to be built on what works in the cloud and so what works in the cloud today is Kubernetes, is you know, number of different open source project that you need to enable and then provide, use this, but when I first got exposed to Kubernetes, I said, "Hallelujah!" We had a runtime that works the same everywhere only to realize there are 12 different distributions. So that's where we come in, right? And other vendors come in to say, "Hey, no, we can make them all look the same. So you still use Kubernetes, but we give you a place to build, to set those operation policy once so that you don't create friction for the developers because that's the last thing you want to do." >> Yeah, actually, coming back to the same point, not all developers are same, right? So if you're ISV developer, you want to go to the lowest sort of level of the infrastructure and you want to shave off the milliseconds from to get that performance, right? If you're working at AWS, you are doing that. If you're working at scale at Facebook, you're doing that. At Twitter, you're doing that, but when you go to DMV and Kansas City, you're not doing that, right? So your developers are different in nature. They are given certain parameters to work with, certain sort of constraints on the budget side. They are educated at a different level as well. Like they don't go to that end of the degree of sort of automation, if you will. So you cannot have the broad stroking of developers. We are talking about a citizen developer these days. That's a extreme low, >> You mean Low-Code. >> Yeah, Low-Code, No-code, yeah, on the extreme side. On one side, that's citizen developers. On the left side is the professional developers, when you say developers, your mind goes to the professional developers, like the hardcore developers, they love the flexibility, you know, >> John: Well app, developers too, I mean. >> App developers, yeah. >> You're right a lot of, >> Sarbjeet: Infrastructure platform developers, app developers, yes. >> But there are a lot of customers, its a spectrum, you're saying. >> Yes, it's a spectrum >> There's a lot of customers don't want deal with that muck. >> Yeah. >> You know, like you said, AWS, Twitter, the sophisticated developers do, but there's a whole suite of developers out there >> Yeah >> That just want tools that are abstracted. >> Within a company, within a company. Like how I see the Supercloud is there shouldn't be anything which blocks the developers, like their view of the world, of the future. Like if you're blocked as a developer, like something comes in front of you, you are not developer anymore, believe me, (John laughing) so you'll go somewhere else >> John: First of all, I'm, >> You'll leave the company by the way. >> Dave: Yeah, you got to quit >> Yeah, you will quit, you will go where the action is, where there's no sort of blockage there. So like if you put in front of them like a huge amount of a distraction, they don't like it, so they don't, >> Well, the idea of a developer, >> Coming back to that >> Let's get into 'cause you mentioned platform. Get year in the term platform engineering now. >> Yeah. >> Platform developer. You know, I remember back in, and I think there's still a term used today, but when I graduated my computer science degree, we were called "Software engineers," right? Do people use that term "Software engineering", or is it "Software development", or they the same, are they different? >> Well, >> I think there's a, >> So, who's engineering what? Are they engineering or are they developing? Or both? Well, I think it the, you made a great point. There is a factor of, I had the, I was blessed to work with Adam Bosworth, that is the guy that created some of the abstraction layer, like Visual Basic and Microsoft Access and he had so, he made his whole career thinking about this layer, and he always talk about the professional developers, the developers that, you know, give him a user manual, maybe just go at the APIs, he'll build anything, right, from system engine, go down there, and then through obstruction, you get the more the procedural logic type of engineers, the people that used to be able to write procedural logic and visual basic and so on and so forth. I think those developers right now are a little cut out of the picture. There's some No-code, Low-Code environment that are maybe gain some traction, I caught up with Adam Bosworth two weeks ago in New York and I asked him "What's happening to this higher level developers?" and you know what he is told me, and he is always a little bit out there, so I'm going to use his thought process here. He says, "ChapGPT", I mean, they will get to a point where this high level procedural logic will be written by, >> John: Computers. >> Computers, and so we may not need as many at the high level, but we still need the engineers down there. The point is the operation needs to get in front of them >> But, wait, wait, you seen the ChatGPT meme, I dunno if it's a Dilbert thing where it's like, "Time to tic" >> Yeah, yeah, yeah, I did that >> "Time to develop the code >> Five minutes, time to decode", you know, to debug the codes like five hours. So you know, the whole equation >> Well, this ChatGPT is a hot wave, everyone's been talking about it because I think it illustrates something that's NextGen, feels NextGen, and it's just getting started so it's going to get better. I mean people are throwing stones at it, but I think it's amazing. It's the equivalent of me seeing the browser for the first time, you know, like, "Wow, this is really compelling." This is game-changing, it's not just keyword chat bots. It's like this is real, this is next level, and I think the Supercloud wave that people are getting behind points to that and I think the question of Ops and Dev comes up because I think if you limit the infrastructure opportunity for a developer, I think they're going to be handicapped. I mean that's a general, my opinion, the thesis is you give more aperture to developers, more choice, more capabilities, more good things could happen, policy, and that's why you're seeing the convergence of networking people, virtualization talent, operational talent, get into the conversation because I think it's an infrastructure engineering opportunity. I think this is a seminal moment in a new stack that's emerging from an infrastructure, software virtualization, low-code, no-code layer that will be completely programmable by things like the next Chat GPT or something different, but yet still the mechanics and the plumbing will still need engineering. >> Sarbjeet: Oh yeah. >> So there's still going to be more stuff coming on. >> Yeah, we have, with the cloud, we have made the infrastructure programmable and you give the programmability to the programmer, they will be very creative with that and so we are being very creative with our infrastructure now and on top of that, we are being very creative with the silicone now, right? So we talk about that. That's part of it, by the way. So you write the code to the particle's silicone now, and on the flip side, the silicone is built for certain use cases for AI Inference and all that. >> You saw this at CES? >> Yeah, I saw at CES, the scenario is this, the Bosch, I spoke to Bosch, I spoke to John Deere, I spoke to AWS guys, >> Yeah. >> They were showcasing their technology there and I was spoke to Azure guys as well. So the Bosch is a good example. So they are building, they are right now using AWS. I have that interview on camera, I will put it some sometime later on there online. So they're using AWS on the back end now, but Bosch is the number one, number one or number two depending on what day it is of the year, supplier of the componentry to the auto industry, and they are creating a platform for our auto industry, so is Qualcomm actually by the way, with the Snapdragon. So they told me that customers, their customers, BMW, Audi, all the manufacturers, they demand the diversity of the backend. Like they don't want all, they, all of them don't want to go to AWS. So they want the choice on the backend. So whatever they cook in the middle has to work, they have to sprinkle the data for the data sovereign side because they have Chinese car makers as well, and for, you know, for other reasons, competitive reasons and like use. >> People don't go to, aw, people don't go to AWS either for political reasons or like competitive reasons or specific use cases, but for the most part, generally, I haven't met anyone who hasn't gone first choice with either, but that's me personally. >> No, but they're building. >> Point is the developer wants choice at the back end is what I'm hearing, but then finish that thought. >> Their developers want the choice, they want the choice on the back end, number one, because the customers are asking for, in this case, the customers are asking for it, right? But the customers requirements actually drive, their economics drives that decision making, right? So in the middle they have to, they're forced to cook up some solution which is vendor neutral on the backend or multicloud in nature. So >> Yeah, >> Every >> I mean I think that's nirvana. I don't think, I personally don't see that happening right now. I mean, I don't see the parody with clouds. So I think that's a challenge. I mean, >> Yeah, true. >> I mean the fact of the matter is if the development teams get fragmented, we had this chat with Kit Colbert last time, I think he's going to come on and I think he's going to talk about his keynote in a few, in an hour or so, development teams is this, the cloud is heterogenous, which is great. It's complex, which is challenging. You need skilled engineering to manage these clouds. So if you're a CIO and you go all in on AWS, it's hard. Then to then go out and say, "I want to be completely multi-vendor neutral" that's a tall order on many levels and this is the multicloud challenge, right? So, the question is, what's the strategy for me, the CIO or CISO, what do I do? I mean, to me, I would go all in on one and start getting hedges and start playing and then look at some >> Crystal clear. Crystal clear to me. >> Go ahead. >> If you're a CIO today, you have to build a platform engineering team, no question. 'Cause if we agree that we cannot tell the great developers what to do, we have to create a platform engineering team that using pieces of the Supercloud can build, and let's make this very pragmatic and give examples. First you need to be able to lay down the run time, okay? So you need a way to deploy multiple different Kubernetes environment in depending on the cloud. Okay, now we got that. The second part >> That's like table stakes. >> That are table stake, right? But now what is the advantage of having a Supercloud service to do that is that now you can put a policy in one place and it gets distributed everywhere consistently. So for example, you want to say, "If anybody in this organization across all these different buildings, all these developers don't even know, build a PCI compliant microservice, They can only talk to PCI compliant microservice." Now, I sleep tight. The developers still do that. Of course they're going to get their hands slapped if they don't encrypt some messages and say, "Oh, that should have been encrypted." So number one. The second thing I want to be able to say, "This service that this developer built over there better satisfy this SLA." So if the SLA is not satisfied, boom, I automatically spin up multiple instances to certify the SLA. Developers unencumbered, they don't even know. So this for me is like, CIO build a platform engineering team using one of the many Supercloud services that allow you to do that and lay down. >> And part of that is that the vendor behavior is such, 'cause the incentive is that they don't necessarily always work together. (John chuckling) I'll give you an example, we're going to hear today from Western Union. They're AWS shop, but they want to go to Google, they want to use some of Google's AI tools 'cause they're good and maybe they're even arguably better, but they're also a Snowflake customer and what you'll hear from them is Amazon and Snowflake are working together so that SageMaker can be integrated with Snowflake but Google said, "No, you want to use our AI tools, you got to use BigQuery." >> Yeah. >> Okay. So they say, "Ah, forget it." So if you have a platform engineering team, you can maybe solve some of that vendor friction and get competitive advantage. >> I think that the future proximity concept that I talk about is like, when you're doing one thing, you want to do another thing. Where do you go to get that thing, right? So that is very important. Like your question, John, is that your point is that AWS is ahead of the pack, which is true, right? They have the >> breadth of >> Infrastructure by a lot >> infrastructure service, right? They breadth of services, right? So, how do you, When do you bring in other cloud providers, right? So I believe that you should standardize on one cloud provider, like that's your primary, and for others, bring them in on as needed basis, in the subsection or sub portfolio of your applications or your platforms, what ever you can. >> So yeah, the Google AI example >> Yeah, I mean, >> Or the Microsoft collaboration software example. I mean there's always or the M and A. >> Yeah, but- >> You're going to get to run Windows, you can run Windows on Amazon, so. >> By the way, Supercloud doesn't mean that you cannot do that. So the perfect example is say that you're using Azure because you have a SQL server intensive workload. >> Yep >> And you're using Google for ML, great. If you are using some differentiated feature of this cloud, you'll have to go somewhere and configure this widget, but what you can abstract with the Supercloud is the lifecycle manage of the service that runs on top, right? So how does the service get deployed, right? How do you monitor performance? How do you lifecycle it? How you secure it that you can abstract and that's the value and eventually value will win. So the customers will find what is the values, obstructing in making it uniform or going deeper? >> How about identity? Like take identity for instance, you know, that's an opportunity to abstract. Whether I use Microsoft Identity or Okta, and I can abstract that. >> Yeah, and then we have APIs and standards that we can use so eventually I think where there is enough pain, the right open source will emerge to solve that problem. >> Dave: Yeah, I can use abstract things like object store, right? That's pretty simple. >> But back to the engineering question though, is that developers, developers, developers, one thing about developers psychology is if something's not right, they say, "Go get fixing. I'm not touching it until you fix it." They're very sticky about, if something's not working, they're not going to do it again, right? So you got to get it right for developers. I mean, they'll maybe tolerate something new, but is the "juice worth the squeeze" as they say, right? So you can't go to direct say, "Hey, it's, what's a work in progress? We're going to get our infrastructure together and the world's going to be great for you, but just hang tight." They're going to be like, "Get your shit together then talk to me." So I think that to me is the question. It's an Ops question, but where's that value for the developer in Supercloud where the capabilities are there, there's less friction, it's simpler, it solves the complexity problem. I don't need these high skilled labor to manage Amazon. I got services exposed. >> That's what we talked about earlier. It's like the Walmart example. They basically, they took away from the developer the need to spin up infrastructure and worry about all the governance. I mean, it's not completely there yet. So the developer could focus on what he or she wanted to do. >> But there's a big, like in our industry, there's a big sort of flaw or the contention between developers and operators. Developers want to be on the cutting edge, right? And operators want to be on the stability, you know, like we want governance. >> Yeah, totally. >> Right, so they want to control, developers are like these little bratty kids, right? And they want Legos, like they want toys, right? Some of them want toys by way. They want Legos, they want to build there and they want make a mess out of it. So you got to make sure. My number one advice in this context is that do it up your application portfolio and, or your platform portfolio if you are an ISV, right? So if you are ISV you most probably, you're building a platform these days, do it up in a way that you can say this portion of our applications and our platform will adhere to what you are saying, standardization, you know, like Kubernetes, like slam dunk, you know, it works across clouds and in your data center hybrid, you know, whole nine yards, but there is some subset on the next door systems of innovation. Everybody has, it doesn't matter if you're DMV of Kansas or you are, you know, metaverse, right? Or Meta company, right, which is Facebook, they have it, they are building something new. For that, give them some freedom to choose different things like play with non-standard things. So that is the mantra for moving forward, for any enterprise. >> Do you think developers are happy with the infrastructure now or are they wanting people to get their act together? I mean, what's your reaction, or you think. >> Developers are happy as long as they can do their stuff, which is running code. They want to write code and innovate. So to me, when Ballmer said, "Developer, develop, Developer, what he meant was, all you other people get your act together so these developers can do their thing, and to me the Supercloud is the way for IT to get there and let developer be creative and go fast. Why not, without getting in trouble. >> Okay, let's wrap up this segment with a super clip. Okay, we're going to do a sound bite that we're going to make into a short video for each of you >> All right >> On you guys summarizing why Supercloud's important, why this next wave is relevant for the practitioners, for the industry and we'll turn this into an Instagram reel, YouTube short. So we'll call it a "Super clip. >> Alright, >> Sarbjeet, you want, you want some time to think about it? You want to go first? Vittorio, you want. >> I just didn't mind. (all laughing) >> No, okay, okay. >> I'll do it again. >> Go back. No, we got a fresh one. We'll going to already got that one in the can. >> I'll go. >> Sarbjeet, you go first. >> I'll go >> What's your super clip? >> In software systems, abstraction is your friend. I always say that. Abstraction is your friend, even if you're super professional developer, abstraction is your friend. We saw from the MFC library from C++ days till today. Abstract, use abstraction. Do not try to reinvent what's already being invented. Leverage cloud, leverage the platform side of the cloud. Not just infrastructure service, but platform as a service side of the cloud as well, and Supercloud is a meta platform built on top of these infrastructure services from three or four or five cloud providers. So use that and embrace the programmability, embrace the abstraction layer. That's the key actually, and developers who are true developers or professional developers as you said, they know that. >> Awesome. Great super clip. Vittorio, another shot at the plate here for super clip. Go. >> Multicloud is awesome. There's a reason why multicloud happened, is because gave our developers the ability to innovate fast and ever before. So if you are embarking on a digital transformation journey, which I call a survival journey, if you're not innovating and transforming, you're not going to be around in business three, five years from now. You have to adopt the Supercloud so the developer can be developer and keep building great, innovating digital experiences for your customers and IT can get in front of it and not get in trouble together. >> Building those super apps with Supercloud. That was a great super clip. Vittorio, thank you for sharing. >> Thanks guys. >> Sarbjeet, thanks for coming on talking about the developer impact Supercloud 2. On our next segment, coming up right now, we're going to hear from Walmart enterprise architect, how they are building and they are continuing to innovate, to build their own Supercloud. Really informative, instructive from a practitioner doing it in real time. Be right back with Walmart here in Palo Alto. Thanks for watching. (gentle music)
SUMMARY :
the Supercloud momentum, and developers came up and you were like, and the conversations we've had. and cloud is the and the role of the stack is changing. I dropped that up there, so, developers are in the business units. the ability to do all because the rift points to What is the future platform? is what you just said. the developer, so to your question, You cannot tell developers what to do. Cannot tell them what to do. You can tell 'em your answer the question. but we give you a place to build, and you want to shave off the milliseconds they love the flexibility, you know, platform developers, you're saying. don't want deal with that muck. that are abstracted. Like how I see the Supercloud is So like if you put in front of them you mentioned platform. and I think there's the developers that, you The point is the operation to decode", you know, the browser for the first time, you know, going to be more stuff coming on. and on the flip side, the middle has to work, but for the most part, generally, Point is the developer So in the middle they have to, the parody with clouds. I mean the fact of the matter Crystal clear to me. in depending on the cloud. So if the SLA is not satisfied, boom, 'cause the incentive is that So if you have a platform AWS is ahead of the pack, So I believe that you should standardize or the M and A. you can run Windows on Amazon, so. So the perfect example is abstract and that's the value Like take identity for instance, you know, the right open source will Dave: Yeah, I can use abstract things and the world's going to be great for you, the need to spin up infrastructure on the stability, you know, So that is the mantra for moving forward, Do you think developers are happy and to me the Supercloud is for each of you for the industry you want some time to think about it? I just didn't mind. got that one in the can. platform side of the cloud. Vittorio, another shot at the the ability to innovate thank you for sharing. the developer impact Supercloud 2.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Bosch | ORGANIZATION | 0.99+ |
Vittorio | PERSON | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Audi | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Steve Ballmer | PERSON | 0.99+ |
Qualcomm | ORGANIZATION | 0.99+ |
Adam Bosworth | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
New York | LOCATION | 0.99+ |
Vittorio Viarengo | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Ballmer | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
five hours | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Palo Alto, California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Five minutes | QUANTITY | 0.99+ |
NextGen | ORGANIZATION | 0.99+ |
StackPayne | ORGANIZATION | 0.99+ |
Visual Basic | TITLE | 0.99+ |
second part | QUANTITY | 0.99+ |
12 different distributions | QUANTITY | 0.99+ |
CES | EVENT | 0.99+ |
First | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Kansas City | LOCATION | 0.99+ |
second one | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Kansas | LOCATION | 0.98+ |
first time | QUANTITY | 0.98+ |
Windows | TITLE | 0.98+ |
last year | DATE | 0.98+ |
AWS Startup Showcase S3E1
(upbeat electronic music) >> Hello everyone, welcome to this CUBE conversation here from the studios in the CUBE in Palo Alto, California. I'm John Furrier, your host. We're featuring a startup, Astronomer. Astronomer.io is the URL, check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI, and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder of Astronomer, and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table who've worked very hard to get this company to the point that it's at. We have long ways to go, right? But there's been a lot of people involved that have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders, sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry to kind of highlight this shift that's happening. It's real, we've been chronicalizing, take a minute to explain what you guys do. >> Yeah, sure, we can get started. So, yeah, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data, and we were using an open source project called Apache Airflow that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into, and that running Airflow is actually quite challenging, and that there's a big opportunity for us to create a set of commercial products and an opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item in the old classic data infrastructure. But with AI, you're seeing a lot more emphasis on scale, tuning, training. Data orchestration is the center of the value proposition, when you're looking at coordinating resources, it's one of the most important things. Can you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one, and Viraj, feel free to jump in. So if you google data orchestration, here's what you're going to get. You're going to get something that says, "Data orchestration is the automated process" "for organizing silo data from numerous" "data storage points, standardizing it," "and making it accessible and prepared for data analysis." And you say, "Okay, but what does that actually mean," right, and so let's give sort of an an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Okay, give me a dashboard in Sigma, for example, for the number of customers or monthly active users, and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have in product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran to ingest data, a data warehouse, like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration, in our view, is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on and the company advances. And so, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run, and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CICD tooling, secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that it's the heartbeat, we think, of of the data ecosystem, and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> One of the things that jumped out, Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out. You mentioned a variety of things. You look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are fundamental, that were once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier, or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over the last however many years is that if a data team is using a bunch of tools to get what they need done, and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them, and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have some sort of base layer, right? That's kind of like, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, things like SageMaker, Redshift, whatever, but they also might need things that their cloud can't provide. Something like Fivetran, or Hightouch, those are other tools. And where data orchestration really shines, and something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need? So that somebody can read a dashboard and trust the number that it says, or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines, or machine learning, or whatever, you need different things to do them, and Airflow helps tie them together in a way that's really specific for a individual business' needs. >> Take a step back and share the journey of what you guys went through as a company startup. So you mentioned Apache, open source. I was just having an interview with a VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone/Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. Are you guys helping them? Take us through, 'cause you guys are on the front end of a big, big wave, and that is to make sense of the chaos, rain it in. Take us through your journey and why this is important. >> Yeah, Paola, I can take a crack at this, then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source, because we started using Airflow as an end user and started to say like, "Hey wait a second," "more and more people need this." Airflow, for background, started at Airbnb, and they were actually using that as a foundation for their whole data stack. Kind of how they made it so that they could give you recommendations, and predictions, and all of the processes that needed orchestrated. Airbnb created Airflow, gave it away to the public, and then fast forward a couple years and we're building a company around it, and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us, it's really been about watching the community and our customers take these problems, find a solution to those problems, standardize those solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting in their ELP infrastructure, they've solved that problem and now they're moving on to things like doing machine learning with their data, because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build a layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Viraj, I'll let you take that one too. (group laughs) >> So you know, a lot of it is... It goes across the gamut, right? Because it doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from other disparate sources into one place and then building on top of that. Be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection, because Airflow's orchestrating how transactions go, transactions get analyzed. They do things like analyzing marketing spend to see where your highest ROI is. And then you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers, kind of analyze and aggregating that at scale, and trying to automate decision making processes. So it goes from your most basic, what we call data plumbing, right? Just to make sure data's moving as needed, all the ways to your more exciting expansive use cases around automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future, is how critical Airflow is to all of those processes, and I think when you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic questions about your business and the growth of your company for so many organizations that we work with. So it's, I think, one of the things that gets Viraj and I and the rest of our company up every single morning is knowing how important the work that we do for all of those use cases across industries, across company sizes, and it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models is that you can integrate data into these models from outside. So you're starting to see the integration easier to deal with. Still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Has it already been disrupted? Would you categorize it as a new first inning kind of opportunity, or what's the state of the data orchestration area right now? Both technically and from a business model standpoint. How would you guys describe that state of the market? >> Yeah, I mean, I think in a lot of ways, in some ways I think we're category creating. Schedulers have been around for a long time. I released a data presentation sort of on the evolution of going from something like Kron, which I think was built in like the 1970s out of Carnegie Mellon. And that's a long time ago, that's 50 years ago. So sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out industry has 5X'd over the last 10 years. And so obviously as that ecosystem grows, and grows, and grows, and grows, the need for orchestration only increases. And I think, as Astronomer, I think we... And we work with so many different types of companies, companies that have been around for 50 years, and companies that got started not even 12 months ago. And so I think for us it's trying to, in a ways, category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration, and then there's folks who have such advanced use case, 'cause they're hitting sort of a ceiling and only want to go up from there. And so I think we, as a company, care about both ends of that spectrum, and certainly want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point, Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. If you rewind the clock like 5 or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business, and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is right on the money. And what we're finding is the need for it is spreading to all parts of the data team, naturally where Airflow's emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. We've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data, and that's data engineering, and then you're got to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I have to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers, or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean, there's so many... Sorry, Viraj, you can jump in. So there's so many companies using Airflow, right? So the baseline is that the open source project that is Airflow that came out of Airbnb, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in their organization, and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Viraj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's to start at the baseline, as we continue to grow our our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way, in a more efficient way, and that's really the crux of who we sell to. And so to answer your question on, we get a lot of inbound because they're... >> You have a built in audience. (laughs) >> The world that use it. Those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean, the power of the opensource community is really just so, so big, and I think that's also one of the things that makes this job fun. >> And you guys are in a great position. Viraj, you can comment a little, get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of productizing it, operationalizing it. This is a huge new dynamic, I mean, in the past 5 or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do, because we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running an e-commerce business, or maybe you're running, I don't know, some sort of like, any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it, you want to be able to google something and get answers for it, you want the benefits of open source. You don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, that you can benefit from, that you can learn from. But you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolve. We used a debate 10 years ago, can there be another Red Hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company? The milestones of Astromer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Viraj and I have obviously been at Astronomer along with our other founding team and leadership folks for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people, solving, again, mission critical problems for so many types of organizations. We've had some funding that has allowed us to invest in the team that we have and in the software that we have, and that's been really phenomenal. And so that investment, I think, keeps us confident, even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us that we know can get valuable out of what we do, and making developers' lives better, and growing the open source community and making sure that everything that we're doing makes it easier for folks to get started, to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> Don't know what the total is, but it's in the ballpark over $200 million. It feels good to... >> A little bit of capital. Got a little bit of cap to work with there. Great success. I know as a Series C Financing, you guys have been down. So you're up and running, what's next? What are you guys looking to do? What's the big horizon look like for you from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done. But really investing our product over the next, at least over the course of our company lifetime. And there's a lot of ways we want to make it more accessible to users, easier to get started with, easier to use, kind of on all areas there. And really, we really want to do more for the community, right, like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways, in more kind of events and everything else that we can keep those folks galvanized and just keep them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. I think we'll keep growing the team this year. We've got a couple of offices in the the US, which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York, and we're excited to be engaging with our coworkers in person finally, after years of not doing so. We've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world, and really focusing on our product and the open source community is where our heads are at this year. So, excited. >> Congratulations. 200 million in funding, plus. Good runway, put that money in the bank, squirrel it away. It's a good time to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open source community does, and good luck with the venture, continue to be successful, and we'll see you at the Startup Showcase. >> Thank you. >> Yeah, thanks so much, John. Appreciate it. >> Okay, that's the CUBE Conversation featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model, good solution for the next gen cloud scale data operations, data stacks that are emerging. I'm John Furrier, your host, thanks for watching. (soft upbeat music)
SUMMARY :
and that is the future of for the path we've been on so far. for the AI industry to kind of highlight So the crux of what we center of the value proposition, that it's the heartbeat, One of the things and the number of tools they're using of what you guys went and all of the processes That's a beautiful thing. all the tools that they need, What are some of the companies Viraj, I'll let you take that one too. all of the machine learning and the growth of your company that state of the market? and the value that we can provide and the data scientists that the data market's And so the folks that we sell to You have a built in audience. one of the things that makes this job fun. in the past 5 or so years, 10 years, that you can build on top of, the history of the company? and in the software that we have, How much have you guys raised? but it's in the ballpark What's the big horizon look like for you Kind of one of the best and worst things and continuing to hire the work you guys do. Yeah, thanks so much, John. for the next gen cloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
2017 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Two | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
1970s | DATE | 0.99+ |
first question | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Airflow | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
Astronomer | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
10 years ago | DATE | 0.99+ |
HubSpot | ORGANIZATION | 0.98+ |
Fivetran | ORGANIZATION | 0.98+ |
50 years ago | DATE | 0.98+ |
over five years | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
10 years | QUANTITY | 0.97+ |
Both | QUANTITY | 0.97+ |
Apache Airflow | TITLE | 0.97+ |
both worlds | QUANTITY | 0.97+ |
CNCF | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
ChatGPT | ORGANIZATION | 0.97+ |
5 | DATE | 0.97+ |
next year | DATE | 0.96+ |
Astromer | ORGANIZATION | 0.96+ |
today | DATE | 0.95+ |
5X | QUANTITY | 0.95+ |
over five years ago | DATE | 0.95+ |
CUBE | ORGANIZATION | 0.94+ |
two things | QUANTITY | 0.94+ |
each | QUANTITY | 0.93+ |
one person | QUANTITY | 0.93+ |
First | QUANTITY | 0.92+ |
S3 | TITLE | 0.91+ |
Carnegie Mellon | ORGANIZATION | 0.91+ |
Startup Showcase | EVENT | 0.91+ |
AWS Startup Showcase S3E1
(soft music) >> Hello everyone, welcome to this Cube conversation here from the studios of theCube in Palo Alto, California. John Furrier, your host. We're featuring a startup, Astronomer, astronomer.io is the url. Check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table, who've worked very hard to get this company to the point that it's at. And we have long ways to go, right? But there's been a lot of people involved that are, have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry. Kind of highlight this shift that's happening. It's real. We've been chronologicalizing, take a minute to explain what you guys do. >> Yeah, sure. We can get started. So yeah, when Astronomer, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data and we were using an open source project called Apache Airflow, that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into. And that running Airflow is actually quite challenging and that there's a lot of, a big opportunity for us to create a set of commercial products and opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item, you know, in the old classic data infrastructure. But with AI you're seeing a lot more emphasis on scale, tuning, training. You know, data orchestration is the center of the value proposition when you're looking at coordinating resources, it's one of the most important things. Could you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one and Viraj feel free to jump in. So if you google data orchestration, you know, here's what you're going to get. You're going to get something that says, data orchestration is the automated process for organizing silo data from numerous data storage points to organizing it and making it accessible and prepared for data analysis. And you say, okay, but what does that actually mean, right? And so let's give sort of an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Hey, give me a dashboard in Sigma, for example, for the number of customers or monthly active users and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have end product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran, to ingest data, a data warehouse like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that, you know, data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration in our view is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration, you know, is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on. And, you know, the company advances. And so, you know, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CI/CD tooling, right? Secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that, it's the heartbeat that we think of the data ecosystem and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> You know, one of the things that jumped out Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out there. You mentioned a variety of things. You know, if you look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are >> Yeah. - >> fundamental, but we're once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got, you know, S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over, you know, the last however many years, is that like if a data team is using a bunch of tools to get what they need done and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have like some sort of base layer, right? That's kind of like, you know, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, you know, things like SageMaker, Redshift, whatever. But they also might need things that their Cloud can't provide, you know, something like Fivetran or Hightouch or anything of those other tools and where data orchestration really shines, right? And something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need, right? Something that makes it so that somebody can read a dashboard and trust the number that it says or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines or machine learning or whatever, you need different things to do them and Airflow helps tie them together in a way that's really specific for a individual business's needs. >> Take a step back and share the journey of what your guys went through as a company startup. So you mentioned Apache open source, you know, we were just, I was just having an interview with the VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone, Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. How do you guys, are you guys helping them? Take us through, 'cuz you guys are on the front end of a big, big wave and that is to make sense of the chaos, reigning it in. Take us through your journey and why this is important. >> Yeah Paola, I can take a crack at this and then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source because we started using Airflow as an end user and started to say like, "Hey wait a second". Like more and more people need this. Airflow, for background, started at Airbnb and they were actually using that as the foundation for their whole data stack. Kind of how they made it so that they could give you recommendations and predictions and all of the processes that need to be or needed to be orchestrated. Airbnb created Airflow, gave it away to the public and then, you know, fast forward a couple years and you know, we're building a company around it and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us it's really been about like watching the community and our customers take these problems, find solution to those problems, build standardized solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting and their ELP infrastructure, you know, they've solved that problem and now they're moving onto things like doing machine learning with their data, right? Because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build the layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Raj, I'll let you take that one too. (all laughing) >> Yeah. (all laughing) So you know, a lot of it is, it goes across the gamut, right? Because all doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from all the disparate sources into one place and then building on top of that, be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection because Airflow's orchestrating how transactions go. Transactions get analyzed, they do things like analyzing marketing spend to see where your highest ROI is. And then, you know, you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers kind of analyze and aggregating that at scale and trying to automate decision making processes. So it goes from your most basic, what we call like data plumbing, right? Just to make sure data's moving as needed. All the ways to your more exciting and sexy use cases around like automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future is how critical Airflow is to all of those processes, you know? And I think when, you know, you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic, you know, questions about your business and the growth of your company for so many organizations that we work with. So it's, I think one of the things that gets Viraj and I, and the rest of our company up every single morning, is knowing how important the work that we do for all of those use cases across industries, across company sizes. And it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models, is that you can integrate data into these models, right? From outside, right? So you're starting to see the integration easier to deal with, still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Is it already been disrupted? Would you categorize it as a new first inning kind of opportunity or what's the state of the data orchestration area right now? Both, you know, technically and from a business model standpoint, how would you guys describe that state of the market? >> Yeah, I mean I think, I think in a lot of ways we're, in some ways I think we're categoric rating, you know, schedulers have been around for a long time. I recently did a presentation sort of on the evolution of going from, you know, something like KRON, which I think was built in like the 1970s out of Carnegie Mellon. And you know, that's a long time ago. That's 50 years ago. So it's sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out the industry has, you know, has some 5X over the last 10 years. And so obviously as that ecosystem grows and grows and grows and grows, the need for orchestration only increases. And I think, you know, as Astronomer, I think we, and there's, we work with so many different types of companies, companies that have been around for 50 years and companies that got started, you know, not even 12 months ago. And so I think for us, it's trying to always category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration and then there's folks who have such advanced use case 'cuz they're hitting sort of a ceiling and only want to go up from there. And so I think we as a company, care about both ends of that spectrum and certainly have want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. You know, if you rewind the clock like five or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is spot on, is right on the money. And what we're finding is it's spreading, the need for it, is spreading to all parts of the data team naturally where Airflows have emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. You know, we've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data and that's data engineering and then you're going to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I got to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean we've, there's so many, there's so many. Sorry Raj, you can jump in. - >> It's okay. So there's so many companies using Airflow, right? So our, the baseline is that the open source project that is Airflow that was, that came out of Airbnb, you know, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in the organization and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Raj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's for, to start at the baseline. You know, as we continue to grow our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way and a more efficient way. And that's really the crux of who we sell to. And so to answer your question on, we actually, we get a lot of inbound because they're are so many - >> A built-in audience. >> In the world that use it, that those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean the power of the open source community is really just so, so big. And I think that's also one of the things that makes this job fun, so. >> And you guys are in a great position, Viraj, you can comment, to get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also, you know, we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of product-izing it, operationalizing it. This is a huge new dynamic. I mean, in the past, you know, five or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do because, you know, we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running e-commerce business or maybe you're running, I don't know, some sort of like any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it. You want to take, you want to be able to google something and get answers for it. You want the benefits of open source. You don't want to have, you don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that, in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, you can benefit from, that you can learn from, but you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolved. We used to debate 10 years ago, can there be another red hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company, the milestones of the Astronomer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Raj and I have obviously been at astronomer along with our other founding team and leadership folks, for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people. Solving again, mission critical problems for so many types of organizations. You know, we've had some funding that has allowed us to invest in the team that we have and in the software that we have. And that's been really phenomenal. And so that investment, I think, keeps us confident even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us, that we know can get value out of what we do. And making developers' lives better and growing the open source community, you know, and making sure that everything that we're doing makes it easier for folks to get started to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> I forget what the total is, but it's in the ballpark of 200, over $200 million. So it feels good - >> A little bit of capital. Got a little bit of cash to work with there. Great success. I know it's a Series C financing, you guys been down, so you're up and running. What's next? What are you guys looking to do? What's the big horizon look like for you? And from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Like, kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done, but really invest in our product over the next, at least the next, over the course of our company lifetime. And there's a lot of ways we wanting to just make it more accessible to users, easier to get started with, easier to use all kind of on all areas there. And really, we really want to do more for the community, right? Like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways and more kind of events and everything else that we can do to keep those folks galvanized and just keeping them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. You know, I think we'll keep growing the team this year. We've got a couple of offices in the US which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York and we're excited to be engaging with our coworkers in person. Finally, after years of not doing so, we've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world and really focusing on our product and the open source community is where our heads are at this year, so. >> Congratulations. - >> Excited. 200 million in funding plus good runway. Put that money in the bank, squirrel it away. You know, it's good to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open sourced community does and good luck with the venture. Continue to be successful and we'll see you at the Startup Showcase. >> Thank you. - >> Yeah, thanks so much, John. Appreciate it. - >> It's theCube conversation, featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model. Good solution for the next gen, Cloud, scale, data operations, data stacks that are emerging. I'm John Furrier, your host. Thanks for watching. (soft music)
SUMMARY :
and that is the future of for the path we've been on so far. take a minute to explain what you guys do. and that there's a lot of, of the value proposition And that data team needs to use tools You know, one of the and then a bunch of point solution. and the number of tools they're using and that is to make sense of the chaos, and all of the processes that need to be That's a beautiful thing. you know, they've solved that problem What are some of the companies Raj, I'll let you take that one too. And then, you know, and the growth of your company So I have to ask you guys, and companies that got started, you know, and the data scientists that the data market's kind of you can jump in. And so the folks that we and come to our website and chat with us I mean, in the past, you to what we do because, you history of the company, and in the software that we have. How much have you guys raised? but it's in the ballpark What are you guys looking to do? and you often have to just kind of and the open source community the work you guys do. Yeah, thanks so much, John. that's the website.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Raj | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
2017 | DATE | 0.99+ |
New York | LOCATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
1970s | DATE | 0.99+ |
10 years | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
50 years ago | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
five | DATE | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
this year | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
Airflow | TITLE | 0.98+ |
10 years ago | DATE | 0.98+ |
Carnegie Mellon | ORGANIZATION | 0.98+ |
over five years | QUANTITY | 0.98+ |
200 | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
5X | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.97+ |
one person | QUANTITY | 0.97+ |
two things | QUANTITY | 0.97+ |
Fivetran | ORGANIZATION | 0.96+ |
seven | QUANTITY | 0.96+ |
next year | DATE | 0.96+ |
today | DATE | 0.95+ |
50 years | QUANTITY | 0.95+ |
each | QUANTITY | 0.95+ |
theCube | ORGANIZATION | 0.94+ |
HubSpot | ORGANIZATION | 0.93+ |
Sigma | ORGANIZATION | 0.92+ |
Series C | OTHER | 0.92+ |
Astronomer | ORGANIZATION | 0.91+ |
astronomer.io | OTHER | 0.91+ |
Hightouch | TITLE | 0.9+ |
one place | QUANTITY | 0.9+ |
Android | TITLE | 0.88+ |
Startup Showcase | EVENT | 0.88+ |
Apache Airflow | TITLE | 0.86+ |
CNCF | ORGANIZATION | 0.86+ |
theCUBE's New Analyst Talks Cloud & DevOps
(light music) >> Hi everybody. Welcome to this Cube Conversation. I'm really pleased to announce a collaboration with Rob Strechay. He's a guest cube analyst, and we'll be working together to extract the signal from the noise. Rob is a long-time product pro, working at a number of firms including AWS, HP, HPE, NetApp, Snowplow. I did a stint as an analyst at Enterprise Strategy Group. Rob, good to see you. Thanks for coming into our Marlboro Studios. >> Well, thank you for having me. It's always great to be here. >> I'm really excited about working with you. We've known each other for a long time. You've been in the Cube a bunch. You know, you're in between gigs, and I think we can have a lot of fun together. Covering events, covering trends. So. let's get into it. What's happening out there? We're sort of exited the isolation economy. Things were booming. Now, everybody's tapping the brakes. From your standpoint, what are you seeing out there? >> Yeah. I'm seeing that people are really looking how to get more out of their data. How they're bringing things together, how they're looking at the costs of Cloud, and understanding how are they building out their SaaS applications. And understanding that when they go in and actually start to use Cloud, it's not only just using the base services anymore. They're looking at, how do I use these platforms as a service? Some are easier than others, and they're trying to understand, how do I get more value out of that relationship with the Cloud? They're also consolidating the number of Clouds that they have, I would say to try to better optimize their spend, and getting better pricing for that matter. >> Are you seeing people unhook Clouds, or just reduce maybe certain Cloud activities and going maybe instead of 60/40 going 90/10? >> Correct. It's more like the 90/10 type of rule where they're starting to say, Hey I'm not going to get rid of Azure or AWS or Google. I'm going to move a portion of this over that I was using on this one service. Maybe I got a great two-year contract to start with on this platform as a service or a database as a service. I'm going to unhook from that and maybe go with an independent. Maybe with something like a Snowflake or a Databricks on top of another Cloud, so that I can consolidate down. But it also gives them more flexibility as well. >> In our last breaking analysis, Rob, we identified six factors that were reducing Cloud consumption. There were factors and customer tactics. And I want to get your take on this. So, some of the factors really, you got fewer mortgage originations. FinTech, obviously big Cloud user. Crypto, not as much activity there. Lower ad spending means less Cloud. And then one of 'em, which you kind of disagreed with was less, less analytics, you know, fewer... Less frequency of calculations. I'll come back to that. But then optimizing compute using Graviton or AMD instances moving to cheaper storage tiers. That of course makes sense. And then optimize pricing plans. Maybe going from On Demand, you know, to, you know, instead of pay by the drink, buy in volume. Okay. So, first of all, do those make sense to you with the exception? We'll come back and talk about the analytics piece. Is that what you're seeing from customers? >> Yeah, I think so. I think that was pretty much dead on with what I'm seeing from customers and the ones that I go out and talk to. A lot of times they're trying to really monetize their, you know, understand how their business utilizes these Clouds. And, where their spend is going in those Clouds. Can they use, you know, lower tiers of storage? Do they really need the best processors? Do they need to be using Intel or can they get away with AMD or Graviton 2 or 3? Or do they need to move in? And, I think when you look at all of these Clouds, they always have pricing curves that are arcs from the newest to the oldest stuff. And you can play games with that. And understanding how you can actually lower your costs by looking at maybe some of the older generation. Maybe your application was written 10 years ago. You don't necessarily have to be on the best, newest processor for that application per se. >> So last, I want to come back to this whole analytics piece. Last June, I think it was June, Dev Ittycheria, who's the-- I call him Dev. Spelled Dev, pronounced Dave. (chuckles softly) Same pronunciation, different spelling. Dev Ittycheria, CEO of Mongo, on the earnings call. He was getting, you know, hit. Things were starting to get a little less visible in terms of, you know, the outlook. And people were pushing him like... Because you're in the Cloud, is it easier to dial down? And he said, because we're the document database, we support transaction applications. We're less discretionary than say, analytics. Well on the Snowflake earnings call, that same month or the month after, they were all over Slootman and Scarpelli. Oh, the Mongo CEO said that they're less discretionary than analytics. And Snowflake was an interesting comment. They basically said, look, we're the Cloud. You can dial it up, you can dial it down, but the area under the curve over a period of time is going to be the same, because they get their customers to commit. What do you say? You disagreed with the notion that people are running their calculations less frequently. Is that because they're trying to do a better job of targeting customers in near real time? What are you seeing out there? >> Yeah, I think they're moving away from using people and more expensive marketing. Or, they're trying to figure out what's my Google ad spend, what's my Meta ad spend? And what they're trying to do is optimize that spend. So, what is the return on advertising, or the ROAS as they would say. And what they're looking to do is understand, okay, I have to collect these analytics that better understand where are these people coming from? How do they get to my site, to my store, to my whatever? And when they're using it, how do they they better move through that? What you're also seeing is that analytics is not only just for kind of the retail or financial services or things like that, but then they're also, you know, using that to make offers in those categories. When you move back to more, you know, take other companies that are building products and SaaS delivered products. They may actually go and use this analytics for making the product better. And one of the big reasons for that is maybe they're dialing back how many product managers they have. And they're looking to be more data driven about how they actually go and build the product out or enhance the product. So maybe they're, you know, an online video service and they want to understand why people are either using or not using the whiteboard inside the product. And they're collecting a lot of that product analytics in a big way so that they can go through that. And they're doing it in a constant manner. This first party type tracking within applications is growing rapidly by customers. >> So, let's talk about who wins in that. So, obviously the Cloud guys, AWS, Google and Azure. I want to come back and unpack that a little bit. Databricks and Snowflake, we reported on our last breaking analysis, it kind of on a collision course. You know, a couple years ago we were thinking, okay, AWS, Snowflake and Databricks, like perfect sandwich. And then of course they started to become more competitive. My sense is they still, you know, compliment each other in the field, right? But, you know, publicly, they've got bigger aspirations, they get big TAMs that they're going after. But it's interesting, the data shows that-- So, Snowflake was off the charts in terms of spending momentum and our EPR surveys. Our partner down in New York, they kind of came into line. They're both growing in terms of market presence. Databricks couldn't get to IPO. So, we don't have as much, you know, visibility on their financials. You know, Snowflake obviously highly transparent cause they're a public company. And then you got AWS, Google and Azure. And it seems like AWS appears to be more partner friendly. Microsoft, you know, depends on what market you're in. And Google wants to sell BigQuery. >> Yeah. >> So, what are you seeing in the public Cloud from a data platform perspective? >> Yeah. I think that was pretty astute in what you were talking about there, because I think of the three, Google is definitely I think a little bit behind in how they go to market with their partners. Azure's done a fantastic job of partnering with these companies to understand and even though they may have Synapse as their go-to and where they want people to go to do AI and ML. What they're looking at is, Hey, we're going to also be friendly with Snowflake. We're also going to be friendly with a Databricks. And I think that, Amazon has always been there because that's where the market has been for these developers. So, many, like Databricks' and the Snowflake's have gone there first because, you know, Databricks' case, they built out on top of S3 first. And going and using somebody's object layer other than AWS, was not as simple as you would think it would be. Moving between those. >> So, one of the financial meetups I said meetup, but the... It was either the CEO or the CFO. It was either Slootman or Scarpelli talking at, I don't know, Merrill Lynch or one of the other financial conferences said, I think it was probably their Q3 call. Snowflake said 80% of our business goes through Amazon. And he said to this audience, the next day we got a call from Microsoft. Hey, we got to do more. And, we know just from reading the financial statements that Snowflake is getting concessions from Amazon, they're buying in volume, they're renegotiating their contracts. Amazon gets it. You know, lower the price, people buy more. Long term, we're all going to make more money. Microsoft obviously wants to get into that game with Snowflake. They understand the momentum. They said Google, not so much. And I've had customers tell me that they wanted to use Google's AI with Snowflake, but they can't, they got to go to to BigQuery. So, honestly, I haven't like vetted that so. But, I think it's true. But nonetheless, it seems like Google's a little less friendly with the data platform providers. What do you think? >> Yeah, I would say so. I think this is a place that Google looks and wants to own. Is that now, are they doing the right things long term? I mean again, you know, you look at Google Analytics being you know, basically outlawed in five countries in the EU because of GDPR concerns, and compliance and governance of data. And I think people are looking at Google and BigQuery in general and saying, is it the best place for me to go? Is it going to be in the right places where I need it? Still, it's still one of the largest used databases out there just because it underpins a number of the Google services. So you almost get, like you were saying, forced into BigQuery sometimes, if you want to use the tech on top. >> You do strategy. >> Yeah. >> Right? You do strategy, you do messaging. Is it the right call by Google? I mean, it's not a-- I criticize Google sometimes. But, I'm not sure it's the wrong call to say, Hey, this is our ace in the hole. >> Yeah. >> We got to get people into BigQuery. Cause, first of all, BigQuery is a solid product. I mean it's Cloud native and it's, you know, by all, it gets high marks. So, why give the competition an advantage? Let's try to force people essentially into what is we think a great product and it is a great product. The flip side of that is, they're giving up some potential partner TAM and not treating the ecosystem as well as one of their major competitors. What do you do if you're in that position? >> Yeah, I think that that's a fantastic question. And the question I pose back to the companies I've worked with and worked for is, are you really looking to have vendor lock-in as your key differentiator to your service? And I think when you start to look at these companies that are moving away from BigQuery, moving to even, Databricks on top of GCS in Google, they're looking to say, okay, I can go there if I have to evacuate from GCP and go to another Cloud, I can stay on Databricks as a platform, for instance. So I think it's, people are looking at what platform as a service, database as a service they go and use. Because from a strategic perspective, they don't want that vendor locking. >> That's where Supercloud becomes interesting, right? Because, if I can run on Snowflake or Databricks, you know, across Clouds. Even Oracle, you know, they're getting into business with Microsoft. Let's talk about some of the Cloud players. So, the big three have reported. >> Right. >> We saw AWSs Cloud growth decelerated down to 20%, which is I think the lowest growth rate since they started to disclose public numbers. And they said they exited, sorry, they said January they grew at 15%. >> Yeah. >> Year on year. Now, they had some pretty tough compares. But nonetheless, 15%, wow. Azure, kind of mid thirties, and then Google, we had kind of low thirties. But, well behind in terms of size. And Google's losing probably almost $3 billion annually. But, that's not necessarily a bad thing by advocating and investing. What's happening with the Cloud? Is AWS just running into the law, large numbers? Do you think we can actually see a re-acceleration like we have in the past with AWS Cloud? Azure, we predicted is going to be 75% of AWS IAS revenues. You know, we try to estimate IAS. >> Yeah. >> Even though they don't share that with us. That's a huge milestone. You'd think-- There's some people who have, I think, Bob Evans predicted a while ago that Microsoft would surpass AWS in terms of size. You know, what do you think? >> Yeah, I think that Azure's going to keep to-- Keep growing at a pretty good clip. I think that for Azure, they still have really great account control, even though people like to hate Microsoft. The Microsoft sellers that are out there making those companies successful day after day have really done a good job of being in those accounts and helping people. I was recently over in the UK. And the UK market between AWS and Azure is pretty amazing, how much Azure there is. And it's growing within Europe in general. In the states, it's, you know, I think it's growing well. I think it's still growing, probably not as fast as it is outside the U.S. But, you go down to someplace like Australia, it's also Azure. You hear about Azure all the time. >> Why? Is that just because of the Microsoft's software state? It's just so convenient. >> I think it has to do with, you know, and you can go with the reasoning they don't break out, you know, Office 365 and all of that out of their numbers is because they have-- They're in all of these accounts because the office suite is so pervasive in there. So, they always have reasons to go back in and, oh by the way, you're on these old SQL licenses. Let us move you up here and we'll be able to-- We'll support you on the old version, you know, with security and all of these things. And be able to move you forward. So, they have a lot of, I guess you could say, levers to stay in those accounts and be interesting. At least as part of the Cloud estate. I think Amazon, you know, is hitting, you know, the large number. Laws of large numbers. But I think that they're also going through, and I think this was seen in the layoffs that they were making, that they're looking to understand and have profitability in more of those services that they have. You know, over 350 odd services that they have. And you know, as somebody who went there and helped to start yet a new one, while I was there. And finally, it went to beta back in September, you start to look at the fact that, that number of services, people, their own sellers don't even know all of their services. It's impossible to comprehend and sell that many things. So, I think what they're going through is really looking to rationalize a lot of what they're doing from a services perspective going forward. They're looking to focus on more profitable services and bringing those in. Because right now it's built like a layer cake where you have, you know, S3 EBS and EC2 on the bottom of the layer cake. And then maybe you have, you're using IAM, the authorization and authentication in there and you have all these different services. And then they call it EMR on top. And so, EMR has to pay for that entire layer cake just to go and compete against somebody like Mongo or something like that. So, you start to unwind the costs of that. Whereas Azure, went and they build basically ground up services for the most part. And Google kind of falls somewhere in between in how they build their-- They're a sort of layer cake type effect, but not as many layers I guess you could say. >> I feel like, you know, Amazon's trying to be a platform for the ecosystem. Yes, they have their own products and they're going to sell. And that's going to drive their profitability cause they don't have to split the pie. But, they're taking a piece of-- They're spinning the meter, as Ziyas Caravalo likes to say on every time Snowflake or Databricks or Mongo or Atlas is, you know, running on their system. They take a piece of the action. Now, Microsoft does that as well. But, you look at Microsoft and security, head-to-head competitors, for example, with a CrowdStrike or an Okta in identity. Whereas, it seems like at least for now, AWS is a more friendly place for the ecosystem. At the same time, you do a lot of business in Microsoft. >> Yeah. And I think that a lot of companies have always feared that Amazon would just throw, you know, bodies at it. And I think that people have come to the realization that a two pizza team, as Amazon would call it, is eight people. I think that's, you know, two slices per person. I'm a little bit fat, so I don't know if that's enough. But, you start to look at it and go, okay, if they're going to start out with eight engineers, if I'm a startup and they're part of my ecosystem, do I really fear them or should I really embrace them and try to partner closer with them? And I think the smart people and the smart companies are partnering with them because they're realizing, Amazon, unless they can see it to, you know, a hundred million, $500 million market, they're not going to throw eight to 16 people at a problem. I think when, you know, you could say, you could look at the elastic with OpenSearch and what they did there. And the licensing terms and the battle they went through. But they knew that Elastic had a huge market. Also, you had a number of ecosystem companies building on top of now OpenSearch, that are now domain on top of Amazon as well. So, I think Amazon's being pretty strategic in how they're doing it. I think some of the-- It'll be interesting. I think this year is a payout year for the cuts that they're making to some of the services internally to kind of, you know, how do we take the fat off some of those services that-- You know, you look at Alexa. I don't know how much revenue Alexa really generates for them. But it's a means to an end for a number of different other services and partners. >> What do you make of this ChatGPT? I mean, Microsoft obviously is playing that card. You want to, you want ChatGPT in the Cloud, come to Azure. Seems like AWS has to respond. And we know Google is, you know, sharpening its knives to come up with its response. >> Yeah, I mean Google just went and talked about Bard for the first time this week and they're in private preview or I guess they call it beta, but. Right at the moment to select, select AI users, which I have no idea what that means. But that's a very interesting way that they're marketing it out there. But, I think that Amazon will have to respond. I think they'll be more measured than say, what Google's doing with Bard and just throwing it out there to, hey, we're going into beta now. I think they'll look at it and see where do we go and how do we actually integrate this in? Because they do have a lot of components of AI and ML underneath the hood that other services use. And I think that, you know, they've learned from that. And I think that they've already done a good job. Especially for media and entertainment when you start to look at some of the ways that they use it for helping do graphics and helping to do drones. I think part of their buy of iRobot was the fact that iRobot was a big user of RoboMaker, which is using different models to train those robots to go around objects and things like that, so. >> Quick touch on Kubernetes, the whole DevOps World we just covered. The Cloud Native Foundation Security, CNCF. The security conference up in Seattle last week. First time they spun that out kind of like reinforced, you know, AWS spins out, reinforced from reinvent. Amsterdam's coming up soon, the CubeCon. What should we expect? What's hot in Cubeland? >> Yeah, I think, you know, Kubes, you're going to be looking at how OpenShift keeps growing and I think to that respect you get to see the momentum with people like Red Hat. You see others coming up and realizing how OpenShift has gone to market as being, like you were saying, partnering with those Clouds and really making it simple. I think the simplicity and the manageability of Kubernetes is going to be at the forefront. I think a lot of the investment is still going into, how do I bring observability and DevOps and AIOps and MLOps all together. And I think that's going to be a big place where people are going to be looking to see what comes out of CubeCon in Amsterdam. I think it's that manageability ease of use. >> Well Rob, I look forward to working with you on behalf of the whole Cube team. We're going to do more of these and go out to some shows extract the signal from the noise. Really appreciate you coming into our studio. >> Well, thank you for having me on. Really appreciate it. >> You're really welcome. All right, keep it right there, or thanks for watching. This is Dave Vellante for the Cube. And we'll see you next time. (light music)
SUMMARY :
I'm really pleased to It's always great to be here. and I think we can have the number of Clouds that they have, contract to start with those make sense to you And, I think when you look in terms of, you know, the outlook. And they're looking to My sense is they still, you know, in how they go to market And he said to this audience, is it the best place for me to go? You do strategy, you do messaging. and it's, you know, And I think when you start Even Oracle, you know, since they started to to be 75% of AWS IAS revenues. You know, what do you think? it's, you know, I think it's growing well. Is that just because of the And be able to move you forward. I feel like, you know, I think when, you know, you could say, And we know Google is, you know, And I think that, you know, you know, AWS spins out, and I think to that respect forward to working with you Well, thank you for having me on. And we'll see you next time.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Bob Evans | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Rob | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Oracle | ORGANIZATION | 0.99+ |
Rob Strechay | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
September | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Dev Ittycheria | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
NetApp | ORGANIZATION | 0.99+ |
Amsterdam | LOCATION | 0.99+ |
75% | QUANTITY | 0.99+ |
UK | LOCATION | 0.99+ |
AWSs | ORGANIZATION | 0.99+ |
June | DATE | 0.99+ |
Snowplow | ORGANIZATION | 0.99+ |
eight | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Scarpelli | PERSON | 0.99+ |
15% | QUANTITY | 0.99+ |
Australia | LOCATION | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Slootman | PERSON | 0.99+ |
two-year | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
six factors | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Merrill Lynch | ORGANIZATION | 0.99+ |
Last June | DATE | 0.99+ |
five countries | QUANTITY | 0.99+ |
eight people | QUANTITY | 0.99+ |
U.S. | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
16 people | QUANTITY | 0.99+ |
Databricks' | ORGANIZATION | 0.99+ |
Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)
SUMMARY :
bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Lina Khan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Reid Hoffman | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Lena Khan | PERSON | 0.99+ |
Sam Altman | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Flynn | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Noah | PERSON | 0.99+ |
Ray Amara | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Howie Xu | PERSON | 0.99+ |
Anderson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
1995 | DATE | 0.99+ |
Lina Kahn | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
50 words | QUANTITY | 0.99+ |
Hundreds of millions | QUANTITY | 0.99+ |
Compaq | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
two sentences | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Cameron | PERSON | 0.99+ |
100 million | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
one sentence | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Clay Christensen | PERSON | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Netscape | ORGANIZATION | 0.99+ |
Harveer Singh, Western Union | Western Union When Data Moves Money Moves
(upbeat music) >> Welcome back to Supercloud 2, which is an open industry collaboration between technologists, consultants, analysts, and of course, practitioners, to help shape the future of cloud. And at this event, one of the key areas we're exploring is the intersection of cloud and data, and how building value on top of hyperscale clouds and across clouds is evolving, a concept we call supercloud. And we're pleased to welcome Harvir Singh, who's the chief data architect and global head of data at Western Union. Harvir, it's good to see you again. Thanks for coming on the program. >> Thanks, David, it's always a pleasure to talk to you. >> So many things stand out from when we first met, and one of the most gripping for me was when you said to me, "When data moves, money moves." And that's the world we live in today, and really have for a long time. Money has moved as bits, and when it has to move, we want it to move quickly, securely, and in a governed manner. And the pressure to do so is only growing. So tell us how that trend is evolved over the past decade in the context of your industry generally, and Western Union, specifically. Look, I always say to people that we are probably the first ones to introduce digital currency around the world because, hey, somebody around the world needs money, we move data to make that happen. That trend has actually accelerated quite a bit. If you look at the last 10 years, and you look at all these payment companies, digital companies, credit card companies that have evolved, majority of them are working on the same principle. When data moves, money moves. When data is stale, the money goes away, right? I think that trend is continuing, and it's not just the trend is in this space, it's also continuing in other spaces, specifically around, you know, acquisition of customers, communication with customers. It's all becoming digital, and it's, at the end of the day, it's all data being moved from one place or another. At the end of the day, you're not seeing the customer, but you're looking at, you know, the data that he's consuming, and you're making actionable items on it, and be able to respond to what they need. So I think 10 years, it's really, really evolved. >> Hmm, you operate, Western Union operates in more than 200 countries, and you you have what I would call a pseudo federated organization. You're trying to standardize wherever possible on the infrastructure, and you're curating the tooling and doing the heavy lifting in the data stack, which of course lessens the burden on the developers and the line of business consumers, so my question is, in operating in 200 countries, how do you deal with all the diversity of laws and regulations across those regions? I know you're heavily involved in AWS, but AWS isn't everywhere, you still have some on-prem infrastructure. Can you paint a picture of, you know, what that looks like? >> Yeah, a few years ago , we were primarily mostly on-prem, and one of the biggest pain points has been managing that infrastructure around the world in those countries. Yes, we operate in 200 countries, but we don't have infrastructure in 200 countries, but we do have agent locations in 200 countries. United Nations says we only have like 183 are countries, but there are countries which, you know, declare themselves countries, and we are there as well because somebody wants to send money there, right? Somebody has an agent location down there as well. So that infrastructure is obviously very hard to manage and maintain. We have to comply by numerous laws, you know. And the last few years, specifically with GDPR, CCPA, data localization laws in different countries, it's been a challenge, right? And one of the things that we did a few years ago, we decided that we want to be in the business of helping our customers move money faster, security, and with complete trust in us. We don't want to be able to, we don't want to be in the business of managing infrastructure. And that's one of the reasons we started to, you know, migrate and move our journey to the cloud. AWS, obviously chosen first because of its, you know, first in the game, has more locations, and more data centers around the world where we operate. But we still have, you know, existing infrastructure, which is in some countries, which is still localized because AWS hasn't reached there, or we don't have a comparable provider there. We still manage those. And we have to comply by those laws. Our data privacy and our data localization tech stack is pretty good, I would say. We manage our data very well, we manage our customer data very well, but it comes with a lot of complexity. You know, we get a lot of requests from European Union, we get a lot of requests from Asia Pacific every pretty much on a weekly basis to explain, you know, how we are taking controls and putting measures in place to make sure that the data is secured and is in the right place. So it's a complex environment. We do have exposure to other clouds as well, like Google and Azure. And as much as we would love to be completely, you know, very, very hybrid kind of an organization, it's still at a stage where we are still very heavily focused on AWS yet, but at some point, you know, we would love to see a world which is not reliant on a single provider, but it's more a little bit more democratized, you know, as and when what I want to use, I should be able to use, and pay-per-use. And the concept started like that, but it's obviously it's now, again, there are like three big players in the market, and, you know, they're doing their own thing. Would love to see them come collaborate at some point. >> Yeah, wouldn't we all. I want to double-click on the whole multi-cloud strategy, but if I understand it correctly, and in a perfect world, everything on-premises would be in the cloud is, first of all, is that a correct statement? Is that nirvana for you or not necessarily? >> I would say it is nirvana for us, but I would also put a caveat, is it's very tricky because from a regulatory perspective, we are a regulated entity in many countries. The regulators would want to see some control if something happens with a relationship with AWS in one country, or with Google in another country, and it keeps happening, right? For example, Russia was a good example where we had to switch things off. We should be able to do that. But if let's say somewhere in Asia, this country decides that they don't want to partner with AWS, and majority of our stuff is on AWS, where do I go from there? So we have to have some level of confidence in our own infrastructure, so we do maintain some to be able to fail back into and move things it needs to be. So it's a tricky question. Yes, it's nirvana state that I don't have to manage infrastructure, but I think it's far less practical than it said. We will still own something that we call it our own where we have complete control, being a financial entity. >> And so do you try to, I'm sure you do, standardize between all the different on-premise, and in this case, the AWS cloud or maybe even other clouds. How do you do that? Do you work with, you know, different vendors at the various places of the stack to try to do that? Some of the vendors, you know, like a Snowflake is only in the cloud. You know, others, you know, whether it's whatever, analytics, or storage, or database, might be hybrid. What's your strategy with regard to creating as common an experience as possible between your on-prem and your clouds? >> You asked a question which I asked when I joined as well, right? Which question, this is one of the most important questions is how soon when I fail back, if I need to fail back? And how quickly can I, because not everything that is sitting on the cloud is comparable to on-prem or is backward compatible. And the reason I say backward compatible is, you know, there are, our on-prem cloud is obviously behind. We haven't taken enough time to kind of put it to a state where, because we started to migrate and now we have access to infrastructure on the cloud, most of the new things are being built there. But for critical application, I would say we have chronology that could be used to move back if need to be. So, you know, technologies like Couchbase, technologies like PostgreSQL, technologies like Db2, et cetera. We still have and maintain a fairly large portion of it on-prem where critical applications could potentially be serviced. We'll give you one example. We use Neo4j very heavily for our AML use cases. And that's an important one because if Neo4j on the cloud goes down, and it's happened in the past, again, even with three clusters, having all three clusters going down with a DR, we still need some accessibility of that because that's one of the biggest, you know, fraud and risk application it supports. So we do still maintain some comparable technology. Snowflake is an odd one. It's obviously there is none on-prem. But then, you know, Snowflake, I also feel it's more analytical based technology, not a transactional-based technology, at least in our ecosystem. So for me to replicate that, yes, it'll probably take time, but I can live with that. But my business will not stop because our transactional applications can potentially move over if need to. >> Yeah, and of course, you know, all these big market cap companies, so the Snowflake or Databricks, which is not public yet, but they've got big aspirations. And so, you know, we've seen things like Snowflake do a deal with Dell for on-prem object store. I think they do the same thing with Pure. And so over time, you see, Mongo, you know, extending its estate. And so over time all these things are coming together. I want to step out of this conversation for a second. I just ask you, given the current macroeconomic climate, what are the priorities? You know, obviously, people are, CIOs are tapping the breaks on spending, we've reported on that, but what is it? Is it security? Is it analytics? Is it modernization of the on-prem stack, which you were saying a little bit behind. Where are the priorities today given the economic headwinds? >> So the most important priority right now is growing the business, I would say. It's a different, I know this is more, this is not a very techy or a tech answer that, you know, you would expect, but it's growing the business. We want to acquire more customers and be able to service them as best needed. So the majority of our investment is going in the space where tech can support that initiative. During our earnings call, we released the new pillars of our organization where we will focus on, you know, omnichannel digital experience, and then one experience for customer, whether it's retail, whether it's digital. We want to open up our own experience stores, et cetera. So we are investing in technology where it's going to support those pillars. But the spend is in a way that we are obviously taking away from the things that do not support those. So it's, I would say it's flat for us. We are not like in heavily investing or aggressively increasing our tech budget, but it's more like, hey, switch this off because it doesn't make us money, but now switch this on because this is going to support what we can do with money, right? So that's kind of where we are heading towards. So it's not not driven by technology, but it's driven by business and how it supports our customers and our ability to compete in the market. >> You know, I think Harvir, that's consistent with what we heard in some other work that we've done, our ETR partner who does these types of surveys. We're hearing the same thing, is that, you know, we might not be spending on modernizing our on-prem stack. Yeah, we want to get to the cloud at some point and modernize that. But if it supports revenue, you know, we'll invest in that, and get the, you know, instant ROI. I want to ask you about, you know, this concept of supercloud, this abstracted layer of value on top of hyperscale infrastructure, and maybe on-prem. But we were talking about the integration, for instance, between Snowflake and Salesforce, where you got different data sources and you were explaining that you had great interest in being able to, you know, have a kind of, I'll say seamless, sorry, I know it's an overused word, but integration between the data sources and those two different platforms. Can you explain that and why that's attractive to you? >> Yeah, I'm a big supporter of action where the data is, right? Because the minute you start to move, things are already lost in translation. The time is lost, you can't get to it fast enough. So if, for example, for us, Snowflake, Salesforce, is our actionable platform where we action, we send marketing campaigns, we send customer communication via SMS, in app, as well as via email. Now, we would like to be able to interact with our customers pretty much on a, I would say near real time, but the concept of real time doesn't work well with me because I always feel that if you're observing something, it's not real time, it's already happened. But how soon can I react? That's the question. And given that I have to move that data all the way from our, let's say, engagement platforms like Adobe, and particles of the world into Snowflake first, and then do my modeling in some way, and be able to then put it back into Salesforce, it takes time. Yes, you know, I can do it in a few hours, but that few hours makes a lot of difference. Somebody sitting on my website, you know, couldn't find something, walked away, how soon do you think he will lose interest? Three hours, four hours, he'll probably gone, he will never come back. I think if I can react to that as fast as possible without too much data movement, I think that's a lot of good benefit that this kind of integration will bring. Yes, I can potentially take data directly into Salesforce, but I then now have two copies of data, which is, again, something that I'm not a big (indistinct) of. Let's keep the source of the data simple, clean, and a single source. I think this kind of integration will help a lot if the actions can be brought very close to where the data resides. >> Thank you for that. And so, you know, it's funny, we sometimes try to define real time as before you lose the customer, so that's kind of real time. But I want to come back to this idea of governed data sharing. You mentioned some other clouds, a little bit of Azure, a little bit of Google. In a world where, let's say you go more aggressively, and we know that for instance, if you want to use Google's AI tools, you got to use BigQuery. You know, today, anyway, they're not sort of so friendly with Snowflake, maybe different for the AWS, maybe Microsoft's going to be different as well. But in an ideal world, what I'm hearing is you want to keep the data in place. You don't want to move the data. Moving data is expensive, making copies is badness. It's expensive, and it's also, you know, changes the state, right? So you got governance issues. So this idea of supercloud is that you can leave the data in place and actually have a common experience across clouds. Let's just say, let's assume for a minute Google kind of wakes up, my words, not yours, and says, "Hey, maybe, you know what, partnering with a Snowflake or a Databricks is better for our business. It's better for the customers," how would that affect your business and the value that you can bring to your customers? >> Again, I would say that would be the nirvana state that, you know, we want to get to. Because I would say not everyone's perfect. They have great engineers and great products that they're developing, but that's where they compete as well, right? I would like to use the best of breed as much as possible. And I've been a person who has done this in the past as well. I've used, you know, tools to integrate. And the reason why this integration has worked is primarily because sometimes you do pick the best thing for that job. And Google's AI products are definitely doing really well, but, you know, that accessibility, if it's a problem, then I really can't depend on them, right? I would love to move some of that down there, but they have to make it possible for us. Azure is doing really, really good at investing, so I think they're a little bit more and more closer to getting to that state, and I know seeking our attention than Google at this point of time. But I think there will be a revelation moment because more and more people that I talk to like myself, they're also talking about the same thing. I'd like to be able to use Google's AdSense, I would like to be able to use Google's advertising platform, but you know what? I already have all this data, why do I need to move it? Can't they just go and access it? That question will keep haunting them (indistinct). >> You know, I think, obviously, Microsoft has always known, you know, understood ecosystems. I mean, AWS is nailing it, when you go to re:Invent, it's all about the ecosystem. And they think they realized they can make a lot more money, you know, together, than trying to have, and Google's got to figure that out. I think Google thinks, "All right, hey, we got to have the best tech." And that tech, they do have the great tech, and that's our competitive advantage. They got to wake up to the ecosystem and what's happening in the field and the go-to-market. I want to ask you about how you see data and cloud evolving in the future. You mentioned that things that are driving revenue are the priorities, and maybe you're already doing this today, but my question is, do you see a day when companies like yours are increasingly offering data and software services? You've been around for a long time as a company, you've got, you know, first party data, you've got proprietary knowledge, and maybe tooling that you've developed, and you're becoming more, you're already a technology company. Do you see someday pointing that at customers, or again, maybe you're doing it already, or is that not practical in your view? >> So data monetization has always been on the charts. The reason why it hasn't seen the light is regulatory pressure at this point of time. We are partnering up with certain agencies, again, you know, some pilots are happening to see the value of that and be able to offer that. But I think, you know, eventually, we'll get to a state where our, because we are trying to build accessible financial services, we will be in a state that we will be offering those to partners, which could then extended to their customers as well. So we are definitely exploring that. We are definitely exploring how to enrich our data with other data, and be able to complete a super set of data that can be used. Because frankly speaking, the data that we have is very interesting. We have trends of people migrating, we have trends of people migrating within the US, right? So if a new, let's say there's a new, like, I'll give you an example. Let's say New York City, I can tell you, at any given point of time, with my data, what is, you know, a dominant population in that area from migrant perspective. And if I see a change in that data, I can tell you where that is moving towards. I think it's going to be very interesting. We're a little bit, obviously, sometimes, you know, you're scared of sharing too much detail because there's too much data. So, but at the end of the day, I think at some point, we'll get to a state where we are confident that the data can be used for good. One simple example is, you know, pharmacies. They would love to get, you know, we've been talking to CVS and we are talking to Walgreens, and trying to figure out, if they would get access to this kind of data demographic information, what could they do be better? Because, you know, from a gene pool perspective, there are diseases and stuff that are very prevalent in one community versus the other. We could probably equip them with this information to be able to better, you know, let's say, staff their pharmacies or keep better inventory of products that could be used for the population in that area. Similarly, the likes of Walmarts and Krogers, they would like to have more, let's say, ethnic products in their aisles, right? How do you enable that? That data is primarily, I think we are the biggest source of that data. So we do take pride in it, but you know, with caution, we are obviously exploring that as well. >> My last question for you, Harvir, is I'm going to ask you to do a thought exercise. So in that vein, that whole monetization piece, imagine that now, Harvir, you are running a P&L that is going to monetize that data. And my question to you is a there's a business vector and a technology vector. So from a business standpoint, the more distribution channels you have, the better. So running on AWS cloud, partnering with Microsoft, partnering with Google, going to market with them, going to give you more revenue. Okay, so there's a motivation for multi-cloud or supercloud. That's indisputable. But from a technical standpoint, is there an advantage to running on multiple clouds or is that a disadvantage for you? >> It's, I would say it's a disadvantage because if my data is distributed, I have to combine it at some place. So the very first step that we had taken was obviously we brought in Snowflake. The reason, we wanted our analytical data and we want our historical data in the same place. So we are already there and ready to share. And we are actually participating in the data share, but in a private setting at the moment. So we are technically enabled to share, unless there is a significant, I would say, upside to moving that data to another cloud. I don't see any reason because I can enable anyone to come and get it from Snowflake. It's already enabled for us. >> Yeah, or if somehow, magically, several years down the road, some standard developed so you don't have to move the data. Maybe there's a new, Mogli is talking about a new data architecture, and, you know, that's probably years away, but, Harvir, you're an awesome guest. I love having you on, and really appreciate you participating in the program. >> I appreciate it. Thank you, and good luck (indistinct) >> Ah, thank you very much. This is Dave Vellante for John Furrier and the entire Cube community. Keep it right there for more great coverage from Supercloud 2. (uplifting music)
SUMMARY :
Harvir, it's good to see you again. a pleasure to talk to you. And the pressure to do so is only growing. and you you have what I would call But we still have, you know, you or not necessarily? that I don't have to Some of the vendors, you and it's happened in the past, And so, you know, we've and our ability to compete in the market. and get the, you know, instant ROI. Because the minute you start to move, and the value that you can that, you know, we want to get to. and cloud evolving in the future. But I think, you know, And my question to you So the very first step that we had taken and really appreciate you I appreciate it. Ah, thank you very much.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Walmarts | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Microsoft | ORGANIZATION | 0.99+ |
Walgreens | ORGANIZATION | 0.99+ |
Asia | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Harvir | PERSON | 0.99+ |
Three hours | QUANTITY | 0.99+ |
four hours | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
New York City | LOCATION | 0.99+ |
United Nations | ORGANIZATION | 0.99+ |
Krogers | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Harvir Singh | PERSON | 0.99+ |
10 years | QUANTITY | 0.99+ |
two copies | QUANTITY | 0.99+ |
one country | QUANTITY | 0.99+ |
183 | QUANTITY | 0.99+ |
European Union | ORGANIZATION | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
three big players | QUANTITY | 0.99+ |
first step | QUANTITY | 0.99+ |
Snowflake | TITLE | 0.98+ |
AdSense | TITLE | 0.98+ |
more than 200 countries | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
three clusters | QUANTITY | 0.98+ |
Snowflake | ORGANIZATION | 0.98+ |
Mogli | PERSON | 0.98+ |
John Furrier | PERSON | 0.98+ |
supercloud | ORGANIZATION | 0.98+ |
one example | QUANTITY | 0.97+ |
GDPR | TITLE | 0.97+ |
Adobe | ORGANIZATION | 0.97+ |
Salesforce | ORGANIZATION | 0.97+ |
200 countries | QUANTITY | 0.97+ |
one experience | QUANTITY | 0.96+ |
Harveer Singh | PERSON | 0.96+ |
one community | QUANTITY | 0.96+ |
Pure | ORGANIZATION | 0.95+ |
One simple example | QUANTITY | 0.95+ |
two different platforms | QUANTITY | 0.95+ |
Salesforce | TITLE | 0.94+ |
first | QUANTITY | 0.94+ |
Cube | ORGANIZATION | 0.94+ |
BigQuery | TITLE | 0.94+ |
nirvana | LOCATION | 0.93+ |
single source | QUANTITY | 0.93+ |
Asia Pacific | LOCATION | 0.93+ |
first ones | QUANTITY | 0.92+ |
Breaking Analysis: Grading our 2022 Enterprise Technology Predictions
>>From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from the cube and E T R. This is breaking analysis with Dave Valante. >>Making technology predictions in 2022 was tricky business, especially if you were projecting the performance of markets or identifying I P O prospects and making binary forecast on data AI and the macro spending climate and other related topics in enterprise tech 2022, of course was characterized by a seesaw economy where central banks were restructuring their balance sheets. The war on Ukraine fueled inflation supply chains were a mess. And the unintended consequences of of forced march to digital and the acceleration still being sorted out. Hello and welcome to this week's weekly on Cube Insights powered by E T R. In this breaking analysis, we continue our annual tradition of transparently grading last year's enterprise tech predictions. And you may or may not agree with our self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, tell us what you think. >>All right, let's get right to it. So our first prediction was tech spending increases by 8% in 2022. And as we exited 2021 CIOs, they were optimistic about their digital transformation plans. You know, they rushed to make changes to their business and were eager to sharpen their focus and continue to iterate on their digital business models and plug the holes that they, the, in the learnings that they had. And so we predicted that 8% rise in enterprise tech spending, which looked pretty good until Ukraine and the Fed decided that, you know, had to rush and make up for lost time. We kind of nailed the momentum in the energy sector, but we can't give ourselves too much credit for that layup. And as of October, Gartner had it spending growing at just over 5%. I think it was 5.1%. So we're gonna take a C plus on this one and, and move on. >>Our next prediction was basically kind of a slow ground ball. The second base, if I have to be honest, but we felt it was important to highlight that security would remain front and center as the number one priority for organizations in 2022. As is our tradition, you know, we try to up the degree of difficulty by specifically identifying companies that are gonna benefit from these trends. So we highlighted some possible I P O candidates, which of course didn't pan out. S NQ was on our radar. The company had just had to do another raise and they recently took a valuation hit and it was a down round. They raised 196 million. So good chunk of cash, but, but not the i p O that we had predicted Aqua Securities focus on containers and cloud native. That was a trendy call and we thought maybe an M SS P or multiple managed security service providers like Arctic Wolf would I p o, but no way that was happening in the crummy market. >>Nonetheless, we think these types of companies, they're still faring well as the talent shortage in security remains really acute, particularly in the sort of mid-size and small businesses that often don't have a sock Lacework laid off 20% of its workforce in 2022. And CO C e o Dave Hatfield left the company. So that I p o didn't, didn't happen. It was probably too early for Lacework. Anyway, meanwhile you got Netscope, which we've cited as strong in the E T R data as particularly in the emerging technology survey. And then, you know, I lumia holding its own, you know, we never liked that 7 billion price tag that Okta paid for auth zero, but we loved the TAM expansion strategy to target developers beyond sort of Okta's enterprise strength. But we gotta take some points off of the failure thus far of, of Okta to really nail the integration and the go to market model with azero and build, you know, bring that into the, the, the core Okta. >>So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge with others holding their own, not the least of which was Palo Alto Networks as it continued to expand beyond its core network security and firewall business, you know, through acquisition. So overall we're gonna give ourselves an A minus for this relatively easy call, but again, we had some specifics associated with it to make it a little tougher. And of course we're watching ve very closely this this coming year in 2023. The vendor consolidation trend. You know, according to a recent Palo Alto network survey with 1300 SecOps pros on average organizations have more than 30 tools to manage security tools. So this is a logical way to optimize cost consolidating vendors and consolidating redundant vendors. The E T R data shows that's clearly a trend that's on the upswing. >>Now moving on, a big theme of 2020 and 2021 of course was remote work and hybrid work and new ways to work and return to work. So we predicted in 2022 that hybrid work models would become the dominant protocol, which clearly is the case. We predicted that about 33% of the workforce would come back to the office in 2022 in September. The E T R data showed that figure was at 29%, but organizations expected that 32% would be in the office, you know, pretty much full-time by year end. That hasn't quite happened, but we were pretty close with the projection, so we're gonna take an A minus on this one. Now, supply chain disruption was another big theme that we felt would carry through 2022. And sure that sounds like another easy one, but as is our tradition, again we try to put some binary metrics around our predictions to put some meat in the bone, so to speak, and and allow us than you to say, okay, did it come true or not? >>So we had some data that we presented last year and supply chain issues impacting hardware spend. We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain above pre covid levels, which would reverse a decade of year on year declines, which I think started in around 2011, 2012. Now, while demand is down this year pretty substantially relative to 2021, I D C has worldwide unit shipments for PCs at just over 300 million for 22. If you go back to 2019 and you're looking at around let's say 260 million units shipped globally, you know, roughly, so, you know, pretty good call there. Definitely much higher than pre covid levels. But so what you might be asking why the B, well, we projected that 30% of customers would replace security appliances with cloud-based services and that more than a third would replace their internal data center server and storage hardware with cloud services like 30 and 40% respectively. >>And we don't have explicit survey data on exactly these metrics, but anecdotally we see this happening in earnest. And we do have some data that we're showing here on cloud adoption from ET R'S October survey where the midpoint of workloads running in the cloud is around 34% and forecast, as you can see, to grow steadily over the next three years. So this, well look, this is not, we understand it's not a one-to-one correlation with our prediction, but it's a pretty good bet that we were right, but we gotta take some points off, we think for the lack of unequivocal proof. Cause again, we always strive to make our predictions in ways that can be measured as accurate or not. Is it binary? Did it happen, did it not? Kind of like an O K R and you know, we strive to provide data as proof and in this case it's a bit fuzzy. >>We have to admit that although we're pretty comfortable that the prediction was accurate. And look, when you make an hard forecast, sometimes you gotta pay the price. All right, next, we said in 2022 that the big four cloud players would generate 167 billion in IS and PaaS revenue combining for 38% market growth. And our current forecasts are shown here with a comparison to our January, 2022 figures. So coming into this year now where we are today, so currently we expect 162 billion in total revenue and a 33% growth rate. Still very healthy, but not on our mark. So we think a w s is gonna miss our predictions by about a billion dollars, not, you know, not bad for an 80 billion company. So they're not gonna hit that expectation though of getting really close to a hundred billion run rate. We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're gonna get there. >>Look, we pretty much nailed Azure even though our prediction W was was correct about g Google Cloud platform surpassing Alibaba, Alibaba, we way overestimated the performance of both of those companies. So we're gonna give ourselves a C plus here and we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, but the misses on GCP and Alibaba we think warrant a a self penalty on this one. All right, let's move on to our prediction about Supercloud. We said it becomes a thing in 2022 and we think by many accounts it has, despite the naysayers, we're seeing clear evidence that the concept of a layer of value add that sits above and across clouds is taking shape. And on this slide we showed just some of the pickup in the industry. I mean one of the most interesting is CloudFlare, the biggest supercloud antagonist. >>Charles Fitzgerald even predicted that no vendor would ever use the term in their marketing. And that would be proof if that happened that Supercloud was a thing and he said it would never happen. Well CloudFlare has, and they launched their version of Supercloud at their developer week. Chris Miller of the register put out a Supercloud block diagram, something else that Charles Fitzgerald was, it was was pushing us for, which is rightly so, it was a good call on his part. And Chris Miller actually came up with one that's pretty good at David Linthicum also has produced a a a A block diagram, kind of similar, David uses the term metacloud and he uses the term supercloud kind of interchangeably to describe that trend. And so we we're aligned on that front. Brian Gracely has covered the concept on the popular cloud podcast. Berkeley launched the Sky computing initiative. >>You read through that white paper and many of the concepts highlighted in the Supercloud 3.0 community developed definition align with that. Walmart launched a platform with many of the supercloud salient attributes. So did Goldman Sachs, so did Capital One, so did nasdaq. So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud storm. We're gonna take an a plus on this one. Sorry, haters. Alright, let's talk about data mesh in our 21 predictions posts. We said that in the 2020s, 75% of large organizations are gonna re-architect their big data platforms. So kind of a decade long prediction. We don't like to do that always, but sometimes it's warranted. And because it was a longer term prediction, we, at the time in, in coming into 22 when we were evaluating our 21 predictions, we took a grade of incomplete because the sort of decade long or majority of the decade better part of the decade prediction. >>So last year, earlier this year, we said our number seven prediction was data mesh gains momentum in 22. But it's largely confined and narrow data problems with limited scope as you can see here with some of the key bullets. So there's a lot of discussion in the data community about data mesh and while there are an increasing number of examples, JP Morgan Chase, Intuit, H S P C, HelloFresh, and others that are completely rearchitecting parts of their data platform completely rearchitecting entire data platforms is non-trivial. There are organizational challenges, there're data, data ownership, debates, technical considerations, and in particular two of the four fundamental data mesh principles that the, the need for a self-service infrastructure and federated computational governance are challenging. Look, democratizing data and facilitating data sharing creates conflicts with regulatory requirements around data privacy. As such many organizations are being really selective with their data mesh implementations and hence our prediction of narrowing the scope of data mesh initiatives. >>I think that was right on J P M C is a good example of this, where you got a single group within a, within a division narrowly implementing the data mesh architecture. They're using a w s, they're using data lakes, they're using Amazon Glue, creating a catalog and a variety of other techniques to meet their objectives. They kind of automating data quality and it was pretty well thought out and interesting approach and I think it's gonna be made easier by some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to eliminate ET t l, better connections between Aurora and Redshift and, and, and better data sharing the data clean room. So a lot of that is gonna help. Of course, snowflake has been on this for a while now. Many other companies are facing, you know, limitations as we said here and this slide with their Hadoop data platforms. They need to do new, some new thinking around that to scale. HelloFresh is a really good example of this. Look, the bottom line is that organizations want to get more value from data and having a centralized, highly specialized teams that own the data problem, it's been a barrier and a blocker to success. The data mesh starts with organizational considerations as described in great detail by Ash Nair of Warner Brothers. So take a listen to this clip. >>Yeah, so when people think of Warner Brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of H B O, you think of t n t, you think of C N N. We have 30 plus brands in our portfolio and each have their own needs. So the, the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against, as an example, HBO if Game of Thrones is going on. >>So it's often the case that data mesh is in the eyes of the implementer. And while a company's implementation may not strictly adhere to Jamma Dani's vision of data mesh, and that's okay, the goal is to use data more effectively. And despite Gartner's attempts to deposition data mesh in favor of the somewhat confusing or frankly far more confusing data fabric concept that they stole from NetApp data mesh is taking hold in organizations globally today. So we're gonna take a B on this one. The prediction is shaping up the way we envision, but as we previously reported, it's gonna take some time. The better part of a decade in our view, new standards have to emerge to make this vision become reality and they'll come in the form of both open and de facto approaches. Okay, our eighth prediction last year focused on the face off between Snowflake and Databricks. >>And we realized this popular topic, and maybe one that's getting a little overplayed, but these are two companies that initially, you know, looked like they were shaping up as partners and they, by the way, they are still partnering in the field. But you go back a couple years ago, the idea of using an AW w s infrastructure, Databricks machine intelligence and applying that on top of Snowflake as a facile data warehouse, still very viable. But both of these companies, they have much larger ambitions. They got big total available markets to chase and large valuations that they have to justify. So what's happening is, as we've previously reported, each of these companies is moving toward the other firm's core domain and they're building out an ecosystem that'll be critical for their future. So as part of that effort, we said each is gonna become aggressive investors and maybe start doing some m and a and they have in various companies. >>And on this chart that we produced last year, we studied some of the companies that were targets and we've added some recent investments of both Snowflake and Databricks. As you can see, they've both, for example, invested in elation snowflake's, put money into Lacework, the Secur security firm, ThoughtSpot, which is trying to democratize data with ai. Collibra is a governance platform and you can see Databricks investments in data transformation with D B T labs, Matillion doing simplified business intelligence hunters. So that's, you know, they're security investment and so forth. So other than our thought that we'd see Databricks I p o last year, this prediction been pretty spot on. So we'll give ourselves an A on that one. Now observability has been a hot topic and we've been covering it for a while with our friends at E T R, particularly Eric Bradley. Our number nine prediction last year was basically that if you're not cloud native and observability, you are gonna be in big trouble. >>So everything guys gotta go cloud native. And that's clearly been the case. Splunk, the big player in the space has been transitioning to the cloud, hasn't always been pretty, as we reported, Datadog real momentum, the elk stack, that's open source model. You got new entrants that we've cited before, like observe, honeycomb, chaos search and others that we've, we've reported on, they're all born in the cloud. So we're gonna take another a on this one, admittedly, yeah, it's a re reasonably easy call, but you gotta have a few of those in the mix. Okay, our last prediction, our number 10 was around events. Something the cube knows a little bit about. We said that a new category of events would emerge as hybrid and that for the most part is happened. So that's gonna be the mainstay is what we said. That pure play virtual events are gonna give way to hi hybrid. >>And the narrative is that virtual only events are, you know, they're good for quick hits, but lousy replacements for in-person events. And you know that said, organizations of all shapes and sizes, they learn how to create better virtual content and support remote audiences during the pandemic. So when we set at pure play is gonna give way to hybrid, we said we, we i we implied or specific or specified that the physical event that v i p experience is going defined. That overall experience and those v i p events would create a little fomo, fear of, of missing out in a virtual component would overlay that serves an audience 10 x the size of the physical. We saw that really two really good examples. Red Hat Summit in Boston, small event, couple thousand people served tens of thousands, you know, online. Second was Google Cloud next v i p event in, in New York City. >>Everything else was, was, was, was virtual. You know, even examples of our prediction of metaverse like immersion have popped up and, and and, and you know, other companies are doing roadshow as we predicted like a lot of companies are doing it. You're seeing that as a major trend where organizations are going with their sales teams out into the regions and doing a little belly to belly action as opposed to the big giant event. That's a definitely a, a trend that we're seeing. So in reviewing this prediction, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, but the, but the organization still haven't figured it out. They have hybrid experiences but they generally do a really poor job of leveraging the afterglow and of event of an event. It still tends to be one and done, let's move on to the next event or the next city. >>Let the sales team pick up the pieces if they were paying attention. So because of that, we're only taking a B plus on this one. Okay, so that's the review of last year's predictions. You know, overall if you average out our grade on the 10 predictions that come out to a b plus, I dunno why we can't seem to get that elusive a, but we're gonna keep trying our friends at E T R and we are starting to look at the data for 2023 from the surveys and all the work that we've done on the cube and our, our analysis and we're gonna put together our predictions. We've had literally hundreds of inbounds from PR pros pitching us. We've got this huge thick folder that we've started to review with our yellow highlighter. And our plan is to review it this month, take a look at all the data, get some ideas from the inbounds and then the e t R of January surveys in the field. >>It's probably got a little over a thousand responses right now. You know, they'll get up to, you know, 1400 or so. And once we've digested all that, we're gonna go back and publish our predictions for 2023 sometime in January. So stay tuned for that. All right, we're gonna leave it there for today. You wanna thank Alex Myerson who's on production and he manages the podcast, Ken Schiffman as well out of our, our Boston studio. I gotta really heartfelt thank you to Kristen Martin and Cheryl Knight and their team. They helped get the word out on social and in our newsletters. Rob Ho is our editor in chief over at Silicon Angle who does some great editing for us. Thank you all. Remember all these podcasts are available or all these episodes are available is podcasts. Wherever you listen, just all you do Search Breaking analysis podcast, really getting some great traction there. Appreciate you guys subscribing. I published each week on wikibon.com, silicon angle.com or you can email me directly at david dot valante silicon angle.com or dm me Dante, or you can comment on my LinkedIn post. And please check out ETR AI for the very best survey data in the enterprise tech business. Some awesome stuff in there. This is Dante for the Cube Insights powered by etr. Thanks for watching and we'll see you next time on breaking analysis.
SUMMARY :
From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, We kind of nailed the momentum in the energy but not the i p O that we had predicted Aqua Securities focus on And then, you know, I lumia holding its own, you So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge put some meat in the bone, so to speak, and and allow us than you to say, okay, We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain Kind of like an O K R and you know, we strive to provide data We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, Chris Miller of the register put out a Supercloud block diagram, something else that So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud But it's largely confined and narrow data problems with limited scope as you can see here with some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to the company so that, you know, CNN can work at their own pace. So it's often the case that data mesh is in the eyes of the implementer. but these are two companies that initially, you know, looked like they were shaping up as partners and they, So that's, you know, they're security investment and so forth. So that's gonna be the mainstay is what we And the narrative is that virtual only events are, you know, they're good for quick hits, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, You know, overall if you average out our grade on the 10 predictions that come out to a b plus, You know, they'll get up to, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Chris Miller | PERSON | 0.99+ |
CNN | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
5.1% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
Charles Fitzgerald | PERSON | 0.99+ |
Dave Hatfield | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
2019 | DATE | 0.99+ |
Lacework | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
GCP | ORGANIZATION | 0.99+ |
33% | QUANTITY | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
David | PERSON | 0.99+ |
2021 | DATE | 0.99+ |
20% | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2020 | DATE | 0.99+ |
Ash Nair | PERSON | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
162 billion | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
last year | DATE | 0.99+ |
Arctic Wolf | ORGANIZATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
38% | QUANTITY | 0.99+ |
September | DATE | 0.99+ |
Fed | ORGANIZATION | 0.99+ |
JP Morgan Chase | ORGANIZATION | 0.99+ |
80 billion | QUANTITY | 0.99+ |
29% | QUANTITY | 0.99+ |
32% | QUANTITY | 0.99+ |
21 predictions | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
HBO | ORGANIZATION | 0.99+ |
75% | QUANTITY | 0.99+ |
Game of Thrones | TITLE | 0.99+ |
January | DATE | 0.99+ |
2023 | DATE | 0.99+ |
10 predictions | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
22 | QUANTITY | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
196 million | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
2020s | DATE | 0.99+ |
167 billion | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Second | QUANTITY | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Aqua Securities | ORGANIZATION | 0.99+ |
Dante | PERSON | 0.99+ |
8% | QUANTITY | 0.99+ |
Warner Brothers | ORGANIZATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Cube Studios | ORGANIZATION | 0.99+ |
each week | QUANTITY | 0.99+ |
7 billion | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Day 1 Keynote Analysis | Palo Alto Networks Ignite22
>> Narrator: "TheCUBE" presents Ignite 22. Brought to you by Palo Alto Networks. >> Hey everyone. Welcome back to "TheCUBE's" live coverage of Palo Alto Network's Ignite 22 from the MGM Grand in beautiful Las Vegas. I am Lisa Martin here with Dave Vellante. Dave, we just had a great conversa- First of all, we got to hear the keynote, most of it. We also just had a great conversation with the CEO and chairman of Palo Alto Networks, Nikesh Arora. You know, this is a company that was founded back in 2005, he's been there four years, a lot has happened. A lot of growth, a lot of momentum in his tenure. You were saying in your breaking analysis, that they are on track to nearly double revenues from FY 20 to 23. Lots of momentum in this cloud security company. >> Yeah, I'd never met him before. I mean, I've been following a little bit. It's interesting, he came in as, sort of, a security outsider. You know, he joked today that he, the host, I forget the guy's name on the stage, what was his name? Hassan. Hassan, he said "He's the only guy in the room that knows less about security than I do." Because, normally, this is an industry that's steeped in deep expertise. He came in and I think is given a good compliment to the hardcore techies at Palo Alto Network. The company, it's really interesting. The company started out building their own data centers, they called it. Now they look back and call it cloud, but it was their own data centers, kind of like Salesforce did, it's kind of like ServiceNow. Because at the time, you really couldn't do it in the public cloud. The public cloud was a little too unknown. And so they needed that type of control. But Palo Alto's been amazing story since 2020, we wrote about this during the pandemic. So what they did, is they began to pivot to the the true cloud native public cloud, which is kind of immature still. They don't tell you that, but it's kind of still a little bit immature, but it's working. And when they were pivoting, it was around the same time, at Fortinet, who's a competitor there's like, I call 'em a poor man's Palo Alto, and Fortinet probably hates that, but it's kind of true. It's like a value play on a comprehensive platform, and you know Fortinet a little bit. And so, but what was happening is Fortinet was executing on its cloud strategy better than Palo Alto. And there was a real divergence in the valuations of these stocks. And we said at the time, we felt like Palo Alto, being the gold standard, would get through it. And they did. And what's happened is interesting, I wrote about this two weeks ago. If you go back to the pandemic, peak of the pandemic, or just before the peak, kind of in that tech bubble, if you will. Splunk's down 44% from that peak, Okta's down, sorry, not down 44%. 44% of the peak. Okta's 22% of their peak. CrowdStrike, 41%, Zscaler, 36%, Fortinet, 71%. Not so bad. Palo Altos maintained 93% of its peak value, right? So it's a combination of two things. One is, they didn't run up as much during the pandemic, and they're executing through their cloud strategy. And that's provided a sort of softer landing. And I think it's going to be interesting to see where they go from here. And you heard Nikesh, we're going to double, and then double again. So that's 7 billion, 14 billion, heading to 30 billion. >> Lisa: Yeah, yeah. He also talked about one of the things that he's done in his tenure here, as really a workforce transformation. And we talk all the time, it's not just technology and processes, it's people. They've also seemed to have done a pretty good job from a cultural transformation perspective, which is benefiting their customers. And they're also growing- The ecosystem, we talked a little bit about the ecosystem with Nikesh. We've got Google Cloud on, we've got AWS on the program today alone, talking about the partnerships. The ecosystem is expanding, as well. >> Have you ever met Nir Zuk? >> I have not, not yet. >> He's the founder and CTO. I haven't, we've never been on "theCUBE." He was supposed to come on one day down in New York City. Stu and I were going to interview him, and he cut out of the conference early, so we didn't interview him. But he's a very opinionated dude. And you're going to see, he's basically going to come on, and I mean, I hope he is as opinionated on "TheCUBE," but he'll talk about how the industry has screwed it up. And Nikesh sort of talked about that, it's a shiny new toy strategy. Oh, there's another one, here's another one. It's the best in that category. Okay, let's get, and that's how we've gotten to this point. I always use that Optive graphic, which shows the taxonomy, and shows hundreds and hundreds of suppliers in the industry. And again, it's true. Customers have 20, 30, sometimes 40 different tool sets. And so now it's going to be interesting to see. So I guess my point is, it starts at the top. The founder, he's an outspoken, smart, tough Israeli, who's like, "We're going to take this on." We're not afraid to be ambitious. And so, so to your point about people and the culture, it starts there. >> Absolutely. You know, one of the things that you've written about in your breaking analysis over the weekend, Nikesh talked about it, they want to be the consolidator. You see this as they're building out the security supercloud. Talk to me about that. What do you think? What is a security supercloud in your opinion? >> Yeah, so let me start with the consolidator. So Palo Alto obviously is executing on that strategy. CrowdStrike as well, wants to be a consolidator. I would say Zscaler wants to be a consolidator. I would say that Microsoft wants to be a consolidator, so does Cisco. So they're all coming at it from different angles. Cisco coming at it from network security, which is Palo Alto's wheelhouse, with their next gen firewalls, network security. What Palo Alto did was interesting, was they started out with kind of a hardware based firewall, but they didn't try to shove everything into it. They put the other function in there, their cloud. Zscaler. Zscaler is the one running around saying you don't need firewalls anymore. Just run everything through our cloud, our security cloud. I would think that as Zscaler expands its TAM, it's going to start to acquire, and do similar types of things. We'll see how that integrates. CrowdStrike is clearly executing on a similar portfolio strategy, but they're coming at it from endpoint, okay? They have to partner for network security. Cisco is this big and legacy, but they've done a really good job of acquiring and using services to hide some of that complexity. Microsoft is, you know, they probably hate me saying this, but it's the just good enough strategy. And that may have hurt CrowdStrike last quarter, because the SMB was a soft, we'll see. But to specifically answer your question, the opportunity, we think, is to build the security supercloud. What does that mean? That means to have a common security platform across all clouds. So irrespective of whether you're running an Amazon, whether you're running an on-prem, Google, or Azure, the security policies, and the edicts, and the way you secure your enterprise, look the same. There's a PaaS layer, super PaaS layer for developers, so that that the developers can secure their code in a common framework across cloud. So that essentially, Nikesh sort of balked at it, said, "No, no, no, we're not, we're not really building a super cloud." But essentially they kind of are headed in that direction, I think. Although, what I don't know, like CrowdStrike and Microsoft are big competitors. He mentioned AWS and Google. We run on AWS, Google, and in their own data centers. That sounds like they don't currently run a Microsoft. 'Cause Microsoft is much more competitive with the security ecosystem. They got Identity, so they compete with Okta. They got Endpoint, so they compete with CrowdStrike, and Palo Alto. So Microsoft's at war with everybody. So can you build a super cloud on top of the clouds, the hyperscalers, and not do Microsoft? I would say no. >> Right. >> But there's nothing stopping Palo Alto from running in the Microsoft cloud. I don't know if that's a strategy, we should ask them. >> Yeah. They've done a great job in our last few minutes, of really expanding their TAM in the last few years, particularly under Nikesh's leadership. What are some of the things that you heard this morning that you think, really they've done a great job of expanding that TAM. He talked a little bit about, I didn't write the number down, but he talked a little bit about the market opportunity there. What do you see them doing as being best of breed for organizations that have 30 to 50 tools and need to consolidate that? >> Well the market opportunity's enormous. >> Lisa: It is. >> I mean, we're talking about, well north of a hundred billion dollars, I mean 150, 180, depending on whose numerator you use. Gartner, IDC. Dave's, whatever, it's big. Okay, and they've got... Okay, they're headed towards 7 billion out of 180 billion, whatever, again, number you use. So they started with network security, they put most of the network function in the cloud. They moved to Endpoint, Sassy for the edge. They've done acquisitions, the Cortex acquisition, to really bring automated threat intelligence. They just bought Cider Security, which is sort of the shift left, code security, developer, assistance, if you will. That whole shift left, protect right. And so I think a lot of opportunities to continue to acquire best of breed. I liked what Nikesh said. Keep the founders on board, sell them on the mission. Let them help with that integration and putting forth the cultural aspects. And then, sort of, integrate in. So big opportunities, do they get into Endpoint and compete with Okta? I think Okta's probably the one sort of outlier. They want to be the consolidator of identity, right? And they'll probably partner with Okta, just like Okta partners with CrowdStrike. So I think that's part of the challenge of being the consolidator. You're probably not going to be the consolidator for everything, but maybe someday you'll see some kind of mega merger of these companies. CrowdStrike and Okta, or Palo Alto and Okta, or to take on Microsoft, which would be kind of cool to watch. >> That would be. We have a great lineup, Dave. Today and tomorrow, full days, two full days of cube coverage. You mentioned Nir Zuk, we already had the CEO on, founder and CTO. We've got the chief product officer coming on next. We've got chief transformation officer of customers, partners. We're going to have great conversations, and really understand how this organization is helping customers ultimately achieve their SecOps transformation, their digital transformation. And really moved the needle forward to becoming secure data companies. So I'm looking forward to the next two days. >> Yeah, and Wendy Whitmore is coming on. She heads Unit 42, which is, from what I could tell, it's pretty much the competitor to Mandiant, which Google just bought. We had Kevin Mandia on at September at the CrowdStrike event. So that's interesting. That's who I was poking Nikesh a little bit on industry collaboration. You're tight with Google, and then he had an interesting answer. He said "Hey, you start sharing data, you don't know where it's going to go." I think Snowflake could help with that problem, actually. >> Interesting. >> Yeah, little Snowflake and some of the announcements ar Reinvent with the data clean rooms. Data sharing, you know, trusted data. That's one of the other things we didn't talk about, is the real tension in between security and regulation. So the regulators in public policy saying you can't move the data out of the country. And you have to prove to me that you have a chain of custody. That when you say you deleted something, you have to show me that you not only deleted the file, then the data, but also the metadata. That's a really hard problem. So to my point, something that Palo Alto might be able to solve. >> It might be. It'll be an interesting conversation with Unit 42. And like we said, we have a great lineup of guests today and tomorrow with you, so stick around. Lisa Martin and Dave Vellante are covering Palo Alto Networks Ignite 22 for you. We look forward to seeing you in our next segment. Stick around. (light music)
SUMMARY :
Brought to you by Palo Alto Networks. from the MGM Grand in beautiful Las Vegas. Because at the time, you about the ecosystem with Nikesh. and he cut out of the conference early, You know, one of the things and the way you secure your from running in the Microsoft cloud. What are some of the things of being the consolidator. And really moved the needle forward it's pretty much the and some of the announcements We look forward to seeing
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
2005 | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Wendy Whitmore | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
New York City | LOCATION | 0.99+ |
20 | QUANTITY | 0.99+ |
Hassan | PERSON | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Palo Alto Network | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
7 billion | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
93% | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
September | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
tomorrow | DATE | 0.99+ |
44% | QUANTITY | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
30 billion | QUANTITY | 0.99+ |
Kevin Mandia | PERSON | 0.99+ |
71% | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
22% | QUANTITY | 0.99+ |
four years | QUANTITY | 0.99+ |
Stu | PERSON | 0.99+ |
last quarter | DATE | 0.99+ |
180 billion | QUANTITY | 0.99+ |
14 billion | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
41% | QUANTITY | 0.99+ |
36% | QUANTITY | 0.98+ |
Cortex | ORGANIZATION | 0.98+ |
Nir Zuk | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
two weeks ago | DATE | 0.98+ |
50 tools | QUANTITY | 0.98+ |
2020 | DATE | 0.97+ |
Nikesh Arora | PERSON | 0.97+ |
Subbu Iyer, Aerospike | AWS re:Invent 2022
>>Hey everyone, welcome to the Cube's coverage of AWS Reinvent 2022. Lisa Martin here with you with Subaru ier, one of our alumni who's now the CEO of Aerospike. Sabu. Great to have you on the program. Thank you for joining us. >>Great as always, to be on the cube. Luisa, good to meet you. >>So, you know, every company these days has got to be a data company, whether it's a retailer, a manufacturer, a grocer, a automotive company. But for a lot of companies, data is underutilized, yet a huge asset that is value added. Why do you think companies are struggling so much to make data a value added asset? >>Well, you know, we, we see this across the board when I talk to customers and prospects. There's a desire from the business and from it actually to leverage data to really fuel newer applications, newer services, newer business lines, if you will, for companies. I think the struggle is one, I think one the, you know, the plethora of data that is created, you know, surveys say that over the next three years data is gonna be, you know, by 2025, around 175 zetabytes, right? A hundred and zetabytes of data is gonna be created. And that's really a, a, a growth of north of 30% year over year. But the more important, and the interesting thing is the real time component of that data is actually growing at, you know, 35% cagr. And what enterprises desire is decisions that are made in real time or near real time. >>And a lot of the challenges that do exist today is that either the infrastructure that enterprises have in place was never built to actually manipulate data in real time. The second is really the ability to actually put something in place which can handle spikes yet be cost efficient if you'll, so you can build for really peak loads, but then it's very expensive to operate that particular service at normal loads. So how do you build something which actually works for you, for both you, both users, so to speak? And the last point that we see out there is even if you're able to, you know, bring all that data, you don't have the processing capability to run through that data. So as a result, most enterprises struggle with one, capturing the data, you know, making decisions from it in real time and really operating it at the cost point that they need to operate it at. >>You know, you bring up a great point with respect to real time data access. And I think one of the things that we've learned the last couple of years is that access to real time data, it's not a nice to have anymore. It's business critical for organizations in any industry. Talk about that as one of the challenges that organizations are facing. >>Yeah. When, when, when we started Aerospike, right when the company started, it started with the premise that data is gonna grow, number one, exponentially. Two, when applications open up to the internet, there's gonna be a flood of users and demands on those applications. And that was true primarily when we started the company in the ad tech vertical. So ad tech was the first vertical where there was a lot of data both on the supply side and the demand side from an inventory of ads that were available. And on the other hand, they had like microseconds or milliseconds in which they could make a decision on which ad to put in front of you and I so that we would click or engage with that particular ad. But over the last three to five years, what we've seen is as digitization has actually permeated every industry out there, the need to harness data in real time is pretty much present in every industry. >>Whether that's retail, whether that's financial services, telecommunications, e-commerce, gaming and entertainment. Every industry has a desire. One, the innovative companies, the small companies rather, are innovating at a pace and standing up new businesses to compete with the larger companies in each of these verticals. And the larger companies don't wanna be left behind. So they're standing up their own competing services or getting into new lines of business that really harness and are driven by real time data. So this compelling pressures, one, the customer exp you know, customer experience is paramount and we as customers expect answers in, you know, an instant in real time. And on the other hand, the way they make decisions is based on a large data set because you know, larger data sets actually propel better decisions. So there's competing pressures here, which essentially drive the need. One from a business perspective, two from a customer perspective to harness all of this data in real time. So that's what's driving an inces need to actually make decisions in real or near real time. >>You know, I think one of the things that's been in short supply over the last couple of years is patients we do expect as consumers, whether we're in our business lives, our personal lives that we're going to be getting, be given information and data that's relevant, it's personal to help us make those real time decisions. So having access to real time data is really business critical for organizations across any industries. Talk about some of the main capabilities that modern data applications and data platforms need to have. What are some of the key capabilities of a modern data platform that need to be delivered to meet demanding customer expectations? >>So, you know, going back to your initial question Lisa, around why is data really a high value but underutilized or underleveraged asset? One of the reasons we see is a lot of the data platforms that, you know, some of these applications were built on have been then around for a decade plus and they were never built for the needs of today, which is really driving a lot of data and driving insight in real time from a lot of data. So there are four major capabilities that we see that are essential ingredients of any modern data platform. One is really the ability to, you know, operate at unlimited scale. So what we mean by that is really the ability to scale from gigabytes to even petabytes without any degradation in performance or latency or throughput. The second is really, you know, predictable performance. So can you actually deliver predictable performance as your data size grows or your throughput grows or your concurrent user on that application of service grows? >>It's really easy to build an application that operates at low scale or low throughput or low concurrency, but performance usually starts degrading as you start scaling one of these attributes. The third thing is the ability to operate and always on globally resilient application. And that requires a, a really robust data platform that can be up on a five, nine basis globally, can support global distribution because a lot of these applications have global users. And the last point is, goes back to my first answer, which is, can you operate all of this at a cost point? Which is not prohibitive, but it makes sense from a TCO perspective. Cuz a lot of times what we see is people make choices of data platforms and as ironically their service or applications become more successful and more users join their journey, the revenue starts going up, the user base starts going up, but the cost basis starts crossing over the revenue and they're losing money on the service, ironically, as the service becomes more popular. So really unlimited scale, predictable performance always on, on a globally resilient basis and low tco. These are the four essential capabilities of any modern data platform. >>So then talk to me with those as the four main core functionalities of a modern data platform. How does aerospace deliver that? >>So we were built, as I said, from the from day one to operate at unlimited scale and deliver predictable performance. And then over the years as we work with customers, we build this incredible high availability capability which helps us deliver the always on, you know, operations. So we have customers who are, who have been on the platform 10 years with no downtime for example, right? So we are talking about an amazing continuum of high availability that we provide for customers who operate these, you know, globally resilient services. The key to our innovation here is what we call the hybrid memory architecture. So, you know, going a little bit technically deep here, essentially what we built out in our architecture is the ability on each node or each server to treat a bank of SSDs or solid state devices as essentially extended memory. So you're getting memory performance, but you're accessing these SSDs, you're not paying memory prices, but you're getting memory performance as a result of that. >>You can attach a lot more data to each node or each server in your distributed cluster. And when you kind of scale that across basically a distributed cluster you can do with aerospike, the same things at 60 to 80% lower server count and as a result 60 to 80% lower TCO compared to some of the other options that are available in the market. Then basically, as I said, that's the key kind of starting point to the innovation. We layer around capabilities like, you know, replication change, data notification, you know, synchronous and asynchronous replication. The ability to actually stretch a single cluster across multiple regions. So for example, if you're operating a global service, you can have a single aerospace cluster with one node in San Francisco, one northern New York, another one in London. And this would be basically seamlessly operating. So that, you know, this is strongly consistent. >>Very few no SQL data platforms are strongly consistent or if they are strongly consistent, they will actually suffer performance degradation. And what strongly consistent means is, you know, all your data is always available, it's guaranteed to be available, there is no data lost anytime. So in this configuration that I talked about, if the node in London goes down, your application still continues to operate, right? Your users see no kind of downtime and you know, when London comes up, it rejoins the cluster and everything is back to kind of the way it was before, you know, London left the cluster so to speak. So the op, the ability to do this globally resilient, highly available kind of model is really, really powerful. A lot of our customers actually use that kind of a scenario and we offer other deployment scenarios from a higher availability perspective. So everything starts with HMA or hybrid memory architecture and then we start building out a lot of these other capabilities around the platform. >>And then over the years, what our customers have guided us to do is as they're putting together a modern kind of data infrastructure, we don't live in a silo. So aerospace gets deployed with other technologies like streaming technologies or analytics technologies. So we built connectors into Kafka, pulsar, so that as you're ingesting data from a variety of data sources, you can ingest them at very high ingest speeds and store them persistently into Aerospike. Once the data is in Aerospike, you can actually run spark jobs across that data in a, in a multithreaded parallel fashion to get really insight from that data at really high, high throughput and high speed, >>High throughput, high speed, incredibly important, especially as today's landscape is increasingly distributed. Data centers, multiple public clouds, edge IOT devices, the workforce embracing more and more hybrid these days. How are you ex helping customers to extract more value from data while also lowering costs? Go into some customer examples cause I know you have some great ones. >>Yeah, you know, I think we have, we have built an amazing set of customers and customers actually use us for some really mission critical applications. So, you know, before I get into specific customer examples, let me talk to you about some of kind of the use cases which we see out there. We see a lot of aerospace being used in fraud detection. We see us being used in recommendations and since we use get used in customer data profiles or customer profiles, customer 360 stores, you know, multiplayer gaming and entertainment, these are kind of the repeated use case digital payments. We power most of the digital payment systems across the globe. Specific example from a, from a specific example perspective, the first one I would love to talk about is PayPal. So if you use PayPal today, then you know when you actually paying somebody your transaction is, you know, being sent through aero spike to really decide whether this is a fraudulent transaction or not. >>And when you do that, you know, you and I as a customer not gonna wait around for 10 seconds for PayPal to say yay or me, we expect, you know, the decision to be made in an instant. So we are powering that fraud detection engine at PayPal for every transaction that goes through PayPal before us, you know, PayPal was missing out on about 2% of their SLAs, which was essentially millions of dollars, which they were losing because, you know, they were letting transactions go through and taking the risk that it, it's not a fraudulent transaction with the aerospace. They can now actually get a much better sla and the data set on which they compute the fraud score has gone up by, you know, several factors. So by 30 x if you will. So not only has the data size that is powering the fraud engine actually grown up 30 x with Aerospike. Yeah. But they're actually making decisions in an instant for, you know, 99.95% of their transactions. So that's, >>And that's what we expect as consumers, right? We want to know that there's fraud detection on the swipe regardless of who we're interacting with. >>Yes. And so that's a, that's a really powerful use case and you know, it's, it's a great customer, great customer success story. The other one I would talk about is really Wayfair, right? From retail and you know, from e-commerce. So everybody knows Wayfair global leader in really, you know, online home furnishings and they use us to power their recommendations engine and you know, it's basically if you're purchasing this, people who bought this but also bought these five other things, so on and so forth, they have actually seen the card size at checkout go by up to 30% as a result of actually powering their recommendations in G by through Aerospike. And they, they were able to do this by reducing the server count by nine x. So on one ninth of the servers that were there before aerospace, they're now powering their recommendation engine and seeing card size checkout go up by 30%. Really, really powerful in terms of the business outcome and what we are able to, you know, drive at Wayfair >>Hugely powerful as a business outcome. And that's also what the consumer wants. The consumer is expecting these days to have a very personalized, relevant experience that's gonna show me if I bought this, show me something else that's related to that. We have this expectation that needs to be really fueled by technology. >>Exactly. And you know, another great example you asked about, you know, customer stories, Adobe, who doesn't know Adobe, you know, they, they're on a, they're on a mission to deliver the best customer experience that they can and they're talking about, you know, great customer 360 experience at scale and they're modernizing their entire edge compute infrastructure to support this. With Aerospike going to Aerospike, basically what they have seen is their throughput go up by 70%, their cost has been reduced by three x. So essentially doing it at one third of the cost while their annual data growth continues at, you know, about north of 30%. So not only is their data growing, they're able to actually reduce their cost to actually deliver this great customer experience by one third to one third and continue to deliver great customer 360 experience at scale. Really, really powerful example of how you deliver Customer 360 in a world which is dynamic and you know, on a dataset which is constantly growing at north, north of 30% in this case. >>Those are three great examples, PayPal, Wayfair, Adobe talking about, especially with Wayfair when you talk about increasing their cart checkout sizes, but also with Adobe increasing throughput by over 70%. I'm looking at my notes here. While data is growing at 32%, that's something that every organization has to contend with data growth is continuing to scale and scale and scale. >>Yep. I, I'll give you a fun one here. So, you know, you may not have heard about this company, it's called Dream 11 and it's a company based out of India, but it's a very, you know, it's a fun story because it's the world's largest fantasy sports platform and you know, India is a nation which is cricket crazy. So you know, when, when they have their premier league going on, you know, there's millions of users logged onto the dream alone platform building their fantasy lead teams and you know, playing on that particular platform, it has a hundred million users, a hundred million plus users on the platform, 5.5 million concurrent users and they have been growing at 30%. So they are considered a, an amazing success story in, in terms of what they have accomplished and the way they have architected their platform to operate at scale. And all of that is really powered by aerospace where think about that they are able to deliver all of this and support a hundred million users, 5.5 million concurrent users all with you know, 99 plus percent of their transactions completing in less than one millisecond. Just incredible success story. Not a brand that is you know, world renowned but at least you know from a what we see out there, it's an amazing success story of operating at scale. >>Amazing success story, huge business outcomes. Last question for you as we're almost out of time is talk a little bit about Aerospike aws, the partnership GRAVITON two better together. What are you guys doing together there? >>Great partnership. AWS has multiple layers in terms of partnerships. So you know, we engage with AWS at the executive level. They plan out, really roll out of new instances in partnership with us, making sure that, you know, those instance types work well for us. And then we just released support for Aerospike on the graviton platform and we just announced a benchmark of Aerospike running on graviton on aws. And what we see out there is with the benchmark, a 1.6 x improvement in price performance and you know, about 18% increase in throughput while maintaining a 27% reduction in cost, you know, on graviton. So this is an amazing story from a price performance perspective, performance per wat for greater energy efficiencies, which basically a lot of our customers are starting to kind of talk to us about leveraging this to further meet their sustainability target. So great story from Aero Aerospike and aws, not just from a partnership perspective on a technology and an executive level, but also in terms of what joint outcomes we are able to deliver for our customers. >>And it sounds like a great sustainability story. I wish we had more time so we would talk about this, but thank you so much for talking about the main capabilities of a modern data platform, what's needed, why, and how you guys are delivering that. We appreciate your insights and appreciate your time. >>Thank you very much. I mean, if, if folks are at reinvent next week or this week, come on and see us at our booth. We are in the data analytics pavilion. You can find us pretty easily. Would love to talk to you. >>Perfect. We'll send them there. So Ira, thank you so much for joining me on the program today. We appreciate your insights. >>Thank you Lisa. >>I'm Lisa Martin. You're watching The Cubes coverage of AWS Reinvent 2022. Thanks for watching.
SUMMARY :
Great to have you on the program. Great as always, to be on the cube. So, you know, every company these days has got to be a data company, the, you know, the plethora of data that is created, you know, surveys say that over the next three years you know, making decisions from it in real time and really operating it You know, you bring up a great point with respect to real time data access. on which ad to put in front of you and I so that we would click or engage with that particular the way they make decisions is based on a large data set because you know, larger data sets actually capabilities of a modern data platform that need to be delivered to meet demanding lot of the data platforms that, you know, some of these applications were built on have goes back to my first answer, which is, can you operate all of this at a cost So then talk to me with those as the four main core functionalities of deliver the always on, you know, operations. So that, you know, this is strongly consistent. the way it was before, you know, London left the cluster so to speak. Once the data is in Aerospike, you can actually run you ex helping customers to extract more value from data while also lowering So, you know, before I get into specific customer examples, let me talk to you about some 10 seconds for PayPal to say yay or me, we expect, you know, the decision to be made in an And that's what we expect as consumers, right? really powerful in terms of the business outcome and what we are able to, you know, We have this expectation that needs to be really fueled by technology. And you know, another great example you asked about, you know, especially with Wayfair when you talk about increasing their cart onto the dream alone platform building their fantasy lead teams and you know, What are you guys doing together there? So you know, we engage with AWS at the executive level. but thank you so much for talking about the main capabilities of a modern data platform, Thank you very much. So Ira, thank you so much for joining me on the program today. Thanks for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
Ira | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
60 | QUANTITY | 0.99+ |
Luisa | PERSON | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
PayPal | ORGANIZATION | 0.99+ |
30% | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
Wayfair | ORGANIZATION | 0.99+ |
35% | QUANTITY | 0.99+ |
Aerospike | ORGANIZATION | 0.99+ |
each server | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
27% | QUANTITY | 0.99+ |
nine | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
30 x | QUANTITY | 0.99+ |
32% | QUANTITY | 0.99+ |
99.95% | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.99+ |
each node | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
2025 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
less than one millisecond | QUANTITY | 0.99+ |
millions of users | QUANTITY | 0.99+ |
Subaru | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first answer | QUANTITY | 0.99+ |
one third | QUANTITY | 0.99+ |
this week | DATE | 0.99+ |
millions of dollars | QUANTITY | 0.99+ |
over 70% | QUANTITY | 0.99+ |
Sabu | PERSON | 0.99+ |
both users | QUANTITY | 0.99+ |
three | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
80% | QUANTITY | 0.98+ |
Kafka | TITLE | 0.98+ |
1.6 x | QUANTITY | 0.98+ |
northern New York | LOCATION | 0.98+ |
5.5 million concurrent users | QUANTITY | 0.98+ |
GRAVITON | ORGANIZATION | 0.98+ |
hundred million users | QUANTITY | 0.97+ |
Dream 11 | ORGANIZATION | 0.97+ |
Two | QUANTITY | 0.97+ |
each | QUANTITY | 0.97+ |
Aerospike | TITLE | 0.97+ |
third thing | QUANTITY | 0.96+ |
hundred million users | QUANTITY | 0.96+ |
The Cubes | TITLE | 0.95+ |
around 175 zetabytes | QUANTITY | 0.95+ |
Ankur Shah, Palo Alto Networks | AWS re:Invent 2022
>>Good afternoon from the Venetian Expo, center, hall, whatever you wanna call it, in Las Vegas. Lisa Martin here. It's day four. I'm not sure what this place is called. Wait, >>What? >>Lisa Martin here with Dave Ante. This is the cube. This is day four of a ton of coverage that we've been delivering to you, which, you know, cause you've been watching since Monday night, Dave, we are almost at the end, we're almost at the show wrap. Excited to bring back, we've been talking about security, a lot about security. Excited to bring back a, an alumni to talk about that. But what's your final thoughts? >>Well, so just in, in, in the context of security, we've had just three in a row talking about cyber, which is like the most important topic. And I, and I love that we're having Palo Alto Networks on Palo Alto Networks is the gold standard in security. Talk to CISOs, they wanna work with them. And, and it was, it's interesting because I've been following them for a little bit now, watch them move to the cloud and a couple of little stumbling points. But I said at the time, they're gonna figure it out and, and come rocking back. And they have, and the company's just performing unbelievably well despite, you know, all the macro headwinds that we love to >>Talk about. So. Right. And we're gonna be unpacking all of that with one of our alumni. As I mentioned, Anker Shaw is with us, the SVP and GM of Palo Alto Networks. Anker, welcome back to the Cub. It's great to see you. It's been a while. >>It's good to be here after a couple years. Yeah, >>Yeah. I think three. >>Yeah, yeah, for sure. Yeah. Yeah. It's a bit of a blur after Covid. >>Everyone's saying that. Yeah. Are you surprised that there are still this many people on the show floor? Cuz I am. >>I am. Yeah. Look, I am not, this is my fourth, last year was probably one third or one fourth of this size. Yeah. But pre covid, this is what dream went looked like. And it's energizing, it's exciting. It's just good to be doing the good old things. So many people and yeah. Amazing technology and innovation. It's been incredible. >>Let's talk about innovation. I know you guys, Palo Alto Networks recently acquired cyber security. Talk to us a little bit about that. How is it gonna compliment Prisma? Give us all the scoop on that. >>Yeah, for sure. Look, some of the recent, the cybersecurity attacks that we have seen are related to supply chain, the colonial pipeline, many, many supply chain. And the reason for that is the modern software supply chain, not the physical supply chain, the one that AWS announced, but this is the software supply chain is really incredibly complicated, complicated developers that are building and shipping code faster than ever before. And the, the site acquisition at the center, the heart of that was securing the entire supply chain. White House came with a new initiative on supply chain security and SBO software bill of material. And we needed a technology, a company, and a set of people who can really deliver to that. And that's why we acquired that for supply chain security, otherwise known as cicd, security, c >>IDC security. Yeah. So how will that complement PRIs McCloud? >>Yeah, so look, if you look at our history lease over the last four years, we have been wanting to, our mission mission has been to build a single code to cloud platform. As you may know, there are over 3000 security vendors in the industry. And we said enough is enough. We need a platform player who can really deliver a unified cohesive platform solution for our customers because they're sick and tired of buying PI point product. So our mission has been to deliver that code to cloud platform supply chain security was a missing piece and we acquired them, it fits right really nicely into our portfolio of products and solution that customers have. And they'll have a single pin of glass with this. >>Yeah. So there's a lot going on. You've got, you've got an adversary that is incredibly capable. Yeah. These days and highly motivated and extremely sophisticated mentioned supply chain. It's caused a shift in, in CSO strategies, talking about the pandemic, of course we know work from home that changed things. You've mentioned public policy. Yeah. And, and so, and as well you have the cloud, cloud, you know, relatively new. I mean, it's not that new, but still. Yeah. But you've got the shared responsibility model and not, not only do you have the shared responsibility model, you have the shared responsibility across clouds and OnPrem. So yes, the cloud helps with security, but that the CISO has to worry about all these other things. The, the app dev team is being asked to shift left, you know, secure and they're not security pros. Yeah. And you know, kind audit is like the last line of defense. So I love this event, I love the cloud, but customers need help in making their lives simpler. Yeah. And the cloud in and of itself, because, you know, shared responsibility doesn't do that. Yeah. That's what Palo Alto and firms like yours come in. >>Absolutely. So look, Jim, this is a unable situation for a lot of the Cisco, simply because there are over 26 million developers, less than 3 million security professional. If you just look at all the announcement the AWS made, I bet you there were like probably over 2000 features. Yeah. I mean, they're shipping faster than ever before. Developers are moving really, really fast and just not enough security people to keep up with the velocity and the innovation. So you are right, while AWS will guarantee securing the infrastructure layer, but everything that is built on top of it, the new machine learning stuff, the new application, the new supply chain applications that are developed, that's the responsibility of the ciso. They stay up at night, they don't know what's going on because developers are bringing new services and new technology. And that's why, you know, we've always taken a platform approach where customers and the systems don't have to worry about it. >>What AWS new service they have, it's covered, it's secured. And that's why the adopters, McCloud and Palo Alto Networks, because regardless what developers bring, security is always there by their side. And so security teams need just a simple one click solution. They don't have to worry about it. They can sleep at night, keep the bad actors away. And, and that's, that's where Palo Alto Networks has been innovating in this area. AWS is one of our biggest partners and you know, we've integrated with, with a lot of their services. We launch about three integrations with their services. And we've been doing this historically for more and >>More. Are you still having conversations with the security folks? Or because security is a board level conversation, are your conversations going up a stack because this is a C-suite problem, this is a board level initiative? >>Absolutely. Look, you know, there was a time about four years ago, like the best we could do is director of security. Now it's just so CEO level conversation, board level conversation to your point, simply because I mean, if, if all your financial stuff is going to public cloud, all your healthcare data, all your supply chain data is going to public cloud, the board is asking very simple question, what are you doing to secure that? And to be honest, the question is simple. The answer's not because all the stuff that we talked about, too many applications, lots and lots of different services, different threat vectors and the bad actors, the bad guys are always a step ahead of the curve. And that's why this has become a board level conversation. They wanna make sure that things are secure from the get go before, you know, the enterprises go too deep into public cloud adoption. >>I mean there, there was shift topics a little bit. There was hope or kinda early this year that that cyber was somewhat insulated from the sort of macro press pressures. Nobody's safe. Even the cloud is sort of, you know, facing those, those headwinds people optimizing costs. But one thing when you talk to customers is, I always like to talk about that, that optiv graph. We've all seen it, right? And it's just this eye test of tools and it's a beautiful taxonomy, but there's just too many tools. So we're seeing a shift from point tools to platforms because obviously a platform play, and that's a way. So what are you seeing in the, in the field with customers trying to optimize their infrastructure costs with regard to consolidating to >>Platforms? Yeah. Look, you rightly pointed out one thing, the cybersecurity industry in general and Palo Alto networks, knock on wood, the stocks doing well. The macro headwinds hasn't impacted the security spend so far, right? Like time will tell, we'll, we'll see how things go. And one of the primary reason is that when you know the economy starts to slow down, the customers again want to invest in platforms. It's simple to deploy, simple to operationalize. They want a security partner of choice that knows that they, it's gonna be by them through the entire journey from code to cloud. And so that's why platform, especially times like these are more important than they've ever been before. You know, customers are investing in the, the, the product I lead at Palo Alto network called Prisma Cloud. It's in the cloud network application protection platform seen app space where once again, customers that investing in platform from quote to cloud and avoiding all the point products for sure. >>Yeah. Yeah. And you've seen it in, in Palo Alto's performance. I mean, not every cyber firm has is, is, >>You know, I know. Ouch. CrowdStrike Yeah. >>Was not. Well you saw that. I mean, and it was, and and you know, the large customers were continuing to spend, it was the small and mid-size businesses Yeah. That were, were were a little bit soft. Yeah. You know, it's a really, it's really, I mean, you see Okta now, you know, after they had some troubles announcing that, you know, their, their, their visibility's a little bit better. So it's, it's very hard to predict right now. And of course if TOMA Brava is buying you, then your stock price has been up and steady. That's, >>Yeah. Look, I think the key is to have a diversified portfolio of products. Four years ago before our CEO cash took over the reins of the company, we were a single product X firewall company. Right. And over time we have added XDR with the first one to introduce that recently launched x Im, you know, to, to make sure we build an NextGen team, cloud security is a completely net new investment, zero trust with access as workers started working remotely and they needed to make sure enterprises needed to make sure that they're accessing the applications securely. So we've added a lot of portfolio products over time. So you have to remain incredibly diversified, stay strong, because there will be stuff like remote work that slowed down. But if you've got other portfolio product like cloud security, while those secular tailwinds continue to grow, I mean, look how fast AWS is growing. 35, 40%, like $80 billion run rate. Crazy at that, that scale. So luckily we've got the portfolio of products to ensure that regardless of what the customer's journey is, macro headwinds are, we've got portfolio of solutions to help our customers. >>Talk a little bit about the AWS partnership. You talked about the run rate and I was reading a few days ago. You're right. It's an 82 billion arr, massive run rate. It's crazy. Well, what are, what is a Palo Alto Networks doing with aws and what's the value in it to help your customers on a secure digital transformation journey? >>Well, absolutely. We have been doing business with aws. We've been one of their security partners of choice for many years now. We have a presence in the marketplace where customers can through one click deploy the, the several Palo Alto Networks security solutions. So that's available. Like I said, we had launch partner to many, many new products and innovation that AWS comes up with. But always the day one partner, Adam was talking about some of those announcements and his keynote security data lake was one of those. And they were like a bunch of others related to compute and others. So we have been a partner for a long time, and look, AWS is an incredibly customer obsessed company. They've got their own security products. But if the customer says like, Hey, like I'd like to pick this from yours, but there's three other things from Palo Alto Networks or S MacCloud or whatever else that may be, they're open to it. And that's the great thing about AWS where it doesn't have to be wall garden open ecosystem, let the customer pick the best. >>And, and that's, I mean, there's, there's examples where AWS is directly competitive. I mean, my favorite example is Redshift and Snowflake. I mean those are directly competitive products, but, but Snowflake is an unbelievably great relationship with aws. They do cyber's, I think different, I mean, yeah, you got guard duty and you got some other stuff there. But generally speaking, the, correct me if I'm wrong, the e the ecosystem has more room to play on AWS than it may on some other clouds. >>A hundred percent. Yeah. Once again, you know, guard duty for examples, we've got a lot of customers who use guard duty and Prisma Cloud and other Palo Alto Networks products. And we also ingest the data from guard duty. So if customers want a single pane of glass, they can use the best of AWS in terms of guard duty threat detection, but leverage other technology suite from, you know, a platform provider like Palo Alto Networks. So you know, that that, you know, look, world is a complicated place. Some like blue, some like red, whatever that may be. But we believe in giving customers that choice, just like AWS customers want that. Not a >>Problem. And at least today they're not like directly, you know, in your space. Yeah. You know, and even if they were, you've got such a much mature stack. Absolutely. And my, my frankly Microsoft's different, right? I mean, you see, I mean even the analysts were saying that some of the CrowdStrike's troubles for, cuz Microsoft's got the good enough, right? So >>Yeah. Endpoint security. Yeah. And >>Yeah, for sure. So >>Do you have a favorite example of a customer where Palo Alto Networks has really helped them come in and, and enable that secure business transformation? Anything come to mind that you think really shines a light on Palo Alto Networks and what it's able to do? >>Yeah, look, we have customers across, and I'm gonna speak to public cloud in general, right? Like Palo Alto has over 60,000 customers. So we've been helping with that business transformation for years now. But because it's reinvented aws, the Prisma cloud product has been helping customers across different industry verticals. Some of the largest credit card processing companies, they can process transactions because we are running security on top of the workloads, the biggest financial services, biggest healthcare customers. They're able to put the patient health records in public cloud because Palo Alto Networks is helping them get there. So we are helping accelerated that digital journey. We've been an enabler. Security is often perceived as a blocker, but we have always treated our role as enabler. How can we get developers and enterprises to move as fast as possible? And like, my favorite thing is that, you know, moving fast and going digital is not a monopoly of just a tech company. Every company is gonna be a tech company Oh absolutely. To public cloud. Yes. And we want to help them get there. Yeah. >>So the other thing too, I mean, I'll just give you some data. I love data. I have a, ETR is our survey partner and I'm looking at Data 395. They do a survey every quarter, 1,250 respondents on this survey. 395 were Palo Alto customers, fortune 500 s and P 500, you know, big global 2000 companies as well. Some small companies. Single digit churn. Yeah. Okay. Yeah. Very, very low replacement >>Rates. Absolutely. >>And still high single digit new adoption. Yeah. Right. So you've got that tailwind going for you. Yeah, >>Right. It's, it's sticky because especially our, our main business firewall, once you deploy the firewall, we are inspecting all the network traffic. It's just so hard to rip and replace. Customers are getting value every second, every minute because we are thwarting attacks from public cloud. And look, we, we, we provide solutions not just product, we just don't leave the product and ask the customers to deploy it. We help them with deployment consumption of the product. And we've been really fortunate with that kind of gross dollar and netten rate for our customers. >>Now, before we wrap, I gotta tease, the cube is gonna be at Palo Alto Ignite. Yeah. In two weeks back here. I think we're at D mgm, right? We >>Were at D MGM December 13th and >>14th. So give us a little, show us a little leg if you would. What could we expect? >>Hey, look, I mean, a lot of exciting new things coming. Obviously I can't talk about it right now. The PR Inc is still not dry yet. But lots of, lots of new innovation across our three main businesses. Network security, public cloud, security, as well as XDR X. Im so stay tuned. You know, you'll, you'll see a lot of new exciting things coming up. >>Looking forward to it. >>We are looking forward to it. Last question on curf. You, if you had a billboard to place in New York Times Square. Yeah. You're gonna take over the the the Times Square Nasdaq. What does the billboard say about why organizations should be working with Palo Alto Networks? Yeah. To really embed security into their dna. Yeah. >>You know when Jim said Palo Alto Networks is the gold standard for security, I thought it was gonna steal it. I think it's pretty good gold standard for security. But I'm gonna go with our mission cyber security partner's choice. We want to be known as that and that's who we are. >>Beautifully said. Walker, thank you so much for joining David in the program. We really appreciate your insights, your time. We look forward to seeing you in a couple weeks back here in Vegas. >>Absolutely. Can't have enough of Vegas. Thank you. Lisa. >>Can't have in Vegas, >>I dunno about that. By this time of the year, I think we can have had enough of Vegas, but we're gonna be able to see you on the cubes coverage, which you could catch up. Palo Alto Networks show Ignite December, I believe 13th and 14th on the cube.net. We want to thank Anker Shaw for joining us. For Dave Ante, this is Lisa Martin. You're watching the Cube, the leader in live enterprise and emerging tech coverage.
SUMMARY :
whatever you wanna call it, in Las Vegas. This is the cube. you know, all the macro headwinds that we love to And we're gonna be unpacking all of that with one of our alumni. It's good to be here after a couple years. It's a bit of a blur after Covid. Cuz I am. It's just good to be doing the good old things. I know you guys, Palo Alto Networks recently acquired cyber security. And the reason for that is the modern software supply chain, not the physical supply chain, IDC security. Yeah, so look, if you look at our history lease over the last four years, And the cloud in and of itself, because, you know, shared responsibility doesn't do that. And that's why, you know, we've always taken a platform approach of our biggest partners and you know, we've integrated with, with a lot of their services. this is a board level initiative? the board is asking very simple question, what are you doing to secure that? So what are you seeing in the, And one of the primary reason is that when you know the I mean, not every cyber firm has You know, I know. I mean, and it was, and and you know, the large customers were continuing to And over time we have added XDR with the first one to introduce You talked about the run rate and I was reading a And that's the great thing about AWS where it doesn't have to be wall garden open I think different, I mean, yeah, you got guard duty and you got some other stuff there. So you know, And at least today they're not like directly, you know, in your space. So my favorite thing is that, you know, moving fast and going digital is not a monopoly of just a tech So the other thing too, I mean, I'll just give you some data. Absolutely. So you've got that tailwind going for you. and ask the customers to deploy it. Yeah. So give us a little, show us a little leg if you would. Hey, look, I mean, a lot of exciting new things coming. You're gonna take over the the the Times Square Nasdaq. But I'm gonna go with our mission cyber We look forward to seeing you in a couple weeks back here in Vegas. Can't have enough of Vegas. but we're gonna be able to see you on the cubes coverage, which you could catch up.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
McCloud | ORGANIZATION | 0.99+ |
Vegas | LOCATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Ankur Shah | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
$80 billion | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
White House | ORGANIZATION | 0.99+ |
Anker Shaw | PERSON | 0.99+ |
1,250 respondents | QUANTITY | 0.99+ |
Lisa | PERSON | 0.99+ |
Walker | PERSON | 0.99+ |
Dave Ante | PERSON | 0.99+ |
fourth | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
82 billion | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
less than 3 million | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Monday night | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
New York Times Square | LOCATION | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
over 60,000 customers | QUANTITY | 0.99+ |
Covid | PERSON | 0.99+ |
Prisma Cloud | ORGANIZATION | 0.99+ |
over 2000 features | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
40% | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
December | DATE | 0.98+ |
cube.net | OTHER | 0.98+ |
Prisma | ORGANIZATION | 0.98+ |
2000 companies | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
Venetian Expo | EVENT | 0.98+ |
three main businesses | QUANTITY | 0.98+ |
395 | QUANTITY | 0.98+ |
PR Inc | ORGANIZATION | 0.98+ |
over 26 million developers | QUANTITY | 0.97+ |
one click | QUANTITY | 0.97+ |
Four years ago | DATE | 0.97+ |
35 | QUANTITY | 0.96+ |
Palo Alto | LOCATION | 0.96+ |
December 13th | DATE | 0.95+ |
14th | DATE | 0.95+ |
John Purcell, DoiT International & Danislav Penev, INFINOX Global | AWS re:Invent 2022
>>Hello friends and welcome back to Fabulous Las Vegas, Nevada, where we are live from the show floor at AWS Reinvent. My name is Savannah Peterson, joined by my fabulous co-host John Furrier. John, how was your lunch? >>My lunch was great. Wasn't very complex like it is today, so it was very easy, >>Appropriate for the conversation we're about >>To have. Great, great guests coming up Cube alumni and great question around complexity and how is wellbeing teams be good? >>Yes. And, and and on that note, let's welcome John from DeWit as well as Danny from Inox. I swear I'll be able to say that right by the end of this. Thank you guys so much for being here. How's the show going for you? >>Excellent so far. It's been a great, a great event. You know, back back to pre Covid days, >>You're still smiling day three. That's an awesome sign. John, what about you? >>Fantastic. It's, it's been busier than ever >>That that's exciting. I, I think we certainly feel that way here on the cube. We're doing dozens of videos, it's absolutely awesome. Just in case. So we can dig in a little deeper throughout the rest of the segment just in case the audience isn't familiar, let's get them acquainted with your companies. Let's start with do it John. >>Yeah, thanks Savannah. So do it as a global technology company and we're partnering with deleted cloud providers around the world and digital native companies to provide value and solve complexity. John, to your, to your introductory point with all of the complexities associated with operating in the cloud, scaling a business in the cloud, a lot of companies are just looking to sort of have somebody else take care of that problem for them or have somebody they can call when they run into, you know, into problems scaling. And so with a combination of tech, advanced technology, some of the best cloud experts in the world and unlimited tech support or we're offloading a lot of those problems for our customers and we're doing that on a global basis. So it's, it's an exciting time. >>I can imagine pretty much everyone here on the show floor is dealing with that challenge of complexity. So a couple customers for you in the house. What about you Danny? >>I, I come from a company which operates in a financial industry market. So we essentially a global broker, financial trading broker. Which what this means for those people who don't really understand, essentially we allow clients to be able to trade digitally and speculate with different pricing, pricing tools online. We offer a different products for different type of clients. We have institutional clients, we've got our affiliates, partners programs and we've got a retail clients and this is where AWS and Doit comes handy allows us to offer our products digitally across the globe. And one of the key values for us here is that we can actually offer a product in regions where other people don't. So for example, we don't compete in North America, we don't compete in EME in Europe, but we just do it in AWS to solve our complex challenges in regions that naturally by, depending on where they base, they have like issues and that's how we deliver our product. >>And which regions, Latin >>America, Latin, the entire Africa, subcontinent, middle East, southeast Asia, the culture is just demographic is different. And what you used to have here is not exactly what you have over there. And obviously that brings a lot of challenges with onboarding and clients, deposit, trading activities, CDN latency, all of >>That stuff. It's interesting how each region's different in their, their posture with the cloud. Someone roll their own, someone outta the box. So again, this brings up this theme this year guys, which is about end to end seeing purpose built like specialty solutions. A lot of solutions going end to end with data makes kind of makes it more complicated. So again, we got more complexity coming, but the greatest the cloud is, you can abstract that away. So we are seeing this is a big opportunity for partners to innovate. You're seeing a lot of joint engineering, a lot more complexities coming still, but still end to end is the end game so to speak. >>A absolutely John, I mean one, one of the sort of ways we describe what we try to do for our customers like Equinox is to be your co-pilot in the cloud, which essentially means, you know, >>What an apt analogy. >>I think so, yeah, >>Well, well >>Done there. I think it works. Yvanna. Yeah, so, so as I mentioned, these are the majority or almost all of our customers are pretty sophisticated tech savvy companies. So they don't, you know, they know for most, for the most part what they're trying to achieve. They're approaching scale, they're at scale or they're, or they're through that scale point and they, they just wanna have somebody they can call, right? They need technology to help abstract away the complex problem. So they're not doing so much manual cloud operational work or sometimes they just need help picking the next tech right to solve the end to end use case that that they're, that they're dealing with >>In business. And Danny, you're rolling out solutions so you're on, you're on the front lines, you gotta make it easier. You didn't want to get in the weeds on something that should be taken care of. >>Correct. I mean one of the reasons we go do it is you need to, in order to involve do it, you need to know your problems, understand your challenges, also like a self review only. And you have to be one way halfway through the cloud journey. You need to know your problems, what you want to achieve, where you want to end up a roadmap for the next five years, what you want to achieve. Are we fixing or developing a building? And then involve those guys to come and help you because they cannot just come with magic one and fix all your problems. You need to do that yourself. It's not like starting the journey by yourself. >>Yeah. One thing that's not played up in this event, I will say they may, I don't, they missed, maybe Verner will hit it tomorrow, but I think they kind of missed it a little bit. But the developer productivity's been a big issue. We've seen that this year. One of the big themes on the cube is developer productivity, more velocity on the development side to keep pace with what's on, what solutions are rolling out the customers. And the other one is skills gap. So, and people like, and people have old skills, like we see VMware being bought by Broadcom for instance, got a lot of IT operators at VMware, they gotta go cloud somewhere. So you got new talent, existing talent, skill gaps, people are comfortable, yet the new stuff's there, developers gotta be more productive. How do you guys see that? Cuz that's gonna be how that plays now, it's gonna impact the channel, the partnership relationship, your ability to deliver. >>What's your reaction to that first? Well I think we obviously have a tech savvy team. We've got developers, we've got dev, we've got infrastructure guys, but we only got so much resource that we can afford. And essentially by evolving due it, I've doubled our staff. So we got a tech savvy senior solution architects which comes to do the sexy stuff, actually develop and design a new better offering, better product that makes us competitive. And this is where we involved, essentially we use the due IT staff as an staff employees that our demand is richly army of qualified people. We can actually cherry pick who we want for the call to do X, Y, and Z. And they're there to, to support you. We just have to ask for help. And this is how we fill our gap from technical skills or budget constrained within, you know, within recruitment. >>And I think, I think what, what Danny is touching on, John, what you mentioned is, is really the, the sort of the core family principle of the company, right? It's hard enough for companies like Equinox to hire staff that can help them build their business and deliver the value proposition that they're, that they see, right? And so our reason for existence is to sort of take care of the rest, right? We can help, you know, operate your cloud, show you the most effective way to do that. Whether they're finops problems, whether they're DevOps problems, whether dev SEC ops problems, all of these sort of classic operational problems that get 'em the way of the core business mission. You're not in the business of running the cloud, you're in the business of delivering customer value. We can help you, you know, manage your cloud >>And it's your job to do it. >>It is to do it >>Can, couldn't raise this upon there. How long have y'all been working together? >>I would say 15 months. We took, we took a bit of a conservative approach. We hope for the baseball, prepare for the worst. So I didn't trust do it. I give them one account, start with DEF U A C because you cannot, you just have to learn the journey yourself. So I think I would, my advice for clients is give it the six months. Once you establish a relationship, build a relationship, give them one by one start slowly. You actually understand by yourself the skills, the capacity that they have. And also the, for me consultants is really important And after that just opens up and we are now involving them. We've got new project, we've got problem statement. The first thing we do, we don't Google it, we just say do it. Log a ticket, we got the team. You're >>A verb. >>Yeah. So >>In this case we have >>The puns are on list here on the Cuban general. But with something like that, it's great. >>I gotta ask you a question cuz this is interesting John. You know, we talked last year on the cube and, and again this is an example of how innovations playing out. If you look at the announcements, Adam Celski did and then sw, he had 13 or so announcements. I won't say it's getting boring, but when you hear boring, boring is good. When you start getting into these, these gaps in the platforms as it grows. I won't say they was boring cause that really wasn't boring. I like the data >>Itself. It's all fascinating, John, >>But it, but it's a lot of gap filling, you know, 50 connectors you got, you know, yeah. All glue layers being built in AI's critical. The match cloud is there. What's the innovation? You got a lot of gaps being filled, boring is good. Like Kubernetes, we say there boring means, it's being invisible. That means it's going away. What's the exciting things from your perspective in cloud here? >>Well, I think, I mean, boring is an interesting word to use cuz a company with the heritage of AWS is constantly evolving. I mean, at the core of that company's culture is innovation, technology, development and innovation. And they're building for builders as, as you know, just as well as I do. Yeah. And so, but what we find across our customer base is that companies that are scaling or at scale are using maybe a smaller set of those services, but they're really leveraging them in interesting ways. And there is a very long tail of deeper, more sophisticated fit for purpose, more specific services. And Adam announced, you know, who knows him another 20 or 30 services and it's happening year after year after year. And I think one of the things that, that Danny might attest to is, I, I spoke about the reason we exist and the reason we form the company is we hold it very, a very critical part of our mission is to stay abreast of all of those developments as they emerge so that Danny and and his crew don't have to, right? And so when they have a, a, a question about SageMaker or they have a question about sort of the new big data service that Adam has announced, we take it very seriously. Our job is to be able to answer that question quickly and >>Accurately. And I notice your shirt, if you could just give a little shirt there, ops, cloud ops, DevOps do it. The intersection of the finance, the tuning is now we're hearing a lot of price performance, cost recovery, not cost recovery, but cost management. Yeah. Optimizing. So we're seeing building scale, but now, now tuning almost a craft, the craft of the cloud is here. What's your reaction to that? It, >>It absolutely is. And this is a story as old as the cloud, honestly. And companies, you know, they'll, they'll, companies tend to follow the same sort of maturity journey when they first start, whether they're migrating to the cloud or they were born in the cloud as most of our customers are. There's a, there's a, there's an, there's an access to visibility and understanding and optimization to tuning a craft to use your term. And, and cost management truly is a 10 year old problem that is as prevalent and relevant today as it was, you know, 10 years ago. And there's a lot of talk about the economics associated with the cloud and it's not, certainly not always cheaper to run. In fact, it rarely is cheaper to run your business from any of the public cloud providers. The key is to do it and right size it and make sure it's operating in accordance and alignment with your business, right? It's okay for cloud process to go up so long as your top line is also >>Selling your proportion. You spend more cloud to save cloud. That's it's >>Penny wise, pound full. It's always a little bit, always a little bit of a, of a >>Dilemma on, on the cost saving. We didn't want to just save money. If you want to save money, just shut down your services, right? So it's about making money. So this is where do it comes, like we actually start making, okay, we spend a bit more now, but in about six months time I will be making more money. And we've just did that. We roll out the new application for all the new product offering host to AWS fully with the guys support, a lot of long, boring, boring, boring calls, but they're productive because we actually now have a better product, competitive, it's tailored for our clients, it's cost effective. And we are actually making money >>When something's invisible. It's working, you know, talking about it means it's, it's, it's operational. >>It's exactly, it's, >>Well to that point, John, one of the things we're most proud of in, you know, know this year was, was the launch of our product we called Flex Save, which essentially does exactly what you've described. It's, it's looking for automation and, and, and, and automatic ways of, yes. Saving money, but offering the opportunities to, to to improve the economics associated with your cloud infrastructure. >>Yeah. And improving the efficiency across the board. A hundred percent. It, it's, oh, it's awesome. Let's, and, and it's, it's my understanding there's some reporting and insights that you're able to then translate through from do it to your CTO and across the company. Denny, what's that like? What do you get to see working >>With them? Well, the problem is, like the CTO asked me to do all of that. It is funny he thinks that he's doing it, but essentially they have a excellent portal that basically looks up all of our instances on the one place. You got like good analytics on your cost, cost, anomalies, budget, costal location. But I didn't want to do that either. So what I have done is taken the next step. I actually sold this to the, to my company completely. So my finance teams goes there, they do it themselves, they log in, check, check, all the billing, the costal location. I actually has zero iteration with them if I don't hear anything from them, which is one of the benefits. But also there is lot of other products like the Flexe is virtually like you just click a finger and you start saving money just like that. Easy >>Is that easy button we've been talking about on >>The show? Yeah, exactly, exactly how it is. But there is obviously outside of the cost management, you actually can look at what is the resource you using do actually need it, how often you use it, think about the long term goal, what you're trying to achieve, and use the analytics to, and actually I have to say the analytics much better than AWS in, in, in, in cmp. It's, it's just more user friendly, more interactive as opposed to, you know, building the one in aws. >>It's good business model. Make things easy for your customers. Easy, simple >>To use. >>It's gotta be nice to hear John. >>Well, so first of all, thank you daddy. >>We, we work, but in all seriousness, you know, we, we work, Danny mentioned the trust word earlier. This is at the core of if we don't, if we're not able to build trust with our clients, our business is dead. It, it just doesn't exist. It can't scale. In fact, it'll go the opposite direction. And so we're, we work very, very hard to earn that trust and we're willing to start small to Danny's example, start small and grow. And that's why we're very, one of the things we're most proud of is, is how few customers tend to leave us year over year. We have customers that have been with us for 10 years. >>You know, Andy, Jesse always has, I just saw an interview, he was on the New York Times event in New York today as a CEO of Amazon. But he's always said in these build out phases, you gotta work backwards from the customer and innovate on behalf of the customer. Cause that's the answer that will always be a good answer for the outcome versus optimizing for just profit, you know what I'm saying? Or other things. So we're still in build out mode, >>You know, as a, as a, as a core fundamental sort of product concept. If you're not solving important problems for our customer, what are you, why, why are you investing? It just >>Doesn't make it. This is the beauty we do it. We actually, they wait for you to come to do the next step. They don't sell me anything. They don't bug me with emails. They're ready. When you're ready to make that journey, you just log a ticket and then come and help you. And this is the beauty. You just, it's just not your, your journey. >>I love it. That's a, that's a beautiful note to lead us to our new tradition on the cube. We have a little bit of a challenge for the both of you. We're looking for your 32nd Instagram real thought leadership sizzle anecdote. Either one of you wanna go first. John looks a little nauseous. Danny, you wanna give it a go? >>Well, we've got a few expressions, but we don't Google it. We just do it. And the key take, that's what we do now at, at, and also what we do is actually using their stuff as an influence employees richly. Like that's what we do. >>Well done, well done. Didn't even need the 30 seconds. Fantastic work, Danny. I love that. All right, John, now you do have to go. Okay, >>I'll goodness. You know, I'll, I'll, I'll, I'll I'll go back to what I mentioned earlier, if that's okay. I think we, you know, we exist as a company to sort of help our customers get back to focusing on why they started the business in the first place, which is innovating and delivering value to customers. And we'll help you take care of the rest. It's as simple as that. Awesome. >>Well done. You absolutely nailed it. I wanna just acknowledge your fan club over there watching. Hello everyone from the doit team. Good job team. I love, it's very cute when guests show up with an entourage to the cube. We like to see it. You obviously deserve the entourage. You're, you're both wonderful. Thanks again for being here on the show with Oh yeah, go ahead >>John. Well, I would just like to thank Danny for, for agreeing to >>Discern, thankfully >>Great to spend time with you. Absolutely. Let's do it. >>Thank you. Yeah, >>Yeah. Fantastic gentlemen. Well thank you all for tuning into this wonderful start to the afternoon here from AWS Reinvent. We are in Las Vegas, Nevada with John Furier. My name's Savannah Peterson, you're watching The Cube, the leader in high tech coverage.
SUMMARY :
from the show floor at AWS Reinvent. Wasn't very complex like it is today, so it was very easy, Great, great guests coming up Cube alumni and great question around complexity and how is wellbeing teams be I swear I'll be able to say that right by the end of this. You know, back back to pre Covid days, John, what about you? It's, it's been busier than ever in case the audience isn't familiar, let's get them acquainted with your companies. in the cloud, scaling a business in the cloud, a lot of companies are just looking to sort of have I can imagine pretty much everyone here on the show floor is dealing with that challenge of complexity. And one of the key values for us here is that we can actually offer a product in regions And what you used to have here So again, we got more complexity coming, but the greatest the cloud is, you can abstract that you know, they know for most, for the most part what they're trying to achieve. And Danny, you're rolling out solutions so you're on, you're on the front lines, you gotta make it easier. I mean one of the reasons we go do it is you need to, And the other one is skills gap. And this is how we fill our gap from We can help, you know, operate your cloud, show you the most effective way to do that. Can, couldn't raise this upon there. start with DEF U A C because you cannot, you just have to learn The puns are on list here on the Cuban general. I like the data But it, but it's a lot of gap filling, you know, 50 connectors you got, you know, yeah. I spoke about the reason we exist and the reason we form the company is we hold it very, The intersection of the finance, the tuning is now we're hearing a lot of price performance, that is as prevalent and relevant today as it was, you know, 10 years ago. You spend more cloud to save cloud. It's always a little bit, always a little bit of a, of a We roll out the new application for all the new product offering host It's working, you know, talking about it means it's, it's, it's operational. Well to that point, John, one of the things we're most proud of in, you know, know this year was, was the launch of our product we from do it to your CTO and across the company. Well, the problem is, like the CTO asked me to do all of that. more interactive as opposed to, you know, building the one in aws. Make things easy for your customers. This is at the core of if we don't, if we're not able to build trust with our clients, the outcome versus optimizing for just profit, you know what I'm saying? You know, as a, as a, as a core fundamental sort of product concept. This is the beauty we do it. for the both of you. And the key take, All right, John, now you do have to go. I think we, you know, we exist as a company to sort of help our customers get back to focusing Thanks again for being here on the show with Oh yeah, go ahead Great to spend time with you. Thank you. Well thank you all for tuning into this wonderful start to the afternoon here
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Adam Celski | PERSON | 0.99+ |
Danny | PERSON | 0.99+ |
Savannah | PERSON | 0.99+ |
John Furier | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
13 | QUANTITY | 0.99+ |
Andy | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Equinox | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Danislav Penev | PERSON | 0.99+ |
Jesse | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
50 connectors | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Yvanna | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
America | LOCATION | 0.99+ |
15 months | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
first | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
Denny | PERSON | 0.99+ |
Africa | LOCATION | 0.99+ |
32nd | QUANTITY | 0.99+ |
The Cube | TITLE | 0.99+ |
30 services | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
20 | QUANTITY | 0.98+ |
Latin | LOCATION | 0.98+ |
tomorrow | DATE | 0.98+ |
one account | QUANTITY | 0.98+ |
VMware | ORGANIZATION | 0.98+ |
this year | DATE | 0.98+ |
John Purcell | PERSON | 0.97+ |
ORGANIZATION | 0.97+ | |
southeast Asia | LOCATION | 0.97+ |
Las Vegas, Nevada | LOCATION | 0.96+ |
about six months | QUANTITY | 0.96+ |
zero | QUANTITY | 0.96+ |
dozens of videos | QUANTITY | 0.96+ |
DoiT International | ORGANIZATION | 0.96+ |
each region | QUANTITY | 0.96+ |
10 years ago | DATE | 0.95+ |
INFINOX Global | ORGANIZATION | 0.95+ |
AWS Reinvent | ORGANIZATION | 0.95+ |
Cube | ORGANIZATION | 0.94+ |
this year | DATE | 0.93+ |
DeWit | ORGANIZATION | 0.93+ |
Subbu Iyer
>> And it'll be the fastest 15 minutes of your day from there. >> In three- >> We go Lisa. >> Wait. >> Yes >> Wait, wait, wait. I'm sorry I didn't pin the right speed. >> Yap, no, no rush. >> There we go. >> The beauty of not being live. >> I think, in the background. >> Fantastic, you all ready to go there, Lisa? >> Yeah. >> We are speeding around the horn and we are coming to you in five, four, three, two. >> Hey everyone, welcome to theCUBE's coverage of AWS re:Invent 2022. Lisa Martin here with you with Subbu Iyer one of our alumni who's now the CEO of Aerospike. Subbu, great to have you on the program. Thank you for joining us. >> Great as always to be on theCUBE Lisa, good to meet you. >> So, you know, every company these days has got to be a data company, whether it's a retailer, a manufacturer, a grocer, a automotive company. But for a lot of companies, data is underutilized yet a huge asset that is value added. Why do you think companies are struggling so much to make data a value added asset? >> Well, you know, we see this across the board. When I talk to customers and prospects there is a desire from the business and from IT actually to leverage data to really fuel newer applications, newer services newer business lines if you will, for companies. I think the struggle is one, I think one the, the plethora of data that is created. Surveys say that over the next three years data is going to be you know by 2025 around 175 zettabytes, right? A hundred and zettabytes of data is going to be created. And that's really a growth of north of 30% year over year. But the more important and the interesting thing is the real time component of that data is actually growing at, you know 35% CAGR. And what enterprises desire is decisions that are made in real time or near real time. And a lot of the challenges that do exist today is that either the infrastructure that enterprises have in place was never built to actually manipulate data in real time. The second is really the ability to actually put something in place which can handle spikes yet be cost efficient to fuel. So you can build for really peak loads, but then it's very expensive to operate that particular service at normal loads. So how do you build something which actually works for you for both users, so to speak. And the last point that we see out there is even if you're able to, you know bring all that data you don't have the processing capability to run through that data. So as a result, most enterprises struggle with one capturing the data, making decisions from it in real time and really operating it at the cost point that they need to operate it at. >> You know, you bring up a great point with respect to real time data access. And I think one of the things that we've learned the last couple of years is that access to real time data it's not a nice to have anymore. It's business critical for organizations in any industry. Talk about that as one of the challenges that organizations are facing. >> Yeah, when we started Aerospike, right? When the company started, it started with the premise that data is going to grow, number one exponentially. Two, when applications open up to the internet there's going to be a flood of users and demands on those applications. And that was true primarily when we started the company in the ad tech vertical. So ad tech was the first vertical where there was a lot of data both on the supply set and the demand side from an inventory of ads that were available. And on the other hand, they had like microseconds or milliseconds in which they could make a decision on which ad to put in front of you and I so that we would click or engage with that particular ad. But over the last three to five years what we've seen is as digitization has actually permeated every industry out there the need to harness data in real time is pretty much present in every industry. Whether that's retail, whether that's financial services telecommunications, e-commerce, gaming and entertainment. Every industry has a desire. One, the innovative companies, the small companies rather are innovating at a pace and standing up new businesses to compete with the larger companies in each of these verticals. And the larger companies don't want to be left behind. So they're standing up their own competing services or getting into new lines of business that really harness and are driven by real time data. So this compelling pressures, one, you know customer experience is paramount and we as customers expect answers in you know an instant, in real time. And on the other hand, the way they make decisions is based on a large data set because you know larger data sets actually propel better decisions. So there's competing pressures here which essentially drive the need one from a business perspective, two from a customer perspective to harness all of this data in real time. So that's what's driving an incessant need to actually make decisions in real or near real time. >> You know, I think one of the things that's been in short supply over the last couple of years is patience. We do expect as consumers whether we're in our business lives our personal lives that we're going to be getting be given information and data that's relevant it's personal to help us make those real time decisions. So having access to real time data is really business critical for organizations across any industries. Talk about some of the main capabilities that modern data applications and data platforms need to have. What are some of the key capabilities of a modern data platform that need to be delivered to meet demanding customer expectations? >> So, you know, going back to your initial question Lisa around why is data really a high value but underutilized or under-leveraged asset? One of the reasons we see is a lot of the data platforms that, you know, some of these applications were built on have been then around for a decade plus. And they were never built for the needs of today, which is really driving a lot of data and driving insight in real time from a lot of data. So there are four major capabilities that we see that are essential ingredients of any modern data platform. One is really the ability to, you know, operate at unlimited scale. So what we mean by that is really the ability to scale from gigabytes to even petabytes without any degradation in performance or latency or throughput. The second is really, you know, predictable performance. So can you actually deliver predictable performance as your data size grows or your throughput grows or your concurrent user on that application of service grows? It's really easy to build an application that operates at low scale or low throughput or low concurrency but performance usually starts degrading as you start scaling one of these attributes. The third thing is the ability to operate and always on globally resilient application. And that requires a really robust data platform that can be up on a five nine basis globally, can support global distribution because a lot of these applications have global users. And the last point is, goes back to my first answer which is, can you operate all of this at a cost point which is not prohibitive but it makes sense from a TCO perspective. 'Cause a lot of times what we see is people make choices of data platforms and as ironically their service or applications become more successful and more users join their journey the revenue starts going up, the user base starts going up but the cost basis starts crossing over the revenue and they're losing money on the service, ironically as the service becomes more popular. So really unlimited scale predictable performance always on a globally resilient basis and low TCO. These are the four essential capabilities of any modern data platform. >> So then talk to me with those as the four main core functionalities of a modern data platform, how does Aerospike deliver that? >> So we were built, as I said from day one to operate at unlimited scale and deliver predictable performance. And then over the years as we work with customers we build this incredible high availability capability which helps us deliver the always on, you know, operations. So we have customers who are who have been on the platform 10 years with no downtime for example, right? So we are talking about an amazing continuum of high availability that we provide for customers who operate these, you know globally resilient services. The key to our innovation here is what we call the hybrid memory architecture. So, you know, going a little bit technically deep here essentially what we built out in our architecture is the ability on each node or each server to treat a bank of SSDs or solid-state devices as essentially extended memory. So you're getting memory performance but you're accessing these SSDs. You're not paying memory prices but you're getting memory performance. As a result of that you can attach a lot more data to each node or each server in a distributed cluster. And when you kind of scale that across basically a distributed cluster you can do with Aerospike the same things at 60 to 80% lower server count. And as a result 60 to 80% lower TCO compared to some of the other options that are available in the market. Then basically, as I said that's the key kind of starting point to the innovation. We lay around capabilities like, you know replication, change data notification, you know synchronous and asynchronous replication. The ability to actually stretch a single cluster across multiple regions. So for example, if you're operating a global service you can have a single Aerospike cluster with one node in San Francisco one node in New York, another one in London and this would be basically seamlessly operating. So that, you know, this is strongly consistent, very few no SQL data platforms are strongly consistent or if they are strongly consistent they will actually suffer performance degradation. And what strongly consistent means is, you know all your data is always available it's guaranteed to be available there is no data lost any time. So in this configuration that I talked about if the node in London goes down your application still continues to operate, right? Your users see no kind of downtime and you know, when London comes up it rejoins the cluster and everything is back to kind of the way it was before, you know London left the cluster so to speak. So the ability to do this globally resilient highly available kind of model is really, really powerful. A lot of our customers actually use that kind of a scenario and we offer other deployment scenarios from a higher availability perspective. So everything starts with HMA or Hybrid Memory Architecture and then we start building a lot of these other capabilities around the platform. And then over the years what our customers have guided us to do is as they're putting together a modern kind of data infrastructure, we don't live in the silo. So Aerospike gets deployed with other technologies like streaming technologies or analytics technologies. So we built connectors into Kafka, Pulsar, so that as you're ingesting data from a variety of data sources you can ingest them at very high ingest speeds and store them persistently into Aerospike. Once the data is in Aerospike you can actually run Spark jobs across that data in a multi-threaded parallel fashion to get really insight from that data at really high throughput and high speed. >> High throughput, high speed, incredibly important especially as today's landscape is increasingly distributed. Data centers, multiple public clouds, Edge, IoT devices, the workforce embracing more and more hybrid these days. How are you helping customers to extract more value from data while also lowering costs? Go into some customer examples 'cause I know you have some great ones. >> Yeah, you know, I think, we have built an amazing set of customers and customers actually use us for some really mission critical applications. So, you know, before I get into specific customer examples let me talk to you about some of kind of the use cases which we see out there. We see a lot of Aerospike being used in fraud detection. We see us being used in recommendations engines we get used in customer data profiles, or customer profiles, Customer 360 stores, you know multiplayer gaming and entertainment. These are kind of the repeated use case, digital payments. We power most of the digital payment systems across the globe. Specific example from a specific example perspective the first one I would love to talk about is PayPal. So if you use PayPal today, then you know when you're actually paying somebody your transaction is, you know being sent through Aerospike to really decide whether this is a fraudulent transaction or not. And when you do that, you know, you and I as a customer are not going to wait around for 10 seconds for PayPal to say yay or nay. We expect, you know, the decision to be made in an instant. So we are powering that fraud detection engine at PayPal. For every transaction that goes through PayPal. Before us, you know, PayPal was missing out on about 2% of their SLAs which was essentially millions of dollars which they were losing because, you know, they were letting transactions go through and taking the risk that it's not a fraudulent transaction. With Aerospike they can now actually get a much better SLA and the data set on which they compute the fraud score has gone up by you know, several factors. So by 30X if you will. So not only has the data size that is powering the fraud engine actually gone up 30X with Aerospike but they're actually making decisions in an instant for, you know, 99.95% of their transactions. So that's- >> And that's what we expect as consumers, right? We want to know that there's fraud detection on the swipe regardless of who we're interacting with. >> Yes, and so that's a really powerful use case and you know, it's a great customer success story. The other one I would talk about is really Wayfair, right, from retail and you know from e-commerce. So everybody knows Wayfair global leader in really in online home furnishings and they use us to power their recommendations engine. And you know it's basically if you're purchasing this, people who bought this also bought these five other things, so on and so forth. They have actually seen their cart size at checkout go up by up to 30%, as a result of actually powering their recommendations engine through Aerospike. And they were able to do this by reducing the server count by 9X. So on one ninth of the servers that were there before Aerospike, they're now powering their recommendations engine and seeing cart size checkout go up by 30%. Really, really powerful in terms of the business outcome and what we are able to, you know, drive at Wayfair. >> Hugely powerful as a business outcome. And that's also what the consumer wants. The consumer is expecting these days to have a very personalized relevant experience that's going to show me if I bought this show me something else that's related to that. We have this expectation that needs to be really fueled by technology. >> Exactly, and you know, another great example you asked about you know, customer stories, Adobe. Who doesn't know Adobe, you know. They're on a mission to deliver the best customer experience that they can. And they're talking about, you know great Customer 360 experience at scale and they're modernizing their entire edge compute infrastructure to support this with Aerospike. Going to Aerospike basically what they have seen is their throughput go up by 70%, their cost has been reduced by 3X. So essentially doing it at one third of the cost while their annual data growth continues at, you know about north of 30%. So not only is their data growing they're able to actually reduce their cost to actually deliver this great customer experience by one third to one third and continue to deliver great Customer 360 experience at scale. Really, really powerful example of how you deliver Customer 360 in a world which is dynamic and you know on a data set which is constantly growing at north of 30% in this case. >> Those are three great examples, PayPal, Wayfair, Adobe, talking about, especially with Wayfair when you talk about increasing their cart checkout sizes but also with Adobe increasing throughput by over 70%. I'm looking at my notes here. While data is growing at 32%, that's something that every organization has to contend with data growth is continuing to scale and scale and scale. >> Yap, I'll give you a fun one here. So, you know, you may not have heard about this company it's called Dream11 and it's a company based out of India but it's a very, you know, it's a fun story because it's the world's largest fantasy sports platform. And you know, India is a nation which is cricket crazy. So you know, when they have their premier league going on and there's millions of users logged onto the Dream11 platform building their fantasy league teams and you know, playing on that particular platform, it has a hundred million users a hundred million plus users on the platform, 5.5 million concurrent users and they have been growing at 30%. So they are considered an amazing success story in terms of what they have accomplished and the way they have architected their platform to operate at scale. And all of that is really powered by Aerospike. Think about that they're able to deliver all of this and support a hundred million users 5.5 million concurrent users all with, you know 99 plus percent of their transactions completing in less than one millisecond. Just incredible success story. Not a brand that is, you know, world renowned but at least you know from what we see out there it's an amazing success story of operating at scale. >> Amazing success story, huge business outcomes. Last question for you as we're almost out of time is talk a little bit about Aerospike AWS the partnership Graviton2 better together. What are you guys doing together there? >> Great partnership. AWS has multiple layers in terms of partnerships. So, you know, we engage with AWS at the executive level. They plan out, really roll out of new instances in partnership with us, making sure that, you know those instance types work well for us. And then we just released support for Aerospike on the Graviton platform and we just announced a benchmark of Aerospike running on Graviton on AWS. And what we see out there is with the benchmark a 1.6X improvement in price performance. And you know about 18% increase in throughput while maintaining a 27% reduction in cost, you know, on Graviton. So this is an amazing story from a price performance perspective, performance per watt for greater energy efficiencies, which basically a lot of our customers are starting to kind of talk to us about leveraging this to further meet their sustainability target. So great story from Aerospike and AWS not just from a partnership perspective on a technology and an executive level, but also in terms of what joint outcomes we are able to deliver for our customers. >> And it sounds like a great sustainability story. I wish we had more time so we would talk about this but thank you so much for talking about the main capabilities of a modern data platform, what's needed, why, and how you guys are delivering that. We appreciate your insights and appreciate your time. >> Thank you very much. I mean, if folks are at re:Invent next week or this week come on and see us at our booth and we are in the data analytics pavilion and you can find us pretty easily. Would love to talk to you. >> Perfect, we'll send them there. Subbu Iyer, thank you so much for joining me on the program today. We appreciate your insights. >> Thank you Lisa. >> I'm Lisa Martin, you're watching theCUBE's coverage of AWS re:Invent 2022. Thanks for watching. >> Clear- >> Clear cutting. >> Nice job, very nice job.
SUMMARY :
the fastest 15 minutes I'm sorry I didn't pin the right speed. and we are coming to you in Subbu, great to have you on the program. Great as always to be on So, you know, every company these days And a lot of the challenges that access to real time data to put in front of you and I and data platforms need to have. One of the reasons we see is So the ability to do How are you helping customers let me talk to you about fraud detection on the swipe and you know, it's a great We have this expectation that needs to be Exactly, and you know, with Wayfair when you talk So you know, when they have What are you guys doing together there? And you know about 18% and how you guys are delivering that. and you can find us pretty easily. for joining me on the program today. of AWS re:Invent 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
AWS | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
60 | QUANTITY | 0.99+ |
London | LOCATION | 0.99+ |
Lisa | PERSON | 0.99+ |
PayPal | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
3X | QUANTITY | 0.99+ |
2025 | DATE | 0.99+ |
Wayfair | ORGANIZATION | 0.99+ |
35% | QUANTITY | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
30% | QUANTITY | 0.99+ |
99.95% | QUANTITY | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
30X | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
32% | QUANTITY | 0.99+ |
27% | QUANTITY | 0.99+ |
1.6X | QUANTITY | 0.99+ |
each server | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Aerospike | ORGANIZATION | 0.99+ |
millions of dollars | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
Subbu | PERSON | 0.99+ |
9X | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
99 plus percent | QUANTITY | 0.99+ |
first answer | QUANTITY | 0.99+ |
third thing | QUANTITY | 0.99+ |
less than one millisecond | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
this week | DATE | 0.99+ |
Subbu Iyer | PERSON | 0.99+ |
one third | QUANTITY | 0.99+ |
millions of users | QUANTITY | 0.99+ |
over 70% | QUANTITY | 0.98+ |
both users | QUANTITY | 0.98+ |
Dream11 | ORGANIZATION | 0.98+ |
80% | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Graviton | TITLE | 0.98+ |
each node | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
three | QUANTITY | 0.98+ |
four | QUANTITY | 0.98+ |
Two | QUANTITY | 0.98+ |
one node | QUANTITY | 0.98+ |
hundred million users | QUANTITY | 0.98+ |
first vertical | QUANTITY | 0.97+ |
about 2% | QUANTITY | 0.97+ |
Aerospike | TITLE | 0.97+ |
single cluster | QUANTITY | 0.96+ |
Dr. Dan Duffy and Dr. Bill Putman | SuperComputing 22
>>Hello >>Everyone and welcome back to Dallas where we're live from, Super computing. My name is Savannah Peterson, joined with my co-host David, and we have a rocket of a show for you this afternoon. The doctors are in the house and we are joined by nasa, ladies and gentlemen. So excited. Please welcome Dr. Dan Duffy and Dr. Bill Putman. Thank you so much for being here, guys. I know this is kind of last minute. How's it to be on the show floor? What's it like being NASA here? >>What's exciting? We haven't, we haven't been here for three years, so this is actually really exciting to come back and see everybody, to see the showroom floor, see the innovations that have happened over the last three years. It's pretty exciting. >>Yeah, it's great. And, and so, because your jobs are so cool, and I don't wanna even remotely give even too little of the picture or, or not do it justice, could you give the audience a little bit of background on what you do as I think you have one of the coolest jobs ever. YouTube bill. >>I, I appreciate that. I, I, I run high Performance Computing Center at NASA Goddard for science. It's high performance information technology. So we do everything from networking to security, to high performance computing, to data sciences, artificial intelligence and machine learning is huge for us now. Yeah, large amounts of data, big data sets, but we also do scientific visualizations and then cloud and commercial cloud computing, as well as on premises cloud computing. And quite frankly, we support a lot of what Bill and his team does. >>Bill, why don't you tell us what your team >>Does? Yeah, so I'm a, I'm an earth scientist. I work as the associate chief at the global modeling assimilation office. And our job is to really, you know, maximize the use of all the observations that NASA takes from space and build that into a coherent, consistent physical system of the earth. Right? And we're focused on utilizing the HC that, that Dan and the folks at the nccs provide to us, to the best of our abilities to integrate those observations, you know, on time scales from hours, days to, to seasonal to to monthly time scales. That's, that's the essence of our focus at the GMA o >>Casual modeling, all of NASA's earth data. That, that in itself as a sentence is pretty wild. I imagine you're dealing with a ton of data. >>Oh, massive amounts of data. Yes, >>Probably, I mean, as much as one probably could, now that I'm thinking about it. I mean, and especially with how far things have to travel. Bill, sticking with you, just to open us up, what technology here excites you the most about the future and that will make your job easier? Let's put it that way. >>To me, it's the accelerator technologies, right? So there's the limited, the limiting factor for, for us as scientists is how fast we can get an answer. And if we can get our answer faster through accelerated technologies, you know, with the support of the, of the nccs and the computing centers, but also the software engineers enabling that for us, then we can do more, right. And push the questions even further, you know, so once we've gotten fast enough to do what we want to do, there's always something next that we wanna look for. So, >>I mean, at nasa you have to exercise such patience, whether that be data, coming back, images from a rover, doesn't matter what it is. Sometimes there's a lot of time, days, hours, years, depending on the situation. Right? I really, I really admire that. What about you, Dan? What's got you really excited about the future here? So >>Bill talked about the, the accelerated technology, which is absolutely true and, and, and is needed to get us not to only to the point where we have the compute resources to do the simulations that Bill wants to do, and also do it in a energy efficient way. But it's really the software frameworks that go around that and the software frameworks, the technology that dealing with how to use those in an energy efficient and and most efficient way is extremely important. And that's some of the, you know, that's what I'm really here to try to understand better about is how can I support these scientists with not just the hardware, but the software frameworks by which they can be successful. >>Yeah. We've, we've had a lot of kind of philosophical discussion about this, the difference between the quantitative increases in power in computing that we're seeing versus the question of whether or not we need truly qualitative changes moving forward. Where do you see the limits of, of, of, you know, if you, if you're looking at the ability to gather more data and process more data more quickly, what you can do with that data changes when you're getting updates every second versus every month seems pretty obvious. Is there a, is there, but is there, is there a near term target that you have specifically where once you reach that target, if you weren't thinking ahead of that target, you'd kind of be going, Okay, well we solved that problem, we're getting the data in so fast that you can, you can ask me, what is the temperature in this area? And you can go, Oh, well, huh, an hour ago the data said this. Beyond that, do you need a qualitative change in our ability to process information and tease insight into out of chaos? Or do you just need more quantity to be able to get to the point where you can do things like predict weather six months in advance? What are, what are your thoughts on that? Yeah, >>It's an interesting question, right? And, and you ended it with predicting whether six months in advance, and actually I was thinking the other way, right? I was thinking going to finer and finer scales and shorter time scales when you talk about having data more frequently, right? So one of the things that I'm excited about as a modeler is going to hire resolution and representing smaller scale processes at nasa, we're, we're interested in observations that are global. So our models are global and we'd like to push those to as fine a resolution as possible to do things like severe storm predictions and so forth. So the faster we can get the data, the more data we can have, and that area would improve our ability to do that as well. So, >>And your background is in meteorology, right? >>Yes, I'm a meteorologist. >>Excellent. Okay. Yeah, yeah, >>Yeah. So, so I have to ask a question, and I'm sure all the audience cares about this. And I went through this when I was talking about the ghost satellites as well. What, what is it about weather that makes it so hard to predict? >>Oh, it's the classic chaos problem. The, the butterfly effects problem, and it's just true. You know, you always hear the story of a butterfly in Africa flaps, its rings and wings, and the weather changes in, in New York City, and it's just, computers are an excellent example of that, right? So we have a model of the earth, we can run it two times in a row and get the exact same answer, but if we flip a bit somewhere, then the answer changes 10 days later significantly. So it's a, it's a really interesting problem. So, >>Yeah. So do you have any issue with the fact that your colleague believes that butterflies are responsible for weather? No, I does that, does that, is it responsible for climate? Does that bother you at all? >>No, it doesn't. As a matter of fact, they actually run those butterfly like experi experiments within the systems where they do actually flip some bits and see what the uncertainties are that happen out 7, 8, 9 days out in advance to understand exactly what he's saying, to understand the uncertainties, but also the sensitivity with respect to the observations that they're taking. So >>Yeah, it's fascinating. It is. >>That is fascinating. Sticking with you for a second, Dan. So you're at the Center for Climate Simulation. Is that the center that's gonna help us navigate what happens over the next decade? >>Okay, so I, no one center is gonna help us navigate what's gonna happen over the next decade or the next 50 or a hundred years, right. It's gonna be everybody together. And I think NASA's role in that is really to pioneer the, the, the models that that bill and others are doing to understand what's gonna happen in not just the seasonal sub, but we also work with G, which is the God Institute for Space Studies. Yeah. Which does the decatal and, and the century long studies. Our, our job is to really help that research, understand what's happening with the client, but then feed that back into what observations we need to make next in order to better understand and better quantify the risks that we have to better quantify the mitigations that we can make to understand how and, and, and affect how the climate is gonna go for the future. So that's really what we trying to do. We're trying to do that research to understand the climate, understand what mitigations we can have, but also feedback into what observations we can make for the future. >>Yeah. And and what's the partnership ecosystem around that? You mentioned that it's gonna take all of us, I assume you work with a lot of >>Partners, Probably both of you. I mean, obviously the, the, the federal agencies work huge amounts together. Nasa, Noah is our huge partnerships. Sgs, a huge partnerships doe we've talked to doe several times this, so this, this this week already. So there's huge partnerships that go across the federal agency. We, we work also with Europeans as much as we can given the, the, the, you know, sort of the barriers of the countries and the financials. But we do collaborate as much as we can with, And the nice thing about NASA, I would say is the, all the observations that we take are public, they're paid for by the public. They're public, everybody can down them, anybody can down around the world. So that's also, and they're global measurements as Bill said, they're not just regional. >>Do you have, do you have specific, when you think about improving your ability to gain insights from data that that's being gathered? Yeah. Do you set out specific milestones that you're looking for? Like, you know, I hope by June of next year we will have achieved a place where we are able to accomplish X. Yeah. Do you, do you, Yeah. Bill, do you put, what, >>What milestones do we have here? So, yeah, I mean, do you have >>Yeah. Are, are you, are you sort of kept track of that way? Do you think of things like that? Like very specific things? Or is it just so fluid that as long as you're making progress towards the future, you feel okay? >>No, I would say we absolutely have milestones that we like to keep in track, especially from the modeling side of things, right? So whether it's observations that exist now that we want to use in our system, milestones to getting those observations integrated in, but also thinking even further ahead to the observations that we don't have yet. So we can use the models that we have today to simulate those kind of observations that we might want in the future that can help us do things that we can do right now. So those missions are, are aided by the work that we do at the GBO and, and the nccs, but, >>Okay, so if we, if we extrapolate really to the, to the what if future is really trying to understand the entire earth system as best as we can. So all the observations coming in, like you said, in in near real time, feeding that into an earth system model and to be able to predict short term, midterm or even long term predictions with, with some degree of certainty. And that may be things like climate change or it may be even more important, shorter term effects of, of severe weather. Yeah. Which is very important. And so we are trying to work towards that high resolution, immediate impact model that we can, that we can, you know, really share with the world and share those results as best, as best we can. >>Yeah. I, I have a quick, I have a quick follow up on that. I I bet we both did. >>So, so if you think about AI and ml, artificial intelligence and machine learning, something that, you know, people, people talk about a lot. Yeah. There's the concept of teaching a machine to go look for things, call it machine learning. A lot of it's machine teaching we're saying, you know, hit, you know, hit the rack on this side with a stick or the other side with the stick to get it to, to kind of go back and forth. Do you think that humans will be able to guide these systems moving forward enough to tease out the insights that we want? Or do you think we're gonna have to rely on what people think of as artificial intelligence to be able to go in with this massive amount of information with an almost infinite amount of variables and have the AI figure out that, you know what, it was the butterfly, It really was the butterfly. We all did models with it, but, but you understand the nuance that I'm saying. It's like we, we, we think we know what all the variables are and that it's chaotic because there's so many variables and there's so much data, but maybe there's something we're not taking into >>A account. Yeah, I I, I'm, I'm, I'm sure that's absolutely the case. And I'll, I'll start and let Bill, Bill jump in here. Yeah, there's a lot of nuances with a aiml. And so the, the, the, the real approach to get to where we want to be with this earth system model approach is a combination of both AI ML train models as best as we can and as unbiased way as we can. And there's a, there's a big conversation we have around that, but also with a physics or physical based model as well, Those two combined with the humans or the experts in the loop, we're not just gonna ask the artificial intelligence to predict anything and everything. The experts need to be in the loop to guide the training in as best as we, as, as we can in an unbiased, equitable way, but also interpret the results and not just give over to the ai. But that's the combination of that earth system model that we really wanna see. The future's a combination of AI l with physics based, >>But there's, there's a, there's an obvious place for a AI and ML in the modeling world that is in the parameterizations of the estimations that we have to do in our systems, right? So when we think about the earth system and modeling the earth system, there are many things like the equations of motions and thermodynamics that have fixed equations that we know how to solve on a computer. But there's a lot of things that happen physically in the atmosphere that we don't have equations for, and we have to estimate them. And machine learning through the use of high resolution models or observations in training the models to understand and, and represent that, yeah, that that's the place where it's really useful >>For us. There's so many factors, but >>We have to, but we have to make sure that we have the physics in that machine learning in those, in those training. So physics informed training isn't very important. So we're not just gonna go and let a model go off and do whatever it wants. It has to be constrained within physical constraints that the, that the experts know. >>Yeah. And with the wild amount of variables that affect our, our earth, quite frankly. Yeah, yeah. Which is geez. Which is insane. My god. So what's, what, what technology or what advancement needs to happen for your jobs to get easier, faster for our ability to predict to be even more successful than it is currently? >>You know, I think for me, the vision that I have for the future is that at some point, you know, all data is centrally located, essentially shared. We have our applications are then services that sit around all that data. I don't have to sit as a user and worry about, oh, is this all this data in place before I run my application? It's already there, it's already ready for me. My service is prepared and I just launch it out on that service. But that coupled with the performance that I need to get the result that I want in time. And I don't know when that's gonna happen, but at some point it might, you know, I don't know rooting for you, but that's, >>So there are, there are a lot of technologies we can talk about. What I'd like to mention is, is open science. So NASA is really trying to make a push and transformation towards open science. 2023 is gonna be the year of open science for nasa. And what does that mean? It means a lot of what Bill just said is that we have equity and fairness and accessibility and you can find the data, it's findability, it's fair data, you know, a fair findability accessibility reproducibility, and I forget what the eye stands for, but these are, these are tools and, and, and things that we need to, as, as a computing centers and including all the HC centers here, as well as the scientists need to support, to be as transparent as possible with the data sets and the, and the research that we're doing. And that's where I think is gonna be the best thing is if we can get this data out there that anybody can use in an equitable way and as transparent as possible, that's gonna eliminate, in my opinion, the bias over time because mistakes will be found and mistakes will be corrected over time. >>I love that. Yeah. The open source science end of this. No, it's great. And the more people that have access people I find in the academic world, especially people don't know what's going on in the private sector and vice versa. And so I love that you just brought that up. Closing question for you, because I suspect there might be some members of our audience who maybe have fantasized about working at nasa. You've both been working there for over a decade. Is it as cool as we all think of it? It is on the outside. >>I mean, it's, it's definitely pretty cool. >>You don't have to be modest about it, you know, >>I mean, just being at Goddard and being at the center where they build the James web web telescope and you can go to that clean room and see it, it's just fascinating. So it, it's really an amazing opportunity. >>Yeah. So NASA Goddard as a, as a center has, you know, information technologist, It has engineers, it has scientists, it has support staff, support team members. We have built more things, more instruments that have flown in this space than any other place in the world. The James Lab, we were part of that, part of a huge group of people that worked on James. We and James, we came through and was assembled in our, our, our clean room. It's one of the biggest clean rooms in, in, in the world. And we all took opportunities to go over and take selfies with this as they put those loveness mirrors on them. Yeah, it was awesome. It was amazing. And to see what the James we has done in such a short amount of time, the successes that they've gone through is just incredible. Now, I'm not a, I'm not a part of the James web team, but to be a, to be at the same center, to to listen to scientists like Bill talk about their work, to listen to scientists that, that talk about James, we, that's what's inspiring. And, and we get that all the time. >>And to have the opportunity to work with the astronauts that service the, the Hubble Telescope, you know, these things are, >>That's literally giving me goosebumps right now. I'm sitting over >>Here just, just an amazing opportunity. And woo. >>Well, Dan, Bill, thank you both so much for being on the show. I know it was a bit last minute, but I can guarantee we all got a lot out of it. David and I both, I know I speak for us in the whole cube audience, so thank you. We'll have you, anytime you wanna come talk science on the cube. Thank you all for tuning into our supercomputing footage here, live in Dallas. My name is Savannah Peterson. I feel cooler having sat next to these two gentlemen for the last 15 minutes and I hope you did too. We'll see you again soon.
SUMMARY :
The doctors are in the house and we are joined by We haven't, we haven't been here for three years, so this is actually really could you give the audience a little bit of background on what you do as I think you And quite frankly, we support a lot of what Bill and his And our job is to really, you know, maximize the use of all the observations I imagine you're dealing with a ton of data. Oh, massive amounts of data. what technology here excites you the most about the future and that will make your job easier? And push the questions even further, you know, I mean, at nasa you have to exercise such patience, whether that be data, coming back, images from a rover, And that's some of the, you know, be able to get to the point where you can do things like predict weather six months in advance? So the faster we can get the data, the more data we can have, and that area would improve our ability And I went through this when I was talking about the ghost satellites So we have a model of the earth, we can run it two times Does that bother you at all? what he's saying, to understand the uncertainties, but also the sensitivity with respect to the observations that they're taking. Yeah, it's fascinating. Is that the center that's gonna help us navigate what happens over the next decade? just the seasonal sub, but we also work with G, which is the God Institute for I assume you work with a lot of the, the, you know, sort of the barriers of the countries and the financials. Like, you know, I hope by Do you think of things like that? So we can use the models that we have today to simulate those kind of observations that we can, that we can, you know, really share with the world and share those results as best, I I bet we both did. We all did models with it, but, but you understand the nuance that I'm saying. And there's a, there's a big conversation we have around that, but also with a physics or physical based model as is in the parameterizations of the estimations that we have to do in our systems, right? There's so many factors, but We have to, but we have to make sure that we have the physics in that machine learning in those, in those training. to get easier, faster for our ability to predict to be even more successful you know, I don't know rooting for you, but that's, it's findability, it's fair data, you know, a fair findability accessibility reproducibility, And so I love that you just brought telescope and you can go to that clean room and see it, it's just fascinating. And to see what the James we has done in such a short amount of time, the successes that they've gone through is I'm sitting over And woo. next to these two gentlemen for the last 15 minutes and I hope you did too.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Dan | PERSON | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
Dallas | LOCATION | 0.99+ |
God Institute for Space Studies | ORGANIZATION | 0.99+ |
James | PERSON | 0.99+ |
Nasa | ORGANIZATION | 0.99+ |
Bill | PERSON | 0.99+ |
Africa | LOCATION | 0.99+ |
New York City | LOCATION | 0.99+ |
three years | QUANTITY | 0.99+ |
Dan Duffy | PERSON | 0.99+ |
Bill Putman | PERSON | 0.99+ |
earth | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two | QUANTITY | 0.98+ |
YouTube | ORGANIZATION | 0.98+ |
2023 | DATE | 0.98+ |
9 days | QUANTITY | 0.97+ |
an hour ago | DATE | 0.97+ |
8 | QUANTITY | 0.97+ |
Center for Climate Simulation | ORGANIZATION | 0.97+ |
7 | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
nasa | ORGANIZATION | 0.97+ |
next decade | DATE | 0.96+ |
June of next year | DATE | 0.96+ |
Dr. | PERSON | 0.94+ |
10 days later | DATE | 0.94+ |
six months | QUANTITY | 0.93+ |
two gentlemen | QUANTITY | 0.93+ |
this week | DATE | 0.92+ |
this afternoon | DATE | 0.92+ |
James Lab | ORGANIZATION | 0.9+ |
over a decade | QUANTITY | 0.87+ |
last three years | DATE | 0.85+ |
next 50 | DATE | 0.84+ |
Performance Computing Center | ORGANIZATION | 0.8+ |
GBO | ORGANIZATION | 0.77+ |
second | QUANTITY | 0.75+ |
two times in a row | QUANTITY | 0.72+ |
much | QUANTITY | 0.7+ |
last 15 minutes | DATE | 0.66+ |
Hubble Telescope | ORGANIZATION | 0.65+ |
NASA Goddard | ORGANIZATION | 0.65+ |
Noah | PERSON | 0.61+ |
Tim Yocum, Influx Data | Evolving InfluxDB into the Smart Data Platform
(soft electronic music) >> Okay, we're back with Tim Yocum who is the Director of Engineering at InfluxData. Tim, welcome, good to see you. >> Good to see you, thanks for having me. >> You're really welcome. Listen, we've been covering opensource software on theCUBE for more than a decade and we've kind of watched the innovation from the big data ecosystem, the cloud is being built out on opensource, mobile, social platforms, key databases, and of course, InfluxDB. And InfluxData has been a big consumer and crontributor of opensource software. So my question to you is where have you seen the biggest bang for the buck from opensource software? >> So yeah, you know, Influx really, we thrive at the intersection of commercial services and opensource software, so OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services, templating engines. Our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants. And like you've mentioned, even better, we contribute a lot back to the projects that we use, as well as our own product InfluxDB. >> But I got to ask you, Tim, because one of the challenge that we've seen, in particular, you saw this in the heyday of Hadoop, the innovations come so fast and furious, and as a software company, you got to place bets, you got to commit people, and sometimes those bets can be risky and not pay off. So how have you managed this challenge? >> Oh, it moves fast, yeah. That's a benefit, though, because the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we tend to do is we fail fast and fail often; we try a lot of things. You know, you look at Kubernetes, for example. That ecosystem is driven by thousands of intelligent developers, engineers, builders. They're adding value every day, so we have to really keep up with that. And as the stack changes, we try different technologies, we try different methods. And at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's something that we just do every day. >> So we have a survey partner down in New York City called Enterprise Technology Research, ETR, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes, is one of the areas that is kind of, it's been off the charts and seen the most significant adoption and velocity particularly along with cloud, but really, Kubernetes is just, you know, still up and to the right consistently, even with the macro headwinds and all of the other stuff that we're sick of talking about. So what do you do with Kubernetes in the platform? >> Yeah, it's really central to our ability to run the product. When we first started out, we were just on AWS and the way we were running was a little bit like containers junior. Now we're running Kubernetes everywhere at AWS, Azure, Google cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code. So our developers can focus on delivering services not trying to learn the intricacies of Amazon, Azure, and Google, and figure out how to deliver services on those three clouds with all of their differences. >> Just a followup on that, is it now, so I presume it sounds like there's a PaaS layer there to allow you guys to have a consistent experience across clouds and out to the edge, wherever. Is that correct? >> Yeah, so we've basically built more or less platform engineering is this the new, hot phrase. Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that just gets all of the underlying infrastructure out of the way and lets them focus on delivering Influx cloud. >> And I know I'm taking a little bit of a tangent, but is that, I'll call it a PaaS layer, if I can use that term, are there specific attributes to InfluxDB or is it kind of just generally off-the-shelf PaaS? Is there any purpose built capability there that is value-add or is it pretty much generic? >> So we really build, we look at things with a build versus buy, through a build versus buy lens. Some things we want to leverage, cloud provider services, for instance, POSTGRES databases for metadata, perhaps. Get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can deliver on, that has consistency, that is all generated from code. that we can, as an SRE group, as an OPS team, that we can manage with very few people, really, and we can stamp out clusters across multiple regions in no time. >> So sometimes you build, sometimes you buy it. How do you make those decisions and what does that mean for the platform and for customers? >> Yeah, so what we're doing is, it's like everybody else will do. We're looking for trade-offs that make sense. We really want to protect our customers' data, so we look for services that support our own software with the most up-time reliability and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team and of course, for our customers; you don't even see that. But we don't want to try to reinvent the wheel, like I had mentioned with SQL datasource for metadata, perhaps. Let's build on top of what of these three large cloud providers have already perfected and we can then focus on our platform engineering and we can help our developers then focus on the InfluxData software, the Influx cloud software. >> So take it to the customer level. What does it mean for them, what's the value that they're going to get out of all these innovations that we've been talking about today, and what can they expect in the future? >> So first of all, people who use the OSS product are really going to be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across over four billion series keys that people have stored, so there's a proven ability to scale. Now in terms of the opensource software and how we've developed the platform, you're getting highly available, high cardinality time-series platform. We manage it and really, as I had mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in realtime. We deploy to our platform every day, repeatedly, all the time. And it's that continuous deployment that allow us to continue testing things in flight, rolling things out that change, new features, better ways of doing deployments, safer ways of doing deployments. All of that happens behind the scenes and like we had mentioned earllier, Kubernetes, I mean, that allows us to get that done. We couldn't do it without having that platform as a base layer for us to then put our software on. So we iterate quickly. When you're on the Influx cloud platform, you really are able to take advantage of new features immediately. We roll things out every day and as those things go into production, you have the ability to use them. And so in the then, we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let us do that for you. >> That makes sense. Are the innovations that we're talking about in the evolution of InfluxDB, do you see that as sort of a natural evolution for existing customers? Is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >> Yeah, it really is. It's a little bit of both. Any engineer will say, "Well it depends." So cloud-native technologies are really the hot thing, IoT, industrial IoT especially. People want to just shove tons of data out there and be able to do queries immediately and they don't want to manage infrastructure. What we've started to see are people that use the cloud service as their datastore backbone and then they use edge computing with our OSS product to ingest data from say, multiple production lines, and down-sample that data, send the rest of that data off to Influx cloud where the heavy processing takes place. So really, us being in all the different clouds and iterating on that, and being in all sorts of different regions, allows for people to really get out of the business of trying to manage that big data, have us take care of that. And, of course, as we change the platform, endusers benefit from that immediately. >> And so obviously you've taken away a lot of the heavy lifting for the infrastructure. Would you say the same things about security, especially as you go out to IoT at the edge? How should we be thinking about the value that you bring from a security perspective? >> We take security super seriously. It's built into our DNA. We do a lot of work to ensure that our platform is secure, that the data that we store is kept private. It's, of course, always a concern, you see in the news all the time, companies being compromised. That's something that you can have an entire team working on which we do, to make sure that the data that you have, whether it's in transit, whether it's at rest is always kept secure, is only viewable by you. You look at things like software bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software and we do that, you know, as we use new tools. That's something, that's just part of our jobs to make sure that the platform that we're running has fully vetted software. And you know, with opensource especially, that's a lot of work, and so it's definitely new territory. Supply chain attacks are definitely happening at a higher clip that they used to but that is really just part of a day in the life for folks like us that are building platforms. >> And that's key, especially when you start getting into the, you know, that we talk about IoT and the operations technologies, the engineers running that infrastrucutre. You know, historically, as you know, Tim, they would air gap everything; that's how they kept it safe. But that's not feasible anymore. Everything's-- >> Can't do that. >> connected now, right? And so you've got to have a partner that is, again, take away that heavy lifting to R&D so you can focus on some of the other activities. All right, give us the last word and the key takeaways from your perspective. >> Well, you know, from my perspective, I see it as a two-lane approach, with Influx, with any time-series data. You've got a lot of stuff that you're going to run on-prem. What you had mentioned, air gapping? Sure, there's plenty of need for that. But at the end of the day, people that don't want to run big datacenters, people that want to entrust their data to a company that's got a full platform set up for them that they can build on, send that data over to the cloud. The cloud is not going away. I think a more hybrid approach is where the future lives and that's what we're prepared for. >> Tim, really appreciate you coming to the program. Great stuff, good to see you. >> Thanks very much, appreciate it. >> Okay in a moment, I'll be back to wrap up today's session. You're watching theCUBE. (soft electronic music)
SUMMARY :
the Director of Engineering at InfluxData. So my question to you back to the projects that we use, in the heyday of Hadoop, And at the end of the day, we and all of the other stuff and the way we were and out to the edge, wherever. And so that just gets all of that we can manage with for the platform and for customers? and we can then focus on that they're going to get And so in the then, we want you to focus about in the evolution of InfluxDB, and down-sample that data, that you bring from a that the data that you have, and the operations technologies, and the key takeaways that data over to the cloud. you coming to the program. to wrap up today's session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yocum | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
InfluxData | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
New York City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
two-lane | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
tomorrow | DATE | 0.98+ |
today | DATE | 0.98+ |
more than a decade | QUANTITY | 0.98+ |
270 terabytes | QUANTITY | 0.98+ |
InfluxDB | TITLE | 0.98+ |
one | QUANTITY | 0.97+ |
about 1500 CIOs | QUANTITY | 0.97+ |
Influx | ORGANIZATION | 0.96+ |
Azure | ORGANIZATION | 0.94+ |
one way | QUANTITY | 0.93+ |
single server | QUANTITY | 0.93+ |
first | QUANTITY | 0.92+ |
PaaS | TITLE | 0.92+ |
Kubernetes | TITLE | 0.91+ |
Enterprise Technology Research | ORGANIZATION | 0.91+ |
Kubernetes | ORGANIZATION | 0.91+ |
three clouds | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.89+ |
tons of data | QUANTITY | 0.87+ |
rsus | ORGANIZATION | 0.87+ |
Hadoop | TITLE | 0.85+ |
over four billion series | QUANTITY | 0.85+ |
three large cloud providers | QUANTITY | 0.74+ |
three different cloud providers | QUANTITY | 0.74+ |
theCUBE | ORGANIZATION | 0.66+ |
SQL | TITLE | 0.64+ |
opensource | ORGANIZATION | 0.63+ |
intelligent developers | QUANTITY | 0.57+ |
POSTGRES | ORGANIZATION | 0.52+ |
earllier | ORGANIZATION | 0.5+ |
Azure | TITLE | 0.49+ |
InfluxDB | OTHER | 0.48+ |
cloud | TITLE | 0.4+ |
Evolving InfluxDB into the Smart Data Platform
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
David Brown | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Stu | PERSON | 0.99+ |
Herain Oberoi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Kamile Taouk | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Rinesh Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Santana Dasgupta | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Canada | LOCATION | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ICE | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Venkat | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Camille | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Venkat Krishnamachari | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Don Tapscott | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Intercontinental Exchange | ORGANIZATION | 0.99+ |
Children's Cancer Institute | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Sabrina Yan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Sabrina | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
MontyCloud | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Leo | PERSON | 0.99+ |
COVID-19 | OTHER | 0.99+ |
Santa Ana | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Tushar | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Valente | PERSON | 0.99+ |
JL Valente | PERSON | 0.99+ |
1,000 | QUANTITY | 0.99+ |
Evolving InfluxDB into the Smart Data Platform Full Episode
>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SUMMARY :
we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
16 times | QUANTITY | 0.99+ |
two rows | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
60,000 people | QUANTITY | 0.99+ |
Rust | TITLE | 0.99+ |
Influx | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
three experts | QUANTITY | 0.99+ |
InfluxDB | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
each row | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
Noble nine | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Flux | ORGANIZATION | 0.99+ |
Influx DB | TITLE | 0.99+ |
each column | QUANTITY | 0.99+ |
270 terabytes | QUANTITY | 0.99+ |
cube.net | OTHER | 0.99+ |
twice | QUANTITY | 0.99+ |
Bryan | PERSON | 0.99+ |
Pandas | TITLE | 0.99+ |
c plus plus | TITLE | 0.99+ |
three years ago | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
more than a decade | QUANTITY | 0.98+ |
Apache | ORGANIZATION | 0.98+ |
dozens | QUANTITY | 0.98+ |
free@influxdbu.com | OTHER | 0.98+ |
30,000 feet | QUANTITY | 0.98+ |
Rust Foundation | ORGANIZATION | 0.98+ |
two temperature values | QUANTITY | 0.98+ |
In Flux Data | ORGANIZATION | 0.98+ |
one time stamp | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Russ | PERSON | 0.98+ |
IOT | ORGANIZATION | 0.98+ |
Evolving InfluxDB | TITLE | 0.98+ |
first | QUANTITY | 0.97+ |
Influx data | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
Influx DB University | ORGANIZATION | 0.97+ |
SQL | TITLE | 0.97+ |
The Cube | TITLE | 0.96+ |
Influx DB Cloud | TITLE | 0.96+ |
single server | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.96+ |
Lisa-Marie Namphy, Cockroach Labs & Jake Moshenko, Authzed | KubeCon + CloudNativeCon NA 2022
>>Good evening, brilliant humans. My name is Savannah Peterson and very delighted to be streaming to you. Live from the Cube Studios here in Motor City, Michigan. I've got John Furrier on my left. John, this is our last interview of the day. Energy just seems to keep oozing. How >>You doing? Take two, Three days of coverage, the queue love segments. This one's great cuz we have a practitioner who's implementing all the hard core talks to be awesome. Can't wait to get into it. >>Yeah, I'm very excited for this one. If it's not very clear, we are a community focused community is a huge theme here at the show at Cape Con. And our next guests are actually a provider and a customer. Turning it over to you. Lisa and Jake, welcome to the show. >>Thank you so much for having us. >>It's great to be here. It is our pleasure. Lisa, you're with Cockroach. Just in case the audience isn't familiar, give us a quick little sound bite. >>We're a distributed sequel database. Highly scalable, reliable. The database you can't kill, right? We will survive the apocalypse. So very resilient. Our customers, mostly retail, FinTech game meet online gambling. They, they, they need that resiliency, they need that scalability. So the indestructible database is the elevator pitch >>And the success has been very well documented. Valuation obviously is a scorp guard, but huge customers. We were at the Escape 19. Just for the record, the first ever multi-cloud conference hasn't come back baby. Love it. It'll come back soon. >>Yeah, well we did a similar version of it just a month ago and I was, that was before Cockroach. I was a different company there talking a lot about multi-cloud. So, but I'm, I've been a car a couple of years now and I run community, I run developer relations. I'm still also a CNCF ambassador, so I lead community as well. I still run a really large user group in the San Francisco Bay area. So we've just >>Been in >>Community, take through the use case. Jake's story set us up. >>Well I would like Jake to take him through the use case and Cockroach is a part of it, but what they've built is amazing. And also Jake's history is amazing. So you can start Jake, >>Wherever you take >>Your Yeah, sure. I'm Jake, I'm CEO and co-founder of Offset. Oted is the commercial entity behind Spice Dvy and Spice Dvy is a permission service. Cool. So a permission service is something that lets developers and let's platform teams really unlock the full potential of their applications. So a lot of people get stuck on My R back isn't flexible enough. How do I do these fine grain things? How do I do these complex sharing workflows that my product manager thinks is so important? And so our service enables those platform teams and developers to do those kinds of things. >>What's your, what's your infrastructure? What's your setup look like? What, how are you guys looking like on the back end? >>Sure. Yeah. So we're obviously built on top of Kubernetes as well. One of the reasons that we're here. So we use Kubernetes, we use Kubernetes operators to orchestrate everything. And then we use, use Cockroach TV as our production data store, our production backend data store. >>So I'm curious, cause I love when these little matchmakers come together. You said you've now been presenting on a little bit of a road show, which is very exciting. Lisa, how are you and the team surfacing stories like Jakes, >>Well, I mean any, any place we can obviously all the social medias, all the blogs, How >>Are you finding it though? >>How, how did you Oh, like from our customers? Yeah, we have an open source version so people start to use us a long time before we even sometimes know about them. And then they'll come to us and they'll be like, I love Cockroach, and like, tell me about it. Like, tell me what you build and if it's interesting, you know, we'll we'll try to give it some light. And it's always interesting to me what people do with it because it's an interesting technology. I like what they've done with it. I mean the, the fact that it's globally distributed, right? That was like a really important thing to you. Totally. >>Yeah. We're also long term fans of Cockroach, so we actually all work together out of Workbench, which was a co-working space and investor in New York City. So yeah, we go way back. We knew the founders. I, I'm constantly saying like if I could have invested early in cockroach, that would've been the easiest check I could have ever signed. >>Yeah, that's awesome. And then we've been following that too and you guys are now using them, but folks that are out there looking to have the, the same challenges, what are the big challenges on selecting the database? I mean, as you know, the history of Cockroach and you're originating the story, folks out there might not know and they're also gonna choose a database. What's the, what's the big challenge that they can solve that that kind of comes together? What, what would you describe that? >>Sure. So we're, as I said, we're a permission service and per the data that you store in a permission service is incredibly sensitive. You need it to be around, right? You need it to be available. If the permission service goes down, almost everything else goes down because it's all calling into the permission service. Is this user allowed to do this? Are they allowed to do that? And if we can't answer those questions, then our customer is down, right? So when we're looking at a database, we're looking for reliability, we're looking for durability, disaster recovery, and then permission services are one of the only services that you usually don't shard geographically. So if you look at like AWS's iam, that's a global service, even though the individual things that they run are actually sharded by region. So we also needed a globally distributed database with all of those other properties. So that's what led us >>To, this is a huge topic. So man, we've been talking about all week the cloud is essentially distributed database at this point and it's distributed system. So distributed database is a hot topic, totally not really well reported. A lot of people talking about it, but how would you describe this distributed trend that's going on? What are the key reasons that they're driving it? What's making this more important than ever in your mind, in your opinion? >>I mean, for our use case, it was just a hard requirement, right? We had to be able to have this global service. But I think just for general use cases, a distributed database, distributed database has that like shared nothing architecture that allows you to kind of keep it running and horizontally scale it. And as your requirements and as your applications needs change, you can just keep adding on capacity and keep adding on reliability and availability. >>I'd love to get both of your opinion. You've been talking about the, the, the, the phases of customers, the advanced got Kubernetes going crazy distributed, super alpha geek. Then you got the, the people who are building now, then you got the lagers who are coming online. Where do you guys see the market now in terms of, I know the Alphas are all building all the great stuff and you guys had great success with all the top logos and they're all doing hardcore stuff. As the mainstream enterprise comes in, where's their psychology, what's on their mind? What's, you share any insight into your perspective on that? Because we're seeing a lot more of it folks becoming like real cloud players. >>Yeah, I feel like in mainstream enterprise hasn't been lagging as much as people think. You know, certainly there's been pockets in big enterprises that have been looking at this and as distributed sequel, it gives you that scalability that it's absolutely essential for big enterprises. But also it gives you the, the multi-region, you know, the, you have to be globally distributed. And for us, for enterprises, you know, you need your data near where the users are. I know this is hugely important to you as well. So you have to be able to have a multi-region functionality and that's one thing that distributed SQL lets you build and that what we built into our product. And I know that's one of the things you like too. >>Yeah, well we're a brand new product. I mean we only founded the company two years ago, but we're actually getting inbound interest from big enterprises because we solve the kinds of challenges that they have and whether, I mean, most of them already do have a cockroach footprint, but whether they did or didn't, once they need to bring in our product, they're going to be adopting cockroach transitively anyway. >>So, So you're built on top of Cockroach, right? And Spice dv, is that open source or? >>It >>Is, yep. Okay. And explain the role of open source and your business model. Can you take a minute to talk about the relevance of that? >>Yeah, open source is key. My background is, before this I was at Red Hat. Before that we were at CoreOS, so CoreOS acquisition and before that, >>One of the best acquisitions that ever happened for the value. That was a great, great team. Yeah, >>We, we, we had fun and before that we built Qua. So my co-founders and I, we built Quay, which is a, a first private docker registry. So CoreOS and, and all of those things are all open source or deeply open source. So it's just in our dna. We also see it as part of our go-to market motion. So if you are a database, a lot of people won't even consider what you're doing without being open source. Cuz they say, I don't want to take a, I don't want to, I don't want to end up in an Oracle situation >>Again. Yeah, Oracle meaning they go, you get you locked in, get you in a headlock, Increase prices. >>Yeah. Oh yeah, >>Can, can >>I got triggered. >>You need to talk about your PTSD there >>Or what. >>I mean we have 20,000 stars on GitHub because we've been open and transparent from the beginning. >>Yeah. And it >>Well, and both of your projects were started based on Google Papers, >>Right? >>That is true. Yep. And that's actually, so we're based off of the Google Zans of our paper. And as you know, Cockroach is based off of the Google Span paper and in the the Zanzibar paper, they have this globally distributed database that they're built on top of. And so when I said we're gonna go and we're gonna make a company around the Zabar paper, people would go, Well, what are you gonna do for Span? And I was like, Easy cockroach, they've got us covered. >>Yeah, I know the guys and my friends. Yeah. So the question is why didn't you get into the first round of Cockroach? She said don't answer that. >>The question he did answer though was one of those age old arguments in our community about pronunciation. We used to argue about Quay, I always called it Key of course. And the co-founder obviously knows how it's pronounced, you know, it's the et cd argument, it's the co cuddl versus the control versus coo, CTL Quay from the co-founder. That is end of argument. You heard it here first >>And we're keeping it going with Osted. So awesome. A lot of people will say Zeed or, you know, so we, we just like to have a little ambiguity >>In the, you gotta have some semantic arguments, arm wrestling here. I mean, it keeps, it keeps everyone entertained, especially on the over the weekend. What's, what's next? You got obviously Kubernetes in there. Can you explain the relationship between Kubernetes, how you're handling Spice dv? What, what does the Kubernetes piece fit in and where, where is that going to be going? >>Yeah, great question. Our flagship product right now is a dedicated, and in a dedicated, what we're doing is we're spinning up a single tenant Kubernetes cluster. We're installing all of our operator suite, and then we're installing the application and running it in a single tenant fashion for our customers in the same region, in the same data center where they're running their applications to minimize latency. Because of this, as an authorization service, latency gets passed on directly to the end user. So everybody's trying to squeeze the latency down as far as they can. And our strategy is to just run these single tenant stacks for people with the minimal latency that we can and give them a VPC dedicated link very similar to what Cockroach does in their dedicated >>Product. And the distributed architecture makes that possible because it's lighter way, it's not as heavy. Is that one of the reasons? >>Yep. And Kubernetes really gives us sort of like a, a level playing field where we can say, we're going going to take the provider, the cloud providers Kubernetes offering, normalize it, lay down our operators, and then use that as the base for delivering >>Our application. You know, Jake, you made me think of something I wanted to bring up with other guests, but now since you're here, you're an expert, I wanna bring that up, but talk about Super Cloud. We, we coined that term, but it's kind of multi-cloud, is that having workloads on multiple clouds is hard. I mean there are, they are, there are workloads on, on clouds, but the complexity of one clouds, let's take aws, they got availability zones, they got regions, you got now data issues in each one being global, not that easy on one cloud, nevermind all clouds. Can you share your thoughts on how you see that progression? Because when you start getting, as its distributed database, a lot of good things might come up that could fit into solving the complexity of global workloads. Could you share your thoughts on or scoping that problem space of, of geography? Yeah, because you mentioned latency, like that's huge. What are some of the other challenges that other people have with mobile? >>Yeah, absolutely. When you have a service like ours where the data is small, but very critical, you can get a vendor like Cockroach to step in and to fill that gap and to give you that globally distributed database that you can call into and retrieve the data. I think the trickier issues come up when you have larger data, you have huge binary blobs. So back when we were doing Quay, we wanted to be a global service as well, but we had, you know, terabytes, petabytes of data that we were like, how do we get this replicated everywhere and not go broke? Yeah. So I think those are kind of the interesting issues moving forward is what do you do with like those huge data lakes, the huge amount of data, but for the, the smaller bits, like the things that we can keep in a relational database. Yeah, we're, we're happy that that's quickly becoming a solved >>Problem. And by the way, that that data problem also is compounded when the architecture goes to the edge. >>Totally. >>I mean this is a big issue. >>Exactly. Yeah. Edge is something that we're thinking a lot about too. Yeah, we're lucky that right now the applications that are consuming us are in a data center already. But as they start to move to the edge, we're going to have to move to the edge with them. And it's a story that we're gonna have to figure out. >>All right, so you're a customer cockroach, what's the testimonial if I put you on the spot, say, hey, what's it like working with these guys? You know, what, what's the, what's the, you know, the founders, so you know, you give a good description, little biased, but we'll, we'll we'll hold you on it. >>Yeah. Working with Cockroach has been great. We've had a couple things that we've run into along the way and we've gotten great support from our account managers. They've brought in the right technical expertise when we need it. Cuz what we're doing with Cockroach is not you, you couldn't do it on Postgres, right? So it's not just a simple rip and replace for us, we're using all of the features of Cockroach, right? We're doing as of system time queries, we're doing global replication. We're, you know, we're, we're consuming it all. And so we do need help from them sometimes and they've been great. Yeah. >>And that's natural as they grow their service. I mean the world's changing. >>Well I think one of the important points that you mentioned with multi-cloud, we want you to have the choice. You know, you can run it in in clouds, you can run it hybrid, you can run it OnPrem, you can do whatever you want and it's just, it's one application that you can run in these different data centers. And so really it's up to you how do you want to build your infrastructure? >>And one of the things we've been talking about, the super cloud concept that we've been issue getting a lot of contrary, but, but people are leaning into it is that it's the refactoring and taking advantage of the services. Like what you mentioned about cockroach. People are doing that now on cloud going the lift and shift market kind of had it time now it's like hey, I can start taking advantage of these higher level services or capability of someone else's stack and refactoring it. So I think that's a dynamic that I'm seeing a lot more of. And it sounds like it's working out great in this situation. >>I just came from a talk and I asked them, you know, what don't you wanna put in the cloud and what don't you wanna run in Kubernetes or on containers and good Yeah. And the customers that I was on stage with, one of the guys made a joke and he said I would put my dog in a container room. I could, he was like in the category, which is his right, which he is in the category of like, I'll put everything in containers and these are, you know, including like mis critical apps, heritage apps, since they don't wanna see legacy anymore. Heritage apps, these are huge enterprises and they wanna put everything in the cloud. Everything >>You so want your dog that gets stuck on the airplane when it's on the tarmac. >>Oh >>God, that's, she was the, don't take that analogy. Literally don't think about that. Well that's, >>That's let's not containerize. >>There's always supply chain concern. >>It. So I mean going macro and especially given where we are cncf, it's all about open source. Do y'all think that open source builds a better future? >>Yeah and a better past. I mean this is, so much of this software is founded on open source. I, we wouldn't be here really. I've been in open source community for many, many years so I wouldn't say I'm biased. I would say this is how we build software. I came from like in a high school we're all like, oh let's build a really cool application. Oh you know what? I built this cuz I needed it, but maybe somebody else needs it too. And you put it out there and that is the ethos of Silicon Valley, right? That's where we grew up. So I've always had that mindset, you know, and social coding and why I have three people, right? Working on the same thing when one person you could share it's so inefficient. All of that. Yeah. So I think it's great that people work on what they're really good at. You know, we all, now you need some standardization, you need some kind of control around this whole thing. Sometimes some foundations to, you know, herd the cats. Yeah. But it's, it's great. Which is why I'm a c CF ambassador and I spend a lot of time, you know, in my free time talking about open source. Yeah, yeah. >>It's clear how passionate you are about it. Jake, >>This is my second company that we founded now and I don't think either of them could have existed without the base of open source, right? Like when you look at I have this cool idea for an app or a company and I want to go try it out, the last thing I want to do is go and negotiate with a vendor to get like the core data component. Yeah. To even be able to get to the >>Prototypes. NK too, by the way. Yeah. >>Hey >>Nk >>Or hire, you know, a bunch of PhDs to go and build that core component for me. So yeah, I mean nobody can argue that >>It truly is, I gotta say a best time if you're a developer right now, it's awesome to be a developer right now. It's only gonna get better. As we were riff from the last session about productivity, we believe that if you follow the digital transformation to its conclusion, developers and it aren't a department serving the business, they are the business. And that means they're running the show, which means that now their entire workflow is gonna change. It's gonna be have to be leveraging services partnering. So yeah, open source just fills that. So the more code coming up, it's just no doubt in our mind that that's go, that's happening and will accelerate. So yeah, >>You know, no one company is gonna be able to compete with a community. 50,000 users contributing versus you riding it yourself in your garage with >>Your dogs. Well it's people driven too. It's humans not container. It's humans working together. And here you'll see, I won't say horse training, that's a bad term, but like as projects start to get traction, hey, why don't we come together as, as the world starts to settle and the projects have traction, you start to see visibility into use cases, functionality. Some projects might not be, they have to kind of see more kind >>Of, not every feature is gonna be development. Oh. So I mean, you know, this is why you connect with truly brilliant people who can architect and distribute sequel database. Like who thought of that? It's amazing. It's as, as our friend >>You say, Well let me ask you a question before we wrap up, both by time, what is the secret of Kubernetes success? What made Kubernetes specifically successful? Was it timing? Was it the, the unambitious nature of it, the unification of it? Was it, what was the reason why is Kubernetes successful, right? And why nothing else? >>Well, you know what I'm gonna say? So I'm gonna let Dave >>First don't Jake, you go first. >>Oh boy. If we look at what was happening when Kubernetes first came out, it was, Mesosphere was kind of like the, the big player in the space. I think Kubernetes really, it had the backing from the right companies. It had the, you know, it had the credibility, it was sort of loosely based on Borg, but with the story of like, we've fixed everything that was broken in Borg. Yeah. And it's better now. Yeah. So I think it was just kind and, and obviously people were looking for a solution to this problem as they were going through their containerization journey. And I, yeah, I think it was just right >>Place, the timing consensus of hey, if we just let this happen, something good might come together for everybody. That's the way I felt. I >>Think it was right place, right time, right solution. And then it just kind of exploded when we were at Cores. Alex Povi, our ceo, he heard about Kubernetes and he was like, you know, we, we had a thing called Fleet D or we had a tool called Fleet. And he's like, Nope, we're all in on Kubernetes now. And that was an amazing Yeah, >>I remember that interview. >>I, amazing decision. >>Yeah, >>It's clear we can feel the shift. It's something that's come up a lot this week is is the commitment. Everybody's all in. People are ready for their transformation and Kubernetes is definitely gonna be the orchestrator that we're >>Leveraging. Yeah. And it's an amazing community. But it was, we got lucky that the, the foundational technology, I mean, you know, coming out of Google based on Go conferences, based on Go, it's no to coincidence that this sort of nature of, you know, pods horizontally, scalable, it's all fits together. I does make sense. Yeah. I mean, no offense to Python and some of the other technologies that were built in other languages, but Go is an awesome language. It's so, so innovative. Innovative things you could do with it. >>Awesome. Oh definitely. Jake, I'm very curious since we learned on the way and you are a Detroit native? >>I am. Yep. I grew up in the in Warren, which is just a suburb right outside of Detroit. >>So what does it mean to you as a Michigan born bloke to be here, see your entire community invade? >>It is, I grew up coming to the Detroit Auto Show in this very room >>That brought me to Detroit the first time. Love n a I a s. Been there with our friends at Ford just behind us. >>And it's just so interesting to me to see the accumulation, the accumulation of tech coming to Detroit cuz it's really not something that historically has been a huge presence. And I just love it. I love to see the activity out on the streets. I love to see all the restaurants and coffee shops full of people. Just, I might tear up. >>Well, I was wondering if it would give you a little bit of that hometown pride and also the joy of bringing your community together. I mean, this is merging your two probably most core communities. Yeah, >>Yeah. Your >>Youth and your, and your career. It doesn't get more personal than that really. Right. >>It's just been, it's been really exciting to see the energy. >>Well thanks for going on the queue. Thanks for sharing. Appreciate it. Thanks >>For having us. Yeah, thank you both so much. Lisa, you were a joy of ball of energy right when you walked up. Jake, what a compelling story. Really appreciate you sharing it with us. John, thanks for the banter and the fabulous questions. I'm >>Glad I could help out. >>Yeah, you do. A lot more than help out sweetheart. And to all of you watching the Cube today, thank you so much for joining us live from Detroit, the Cube Studios. My name is Savannah Peterson and we'll see you for our event wrap up next.
SUMMARY :
Live from the Cube Studios here in Motor City, Michigan. implementing all the hard core talks to be awesome. here at the show at Cape Con. case the audience isn't familiar, give us a quick little sound bite. The database you can't And the success has been very well documented. I was a different company there talking a lot about multi-cloud. Community, take through the use case. So you can start Jake, So a lot of people get stuck on My One of the reasons that we're here. Lisa, how are you and the team surfacing stories like Like, tell me what you build and if it's interesting, We knew the founders. I mean, as you know, of the only services that you usually don't shard geographically. A lot of people talking about it, but how would you describe this distributed trend that's going on? like shared nothing architecture that allows you to kind of keep it running and horizontally scale the market now in terms of, I know the Alphas are all building all the great stuff and you And I know that's one of the things you like too. I mean we only founded the company two years ago, but we're actually getting Can you take a minute to talk about the Before that we were at CoreOS, so CoreOS acquisition and before that, One of the best acquisitions that ever happened for the value. So if you are a database, And as you know, Cockroach is based off of the Google Span paper and in the the Zanzibar paper, So the question is why didn't you get into obviously knows how it's pronounced, you know, it's the et cd argument, it's the co cuddl versus the control versus coo, you know, so we, we just like to have a little ambiguity Can you explain the relationship between Kubernetes, how you're handling Spice dv? And our strategy is to just run these single tenant stacks for people And the distributed architecture makes that possible because it's lighter way, can say, we're going going to take the provider, the cloud providers Kubernetes offering, You know, Jake, you made me think of something I wanted to bring up with other guests, but now since you're here, I think the trickier issues come up when you have larger data, you have huge binary blobs. And by the way, that that data problem also is compounded when the architecture goes to the edge. But as they start to move to the edge, we're going to have to move to the edge with them. You know, what, what's the, what's the, you know, the founders, so you know, We're, you know, we're, we're consuming it all. I mean the world's changing. And so really it's up to you how do you want to build your infrastructure? And one of the things we've been talking about, the super cloud concept that we've been issue getting a lot of contrary, but, but people are leaning into it I just came from a talk and I asked them, you know, what don't you wanna put in the cloud and God, that's, she was the, don't take that analogy. It. So I mean going macro and especially given where we are cncf, So I've always had that mindset, you know, and social coding and why I have three people, It's clear how passionate you are about it. Like when you look at I have this cool idea for an app or a company and Yeah. Or hire, you know, a bunch of PhDs to go and build that core component for me. you follow the digital transformation to its conclusion, developers and it aren't a department serving you riding it yourself in your garage with you start to see visibility into use cases, functionality. Oh. So I mean, you know, this is why you connect with It had the, you know, it had the credibility, it was sort of loosely based on Place, the timing consensus of hey, if we just let this happen, something good might come was like, you know, we, we had a thing called Fleet D or we had a tool called Fleet. It's clear we can feel the shift. I mean, you know, coming out of Google based on Go conferences, based on Go, it's no to coincidence that this Jake, I'm very curious since we learned on the way and you are a I am. That brought me to Detroit the first time. And it's just so interesting to me to see the accumulation, Well, I was wondering if it would give you a little bit of that hometown pride and also the joy of bringing your community together. It doesn't get more personal than that really. Well thanks for going on the queue. Yeah, thank you both so much. And to all of you watching the Cube today,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jake | PERSON | 0.99+ |
Alex Povi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
New York City | LOCATION | 0.99+ |
Detroit | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
20,000 stars | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
Zeed | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
Cockroach | ORGANIZATION | 0.99+ |
San Francisco Bay | LOCATION | 0.99+ |
second company | QUANTITY | 0.99+ |
Postgres | ORGANIZATION | 0.99+ |
Ford | ORGANIZATION | 0.99+ |
50,000 users | QUANTITY | 0.99+ |
three people | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Motor City, Michigan | LOCATION | 0.99+ |
Warren | LOCATION | 0.99+ |
Michigan | LOCATION | 0.99+ |
Spice Dvy | ORGANIZATION | 0.99+ |
Detroit Auto Show | EVENT | 0.99+ |
Cockroach Labs | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Offset | ORGANIZATION | 0.99+ |
Cube Studios | ORGANIZATION | 0.99+ |
KubeCon | EVENT | 0.99+ |
a month ago | DATE | 0.99+ |
two years ago | DATE | 0.98+ |
Jake Moshenko | PERSON | 0.98+ |
One | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Kubernetes | TITLE | 0.98+ |
Three days | QUANTITY | 0.97+ |
GitHub | ORGANIZATION | 0.97+ |
First | QUANTITY | 0.97+ |
Dave | PERSON | 0.96+ |
this week | DATE | 0.96+ |
CoreOS | ORGANIZATION | 0.96+ |
Quay | ORGANIZATION | 0.96+ |
Silicon Valley | LOCATION | 0.96+ |
Qua | ORGANIZATION | 0.95+ |
one application | QUANTITY | 0.95+ |
Jakes | PERSON | 0.94+ |
first round | QUANTITY | 0.94+ |
today | DATE | 0.94+ |
Oted | ORGANIZATION | 0.93+ |
Google Zans | ORGANIZATION | 0.93+ |
Authzed | ORGANIZATION | 0.92+ |
Cockroach | PERSON | 0.92+ |
Marie Namphy | PERSON | 0.92+ |
Tim Yocum, Influx Data
(upbeat music) >> Okay, we're back with Tim Yoakum, who is the Director of Engineering at Influx Data. Tim, welcome. Good to see you. >> Good to see you. Thanks for having me. >> You're really welcome. Listen, we've been covering open source software on the Cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem, the cloud is being built out on open source, mobile social platforms, key databases, and of course Influx DB, and Influx Data has been a big consumer and contributor of open source software. So my question to you is where have you seen the biggest bang for the buck from open source software? >> So, yeah, you know, Influx, really, we thrive at the intersection of commercial services and open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service, from our core storage engine technologies to web services, templating engines. Our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants. And like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product, Influx DB. >> You know, but I got to ask you, Tim, because one of the challenge that we've seen, in particular, you saw this in the heyday of Hadoop. The innovations come so fast and furious, and as a software company, you got to place bets, you got to, you know, commit people, and sometimes those bets can be risky and not pay off. How have you managed this challenge? >> Oh, it moves fast, yeah. That's a benefit though, because the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we tend to do is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example. That ecosystem is driven by thousands of intelligent developers, engineers, builders. They're adding value every day. So we have to really keep up with that. And as the stack changes, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's something that we just do every day. >> So we have a survey partner down in New York City called Enterprise Technology Research, ETR, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes, is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity, particularly, you know, along with cloud. But really Kubernetes is just, you know, still up and to the right consistently, even with, you know the macro headwinds and all of the other stuff that we're sick of talking about. So what are you doing with Kubernetes in the platform? >> Yeah, it's really central to our ability to run the product. When we first started out, we were just on AWS, and the way we were running was a little bit like containers junior. Now we're running Kubernetes everywhere, at AWS, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers, and we can manage that in code. So our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google, and figure out how to deliver services on those three clouds with all of their differences. >> Just a follow up on that, is it, now, so I presume it sounds like there's a PaaS layer there to allow you guys to have a consistent experience across clouds and up to the edge, you know, wherever. Is that, is that correct? >> Yeah, so we've basically built, more or less, platform engineering. This is the new hot phrase. You know, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on, and they only have to learn one way of deploying their application, managing their application. And so that just gets all of the underlying infrastructure out of the way and lets them focus on delivering Influx Cloud. >> Yeah, and I know I'm taking a little bit of a tangent, but is that, I'll call it a PaaS layer if I can use that term, are there specific attributes to Influx DB, or is it kind of just generally off the shelf PaaS? You know, is there any purpose built capability there that is value add, or is it pretty much generic? >> So we really build, we look at things with a build versus buy, through a build versus buy lens. Some things we want to leverage, cloud provider services for instance, Postgres databases for metadata perhaps, get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can deliver on, that has consistency, that is all generated from code that we can, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions in no time. >> So how, so sometimes you build, sometimes you buy it. How do you make those decisions, and what does that mean for the platform and for customers? >> Yeah, so what we're doing is, it's like everybody else will do. We're looking for trade offs that make sense. You know, we really want to protect our customers' data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers, you don't even see that, but we don't want to try to reinvent the wheel. Like I had had mentioned with SQL data storage for metadata perhaps. Let's build on top of what these three large cloud providers have already perfected, and we can then focus on our platform engineering, and we can have our developers then focus on the Influx Data software, Influx Cloud software. >> So take it to the customer level. What does it mean for them? What's the value that they're going to get out of all these innovations that we've been been talking about today? And what can they expect in the future? >> So first of all, people who use the OSS product are really going to be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you. But then you want to scale up. We have some 270 terabytes of data across over 4 billion series keys that people have stored. So there's a proven ability to scale. Now, in terms of the open source software, and how we've developed the platform, you're getting highly available, high cardinality time series platform. We manage it, and really as I mentioned earlier, we can keep up with the state of the art. We keep reinventing. We keep deploying things in real time. We deploy to our platform every day repeatedly, all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change, new features, better ways of doing deployments, safer ways of doing deployments. All of that happens behind the scenes. And we had mentioned earlier Kubernetes, I mean that allows us to get that done. We couldn't do it without having that platform as a base layer for us to then put our software on. So we iterate quickly. When you're on the Influx Cloud platform, you really are able to take advantage of new features immediately. We roll things out every day. And as those things go into production, you have the ability to use them. And so in the end, we want you to focus on getting actionable insights from your data instead of running infrastructure. You know, let us do that for you. >> And that makes sense, but so is the, are the innovations that we're talking about in the evolution of Influx DB, do you see that as sort of a natural evolution for existing customers? Is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >> Yeah, it really is. It's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are really the hot thing. IoT, industrial IoT especially, people want to just shove tons of data out there and be able to do queries immediately, and they don't want to manage infrastructure. What we've started to see are people that use the cloud service as their data store backbone, and then they use edge computing with our OSS product to ingest data from say multiple production lines and down-sample that data, send the rest of that data off to Influx Cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that, and being in all sorts of different regions allows for people to really get out of the business of trying to manage that big data, have us take care of that. And of course, as we change the platform, end users benefit from that immediately. >> And so obviously, taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IoT and the edge? How should we be thinking about the value that you bring from a security perspective? >> Yeah, we take security super seriously. It's built into our DNA. We do a lot of work to ensure that our platform is secure, that the data we store is kept private. It's of course always a concern. You see in the news all the time companies being compromised. You know, that's something that you can have an entire team working on, which we do, to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You look at things like software bill of materials. If you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that's just part of our jobs, to make sure that the platform that we're running has fully vetted software. And with open source especially, that's a lot of work. And so it's definitely new territory. Supply chain attacks are definitely happening at a higher clip than they used to. But that is really just part of a day in the life for folks like us that are building platforms. >> Yeah, and that's key. I mean, especially when you start getting into the, you know, we talk about IoT and the operations technologies, the engineers running that infrastructure. You know, historically, as you know, Tim, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >> Can't do that. >> connected now, right? And so you've got to have a partner that is, again, take away that heavy lifting to R and D so you can focus on some of the other activities. All right. Give us the last word and the key takeaways from your perspective. >> Well, you know, from my perspective, I see it as a a two lane approach. With Influx, with any any time series data, you know, you've got a lot of stuff that you're going to run on-prem. What you mentioned, air gaping, sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want to entrust their data to a company that's got a full platform set up for them that they can build on, send that data over to the cloud. The cloud is not going away. I think a more hybrid approach is where the future lives, and that's what we're prepared for. >> Tim, really appreciate you coming to the program. Great stuff. Good to see you. >> Thanks very much. Appreciate it. >> Okay, in a moment, I'll be back to wrap up today's session. You're watching the Cube. (gentle music)
SUMMARY :
Good to see you. Good to see you. So my question to you is to the projects that we use in the heyday of Hadoop. And as the stack changes, we and all of the other stuff that and the way we were to allow you guys to have and they only have to learn one way that we can manage with So how, so sometimes you and we can have our developers then focus So take it to the customer level. And so in the end, we want you to focus And of course, as we change the platform, that the data we store is kept private. and the operations technologies, and the key takeaways that data over to the cloud. you coming to the program. Thanks very much. I'll be back to wrap up today's session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tim Yoakum | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Influx Data | ORGANIZATION | 0.99+ |
Tim Yocum | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
New York City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
two lane | QUANTITY | 0.99+ |
Influx | ORGANIZATION | 0.98+ |
Azure | ORGANIZATION | 0.98+ |
270 terabytes | QUANTITY | 0.98+ |
about 1500 CIOs | QUANTITY | 0.97+ |
tomorrow | DATE | 0.97+ |
more than a decade | QUANTITY | 0.97+ |
over 4 billion | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
tons of data | QUANTITY | 0.95+ |
Influx DB | TITLE | 0.95+ |
Kubernetes | TITLE | 0.94+ |
Enterprise Technology Research | ORGANIZATION | 0.93+ |
first | QUANTITY | 0.93+ |
single server | QUANTITY | 0.92+ |
SQL | TITLE | 0.91+ |
three | QUANTITY | 0.91+ |
Postgres | ORGANIZATION | 0.91+ |
Influx Cloud | TITLE | 0.9+ |
thousands of intelligent developers | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.9+ |
Hadoop | TITLE | 0.9+ |
three large cloud providers | QUANTITY | 0.81+ |
three clouds | QUANTITY | 0.79+ |
Influx DB | ORGANIZATION | 0.74+ |
cloud | QUANTITY | 0.62+ |
Google Cloud | ORGANIZATION | 0.56+ |
Cube | PERSON | 0.53+ |
Cube | COMMERCIAL_ITEM | 0.52+ |
Cloud | TITLE | 0.45+ |
Influx | TITLE | 0.36+ |
Breaking Analysis: CEO Nuggets from Microsoft Ignite & Google Cloud Next
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> This past week we saw two of the Big 3 cloud providers present the latest update on their respective cloud visions, their business progress, their announcements and innovations. The content at these events had many overlapping themes, including modern cloud infrastructure at global scale, applying advanced machine intelligence, AKA AI, end-to-end data platforms, collaboration software. They talked a lot about the future of work automation. And they gave us a little taste, each company of the Metaverse Web 3.0 and much more. Despite these striking similarities, the differences between these two cloud platforms and that of AWS remains significant. With Microsoft leveraging its massive application software footprint to dominate virtually all markets and Google doing everything in its power to keep up with the frenetic pace of today's cloud innovation, which was set into motion a decade and a half ago by AWS. Hello and welcome to this week's Wikibon CUBE Insights, powered by ETR. In this Breaking Analysis, we unpack the immense amount of content presented by the CEOs of Microsoft and Google Cloud at Microsoft Ignite and Google Cloud Next. We'll also quantify with ETR survey data the relative position of these two cloud giants in four key sectors: cloud IaaS, BI analytics, data platforms and collaboration software. Now one thing was clear this past week, hybrid events are the thing. Google Cloud Next took place live over a 24-hour period in six cities around the world, with the main gathering in New York City. Microsoft Ignite, which normally is attended by 30,000 people, had a smaller event in Seattle, in person with a virtual audience around the world. AWS re:Invent, of course, is much different. Yes, there's a virtual component at re:Invent, but it's all about a big live audience gathering the week after Thanksgiving, in the first week of December in Las Vegas. Regardless, Satya Nadella keynote address was prerecorded. It was highly produced and substantive. It was visionary, energetic with a strong message that Azure was a platform to allow customers to build their digital businesses. Doing more with less, which was a key theme of his. Nadella covered a lot of ground, starting with infrastructure from the compute, highlighting a collaboration with Arm-based, Ampere processors. New block storage, 60 regions, 175,000 miles of fiber cables around the world. He presented a meaningful multi-cloud message with Azure Arc to support on-prem and edge workloads, as well as of course the public cloud. And talked about confidential computing at the infrastructure level, a theme we hear from all cloud vendors. He then went deeper into the end-to-end data platform that Microsoft is building from the core data stores to analytics, to governance and the myriad tooling Microsoft offers. AI was next with a big focus on automation, AI, training models. He showed demos of machines coding and fixing code and machines automatically creating designs for creative workers and how Power Automate, Microsoft's RPA tooling, would combine with Microsoft Syntex to understand documents and provide standard ways for organizations to communicate with those documents. There was of course a big focus on Azure as developer cloud platform with GitHub Copilot as a linchpin using AI to assist coders in low-code and no-code innovations that are coming down the pipe. And another giant theme was a workforce transformation and how Microsoft is using its heritage and collaboration and productivity software to move beyond what Nadella called productivity paranoia, i.e., are remote workers doing their jobs? In a world where collaboration is built into intelligent workflows, and he even showed a glimpse of the future with AI-powered avatars and partnerships with Meta and Cisco with Teams of all firms. And finally, security with a bevy of tools from identity, endpoint, governance, et cetera, stressing a suite of tools from a single provider, i.e., Microsoft. So a couple points here. One, Microsoft is following in the footsteps of AWS with silicon advancements and didn't really emphasize that trend much except for the Ampere announcement. But it's building out cloud infrastructure at a massive scale, there is no debate about that. Its plan on data is to try and provide a somewhat more abstracted and simplified solutions, which differs a little bit from AWS's approach of the right database tool, for example, for the right job. Microsoft's automation play appears to provide simple individual productivity tools, kind of a ground up approach and make it really easy for users to drive these bottoms up initiatives. We heard from UiPath that forward five last month, a little bit of a different approach of horizontal automation, end-to-end across platforms. So quite a different play there. Microsoft's angle on workforce transformation is visionary and will continue to solidify in our view its dominant position with Teams and Microsoft 365, and it will drive cloud infrastructure consumption by default. On security as well as a cloud player, it has to have world-class security, and Azure does. There's not a lot of debate about that, but the knock on Microsoft is Patch Tuesday becomes Hack Wednesday because Microsoft releases so many patches, it's got so much Swiss cheese in its legacy estate and patching frequently, it becomes a roadmap and a trigger for hackers. Hey, patch Tuesday, these are all the exploits that you can go after so you can act before the patches are implemented. And so it's really become a problem for users. As well Microsoft is competing with many of the best-of-breed platforms like CrowdStrike and Okta, which have market momentum and appear to be more attractive horizontal plays for customers outside of just the Microsoft cloud. But again, it's Microsoft. They make it easy and very inexpensive to adopt. Now, despite the outstanding presentation by Satya Nadella, there are a couple of statements that should raise eyebrows. Here are two of them. First, as he said, Azure is the only cloud that supports all organizations and all workloads from enterprises to startups, to highly regulated industries. I had a conversation with Sarbjeet Johal about this, to make sure I wasn't just missing something and we were both surprised, somewhat, by this claim. I mean most certainly AWS supports more certifications for example, and we would think it has a reasonable case to dispute that claim. And the other statement, Nadella made, Azure is the only cloud provider enabling highly regulated industries to bring their most sensitive applications to the cloud. Now, reasonable people can debate whether AWS is there yet, but very clearly Oracle and IBM would have something to say about that statement. Now maybe it's not just, would say, "Oh, they're not real clouds, you know, they're just going to hosting in the cloud if you will." But still, when it comes to mission-critical applications, you would think Oracle is really the the leader there. Oh, and Satya also mentioned the claim that the Edge browser, the Microsoft Edge browser, no questions asked, he said, is the best browser for business. And we could see some people having some questions about that. Like isn't Edge based on Chrome? Anyway, so we just had to question these statements and challenge Microsoft to defend them because to us it's a little bit of BS and makes one wonder what else in such as awesome keynote and it was awesome, it was hyperbole. Okay, moving on to Google Cloud Next. The keynote started with Sundar Pichai doing a virtual session, he was remote, stressing the importance of Google Cloud. He mentioned that Google Cloud from its Q2 earnings was on a $25-billion annual run rate. What he didn't mention is that it's also on a 3.6 billion annual operating loss run rate based on its first half performance. Just saying. And we'll dig into that issue a little bit more later in this episode. He also stressed that the investments that Google has made to support its core business and search, like its global network of 22 subsea cables to support things like, YouTube video, great performance obviously that we all rely on, those innovations there. Innovations in BigQuery to support its search business and its threat analysis that it's always had and its AI, it's always been an AI-first company, he's stressed, that they're all leveraged by the Google Cloud Platform, GCP. This is all true by the way. Google has absolutely awesome tech and the talk, as well as his talk, Pichai, but also Kurian's was forward thinking and laid out a vision of the future. But it didn't address in our view, and I talked to Sarbjeet Johal about this as well, today's challenges to the degree that Microsoft did and we expect AWS will at re:Invent this year, it was more out there, more forward thinking, what's possible in the future, somewhat less about today's problem, so I think it's resonates less with today's enterprise players. Thomas Kurian then took over from Sundar Pichai and did a really good job of highlighting customers, and I think he has to, right? He has to say, "Look, we are in this game. We have customers, 9 out of the top 10 media firms use Google Cloud. 8 out of the top 10 manufacturers. 9 out of the top 10 retailers. Same for telecom, same for healthcare. 8 out of the top 10 retail banks." He and Sundar specifically referenced a number of companies, customers, including Avery Dennison, Groupe Renault, H&M, John Hopkins, Prudential, Minna Bank out of Japan, ANZ bank and many, many others during the session. So you know, they had some proof points and you got to give 'em props for that. Now like Microsoft, Google talked about infrastructure, they referenced training processors and regions and compute optionality and storage and how new workloads were emerging, particularly data-driven workloads in AI that required new infrastructure. He explicitly highlighted partnerships within Nvidia and Intel. I didn't see anything on Arm, which somewhat surprised me 'cause I believe Google's working on that or at least has come following in AWS's suit if you will, but maybe that's why they're not mentioning it or maybe I got to do more research there, but let's park that for a minute. But again, as we've extensively discussed in Breaking Analysis in our view when it comes to compute, AWS via its Annapurna acquisition is well ahead of the pack in this area. Arm is making its way into the enterprise, but all three companies are heavily investing in infrastructure, which is great news for customers and the ecosystem. We'll come back to that. Data and AI go hand in hand, and there was no shortage of data talk. Google didn't mention Snowflake or Databricks specifically, but it did mention, by the way, it mentioned Mongo a couple of times, but it did mention Google's, quote, Open Data cloud. Now maybe Google has used that term before, but Snowflake has been marketing the data cloud concept for a couple of years now. So that struck as a shot across the bow to one of its partners and obviously competitor, Snowflake. At BigQuery is a main centerpiece of Google's data strategy. Kurian talked about how they can take any data from any source in any format from any cloud provider with BigQuery Omni and aggregate and understand it. And with the support of Apache Iceberg and Delta and Hudi coming in the future and its open Data Cloud Alliance, they talked a lot about that. So without specifically mentioning Snowflake or Databricks, Kurian co-opted a lot of messaging from these two players, such as life and tech. Kurian also talked about Google Workspace and how it's now at 8 million users up from 6 million just two years ago. There's a lot of discussion on developer optionality and several details on tools supported and the open mantra of Google. And finally on security, Google brought out Kevin Mandian, he's a CUBE alum, extremely impressive individual who's CEO of Mandiant, a leading security service provider and consultancy that Google recently acquired for around 5.3 billion. They talked about moving from a shared responsibility model to a shared fate model, which is again, it's kind of a shot across AWS's bow, kind of shared responsibility model. It's unclear that Google will pay the same penalty if a customer doesn't live up to its portion of the shared responsibility, but we can probably assume that the customer is still going to bear the brunt of the pain, nonetheless. Mandiant is really interesting because it's a services play and Google has stated that it is not a services company, it's going to give partners in the channel plenty of room to play. So we'll see what it does with Mandiant. But Mandiant is a very strong enterprise capability and in the single most important area security. So interesting acquisition by Google. Now as well, unlike Microsoft, Google is not competing with security leaders like Okta and CrowdStrike. Rather, it's partnering aggressively with those firms and prominently putting them forth. All right. Let's get into the ETR survey data and see how Microsoft and Google are positioned in four key markets that we've mentioned before, IaaS, BI analytics, database data platforms and collaboration software. First, let's look at the IaaS cloud. ETR is just about to release its October survey, so I cannot share the that data yet. I can only show July data, but we're going to give you some directional hints throughout this conversation. This chart shows net score or spending momentum on the vertical axis and overlap or presence in the data, i.e., how pervasive the platform is. That's on the horizontal axis. And we've inserted the Wikibon estimates of IaaS revenue for the companies, the Big 3. Actually the Big 4, we included Alibaba. So a couple of points in this somewhat busy data chart. First, Microsoft and AWS as always are dominant on both axes. The red dotted line there at 40% on the vertical axis. That represents a highly elevated spending velocity and all of the Big 3 are above the line. Now at the same time, GCP is well behind the two leaders on the horizontal axis and you can see that in the table insert as well in our revenue estimates. Now why is Azure bigger in the ETR survey when AWS is larger according to the Wikibon revenue estimates? And the answer is because Microsoft with products like 365 and Teams will often be considered by respondents in the survey as cloud by customers, so they fit into that ETR category. But in the insert data we're stripping out applications and SaaS from Microsoft and Google and we're only isolating on IaaS. The other point is when you take a look at the early October returns, you see downward pressure as signified by those dotted arrows on every name. The only exception was Dell, or Dell and IBM, which showing slightly improved momentum. So the survey data generally confirms what we know that AWS and Azure have a massive lead and strong momentum in the marketplace. But the real story is below the line. Unlike Google Cloud, which is on pace to lose well over 3 billion on an operating basis this year, AWS's operating profit is around $20 billion annually. Microsoft's Intelligent Cloud generated more than $30 billion in operating income last fiscal year. Let that sink in for a moment. Now again, that's not to say Google doesn't have traction, it does and Kurian gave some nice proof points and customer examples in his keynote presentation, but the data underscores the lead that Microsoft and AWS have on Google in cloud. And here's a breakdown of ETR's proprietary net score methodology, that vertical axis that we showed you in the previous chart. It asks customers, are you adopting the platform new? That's that lime green. Are you spending 6% or more? That's the forest green. Is you're spending flat? That's the gray. Is you're spending down 6% or worse? That's the pinkest color. Or are you replacing the platform, defecting? That's the bright red. You subtract the reds from the greens and you get a net score. Now one caveat here, which actually is really favorable from Microsoft, the Microsoft data that we're showing here is across the entire Microsoft portfolio. The other point is, this is July data, we'll have an update for you once ETR releases its October results. But we're talking about meaningful samples here, the ends. 620 for AWS over a thousand from Microsoft in more than 450 respondents in the survey for Google. So the real tell is replacements, that bright red. There is virtually no churn for AWS and Microsoft, but Google's churn is 5x, those two in the survey. Now 5% churn is not high, but you'd like to see three things for Google given it's smaller size. One is less churn, two is much, much higher adoption rates in the lime green. Three is a higher percentage of those spending more, the forest green. And four is a lower percentage of those spending less. And none of these conditions really applies here for Google. GCP is still not growing fast enough in our opinion, and doesn't have nearly the traction of the two leaders and that shows up in the survey data. All right, let's look at the next sector, BI analytics. Here we have that same XY dimension. Again, Microsoft dominating the picture. AWS very strong also in both axes. Tableau, very popular and respectable of course acquired by Salesforce on the vertical axis, still looking pretty good there. And again on the horizontal axis, big presence there for Tableau. And Google with Looker and its other platforms is also respectable, but it again, has some work to do. Now notice Streamlit, that's a recent Snowflake acquisition. It's strong in the vertical axis and because of Snowflake's go-to-market (indistinct), it's likely going to move to the right overtime. Grafana is also prominent in the Y axis, but a glimpse at the most recent survey data shows them slightly declining while Looker actually improves a bit. As does Cloudera, which we'll move up slightly. Again, Microsoft just blows you away, doesn't it? All right, now let's get into database and data platform. Same X Y dimensions, but now database and data warehouse. Snowflake as usual takes the top spot on the vertical axis and it is actually keeps moving to the right as well with again, Microsoft and AWS is dominant in the market, as is Oracle on the X axis, albeit it's got less spending velocity, but of course it's the database king. Google is well behind on the X axis but solidly above the 40% line on the vertical axis. Note that virtually all platforms will see pressure in the next survey due to the macro environment. Microsoft might even dip below the 40% line for the first time in a while. Lastly, let's look at the collaboration and productivity software market. This is such an important area for both Microsoft and Google. And just look at Microsoft with 365 and Teams up into the right. I mean just so impressive in ubiquitous. And we've highlighted Google. It's in the pack. It certainly is a nice base with 174 N, which I can tell you that N will rise in the next survey, which is an indication that more people are adopting. But given the investment and the tech behind it and all the AI and Google's resources, you'd really like to see Google in this space above the 40% line, given the importance of this market, of this collaboration area to Google's success and the degree to which they emphasize it in their pitch. And look, this brings up something that we've talked about before on Breaking Analysis. Google doesn't have a tech problem. This is a go-to-market and marketing challenge that Google faces and it's up against two go-to-market champs and Microsoft and AWS. And Google doesn't have the enterprise sales culture. It's trying, it's making progress, but it's like that racehorse that has all the potential in the world, but it's just missing some kind of key ingredient to put it over at the top. It's always coming in third, (chuckles) but we're watching and Google's obviously, making some investments as we shared with earlier. All right. Some final thoughts on what we learned this week and in this research: customers and partners should be thrilled that both Microsoft and Google along with AWS are spending so much money on innovation and building out global platforms. This is a gift to the industry and we should be thankful frankly because it's good for business, it's good for competitiveness and future innovation as a platform that can be built upon. Now we didn't talk much about multi-cloud, we haven't even mentioned supercloud, but both Microsoft and Google have a story that resonates with customers in cross cloud capabilities, unlike AWS at this time. But we never say never when it comes to AWS. They sometimes and oftentimes surprise you. One of the other things that Sarbjeet Johal and John Furrier and I have discussed is that each of the Big 3 is positioning to their respective strengths. AWS is the best IaaS. Microsoft is building out the kind of, quote, we-make-it-easy-for-you cloud, and Google is trying to be the open data cloud with its open-source chops and excellent tech. And that puts added pressure on Snowflake, doesn't it? You know, Thomas Kurian made some comments according to CRN, something to the effect that, we are the only company that can do the data cloud thing across clouds, which again, if I'm being honest is not really accurate. Now I haven't clarified these statements with Google and often things get misquoted, but there's little question that, as AWS has done in the past with Redshift, Google is taking a page out of Snowflake, Databricks as well. A big difference in the Big 3 is that AWS doesn't have this big emphasis on the up-the-stack collaboration software that both Microsoft and Google have, and that for Microsoft and Google will drive captive IaaS consumption. AWS obviously does some of that in database, a lot of that in database, but ISVs that compete with Microsoft and Google should have a greater affinity, one would think, to AWS for competitive reasons. and the same thing could be said in security, we would think because, as I mentioned before, Microsoft competes very directly with CrowdStrike and Okta and others. One of the big thing that Sarbjeet mentioned that I want to call out here, I'd love to have your opinion. AWS specifically, but also Microsoft with Azure have successfully created what Sarbjeet calls brand distance. AWS from the Amazon Retail, and even though AWS all the time talks about Amazon X and Amazon Y is in their product portfolio, but you don't really consider it part of the retail organization 'cause it's not. Azure, same thing, has created its own identity. And it seems that Google still struggles to do that. It's still very highly linked to the sort of core of Google. Now, maybe that's by design, but for enterprise customers, there's still some potential confusion with Google, what's its intentions? How long will they continue to lose money and invest? Are they going to pull the plug like they do on so many other tools? So you know, maybe some rethinking of the marketing there and the positioning. Now we didn't talk much about ecosystem, but it's vital for any cloud player, and Google again has some work to do relative to the leaders. Which brings us to supercloud. The ecosystem and end customers are now in a position this decade to digitally transform. And we're talking here about building out their own clouds, not by putting in and building data centers and installing racks of servers and storage devices, no. Rather to build value on top of the hyperscaler gift that has been presented. And that is a mega trend that we're watching closely in theCUBE community. While there's debate about the supercloud name and so forth, there little question in our minds that the next decade of cloud will not be like the last. All right, we're going to leave it there today. Many thanks to Sarbjeet Johal, and my business partner, John Furrier, for their input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast and Ken Schiffman as well. Kristen Martin and Cheryl Knight helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE, who does some wonderful editing. And check out SiliconANGLE, a lot of coverage on Google Cloud Next and Microsoft Ignite. Remember, all these episodes are available as podcast wherever you listen. Just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. And you can always get in touch with me via email, david.vellante@siliconangle.com or you can DM me at dvellante or comment on my LinkedIn posts. And please do check out etr.ai, the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle music)
SUMMARY :
with Dave Vellante. and the degree to which they
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
AWS | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Nadella | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Kevin Mandian | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Cheryl Knight | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Thomas Kurian | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
October | DATE | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Seattle | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
3.6 billion | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Sundar | PERSON | 0.99+ |
Prudential | ORGANIZATION | 0.99+ |
July | DATE | 0.99+ |
New York City | LOCATION | 0.99+ |
H&M | ORGANIZATION | 0.99+ |
Kurian | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
6% | QUANTITY | 0.99+ |
Minna Bank | ORGANIZATION | 0.99+ |
5x | QUANTITY | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |