Image Title

Search Results for Walmart:

Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud


 

>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great questions, Dave. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)

Published Date : Feb 17 2023

SUMMARY :

and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

DavePERSON

0.99+

JackPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Martin FowlerPERSON

0.99+

WalmartORGANIZATION

0.99+

USLOCATION

0.99+

Zhamak DehghaniPERSON

0.99+

TodayDATE

0.99+

eachQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

GoogleORGANIZATION

0.99+

todayDATE

0.99+

two thingsQUANTITY

0.99+

threeQUANTITY

0.99+

firstQUANTITY

0.99+

each stepQUANTITY

0.99+

FirstQUANTITY

0.99+

early 1960sDATE

0.99+

StarlinkORGANIZATION

0.99+

oneQUANTITY

0.98+

a dayQUANTITY

0.97+

GCPTITLE

0.97+

AzureTITLE

0.96+

WCNPTITLE

0.96+

10 millisecondsQUANTITY

0.96+

bothQUANTITY

0.96+

KubernetesTITLE

0.94+

Cloud SpannerTITLE

0.94+

LinkerdORGANIZATION

0.93+

tripletQUANTITY

0.92+

three cloud providersQUANTITY

0.91+

CubeORGANIZATION

0.9+

SuperCloud2ORGANIZATION

0.89+

two core setsQUANTITY

0.88+

John FurrierPERSON

0.88+

one more pieceQUANTITY

0.86+

two public cloudsQUANTITY

0.86+

thousand locationsQUANTITY

0.83+

Vice PresidentPERSON

0.8+

10-ishQUANTITY

0.79+

WCNPORGANIZATION

0.75+

decadesQUANTITY

0.75+

three different major regionsQUANTITY

0.74+

Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud


 

>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great question, Steve. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, and it does get disconnected on a regular basis. In fact, I forget the exact number, but some several dozen locations get disconnected daily just by virtue of the fact that there's construction going on and things are happening in the real world. When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)

Published Date : Jan 9 2023

SUMMARY :

and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevePERSON

0.99+

Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

DavePERSON

0.99+

JackPERSON

0.99+

MicrosoftORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

Martin FowlerPERSON

0.99+

USLOCATION

0.99+

Zhamak DehghaniPERSON

0.99+

TodayDATE

0.99+

eachQUANTITY

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

StarlinkORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

two thingsQUANTITY

0.99+

todayDATE

0.99+

threeQUANTITY

0.99+

firstQUANTITY

0.99+

each stepQUANTITY

0.99+

FirstQUANTITY

0.99+

early 1960sDATE

0.98+

oneQUANTITY

0.98+

a dayQUANTITY

0.98+

GCPTITLE

0.97+

AzureTITLE

0.96+

WCNPTITLE

0.96+

10 millisecondsQUANTITY

0.96+

bothQUANTITY

0.96+

KubernetesTITLE

0.94+

Cloud SpannerTITLE

0.94+

LinkerdORGANIZATION

0.93+

CubeORGANIZATION

0.93+

tripletQUANTITY

0.92+

three cloud providersQUANTITY

0.91+

two core setsQUANTITY

0.88+

John FurrierPERSON

0.86+

one more pieceQUANTITY

0.86+

SuperCloud2ORGANIZATION

0.86+

two public cloudsQUANTITY

0.86+

thousand locationsQUANTITY

0.83+

Vice PresidentPERSON

0.8+

10-ishQUANTITY

0.79+

WCNPORGANIZATION

0.75+

decadesQUANTITY

0.75+

three different major regionsQUANTITY

0.74+

Vijay Raghavendra, Walmart Labs | WiDS 2018


 

>> Narrator: Live from Stanford University in Palo Alto, California, it's the CUBE! Covering, Women in Data Science Conference 2018, brought to you by Stanford. >> Welcome back to the CUBE, we are live at Stanford University, we've been here all day at the third annual Women in Data Science Conference, WiDS 2018. This event is remarkable in its growth in scale, in its third year, and that is, in part by the partners and the sponsors that they have been able to glean quite early on. I'm excited to be joined by Vijay Raghavendra, the senior vice president of Merchant Technology and stores as well, from Walmart Labs. Vijay, welcome to the CUBE! >> Thank you, thank you for having me. >> Walmart Labs has been paramount to the success of WiDS, we had Margot Gerritsen on earlier, and I said, "How did you get the likes of a Walmart Labs as a partner?" And, she was telling me that, the coffee-- the coffee shop conversation >> Yeah, the Coupa Cafe! >> That she had with Walmart Labs a few years ago, and said, "Really, partners and sponsors like Walmart have been instrumental in the growth and the scale, of this event." And, we've got the buzz around, so we can hear the people here, but this is the big event at Stanford. There's 177 regional events, 177! In 53 countries. It's incredible. Incredible, the reach. So, tell me a little bit about the... From Walmart Labs perspective, the partnership with WiDS, what is it that really kind of was an "Aha! We've got to do this"? >> Yeah, it's just incredible, seeing all of these women and women data scientists here. It all started with Esteban Arcaute, who used to lead data science at Walmart Labs, and Search, before he moved on to Facebook with Margot. And, Karen in the cafe in Palo Alto, in 2015, I think. And Esteban and I had been talking about how we really expand the leverage of data and data science within Walmart, but more specifically, how we get more women into data science. And, that was really the genesis of that, and, it was really-- credit goes to Esteban, Margot, and Karen for, really, thinking through it, bringing it together, and, here we are. >> Right, I mean bringing it together from that concept, that conversation here at Stanford Cafe to the first event was six months. >> Yeah, from June to November, and, it's just incredible the way they put it together. And, from a Walmart Labs perspective, we were thrilled to be a huge part of it. And, all the way up the leadership chain there was complete support, including my boss Jeremy King, who was all in, and, that really helped. >> Margot was, when we were chatting earlier, she was saying, "It's still sort of surprising," and she said she's been, I think in, in the industry for, 30-plus years, and she said that, she always thought, back in the day, that by the time she was older, this problem would be solved, this gender gap. And she says, "Actually, it's not like it's still stagnant," we're almost behind, in a sense. When I look at the ... women that are here, in Stanford, and those that are participating via those regional events, the livestream that WiDS is doing, as well as their Facebook livestream. You know, the lofty goal and opportunity to reach 100,000 people shows you that there's clearly a demand, there's a need for this. I'd love to get your perspective on data science at Walmart Labs. Tell me a little bit about the team that you're leading, you lead a team of engineers, data scientists, product managers, you guys are driving some of the core capabilities that drive global e-commerce for Walmart. Tell me about, what you see as important for that female perspective, to help influence, not only what Walmart Labs is doing, but technology and industry in general. >> Yeah. So, the team I lead is called Merchant Technology, and my teams are responsible for, almost every aspect of what drives merchandising within Walmart, both on e-commerce and stores. So, within the purview of my teams are everything from the products our customers want, the products we should be carrying either in stores or online, to, the product catalog, to search, to the way the products are actually displayed within a store, to the way we do pricing. All of these are aspects of what my teams are driving. And, data and data science really put me at every single aspect of this. And the reason why we are so excited about women in data science and why getting that perspective is so important, is, we are in the retail business, and our customers are really span the entire spectrum, from, obviously a lot of women shop at Walmart, lot of moms, lot of millennials, and, across the entire spectrum. And, our workforce needs to reflect our customers. That's when you build great products. That's when you build products that you can relate to as a customer, and, to us that is a big part of what is driving, not just the interest in data science, but, really ensuring that we have as diverse and as inclusive a community within Walmart, so we can build products that customers can really relate to. >> Speaking of being relatable, I think that is a key thing here that, a theme that we're hearing from the guests that we're talking to, as well as some of the other conversations is, wanting to inspire the next generation, and helping them understand how data science relates to, every industry. It's very horizontal, but it also, like a tech company, or any company these days is a tech company, really, can transform to a digital business, to compete, to become more profitable. It opens up new business models, right, new opportunities for that. So does data science open up so many, almost infinite opportunities and possibilities on the career front. So that's one of the things that we're hearing, is being able to relate that to the next generation to understand, they don't have to fit in the box. As a data scientist, it sounds like from your team, is quite interdisciplinary, and collaborative. >> And, to us that is really the essence of, or the magic of, how you build great products. For us data science is not a function that is sitting on the side. For us, it is the way we operate as we have engineers, product managers, folks from the business teams, with our data scientists, really working together and collaborating every single day, to build great products. And that's, really how we see this evolving, it's not as a separate function, but, as a function that is really integrated into every single aspect of what we do. >> Right. One of the things that we talked about is, that's thematic for WiDS, is being able to inspire and educate data scientists worldwide, and obviously with the focus of helping females. But it's not just the younger generation. Some of the things that we're also hearing today at WiDS 2018 is, there's also an opportunity within this community to reinvigorate the women that have been in, in STEM and academia and industry for quite a while. Tell me a little bit more about your team and, maybe some of the more veterans and, how do you kind of get that spirit of collaboration so that those that, maybe, have been in, in the industry for a while get inspired and, maybe get that fire relit underneath them. >> That's a great question, because we, on our teams, when you look across all the different teams across different locations, we have a great mix of folks that bring very different, diverse experiences to the table. And, what we've found, especially with the way we are leveraging data, and, how that is invigorating the way we are... How people come to the table, is really almost seeing the art of what is possible. We are able to have, with data, with data science, we are able to do things that, are, really step functions in terms of the speed at which we can do things. Or, the- for example, take something as simple as search, product search, which is one of the, capabilities we own, or my team is responsible for, but, you could build the machine learning ranking, and, relevance and ranking algorithms, but, when you combine it with, for example, a merchant that really fundamentally understands their category, and you combine data science with that, you can accelerate the learning in ways that is not possible. And when folks see that, and see that in operation that really opens up a whole, slew of other ideas and possibilities that they think about. >> And, I couldn't agree more. Looking at sort of the skillset, we talk a lot about, the obvious technical skillset, that a data scientist needs to have, but there's also, the skills of, empathy, of communication, of collaboration. Tell me about your thoughts on, what is an ideal mix, of skills that that data scientist, in this interdisciplinary function, should have. >> Yeah, in fact, I was talking with a few folks over lunch about just this question! To me, some of the technical skills, the grounding in math and analytics, are table stakes. Beyond that, what we look for in data scientists really starts with curiosity. Are they really curious about the problems they're trying to solve? Do they have tenacity? Do they settle for the more obvious answers, or do they really dig into, the root cause, or the root, core of the problems? Do they have the empathy for our customers and for our business partners, because unless you're able to put yourself in those shoes, you're going to be approaching at, maybe, in somewhat of an antiseptic way? And it doesn't really work. And the last, but one of the most important parts is, we look for folks who have a good sense for product and business. Are they able to really get into it, and learn the domain? So for example, if someone's working on pricing, do they really understand pricing, or can they really understand pricing? We don't expect them to know pricing when they come in, but, the aptitude and the attitude is really, really critical, almost as much as the core technical skills, because, in some ways, you can teach the technical skills, but not some of these other skills. >> Right, and that's an interesting point that you bring up, is, what's teachable, and, I won't say what's not, but what might be, maybe not so natural for somebody. One of the things, too, that is happening at WiDS 2018 is the first annual Datathon. And, Margot was sharing this huge number of participants that they had and they set a few ground rules like wanting the teams to be 50% female, but, tell us about the Datathon from your global visionary sponsorship level; what excites you about that in terms of, the participation in the community and the potential of, "Wow, what's next"? >> Yeah... So, it's hugely exciting for us, just seeing the energy that we've seen. And, the way people are approaching different problems, using data to solve very different kinds of problems ... across the spectrum. And for us, that is a big part of what we look for. For us it is really about, not just coming up with a solution, that's in search of a problem, but really looking at real-world problems and looking at it from the perspective of, "Can I bring data, can I bring data science to bear on this problem?", to solve it in ways that, either are not possible, or can accelerate the way we would solve the problems otherwise. And that is a big part of what is exciting. >> Yeah, and the fact that the impact that data science can make to, every element of our lives is, like I said before, it's infinite, the possibilities are infinite. But that impact is something that, I think, how exciting to be able to be in an industry or a field, that is so pervasive and so horizontal, that you can make a really big social impact. One of they other things, too, that Margot said. She mentioned that the Datathon should be fun, and I loved that, and also have an element of creativity. What's that balance of, creativity in data science? Like, what's the mixture, because we can be maybe over-creative, and maybe interpret something that's in a biased way. What is your recommendation on how much creativity can creep into, and influence, positively, data science? >> Yeah, that's a great question, and there's no perfect answer for it. Ultimately, at least my biases towards using data and data science to, solve real problems. And... As opposed to, pure research, so our focus very much is on applied learning, and applied science. And, to me, within that, I do want the data science to be creative, data scientists to be creative, because, by putting too many guardrails, you limit the way in which they would explore the data, that they may come up with insights that, well, we might not see otherwise. And, which is why, I go back to the point I made, when you have data scientists who fundamentally understand a business, and the business problems we are trying to solve, or the business domains, I think they can then come up with very interesting, innovative ways of looking at the data, and the problem, that you might not otherwise. So, I would by no means want to limit their creativity, but I do have a bias towards ensuring that it is focused on problems we are trying to solve. >> Excellent. Well, Vijay, thank you so much for stopping by the CUBE, congratulations on the continued success of the partnership with WiDS and, we're looking forward to seeing what happens the rest of the year, and we'll probably see you next year at WiDS 2019! >> Absolutely, thank you! >> Excellent, we want to thank you, you're watching the CUBE, live from Stanford University, the third annual Women in Data Science Conference. I am Lisa Martin, I'll be right back after a short break with my next guest. (cool techno music)

Published Date : Mar 5 2018

SUMMARY :

in Palo Alto, California, it's the CUBE! in part by the partners and the sponsors and the scale, of this event." And, Karen in the cafe in Palo Alto, to the first event was six months. And, all the way up the leadership chain back in the day, that by the time she was older, the product catalog, to search, from the guests that we're talking to, or the magic of, how you build great products. One of the things that we talked about is, is really almost seeing the art of what is possible. Looking at sort of the skillset, and learn the domain? and the potential of, "Wow, what's next"? and looking at it from the perspective of, Yeah, and the fact that the impact and the business problems we are trying to solve, of the partnership with WiDS and, the third annual Women in Data Science Conference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
EstebanPERSON

0.99+

Lisa MartinPERSON

0.99+

Jeremy KingPERSON

0.99+

MargotPERSON

0.99+

KarenPERSON

0.99+

WalmartORGANIZATION

0.99+

Vijay RaghavendraPERSON

0.99+

2015DATE

0.99+

Palo AltoLOCATION

0.99+

Margot GerritsenPERSON

0.99+

VijayPERSON

0.99+

Walmart LabsORGANIZATION

0.99+

JuneDATE

0.99+

50%QUANTITY

0.99+

100,000 peopleQUANTITY

0.99+

NovemberDATE

0.99+

53 countriesQUANTITY

0.99+

Esteban ArcautePERSON

0.99+

StanfordLOCATION

0.99+

177QUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

177 regional eventsQUANTITY

0.98+

next yearDATE

0.98+

third yearQUANTITY

0.98+

six monthsQUANTITY

0.98+

first eventQUANTITY

0.98+

oneQUANTITY

0.98+

WiDS 2018EVENT

0.98+

WiDSORGANIZATION

0.98+

CUBEORGANIZATION

0.98+

30-plus yearsQUANTITY

0.98+

FacebookORGANIZATION

0.97+

bothQUANTITY

0.97+

StanfordORGANIZATION

0.97+

Stanford UniversityORGANIZATION

0.97+

DatathonEVENT

0.96+

Women in Data Science ConferenceEVENT

0.95+

Merchant TechnologyORGANIZATION

0.95+

OneQUANTITY

0.95+

Stanford CafeLOCATION

0.93+

WiDSEVENT

0.92+

todayDATE

0.9+

WiDS 2019EVENT

0.9+

SearchORGANIZATION

0.89+

Women in Data Science Conference 2018EVENT

0.89+

few years agoDATE

0.83+

Stanford UniversityORGANIZATION

0.8+

single aspectQUANTITY

0.79+

annualQUANTITY

0.7+

first annualQUANTITY

0.69+

momsQUANTITY

0.67+

every single dayQUANTITY

0.67+

thirdEVENT

0.66+

partsQUANTITY

0.66+

Coupa CafeORGANIZATION

0.64+

third annualQUANTITY

0.62+

Covering,EVENT

0.58+

CUBEEVENT

0.42+

Joseph Nelson, Roboflow | AWS Startup Showcase


 

(chill electronic music) >> Hello everyone, welcome to theCUBE's presentation of the AWS Startups Showcase, AI and machine learning, the top startups building generative AI on AWS. This is the season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talk about AI and machine learning. Can't believe it's three years and season one. I'm your host, John Furrier. Got a great guest today, we're joined by Joseph Nelson, the co-founder and CEO of Roboflow, doing some cutting edge stuff around computer vision and really at the front end of this massive wave coming around, large language models, computer vision. The next gen AI is here, and it's just getting started. We haven't even scratched a service. Thanks for joining us today. >> Thanks for having me. >> So you got to love the large language model, foundation models, really educating the mainstream world. ChatGPT has got everyone in the frenzy. This is educating the world around this next gen AI capabilities, enterprise, image and video data, all a big part of it. I mean the edge of the network, Mobile World Conference is happening right now, this month, and it's just ending up, it's just continue to explode. Video is huge. So take us through the company, do a quick explanation of what you guys are doing, when you were founded. Talk about what the company's mission is, and what's your North Star, why do you exist? >> Yeah, Roboflow exists to really kind of make the world programmable. I like to say make the world be read and write access. And our North Star is enabling developers, predominantly, to build that future. If you look around, anything that you see will have software related to it, and can kind of be turned into software. The limiting reactant though, is how to enable computers and machines to understand things as well as people can. And in a lot of ways, computer vision is that missing element that enables anything that you see to become software. So in the virtue of, if software is eating the world, computer vision kind of makes the aperture infinitely wide. It's something that I kind of like, the way I like to frame it. And the capabilities are there, the open source models are there, the amount of data is there, the computer capabilities are only improving annually, but there's a pretty big dearth of tooling, and an early but promising sign of the explosion of use cases, models, and data sets that companies, developers, hobbyists alike will need to bring these capabilities to bear. So Roboflow is in the game of building the community around that capability, building the use cases that allow developers and enterprises to use computer vision, and providing the tooling for companies and developers to be able to add computer vision, create better data sets, and deploy to production, quickly, easily, safely, invaluably. >> You know, Joseph, the word in production is actually real now. You're seeing a lot more people doing in production activities. That's a real hot one and usually it's slower, but it's gone faster, and I think that's going to be more the same. And I think the parallel between what we're seeing on the large language models coming into computer vision, and as you mentioned, video's data, right? I mean we're doing video right now, we're transcribing it into a transcript, linking up to your linguistics, times and the timestamp, I mean everything's data and that really kind of feeds. So this connection between what we're seeing, the large language and computer vision are coming together kind of cousins, brothers. I mean, how would you compare, how would you explain to someone, because everyone's like on this wave of watching people bang out their homework assignments, and you know, write some hacks on code with some of the open AI technologies, there is a corollary directly related to to the vision side. Can you explain? >> Yeah, the rise of large language models are showing what's possible, especially with text, and I think increasingly will get multimodal as the images and video become ingested. Though there's kind of this still core missing element of basically like understanding. So the rise of large language models kind of create this new area of generative AI, and generative AI in the context of computer vision is a lot of, you know, creating video and image assets and content. There's also this whole surface area to understanding what's already created. Basically digitizing physical, real world things. I mean the Metaverse can't be built if we don't know how to mirror or create or identify the objects that we want to interact with in our everyday lives. And where computer vision comes to play in, especially what we've seen at Roboflow is, you know, a little over a hundred thousand developers now have built with our tools. That's to the tune of a hundred million labeled open source images, over 10,000 pre-trained models. And they've kind of showcased to us all of the ways that computer vision is impacting and bringing the world to life. And these are things that, you know, even before large language models and generative AI, you had pretty impressive capabilities, and when you add the two together, it actually unlocks these kind of new capabilities. So for example, you know, one of our users actually powers the broadcast feeds at Wimbledon. So here we're talking about video, we're streaming, we're doing things live, we've got folks that are cropping and making sure we look good, and audio/visual all plugged in correctly. When you broadcast Wimbledon, you'll notice that the camera controllers need to do things like track the ball, which is moving at extremely high speeds and zoom crop, pan tilt, as well as determine if the ball bounced in or out. The very controversial but critical key to a lot of tennis matches. And a lot of that has been historically done with the trained, but fallible human eye and computer vision is, you know, well suited for this task to say, how do we track, pan, tilt, zoom, and see, track the tennis ball in real time, run at 30 plus frames per second, and do it all on the edge. And those are capabilities that, you know, were kind of like science fiction, maybe even a decade ago, and certainly five years ago. Now the interesting thing, is that with the advent of of generative AI, you can start to do things like create your own training data sets, or kind of create logic around once you have this visual input. And teams at Tesla have actually been speaking about, of course the autopilot team's focused on doing vision tasks, but they've combined large language models to add reasoning and logic. So given that you see, let's say the tennis ball, what do you want to do? And being able to combine the capabilities of what LLM's represent, which is really a lot of basically, core human reasoning and logic, with computer vision for the inputs of what's possible, creates these new capabilities, let alone multimodality, which I'm sure we'll talk more about. >> Yeah, and it's really, I mean it's almost intoxicating. It's amazing that this is so capable because the cloud scales here, you got the edge developing, you can decouple compute power, and let Moore's law and all the new silicone and the processors and the GPUs do their thing, and you got open source booming. You're kind of getting at this next segment I wanted to get into, which is the, how people should be thinking about these advances of the computer vision. So this is now a next wave, it's here. I mean I'd love to have that for baseball because I'm always like, "Oh, it should have been a strike." I'm sure that's going to be coming soon, but what is the computer vision capable of doing today? I guess that's my first question. You hit some of it, unpack that a little bit. What does general AI mean in computer vision? What's the new thing? Because there are old technology's been around, proprietary, bolted onto hardware, but hardware advances at a different pace, but now you got new capabilities, generative AI for vision, what does that mean? >> Yeah, so computer vision, you know, at its core is basically enabling machines, computers, to understand, process, and act on visual data as effective or more effective than people can. Traditionally this has been, you know, task types like classification, which you know, identifying if a given image belongs in a certain category of goods on maybe a retail site, is the shoes or is it clothing? Or object detection, which is, you know, creating bounding boxes, which allows you to do things like count how many things are present, or maybe measure the speed of something, or trigger an alert when something becomes visible in frame that wasn't previously visible in frame, or instant segmentation where you're creating pixel wise segmentations for both instance and semantic segmentation, where you often see these kind of beautiful visuals of the polygon surrounding objects that you see. Then you have key point detection, which is where you see, you know, athletes, and each of their joints are kind of outlined is another more traditional type problem in signal processing and computer vision. With generative AI, you kind of get a whole new class of problem types that are opened up. So in a lot of ways I think about generative AI in computer vision as some of the, you know, problems that you aimed to tackle, might still be better suited for one of the previous task types we were discussing. Some of those problem types may be better suited for using a generative technique, and some are problem types that just previously wouldn't have been possible absent generative AI. And so if you make that kind of Venn diagram in your head, you can think about, okay, you know, visual question answering is a task type where if I give you an image and I say, you know, "How many people are in this image?" We could either build an object detection model that might count all those people, or maybe a visual question answering system would sufficiently answer this type of problem. Let alone generative AI being able to create new training data for old systems. And that's something that we've seen be an increasingly prominent use case for our users, as much as things that we advise our customers and the community writ large to take advantage of. So ultimately those are kind of the traditional task types. I can give you some insight, maybe, into how I think about what's possible today, or five years or ten years as you sort go back. >> Yes, definitely. Let's get into that vision. >> So I kind of think about the types of use cases in terms of what's possible. If you just imagine a very simple bell curve, your normal distribution, for the longest time, the types of things that are in the center of that bell curve are identifying objects that are very common or common objects in context. Microsoft published the COCO Dataset in 2014 of common objects and contexts, of hundreds of thousands of images of chairs, forks, food, person, these sorts of things. And you know, the challenge of the day had always been, how do you identify just those 80 objects? So if we think about the bell curve, that'd be maybe the like dead center of the curve, where there's a lot of those objects present, and it's a very common thing that needs to be identified. But it's a very, very, very small sliver of the distribution. Now if you go out to the way long tail, let's go like deep into the tail of this imagined visual normal distribution, you're going to have a problem like one of our customers, Rivian, in tandem with AWS, is tackling, to do visual quality assurance and manufacturing in production processes. Now only Rivian knows what a Rivian is supposed to look like. Only they know the imagery of what their goods that are going to be produced are. And then between those long tails of proprietary data of highly specific things that need to be understood, in the center of the curve, you have a whole kind of messy middle, type of problems I like to say. The way I think about computer vision advancing, is it's basically you have larger and larger and more capable models that eat from the center out, right? So if you have a model that, you know, understands the 80 classes in COCO, well, pretty soon you have advances like Clip, which was trained on 400 million image text pairs, and has a greater understanding of a wider array of objects than just 80 classes in context. And over time you'll get more and more of these larger models that kind of eat outwards from that center of the distribution. And so the question becomes for companies, when can you rely on maybe a model that just already exists? How do you use your data to get what may be capable off the shelf, so to speak, into something that is usable for you? Or, if you're in those long tails and you have proprietary data, how do you take advantage of the greatest asset you have, which is observed visual information that you want to put to work for your customers, and you're kind of living in the long tails, and you need to adapt state of the art for your capabilities. So my mental model for like how computer vision advances is you have that bell curve, and you have increasingly powerful models that eat outward. And multimodality has a role to play in that, larger models have a role to play in that, more compute, more data generally has a role to play in that. But it will be a messy and I think long condition. >> Well, the thing I want to get, first of all, it's great, great mental model, I appreciate that, 'cause I think that makes a lot of sense. The question is, it seems now more than ever, with the scale and compute that's available, that not only can you eat out to the middle in your example, but there's other models you can integrate with. In the past there was siloed, static, almost bespoke. Now you're looking at larger models eating into the bell curve, as you said, but also integrating in with other stuff. So this seems to be part of that interaction. How does, first of all, is that really happening? Is that true? And then two, what does that mean for companies who want to take advantage of this? Because the old model was operational, you know? I have my cameras, they're watching stuff, whatever, and like now you're in this more of a, distributed computing, computer science mindset, not, you know, put the camera on the wall kind of- I'm oversimplifying, but you know what I'm saying. What's your take on that? >> Well, to the first point of, how are these advances happening? What I was kind of describing was, you know, almost uni-dimensional in that you have like, you're only thinking about vision, but the rise of generative techniques and multi-modality, like Clip is a multi-modal model, it has 400 million image text pairs. That will advance the generalizability at a faster rate than just treating everything as only vision. And that's kind of where LLMs and vision will intersect in a really nice and powerful way. Now in terms of like companies, how should they be thinking about taking advantage of these trends? The biggest thing that, and I think it's different, obviously, on the size of business, if you're an enterprise versus a startup. The biggest thing that I think if you're an enterprise, and you have an established scaled business model that is working for your customers, the question becomes, how do you take advantage of that established data moat, potentially, resource moats, and certainly, of course, establish a way of providing value to an end user. So for example, one of our customers, Walmart, has the advantage of one of the largest inventory and stock of any company in the world. And they also of course have substantial visual data, both from like their online catalogs, or understanding what's in stock or out of stock, or understanding, you know, the quality of things that they're going from the start of their supply chain to making it inside stores, for delivery of fulfillments. All these are are visual challenges. Now they already have a substantial trove of useful imagery to understand and teach and train large models to understand each of the individual SKUs and products that are in their stores. And so if I'm a Walmart, what I'm thinking is, how do I make sure that my petabytes of visual information is utilized in a way where I capture the proprietary benefit of the models that I can train to do tasks like, what item was this? Or maybe I'm going to create AmazonGo-like technology, or maybe I'm going to build like delivery robots, or I want to automatically know what's in and out of stock from visual input fees that I have across my in-store traffic. And that becomes the question and flavor of the day for enterprises. I've got this large amount of data, I've got an established way that I can provide more value to my own customers. How do I ensure I take advantage of the data advantage I'm already sitting on? If you're a startup, I think it's a pretty different question, and I'm happy to talk about. >> Yeah, what's startup angle on this? Because you know, they're going to want to take advantage. It's like cloud startups, cloud native startups, they were born in the cloud, they never had an IT department. So if you're a startup, is there a similar role here? And if I'm a computer vision startup, what's that mean? So can you share your your take on that, because there'll be a lot of people starting up from this. >> So the startup on the opposite advantage and disadvantage, right? Like a startup doesn't have an proven way of delivering repeatable value in the same way that a scaled enterprise does. But it does have the nimbleness to identify and take advantage of techniques that you can start from a blank slate. And I think the thing that startups need to be wary of in the generative AI enlarged language model, in multimodal world, is building what I like to call, kind of like sandcastles. A sandcastle is maybe a business model or a capability that's built on top of an assumption that is going to be pretty quickly wiped away by improving underlying model technology. So almost like if you imagine like the ocean, the waves are coming in, and they're going to wipe away your progress. You don't want to be in the position of building sandcastle business where, you don't want to bet on the fact that models aren't going to get good enough to solve the task type that you might be solving. In other words, don't take a screenshot of what's capable today. Assume that what's capable today is only going to continue to become possible. And so for a startup, what you can do, that like enterprises are quite comparatively less good at, is embedding these capabilities deeply within your products and delivering maybe a vertical based experience, where AI kind of exists in the background. >> Yeah. >> And we might not think of companies as, you know, even AI companies, it's just so embedded in the experience they provide, but that's like the vertical application example of taking AI and making it be immediately usable. Or, of course there's tons of picks and shovels businesses to be built like Roboflow, where you're enabling these enterprises to take advantage of something that they have, whether that's their data sets, their computes, or their intellect. >> Okay, so if I hear that right, by the way, I love, that's horizontally scalable, that's the large language models, go up and build them the apps, hence your developer focus. I'm sure that's probably the reason that the tsunami of developer's action. So you're saying picks and shovels tools, don't try to replicate the platform of what could be the platform. Oh, go to a VC, I'm going to build a platform. No, no, no, no, those are going to get wiped away by the large language models. Is there one large language model that will rule the world, or do you see many coming? >> Yeah, so to be clear, I think there will be useful platforms. I just think a lot of people think that they're building, let's say, you know, if we put this in the cloud context, you're building a specific type of EC2 instance. Well, it turns out that Amazon can offer that type of EC2 instance, and immediately distribute it to all of their customers. So you don't want to be in the position of just providing something that actually ends up looking like a feature, which in the context of AI, might be like a small incremental improvement on the model. If that's all you're doing, you're a sandcastle business. Now there's a lot of platform businesses that need to be built that enable businesses to get to value and do things like, how do I monitor my models? How do I create better models with my given data sets? How do I ensure that my models are doing what I want them to do? How do I find the right models to use? There's all these sorts of platform wide problems that certainly exist for businesses. I just think a lot of startups that I'm seeing right now are making the mistake of assuming the advances we're seeing are not going to accelerate or even get better. >> So if I'm a customer, if I'm a company, say I'm a startup or an enterprise, either one, same question. And I want to stand up, and I have developers working on stuff, I want to start standing up an environment to start doing stuff. Is that a service provider? Is that a managed service? Is that you guys? So how do you guys fit into your customers leaning in? Is it just for developers? Are you targeting with a specific like managed service? What's the product consumption? How do you talk to customers when they come to you? >> The thing that we do is enable, we give developers superpowers to build automated inventory tracking, self-checkout systems, identify if this image is malignant cancer or benign cancer, ensure that these products that I've produced are correct. Make sure that that the defect that might exist on this electric vehicle makes its way back for review. All these sorts of problems are immediately able to be solved and tackled. In terms of the managed services element, we have solutions as integrators that will often build on top of our tools, or we'll have companies that look to us for guidance, but ultimately the company is in control of developing and building and creating these capabilities in house. I really think the distinction is maybe less around managed service and tool, and more around ownership in the era of AI. So for example, if I'm using a managed service, in that managed service, part of their benefit is that they are learning across their customer sets, then it's a very different relationship than using a managed service where I'm developing some amount of proprietary advantages for my data sets. And I think that's a really important thing that companies are becoming attuned to, just the value of the data that they have. And so that's what we do. We tell companies that you have this proprietary, immense treasure trove of data, use that to your advantage, and think about us more like a set of tools that enable you to get value from that capability. You know, the HashiCorp's and GitLab's of the world have proven like what these businesses look like at scale. >> And you're targeting developers. When you go into a company, do you target developers with freemium, is there a paid service? Talk about the business model real quick. >> Sure, yeah. The tools are free to use and get started. When someone signs up for Roboflow, they may elect to make their work open source, in which case we're able to provide even more generous usage limits to basically move the computer vision community forward. If you elect to make your data private, you can use our hosted data set managing, data set training, model deployment, annotation tooling up to some limits. And then usually when someone validates that what they're doing gets them value, they purchase a subscription license to be able to scale up those capabilities. So like most developer centric products, it's free to get started, free to prove, free to poke around, develop what you think is possible. And then once you're getting to value, then we're able to capture the commercial upside in the value that's being provided. >> Love the business model. It's right in line with where the market is. There's kind of no standards bodies these days. The developers are the ones who are deciding kind of what the standards are by their adoption. I think making that easy for developers to get value as the model open sources continuing to grow, you can see more of that. Great perspective Joseph, thanks for sharing that. Put a plug in for the company. What are you guys doing right now? Where are you in your growth? What are you looking for? How should people engage? Give the quick commercial for the company. >> So as I mentioned, Roboflow is I think one of the largest, if not the largest collections of computer vision models and data sets that are open source, available on the web today, and have a private set of tools that over half the Fortune 100 now rely on those tools. So we're at the stage now where we know people want what we're working on, and we're continuing to drive that type of adoption. So companies that are looking to make better models, improve their data sets, train and deploy, often will get a lot of value from our tools, and certainly reach out to talk. I'm sure there's a lot of talented engineers that are tuning in too, we're aggressively hiring. So if you are interested in being a part of making the world programmable, and being at the ground floor of the company that's creating these capabilities to be writ large, we'd love to hear from you. >> Amazing, Joseph, thanks so much for coming on and being part of the AWS Startup Showcase. Man, if I was in my twenties, I'd be knocking on your door, because it's the hottest trend right now, it's super exciting. Generative AI is just the beginning of massive sea change. Congratulations on all your success, and we'll be following you guys. Thanks for spending the time, really appreciate it. >> Thanks for having me. >> Okay, this is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about the hottest things in tech. I'm John Furrier, your host. Thanks for watching. (chill electronic music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startups Showcase, of what you guys are doing, of the explosion of use and you know, write some hacks on code and do it all on the edge. and the processors and of the traditional task types. Let's get into that vision. the greatest asset you have, eating into the bell curve, as you said, and flavor of the day for enterprises. So can you share your your take on that, that you can start from a blank slate. but that's like the that right, by the way, How do I find the right models to use? Is that you guys? and GitLab's of the world Talk about the business model real quick. in the value that's being provided. The developers are the that over half the Fortune and being part of the of the ongoing series

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Joseph NelsonPERSON

0.99+

JosephPERSON

0.99+

WalmartORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

John FurrierPERSON

0.99+

TeslaORGANIZATION

0.99+

400 millionQUANTITY

0.99+

2014DATE

0.99+

80 objectsQUANTITY

0.99+

AWSORGANIZATION

0.99+

three yearsQUANTITY

0.99+

ten yearsQUANTITY

0.99+

80 classesQUANTITY

0.99+

first questionQUANTITY

0.99+

five yearsQUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

twoQUANTITY

0.99+

RoboflowORGANIZATION

0.99+

WimbledonEVENT

0.99+

todayDATE

0.98+

bothQUANTITY

0.98+

five years agoDATE

0.98+

GitLabORGANIZATION

0.98+

oneQUANTITY

0.98+

North StarORGANIZATION

0.98+

first pointQUANTITY

0.97+

eachQUANTITY

0.97+

over 10,000 pre-trained modelsQUANTITY

0.97+

a decade agoDATE

0.97+

RivianORGANIZATION

0.97+

Mobile World ConferenceEVENT

0.95+

over a hundred thousand developersQUANTITY

0.94+

EC2TITLE

0.94+

this monthDATE

0.93+

season oneQUANTITY

0.93+

30 plus frames per secondQUANTITY

0.93+

twentiesQUANTITY

0.93+

sandcastleORGANIZATION

0.9+

HashiCorpORGANIZATION

0.89+

theCUBEORGANIZATION

0.88+

hundreds of thousandsQUANTITY

0.87+

waveEVENT

0.87+

North StarORGANIZATION

0.86+

400 million image text pairsQUANTITY

0.78+

season threeQUANTITY

0.78+

episode oneQUANTITY

0.76+

AmazonGoORGANIZATION

0.76+

over halfQUANTITY

0.69+

a hundred millionQUANTITY

0.68+

Startup ShowcaseEVENT

0.66+

Fortune 100TITLE

0.66+

COCOTITLE

0.65+

RoboflowPERSON

0.6+

ChatGPTORGANIZATION

0.58+

DatasetTITLE

0.53+

MoorePERSON

0.5+

COCOORGANIZATION

0.39+

Joseph Nelson, Roboflow | Cube Conversation


 

(gentle music) >> Hello everyone. Welcome to this CUBE conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got a great remote guest coming in. Joseph Nelson, co-founder and CEO of RoboFlow hot startup in AI, computer vision. Really interesting topic in this wave of AI next gen hitting. Joseph, thanks for coming on this CUBE conversation. >> Thanks for having me. >> Yeah, I love the startup tsunami that's happening here in this wave. RoboFlow, you're in the middle of it. Exciting opportunities, you guys are in the cutting edge. I think computer vision's been talked about more as just as much as the large language models and these foundational models are merging. You're in the middle of it. What's it like right now as a startup and growing in this new wave hitting? >> It's kind of funny, it's, you know, I kind of describe it like sometimes you're in a garden of gnomes. It's like we feel like we've got this giant headstart with hundreds of thousands of people building with computer vision, training their own models, but that's a fraction of what it's going to be in six months, 12 months, 24 months. So, as you described it, a wave is a good way to think about it. And the wave is still building before it gets to its full size. So it's a ton of fun. >> Yeah, I think it's one of the most exciting areas in computer science. I wish I was in my twenties again, because I would be all over this. It's the intersection, there's so many disciplines, right? It's not just tech computer science, it's computer science, it's systems, it's software, it's data. There's so much aperture of things going on around your world. So, I mean, you got to be batting all the students away kind of trying to get hired in there, probably. I can only imagine you're hiring regiment. I'll ask that later, but first talk about what the company is that you're doing. How it's positioned, what's the market you're going after, and what's the origination story? How did you guys get here? How did you just say, hey, want to do this? What was the origination story? What do you do and how did you start the company? >> Yeah, yeah. I'll give you the what we do today and then I'll shift into the origin. RoboFlow builds tools for making the world programmable. Like anything that you see should be read write access if you think about it with a programmer's mind or legible. And computer vision is a technology that enables software to be added to these real world objects that we see. And so any sort of interface, any sort of object, any sort of scene, we can interact with it, we can make it more efficient, we can make it more entertaining by adding the ability for the tools that we use and the software that we write to understand those objects. And at RoboFlow, we've empowered a little over a hundred thousand developers, including those in half the Fortune 100 so far in that mission. Whether that's Walmart understanding the retail in their stores, Cardinal Health understanding the ways that they're helping their patients, or even electric vehicle manufacturers ensuring that they're making the right stuff at the right time. As you mentioned, it's early. Like I think maybe computer vision has touched one, maybe 2% of the whole economy and it'll be like everything in a very short period of time. And so we're focused on enabling that transformation. I think it's it, as far as I think about it, I've been fortunate to start companies before, start, sell these sorts of things. This is the last company I ever wanted to start and I think it will be, should we do it right, the world's largest in riding the wave of bringing together the disparate pieces of that technology. >> What was the motivating point of the formation? Was it, you know, you guys were hanging around? Was there some catalyst? What was the moment where it all kind of came together for you? >> You know what's funny is my co-founder, Brad and I, we were making computer vision apps for making board games more fun to play. So in 2017, Apple released AR kit, augmented reality kit for building augmented reality applications. And Brad and I are both sort of like hacker persona types. We feel like we don't really understand the technology until we build something with it and so we decided that we should make an app that if you point your phone at a Sudoku puzzle, it understands the state of the board and then it kind of magically fills in that experience with all the digits in real time, which totally ruins the game of Sudoku to be clear. But it also just creates this like aha moment of like, oh wow, like the ability for our pocket devices to understand and see the world as good or better than we can is possible. And so, you know, we actually did that as I mentioned in 2017, and the app went viral. It was, you know, top of some subreddits, top of Injure, Reddit, the hacker community as well as Product Hunt really liked it. So it actually won Product Hunt AR app of the year, which was the same year that the Tesla model three won the product of the year. So we joked that we share an award with Elon our shared (indistinct) But frankly, so that was 2017. RoboFlow wasn't incorporated as a business until 2019. And so, you know, when we made Magic Sudoku, I was running a different company at the time, Brad was running a different company at the time, and we kind of just put it out there and were excited by how many people liked it. And we assumed that other curious developers would see this inevitable future of, oh wow, you know. This is much more than just a pedestrian point your phone at a board game. This is everything can be seen and understood and rewritten in a different way. Things like, you know, maybe your fridge. Knowing what ingredients you have and suggesting recipes or auto ordering for you, or we were talking about some retail use cases of automated checkout. Like anything can be seen and observed and we presume that that would kick off a Cambrian explosion of applications. It didn't. So you fast forward to 2019, we said, well we might as well be the guys to start to tackle this sort of problem. And because of our success with board games before, we returned to making more board game solving applications. So we made one that solves Boggle, you know, the four by four word game, we made one that solves chess, you point your phone at a chess board and it understands the state of the board and then can make move recommendations. And each additional board game that we added, we realized that the tooling was really immature. The process of collecting images, knowing which images are actually going to be useful for improving model performance, training those models, deploying those models. And if we really wanted to make the world programmable, developers waiting for us to make an app for their thing of interest is a lot less efficient, less impactful than taking our tool chain and releasing that externally. And so, that's what RoboFlow became. RoboFlow became the internal tools that we used to make these game changing applications readily available. And as you know, when you give developers new tools, they create new billion dollar industries, let alone all sorts of fun hobbyist projects along the way. >> I love that story. Curious, inventive, little radical. Let's break the rules, see how we can push the envelope on the board games. That's how companies get started. It's a great story. I got to ask you, okay, what happens next? Now, okay, you realize this new tooling, but this is like how companies get built. Like they solve their own problem that they had 'cause they realized there's one, but then there has to be a market for it. So you actually guys knew that this was coming around the corner. So okay, you got your hacker mentality, you did that thing, you got the award and now you're like, okay, wow. Were you guys conscious of the wave coming? Was it one of those things where you said, look, if we do this, we solve our own problem, this will be big for everybody. Did you have that moment? Was that in 2019 or was that more of like, it kind of was obvious to you guys? >> Absolutely. I mean Brad puts this pretty effectively where he describes how we lived through the initial internet revolution, but we were kind of too young to really recognize and comprehend what was happening at the time. And then mobile happened and we were working on different companies that were not in the mobile space. And computer vision feels like the wave that we've caught. Like, this is a technology and capability that rewrites how we interact with the world, how everyone will interact with the world. And so we feel we've been kind of lucky this time, right place, right time of every enterprise will have the ability to improve their operations with computer vision. And so we've been very cognizant of the fact that computer vision is one of those groundbreaking technologies that every company will have as a part of their products and services and offerings, and we can provide the tooling to accelerate that future. >> Yeah, and the developer angle, by the way, I love that because I think, you know, as we've been saying in theCUBE all the time, developer's the new defacto standard bodies because what they adopt is pure, you know, meritocracy. And they pick the best. If it's sell service and it's good and it's got open source community around it, its all in. And they'll vote. They'll vote with their code and that is clear. Now I got to ask you, as you look at the market, we were just having this conversation on theCUBE in Barcelona at recent Mobile World Congress, now called MWC, around 5G versus wifi. And the debate was specifically computer vision, like facial recognition. We were talking about how the Cleveland Browns were using facial recognition for people coming into the stadium they were using it for ships in international ports. So the question was 5G versus wifi. My question is what infrastructure or what are the areas that need to be in place to make computer vision work? If you have developers building apps, apps got to run on stuff. So how do you sort that out in your mind? What's your reaction to that? >> A lot of the times when we see applications that need to run in real time and on video, they'll actually run at the edge without internet. And so a lot of our users will actually take their models and run it in a fully offline environment. Now to act on that information, you'll often need to have internet signal at some point 'cause you'll need to know how many people were in the stadium or what shipping crates are in my port at this point in time. You'll need to relay that information somewhere else, which will require connectivity. But actually using the model and creating the insights at the edge does not require internet. I mean we have users that deploy models on underwater submarines just as much as in outer space actually. And those are not very friendly environments to internet, let alone 5g. And so what you do is you use an edge device, like an Nvidia Jetson is common, mobile devices are common. Intel has some strong edge devices, the Movidius family of chips for example. And you use that compute that runs completely offline in real time to process those signals. Now again, what you do with those signals may require connectivity and that becomes a question of the problem you're solving of how soon you need to relay that information to another place. >> So, that's an architectural issue on the infrastructure. If you're a tactical edge war fighter for instance, you might want to have highly available and maybe high availability. I mean, these are words that mean something. You got storage, but it's not at the edge in real time. But you can trickle it back and pull it down. That's management. So that's more of a business by business decision or environment, right? >> That's right, that's right. Yeah. So I mean we can talk through some specifics. So for example, the RoboFlow actually powers the broadcaster that does the tennis ball tracking at Wimbledon. That runs completely at the edge in real time in, you know, technically to track the tennis ball and point the camera, you actually don't need internet. Now they do have internet of course to do the broadcasting and relay the signal and feeds and these sorts of things. And so that's a case where you have both edge deployment of running the model and high availability act on that model. We have other instances where customers will run their models on drones and the drone will go and do a flight and it'll say, you know, this many residential homes are in this given area, or this many cargo containers are in this given shipping yard. Or maybe we saw these environmental considerations of soil erosion along this riverbank. The model in that case can run on the drone during flight without internet, but then you only need internet once the drone lands and you're going to act on that information because for example, if you're doing like a study of soil erosion, you don't need to be real time. You just need to be able to process and make use of that information once the drone finishes its flight. >> Well I can imagine a zillion use cases. I heard of a use case interview at a company that does computer vision to help people see if anyone's jumping the fence on their company. Like, they know what a body looks like climbing a fence and they can spot it. Pretty easy use case compared to probably some of the other things, but this is the horizontal use cases, its so many use cases. So how do you guys talk to the marketplace when you say, hey, we have generative AI for commuter vision. You might know language models that's completely different animal because vision's like the world, right? So you got a lot more to do. What's the difference? How do you explain that to customers? What can I build and what's their reaction? >> Because we're such a developer centric company, developers are usually creative and show you the ways that they want to take advantage of new technologies. I mean, we've had people use things for identifying conveyor belt debris, doing gas leak detection, measuring the size of fish, airplane maintenance. We even had someone that like a hobby use case where they did like a specific sushi identifier. I dunno if you know this, but there's a specific type of whitefish that if you grew up in the western hemisphere and you eat it in the eastern hemisphere, you get very sick. And so there was someone that made an app that tells you if you happen to have that fish in the sushi that you're eating. But security camera analysis, transportation flows, plant disease detection, really, you know, smarter cities. We have people that are doing curb management identifying, and a lot of these use cases, the fantastic thing about building tools for developers is they're a creative bunch and they have these ideas that if you and I sat down for 15 minutes and said, let's guess every way computer vision can be used, we would need weeks to list all the example use cases. >> We'd miss everything. >> And we'd miss. And so having the community show us the ways that they're using computer vision is impactful. Now that said, there are of course commercial industries that have discovered the value and been able to be out of the gate. And that's where we have the Fortune 100 customers, like we do. Like the retail customers in the Walmart sector, healthcare providers like Medtronic, or vehicle manufacturers like Rivian who all have very difficult either supply chain, quality assurance, in stock, out of stock, anti-theft protection considerations that require successfully making sense of the real world. >> Let me ask you a question. This is maybe a little bit in the weeds, but it's more developer focused. What are some of the developer profiles that you're seeing right now in terms of low-hanging fruit applications? And can you talk about the academic impact? Because I imagine if I was in school right now, I'd be all over it. Are you seeing Master's thesis' being worked on with some of your stuff? Is the uptake in both areas of younger pre-graduates? And then inside the workforce, What are some of the devs like? Can you share just either what their makeup is, what they work on, give a little insight into the devs you're working with. >> Leading developers that want to be on state-of-the-art technology build with RoboFlow because they know they can use the best in class open source. They know that they can get the most out of their data. They know that they can deploy extremely quickly. That's true among students as you mentioned, just as much as as industries. So we welcome students and I mean, we have research grants that will regularly support for people to publish. I mean we actually have a channel inside our internal slack where every day, more student publications that cite building with RoboFlow pop up. And so, that helps inspire some of the use cases. Now what's interesting is that the use case is relatively, you know, useful or applicable for the business or the student. In other words, if a student does a thesis on how to do, we'll say like shingle damage detection from satellite imagery and they're just doing that as a master's thesis, in fact most insurance businesses would be interested in that sort of application. So, that's kind of how we see uptick and adoption both among researchers who want to be on the cutting edge and publish, both with RoboFlow and making use of open source tools in tandem with the tool that we provide, just as much as industry. And you know, I'm a big believer in the philosophy that kind of like what the hackers are doing nights and weekends, the Fortune 500 are doing in a pretty short order period of time and we're experiencing that transition. Computer vision used to be, you know, kind of like a PhD, multi-year investment endeavor. And now with some of the tooling that we're working on in open source technologies and the compute that's available, these science fiction ideas are possible in an afternoon. And so you have this idea of maybe doing asset management or the aerial observation of your shingles or things like this. You have a few hundred images and you can de-risk whether that's possible for your business today. So there's pretty broad-based adoption among both researchers that want to be on the state of the art, as much as companies that want to reduce the time to value. >> You know, Joseph, you guys and your partner have got a great front row seat, ground floor, presented creation wave here. I'm seeing a pattern emerging from all my conversations on theCUBE with founders that are successful, like yourselves, that there's two kind of real things going on. You got the enterprises grabbing the products and retrofitting into their legacy and rebuilding their business. And then you have startups coming out of the woodwork. Young, seeing greenfield or pick a specific niche or focus and making that the signature lever to move the market. >> That's right. >> So can you share your thoughts on the startup scene, other founders out there and talk about that? And then I have a couple questions for like the enterprises, the old school, the existing legacy. Little slower, but the startups are moving fast. What are some of the things you're seeing as startups are emerging in this field? >> I think you make a great point that independent of RoboFlow, very successful, especially developer focused businesses, kind of have three customer types. You have the startups and maybe like series A, series B startups that you're building a product as fast as you can to keep up with them, and they're really moving just as fast as as you are and pulling the product out at you for things that they need. The second segment that you have might be, call it SMB but not enterprise, who are able to purchase and aren't, you know, as fast of moving, but are stable and getting value and able to get to production. And then the third type is enterprise, and that's where you have typically larger contract value sizes, slower moving in terms of adoption and feedback for your product. And I think what you see is that successful companies balance having those three customer personas because you have the small startups, small fast moving upstarts that are discerning buyers who know the market and elect to build on tooling that is best in class. And so you basically kind of pass the smell test of companies who are quite discerning in their purchases, plus are moving so quick they're pulling their product out of you. Concurrently, you have a product that's enterprise ready to service the scalability, availability, and trust of enterprise buyers. And that's ultimately where a lot of companies will see tremendous commercial success. I mean I remember seeing the Twilio IPO, Uber being like a full 20% of their revenue, right? And so there's this very common pattern where you have the ability to find some of those upstarts that you make bets on, like the next Ubers of the world, the smaller companies that continue to get developed with the product and then the enterprise whom allows you to really fund the commercial success of the business, and validate the size of the opportunity in market that's being creative. >> It's interesting, there's so many things happening there. It's like, in a way it's a new category, but it's not a new category. It becomes a new category because of the capabilities, right? So, it's really interesting, 'cause that's what you're talking about is a category, creating. >> I think developer tools. So people often talk about B to B and B to C businesses. I think developer tools are in some ways a third way. I mean ultimately they're B to B, you're selling to other businesses and that's where your revenue's coming from. However, you look kind of like a B to C company in the ways that you measure product adoption and kind of go to market. In other words, you know, we're often tracking the leading indicators of commercial success in the form of usage, adoption, retention. Really consumer app, traditionally based metrics of how to know you're building the right stuff, and that's what product led growth companies do. And then you ultimately have commercial traction in a B to B way. And I think that that actually kind of looks like a third thing, right? Like you can do these sort of funny zany marketing examples that you might see historically from consumer businesses, but yet you ultimately make your money from the enterprise who has these de-risked high value problems you can solve for them. And I selfishly think that that's the best of both worlds because I don't have to be like Evan Spiegel, guessing the next consumer trend or maybe creating the next consumer trend and catching lightning in a bottle over and over again on the consumer side. But I still get to have fun in our marketing and make sort of fun, like we're launching the world's largest game of rock paper scissors being played with computer vision, right? Like that's sort of like a fun thing you can do, but then you can concurrently have the commercial validation and customers telling you the things that they need to be built for them next to solve commercial pain points for them. So I really do think that you're right by calling this a new category and it really is the best of both worlds. >> It's a great call out, it's a great call out. In fact, I always juggle with the VC. I'm like, it's so easy. Your job is so easy to pick the winners. What are you talking about its so easy? I go, just watch what the developers jump on. And it's not about who started, it could be someone in the dorm room to the boardroom person. You don't know because that B to C, the C, it's B to D you know? You know it's developer 'cause that's a human right? That's a consumer of the tool which influences the business that never was there before. So I think this direct business model evolution, whether it's media going direct or going direct to the developers rather than going to a gatekeeper, this is the reality. >> That's right. >> Well I got to ask you while we got some time left to describe, I want to get into this topic of multi-modality, okay? And can you describe what that means in computer vision? And what's the state of the growth of that portion of this piece? >> Multi modality refers to using multiple traditionally siloed problem types, meaning text, image, video, audio. So you could treat an audio problem as only processing audio signal. That is not multimodal, but you could use the audio signal at the same time as a video feed. Now you're talking about multi modality. In computer vision, multi modality is predominantly happening with images and text. And one of the biggest releases in this space is actually two years old now, was clip, contrastive language image pre-training, which took 400 million image text pairs and basically instead of previously when you do classification, you basically map every single image to a single class, right? Like here's a bunch of images of chairs, here's a bunch of images of dogs. What clip did is used, you can think about it like, the class for an image being the Instagram caption for the image. So it's not one single thing. And by training on understanding the corpora, you basically see which words, which concepts are associated with which pixels. And this opens up the aperture for the types of problems and generalizability of models. So what does this mean? This means that you can get to value more quickly from an existing trained model, or at least validate that what you want to tackle with a computer vision, you can get there more quickly. It also opens up the, I mean. Clip has been the bedrock of some of the generative image techniques that have come to bear, just as much as some of the LLMs. And increasingly we're going to see more and more of multi modality being a theme simply because at its core, you're including more context into what you're trying to understand about the world. I mean, in its most basic sense, you could ask yourself, if I have an image, can I know more about that image with just the pixels? Or if I have the image and the sound of when that image was captured or it had someone describe what they see in that image when the image was captured, which one's going to be able to get you more signal? And so multi modality helps expand the ability for us to understand signal processing. >> Awesome. And can you just real quick, define clip for the folks that don't know what that means? >> Yeah. Clip is a model architecture, it's an acronym for contrastive language image pre-training and like, you know, model architectures that have come before it captures the almost like, models are kind of like brands. So I guess it's a brand of a model where you've done these 400 million image text pairs to match up which visual concepts are associated with which text concepts. And there have been new releases of clip, just at bigger sizes of bigger encoding's, of longer strings of texture, or larger image windows. But it's been a really exciting advancement that OpenAI released in January, 2021. >> All right, well great stuff. We got a couple minutes left. Just I want to get into more of a company-specific question around culture. All startups have, you know, some sort of cultural vibe. You know, Intel has Moore's law doubles every whatever, six months. What's your culture like at RoboFlow? I mean, if you had to describe that culture, obviously love the hacking story, you and your partner with the games going number one on Product Hunt next to Elon and Tesla and then hey, we should start a company two years later. That's kind of like a curious, inventing, building, hard charging, but laid back. That's my take. How would you describe the culture? >> I think that you're right. The culture that we have is one of shipping, making things. So every week each team shares what they did for our customers on a weekly basis. And we have such a strong emphasis on being better week over week that those sorts of things compound. So one big emphasis in our culture is getting things done, shipping, doing things for our customers. The second is we're an incredibly transparent place to work. For example, how we think about giving decisions, where we're progressing against our goals, what problems are biggest and most important for the company is all open information for those that are inside the company to know and progress against. The third thing that I'd use to describe our culture is one that thrives with autonomy. So RoboFlow has a number of individuals who have founded companies before, some of which have sold their businesses for a hundred million plus upon exit. And the way that we've been able to attract talent like that is because the problems that we're tackling are so immense, yet individuals are able to charge at it with the way that they think is best. And this is what pairs well with transparency. If you have a strong sense of what the company's goals are, how we're progressing against it, and you have this ownership mentality of what can I do to change or drive progress against that given outcome, then you create a really healthy pairing of, okay cool, here's where the company's progressing. Here's where things are going really well, here's the places that we most need to improve and work on. And if you're inside that company as someone who has a preponderance to be a self-starter and even a history of building entire functions or companies yourself, then you're going to be a place where you can really thrive. You have the inputs of the things where we need to work on to progress the company's goals. And you have the background of someone that is just necessarily a fast moving and ambitious type of individual. So I think the best way to describe it is a transparent place with autonomy and an emphasis on getting things done. >> Getting shit done as they say. Getting stuff done. Great stuff. Hey, final question. Put a plug out there for the company. What are you going to hire? What's your pipeline look like for people? What jobs are open? I'm sure you got hiring all around. Give a quick plug for the company what you're looking for. >> I appreciate you asking. Basically you're either building the product or helping customers be successful with the product. So in the building product category, we have platform engineering roles, machine learning engineering roles, and we're solving some of the hardest and most impactful problems of bringing such a groundbreaking technology to the masses. And so it's a great place to be where you can kind of be your own user as an engineer. And then if you're enabling people to be successful with the products, I mean you're working in a place where there's already such a strong community around it and you can help shape, foster, cultivate, activate, and drive commercial success in that community. So those are roles that tend themselves to being those that build the product for developer advocacy, those that are account executives that are enabling our customers to realize commercial success, and even hybrid roles like we call it field engineering, where you are a technical resource to drive success within customer accounts. And so all this is listed on roboflow.com/careers. And one thing that I actually kind of want to mention John that's kind of novel about the thing that's working at RoboFlow. So there's been a lot of discussion around remote companies and there's been a lot of discussion around in-person companies and do you need to be in the office? And one thing that we've kind of recognized is you can actually chart a third way. You can create a third way which we call satellite, which basically means people can work from where they most like to work and there's clusters of people, regular onsite's. And at RoboFlow everyone gets, for example, $2,500 a year that they can use to spend on visiting coworkers. And so what's sort of organically happened is team numbers have started to pull together these resources and rent out like, lavish Airbnbs for like a week and then everyone kind of like descends in and works together for a week and makes and creates things. And we call this lighthouses because you know, a lighthouse kind of brings ships into harbor and we have an emphasis on shipping. >> Yeah, quality people that are creative and doers and builders. You give 'em some cash and let the self-governing begin, you know? And like, creativity goes through the roof. It's a great story. I think that sums up the culture right there, Joseph. Thanks for sharing that and thanks for this great conversation. I really appreciate it and it's very inspiring. Thanks for coming on. >> Yeah, thanks for having me, John. >> Joseph Nelson, co-founder and CEO of RoboFlow. Hot company, great culture in the right place in a hot area, computer vision. This is going to explode in value. The edge is exploding. More use cases, more development, and developers are driving the change. Check out RoboFlow. This is theCUBE. I'm John Furrier, your host. Thanks for watching. (gentle music)

Published Date : Mar 3 2023

SUMMARY :

Welcome to this CUBE conversation You're in the middle of it. And the wave is still building the company is that you're doing. maybe 2% of the whole economy And as you know, when you it kind of was obvious to you guys? cognizant of the fact that I love that because I think, you know, And so what you do is issue on the infrastructure. and the drone will go and the marketplace when you say, in the sushi that you're eating. And so having the And can you talk about the use case is relatively, you know, and making that the signature What are some of the things you're seeing and pulling the product out at you because of the capabilities, right? in the ways that you the C, it's B to D you know? And one of the biggest releases And can you just real quick, and like, you know, I mean, if you had to like that is because the problems Give a quick plug for the place to be where you can the self-governing begin, you know? and developers are driving the change.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
BradPERSON

0.99+

JosephPERSON

0.99+

Joseph NelsonPERSON

0.99+

January, 2021DATE

0.99+

John FurrierPERSON

0.99+

MedtronicORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

2019DATE

0.99+

UberORGANIZATION

0.99+

AppleORGANIZATION

0.99+

JohnPERSON

0.99+

400 millionQUANTITY

0.99+

Evan SpiegelPERSON

0.99+

24 monthsQUANTITY

0.99+

2017DATE

0.99+

RoboFlowORGANIZATION

0.99+

15 minutesQUANTITY

0.99+

RivianORGANIZATION

0.99+

12 monthsQUANTITY

0.99+

20%QUANTITY

0.99+

Cardinal HealthORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

BarcelonaLOCATION

0.99+

WimbledonEVENT

0.99+

roboflow.com/careersOTHER

0.99+

firstQUANTITY

0.99+

second segmentQUANTITY

0.99+

each teamQUANTITY

0.99+

six monthsQUANTITY

0.99+

bothQUANTITY

0.99+

IntelORGANIZATION

0.99+

both worldsQUANTITY

0.99+

2%QUANTITY

0.99+

two years laterDATE

0.98+

Mobile World CongressEVENT

0.98+

UbersORGANIZATION

0.98+

third wayQUANTITY

0.98+

oneQUANTITY

0.98+

a weekQUANTITY

0.98+

Magic SudokuTITLE

0.98+

secondQUANTITY

0.98+

NvidiaORGANIZATION

0.98+

SudokuTITLE

0.98+

MWCEVENT

0.97+

todayDATE

0.97+

billion dollarQUANTITY

0.97+

one single thingQUANTITY

0.97+

over a hundred thousand developersQUANTITY

0.97+

fourQUANTITY

0.97+

thirdQUANTITY

0.96+

ElonORGANIZATION

0.96+

third thingQUANTITY

0.96+

TeslaORGANIZATION

0.96+

JetsonCOMMERCIAL_ITEM

0.96+

ElonPERSON

0.96+

RoboFlowTITLE

0.96+

InstagramORGANIZATION

0.95+

TwilioORGANIZATION

0.95+

twentiesQUANTITY

0.95+

Product Hunt ARTITLE

0.95+

MoorePERSON

0.95+

both researchersQUANTITY

0.95+

one thingQUANTITY

0.94+

Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud


 

(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)

Published Date : Feb 17 2023

SUMMARY :

And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
WalmartORGANIZATION

0.99+

Dave VellantePERSON

0.99+

NASDAQORGANIZATION

0.99+

Bob MugliaPERSON

0.99+

ThomasPERSON

0.99+

Thomas HazelPERSON

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

Western UnionORGANIZATION

0.99+

Ed WalshPERSON

0.99+

BobPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Nelu MihaiPERSON

0.99+

SachsORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

twoQUANTITY

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

two yearsQUANTITY

0.99+

Supercloud 2TITLE

0.99+

firstQUANTITY

0.99+

Last AugustDATE

0.99+

threeQUANTITY

0.99+

OracleORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

bothQUANTITY

0.99+

dbt LabsORGANIZATION

0.99+

John FurrierPERSON

0.99+

EdPERSON

0.99+

GartnerORGANIZATION

0.99+

Jimata GanPERSON

0.99+

third oneQUANTITY

0.99+

one minuteQUANTITY

0.99+

secondQUANTITY

0.99+

first generationQUANTITY

0.99+

third generationQUANTITY

0.99+

GrafanaORGANIZATION

0.99+

second generationQUANTITY

0.99+

second oneQUANTITY

0.99+

hundreds of terabytesQUANTITY

0.98+

SQLTITLE

0.98+

fiveDATE

0.98+

oneQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

a year agoDATE

0.98+

ChaosSearchORGANIZATION

0.98+

MugliaPERSON

0.98+

MySQLTITLE

0.98+

both worldsQUANTITY

0.98+

third thingQUANTITY

0.97+

MarlboroughLOCATION

0.97+

theCUBEORGANIZATION

0.97+

todayDATE

0.97+

SupercloudORGANIZATION

0.97+

ElasticsearchTITLE

0.96+

NetAppTITLE

0.96+

DatadogORGANIZATION

0.96+

OneQUANTITY

0.96+

EC2TITLE

0.96+

each oneQUANTITY

0.96+

S3TITLE

0.96+

one platformQUANTITY

0.95+

Supercloud 2EVENT

0.95+

first readQUANTITY

0.95+

six years agoDATE

0.95+

Daren Brabham & Erik Bradley | What the Spending Data Tells us About Supercloud


 

(gentle synth music) (music ends) >> Welcome back to Supercloud 2, an open industry collaboration between technologists, consultants, analysts, and of course practitioners to help shape the future of cloud. At this event, one of the key areas we're exploring is the intersection of cloud and data. And how building value on top of hyperscale clouds and across clouds is evolving, a concept of course we call "Supercloud". And we're pleased to welcome our friends from Enterprise Technology research, Erik Bradley and Darren Brabham. Guys, thanks for joining us, great to see you. we love to bring the data into these conversations. >> Thank you for having us, Dave, I appreciate it. >> Yeah, thanks. >> You bet. And so, let me do the setup on what is Supercloud. It's a concept that we've floated, Before re:Invent 2021, based on the idea that cloud infrastructure is becoming ubiquitous, incredibly powerful, but there's a lack of standards across the big three clouds. That creates friction. So we defined over the period of time, you know, better part of a year, a set of essential elements, deployment models for so-called supercloud, which create this common experience for specific cloud services that, of course, again, span multiple clouds and even on-premise data. So Erik, with that as background, I wonder if you could add your general thoughts on the term supercloud, maybe play proxy for the CIO community, 'cause you do these round tables, you talk to these guys all the time, you gather a lot of amazing information from senior IT DMs that compliment your survey. So what are your thoughts on the term and the concept? >> Yeah, sure. I'll even go back to last year when you and I did our predictions panel, right? And we threw it out there. And to your point, you know, there's some haters. Anytime you throw out a new term, "Is it marketing buzz? Is it worth it? Why are you even doing it?" But you know, from my own perspective, and then also speaking to the IT DMs that we interview on a regular basis, this is just a natural evolution. It's something that's inevitable in enterprise tech, right? The internet was not built for what it has become. It was never intended to be the underlying infrastructure of our daily lives and work. The cloud also was not built to be what it's become. But where we're at now is, we have to figure out what the cloud is and what it needs to be to be scalable, resilient, secure, and have the governance wrapped around it. And to me that's what supercloud is. It's a way to define operantly, what the next generation, the continued iteration and evolution of the cloud and what its needs to be. And that's what the supercloud means to me. And what depends, if you want to call it metacloud, supercloud, it doesn't matter. The point is that we're trying to define the next layer, the next future of work, which is inevitable in enterprise tech. Now, from the IT DM perspective, I have two interesting call outs. One is from basically a senior developer IT architecture and DevSecOps who says he uses the term all the time. And the reason he uses the term, is that because multi-cloud has a stigma attached to it, when he is talking to his business executives. (David chuckles) the stigma is because it's complex and it's expensive. So he switched to supercloud to better explain to his business executives and his CFO and his CIO what he's trying to do. And we can get into more later about what it means to him. But the inverse of that, of course, is a good CSO friend of mine for a very large enterprise says the concern with Supercloud is the reduction of complexity. And I'll explain, he believes anything that takes the requirement of specific expertise out of the equation, even a little bit, as a CSO worries him. So as you said, David, always two sides to the coin, but I do believe supercloud is a relevant term, and it is necessary because the cloud is continuing to be defined. >> You know, that's really interesting too, 'cause you know, Darren, we use Snowflake a lot as an example, sort of early supercloud, and you think from a security standpoint, we've always pushed Amazon and, "Are you ever going to kind of abstract the complexity away from all these primitives?" and their position has always been, "Look, if we produce these primitives, and offer these primitives, we we can move as the market moves. When you abstract, then it becomes harder to peel the layers." But Darren, from a data standpoint, like I say, we use Snowflake a lot. I think of like Tim Burners-Lee when Web 2.0 came out, he said, "Well this is what the internet was always supposed to be." So in a way, you know, supercloud is maybe what multi-cloud was supposed to be. But I mean, you think about data sharing, Darren, across clouds, it's always been a challenge. Snowflake always, you know, obviously trying to solve that problem, as are others. But what are your thoughts on the concept? >> Yeah, I think the concept fits, right? It is reflective of, it's a paradigm shift, right? Things, as a pendulum have swung back and forth between needing to piece together a bunch of different tools that have specific unique use cases and they're best in breed in what they do. And then focusing on the duct tape that holds 'em all together and all the engineering complexity and skill, it shifted from that end of the pendulum all the way back to, "Let's streamline this, let's simplify it. Maybe we have budget crunches and we need to consolidate tools or eliminate tools." And so then you kind of see this back and forth over time. And with data and analytics for instance, a lot of organizations were trying to bring the data closer to the business. That's where we saw self-service analytics coming in. And tools like Snowflake, what they did was they helped point to different databases, they helped unify data, and organize it in a single place that was, you know, in a sense neutral, away from a single cloud vendor or a single database, and allowed the business to kind of be more flexible in how it brought stuff together and provided it out to the business units. So Snowflake was an example of one of those times where we pulled back from the granular, multiple points of the spear, back to a simple way to do things. And I think Snowflake has continued to kind of keep that mantle to a degree, and we see other tools trying to do that, but that's all it is. It's a paradigm shift back to this kind of meta abstraction layer that kind of simplifies what is the reality, that you need a complex multi-use case, multi-region way of doing business. And it sort of reflects the reality of that. >> And you know, to me it's a spectrum. As part of Supercloud 2, we're talking to a number of of practitioners, Ionis Pharmaceuticals, US West, we got Walmart. And it's a spectrum, right? In some cases the practitioner's saying, "You know, the way I solve multi-cloud complexity is mono-cloud, I just do one cloud." (laughs) Others like Walmart are saying, "Hey, you know, we actually are building an abstraction layer ourselves, take advantage of it." So my general question to both of you is, is this a concept, is the lack of standards across clouds, you know, really a problem, you know, or is supercloud a solution looking for a problem? Or do you hear from practitioners that "No, this is really an issue, we have to bring together a set of standards to sort of unify our cloud estates." >> Allow me to answer that at a higher level, and then we're going to hand it over to Dr. Brabham because he is a little bit more detailed on the realtime streaming analytics use cases, which I think is where we're going to get to. But to answer that question, it really depends on the size and the complexity of your business. At the very large enterprise, Dave, Yes, a hundred percent. This needs to happen. There is complexity, there is not only complexity in the compute and actually deploying the applications, but the governance and the security around them. But for lower end or, you know, business use cases, and for smaller businesses, it's a little less necessary. You certainly don't need to have all of these. Some of the things that come into mind from the interviews that Darren and I have done are, you know, financial services, if you're doing real-time trading, anything that has real-time data metrics involved in your transactions, is going to be necessary. And another use case that we hear about is in online travel agencies. So I think it is very relevant, the complexity does need to be solved, and I'll allow Darren to explain a little bit more about how that's used from an analytics perspective. >> Yeah, go for it. >> Yeah, exactly. I mean, I think any modern, you know, multinational company that's going to have a footprint in the US and Europe, in China, or works in different areas like manufacturing, where you're probably going to have on-prem instances that will stay on-prem forever, for various performance reasons. You have these complicated governance and security and regulatory issues. So inherently, I think, large multinational companies and or companies that are in certain areas like finance or in, you know, online e-commerce, or things that need real-time data, they inherently are going to have a very complex environment that's going to need to be managed in some kind of cleaner way. You know, they're looking for one door to open, one pane of glass to look at, one thing to do to manage these multi points. And, streaming's a good example of that. I mean, not every organization has a real-time streaming use case, and may not ever, but a lot of organizations do, a lot of industries do. And so there's this need to use, you know, they want to use open-source tools, they want to use Apache Kafka for instance. They want to use different megacloud vendors offerings, like Google Pub/Sub or you know, Amazon Kinesis Firehose. They have all these different pieces they want to use for different use cases at different stages of maturity or proof of concept, you name it. They're going to have to have this complexity. And I think that's why we're seeing this need, to have sort of this supercloud concept, to juggle all this, to wrangle all of it. 'Cause the reality is, it's complex and you have to simplify it somehow. >> Great, thanks you guys. All right, let's bring up the graphic, and take a look. Anybody who follows the breaking analysis, which is co-branded with ETR Cube Insights powered by ETR, knows we like to bring data to the table. ETR does amazing survey work every quarter, 1200 plus 1500 practitioners that that answer a number of questions. The vertical axis here is net score, which is ETR's proprietary methodology, which is a measure of spending momentum, spending velocity. And the horizontal axis here is overlap, but it's the presence pervasiveness, and the dataset, the ends, that table insert on the bottom right shows you how the dots are plotted, the net score and then the ends in the survey. And what we've done is we've plotted a bunch of the so-called supercloud suspects, let's start in the upper right, the cloud platforms. Without these hyperscale clouds, you can't have a supercloud. And as always, Azure and AWS, up and to the right, it's amazing we're talking about, you know, 80 plus billion dollar company in AWS. Azure's business is, if you just look at the IaaS is in the 50 billion range, I mean it's just amazing to me the net scores here. Anything above 40% we consider highly elevated. And you got Azure and you got Snowflake, Databricks, HashiCorp, we'll get to them. And you got AWS, you know, right up there at that size, it's quite amazing. With really big ends as well, you know, 700 plus ends in the survey. So, you know, kind of half the survey actually has these platforms. So my question to you guys is, what are you seeing in terms of cloud adoption within the big three cloud players? I wonder if you could could comment, maybe Erik, you could start. >> Yeah, sure. Now we're talking data, now I'm happy. So yeah, we'll get into some of it. Right now, the January, 2023 TSIS is approaching 1500 survey respondents. One caveat, it's not closed yet, it will close on Friday, but with an end that big we are over statistically significant. We also recently did a cloud survey, and there's a couple of key points on that I want to get into before we get into individual vendors. What we're seeing here, is that annual spend on cloud infrastructure is expected to grow at almost a 70% CAGR over the next three years. The percentage of those workloads for cloud infrastructure are expected to grow over 70% as three years as well. And as you mentioned, Azure and AWS are still dominant. However, we're seeing some share shift spreading around a little bit. Now to get into the individual vendors you mentioned about, yes, Azure is still number one, AWS is number two. What we're seeing, which is incredibly interesting, CloudFlare is number three. It's actually beating GCP. That's the first time we've seen it. What I do want to state, is this is on net score only, which is our measure of spending intentions. When you talk about actual pervasion in the enterprise, it's not even close. But from a spending velocity intention point of view, CloudFlare is now number three above GCP, and even Salesforce is creeping up to be at GCPs level. So what we're seeing here, is a continued domination by Azure and AWS, but some of these other players that maybe might fit into your moniker. And I definitely want to talk about CloudFlare more in a bit, but I'm going to stop there. But what we're seeing is some of these other players that fit into your Supercloud moniker, are starting to creep up, Dave. >> Yeah, I just want to clarify. So as you also know, we track IaaS and PaaS revenue and we try to extract, so AWS reports in its quarterly earnings, you know, they're just IaaS and PaaS, they don't have a SaaS play, a little bit maybe, whereas Microsoft and Google include their applications and so we extract those out and if you do that, AWS is bigger, but in the surveys, you know, customers, they see cloud, SaaS to them as cloud. So that's one of the reasons why you see, you know, Microsoft as larger in pervasion. If you bring up that survey again, Alex, the survey results, you see them further to the right and they have higher spending momentum, which is consistent with what you see in the earnings calls. Now, interesting about CloudFlare because the CEO of CloudFlare actually, and CloudFlare itself uses the term supercloud basically saying, "Hey, we're building a new type of internet." So what are your thoughts? Do you have additional information on CloudFlare, Erik that you want to share? I mean, you've seen them pop up. I mean this is a really interesting company that is pretty forward thinking and vocal about how it's disrupting the industry. >> Sure, we've been tracking 'em for a long time, and even from the disruption of just a traditional CDN where they took down Akamai and what they're doing. But for me, the definition of a true supercloud provider can't just be one instance. You have to have multiple. So it's not just the cloud, it's networking aspect on top of it, it's also security. And to me, CloudFlare is the only one that has all of it. That they actually have the ability to offer all of those things. Whereas you look at some of the other names, they're still piggybacking on the infrastructure or platform as a service of the hyperscalers. CloudFlare does not need to, they actually have the cloud, the networking, and the security all themselves. So to me that lends credibility to their own internal usage of that moniker Supercloud. And also, again, just what we're seeing right here that their net score is now creeping above AGCP really does state it. And then just one real last thing, one of the other things we do in our surveys is we track adoption and replacement reasoning. And when you look at Cloudflare's adoption rate, which is extremely high, it's based on technical capabilities, the breadth of their feature set, it's also based on what we call the ability to avoid stack alignment. So those are again, really supporting reasons that makes CloudFlare a top candidate for your moniker of supercloud. >> And they've also announced an object store (chuckles) and a database. So, you know, that's going to be, it takes a while as you well know, to get database adoption going, but you know, they're ambitious and going for it. All right, let's bring the chart back up, and I want to focus Darren in on the ecosystem now, and really, we've identified Snowflake and Databricks, it's always fun to talk about those guys, and there are a number of other, you know, data platforms out there, but we use those too as really proxies for leaders. We got a bunch of the backup guys, the data protection folks, Rubric, Cohesity, and Veeam. They're sort of in a cluster, although Rubric, you know, ahead of those guys in terms of spending momentum. And then VMware, Tanzu and Red Hat as sort of the cross cloud platform. But I want to focus, Darren, on the data piece of it. We're seeing a lot of activity around data sharing, governed data sharing. Databricks is using Delta Sharing as their sort of place, Snowflakes is sort of this walled garden like the app store. What are your thoughts on, you know, in the context of Supercloud, cross cloud capabilities for the data platforms? >> Yeah, good question. You know, I think Databricks is an interesting player because they sort of have made some interesting moves, with their Data Lakehouse technology. So they're trying to kind of complicate, or not complicate, they're trying to take away the complications of, you know, the downsides of data warehousing and data lakes, and trying to find that middle ground, where you have the benefits of a managed, governed, you know, data warehouse environment, but you have sort of the lower cost, you know, capability of a data lake. And so, you know, Databricks has become really attractive, especially by data scientists, right? We've been tracking them in the AI machine learning sector for quite some time here at ETR, attractive for a data scientist because it looks and acts like a lake, but can have some managed capabilities like a warehouse. So it's kind of the best of both worlds. So in some ways I think you've seen sort of a data science driver for the adoption of Databricks that has now become a little bit more mainstream across the business. Snowflake, maybe the other direction, you know, it's a cloud data warehouse that you know, is starting to expand its capabilities and add on new things like Streamlit is a good example in the analytics space, with apps. So you see these tools starting to branch and creep out a bit, but they offer that sort of neutrality, right? We heard one IT decision maker we recently interviewed that referred to Snowflake and Databricks as the quote unquote Switzerland of what they do. And so there's this desirability from an organization to find these tools that can solve the complex multi-headed use-case of data and analytics, which every business unit needs in different ways. And figure out a way to do that, an elegant way that's governed and centrally managed, that federated kind of best of both worlds that you get by bringing the data close to the business while having a central governed instance. So these tools are incredibly powerful and I think there's only going to be room for growth, for those two especially. I think they're going to expand and do different things and maybe, you know, join forces with others and a lot of the power of what they do well is trying to define these connections and find these partnerships with other vendors, and try to be seen as the nice add-on to your existing environment that plays nicely with everyone. So I think that's where those two tools are going, but they certainly fit this sort of label of, you know, trying to be that supercloud neutral, you know, layer that unites everything. >> Yeah, and if you bring the graphic back up, please, there's obviously big data plays in each of the cloud platforms, you know, Microsoft, big database player, AWS is, you know, 11, 12, 15, data stores. And of course, you know, BigQuery and other, you know, data platforms within Google. But you know, I'm not sure the big cloud guys are going to go hard after so-called supercloud, cross-cloud services. Although, we see Oracle getting in bed with Microsoft and Azure, with a database service that is cross-cloud, certainly Google with Anthos and you know, you never say never with with AWS. I guess what I would say guys, and I'll I'll leave you with this is that, you know, just like all players today are cloud players, I feel like anybody in the business or most companies are going to be so-called supercloud players. In other words, they're going to have a cross-cloud strategy, they're going to try to build connections if they're coming from on-prem like a Dell or an HPE, you know, or Pure or you know, many of these other companies, Cohesity is another one. They're going to try to connect to their on-premise states, of course, and create a consistent experience. It's natural that they're going to have sort of some consistency across clouds. You know, the big question is, what's that spectrum look like? I think on the one hand you're going to have some, you know, maybe some rudimentary, you know, instances of supercloud or maybe they just run on the individual clouds versus where Snowflake and others and even beyond that are trying to go with a single global instance, basically building out what I would think of as their own cloud, and importantly their own ecosystem. I'll give you guys the last thought. Maybe you could each give us, you know, closing thoughts. Maybe Darren, you could start and Erik, you could bring us home on just this entire topic, the future of cloud and data. >> Yeah, I mean I think, you know, two points to make on that is, this question of these, I guess what we'll call legacy on-prem players. These, mega vendors that have been around a long time, have big on-prem footprints and a lot of people have them for that reason. I think it's foolish to assume that a company, especially a large, mature, multinational company that's been around a long time, it's foolish to think that they can just uproot and leave on-premises entirely full scale. There will almost always be an on-prem footprint from any company that was not, you know, natively born in the cloud after 2010, right? I just don't think that's reasonable anytime soon. I think there's some industries that need on-prem, things like, you know, industrial manufacturing and so on. So I don't think on-prem is going away, and I think vendors that are going to, you know, go very cloud forward, very big on the cloud, if they neglect having at least decent connectors to on-prem legacy vendors, they're going to miss out. So I think that's something that these players need to keep in mind is that they continue to reach back to some of these players that have big footprints on-prem, and make sure that those integrations are seamless and work well, or else their customers will always have a multi-cloud or hybrid experience. And then I think a second point here about the future is, you know, we talk about the three big, you know, cloud providers, the Google, Microsoft, AWS as sort of the opposite of, or different from this new supercloud paradigm that's emerging. But I want to kind of point out that, they will always try to make a play to become that and I think, you know, we'll certainly see someone like Microsoft trying to expand their licensing and expand how they play in order to become that super cloud provider for folks. So also don't want to downplay them. I think you're going to see those three big players continue to move, and take over what players like CloudFlare are doing and try to, you know, cut them off before they get too big. So, keep an eye on them as well. >> Great points, I mean, I think you're right, the first point, if you're Dell, HPE, Cisco, IBM, your strategy should be to make your on-premise state as cloud-like as possible and you know, make those differences as minimal as possible. And you know, if you're a customer, then the business case is going to be low for you to move off of that. And I think you're right. I think the cloud guys, if this is a real problem, the cloud guys are going to play in there, and they're going to make some money at it. Erik, bring us home please. >> Yeah, I'm going to revert back to our data and this on the macro side. So to kind of support this concept of a supercloud right now, you know Dave, you and I know, we check overall spending and what we're seeing right now is total year spent is expected to only be 4.6%. We ended 2022 at 5% even though it began at almost eight and a half. So this is clearly declining and in that environment, we're seeing the top two strategies to reduce spend are actually vendor consolidation with 36% of our respondents saying they're actively seeking a way to reduce their number of vendors, and consolidate into one. That's obviously supporting a supercloud type of play. Number two is reducing excess cloud resources. So when I look at both of those combined, with a drop in the overall spending reduction, I think you're on the right thread here, Dave. You know, the overall macro view that we're seeing in the data supports this happening. And if I can real quick, couple of names we did not touch on that I do think deserve to be in this conversation, one is HashiCorp. HashiCorp is the number one player in our infrastructure sector, with a 56% net score. It does multiple things within infrastructure and it is completely agnostic to your environment. And if we're also speaking about something that's just a singular feature, we would look at Rubric for data, backup, storage, recovery. They're not going to offer you your full cloud or your networking of course, but if you are looking for your backup, recovery, and storage Rubric, also number one in that sector with a 53% net score. Two other names that deserve to be in this conversation as we watch it move and evolve. >> Great, thank you for bringing that up. Yeah, we had both of those guys in the chart and I failed to focus in on HashiCorp. And clearly a Supercloud enabler. All right guys, we got to go. Thank you so much for joining us, appreciate it. Let's keep this conversation going. >> Always enjoy talking to you Dave, thanks. >> Yeah, thanks for having us. >> All right, keep it right there for more content from Supercloud 2. This is Dave Valente for John Ferg and the entire Cube team. We'll be right back. (gentle synth music) (music fades)

Published Date : Feb 17 2023

SUMMARY :

is the intersection of cloud and data. Thank you for having period of time, you know, and evolution of the cloud So in a way, you know, supercloud the data closer to the business. So my general question to both of you is, the complexity does need to be And so there's this need to use, you know, So my question to you guys is, And as you mentioned, Azure but in the surveys, you know, customers, the ability to offer and there are a number of other, you know, and maybe, you know, join forces each of the cloud platforms, you know, the three big, you know, And you know, if you're a customer, you and I know, we check overall spending and I failed to focus in on HashiCorp. to you Dave, thanks. Ferg and the entire Cube team.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
IBMORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

ErikPERSON

0.99+

DellORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

John FergPERSON

0.99+

DavePERSON

0.99+

WalmartORGANIZATION

0.99+

Erik BradleyPERSON

0.99+

DavidPERSON

0.99+

AWSORGANIZATION

0.99+

Dave ValentePERSON

0.99+

January, 2023DATE

0.99+

ChinaLOCATION

0.99+

USLOCATION

0.99+

HPEORGANIZATION

0.99+

50 billionQUANTITY

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

Darren BrabhamPERSON

0.99+

56%QUANTITY

0.99+

4.6%QUANTITY

0.99+

EuropeLOCATION

0.99+

OracleORGANIZATION

0.99+

53%QUANTITY

0.99+

36%QUANTITY

0.99+

TanzuORGANIZATION

0.99+

DarrenPERSON

0.99+

1200QUANTITY

0.99+

Red HatORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

FridayDATE

0.99+

RubricORGANIZATION

0.99+

last yearDATE

0.99+

two sidesQUANTITY

0.99+

DatabricksORGANIZATION

0.99+

5%QUANTITY

0.99+

CohesityORGANIZATION

0.99+

two toolsQUANTITY

0.99+

VeeamORGANIZATION

0.99+

CloudFlareTITLE

0.99+

twoQUANTITY

0.99+

bothQUANTITY

0.99+

2022DATE

0.99+

OneQUANTITY

0.99+

Daren BrabhamPERSON

0.99+

three yearsQUANTITY

0.99+

TSISORGANIZATION

0.99+

BrabhamPERSON

0.99+

CloudFlareORGANIZATION

0.99+

1500 survey respondentsQUANTITY

0.99+

second pointQUANTITY

0.99+

first pointQUANTITY

0.98+

SnowflakeTITLE

0.98+

oneQUANTITY

0.98+

SupercloudORGANIZATION

0.98+

ETRORGANIZATION

0.98+

SnowflakeORGANIZATION

0.98+

AkamaiORGANIZATION

0.98+

Welcome to Supercloud2


 

(bright upbeat melody) >> Hello everyone, welcome back to Supercloud2. I'm John Furrier, my co-host Dave Vellante, here at theCUBE in Palo Alto, California, for our live stage performance all day for Supercloud2. Unpacking this next generation movement in cloud computing. Dave, Supercloud1 was in August. We had great response and acceleration of that momentum. We had some haters too. We had some folks out there throwing shade on this. But at the same time, a lot of leaders came out of the woodwork, a lot of practitioners. And this Supercloud2 event I think will expose and illustrate some of the examples of what's happening in the industry and more importantly, kind of where it's going. >> Well it's great to be back in our studios in Palo Alto, John. Seems like just yesterday was August 9th, where the community was really refining the definition of Super Cloud. We were identifying the essential characteristics, with some of the leading technologists in Silicon Valley. We were digging into the deployment models. Whereas this Supercloud, Supercloud2 is really taking a practitioner view. We're going to hear from Walmart today. They've built a Supercloud. They called it the Walmart Cloud native platform. We're going to hear from other data practitioners, like Saks. We're going to hear from Western Union. They've got 200 locations around the world, how they're dealing with data sovereignty. And of course we've got some local technologists and practitioners coming in, analysts, consultants, theCUBE community. I'm really excited to be here. >> And we've got some great keynotes from executives at VMware. We're going to expose some of the things that they're working on around cross cloud services, which leads into multicloud. I think the practitioner angle highlights my favorite part of this program, 'cause you're starting to see the builders, a term coined by Andy Jassy, early days of AWS. That builder movement has been continuing to go. And you're seeing the enterprise, global enterprises adopt this builder mentality with Cloud Native. This is going to power the next generation global economy. And I think the role of the cloud computing vendors like AWS, Azure, Google, Alibaba are going to be the source engine of innovation. And what gets built on top of and with the clouds will be a big significant market value for all businesses and their business models. So I think the market wants the supercloud, the business models are pointing to Supercloud. The technology needs supercloud. And society, from an economic standpoint and from a use case standpoint, needs supercloud. You're seeing it today. Everyone's talking about chat GPT. This is an example of what will come out of this next generation and it's just getting started. So to me, you're either on the supercloud side of the camp or you're on the old school, hugging onto the old school mentality of wait a minute, that's cloud computing. So I think if you're not on the super cloud wave, you're going to be driftwood. And that's a term coined by Pat Gelsinger. And this is really the reality. Are you on the super cloud side? Or are you on the old huggin' the old model? And that's going to be a determinant. And you're going to see who's going to be the players on that, Dave. This is going to be a real big year. >> Everybody's heard the phrase follow the money. Well, my philosophy is follow the data. And that's a big part of what Supercloud2 is, because the data is where the money is across the clouds. And people want more simplicity, or greater simplicity across the clouds. So it's really, there's two forces here. You've got the ecosystem that's saying, hey the hyperscalers, they've done a great job but there's problems that they're not solving. So we're going to lean in and solve those problems. At the same time, you have the practitioners saying we have multicloud, we have to deal with this, help us. It's got to be simpler. Because we want to share data across clouds. We want to build data products, we want to monetize and drive revenue and cut costs. >> This is the key thing. The builder movement is hitting a wall, and that wall will be broken down because the business models of the companies themselves are demanding that the value from the data with security has to be embedded. So I think you're going to see a big year this next year or so where the builders will accelerate through this next generation, supercloud wave, will be a builder's wave for business. And I think that's going to be the nuance here. And all the people that are on the side of Supercloud are all pro-business, pro-technology. The ones that aren't are like, wait a minute I used to do things differently. They're stuck. And so I think this is going to be a question of are we stuck? Are builders accelerating? Will the business models develop around it? That's digital transformation. At the end of the day, the market's speaking, Dave. The market wants more. Chat GPT, you're seeing AI starting to flourish, powered by data. It's unstoppable, supercloud's unstoppable. >> One of our headliners today is Zhamak Dehghani, the creator of Data Mesh. We've got some news around her. She's going to be live in studio. Super excited about that. Kit Colbert in Supercloud, the first Supercloud in last August, laid out an initial architecture for Supercloud. He's going to advance that today, tell us what's changed, and really dig into and really talk about the meat on the bone, if you will. And we've got some other technologists that are coming in saying, Hey, is it a platform? Is it an architecture? What's the right model here? So we're going to debate that a little bit today. >> And before we close, I'll just say look at the guests, look at the talk tracks. You're seeing a diversity of startups doing cloud networking, you're seeing big practitioners building their own thing, being builders for business value and business model advantages. And you got companies like VMware, who have been on the wave of virtualization. So the, everyone who's involved in super cloud, they're seeing it, they're on the front lines. They're seeing the trend. They are riding that wave. And they have, they're bringing data to the table. So to me, you look at who's involved and you judge it that way. To me, that's the way I look at this. And because we're making it open, Supercloud is going to continue to be debated. But more importantly, the results are going to come in. The market supports it, the business needs it, tech's there, and will it happen? So I think the builders movement, Dave, is going to be big to watch. And then ultimately how that business transformation kicks in, and I think those are the two variables that I would watch on Supercloud. >> Our mission has always been around free content, giving back to the community. So I really want to thank our sponsors today. We've had a great partnership with VMware, who's not only contributed some financial support, but also great content. Alkira, ChaosSearch, prosimo, all phenomenal, allowing us to achieve our mission of serving our audiences and really trying to give more than we take from. >> Free content, that's our mission. Dave, great to kick it off. Kickin' off Supercloud2 all day, we've got some great programs here. We've got VMware coming up next. We have Victoria Viering, who's been on before. He's got a great vision for cross cloud service. We're getting also a keynote with Kit Colbert, who's going to lay out the fragmentation and the benefits that that solves, from solvent fragmentation and silos, breaking down the silos and bringing multicloud future to the table via Super Cloud. So stay with us. We'll be right back after this short break. (bright upbeat music) (music fades)

Published Date : Feb 17 2023

SUMMARY :

and illustrate some of the examples We're going to hear from Walmart today. And that's going to be a determinant. At the same time, you And so I think this is going to the meat on the bone, if you will. Dave, is going to be big to watch. giving back to the community. and the benefits that that solves,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

DavePERSON

0.99+

Pat GelsingerPERSON

0.99+

AlibabaORGANIZATION

0.99+

Kit ColbertPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

WalmartORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Andy JassyPERSON

0.99+

GoogleORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

AugustDATE

0.99+

Victoria VieringPERSON

0.99+

August 9thDATE

0.99+

John FurrierPERSON

0.99+

200 locationsQUANTITY

0.99+

VMwareORGANIZATION

0.99+

SupercloudORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

Supercloud2EVENT

0.99+

two forcesQUANTITY

0.99+

last AugustDATE

0.99+

yesterdayDATE

0.99+

firstQUANTITY

0.99+

two variablesQUANTITY

0.99+

todayDATE

0.98+

OneQUANTITY

0.98+

supercloudORGANIZATION

0.98+

AzureORGANIZATION

0.97+

ChaosSearchORGANIZATION

0.95+

super cloud waveEVENT

0.94+

Supercloud1EVENT

0.94+

Super CloudTITLE

0.93+

AlkiraPERSON

0.83+

Palo Alto, JohnLOCATION

0.83+

this next yearDATE

0.81+

Data MeshORGANIZATION

0.8+

supercloud waveEVENT

0.79+

wave ofEVENT

0.79+

Western UnionLOCATION

0.78+

SaksORGANIZATION

0.76+

GPTORGANIZATION

0.73+

Supercloud2ORGANIZATION

0.72+

Cloud NativeTITLE

0.69+

SupercloudTITLE

0.67+

Supercloud2COMMERCIAL_ITEM

0.66+

multicloudORGANIZATION

0.57+

SupercloudCOMMERCIAL_ITEM

0.53+

Supercloud2TITLE

0.53+

theCUBEORGANIZATION

0.51+

super cloudTITLE

0.51+

CloudTITLE

0.41+

Supercloud Applications & Developer Impact | Supercloud2


 

(gentle music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto, California for our live stage performance. Supercloud 2 is our second Supercloud event. We're going to get these out as fast as we can every couple months. It's our second one, you'll see two and three this year. I'm John Furrier, my co-host, Dave Vellante. A panel here to break down the Supercloud momentum, the wave, and the developer impact that we bringing back Vittorio Viarengo, who's a VP for Cross-Cloud Services at VMware. Sarbjeet Johal, industry influencer and Analyst at StackPayne, his company, Cube alumni and Influencer. Sarbjeet, great to see you. Vittorio, thanks for coming back. >> Nice to be here. >> My pleasure. >> Vittorio, you just gave a keynote where we unpacked the cross-cloud services, what VMware is doing, how you guys see it, not just from VMware's perspective, but VMware looking out broadly at the industry and developers came up and you were like, "Developers, developer, developers", kind of a goof on the Steve Ballmer famous meme that everyone's seen. This is a huge star, sorry, I mean a big piece of it. The developers are the canary in the coal mines. They're the ones who are being asked to code the digital transformation, which is fully business transformation and with the market the way it is right now in terms of the accelerated technology, every enterprise grade business model's changing. The technology is evolving, the builders are kind of, they want go faster. I'm saying they're stuck in a way, but that's my opinion, but there's a lot of growth. >> Yeah. >> The impact, they got to get released up and let it go. Those developers need to accelerate faster. It's been a big part of productivity, and the conversations we've had. So developer impact is huge in Supercloud. What's your, what do you guys think about this? We'll start with you, Sarbjeet. >> Yeah, actually, developers are the masons of the digital empires I call 'em, right? They lay every brick and build all these big empires. On the left side of the SDLC, or the, you know, when you look at the system operations, developer is number one cost from economic side of things, and from technology side of things, they are tech hungry people. They are developers for that reason because developer nights are long, hours are long, they forget about when to eat, you know, like, I've been a developer, I still code. So you want to keep them happy, you want to hug your developers. We always say that, right? Vittorio said that right earlier. The key is to, in this context, in the Supercloud context, is that developers don't mind mucking around with platforms or APIs or new languages, but they hate the infrastructure part. That's a fact. They don't want to muck around with servers. It's friction for them, it is like they don't want to muck around even with the VMs. So they want the programmability to the nth degree. They want to automate everything, so that's how they think and cloud is the programmable infrastructure, industrialization of infrastructure in many ways. So they are happy with where we are going, and we need more abstraction layers for some developers. By the way, I have this sort of thinking frame for last year or so, not all developers are same, right? So if you are a developer at an ISV, you behave differently. If you are a developer at a typical enterprise, you behave differently or you are forced to behave differently because you're not writing software.- >> Well, developers, developers have changed, I mean, Vittorio, you and I were talking earlier on the keynote, and this is kind of the key point is what is a developer these days? If everything is software enabled, I mean, even hardware interviews we do with Nvidia, and Amazon and other people building silicon, they all say the same thing, "It's software on a chip." So you're seeing the role of software up and down the stack and the role of the stack is changing. The old days of full stack developer, what does that even mean? I mean, the cloud is a half a stack kind of right there. So, you know, developers are certainly more agile, but cloud native, I mean VMware is epitome of operations, IT operations, and the Tan Zoo initiative, you guys started, you went after the developers to look at them, and ask them questions, "What do you need?", "How do you transform the Ops from virtualization?" Again, back to your point, so this hardware abstraction, what is software, what is cloud native? It's kind of messy equation these days. How do you guys grokel with that? >> I would argue that developers don't want the Supercloud. I dropped that up there, so, >> Dave: Why not? >> Because developers, they, once they get comfortable in AWS or Google, because they're doing some AI stuff, which is, you know, very trendy right now, or they are in IBM, any of the IPA scaler, professional developers, system developers, they love that stuff, right? Yeah, they don't, the infrastructure gets in the way, but they're just, the problem is, and I think the Supercloud should be driven by the operators because as we discussed, the operators have been left behind because they're busy with day-to-day jobs, and in most cases IT is centralized, developers are in the business units. >> John: Yeah. >> Right? So they get the mandate from the top, say, "Our bank, they're competing against". They gave teenagers or like young people the ability to do all these new things online, and Venmo and all this integration, where are we? "Oh yeah, we can do it", and then build it, and then deploy it, "Okay, we caught up." but now the operators are back in the private cloud trying to keep the backend system running and so I think the Supercloud is needed for the primarily, initially, for the operators to get in front of the developers, fit in the workflow, but lay the foundation so it is secure.- >> So, so I love this thinking because I love the rift, because the rift points to what is the target audience for the value proposition and if you're a developer, Supercloud enables you so you shouldn't have to deal with Supercloud. >> Exactly. >> What you're saying is get the operating environment or operating system done properly, whether it's architecture, building the platform, this comes back to architecture platform conversations. What is the future platform? Is it a vendor supplied or is it customer created platform? >> Dave: So developers want best to breed, is what you just said. >> Vittorio: Yeah. >> Right and operators, they, 'cause developers don't want to deal with governance, they don't want to deal with security, >> No. >> They don't want to deal with spinning up infrastructure. That's the role of the operator, but that's where Supercloud enables, to John's point, the developer, so to your question, is it a platform where the platform vendor is responsible for the architecture, or there is it an architectural standard that spans multiple clouds that has to emerge? Based on what you just presented earlier, Vittorio, you are the determinant of the architecture. It's got to be open, but you guys determine that, whereas the nirvana is, "Oh no, it's all open, and it just kind of works." >> Yeah, so first of all, let's all level set on one thing. You cannot tell developers what to do. >> Dave: Right, great >> At least great developers, right? Cannot tell them what to do. >> Dave: So that's what, that's the way I want to sort of, >> You can tell 'em what's possible. >> There's a bottle on that >> If you tell 'em what's possible, they'll test it, they'll look at it, but if you try to jam it down their throat, >> Yeah. >> Dave: You can't tell 'em how to do it, just like your point >> Let me answer your answer the question. >> Yeah, yeah. >> So I think we need to build an architect, help them build an architecture, but it cannot be proprietary, has to be built on what works in the cloud and so what works in the cloud today is Kubernetes, is you know, number of different open source project that you need to enable and then provide, use this, but when I first got exposed to Kubernetes, I said, "Hallelujah!" We had a runtime that works the same everywhere only to realize there are 12 different distributions. So that's where we come in, right? And other vendors come in to say, "Hey, no, we can make them all look the same. So you still use Kubernetes, but we give you a place to build, to set those operation policy once so that you don't create friction for the developers because that's the last thing you want to do." >> Yeah, actually, coming back to the same point, not all developers are same, right? So if you're ISV developer, you want to go to the lowest sort of level of the infrastructure and you want to shave off the milliseconds from to get that performance, right? If you're working at AWS, you are doing that. If you're working at scale at Facebook, you're doing that. At Twitter, you're doing that, but when you go to DMV and Kansas City, you're not doing that, right? So your developers are different in nature. They are given certain parameters to work with, certain sort of constraints on the budget side. They are educated at a different level as well. Like they don't go to that end of the degree of sort of automation, if you will. So you cannot have the broad stroking of developers. We are talking about a citizen developer these days. That's a extreme low, >> You mean Low-Code. >> Yeah, Low-Code, No-code, yeah, on the extreme side. On one side, that's citizen developers. On the left side is the professional developers, when you say developers, your mind goes to the professional developers, like the hardcore developers, they love the flexibility, you know, >> John: Well app, developers too, I mean. >> App developers, yeah. >> You're right a lot of, >> Sarbjeet: Infrastructure platform developers, app developers, yes. >> But there are a lot of customers, its a spectrum, you're saying. >> Yes, it's a spectrum >> There's a lot of customers don't want deal with that muck. >> Yeah. >> You know, like you said, AWS, Twitter, the sophisticated developers do, but there's a whole suite of developers out there >> Yeah >> That just want tools that are abstracted. >> Within a company, within a company. Like how I see the Supercloud is there shouldn't be anything which blocks the developers, like their view of the world, of the future. Like if you're blocked as a developer, like something comes in front of you, you are not developer anymore, believe me, (John laughing) so you'll go somewhere else >> John: First of all, I'm, >> You'll leave the company by the way. >> Dave: Yeah, you got to quit >> Yeah, you will quit, you will go where the action is, where there's no sort of blockage there. So like if you put in front of them like a huge amount of a distraction, they don't like it, so they don't, >> Well, the idea of a developer, >> Coming back to that >> Let's get into 'cause you mentioned platform. Get year in the term platform engineering now. >> Yeah. >> Platform developer. You know, I remember back in, and I think there's still a term used today, but when I graduated my computer science degree, we were called "Software engineers," right? Do people use that term "Software engineering", or is it "Software development", or they the same, are they different? >> Well, >> I think there's a, >> So, who's engineering what? Are they engineering or are they developing? Or both? Well, I think it the, you made a great point. There is a factor of, I had the, I was blessed to work with Adam Bosworth, that is the guy that created some of the abstraction layer, like Visual Basic and Microsoft Access and he had so, he made his whole career thinking about this layer, and he always talk about the professional developers, the developers that, you know, give him a user manual, maybe just go at the APIs, he'll build anything, right, from system engine, go down there, and then through obstruction, you get the more the procedural logic type of engineers, the people that used to be able to write procedural logic and visual basic and so on and so forth. I think those developers right now are a little cut out of the picture. There's some No-code, Low-Code environment that are maybe gain some traction, I caught up with Adam Bosworth two weeks ago in New York and I asked him "What's happening to this higher level developers?" and you know what he is told me, and he is always a little bit out there, so I'm going to use his thought process here. He says, "ChapGPT", I mean, they will get to a point where this high level procedural logic will be written by, >> John: Computers. >> Computers, and so we may not need as many at the high level, but we still need the engineers down there. The point is the operation needs to get in front of them >> But, wait, wait, you seen the ChatGPT meme, I dunno if it's a Dilbert thing where it's like, "Time to tic" >> Yeah, yeah, yeah, I did that >> "Time to develop the code >> Five minutes, time to decode", you know, to debug the codes like five hours. So you know, the whole equation >> Well, this ChatGPT is a hot wave, everyone's been talking about it because I think it illustrates something that's NextGen, feels NextGen, and it's just getting started so it's going to get better. I mean people are throwing stones at it, but I think it's amazing. It's the equivalent of me seeing the browser for the first time, you know, like, "Wow, this is really compelling." This is game-changing, it's not just keyword chat bots. It's like this is real, this is next level, and I think the Supercloud wave that people are getting behind points to that and I think the question of Ops and Dev comes up because I think if you limit the infrastructure opportunity for a developer, I think they're going to be handicapped. I mean that's a general, my opinion, the thesis is you give more aperture to developers, more choice, more capabilities, more good things could happen, policy, and that's why you're seeing the convergence of networking people, virtualization talent, operational talent, get into the conversation because I think it's an infrastructure engineering opportunity. I think this is a seminal moment in a new stack that's emerging from an infrastructure, software virtualization, low-code, no-code layer that will be completely programmable by things like the next Chat GPT or something different, but yet still the mechanics and the plumbing will still need engineering. >> Sarbjeet: Oh yeah. >> So there's still going to be more stuff coming on. >> Yeah, we have, with the cloud, we have made the infrastructure programmable and you give the programmability to the programmer, they will be very creative with that and so we are being very creative with our infrastructure now and on top of that, we are being very creative with the silicone now, right? So we talk about that. That's part of it, by the way. So you write the code to the particle's silicone now, and on the flip side, the silicone is built for certain use cases for AI Inference and all that. >> You saw this at CES? >> Yeah, I saw at CES, the scenario is this, the Bosch, I spoke to Bosch, I spoke to John Deere, I spoke to AWS guys, >> Yeah. >> They were showcasing their technology there and I was spoke to Azure guys as well. So the Bosch is a good example. So they are building, they are right now using AWS. I have that interview on camera, I will put it some sometime later on there online. So they're using AWS on the back end now, but Bosch is the number one, number one or number two depending on what day it is of the year, supplier of the componentry to the auto industry, and they are creating a platform for our auto industry, so is Qualcomm actually by the way, with the Snapdragon. So they told me that customers, their customers, BMW, Audi, all the manufacturers, they demand the diversity of the backend. Like they don't want all, they, all of them don't want to go to AWS. So they want the choice on the backend. So whatever they cook in the middle has to work, they have to sprinkle the data for the data sovereign side because they have Chinese car makers as well, and for, you know, for other reasons, competitive reasons and like use. >> People don't go to, aw, people don't go to AWS either for political reasons or like competitive reasons or specific use cases, but for the most part, generally, I haven't met anyone who hasn't gone first choice with either, but that's me personally. >> No, but they're building. >> Point is the developer wants choice at the back end is what I'm hearing, but then finish that thought. >> Their developers want the choice, they want the choice on the back end, number one, because the customers are asking for, in this case, the customers are asking for it, right? But the customers requirements actually drive, their economics drives that decision making, right? So in the middle they have to, they're forced to cook up some solution which is vendor neutral on the backend or multicloud in nature. So >> Yeah, >> Every >> I mean I think that's nirvana. I don't think, I personally don't see that happening right now. I mean, I don't see the parody with clouds. So I think that's a challenge. I mean, >> Yeah, true. >> I mean the fact of the matter is if the development teams get fragmented, we had this chat with Kit Colbert last time, I think he's going to come on and I think he's going to talk about his keynote in a few, in an hour or so, development teams is this, the cloud is heterogenous, which is great. It's complex, which is challenging. You need skilled engineering to manage these clouds. So if you're a CIO and you go all in on AWS, it's hard. Then to then go out and say, "I want to be completely multi-vendor neutral" that's a tall order on many levels and this is the multicloud challenge, right? So, the question is, what's the strategy for me, the CIO or CISO, what do I do? I mean, to me, I would go all in on one and start getting hedges and start playing and then look at some >> Crystal clear. Crystal clear to me. >> Go ahead. >> If you're a CIO today, you have to build a platform engineering team, no question. 'Cause if we agree that we cannot tell the great developers what to do, we have to create a platform engineering team that using pieces of the Supercloud can build, and let's make this very pragmatic and give examples. First you need to be able to lay down the run time, okay? So you need a way to deploy multiple different Kubernetes environment in depending on the cloud. Okay, now we got that. The second part >> That's like table stakes. >> That are table stake, right? But now what is the advantage of having a Supercloud service to do that is that now you can put a policy in one place and it gets distributed everywhere consistently. So for example, you want to say, "If anybody in this organization across all these different buildings, all these developers don't even know, build a PCI compliant microservice, They can only talk to PCI compliant microservice." Now, I sleep tight. The developers still do that. Of course they're going to get their hands slapped if they don't encrypt some messages and say, "Oh, that should have been encrypted." So number one. The second thing I want to be able to say, "This service that this developer built over there better satisfy this SLA." So if the SLA is not satisfied, boom, I automatically spin up multiple instances to certify the SLA. Developers unencumbered, they don't even know. So this for me is like, CIO build a platform engineering team using one of the many Supercloud services that allow you to do that and lay down. >> And part of that is that the vendor behavior is such, 'cause the incentive is that they don't necessarily always work together. (John chuckling) I'll give you an example, we're going to hear today from Western Union. They're AWS shop, but they want to go to Google, they want to use some of Google's AI tools 'cause they're good and maybe they're even arguably better, but they're also a Snowflake customer and what you'll hear from them is Amazon and Snowflake are working together so that SageMaker can be integrated with Snowflake but Google said, "No, you want to use our AI tools, you got to use BigQuery." >> Yeah. >> Okay. So they say, "Ah, forget it." So if you have a platform engineering team, you can maybe solve some of that vendor friction and get competitive advantage. >> I think that the future proximity concept that I talk about is like, when you're doing one thing, you want to do another thing. Where do you go to get that thing, right? So that is very important. Like your question, John, is that your point is that AWS is ahead of the pack, which is true, right? They have the >> breadth of >> Infrastructure by a lot >> infrastructure service, right? They breadth of services, right? So, how do you, When do you bring in other cloud providers, right? So I believe that you should standardize on one cloud provider, like that's your primary, and for others, bring them in on as needed basis, in the subsection or sub portfolio of your applications or your platforms, what ever you can. >> So yeah, the Google AI example >> Yeah, I mean, >> Or the Microsoft collaboration software example. I mean there's always or the M and A. >> Yeah, but- >> You're going to get to run Windows, you can run Windows on Amazon, so. >> By the way, Supercloud doesn't mean that you cannot do that. So the perfect example is say that you're using Azure because you have a SQL server intensive workload. >> Yep >> And you're using Google for ML, great. If you are using some differentiated feature of this cloud, you'll have to go somewhere and configure this widget, but what you can abstract with the Supercloud is the lifecycle manage of the service that runs on top, right? So how does the service get deployed, right? How do you monitor performance? How do you lifecycle it? How you secure it that you can abstract and that's the value and eventually value will win. So the customers will find what is the values, obstructing in making it uniform or going deeper? >> How about identity? Like take identity for instance, you know, that's an opportunity to abstract. Whether I use Microsoft Identity or Okta, and I can abstract that. >> Yeah, and then we have APIs and standards that we can use so eventually I think where there is enough pain, the right open source will emerge to solve that problem. >> Dave: Yeah, I can use abstract things like object store, right? That's pretty simple. >> But back to the engineering question though, is that developers, developers, developers, one thing about developers psychology is if something's not right, they say, "Go get fixing. I'm not touching it until you fix it." They're very sticky about, if something's not working, they're not going to do it again, right? So you got to get it right for developers. I mean, they'll maybe tolerate something new, but is the "juice worth the squeeze" as they say, right? So you can't go to direct say, "Hey, it's, what's a work in progress? We're going to get our infrastructure together and the world's going to be great for you, but just hang tight." They're going to be like, "Get your shit together then talk to me." So I think that to me is the question. It's an Ops question, but where's that value for the developer in Supercloud where the capabilities are there, there's less friction, it's simpler, it solves the complexity problem. I don't need these high skilled labor to manage Amazon. I got services exposed. >> That's what we talked about earlier. It's like the Walmart example. They basically, they took away from the developer the need to spin up infrastructure and worry about all the governance. I mean, it's not completely there yet. So the developer could focus on what he or she wanted to do. >> But there's a big, like in our industry, there's a big sort of flaw or the contention between developers and operators. Developers want to be on the cutting edge, right? And operators want to be on the stability, you know, like we want governance. >> Yeah, totally. >> Right, so they want to control, developers are like these little bratty kids, right? And they want Legos, like they want toys, right? Some of them want toys by way. They want Legos, they want to build there and they want make a mess out of it. So you got to make sure. My number one advice in this context is that do it up your application portfolio and, or your platform portfolio if you are an ISV, right? So if you are ISV you most probably, you're building a platform these days, do it up in a way that you can say this portion of our applications and our platform will adhere to what you are saying, standardization, you know, like Kubernetes, like slam dunk, you know, it works across clouds and in your data center hybrid, you know, whole nine yards, but there is some subset on the next door systems of innovation. Everybody has, it doesn't matter if you're DMV of Kansas or you are, you know, metaverse, right? Or Meta company, right, which is Facebook, they have it, they are building something new. For that, give them some freedom to choose different things like play with non-standard things. So that is the mantra for moving forward, for any enterprise. >> Do you think developers are happy with the infrastructure now or are they wanting people to get their act together? I mean, what's your reaction, or you think. >> Developers are happy as long as they can do their stuff, which is running code. They want to write code and innovate. So to me, when Ballmer said, "Developer, develop, Developer, what he meant was, all you other people get your act together so these developers can do their thing, and to me the Supercloud is the way for IT to get there and let developer be creative and go fast. Why not, without getting in trouble. >> Okay, let's wrap up this segment with a super clip. Okay, we're going to do a sound bite that we're going to make into a short video for each of you >> All right >> On you guys summarizing why Supercloud's important, why this next wave is relevant for the practitioners, for the industry and we'll turn this into an Instagram reel, YouTube short. So we'll call it a "Super clip. >> Alright, >> Sarbjeet, you want, you want some time to think about it? You want to go first? Vittorio, you want. >> I just didn't mind. (all laughing) >> No, okay, okay. >> I'll do it again. >> Go back. No, we got a fresh one. We'll going to already got that one in the can. >> I'll go. >> Sarbjeet, you go first. >> I'll go >> What's your super clip? >> In software systems, abstraction is your friend. I always say that. Abstraction is your friend, even if you're super professional developer, abstraction is your friend. We saw from the MFC library from C++ days till today. Abstract, use abstraction. Do not try to reinvent what's already being invented. Leverage cloud, leverage the platform side of the cloud. Not just infrastructure service, but platform as a service side of the cloud as well, and Supercloud is a meta platform built on top of these infrastructure services from three or four or five cloud providers. So use that and embrace the programmability, embrace the abstraction layer. That's the key actually, and developers who are true developers or professional developers as you said, they know that. >> Awesome. Great super clip. Vittorio, another shot at the plate here for super clip. Go. >> Multicloud is awesome. There's a reason why multicloud happened, is because gave our developers the ability to innovate fast and ever before. So if you are embarking on a digital transformation journey, which I call a survival journey, if you're not innovating and transforming, you're not going to be around in business three, five years from now. You have to adopt the Supercloud so the developer can be developer and keep building great, innovating digital experiences for your customers and IT can get in front of it and not get in trouble together. >> Building those super apps with Supercloud. That was a great super clip. Vittorio, thank you for sharing. >> Thanks guys. >> Sarbjeet, thanks for coming on talking about the developer impact Supercloud 2. On our next segment, coming up right now, we're going to hear from Walmart enterprise architect, how they are building and they are continuing to innovate, to build their own Supercloud. Really informative, instructive from a practitioner doing it in real time. Be right back with Walmart here in Palo Alto. Thanks for watching. (gentle music)

Published Date : Feb 17 2023

SUMMARY :

the Supercloud momentum, and developers came up and you were like, and the conversations we've had. and cloud is the and the role of the stack is changing. I dropped that up there, so, developers are in the business units. the ability to do all because the rift points to What is the future platform? is what you just said. the developer, so to your question, You cannot tell developers what to do. Cannot tell them what to do. You can tell 'em your answer the question. but we give you a place to build, and you want to shave off the milliseconds they love the flexibility, you know, platform developers, you're saying. don't want deal with that muck. that are abstracted. Like how I see the Supercloud is So like if you put in front of them you mentioned platform. and I think there's the developers that, you The point is the operation to decode", you know, the browser for the first time, you know, going to be more stuff coming on. and on the flip side, the middle has to work, but for the most part, generally, Point is the developer So in the middle they have to, the parody with clouds. I mean the fact of the matter Crystal clear to me. in depending on the cloud. So if the SLA is not satisfied, boom, 'cause the incentive is that So if you have a platform AWS is ahead of the pack, So I believe that you should standardize or the M and A. you can run Windows on Amazon, so. So the perfect example is abstract and that's the value Like take identity for instance, you know, the right open source will Dave: Yeah, I can use abstract things and the world's going to be great for you, the need to spin up infrastructure on the stability, you know, So that is the mantra for moving forward, Do you think developers are happy and to me the Supercloud is for each of you for the industry you want some time to think about it? I just didn't mind. got that one in the can. platform side of the cloud. Vittorio, another shot at the the ability to innovate thank you for sharing. the developer impact Supercloud 2.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

DavePERSON

0.99+

BMWORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

JohnPERSON

0.99+

SarbjeetPERSON

0.99+

John FurrierPERSON

0.99+

BoschORGANIZATION

0.99+

VittorioPERSON

0.99+

NvidiaORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

AudiORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Steve BallmerPERSON

0.99+

QualcommORGANIZATION

0.99+

Adam BosworthPERSON

0.99+

Palo AltoLOCATION

0.99+

FacebookORGANIZATION

0.99+

New YorkLOCATION

0.99+

Vittorio ViarengoPERSON

0.99+

Kit ColbertPERSON

0.99+

BallmerPERSON

0.99+

fourQUANTITY

0.99+

Sarbjeet JohalPERSON

0.99+

five hoursQUANTITY

0.99+

VMwareORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

MicrosoftORGANIZATION

0.99+

Five minutesQUANTITY

0.99+

NextGenORGANIZATION

0.99+

StackPayneORGANIZATION

0.99+

Visual BasicTITLE

0.99+

second partQUANTITY

0.99+

12 different distributionsQUANTITY

0.99+

CESEVENT

0.99+

FirstQUANTITY

0.99+

TwitterORGANIZATION

0.99+

Kansas CityLOCATION

0.99+

second oneQUANTITY

0.99+

threeQUANTITY

0.99+

bothQUANTITY

0.99+

KansasLOCATION

0.98+

first timeQUANTITY

0.98+

WindowsTITLE

0.98+

last yearDATE

0.98+

Opening Keynote | Supercloud2


 

(intro music plays) >> Okay, welcome back to Supercloud 2. I'm John Furrier with my co-host, Dave Vellante, here in our Palo Alto Studio, with a live performance all day unpacking the wave of Supercloud. This is our second edition. Back for keynote review here is Vittorio Viarengo, talking about the hype and the reality of the Supercloud momentum. Vittorio, great to see you. You got a presentation. Looking forward to hearing the update. >> It's always great to be here on this stage with you guys. >> John Furrier: (chuckles) So the business imperative for cloud right now is clear and the Supercloud wave points to the builders and they want to break through. VMware, you guys have a lot of builders in the ecosystem. Where do you guys see multicloud today? What's going on? >> So, what we see is, when we talk with our customers is that customers are in a state of cloud chaos. Raghu Raghuram, our CEO, introduced this term at our user conference and it really resonated with our customers. And the chaos comes from the fact that most enterprises have applications spread across private cloud, multiple hyperscalers, and the edge increasingly. And so with that, every hyperscaler brings their own vertical integrated stack of infrastructure development, platform security, and so on and so forth. And so our customers are left with a ballooning cost because they have to train their employees across multiple stacks. And the costs are only going up. >> John Furrier: Have you talked about the Supercloud with your customers? What are they looking for when they look at the business value of Cross-Cloud Services? Why are they digging into it? What are some of the reasons? >> First of all, let's put this in perspective. 90, 87% of customers use two or more cloud including the private cloud. And 55%, get this, 55% use three or more clouds, right? And so, when you talk to these customers they're all asking for two things. One, they find that managing the multicloud is more difficult than the private cloud. And that goes without saying because it's new, they don't have the skills, and they have many of these. And pretty much everybody, 87% of them, are seeing their cost getting out of control. And so they need a new approach. We believe that the industry needs a new approach to solving the multicloud problem, which you guys have introduced and you call it the Supercloud. We call it Cross-Cloud Services. But the idea is that- and the parallel goes back to the private cloud. In the private cloud, if you remember the old days, before we called it the private cloud, we would install SAP. And the CIO would go, "Oh, I hear SAP works great on HP hardware. Oh, let's buy the HP stack", right? (hosts laugh) And then you go, "Oh, oh, Oracle databases. They run phenomenally on Sun Stack." That's another stack. And it wasn't sustainable, right? And so, VMware came in with virtualization and made everything look the same. And we unleashed a tremendous era of growth and speed and cost saving for our customers. So we believe, and I think the industry also believes, if you look at the success of Supercloud, first instance and today, that we need to create a new level of abstraction in the cloud. And this abstraction needs to be at a higher level. It needs to be built around the lingua franca of the cloud, which is Kubernetes, APIs, open source stacks. And by doing so, we're going to allow our customers to have a more unified way of building, managing, running, connecting, and securing applications across cloud. >> So where should that standardization occur? 'Cause we're going to hear from some customers today. When I ask them about cloud chaos, they're like, "Well, the way we deal with cloud chaos is MonoCloud". They sort of put on the blinders, right? But of course, they may be risking not being able to take advantage of best-of-breed. So where should that standardization layer occur across clouds? >> [Vittorio Viarengo] Well, I also hear that from some customers. "Oh, we are one cloud". They are in denial. There's no question about it. In fact, when I met at our user conference with a number of CIOs, and I went around the room and I asked them, I saw the entire spectrum. (laughs) The person is in denial. "Oh, we're using AWS." I said, "Great." "And the private cloud, so we're all set." "Okay, thank you. Next." "Oh, the business units are using AWS." "Ah, okay. So you have three." "Oh, and we just bought a company that is using Google back in Europe." So, okay, so you got four right there. So that person in denial. Then, you have the second category of customers that are seeing the problem, they're ahead of the pack, and they're building their solution. We're going to hear from Walmart later today. >> Dave Vellante: Yeah. >> So they're building their own. Not everybody has the skills and the scale of Walmart to build their own. >> Dave Vellante: Right. >> So, eventually, then you get to the third category of customers. They're actually buying solutions from one of the many ISVs that you are going to talk with today. You know, whether it is Azure Corp or Snowflake or all this. I will argue, any new company, any new ISV, is by definition a multicloud service company, right? And so these people... Or they're buying our Cross-Cloud Services to solve this problem. So that's the spectrum of customers out there. >> What's the stack you're focusing on specifically? What is VMware? Because virtualization is not going away. You're seeing a lot more in the cloud with networking, for example, this abstraction layer. What specifically are you guys focusing on? >> [Vittorio Viarengo] So, I like to talk about this beyond what VMware does, just 'cause I think this is an industry movement. A market is forming around multicloud services. And so it's an approach that pretty much a whole industry is taking of building this abstraction layer. In our approach, it is to bring these services together to simplify things even further. So, initially, we were the first to see multicloud happening. You know, Raghu and Sanjay, back in what, like 2016, 17, saw this coming and our first foray in multicloud was to take this sphere and our hypervisor and port it natively on all the hyperscaling, which is a phenomenal solution to get your enterprise application in the cloud and modernize them. But then we realized that customers were already in the cloud natively. And so we had to have (all chuckle) a religion discussion internally and drop that hypervisor religion and say, "Hey, we need to go and help our customers where they are, in a native cloud". And that's where we brought back Pivotal. We built tons around it. We shifted. And then Aria. And so basically, our evolution was to go from, you know, our hypervisor to cloud native. And then eventually we ended up at what we believe is the most comprehensive multicloud services solution that covers Application Development with Tanzu, Management with Aria, and then you have NSX for security and user computing for connectivity. And so we believe that we have the most comprehensive set of integrated services to solve the challenges of multicloud, bringing excess simplicity into the picture. >> John Furrier: As some would say, multicloud and multi environment, when you get to the distributed computing with the edge, you're going to need that capability. And you guys have been very successful with private cloud. But to be devil's advocate, you guys have been great with private cloud, but some are saying like, you guys don't get public cloud yet. How do you answer that? Because there's a lot of work that you guys have done in public cloud and it seems like private cloud successes are moving up into public cloud. Like networking. You're seeing a lot of that being configured in. So the enterprise-grade solutions are moving into the cloud. So what would you say to the skeptics out there that say, "Oh, I think you got private cloud nailed down, but you don't really have public cloud." (chuckles) >> [Vittorio Viarengo] First of all, we love skeptics. Our engineering team love skeptics and love to prove them wrong. (John laughs) And I would never ever bet against our engineering team. So I believe that VMware has been so successful in building a private cloud and the technology that actually became the foundation for the public cloud. But that is always hard, to be known in a new environment, right? There's always that period where you have to prove yourself. But what I love about VMware is that VMware has what I believe, what I like to call "enterprise pragmatism". The private cloud is not going away. So we're going to help our customers there, and then, as they move to the cloud, we are going to give them an option to adopt the cloud at their own pace, with VMware cloud, to allow them to move to the cloud and be able to rely on the enterprise-class capabilities we built on-prem in the cloud. But then with Tanzu and Aria and the rest of the Cross-Cloud Service portfolio, being able to meet them where they are. If they're already in the cloud, have them have a single place to build application, a single place to manage application, and so on and so forth. >> John Furrier: You know, Dave, we were talking in the opening. Vittorio, I want to get your reaction to this because we were saying in the opening that the market's obviously pushing this next gen. You see ChatGPT and the success of these new apps that are coming out. The business models are demanding kind of a digital transformation. The tech, the builders, are out there, and you guys have a interesting view because your customer base is almost the canary in the coal mine because this is an Operations challenge as well as just enabling the cloud native. So, I want to get your thoughts on, you know, your customer base, VMware customers. They've been in IT Ops for generations. And now, as that crowd moves and sees this Supercloud environment, it's IT again, but it's everywhere. It's not just IT in a data center. It's on-premises, it's cloud, it's edge. So, almost, your customer base is like a canary in the coal mine for this movement of how do you operationalize multiple environments? Which includes clouds, which includes apps. I mean, this is the core question. >> [Vittorio Viarengo] Yeah. And I want to make this an industry conversation. Forget about VMware for a second. We believe that there are like four or five major pillars that you need to implement to create this level of abstraction. It starts from observability. If you don't know- You need to know where your apps are, where your data is, how the the applications are performing, what is the security posture, what is their performance? So then, you can do something about it. We call that the observability part of this, creating this abstraction. The second one is security. So you need to be- Sorry. Infrastructure. An infrastructure. Creating an abstraction layer for infrastructure means to be able to give the applications, and the developer who builds application, the right infrastructure for the application at the right time. Whether it is a VM, whether it's a Kubernetes cluster, or whether it's microservices, and so on and so forth. And so, that allows our developers to think about infrastructure just as code. If it is available, whatever application needs, whatever the cost makes sense for my application, right? The third part of security, and I can give you a very, very simple example. Say that I was talking to a CIO of a major insurance company in Europe and he is saying to me, "The developers went wild, built all these great front office applications. Now the business is coming to me and says, 'What is my compliance report?'" And the guy is saying, "Say that I want to implement the policy that says, 'I want to encrypt all my data no matter where it resides.' How does it do it? It needs to have somebody logging in into Amazon and configure it, then go to Google, configure it, go to the private cloud." That's time and cost, right? >> Yeah. >> So, you need to have a way to enforce security policy from the infrastructure to the app to the firewall in one place and distribute it across. And finally, the developer experience, right? Developers, developers, developers. (all laugh) We're always trying to keep up with... >> Host: You can dance if you want to do... >> [Vittorio Viarengo] Yeah, let's not make a fool of ourselves. More than usual. Developers are the kings and queens of the hill. They are. Why? Because they build the application. They're making us money and saving us money. And so we need- And right now, they have to go into these different stacks. So, you need to give developers two things. One, a common development experience across this different Kubernetes distribution. And two, a way for the operators. To your point. The operators have fallen behind the developers. And they cannot go to the developer there and tell them, "This is how you're going to do things." They have to see how they're doing things and figure out how to bring the gallery underneath so that developers can be developers, but the operators can lay down the tracks and the infrastructure there is secure and compliant. >> Dave Vellante: So two big inferences from that. One is self-serve infrastructure. You got- In a decentralized cloud, a Supercloud world, you got to have self-serve infrastructure, you got to be simple. And the second is governance. You mentioned security, but it's also governance. You know, data sovereignty as we talked about. So the question I have, Vittorio, is where does the customer start? >> [Vittorio Viarengo] So I, it always depends on the business need, but to me, the foundational layer is observability. If you don't know where your staff is, you cannot manage, you cannot secure it, you cannot manage its cost, right? So I think observability is the bar to entry. And then it depends on the business needs, right? So, we go back to the CIO that I talked to. He is clearly struggling with compliance and security. >> Hosts: Mm hmm. >> And so, like many customers. And so, that's maybe where they start. There are other customers that are a little behind the head of the pack in terms of building applications, right? And so they're looking at these, you know, innovative companies that have the developers that get the cloud and build all these application. They are leader in the industry. They're saying, "How do I get some of that?" Well, the way you get some of that is by adopting modern application development and platform operational capabilities. So, that's maybe, that's where they should start. And so on and so forth. It really depends on the business. To me, observability is the foundational part of this. >> John Furrier: Vittorio, we've been on this conversation with you for over a year and a half now with Supercloud. You've been a leader in seeing the wave, you and Raghu and the team at VMware, among other industry leaders. This is our second event. If you're- In the minute and a half that we have left, when you get asked, "what is this Supercloud multicloud Cross-Cloud thing? What's it mean?" I mean, I mentioned earlier, the market, the business models are changing, tech's changing, society needs more economic value out of the cloud. Builders are out there. If someone says, "Hey, Vittorio, what's the bottom line? What's really going on? Why should I pay attention to this wave? What's going on?" How would you describe the relevance of Supercloud? >> I think that this industry is full of smart vendors and smart customers. And if we are smart about it, we look at the history of IT and the history of IT repeats itself over and over again. You follow the- He said, "Follow the money." I say, "Follow the developers." That's how I made my career. I follow great developers. I look at, you know, Kit Colbert. I say, "Okay. I'm going to get behind that guy wherever he is going." And I try to add value to that person. I look at Raghu and all the great engineers that I was blessed to work with. And so the engineers go and explore new territories and then the rest of the stacks moves around. The developers have gone multicloud. And just like in any iteration of IT, at some point, the way you get the right scales at the right cost is with abstractions. And you can see it everywhere from, you know, bits and bytes, integration, to SOA, to APIs and microservices. You can see it now from best-of-breed hyperscaler across multiple clouds to creating an abstraction layer, a Supercloud, that creates a unified way of building, managing, running, securing, and accessing applications. So if you're a customer- (laughs) A minute and a half. (hosts chuckle) If you are customers that are out there and feeling the pain, you got to adopt this. If you are customers that is behind and saying, "Maybe you're in denial" look at the customers that are solving the problems today, and we're going to have some today. See what they're doing and learn from them so you don't make the same mistakes and you can get there ahead of it. >> Dave Vellante: Gracely's Law, John. Brian Gracely. That history repeats itself and- >> John Furrier: And I think one of these, "follow the developers" is interesting. And the other big wave, I want to get your comment real quick, is that developers aren't just application developers. They're network developers. The stack has completely been software-enabled so that you have software-defined networking, you have all kinds of software at all aspects of observability, infrastructure, security. The developers are everywhere. It's not just software. Software is everywhere. >> [Vittorio Viarengo] Yeah. Developers, developers, developers. The other thing that we can tell, I can tell, and we know, because we live in Silicon Valley. We worship developers but if you are out there in manufacturing, healthcare... If you have developers that understand this stuff, pamper them, keep them happy. (hosts laugh) If you don't have them, figure out where they hang out and go recruit them because developers indeed make the IT world go round. >> John Furrier: Vittorio, thank you for coming on with that opening keynote here for Supercloud 2. We're going to unpack what Supercloud is all about in our second edition of our live performance here in Palo Alto. Virtual event. We're going to talk to customers, experts, leaders, investors, everyone who's looking at the future, what's being enabled by this new big wave coming on called Supercloud. I'm John Furrier with Dave Vellante. We'll be right back after this short break. (ambient theme music plays)

Published Date : Feb 17 2023

SUMMARY :

of the Supercloud momentum. on this stage with you guys. and the Supercloud wave And the chaos comes from the fact And the CIO would go, "Well, the way we deal with that are seeing the problem, and the scale of Walmart So that's the spectrum You're seeing a lot more in the cloud and then you have NSX for security And you guys have been very and the rest of the that the market's obviously Now the business is coming to me and says, from the infrastructure if you want to do... and the infrastructure there And the second is governance. is the bar to entry. Well, the way you get some of that out of the cloud. the way you get the right scales Dave Vellante: Gracely's Law, John. And the other big wave, make the IT world go round. We're going to unpack what

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

DavePERSON

0.99+

EuropeLOCATION

0.99+

John FurrierPERSON

0.99+

WalmartORGANIZATION

0.99+

Vittorio ViarengoPERSON

0.99+

VittorioPERSON

0.99+

Kit ColbertPERSON

0.99+

Palo AltoLOCATION

0.99+

JohnPERSON

0.99+

VMwareORGANIZATION

0.99+

Brian GracelyPERSON

0.99+

AWSORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

threeQUANTITY

0.99+

55%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Azure CorpORGANIZATION

0.99+

fourQUANTITY

0.99+

twoQUANTITY

0.99+

two thingsQUANTITY

0.99+

third categoryQUANTITY

0.99+

87%QUANTITY

0.99+

AmazonORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

2016DATE

0.99+

second editionQUANTITY

0.99+

A minute and a halfQUANTITY

0.99+

second eventQUANTITY

0.99+

second categoryQUANTITY

0.99+

Raghu RaghuramPERSON

0.99+

OneQUANTITY

0.99+

Supercloud2EVENT

0.99+

firstQUANTITY

0.99+

OracleORGANIZATION

0.99+

TanzuORGANIZATION

0.99+

todayDATE

0.99+

SupercloudORGANIZATION

0.98+

AriaORGANIZATION

0.98+

third partQUANTITY

0.98+

GracelyPERSON

0.98+

oneQUANTITY

0.98+

secondQUANTITY

0.97+

HPORGANIZATION

0.97+

second oneQUANTITY

0.97+

five major pillarsQUANTITY

0.97+

SAPORGANIZATION

0.97+

17DATE

0.97+

over a year and a halfQUANTITY

0.96+

FirstQUANTITY

0.96+

one cloudQUANTITY

0.96+

first instanceQUANTITY

0.96+

Discussion about Walmart's Approach | Supercloud2


 

(upbeat electronic music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto. I'm John Furrier, with Dave Vellante. Again, all day wall-to-wall coverage, just had a great interview with Walmart, we've got a Next interview coming up, you're going to hear from Bob Muglia and Tristan Handy, two experts, both experienced entrepreneurs, executives in technology. We're here to break down what just happened with Walmart, and what's coming up with George Gilbert, former colleague, Wikibon analyst, Gartner Analyst, and now independent investor and expert. George, great to see you, I know you're following this space. Like you read about it, remember the first days when Dataverse came out, we were talking about them coming out of Berkeley? >> Dave: Snowflake. >> John: Snowflake. >> Dave: Snowflake In the early days. >> We, collectively, have been chronicling the data movement since 2010, you were part of our team, now you've got your nose to the grindstone, you're seeing the next wave. What's this all about? Walmart building their own super cloud, we got Bob Muglia talking about how these next wave of apps are coming. What are the super apps? What's the super cloud to you? >> Well, this key's off Dave's really interesting questions to Walmart, which was like, how are they building their supercloud? 'Cause it makes a concrete example. But what was most interesting about his description of the Walmart WCMP, I forgot what it stood for. >> Dave: Walmart Cloud Native Platform. >> Walmart, okay. He was describing where the logic could run in these stateless containers, and maybe eventually serverless functions. But that's just it, and that's the paradigm of microservices, where the logic is in this stateless thing, where you can shoot it, or it fails, and you can spin up another one, and you've lost nothing. >> That was their triplet model. >> Yeah, in fact, and that was what they were trying to move to, where these things move fluidly between data centers. >> But there's a but, right? Which is they're all stateless apps in the cloud. >> George: Yeah. >> And all their stateful apps are on-prem and VMs. >> Or the stateful part of the apps are in VMs. >> Okay. >> And so if they really want to lift their super cloud layer off of this different provider's infrastructure, they're going to need a much more advanced software platform that manages data. And that goes to the -- >> Muglia and Handy, that you and I did, that's coming up next. So the big takeaway there, George, was, I'll set it up and you can chime in, a new breed of data apps is emerging, and this highly decentralized infrastructure. And Tristan Handy of DBT Labs has a sort of a solution to begin the journey today, Muglia is working on something that's way out there, describe what you learned from it. >> Okay. So to talk about what the new data apps are, and then the platform to run them, I go back to the using what will probably be seen as one of the first data app examples, was Uber, where you're describing entities in the real world, riders, drivers, routes, city, like a city plan, these are all defined by data. And the data is described in a structure called a knowledge graph, for lack of a, no one's come up with a better term. But that means the tough, the stuff that Jack built, which was all stateless and sits above cloud vendors' infrastructure, it needs an entirely different type of software that's much, much harder to build. And the way Bob described it is, you're going to need an entirely new data management infrastructure to handle this. But where, you know, we had this really colorful interview where it was like Rock 'Em Sock 'Em, but they weren't really that much in opposition to each other, because Tristan is going to define this layer, starting with like business intelligence metrics, where you're defining things like bookings, billings, and revenue, in business terms, not in SQL terms -- >> Well, business terms, if I can interrupt, he said the one thing we haven't figured out how to APIify is KPIs that sit inside of a data warehouse, and that's essentially what he's doing. >> George: That's what he's doing, yes. >> Right. And so then you can now expose those APIs, those KPIs, that sit inside of a data warehouse, or a data lake, a data store, whatever, through APIs. >> George: And the difference -- >> So what does that do for you? >> Okay, so all of a sudden, instead of working at technical data terms, where you're dealing with tables and columns and rows, you're dealing instead with business entities, using the Uber example of drivers, riders, routes, you know, ETA prices. But you can define, DBT will be able to define those progressively in richer terms, today they're just doing things like bookings, billings, and revenue. But Bob's point was, today, the data warehouse that actually runs that stuff, whereas DBT defines it, the data warehouse that runs it, you can't do it with relational technology >> Dave: Relational totality, cashing architecture. >> SQL, you can't -- >> SQL caching architectures in memory, you can't do it, you've got to rethink down to the way the data lake is laid out on the disk or cache. Which by the way, Thomas Hazel, who's speaking later, he's the chief scientist and founder at Chaos Search, he says, "I've actually done this," basically leave it in an S3 bucket, and I'm going to query it, you know, with no caching. >> All right, so what I hear you saying then, tell me if I got this right, there are some some things that are inadequate in today's world, that's not compatible with the Supercloud wave. >> Yeah. >> Specifically how you're using storage, and data, and stateful. >> Yes. >> And then the software that makes it run, is that what you're saying? >> George: Yeah. >> There's one other thing you mentioned to me, it's like, when you're using a CRM system, a human is inputting data. >> George: Nothing happens till the human does something. >> Right, nothing happens until that data entry occurs. What you're talking about is a world that self forms, polling data from the transaction system, or the ERP system, and then builds a plan without human intervention. >> Yeah. Something in the real world happens, where the user says, "I want a ride." And then the software goes out and says, "Okay, we got to match a driver to the rider, we got to calculate how long it takes to get there, how long to deliver 'em." That's not driven by a form, other than the first person hitting a button and saying, "I want a ride." All the other stuff happens autonomously, driven by data and analytics. >> But my question was different, Dave, so I want to get specific, because this is where the startups are going to come in, this is the disruption. Snowflake is a data warehouse that's in the cloud, they call it a data cloud, they refactored it, they did it differently, the success, we all know it looks like. These areas where it's inadequate for the future are areas that'll probably be either disrupted, or refactored. What is that? >> That's what Muglia's contention is, that the DBT can start adding that layer where you define these business entities, they're like mini digital twins, you can define them, but the data warehouse isn't strong enough to actually manage and run them. And Muglia is behind a company that is rethinking the database, really in a fundamental way that hasn't been done in 40 or 50 years. It's the first, in his contention, the first real rethink of database technology in a fundamental way since the rise of the relational database 50 years ago. >> And I think you admit it's a real Hail Mary, I mean it's quite a long shot right? >> George: Yes. >> Huge potential. >> But they're pretty far along. >> Well, we've been talking on theCUBE for 12 years, and what, 10 years going to AWS Reinvent, Dave, that no one database will rule the world, Amazon kind of showed that with them. What's different, is it databases are changing, or you can have multiple databases, or? >> It's a good question. And the reason we've had multiple different types of databases, each one specialized for a different type of workload, but actually what Muglia is behind is a new engine that would essentially, you'll never get rid of the data warehouse, or the equivalent engine in like a Databricks datalake house, but it's a new engine that manages the thing that describes all the data and holds it together, and that's the new application platform. >> George, we have one minute left, I want to get real quick thought, you're an investor, and we know your history, and the folks watching, George's got a deep pedigree in investment data, and we can testify against that. If you're going to invest in a company right now, if you're a customer, I got to make a bet, what does success look like for me, what do I want walking through my door, and what do I want to send out? What companies do I want to look at? What's the kind of of vendor do I want to evaluate? Which ones do I want to send home? >> Well, the first thing a customer really has to do when they're thinking about next gen applications, all the people have told you guys, "we got to get our data in order," getting that data in order means building an integrated view of all your data landscape, which is data coming out of all your applications. It starts with the data model, so, today, you basically extract data from all your operational systems, put it in this one giant, central place, like a warehouse or lake house, but eventually you want this, whether you call it a fabric or a mesh, it's all the data that describes how everything hangs together as in one big knowledge graph. There's different ways to implement that. And that's the most critical thing, 'cause that describes your Uber landscape, your Uber platform. >> That's going to power the digital transformation, which will power the business transformation, which powers the business model, which allows the builders to build -- >> Yes. >> Coders to code. That's Supercloud application. >> Yeah. >> George, great stuff. Next interview you're going to see right here is Bob Muglia and Tristan Handy, they're going to unpack this new wave. Great segment, really worth unpacking and reading between the lines with George, and Dave Vellante, and those two great guests. And then we'll come back here for the studio for more of the live coverage of Supercloud 2. Thanks for watching. (upbeat electronic music)

Published Date : Feb 17 2023

SUMMARY :

remember the first days What's the super cloud to you? of the Walmart WCMP, I and that's the paradigm of microservices, and that was what they stateless apps in the cloud. And all their stateful of the apps are in VMs. And that goes to the -- Muglia and Handy, that you and I did, But that means the tough, he said the one thing we haven't And so then you can now the data warehouse that runs it, Dave: Relational totality, Which by the way, Thomas I hear you saying then, and data, and stateful. thing you mentioned to me, George: Nothing happens polling data from the transaction Something in the real world happens, that's in the cloud, that the DBT can start adding that layer Amazon kind of showed that with them. and that's the new application platform. and the folks watching, all the people have told you guys, Coders to code. for more of the live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

GeorgePERSON

0.99+

Bob MugliaPERSON

0.99+

Tristan HandyPERSON

0.99+

DavePERSON

0.99+

BobPERSON

0.99+

Thomas HazelPERSON

0.99+

George GilbertPERSON

0.99+

AmazonORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

John FurrierPERSON

0.99+

Palo AltoLOCATION

0.99+

Chaos SearchORGANIZATION

0.99+

JackPERSON

0.99+

TristanPERSON

0.99+

12 yearsQUANTITY

0.99+

BerkeleyLOCATION

0.99+

UberORGANIZATION

0.99+

firstQUANTITY

0.99+

DBT LabsORGANIZATION

0.99+

10 yearsQUANTITY

0.99+

two expertsQUANTITY

0.99+

Supercloud 2TITLE

0.99+

GartnerORGANIZATION

0.99+

AWSORGANIZATION

0.99+

bothQUANTITY

0.99+

MugliaORGANIZATION

0.99+

one minuteQUANTITY

0.99+

40QUANTITY

0.99+

two great guestsQUANTITY

0.98+

WikibonORGANIZATION

0.98+

50 yearsQUANTITY

0.98+

JohnPERSON

0.98+

Rock 'Em Sock 'EmTITLE

0.98+

todayDATE

0.98+

first personQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

S3COMMERCIAL_ITEM

0.97+

50 years agoDATE

0.97+

2010DATE

0.97+

MaryPERSON

0.96+

first daysQUANTITY

0.96+

SQLTITLE

0.96+

oneQUANTITY

0.95+

Supercloud waveEVENT

0.95+

each oneQUANTITY

0.93+

DBTORGANIZATION

0.91+

SupercloudTITLE

0.91+

Supercloud2TITLE

0.91+

Supercloud 2ORGANIZATION

0.89+

SnowflakeTITLE

0.86+

DataverseORGANIZATION

0.83+

tripletQUANTITY

0.78+

Exploring a Supercloud Architecture | Supercloud2


 

(upbeat music) >> Welcome back everyone to Supercloud 2, live here in Palo Alto, our studio, where we're doing a live stage performance and virtually syndicating out around the world. I'm John Furrier with Dave Vellante, my co-host with the The Cube here. We've got Kit Colbert, the CTO of VM. We're doing a keynote on Cloud Chaos, the evolution of SuperCloud Architecture Kit. Great to see you, thanks for coming on. >> Yeah, thanks for having me back. It's great to be here for Supercloud 2. >> And so we're going to dig into it. We're going to do a Q&A. We're going to let you present. You got some slides. I really want to get this out there, it's really compelling story. Do the presentation and then we'll come back and discuss. Take it away. >> Yeah, well thank you. So, we had a great time at the original Supercloud event, since then, been talking to a lot of customers, and started to better formulate some of the thinking that we talked about last time So, let's jump into it. Just a few quick slides to sort of set the tone here. So, if we go to the the next slide, what that shows is the journey that we see customers on today, going from what we call Cloud First into this phase that many customers are stuck in, called Cloud Chaos, and where they want to get to, and this is the term customers actually use, we didn't make this up, we heard it from customers. This notion of Cloud Smart, right? How do they use cloud more effectively, more intelligently? Now, if you walk through this journey, customers start with Cloud First. They usually select a single cloud that they're going to standardize on, and when they do that, they have to build out a whole bunch of functionality around that cloud. Things you can see there on the screen, disaster recovery, security, how do they monitor it or govern it? Like, these are things that are non-negotiable, you've got to figure it out, and typically what they do is, they leverage solutions that are specific for that cloud, and that's fine when you have just one cloud. But if we build out here, what we see is that most customers are using more than just one, they're actually using multiple, not necessarily 10 or however many on the screen, but this is just as an example. And so what happens is, they have to essentially duplicate or replicate that stack they've built for each different cloud, and they do so in a kind of a siloed manner. This results in the Cloud Chaos term that that we talked about before. And this is where most businesses out there are, they're using two, maybe three public clouds. They've got some stuff on-prem and they've also got some stuff out at the edge. This is apps, data, et cetera. So, this is the situation, this is sort of that Cloud Chaos. So, the question is, how do we move from this phase to Cloud Smart? And this is where the architecture comes in. This is why architecture, I think, is so important. It's really about moving away from these single cloud services that just solve a problem for one cloud, to something we call a Cross-Cloud service. Something that can support a set of functionality across all clouds, and that means not just public clouds, but also private clouds, edge, et cetera, and when you evolve that across the board, what you get is this sort of Supercloud. This notion that we're talking about here, where you combine these cross-cloud services in many different categories. You can see some examples there on the screen. This is not meant to be a complete set of things, but just examples of what can be done. So, this is sort of the transition and transformation that we're talking about here, and I think the architecture piece comes in both for the individual cloud services as well as that Supercloud concept of how all those services come together. >> Great presentation., thanks for sharing. If you could pop back to that slide, on the Cloud Chaos one. I just want to get your thoughts on something there. This is like the layout of the stack. So, this slide here that I'm showing on the screen, that you presented, okay, take us through that complexity. This is the one where I wanted though, that looks like a spaghetti code mix. >> Yes. >> So, do you turn this into a Supercloud stack, right? Is that? >> well, I think it's, it's an evolving state that like, let's take one of these examples, like security. So, instead of implementing security individually in different ways, using different technologies, different tooling for each cloud, what you would do is say, "Hey, I want a single security solution that works across all clouds", right? A concrete example of this would be secure software supply chain. This is probably one of the top ones that I hear when I talk to customers. How do I know that the software I'm building is truly what I expect it to be, and not something that some hacker has gotten into, and polluted with malicious code? And what they do is that, typically today, their teams have gone off and created individual secure software supply chain solutions for each cloud. So, now they could say, "Hey, I can take a single implementation and just have different endpoints." It could go to Google, or AWS, or on-prem, or wherever have you, right? So, that's the sort of architectural evolution that we're talking about. >> You know, one of the things we hear, Dave, you've been on theCUBE all the time, and we, when we talk privately with customers who are asking us like, what's, what's going on? They have the same complaint, "I don't want to build a team, a dev team, for that stack." So, if you go back to that slide again, you'll see that, that illustrates the tech stack for the clouds and the clouds at the bottom. So, the number one complaint we hear, and I want to get your reaction to that, "I don't want to have a team to have to work on that. So, I'm going to pick one and then have a hedge secondary one, as a backup." Here, that's one, that's four, five, eight, ten, ten environments. >> Yeah, I got a lot. >> That's going to be the reality, so, what's the technical answer to that? >> Yeah, well first of all, let me just say, this picture is again not totally representative of reality oftentimes, because while that picture shows a solution for every cloud, oftentimes that's not the case. Oftentimes it's a line of business going off, starting to use a new cloud. They might solve one or two things, but usually not security, usually not some of these other things, right? So, I think from a technical standpoint, where you want to get to is, yes, that sort of common service, with a common operational team behind it, that is trained on that, that can work across clouds. And that's really I think the important evolution here, is that you don't need to replicate these operational teams, one for each cloud. You can actually have them more focused across all those clouds. >> Yeah, in fact, we were commenting on the opening today. Dave and I were talking about the benefits of the cloud. It's heterogeneous, which is a good thing, but it's complex. There's skill gaps and skill required, but at the end of the day, self-service of the cloud, and the elastic nature of it makes it the benefit. So, if you try to create too many common services, you lose the value of the cloud. So, what's the trade off, in your mind right now as customers start to look at okay, identity, maybe I'll have one single sign on, that's an obvious one. Other ones? What are the areas people are looking at from a combination, common set of services? Where do they start? What's the choices? What are some of the trade offs? 'Cause you can't do it everything. >> No, it's a great question. So, that's actually a really good point and as I answer your question, before I answer your question, the important point about that, as you saw here, you know, across cloud services or these set of Cross-Cloud services, the things that comprise the Supercloud, at least in my view, the point is not necessarily to completely abstract the underlying cloud. The point is to give a business optionality and choice, in terms of what it wants to abstract, and I think that gets to your question, is how much do you actually want to abstract from the underlying cloud? Now, what I find, is that typically speaking, cloud choice is driven at least from a developer or app team perspective, by the best of breed services. What higher level application type services do you need? A database or AI, you know, ML systems, for your application, and that's going to drive your choice of the cloud. So oftentimes, businesses I talk to, want to allow those services to shine through, but for other things that are not necessarily highly differentiated and yet are absolutely critical to creating a successful application, those are things that you want to standardize. Again, like things like security, the supply chain piece, cost management, like these things you need to, and you know, things like cogs become really, really important when you start operating at scale. So, those are the things in it that I see people wanting to focus on. >> So, there's a majority model. >> Yes. >> All right, and we heard of earlier from Walmart, who's fairly, you know, advanced, but at the same time their supercloud is pretty immature. So, what are you seeing in terms of supercloud momentum, crosscloud momentum? What's the starting point for customers? >> Yeah, so it's interesting, right, on that that three-tiered journey that I talked about, this Cloud Smart notion is, that is adoption of what you might call a supercloud or architecture, and most folks aren't there yet. Even the really advanced ones, even the really large ones, and I think it's because of the fact that, we as an industry are still figuring this out. We as an industry did not realize this sort of Cloud Chaos state could happen, right? We didn't, I think most folks thought they could standardize on one cloud and that'd be it, but as time has shown, that's simply not the case. As much as one might try to do that, that's not where you end up. So, I think there's two, there's two things here. Number one, for folks that are early in to the cloud, and are in this Cloud Chaos phase, we see the path out through standardization of these cross-cloud services through adoption of this sort of supercloud architecture, but the other thing I think is particularly exciting, 'cause I talked to a number of of businesses who are not yet in the Cloud Chaos phase. They're earlier on in the cloud journey, and I think the opportunity there is that they don't have to go through Cloud Chaos. They can actually skip that whole phase if they adopt this supercloud architecture from the beginning, and I think being thoughtful around that is really the key here. >> It's interesting, 'cause we're going to hear from Ionis Pharmaceuticals later, and they, yes there are multiple clouds, but the multiple clouds are largely separate, and so it's a business unit using that. So, they're not in Cloud Chaos, but they're not tapping the advantages that you could get for best of breed across those business units. So, to your point, they have an opportunity to actually build that architecture or take advantage of those cross-cloud services, prior to reaching cloud chaos. >> Well, I, actually, you know, I'd love to hear from them if, 'cause you say they're not in Cloud Chaos, but are they, I mean oftentimes I find that each BU, each line of business may feel like they're fine, in of themselves. >> Yes, exactly right, yes. >> But when you look at it from an overall company perspective, they're like, okay, things are pretty chaotic here. We don't have standardization, I don't, you know, like, again, security compliance, these things, especially in many regulated industries, become huge problems when you're trying to run applications across multiple clouds, but you don't have any of those company-wide standardizations. >> Well, this is a point. So, they have a big deal with AstraZeneca, who's got this huge ecosystem, they want to start sharing data across those ecosystem, and that's when they will, you know, that Cloud Chaos will, you know, come, come to fore, you would think. I want to get your take on something that Bob Muglia said earlier, which is, he kind of said, "Hey Dave, you guys got to tighten up your definition a little bit." So, he said a supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. So, you know, thank you, that was nice and simple. However others in the community, we're going to hear from Dr. Nelu Mihai later, says, no, no, wait a minute, it's got to be an architecture, not a platform. Where do you land on this architecture v. platform thing? >> I look at it as, I dunno if it's, you call it maturity or just kind of a time horizon thing, but for me when I hear the word platform, I typically think of a single vendor. A single vendor provides this platform. That's kind of the beauty of a platform, is that there is a simplicity usually consistency to it. >> They did the architecture. (laughing) >> Yeah, exactly but I mean, well, there's obviously architecture behind it, has to be, but you as a customer don't necessarily need to deal with that. Now, I think one of the opportunities with Supercloud is that it's not going to be, or there is no single vendor that can solve all these problems. It's got to be the industry coming together as a community, inter-operating, working together, and so, that's why, for me, I think about it as an architecture, that there's got to be these sort of, well-defined categories of functionality. There's got to be well-defined interfaces between those categories of functionality to enable modularity, to enable businesses to be able to pick and choose the right sorts of services, and then weave those together into an overall supercloud. >> Okay, so you're not pitching, necessarily the platform, you're saying, hey, we have an architecture that's open. I go back to something that Vittorio said on August 9th, with the first Supercloud, because as well, remember we talked about abstracting, but at the same time giving developers access to those primitives. So he said, and this, I think your answer sort of confirms this. "I want to have my cake eat it too and not gain weight." >> (laughing) Right. Well and I think that's where the platform aspect can eventually come, after we've gotten aligned architecture, you're going to start to naturally see some vendors step up to take on some of the remaining complexity there. So, I do see platforms eventually emerging here, but I think where we have to start as an industry is around aligning, okay, what does this definition mean? What does that architecture look like? How do we enable interoperability? And then we can take the next step. >> Because it depends too, 'cause I would say Snowflake has a platform, and they've just defined the architecture, but we're not talking about infrastructure here, obviously, we're talking about something else. >> Well, I think that the Snowflake talks about, what he talks about, security and data, you're going to start to see the early movement around areas that are very spanning oriented, and I think that's the beginning of the trend and I think there's going to be a lot more, I think on the infrastructure side. And to your point about the platform architecture, that's actually a really good thought exercise because it actually makes you think about what you're designing in the first place, and that's why I want to get your reaction. >> Quote from- >> Well I just have to interrupt since, later on, you're going to hear from near Nir Zuk of Palo Alto Network. He says architecture and security historically, they don't go hand in hand, 'cause it's a big mess. >> It depends if you're whacking the mole or you actually proactively building something. Well Kit, I want to get your reaction from a quote from someone in our community who said about Supercloud, you know, "The Supercloud's great, there are issues around computer science rigors, and customer requirements." So, there's some issues around the science itself as well as not just listen to the customer, 'cause if that's the case, we'd have a better database, a better Oracle, right, so, but there's other, this tech involved, new tech. We need an open architecture with universal data modeling interconnecting among them, connectivity is a part of security, and then, once we get through that gate, figuring out the technical, the data, and the customer requirements, they say "Supercloud should be a loosely coupled platform with open architecture, plug and play, specialized services, ready for optimization, automation that can stand the test of time." What's your reaction to that sentiment? You like it, is that, does that sound good? >> Yeah, no, broadly aligns with my thinking, I think, and what I see from talking with customers as well. I mean, I like the, again, the, you know, listening to customer needs, prioritizing those things, focusing on some of the connective tissue networking, and data and some of these aspects talking about the open architecture, the interoperability, those are all things I think are absolutely critical. And then, yeah, like I think at the end. >> On the computer science side, do you see some science and engineering things that need to be engineered differently? We heard databases are radically going to change and that are inadequate for the new architecture. What are some of the things like that, from a science standpoint? >> Yeah, yeah, yeah. Some of the more academic research type things. >> More tech, or more better tech or is it? >> Yeah, look, absolutely. I mean I think that there's a bunch around, certainly around the data piece, around, you know, there's issues of data gravity, data mobility. How do you want to do that in a way that's performant? There's definitely issues around security as well. Like how do you enable like trust in these environments, there's got to be some sort of hardware rooted trusts, and you know, a whole bunch of various types of aspects there. >> So, a lot of work still be done. >> Yes, I think so. And that's why I look at this as, this is not a one year thing, or you know, it's going to be multi-years, and I think again, it's about all of us in the industry working together to come to an aligned picture of what that looks like. >> So, as the world's moved from private cloud to public cloud and now Cross-cloud services, supercloud, metacloud, whatever you want to call it, how have you sort of changed the way engineering's organized, developers sort of approached the problem? Has it changed and how? >> Yeah, absolutely. So, you know, it's funny, we at VMware, going through the same challenges as our customers and you know, any business, right? We use multiple clouds, we got a big, of course, on-prem footprint. You know, what we're doing is similar to what I see in many other customers, which, you see the evolution of a platform team, and so the platform team is really in charge of trying to develop a lot of these underlying services to allow our lines of business, our product teams, to be able to move as quickly as possible, to focus on the building, while we help with a lot of the operational overheads, right? We maintain security, compliance, all these other things. We also deal with, yeah, just making the developer's life as simple as possible. So, they do need to know some stuff about, you know, each public cloud they're using, those public cloud services, but at the same, time we can abstract a lot of the details they don't need to be in. So, I think this sort of delineation or separation, I should say, between the underlying platform team and the product teams is a very, very common pattern. >> You know, I noticed the four layers you talked about were observability, infrastructure, security and developers, on that slide, the last slide you had at the top, that was kind of the abstraction key areas that you guys at VMware are working? >> Those were just some groupings that we've come up with, but we like to debate them. >> I noticed data's in every one of them. >> Yeah, yep, data is key. >> It's not like, so, back to the data questions that security is called out as a pillar. Observability is just kind of watching everything, but it's all pretty much data driven. Of the four layers that you see, I take that as areas that you can. >> Standardize. >> Consistently rely on to have standard services. >> Yes. >> Which one do you start with? What's the, is there order of operations? >> Well, that's, I mean. >> 'Cause I think infrastructure's number one, but you had observability, you need to know what's going on. >> Yeah, well it really, it's highly dependent. Again, it depends on the business that we talk to and what, I mean, it really goes back to, what are your business priorities, right? And we have some customers who may want to get out of a data center, they want to evacuate the data center, and so what they want is then, consistent infrastructure, so they can just move those applications up to the cloud. They don't want to have to refactor them and we'll do it later, but there's an immediate and sort of urgent problem that they have. Other customers I talk to, you know, security becomes top of mind, or maybe compliance, because they're in a regulated industry. So, those are the sort of services they want to prioritize. So, I would say there is no single right answer, no one size fits all. The point about this architecture is really around the optionality of it, as it allows you as a business to decide what's most important and where you want to prioritize. >> How about the deployment models kit? Do, does a customer have that flexibility from a deployment model standpoint or do I have to, you know, approach it a specific way? Can you address that? >> Yeah, I mean deployment models, you're talking about how they how they consume? >> So, for instance, yeah, running a control plane in the cloud. >> Got it, got it. >> And communicating elsewhere or having a single global instance or instantiating that instance, and? >> So, that's a good point actually, and you know, the white paper that we released back in August, around this sort of concept, the Cross-cloud service. This is some of the stuff we need to figure out as an industry. So, you know when we talk about a Cross-cloud service, we can mean actually any of the things you just talked about. It could be a single instance that runs, let's say in one public cloud, but it supports all of 'em. Or it could be one that's multi-instance and that runs in each of the clouds, and that customers can take dependencies on whichever one, depending on what their use cases are or the, even going further than that, there's a type of Cross-cloud service that could actually be instantiated even in an air gapped or offline environment, and we have many, many businesses, especially heavily regulated ones that have that requirement, so I think, you know. >> Global don't forget global, regions, locales. >> Yeah, there's all sorts of performance latency issues that can be concerned about. So, most services today are the former, there are single sort of instance or set of instances within a single cloud that support multiple clouds, but I think what we're doing and where we're going with, you know, things like what we see with Kubernetes and service meshes and all these things, will better enable folks to hit these different types of cross-cloud service architectures. So, today, you as a customer probably wouldn't have too much choice, but where we're going, you'll see a lot more choice in the future. >> If you had to summarize for folks watching the importance of Supercloud movement, multi-cloud, cross-cloud services, as an industry in flexible, 'cause I'm always riffing on the whole old school network protocol stacks that got disrupted by TCP/IP, that's a little bit dated, we got people on the chat that are like, you know, 20 years old that weren't even born then. So, but this is a, one of those inflection points that's once in a generation inflection point, I'm sure you agree. What scoped the order of magnitude of the change and the opportunity around the marketplace, the business models, the technology, and ultimately benefits the society. >> Yeah. Wow. Getting bigger. >> You have 10 seconds, go. >> I know. Yeah. (laughing) No, look, so I think it is what we're seeing is really the next phase of what you might call cloud, right? This notion of delivering services, the way they've been packaged together, traditionally by the hyperscalers is now being challenged. and what we're seeing is really opening that up to new levels of innovation, and I think that will be huge for businesses because it'll help meet them where they are. Instead of needing to contort the businesses to, you know, make it work with the technology, the technology will support the business and where it's going. Give people more optionality, more flexibility in order to get there, and I think in the end, for us as individuals, it will just make for better experiences, right? You can get better performance, better interactivity, given that devices are so much of what we do, and so much of what we interact with all the time. This sort of flexibility and optionality will fundamentally better for us as individuals in our experiences. >> And we're seeing that with ChatGPT, everyone's talking about, just early days. There'll be more and more of things like that, that are next gen, like obviously like, wow, that's a fall out of your chair moment. >> It'll be the next wave of innovation that's unleashed. >> All right, Kit Colbert, thanks for coming on and sharing and exploring the Supercloud architecture, Cloud Chaos, the Cloud Smart, there's a transition progression happening and it's happening fast. This is the supercloud wave. If you're not on this wave, you'll be driftwood. That's a Pat Gelsinger quote on theCUBE. This is theCUBE Be right back with more Supercloud coverage, here in Palo Alto after this break. (upbeat music) (upbeat music continues)

Published Date : Feb 17 2023

SUMMARY :

We've got Kit Colbert, the CTO of VM. It's great to be here for Supercloud 2. We're going to let you present. and when you evolve that across the board, This is like the layout of the stack. How do I know that the So, the number one complaint we hear, is that you don't need to replicate and the elastic nature of and I think that gets to your question, So, what are you seeing in terms but the other thing I think that you could get for best of breed Well, I, actually, you know, I don't, you know, like, and that's when they will, you know, That's kind of the beauty of a platform, They did the architecture. is that it's not going to be, but at the same time Well and I think that's and they've just defined the architecture, beginning of the trend Well I just have to and the customer requirements, focusing on some of the that need to be engineered differently? Some of the more academic and you know, a whole bunch or you know, it's going to be multi-years, of the details they don't need to be in. that we've come up with, Of the four layers that you see, to have standard services. but you had observability, you is really around the optionality of it, running a control plane in the cloud. and that runs in each of the clouds, Global don't forget and where we're going with, you know, and the opportunity of what you might call cloud, right? that are next gen, like obviously like, It'll be the next wave of and exploring the Supercloud architecture,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Dave VellantePERSON

0.99+

Bob MugliaPERSON

0.99+

Kit ColbertPERSON

0.99+

August 9thDATE

0.99+

Palo AltoLOCATION

0.99+

AWSORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Pat GelsingerPERSON

0.99+

10 secondsQUANTITY

0.99+

twoQUANTITY

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

John FurrierPERSON

0.99+

AstraZenecaORGANIZATION

0.99+

Nelu MihaiPERSON

0.99+

AugustDATE

0.99+

two thingsQUANTITY

0.99+

oneQUANTITY

0.99+

SupercloudORGANIZATION

0.99+

VittorioPERSON

0.99+

20 yearsQUANTITY

0.99+

10QUANTITY

0.99+

one yearQUANTITY

0.99+

OracleORGANIZATION

0.99+

eachQUANTITY

0.99+

KitPERSON

0.99+

threeQUANTITY

0.99+

firstQUANTITY

0.99+

todayDATE

0.98+

bothQUANTITY

0.98+

each cloudQUANTITY

0.98+

one cloudQUANTITY

0.97+

each cloudQUANTITY

0.97+

tenQUANTITY

0.97+

VMwareORGANIZATION

0.96+

fiveQUANTITY

0.96+

single cloudQUANTITY

0.96+

singleQUANTITY

0.96+

each lineQUANTITY

0.96+

supercloud waveEVENT

0.96+

single instanceQUANTITY

0.95+

Palo Alto NetworkORGANIZATION

0.95+

fourQUANTITY

0.94+

eightQUANTITY

0.94+

single vendorQUANTITY

0.94+

Cloud ChaosTITLE

0.94+

Nir ZukPERSON

0.94+

three-tieredQUANTITY

0.93+

Cloud FirstTITLE

0.91+

four layersQUANTITY

0.91+

Cloud SmartTITLE

0.91+

SupercloudTITLE

0.89+

single implementationQUANTITY

0.88+

Supercloud 2EVENT

0.87+

first placeQUANTITY

0.84+

single right answerQUANTITY

0.84+

onceQUANTITY

0.83+

single sortQUANTITY

0.82+

Is Supercloud an Architecture or a Platform | Supercloud2


 

(electronic music) >> Hi everybody, welcome back to Supercloud 2. I'm Dave Vellante with my co-host John Furrier. We're here at our tricked out Palo Alto studio. We're going live wall to wall all day. We're inserting a number of pre-recorded interviews, folks like Walmart. We just heard from Nir Zuk of Palo Alto Networks, and I'm really pleased to welcome in David Flynn. David Flynn, you may know as one of the people behind Fusion-io, completely changed the way in which people think about storing data, accessing data. David Flynn now the founder and CEO of a company called Hammerspace. David, good to see you, thanks for coming on. >> David: Good to see you too. >> And Dr. Nelu Mihai is the CEO and founder of Cloud of Clouds. He's actually built a Supercloud. We're going to get into that. Nelu, thanks for coming on. >> Thank you, Happy New Year. >> Yeah, Happy New Year. So I'm going to start right off with a little debate that's going on in the community if you guys would bring out this slide. So Bob Muglia early today, he gave a definition of Supercloud. He felt like we had to tighten ours up a little bit. He said a Supercloud is a platform, underscoring platform, that provides programmatically consistent services hosted on heterogeneous cloud providers. Now, Nelu, we have this shared doc, and you've been in there. You responded, you said, well, hold on. Supercloud really needs to be an architecture, or else we're going to have this stove pipe of stove pipes, really. And then you went on with more detail, what's the information model? What's the execution model? How are users going to interact with Supercloud? So I start with you, why architecture? The inference is that a platform, the platform provider's responsible for the architecture? Why does that not work in your view? >> No, the, it's a very interesting question. So whenever I think about platform, what's the connotation, you think about monolithic system? Yeah, I mean, I don't know whether it's true or or not, but there is this connotation of of monolithic. On the other hand, if you look at what's a problem right now with HyperClouds, from the customer perspective, they're very complex. There is a heterogeneous world where actually every single one of this HyperClouds has their own architecture. You need rocket scientists to build a cloud applications. Always there is this contradiction between cost and performance. They fight each other. And I'm quoting here a former friend of mine from Bell Labs who work at AWS who used to say "Cloud is cheap as long as you don't use it too much." (group chuckles) So clearly we need something that kind of plays from the principle point of view the role of an operating system, that seats on top of this heterogeneous HyperCloud, and there's nothing wrong by having these proprietary HyperClouds, think about processors, think about operating system and so on, so forth. But in order to build a system that is simple enough, I think we need to go deeper and understand. >> So the argument, the counterargument to that, David, is you'll never get there. You need a proprietary system to get to market sooner, to solve today's problem. Now I don't know where you stand on this platform versus architecture. I haven't asked you, but. >> I think there are aspects of both for sure. I mean it needs to be an architecture in the sense that it's broad based and open and so forth. But you know, platform, you could say as long as people can instantiate it themselves, on their own infrastructure, as long as it's something that can be deployed as, you know, software defined, you don't want the concept of platform being the monolith, you know, combined hardware and software. So it really depends on what you're focused on when you're saying platform, you know, I'd say as long as they software defined thing, to where it can literally run anywhere. I mean, because I really think what we're talking about here is the original concept of cloud computing. The ability to run anything anywhere, without having to care about the physical infrastructure. And what we have today is not that, the cloud today is a big mainframe in the sky, that just happens to be large enough that once you select which region, generally you have enough resources. But, you know, nowadays you don't even necessarily have enough resources in one region. and then you're kind of stuck. So we haven't really gotten to that utility model of computing. And you're also asked to rewrite your application, you know, to abandon the conveniences of high performance file access. You got to rewrite it to use object storage stuff. We have to get away from that. >> Okay, I want to just drill on that, 'cause I think I like that point about, there's not enough availability, but on the developer cloud, the original AWS premise was targeting developers, 'cause at that time, you have to provision a Sun box get a Cisco DSU/CSU, now you get on the cloud. But I think you're giving up the scale question, 'cause I think right now, scale is huge, enterprise grade versus cloud for developers. >> That's Right. >> Because I mean look at, Amazon, Azure, they got compute, they got storage, they got queuing, and some stuff. If you're doing a startup, you throw your app up there, localhost to cloud, no big deal. It's the scale thing that gets me- >> And you can tell by the fact that, in regions that are under high demand, right, like in London or LA, at least with the clients we work with in the median entertainment space, it costs twice as much for the exact same cloud instances that do the exact same amount of work, as somewhere out in rural Canada. So why is it you have such a cost differential, it has to do with that supply and demand, and the fact that the clouds aren't really the ability to run anything anywhere. Even within the same cloud vendor, you're stuck in a specific region. >> And that was never the original promise, right? I mean it was, we turned it into that. But the original promise was get rid of the heavy lifting of IT. >> Not have to run your own, yeah, exactly. >> And then it became, wow, okay I can run anywhere. And then you know, it's like web 2.0. You know people say why Supercloud, you and I talked about this, why do you need a name for Supercloud? It's like web 2.0. >> It's what Cloud was supposed to be. >> It's what cloud was supposed to be, (group laughing and talking) exactly, right. >> Cloud was supposed to be run anything anywhere, or at least that's what we took it as. But you're right, originally it was just, oh don't have to run your own infrastructure, and you can choose somebody else's infrastructure. >> And you did that >> But you're still bound to that. >> Dave: And People said I want more, right? >> But how do we go from here? >> That's, that's actually, that's a very good point, because indeed when the first HyperClouds were designed, were designed really focus on customers. I think Supercloud is an opportunity to design in the right way. Also having in mind the computer science rigor. And we should take advantage of that, because in fact actually, if cloud would've been designed properly from the beginning, probably wouldn't have needed Supercloud. >> David: You wouldn't have to have been asked to rewrite your application. >> That's correct. (group laughs) >> To use REST interfaces to your storage. >> Revisist history is always a good one. But look, cloud is great. I mean your point is cloud is a good thing. Don't hold it back. >> It is a very good thing. >> Let it continue. >> Let it go as as it is. >> Yeah, let that thing continue to grow. Don't impose restrictions on the cloud. Just refactor what you need to for scale or enterprise grade or availability. >> And you would agree with that, is that true or is it problem you're solving? >> Well yeah, I mean it, what the cloud is doing is absolutely necessary. What the public cloud vendors are doing is absolutely necessary. But what's been missing is how to provide a consistent interface, especially to persistent data. And have it be available across different regions, and across different clouds. 'cause data is a highly localized thing in current architecture. It only exists as rendered by the storage system that you put it in. Whether that's a legacy thing like a NetApp or an Isilon or even a cloud data service. It's localized to a specific region of the cloud in which you put that. We have to delocalize data, and provide a consistent interface to it across all sites. That's high performance, local access, but to global data. >> And so Walmart earlier today described their, what we call Supercloud, they call it the Walmart cloud native platform. And they use this triplet model. They have AWS and Azure, no, oh sorry, no AWS. They have Azure and GCP and then on-prem, where all the VMs live. When you, you know, probe, it turns out that it's only stateless in the cloud. (John laughs) So, the state stuff- >> Well let's just admit it, there is no such thing as stateless, because even the application binaries and libraries are state. >> Well I'm happy that I'm hearing that. >> Yeah, okay. >> Because actually I have a lot of debate (indistinct). If you think about no software running on a (indistinct) machine is stateless. >> David: Exactly. >> This is something that was- >> David: And that's data that needs to be distributed and provided consistently >> (indistinct) >> Across all the clouds, >> And actually, it's a nonsense, but- >> Dave: So it's an illusion, okay. (group talks over each other) >> (indistinct) you guys talk about stateless. >> Well, see, people make the confusion between state and persistent state, okay. Persistent state it's a different thing. State is a different thing. So, but anyway, I want to go back to your point, because there's a lot of debate here. People are talking about data, some people are talking about logic, some people are talking about networking. In my opinion is this triplet, which is data logic and connectivity, that has equal importance. And actually depending on the application, can have the center of gravity moving towards data, moving towards what I call execution units or workloads. And connectivity is actually the most important part of it. >> David: (indistinct). >> Some people are saying move the logic towards the data, some other people, and you are saying actually, that no, you have to build a distributed data mesh. What I'm saying is actually, you have to consider all these three variables, all these vector in order to decide, based on application, what's the most important. Because sometimes- >> John: So the application chooses >> That's correct. >> Well it it's what operating systems were in the past, was principally the thing that runs and manages the jobs, the job scheduler, and the thing that provides your persistent data (indistinct). >> Okay. So we finally got operating system into the equation, thank you. (group laughs) >> Nelu: I actually have a PhD in operating system. >> Cause what we're talking about is an operating system. So forget platform or architecture, it's an operating environment. Let's use it as a general term. >> All right. I think that's about it for me. >> All right, let's take (indistinct). Nelu, I want ask you quick, 'cause I want to give a, 'cause I believe it's an operating system. I think it's going to be a reset, refactored. You wrote to me, "The model of Supercloud has to be open theoretical, has to satisfy the rigors of computer science, and customer requirements." So unique to today, if the OS is going to be refactored, it's not going to be, may or may not be Red Hat or somebody else. This new OS, obviously requirements are for customers too but is what's the computer science that is needed? Where are we, what's the missing? Where's the science in this shift? It's not your standard OS it's not like an- (group talks over each other) >> I would beg to differ. >> (indistinct) truly an operation environment. But the, if you think about, and make analogies, what you need when you design a distributed system, well you need an information model, yeah. You need to figure out how the data is located and distributed. You need a model for the execution units, and you need a way to describe the interactions between all these objects. And it is my opinion that we need to go deeper and formalize these operations in order to make a step forward. And when we design Supercloud, and design something that is better than the current HyperClouds. And actually that is when we design something better, you make a system more efficient and it's going to be better from the cost point of view, from the performance point of view. But we need to add some math into all this customer focus centering and I really admire AWS and their executive team focusing on the customer. But now it's time to go back and see, if we apply some computer science, if you try to formalize to build a theoretical model of cloud, can we build a system that is better than existing ones? >> So David, how do you- >> this is what I'm saying. >> That's a good question >> How do You see the operating system of a, or operating environment of a decentralized cloud? >> Well I think it's layered. I mean we have operating systems that can run systems quite efficiently. Linux has sort of one in the data center, but we're talking about a layer on top of that. And I think we're seeing the emergence of that. For example, on the job scheduling side of things, Kubernetes makes a really good example. You know, you break the workload into the most granular units of compute, the containerized microservice, and then you use a declarative model to state what is needed and give the system the degrees of freedom that it can choose how to instantiate it. Because the thing about these distributed systems, is that the complexity explodes, right? Running a piece of hardware, running a single server is not a problem, even with all the many cores and everything like that. It's when you start adding in the networking, and making it so that you have many of them. And then when it's going across whole different data centers, you know, so, at that level the way you solve this is not manually (group laughs) and not procedurally. You have to change the language so it's intent based, it's a declarative model, and what you're stating is what is intended, and you're leaving it to more advanced techniques, like machine learning to decide how to instantiate that service across the cluster, which is what Kubernetes does, or how to instantiate the data across the diverse storage infrastructure. And that's what we do. >> So that's a very good point because actually what has been neglected with HyperClouds is really optimization and automation. But in order to be able to do both of these things, you need, I'm going back and I'm stubborn, you need to have a mathematical model, a theoretical model because what does automation mean? It means that we have to put machines to do the work instead of us, and machines work with what? Formula, with algorithms, they don't work with services. So I think Supercloud is an opportunity to underscore the importance of optimization and automation- >> Totally agree. >> In HyperCloud, and actually by doing that, we can also have an interesting connotation. We are also contributing to save our planet, because if you think right now. we're consuming a lot of energy on this HyperClouds and also all this AI applications, and I think we can do better and build the same kind of application using less energy. >> So yeah, great point, love that call out, the- you know, Dave and I always joke about the old, 'cause we're old, we talk about, you know, (Nelu Laughs) old history, OS/2 versus DOS, okay, OS's, OS/2 is silly better, first threaded OS, DOS never went away. So how does legacy play into this conversation? Because I buy the theoretical, I love the conversation. Okay, I think it's an OS, totally see it that way myself. What's the blocker? Is there a legacy that drags it back? Is the anchor dragging from legacy? Is there a DOS OS/2 moment? Is there an opportunity to flip the script? This is- >> I think that's a perfect example of why we need to support the existing interfaces, Operating Systems, real operating systems like Linux, understands how to present data, it's called a file system, block devices, things that that plumb in there. And by, you know, going to a REST interface and S3 and telling people they have to rewrite their applications, you can't even consume your application binaries that way, the OS doesn't know how to pull that sort of thing. So we, to get to cloud, to get to the ability to host massive numbers of tenants within a centralized infrastructure, you know, we abandoned these lower level interfaces to the OS and we have to go back to that. It's the reason why DOS ultimately won, is it had the momentum of the install base. We're seeing the same thing here. Whatever it is, it has to be a real file system and not a come down file system >> Nelu, what's your reaction, 'cause you're in the theoretical bandwagon. Let's get your reaction. >> No, I think it's a good, I'll give, you made a good analogy between OS/2 and DOS, but I'll go even farther saying, if you think about the evolution operating system didn't stop the evolution of underlying microprocessors, hardware, and so on and so forth. On the contrary, it was a catalyst for that. So because everybody could develop their own hardware, without worrying that the applications on top of operating system are going to modify. The same thing is going to happen with Supercloud. You're going to have the AWSs, you're going to have the Azure and the the GCP continue to evolve in their own way proprietary. But if we create on top of it the right interface >> The open, this is why open is important. >> That's correct, because actually you're going to see sometime ago, everybody was saying, remember venture capitals were saying, "AWS killed the world, nobody's going to come." Now you see what Oracle is doing, and then you're going to see other players. >> It's funny, Amazon's trying to be more like Microsoft. Microsoft's trying to be more like Amazon and Google- Oracle's just trying to say they have cloud. >> That's, that's correct, (group laughs) so, my point is, you're going to see a multiplication of this HyperClouds and cloud technology. So, the system has to be open in order to accommodate what it is and what is going to come. Okay, so it's open. >> So the the legacy- so legacy is an opportunity, not a blocker in your mind. And you see- >> That's correct, I think we should allow them to continue to to to be their own actually. But maybe you're going to find a way to connect with it. >> Amazon's the processor, and they're on the 80 80 80 right? >> That's correct. >> You're saying you love people trying to get put to work. >> That's a good analogy. >> But, performance levels you say good luck, right? >> Well yeah, we have to be able to take traditional applications, high performance applications, those that consume file system and persistent data. Those things have to be able to run anywhere. You need to be able to put, put them onto, you know, more elastic infrastructure. So, we have to actually get cloud to where it lives up to its billing. >> And that's what you're solving for, with Hammerspace, >> That's what we're solving for, making it possible- >> Give me the bumper sticker. >> Solving for how do you have massive quantities of unstructured file data? At the end of the day, all data ultimately is unstructured data. Have that persistent data available, across any data center, within any cloud, within any region on-prem, at the edge. And have not just the same APIs, but have the exact same data sets, and not sucked over a straw remote, but at extreme high performance, local access. So how do you have local access to globally shared distributed data? And that's what we're doing. We are orchestrating data globally across all different forms of storage infrastructure, so you have a consistent access at the highest performance levels, at the lowest level innate built into the OS, how to consume it as (indistinct) >> So are you going into the- all the clouds and natively building in there, or are you off cloud? >> So This is software that can run on cloud instances and provide high performance file within the cloud. It can take file data that's on-prem. Again, it's software, it can run in virtual or on physical servers. And it abstracts the data from the existing storage infrastructure, and makes the data visible and consumable and orchestratable across any of it. >> And what's the elevator pitch for Cloud of Cloud, give that too. >> Well, Cloud of Clouds creates a theoretical model of cloud, and it describes every single object in the cloud. Where is data, execution units, and connectivity, with one single class of very simple object. And I can, I can give you (indistinct) >> And the problem that solves is what? >> The problem that solves is, it creates this mathematical model that is necessary in order to do other interesting things, such as optimization, using sata engines, using automation, applying ML for instance. Or deep learning to automate all this clouds, if you think about in the industrial field, we know how to manage and automate huge plants. Why wouldn't it do the same thing in cloud? It's the same thing you- >> That's what you mean by theoretical model. >> Nelu: That's correct. >> Lay out the architecture, almost the bones of skeleton or something, or, and then- >> That's correct, and then on top of it you can actually build a platform, You can create your services, >> when you say math, you mean you put numbers to it, you kind of index it. >> You quantify this thing and you apply mathematical- It's really about, I can disclose this thing. It's really about describing the cloud as a knowledge graph for every single object in the graph for node, an edge is a vector. And then once you have this model, then you can apply the field theory, and linear algebra to do operation with these vectors. And it's, this creates a very interesting opportunity to let the math do this thing for us. >> Okay, so what happens with hyperscale, or it's like AWS in your model. >> So in, in my model actually, >> Are they happy with this, or they >> I'm very happy with that. >> Will they be happy with you? >> We create an interface to every single HyperCloud. We actually, we don't need to interface with the thousands of APIs, but you know, if we have the 80 20 rule, and we map these APIs into this graph, and then every single operation that is done in this graph is done from the beginning, in an optimized manner and also automation ready. >> That's going to be great. David, I want us to go back to you before we close real quick. You've had a lot of experience, multiple ventures on the front end. You talked to a lot of customers who've been innovating. Where are the classic (indistinct)? Cause you, you used to sell and invent product around the old school enterprises with storage, you know that that trajectory storage is still critical to store the data. Where's the classic enterprise grade mindset right now? Those customers that were buying, that are buying storage, they're in the cloud, they're lifting and shifting. They not yet put the throttle on DevOps. When they look at this Supercloud thing, Are they like a deer in the headlights, or are they like getting it? What's the, what's the classic enterprise look like? >> You're seeing people at different stages of adoption. Some folks are trying to get to the cloud, some folks are trying to repatriate from the cloud, because they've realized it's better to own than to rent when you use a lot of it. And so people are at very different stages of the journey. But the one thing that's constant is that there's always change. And the change here has to do with being able to change the location where you're doing your computing. So being able to support traditional workloads in the cloud, being able to run things at the edge, and being able to rationalize where the data ought to exist, and with a declarative model, intent-based, business objective-based, be able to swipe a mouse and have the data get redistributed and positioned across different vendors, across different clouds, that, we're seeing that as really top of mind right now, because everybody's at some point on this journey, trying to go somewhere, and it involves taking their data with them. (John laughs) >> Guys, great conversation. Thanks so much for coming on, for John, Dave. Stay tuned, we got a great analyst power panel coming right up. More from Palo Alto, Supercloud 2. Be right back. (bouncy music)

Published Date : Jan 18 2023

SUMMARY :

and I'm really pleased to And Dr. Nelu Mihai is the CEO So I'm going to start right off On the other hand, if you look at what's So the argument, the of platform being the monolith, you know, but on the developer cloud, It's the scale thing that gets me- the ability to run anything anywhere. of the heavy lifting of IT. Not have to run your And then you know, it's like web 2.0. It's what Cloud It's what cloud was supposed to be, and you can choose somebody bound to that. Also having in mind the to rewrite your application. That's correct. I mean your point is Yeah, let that thing continue to grow. of the cloud in which you put that. So, the state stuff- because even the application binaries If you think about no software running on Dave: So it's an illusion, okay. (indistinct) you guys talk And actually depending on the application, that no, you have to build the job scheduler, and the thing the equation, thank you. a PhD in operating system. about is an operating system. I think I think it's going to and it's going to be better at that level the way you But in order to be able to and build the same kind of Because I buy the theoretical, the OS doesn't know how to Nelu, what's your reaction, of it the right interface The open, this is "AWS killed the world, to be more like Microsoft. So, the system has to be open So the the legacy- to continue to to to put to work. You need to be able to put, And have not just the same APIs, and makes the data visible and consumable for Cloud of Cloud, give that too. And I can, I can give you (indistinct) It's the same thing you- That's what you mean when you say math, and linear algebra to do Okay, so what happens with hyperscale, the thousands of APIs, but you know, the old school enterprises with storage, and being able to rationalize Stay tuned, we got a

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Dave VellantePERSON

0.99+

AmazonORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

JohnPERSON

0.99+

NeluPERSON

0.99+

David FlynnPERSON

0.99+

DavePERSON

0.99+

GoogleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

LondonLOCATION

0.99+

John FurrierPERSON

0.99+

LALOCATION

0.99+

Bob MugliaPERSON

0.99+

OS/2TITLE

0.99+

Nir ZukPERSON

0.99+

MicrosoftORGANIZATION

0.99+

HammerspaceORGANIZATION

0.99+

OracleORGANIZATION

0.99+

Bell LabsORGANIZATION

0.99+

Nelu MihaiPERSON

0.99+

DOSTITLE

0.99+

AWSsORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

twiceQUANTITY

0.99+

CiscoORGANIZATION

0.99+

todayDATE

0.99+

CanadaLOCATION

0.99+

bothQUANTITY

0.99+

Palo AltoLOCATION

0.99+

SupercloudORGANIZATION

0.99+

Nelu LaughsPERSON

0.98+

thousandsQUANTITY

0.98+

firstQUANTITY

0.97+

LinuxTITLE

0.97+

HyperCloudTITLE

0.97+

Cloud of CloudTITLE

0.97+

oneQUANTITY

0.96+

Cloud of CloudsORGANIZATION

0.95+

GCPTITLE

0.95+

AzureTITLE

0.94+

three variablesQUANTITY

0.94+

one single classQUANTITY

0.94+

single serverQUANTITY

0.94+

tripletQUANTITY

0.94+

one regionQUANTITY

0.92+

NetAppTITLE

0.92+

DOS OS/2TITLE

0.92+

AzureORGANIZATION

0.92+

earlier todayDATE

0.92+

Cloud of CloudsTITLE

0.91+

Closing Remarks | Supercloud2


 

>> Welcome back everyone to the closing remarks here before we kick off our ecosystem portion of the program. We're live in Palo Alto for theCUBE special presentation of Supercloud 2. It's the second edition, the first one was in August. I'm John Furrier with Dave Vellante. Here to wrap up with our special guest analyst George Gilbert, investor and industry legend former colleague of ours, analyst at Wikibon. George great to see you. Dave, you know, wrapping up this day what in a phenomenal program. We had a contribution from industry vendors, industry experts, practitioners and customers building and redefining their company's business model. Rolling out technology for Supercloud and multicloud and ultimately changing how they do data. And data was the theme today. So very, very great program. Before we jump into our favorite parts let's give a shout out to the folks who make this possible. Free contents our mission. We'll always stay true to that mission. We want to thank VMware, alkira, ChaosSearch, prosimo for being sponsors of this great program. We will have Supercloud 3 coming up in a month or so, or two months. We'll see. Or sooner, we don't know. But it'll be more about security, but a lot more momentum. Okay, so that's... >> And don't forget too that this program not going to end now. We've got a whole ecosystem speaks track so stay tuned for that. >> John: Yeah, we got another 20 interviews. Feels like it. >> Well, you're going to hear from Saks, Veronika Durgin. You're going to hear from Western Union, Harveer Singh. You're going to hear from Ionis Pharmaceuticals, Nick Taylor. Brian Gracely chimes in on Supecloud. So he's the man behind the cloud cast. >> Yeah, and you know, the practitioners again, pay attention to also to the cloud networking interviews. Lot of change going on there that's going to be disruptive and actually change the landscape as well. Again, as Supercloud progresses to be the next big thing. If you're not on this next wave, you'll drift what, as Pat Gelsinger says. >> Yep. >> To kick off the closing segments, George, Dave, this is a wave that's been identified. Again, people debate the word all you want Supercloud. It is a gateway to multicloud eventually it is the standard for new applications, new ways to do data. There's new computer science being generated and customer requirements being addressed. So it's the confluence of, you know, tectonic plates shifting in the industry, new computer science seeing things like AI and machine learning and data at the center of it and new infrastructure all kind of coming together. So, to me, that's my takeaway so far. That is the big story and it's going to change society and ultimately the business models of these companies. >> Well, we've had 10, you know, you think about it we came out of the financial crisis. We've had 10, 12 years despite the Covid of tech success, right? And just now CIOs are starting to hit the brakes. And so my point is you've had all this innovation building up for a decade and you've got this massive ecosystem that is running on the cloud and the ecosystem is saying, hey, we can have even more value by tapping best of of breed across clouds. And you've got customers saying, hey, we need help. We want to do more and we want to point our business and our intellectual property, our software tooling at our customers and monetize our data. So you have all these forces coming together and it's sort of entering a new era. >> George, I want to go to you for a second because you are big contributor to this event. Your interview with Bob Moglia with Dave was I thought a watershed moment for me to hear that the data apps, how databases are being rethought because we've been seeing a diversity of databases with Amazon Web services, you know, promoting no one database rules of the world. Now it's not one database kind of architecture that's puling these new apps. What's your takeaway from this event? >> So if you keep your eye on this North Star where instead of building apps that are based on code you're building apps that are defined by data coming off of things that are linked to the real world like people, places, things and activities. Then the idea is, and the example we use is, you know, Uber but it could be, you know, amazon.com is defined by stuff coming off data in the Amazon ecosystem or marketplace. And then the question is, and everyone was talking at different angles on this, which was, where's the data live? How much do you hide from the developer? You know, and when can you offer that? You know, and you started with Walmart which was describing apps, traditional apps that are just code. And frankly that's easier to make that cross cloud and you know, essentially location independent. As soon as you have data you need data management technology that a customer does not have the sophistication to build. And then the argument was like, so how much can you hide from the developer who's building data apps? Tristan's version was you take the modern data stack and you start adding these APIs that define business concepts like bookings, billings and revenue, you know, or in the Uber example like drivers and riders, you know, and ETA's and prices. But those things execute still on the data warehouse or data lakehouse. Then Bob Muglia was saying you're not really hiding enough from the developer because you still got to say how to do all that. And his vision is not only do you hide where the data is but you hide how to sort of get at all that code by just saying what you want. You define how a car and how a driver and how a rider works. And then those things automatically figure out underneath the cover. >> So huge challenges, right? There's governance, there's security, they could be big blockers to, you know, the Supercloud but the industry's going to be attacking that problem. >> Well, what's your take? What's your favorite segment? Zhamak Dehghani came on, she's starting in that company, exclusive news. That was big notable moment for theCUBE. She launched her company. She pioneered the data mesh concept. And I think what George is saying and what data mesh points to is something that we've been saying for a long time. That data is now going to flip the script on how apps behave. And the Uber example I think is illustrated 'cause people can relate to Uber. But imagine that for every business whether it's a manufacturing business or retail or oil and gas or FinTech, they can look at their business like a game almost gamify it with data, riders, cars you know, moving data around the value of data. This is something that Adam Selipsky teased out at AWS, Dave. So what's your takeaway from this Supercloud? Where are we in your mind? Well big thing is data products and decentralizing your data architecture, but putting data in the hands of domain experts who can actually monetize the data. And I think that's, to me that's really exciting. Because look, data products financial industry has always been doing building data products. Mortgage backed securities is a data product. But why should the financial industry have all the fun? I mean virtually every organization can tap its ecosystem build data products, take its internal IP and processes and software and point it to the world and actually begin to make money out of it. >> Okay, so let's go around the horn. I'll start, I'll get you guys some time to think. Next question, what did you learn today? I learned that I think it's an infrastructure game and talking to Kit Colbert at VMware, I think it's all about infrastructure refactoring and I think the data's going to be an ingredient that's going to be operating system like. I think you're going to see the infrastructure influencing operations that will enable Superclouds to be real. And developers won't even know what a Supercloud is because they'll be using it. It's the operations focus is going to be very critical. Just like DevOps movements started Cloud native I think you're going to see a data native movement and I think infrastructure is critical as people go to the next level. That's my big takeaway today. And I'll say the data conversation is at the center. I think security, data are going to be always active horizontally scalable concepts, but every company's going to reset their infrastructure, how it looks and if it's not set up for data and or things that there need to be agile on, it's going to be a non-starter. So I think that's the cloud NextGen, distributed computing. >> I mean, what came into focus for me was I think the hyperscaler is going to continue to do their thing, you know, and be very, very successful and they're each coming at it from different approaches. We talk about this all the time in theCUBE. Amazon the best infrastructure, you know, Google's got its you know, data and AI thing and it's playing catch up and Microsoft's got this massive estate. Okay, cool. Check. The next wave of innovation which is coming from data, I've always said follow the data. That's where the where the money's going to be is going to come from other places. People want to be able to, organizations want to be able to share data across clouds across their organization, outside of their ecosystem and make money with that data sharing. They don't want to FTP it anymore. I got it. You take it. They want to work with live data in real time and I think the edge, we didn't talk much about the edge today is going to even take that to a new level real time inferencing at the edge, AI and and being able to do new things with data that we haven't even seen. But playing around with ChatGPT, it's blowing our mind. And I think you're right, it's like when we first saw the browser, holy crap, this is going to change the world. >> Yeah. And the ChatGPT by the way is going to create a wave of machine learning and data refactoring for sure. But also Howie Liu had an interesting comment, he was asked by a VC how much to replicate that and he said it's in the hundreds of millions, not billions. Now if you asked that same question how much does it cost to replicate AWS? The CapEx alone is unstoppable, they're already done. So, you know, the hyperscalers are going to continue to boom. I think they're going to drive the infrastructure. I think Amazon's going to be really strong at silicon and physics and squeeze every ounce atom out of every physical thing and then get latency as your bottleneck and the rest is all going to be... >> That never blew me away, a hundred million to create kind of an open AI, you know, competitor. Look at companies like Lacework. >> John: Some people have that much cash on the balance sheet. >> These are security companies that have raised a billion dollars, right? To compete. You know, so... >> If you're not shifting left what do you do with data, shift up? >> But, you know. >> What did you learn, George? >> I'm listening to you and I think you're helping me crystallize something which is the software infrastructure to enable the data apps is wide open. The way Zhamak described it is like if you want a data product like a sales and operation plan, that is built on other data products, like a sales plan which has a forecast in it, it has a production plan, it has a procurement plan and then a sales and operation plan is actually a composition of all those and they call each other. Now in her current platform, you need to expose to the developer a certain amount of mechanics on how to move all that data, when to move it. Like what happens if something fails. Now Muglia is saying I can hide that completely. So all you have to say is what you want and the underlying machinery takes care of everything. The problem is Muglia stuff is still a few years off. And Tristan is saying, I can give you much of that today but it's got to run in the data warehouse. So this trade offs all different ways. But again, I agree with you that the Cloud platform vendors or the ecosystem participants who can run across Cloud platforms and private infrastructure will be the next platform. And then the cloud platform is sort of where you run the big honking centralized stuff where someone else manages the operations. >> Sounds like middleware to me, Dave >> And key is, I'll just end with this. The key is being able to get to the data, whether it's in a data warehouse or a data lake or a S3 bucket or an object store, Oracle database, whatever. It's got to be inclusive that is critical to execute on the vision that you just talked about 'cause that data's in different systems and you're not going to put it all into some new system. >> So creating middleware in the cloud that sounds what it sounds like to me. >> It's like, you discovered PaaS >> It's a super PaaS. >> But it's platform services 'cause PaaS connotes like a tightly integrated platform. >> Well this is the real thing that's going on. We're going to see how this evolves. George, great to have you on, Dave. Thanks for the summary. I enjoyed this segment a lot today. This ends our stage performance live here in Palo Alto. As you know, we're live stage performance and syndicate out virtually. Our afternoon program's going to kick in now you're going to hear some great interviews. We got ChaosSearch. Defining the network Supercloud from prosimo. Future of Cloud Network, alkira. We got Saks, a retail company here, Veronika Durgin. We got Dave with Western Union. So a lot of customers, a pharmaceutical company Warner Brothers, Discovery, media company. And then you know, what is really needed for Supercloud, good panels. So stay with us for the afternoon program. That's part two of Supercloud 2. This is a wrap up for our stage live performance. I'm John Furrier with Dave Vellante and George Gilbert here wrapping up. Thanks for watching and enjoy the program. (bright music)

Published Date : Jan 17 2023

SUMMARY :

to the closing remarks here program not going to end now. John: Yeah, we got You're going to hear from Yeah, and you know, It is a gateway to multicloud starting to hit the brakes. go to you for a second the sophistication to build. but the industry's going to And I think that's, to me and talking to Kit Colbert at VMware, to do their thing, you know, I think Amazon's going to be really strong kind of an open AI, you know, competitor. on the balance sheet. that have raised a billion dollars, right? I'm listening to you and I think It's got to be inclusive that is critical So creating middleware in the cloud But it's platform services George, great to have you on, Dave.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TristanPERSON

0.99+

Dave VellantePERSON

0.99+

George GilbertPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Adam SelipskyPERSON

0.99+

Pat GelsingerPERSON

0.99+

Bob MogliaPERSON

0.99+

Veronika DurginPERSON

0.99+

JohnPERSON

0.99+

Bob MugliaPERSON

0.99+

GeorgePERSON

0.99+

AmazonORGANIZATION

0.99+

Western UnionORGANIZATION

0.99+

Nick TaylorPERSON

0.99+

Palo AltoLOCATION

0.99+

10QUANTITY

0.99+

John FurrierPERSON

0.99+

UberORGANIZATION

0.99+

Brian GracelyPERSON

0.99+

Howie LiuPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

hundreds of millionsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

AugustDATE

0.99+

Warner BrothersORGANIZATION

0.99+

Kit ColbertPERSON

0.99+

MicrosoftORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

billionsQUANTITY

0.99+

ZhamakPERSON

0.99+

MugliaPERSON

0.99+

20 interviewsQUANTITY

0.99+

DiscoveryORGANIZATION

0.99+

second editionQUANTITY

0.99+

ChaosSearchORGANIZATION

0.99+

todayDATE

0.99+

two monthsQUANTITY

0.99+

Supercloud 2TITLE

0.98+

VMwareORGANIZATION

0.98+

SaksORGANIZATION

0.98+

PaaSTITLE

0.98+

amazon.comORGANIZATION

0.98+

first oneQUANTITY

0.98+

LaceworkORGANIZATION

0.98+

Harveer SinghPERSON

0.98+

OracleORGANIZATION

0.97+

alkiraPERSON

0.96+

firstQUANTITY

0.96+

SupercloudORGANIZATION

0.95+

Supercloud2TITLE

0.94+

WikibonORGANIZATION

0.94+

SupecloudORGANIZATION

0.94+

eachQUANTITY

0.93+

hundred millionQUANTITY

0.92+

multicloudORGANIZATION

0.92+

every ounce atomQUANTITY

0.91+

Amazon WebORGANIZATION

0.88+

Supercloud 3TITLE

0.87+

Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps


 

>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)

Published Date : Jan 14 2023

SUMMARY :

with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Bob MugliaPERSON

0.99+

Alex MyersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

David FlynnPERSON

0.99+

VeronicaPERSON

0.99+

JackPERSON

0.99+

Nelu MihaiPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

Thomas HazelPERSON

0.99+

Nick TaylorPERSON

0.99+

Dave VellantePERSON

0.99+

Jack GreenfieldPERSON

0.99+

Kristen MartinPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Veronica DurginPERSON

0.99+

WalmartORGANIZATION

0.99+

Rob HoPERSON

0.99+

Warner MediaORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

Veronika DurginPERSON

0.99+

George GilbertPERSON

0.99+

Ionis PharmaceuticalORGANIZATION

0.99+

George GilbertPERSON

0.99+

Bob MugliaPERSON

0.99+

David FlorePERSON

0.99+

DBT LabsORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

BobPERSON

0.99+

Palo AltoLOCATION

0.99+

21 sessionsQUANTITY

0.99+

Darren BrambermPERSON

0.99+

33 guestsQUANTITY

0.99+

Nir ZukPERSON

0.99+

BostonLOCATION

0.99+

AmazonORGANIZATION

0.99+

Harveer SinghPERSON

0.99+

Kit ColbertPERSON

0.99+

DatabricksORGANIZATION

0.99+

Sanjeev MohanPERSON

0.99+

Supercloud 2TITLE

0.99+

SnowflakeORGANIZATION

0.99+

last yearDATE

0.99+

Western UnionORGANIZATION

0.99+

CohesityORGANIZATION

0.99+

SupercloudORGANIZATION

0.99+

200 locationsQUANTITY

0.99+

AugustDATE

0.99+

Keith TownsendPERSON

0.99+

Data MeshORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

next weekDATE

0.99+

bothQUANTITY

0.99+

oneQUANTITY

0.99+

secondQUANTITY

0.99+

first pointQUANTITY

0.99+

OneQUANTITY

0.99+

FirstQUANTITY

0.99+

VMwareORGANIZATION

0.98+

Silicon AngleORGANIZATION

0.98+

ETRORGANIZATION

0.98+

Eric BradleyPERSON

0.98+

twoQUANTITY

0.98+

todayDATE

0.98+

SachsORGANIZATION

0.98+

SAKSORGANIZATION

0.98+

SupercloudEVENT

0.98+

last AugustDATE

0.98+

each weekQUANTITY

0.98+

Juan Loaiza, Oracle | Building the Mission Critical Supercloud


 

(upbeat music) >> Welcome back to Supercloud two where we're gathering a number of industry luminaries to discuss the future of cloud services. And we'll be focusing on various real world practitioners today, their challenges, their opportunities with an emphasis on data, self-service infrastructure and how organizations are evolving their data and cloud strategies to prepare for that next era of digital innovation. And we really believe that support for multiple cloud estates is a first step of any Supercloud. And in that regard Oracle surprise some folks with its Azure collaboration the Oracle database and exit database services. And to discuss the challenges of developing a mission critical Supercloud we welcome Juan Loaiza, who's the executive vice president of Mission Critical Database Technologies at Oracle. Juan, you're many time CUBE alums so welcome back to the show. Great to see you. >> Great to see you, and happy to be here with you. >> Yeah, thank you. So a lot of people felt that Oracle was resistant to multicloud strategies and preferred to really have everything run just on the Oracle cloud infrastructure, OCI and maybe that was a misperception maybe you guys were misunderstood or maybe you had to change your heart. Take us through the decision to support multiple cloud platforms >> Now we've supported multiple cloud platforms for many years, so I think that was probably a misperception. Oracle database, we partnered up with Amazon very early on in their cloud when they had kind of the the first cloud out there. And we had Oracle database running on their cloud. We have backup, we have a lot of stuff running. So, yeah, part of the philosophy of Oracle has always been we partner with every platform. We're very open we started with SQL and APIs. As we develop new technologies we push them into the SQL standard. So that's always been part of the ecosystem at Oracle. That's how we think we get an advantage by being more open. I think if we try to create this isolated little world it actually hurts us and hurts customers. So for us it's a win-win to be open across the clouds. >> So Supercloud is this concept that we put forth to describe a platform or some people think it's an architecture if you have an opinion, and I'd love to hear it but it provides a programmatically consistent set of services that hosted on heterogeneous cloud providers. And so we look at the Oracle database service for Azure as fitting within this definition. In your view, is this accurate? >> Yeah, I would broaden it. I'd see a little bit more than that. We just think that services should be available from everywhere, right? So, I mean, it's a little bit like if you go back to the pre-internet world, there was things like AOL and CompuServe and those were kind of islands. And if you were on AOL, you really didn't have access to anything on CompuServe and vice versa. And the cloud world has evolved a little bit like that. And we just think that's the wrong model. They shouldn't these clouds are part of the world and they need to be interconnected like all the rest of the world. It's been a long time with telephones internet, everything, everything's interconnected. Everything should work seamlessly together. So that's how we believe if you're running in one cloud and you're running let's say an application, one cloud you want to use a service from another cloud should be completely simple to do that. It shouldn't be, I can only use what's in AOL or CompuServe or whatever else. It should not be isolated. >> Well, we got a long way to go before that Nirvana exists but one example is the Oracle database service with Azure. So what exactly does that service provide? I'm interested in how consistent the service experience is across clouds. Did you create a purpose-built PaaS layer to achieve this common experience? Or is it off the shelf Terraform? Is there unique value in the PaaS layer? Let's dig into some of those questions. I know I just threw six at you. >> Yeah, I mean, so what this is, is what we're trying to do is very simple. Which is, for example, starting with the Oracle database we want to make that seamless to use from anywhere you're running. Whether it's on-prem, on some other cloud, anywhere else you should be able to seamlessly use the Oracle database and it should look like the internet. There's no friction. There's not a lot of hoops you got to jump just because you're trying to use a database that isn't local to you. So it's pretty straightforward. And in terms of things like Azure, it's not easy to do because all these clouds have a lot of kind of very unique technologies. So what we've done is at Oracle is we've said, "Okay we're going to make Oracle database look exactly like if it was running on Azure." That means we'll use the Azure security systems, the identity management systems, the networking, there's things like monitoring and management. So we'll push all these technologies. For example, when we have monitoring event or we have alerts we'll push those into the Azure console. So as a user, it looks to you exactly as if that Oracle database was running inside Azure. Also, the networking is a big challenge across these clouds. So we've basically made that whole thing seamless. So we create the super high bandwidth network between Azure and Oracle. We make sure that's extremely low latency, under two milliseconds round trip. It's all within the local metro region. So it's very fast, very high bandwidth, very low latency. And we take care establishing the links and making sure that it's secure and all that kind of stuff. So at a high level, it looks to you like the database is--even the look and feel of the screens. It's the Azure colors, it's the Azure buttons it's the Azure layout of the screens so it looks like you're running there and we take care of all the technical details underlying that which there's a lot which has taken a lot of work to make it work seamlessly. >> In the magic of that abstraction. Juan, does it happen at the PaaS layer? Could you take us inside that a little bit? Is there intelligence in there that helps you deal with latency or are there any kind of purpose-built functions for this service? >> You could think of it as... I mean it happens at a lot of different layers. It happens at the identity management layer, it happens at the networking layer, it happens at the database layer, it happens at the monitoring layer, at the management layer. So all those things have been integrated. So it's not one thing that you just go and do. You have to integrate all these different services together. You can access files in Azure from the Oracle database. Again, that's completely seamless. You, it's just like if it was local to our cloud you get your Azure files in your kind of S3 equivalent. So yeah, the, it's not one thing. There's a whole lot of pieces to the ecosystem. And what we've done is we've worked on each piece separately to make sure that it's completely seamless and transparent so you don't have to think about it, it just works. >> So you kind of answered my next question which is one of the technical hurdles. It sounds like the technical hurdles are that integration across the entire stack. That's the sort of architecture that you've built. What was the catalyst for this service? >> Yeah, the catalyst is just fulfilling our vision of an open cloud world. It's really like I said, Oracle, from the very beginning has been believed in open standards. Customers should be able to have choice customers should be able to use whatever they want from wherever they want. And we saw that, you know in the new world of cloud that had broken down everybody had their own authentication system management system, monitoring system networking system, configuration system. And it became very difficult. There was a lot of friction to using services across cloud. So we said, "Well, okay we can fix that." It's work, it's significant amount of work but we know how to do it and let's just go do it and make it easy for customers. >> So given Oracle is really your main focus is on mission critical workloads. You talked about this low latency network, I mean but you still have physical distances, so how are you managing that latency? What's the experience been for customers across Azure and OCI? >> Yeah, so it, it's a good point. I mean, latency can be an issue. So the good thing about clouds is we have a lot of cloud data centers. We have dozens and dozens of cloud data centers around the world. And Azure has dozens and dozens of cloud data centers. And in most cases, they're in the same metro region because there's kind of natural metro regions within each country that you want to put your cloud data centers in. So most of our data centers are actually very close to the Azure data centers. There's the kind of northern Virginia, there's London, there's Tokyo I mean, there's natural places where everybody puts their data centers Seoul et cetera. And so that's the real key. So that allows us to put a very high bandwidth and low latency network. The real problems with latency come when you're trying to go along physical distance. If you're trying to connect, you know across the Pacific or you know across the country or something like that, then you can get in trouble with latency within the same metro region. It's extremely fast. It tends to be around one, you know the highest two millisecond that's roundtrip through all the routers and connections and gateways and everything else. With everything taken into consideration, what we guarantee is it's always less than two millisecond which is a very low latency time. So that tends to not be a problem because it's extremely low latency. >> I was going to ask you less than two milliseconds. So, earlier in the program we had Jack Greenfield who runs architecture for Walmart, and he was explaining what we call their Supercloud, and it's runs across Azure, GCP, and they're on-prem. They have this thing called the triplet model. So my question to you is, are you in situations where you guaranteeing that less than two milliseconds do you have situations where you're bringing, you know Exadata Cloud, a customer on-prem to achieve that? Or is this just across clouds? >> Yeah, in this case, we're talking public cloud data center to public cloud data center. >> Oh okay. >> So add your public cloud data center to Oracle Public Cloud data center. They're in the same metro region. We set up the connections, we do all the technology to make it seamless. And from a customer point of view they don't really see the network. Also, remember that SQL is actually designed to have very low bandwidth and latency requirements. So it is a language. So you don't go to the database and say do this one little thing for me. You send it a SQL statement that can actually access lots of data while in the database. So the real latency requirement of a SQL database is within the database. So I need to access all that data fast. So I need very fast access to storage very fast access across node. That's what exit data gives you. But you send one request and that request can do a huge amount of work and then return one answer. And that's kind of the design point of SQL. So SQL is inherently low bandwidth requirements, it was used back in the eighties when we used to have 10 megabit networks and the the biggest companies in the world ran back then. So right now we're talking over hundred hundreds of gigabits. So it's really not much of a challenge. When you're designed to run on 10 megabit to say, okay I'm going to give you 10,000 times what you were designed for it's really, it's a pretty low hurdle jump. >> What about the deployment models? How do you handle this? Is it a single global instance across clouds or do you sort of instantiate in each you got exudate in Azure and exudates in OCI? What's the deployment model look like? >> It's pretty straightforward. So customer decides where they want to run their application and database. So there's natural places where people go. If you're in Tokyo, you're going to choose the local Tokyo data centers for both, you know Microsoft and Oracle. If you're in London, you're going to do that. If you're in California you're going to choose maybe San Jose, something like that. So a customer just chooses. We both have data centers in that metro region. So they create their service on Azure and then they go to our console which looks just like an Azure console and say all right create me a database. And then we choose the closest Oracle data center which is generally a few miles away, and then it it all gets created. So from a customer point of view, it's very straightforward. >> I'm always in awe about how simple you make things sound. All right what about security? You talked a little bit before about identity access how you sort of abstracting the Azure capabilities away so that you've simplified it for your customers but are there any other specific security things that you need to do? How much did you have to abstract the underlying primitives of Azure or OCI to present that common experience to customers? >> Yeah, so there's really two big things. One is the identity management. Like my name is X on Azure and I have this set of privileges. Oracle has its own identity management system, right? So what we didn't want is that you have to kind of like bridge these things yourself. It's a giant pain to do that. So we actually what we call federate across these identity managements. So you put your credentials into Azure and then they automatically get to use the exact same credentials and identity in the Oracle cloud. So again, you don't have to think about it, it just works. And then the second part is that the whole bridging the network. So within a cloud you generally have virtual network that's private to your company. And so at Oracle, we bridge the private network that you created in, for example, Azure to the private network that we create for you in Oracle. So it is still a private network without you having to do a whole bunch of work. So it's just like if you were in your own data center other people can't get into your network. So it's secured at the network level, it's secured at the identity management, and encryption level. And again we did a lot of work to make that seamless for customers and they don't have to worry about it because we did the work. That's really as simple as it gets. >> That's what's Supercloud's supposed to be all about. Alright, we were talking earlier about sort of the misperception around multicloud, your view of Open I think, which is you run the Oracle database, wherever the customer wants to run it. So you got this database service across OCI and Azure customers today, they run Oracle database in AWS. You got heat wave, MySQL, heat wave that you announced on AWS, Google touts a bare metal offering where you can run Oracle on GCP. Do you see a day when you extend an OCI Azure like situation across multiple clouds? Would that bring benefits to customers or will the world of database generally remain largely fenced with maybe a few exceptions like what you're doing with OCI and Azure? I'm particularly interested in your thoughts on egress fees as maybe one of the reasons that there is a barrier to this happening and why maybe these stove pipes, exist today and in the future. What are your thoughts on that? >> Yeah, we're very open to working with everyone else out there. Like I said, we've always been, big believers in customers should have choice and you should be able to run wherever you want. So that's been kind of a founding principle of Oracle. We have the Azure, we did a partnership with them, we're open to doing other partnerships and you're going to see other things coming down the pipe on the topic of egress. Yeah, the large egress fees, it's pretty obvious what goes on with that. Various vendors like to have large egress fees because they want to keep things kind of locked into their cloud. So it's not a very customer friendly thing to do. And I think everybody recognizes that it's really trying to kind of course or put a lot of friction on moving data out of a particular cloud. And that's not what we do. We have very, very low egress fees. So we don't really do that and we don't think anybody else should do that. But I think customers at the end of the day, will win that battle. They're going to have to go back to their vendor and say, well I have choice in clouds and if you're going to impose these limits on me, maybe I'll make a different choice. So that's ultimately how these things get resolved. >> So do you think other cloud providers are going to take a page out of what you're doing with Azure and provide similar solutions? >> Yeah, well I think customers want, I mean, I've talked to a lot of customers, this is what they want, right? I mean, there's really no doubt no customer wants to be locked into a single ecosystem. There's nobody out there that wants that. And as the competition, when they start seeing an open ecosystem evolving they're going to be like, okay, I'd rather go there than the closed ecosystem, and that's going to put pressure on the closed ecosystems. So that's the nature of competition. That's what ultimately will tip the balance on these things. >> So Juan, even though you have this capability of distributing a workload across multiple clouds as in our Supercloud premise it's still something that's relatively new. It's a big decision that maybe many people might consider somewhat of a risk. So I'm curious who's driving the decisions for your initial customers? What do they want to get out of it? What's the decision point there? >> Yeah, I mean, this is generally driven by customers that want a specific technology in a cloud. I think the risk, I haven't seen a lot of people worry too much about the risk. Everybody involved in this is a very well known, very reputable firm. I mean, Oracle's been around for 40 years. We run most of the world's largest companies. I think customers understand we're not going to build a solution that's going to put their technology and their business at risk. And the same thing with Azure and others. So I don't see customers too worried about this is a risky move because it's really not. And you know, everybody understands networking at the end the day networking works. I mean, how does the internet work? It's a known quantity. It's not like it's some brand new invention. What we're really doing is breaking down the barriers to interconnecting things. Automating 'em, making 'em easy. So there's not a whole lot of risk here for customers. And like I said, every single customer in the world loves an open ecosystem. It's just not a question. If you go to a customer would you rather put your technology or your business to run on a closed ecosystem or an open system? It's kind of not even worth asking a question. It's a no-brainer. >> All right, so we got to go. My last question. What do you think of the term "Supercloud"? You think it'll stick? >> We'll see. There's a lot of terms out there and it's always fun to see which terms stick. It's a cool term. I like it, but the decision makers are actually the public, what sticks and what doesn't. It's very hard to predict. >> Yeah well, it's been a lot of fun having you on, Juan. Really appreciate your time and always good to see you. >> All right, Dave, thanks a lot. It's always fun to talk to you. >> You bet. All right, keep it right there. More Supercloud two content from theCUBE Community Dave Vellante for John Furrier. We'll be right back. (upbeat music)

Published Date : Jan 12 2023

SUMMARY :

and cloud strategies to prepare happy to be here with you. just on the Oracle cloud of the ecosystem at Oracle. and I'd love to hear it And the cloud world has Or is it off the shelf Terraform? So at a high level, it looks to you Juan, does it happen at the PaaS layer? it happens at the database layer, So you kind of And we saw that, you know What's the experience been for customers across the Pacific or you know So my question to you is, to public cloud data center. So the real latency requirement and then they go to our console the Azure capabilities away So it's secured at the network level, So you got this database We have the Azure, we did So that's the nature of competition. What's the decision point there? down the barriers to the term "Supercloud"? and it's always fun to and always good to see you. It's always fun to talk to you. Vellante for John Furrier.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MicrosoftORGANIZATION

0.99+

OracleORGANIZATION

0.99+

DavePERSON

0.99+

WalmartORGANIZATION

0.99+

Juan LoaizaPERSON

0.99+

AmazonORGANIZATION

0.99+

San JoseLOCATION

0.99+

CaliforniaLOCATION

0.99+

Dave VellantePERSON

0.99+

TokyoLOCATION

0.99+

JuanPERSON

0.99+

LondonLOCATION

0.99+

sixQUANTITY

0.99+

10,000 timesQUANTITY

0.99+

Jack GreenfieldPERSON

0.99+

GoogleORGANIZATION

0.99+

second partQUANTITY

0.99+

AWSORGANIZATION

0.99+

less than two millisecondQUANTITY

0.99+

less than two millisecondsQUANTITY

0.99+

OneQUANTITY

0.99+

SQLTITLE

0.99+

10 megabitQUANTITY

0.99+

bothQUANTITY

0.99+

AOLORGANIZATION

0.98+

each pieceQUANTITY

0.98+

MySQLTITLE

0.98+

first cloudQUANTITY

0.98+

singleQUANTITY

0.98+

each countryQUANTITY

0.98+

John FurrierPERSON

0.98+

two big thingsQUANTITY

0.98+

under two millisecondsQUANTITY

0.98+

oneQUANTITY

0.98+

northern VirginiaLOCATION

0.98+

CompuServeORGANIZATION

0.97+

first stepQUANTITY

0.97+

Mission Critical Database TechnologiesORGANIZATION

0.97+

one requestQUANTITY

0.97+

SeoulLOCATION

0.97+

AzureTITLE

0.97+

eachQUANTITY

0.97+

two millisecondQUANTITY

0.97+

AzureORGANIZATION

0.96+

one cloudQUANTITY

0.95+

one thingQUANTITY

0.95+

cloud data centersQUANTITY

0.95+

one answerQUANTITY

0.95+

SupercloudORGANIZATION

0.94+

Analyst Predictions 2023: The Future of Data Management


 

(upbeat music) >> Hello, this is Dave Valente with theCUBE, and one of the most gratifying aspects of my role as a host of "theCUBE TV" is I get to cover a wide range of topics. And quite often, we're able to bring to our program a level of expertise that allows us to more deeply explore and unpack some of the topics that we cover throughout the year. And one of our favorite topics, of course, is data. Now, in 2021, after being in isolation for the better part of two years, a group of industry analysts met up at AWS re:Invent and started a collaboration to look at the trends in data and predict what some likely outcomes will be for the coming year. And it resulted in a very popular session that we had last year focused on the future of data management. And I'm very excited and pleased to tell you that the 2023 edition of that predictions episode is back, and with me are five outstanding market analyst, Sanjeev Mohan of SanjMo, Tony Baer of dbInsight, Carl Olofson from IDC, Dave Menninger from Ventana Research, and Doug Henschen, VP and Principal Analyst at Constellation Research. Now, what is it that we're calling you, guys? A data pack like the rat pack? No, no, no, no, that's not it. It's the data crowd, the data crowd, and the crowd includes some of the best minds in the data analyst community. They'll discuss how data management is evolving and what listeners should prepare for in 2023. Guys, welcome back. Great to see you. >> Good to be here. >> Thank you. >> Thanks, Dave. (Tony and Dave faintly speaks) >> All right, before we get into 2023 predictions, we thought it'd be good to do a look back at how we did in 2022 and give a transparent assessment of those predictions. So, let's get right into it. We're going to bring these up here, the predictions from 2022, they're color-coded red, yellow, and green to signify the degree of accuracy. And I'm pleased to report there's no red. Well, maybe some of you will want to debate that grading system. But as always, we want to be open, so you can decide for yourselves. So, we're going to ask each analyst to review their 2022 prediction and explain their rating and what evidence they have that led them to their conclusion. So, Sanjeev, please kick it off. Your prediction was data governance becomes key. I know that's going to knock you guys over, but elaborate, because you had more detail when you double click on that. >> Yeah, absolutely. Thank you so much, Dave, for having us on the show today. And we self-graded ourselves. I could have very easily made my prediction from last year green, but I mentioned why I left it as yellow. I totally fully believe that data governance was in a renaissance in 2022. And why do I say that? You have to look no further than AWS launching its own data catalog called DataZone. Before that, mid-year, we saw Unity Catalog from Databricks went GA. So, overall, I saw there was tremendous movement. When you see these big players launching a new data catalog, you know that they want to be in this space. And this space is highly critical to everything that I feel we will talk about in today's call. Also, if you look at established players, I spoke at Collibra's conference, data.world, work closely with Alation, Informatica, a bunch of other companies, they all added tremendous new capabilities. So, it did become key. The reason I left it as yellow is because I had made a prediction that Collibra would go IPO, and it did not. And I don't think anyone is going IPO right now. The market is really, really down, the funding in VC IPO market. But other than that, data governance had a banner year in 2022. >> Yeah. Well, thank you for that. And of course, you saw data clean rooms being announced at AWS re:Invent, so more evidence. And I like how the fact that you included in your predictions some things that were binary, so you dinged yourself there. So, good job. Okay, Tony Baer, you're up next. Data mesh hits reality check. As you see here, you've given yourself a bright green thumbs up. (Tony laughing) Okay. Let's hear why you feel that was the case. What do you mean by reality check? >> Okay. Thanks, Dave, for having us back again. This is something I just wrote and just tried to get away from, and this just a topic just won't go away. I did speak with a number of folks, early adopters and non-adopters during the year. And I did find that basically that it pretty much validated what I was expecting, which was that there was a lot more, this has now become a front burner issue. And if I had any doubt in my mind, the evidence I would point to is what was originally intended to be a throwaway post on LinkedIn, which I just quickly scribbled down the night before leaving for re:Invent. I was packing at the time, and for some reason, I was doing Google search on data mesh. And I happened to have tripped across this ridiculous article, I will not say where, because it doesn't deserve any publicity, about the eight (Dave laughing) best data mesh software companies of 2022. (Tony laughing) One of my predictions was that you'd see data mesh washing. And I just quickly just hopped on that maybe three sentences and wrote it at about a couple minutes saying this is hogwash, essentially. (laughs) And that just reun... And then, I left for re:Invent. And the next night, when I got into my Vegas hotel room, I clicked on my computer. I saw a 15,000 hits on that post, which was the most hits of any single post I put all year. And the responses were wildly pro and con. So, it pretty much validates my expectation in that data mesh really did hit a lot more scrutiny over this past year. >> Yeah, thank you for that. I remember that article. I remember rolling my eyes when I saw it, and then I recently, (Tony laughing) I talked to Walmart and they actually invoked Martin Fowler and they said that they're working through their data mesh. So, it takes a really lot of thought, and it really, as we've talked about, is really as much an organizational construct. You're not buying data mesh >> Bingo. >> to your point. Okay. Thank you, Tony. Carl Olofson, here we go. You've graded yourself a yellow in the prediction of graph databases. Take off. Please elaborate. >> Yeah, sure. So, I realized in looking at the prediction that it seemed to imply that graph databases could be a major factor in the data world in 2022, which obviously didn't become the case. It was an error on my part in that I should have said it in the right context. It's really a three to five-year time period that graph databases will really become significant, because they still need accepted methodologies that can be applied in a business context as well as proper tools in order for people to be able to use them seriously. But I stand by the idea that it is taking off, because for one thing, Neo4j, which is the leading independent graph database provider, had a very good year. And also, we're seeing interesting developments in terms of things like AWS with Neptune and with Oracle providing graph support in Oracle database this past year. Those things are, as I said, growing gradually. There are other companies like TigerGraph and so forth, that deserve watching as well. But as far as becoming mainstream, it's going to be a few years before we get all the elements together to make that happen. Like any new technology, you have to create an environment in which ordinary people without a whole ton of technical training can actually apply the technology to solve business problems. >> Yeah, thank you for that. These specialized databases, graph databases, time series databases, you see them embedded into mainstream data platforms, but there's a place for these specialized databases, I would suspect we're going to see new types of databases emerge with all this cloud sprawl that we have and maybe to the edge. >> Well, part of it is that it's not as specialized as you might think it. You can apply graphs to great many workloads and use cases. It's just that people have yet to fully explore and discover what those are. >> Yeah. >> And so, it's going to be a process. (laughs) >> All right, Dave Menninger, streaming data permeates the landscape. You gave yourself a yellow. Why? >> Well, I couldn't think of a appropriate combination of yellow and green. Maybe I should have used chartreuse, (Dave laughing) but I was probably a little hard on myself making it yellow. This is another type of specialized data processing like Carl was talking about graph databases is a stream processing, and nearly every data platform offers streaming capabilities now. Often, it's based on Kafka. If you look at Confluent, their revenues have grown at more than 50%, continue to grow at more than 50% a year. They're expected to do more than half a billion dollars in revenue this year. But the thing that hasn't happened yet, and to be honest, they didn't necessarily expect it to happen in one year, is that streaming hasn't become the default way in which we deal with data. It's still a sidecar to data at rest. And I do expect that we'll continue to see streaming become more and more mainstream. I do expect perhaps in the five-year timeframe that we will first deal with data as streaming and then at rest, but the worlds are starting to merge. And we even see some vendors bringing products to market, such as K2View, Hazelcast, and RisingWave Labs. So, in addition to all those core data platform vendors adding these capabilities, there are new vendors approaching this market as well. >> I like the tough grading system, and it's not trivial. And when you talk to practitioners doing this stuff, there's still some complications in the data pipeline. And so, but I think, you're right, it probably was a yellow plus. Doug Henschen, data lakehouses will emerge as dominant. When you talk to people about lakehouses, practitioners, they all use that term. They certainly use the term data lake, but now, they're using lakehouse more and more. What's your thoughts on here? Why the green? What's your evidence there? >> Well, I think, I was accurate. I spoke about it specifically as something that vendors would be pursuing. And we saw yet more lakehouse advocacy in 2022. Google introduced its BigLake service alongside BigQuery. Salesforce introduced Genie, which is really a lakehouse architecture. And it was a safe prediction to say vendors are going to be pursuing this in that AWS, Cloudera, Databricks, Microsoft, Oracle, SAP, Salesforce now, IBM, all advocate this idea of a single platform for all of your data. Now, the trend was also supported in 2023, in that we saw a big embrace of Apache Iceberg in 2022. That's a structured table format. It's used with these lakehouse platforms. It's open, so it ensures portability and it also ensures performance. And that's a structured table that helps with the warehouse side performance. But among those announcements, Snowflake, Google, Cloud Era, SAP, Salesforce, IBM, all embraced Iceberg. But keep in mind, again, I'm talking about this as something that vendors are pursuing as their approach. So, they're advocating end users. It's very cutting edge. I'd say the top, leading edge, 5% of of companies have really embraced the lakehouse. I think, we're now seeing the fast followers, the next 20 to 25% of firms embracing this idea and embracing a lakehouse architecture. I recall Christian Kleinerman at the big Snowflake event last summer, making the announcement about Iceberg, and he asked for a show of hands for any of you in the audience at the keynote, have you heard of Iceberg? And just a smattering of hands went up. So, the vendors are ahead of the curve. They're pushing this trend, and we're now seeing a little bit more mainstream uptake. >> Good. Doug, I was there. It was you, me, and I think, two other hands were up. That was just humorous. (Doug laughing) All right, well, so I liked the fact that we had some yellow and some green. When you think about these things, there's the prediction itself. Did it come true or not? There are the sub predictions that you guys make, and of course, the degree of difficulty. So, thank you for that open assessment. All right, let's get into the 2023 predictions. Let's bring up the predictions. Sanjeev, you're going first. You've got a prediction around unified metadata. What's the prediction, please? >> So, my prediction is that metadata space is currently a mess. It needs to get unified. There are too many use cases of metadata, which are being addressed by disparate systems. For example, data quality has become really big in the last couple of years, data observability, the whole catalog space is actually, people don't like to use the word data catalog anymore, because data catalog sounds like it's a catalog, a museum, if you may, of metadata that you go and admire. So, what I'm saying is that in 2023, we will see that metadata will become the driving force behind things like data ops, things like orchestration of tasks using metadata, not rules. Not saying that if this fails, then do this, if this succeeds, go do that. But it's like getting to the metadata level, and then making a decision as to what to orchestrate, what to automate, how to do data quality check, data observability. So, this space is starting to gel, and I see there'll be more maturation in the metadata space. Even security privacy, some of these topics, which are handled separately. And I'm just talking about data security and data privacy. I'm not talking about infrastructure security. These also need to merge into a unified metadata management piece with some knowledge graph, semantic layer on top, so you can do analytics on it. So, it's no longer something that sits on the side, it's limited in its scope. It is actually the very engine, the very glue that is going to connect data producers and consumers. >> Great. Thank you for that. Doug. Doug Henschen, any thoughts on what Sanjeev just said? Do you agree? Do you disagree? >> Well, I agree with many aspects of what he says. I think, there's a huge opportunity for consolidation and streamlining of these as aspects of governance. Last year, Sanjeev, you said something like, we'll see more people using catalogs than BI. And I have to disagree. I don't think this is a category that's headed for mainstream adoption. It's a behind the scenes activity for the wonky few, or better yet, companies want machine learning and automation to take care of these messy details. We've seen these waves of management technologies, some of the latest data observability, customer data platform, but they failed to sweep away all the earlier investments in data quality and master data management. So, yes, I hope the latest tech offers, glimmers that there's going to be a better, cleaner way of addressing these things. But to my mind, the business leaders, including the CIO, only want to spend as much time and effort and money and resources on these sorts of things to avoid getting breached, ending up in headlines, getting fired or going to jail. So, vendors bring on the ML and AI smarts and the automation of these sorts of activities. >> So, if I may say something, the reason why we have this dichotomy between data catalog and the BI vendors is because data catalogs are very soon, not going to be standalone products, in my opinion. They're going to get embedded. So, when you use a BI tool, you'll actually use the catalog to find out what is it that you want to do, whether you are looking for data or you're looking for an existing dashboard. So, the catalog becomes embedded into the BI tool. >> Hey, Dave Menninger, sometimes you have some data in your back pocket. Do you have any stats (chuckles) on this topic? >> No, I'm glad you asked, because I'm going to... Now, data catalogs are something that's interesting. Sanjeev made a statement that data catalogs are falling out of favor. I don't care what you call them. They're valuable to organizations. Our research shows that organizations that have adequate data catalog technologies are three times more likely to express satisfaction with their analytics for just the reasons that Sanjeev was talking about. You can find what you want, you know you're getting the right information, you know whether or not it's trusted. So, those are good things. So, we expect to see the capabilities, whether it's embedded or separate. We expect to see those capabilities continue to permeate the market. >> And a lot of those catalogs are driven now by machine learning and things. So, they're learning from those patterns of usage by people when people use the data. (airy laughs) >> All right. Okay. Thank you, guys. All right. Let's move on to the next one. Tony Bear, let's bring up the predictions. You got something in here about the modern data stack. We need to rethink it. Is the modern data stack getting long at the tooth? Is it not so modern anymore? >> I think, in a way, it's got almost too modern. It's gotten too, I don't know if it's being long in the tooth, but it is getting long. The modern data stack, it's traditionally been defined as basically you have the data platform, which would be the operational database and the data warehouse. And in between, you have all the tools that are necessary to essentially get that data from the operational realm or the streaming realm for that matter into basically the data warehouse, or as we might be seeing more and more, the data lakehouse. And I think, what's important here is that, or I think, we have seen a lot of progress, and this would be in the cloud, is with the SaaS services. And especially you see that in the modern data stack, which is like all these players, not just the MongoDBs or the Oracles or the Amazons have their database platforms. You see they have the Informatica's, and all the other players there in Fivetrans have their own SaaS services. And within those SaaS services, you get a certain degree of simplicity, which is it takes all the housekeeping off the shoulders of the customers. That's a good thing. The problem is that what we're getting to unfortunately is what I would call lots of islands of simplicity, which means that it leads it (Dave laughing) to the customer to have to integrate or put all that stuff together. It's a complex tool chain. And so, what we really need to think about here, we have too many pieces. And going back to the discussion of catalogs, it's like we have so many catalogs out there, which one do we use? 'Cause chances are of most organizations do not rely on a single catalog at this point. What I'm calling on all the data providers or all the SaaS service providers, is to literally get it together and essentially make this modern data stack less of a stack, make it more of a blending of an end-to-end solution. And that can come in a number of different ways. Part of it is that we're data platform providers have been adding services that are adjacent. And there's some very good examples of this. We've seen progress over the past year or so. For instance, MongoDB integrating search. It's a very common, I guess, sort of tool that basically, that the applications that are developed on MongoDB use, so MongoDB then built it into the database rather than requiring an extra elastic search or open search stack. Amazon just... AWS just did the zero-ETL, which is a first step towards simplifying the process from going from Aurora to Redshift. You've seen same thing with Google, BigQuery integrating basically streaming pipelines. And you're seeing also a lot of movement in database machine learning. So, there's some good moves in this direction. I expect to see more than this year. Part of it's from basically the SaaS platform is adding some functionality. But I also see more importantly, because you're never going to get... This is like asking your data team and your developers, herding cats to standardizing the same tool. In most organizations, that is not going to happen. So, take a look at the most popular combinations of tools and start to come up with some pre-built integrations and pre-built orchestrations, and offer some promotional pricing, maybe not quite two for, but in other words, get two products for the price of two services or for the price of one and a half. I see a lot of potential for this. And it's to me, if the class was to simplify things, this is the next logical step and I expect to see more of this here. >> Yeah, and you see in Oracle, MySQL heat wave, yet another example of eliminating that ETL. Carl Olofson, today, if you think about the data stack and the application stack, they're largely separate. Do you have any thoughts on how that's going to play out? Does that play into this prediction? What do you think? >> Well, I think, that the... I really like Tony's phrase, islands of simplification. It really says (Tony chuckles) what's going on here, which is that all these different vendors you ask about, about how these stacks work. All these different vendors have their own stack vision. And you can... One application group is going to use one, and another application group is going to use another. And some people will say, let's go to, like you go to a Informatica conference and they say, we should be the center of your universe, but you can't connect everything in your universe to Informatica, so you need to use other things. So, the challenge is how do we make those things work together? As Tony has said, and I totally agree, we're never going to get to the point where people standardize on one organizing system. So, the alternative is to have metadata that can be shared amongst those systems and protocols that allow those systems to coordinate their operations. This is standard stuff. It's not easy. But the motive for the vendors is that they can become more active critical players in the enterprise. And of course, the motive for the customer is that things will run better and more completely. So, I've been looking at this in terms of two kinds of metadata. One is the meaning metadata, which says what data can be put together. The other is the operational metadata, which says basically where did it come from? Who created it? What's its current state? What's the security level? Et cetera, et cetera, et cetera. The good news is the operational stuff can actually be done automatically, whereas the meaning stuff requires some human intervention. And as we've already heard from, was it Doug, I think, people are disinclined to put a lot of definition into meaning metadata. So, that may be the harder one, but coordination is key. This problem has been with us forever, but with the addition of new data sources, with streaming data with data in different formats, the whole thing has, it's been like what a customer of mine used to say, "I understand your product can make my system run faster, but right now I just feel I'm putting my problems on roller skates. (chuckles) I don't need that to accelerate what's already not working." >> Excellent. Okay, Carl, let's stay with you. I remember in the early days of the big data movement, Hadoop movement, NoSQL was the big thing. And I remember Amr Awadallah said to us in theCUBE that SQL is the killer app for big data. So, your prediction here, if we bring that up is SQL is back. Please elaborate. >> Yeah. So, of course, some people would say, well, it never left. Actually, that's probably closer to true, but in the perception of the marketplace, there's been all this noise about alternative ways of storing, retrieving data, whether it's in key value stores or document databases and so forth. We're getting a lot of messaging that for a while had persuaded people that, oh, we're not going to do analytics in SQL anymore. We're going to use Spark for everything, except that only a handful of people know how to use Spark. Oh, well, that's a problem. Well, how about, and for ordinary conventional business analytics, Spark is like an over-engineered solution to the problem. SQL works just great. What's happened in the past couple years, and what's going to continue to happen is that SQL is insinuating itself into everything we're seeing. We're seeing all the major data lake providers offering SQL support, whether it's Databricks or... And of course, Snowflake is loving this, because that is what they do, and their success is certainly points to the success of SQL, even MongoDB. And we were all, I think, at the MongoDB conference where on one day, we hear SQL is dead. They're not teaching SQL in schools anymore, and this kind of thing. And then, a couple days later at the same conference, they announced we're adding a new analytic capability-based on SQL. But didn't you just say SQL is dead? So, the reality is that SQL is better understood than most other methods of certainly of retrieving and finding data in a data collection, no matter whether it happens to be relational or non-relational. And even in systems that are very non-relational, such as graph and document databases, their query languages are being built or extended to resemble SQL, because SQL is something people understand. >> Now, you remember when we were in high school and you had had to take the... Your debating in the class and you were forced to take one side and defend it. So, I was was at a Vertica conference one time up on stage with Curt Monash, and I had to take the NoSQL, the world is changing paradigm shift. And so just to be controversial, I said to him, Curt Monash, I said, who really needs acid compliance anyway? Tony Baer. And so, (chuckles) of course, his head exploded, but what are your thoughts (guests laughing) on all this? >> Well, my first thought is congratulations, Dave, for surviving being up on stage with Curt Monash. >> Amen. (group laughing) >> I definitely would concur with Carl. We actually are definitely seeing a SQL renaissance and if there's any proof of the pudding here, I see lakehouse is being icing on the cake. As Doug had predicted last year, now, (clears throat) for the record, I think, Doug was about a year ahead of time in his predictions that this year is really the year that I see (clears throat) the lakehouse ecosystems really firming up. You saw the first shots last year. But anyway, on this, data lakes will not go away. I've actually, I'm on the home stretch of doing a market, a landscape on the lakehouse. And lakehouse will not replace data lakes in terms of that. There is the need for those, data scientists who do know Python, who knows Spark, to go in there and basically do their thing without all the restrictions or the constraints of a pre-built, pre-designed table structure. I get that. Same thing for developing models. But on the other hand, there is huge need. Basically, (clears throat) maybe MongoDB was saying that we're not teaching SQL anymore. Well, maybe we have an oversupply of SQL developers. Well, I'm being facetious there, but there is a huge skills based in SQL. Analytics have been built on SQL. They came with lakehouse and why this really helps to fuel a SQL revival is that the core need in the data lake, what brought on the lakehouse was not so much SQL, it was a need for acid. And what was the best way to do it? It was through a relational table structure. So, the whole idea of acid in the lakehouse was not to turn it into a transaction database, but to make the data trusted, secure, and more granularly governed, where you could govern down to column and row level, which you really could not do in a data lake or a file system. So, while lakehouse can be queried in a manner, you can go in there with Python or whatever, it's built on a relational table structure. And so, for that end, for those types of data lakes, it becomes the end state. You cannot bypass that table structure as I learned the hard way during my research. So, the bottom line I'd say here is that lakehouse is proof that we're starting to see the revenge of the SQL nerds. (Dave chuckles) >> Excellent. Okay, let's bring up back up the predictions. Dave Menninger, this one's really thought-provoking and interesting. We're hearing things like data as code, new data applications, machines actually generating plans with no human involvement. And your prediction is the definition of data is expanding. What do you mean by that? >> So, I think, for too long, we've thought about data as the, I would say facts that we collect the readings off of devices and things like that, but data on its own is really insufficient. Organizations need to manipulate that data and examine derivatives of the data to really understand what's happening in their organization, why has it happened, and to project what might happen in the future. And my comment is that these data derivatives need to be supported and managed just like the data needs to be managed. We can't treat this as entirely separate. Think about all the governance discussions we've had. Think about the metadata discussions we've had. If you separate these things, now you've got more moving parts. We're talking about simplicity and simplifying the stack. So, if these things are treated separately, it creates much more complexity. I also think it creates a little bit of a myopic view on the part of the IT organizations that are acquiring these technologies. They need to think more broadly. So, for instance, metrics. Metric stores are becoming much more common part of the tooling that's part of a data platform. Similarly, feature stores are gaining traction. So, those are designed to promote the reuse and consistency across the AI and ML initiatives. The elements that are used in developing an AI or ML model. And let me go back to metrics and just clarify what I mean by that. So, any type of formula involving the data points. I'm distinguishing metrics from features that are used in AI and ML models. And the data platforms themselves are increasingly managing the models as an element of data. So, just like figuring out how to calculate a metric. Well, if you're going to have the features associated with an AI and ML model, you probably need to be managing the model that's associated with those features. The other element where I see expansion is around external data. Organizations for decades have been focused on the data that they generate within their own organization. We see more and more of these platforms acquiring and publishing data to external third-party sources, whether they're within some sort of a partner ecosystem or whether it's a commercial distribution of that information. And our research shows that when organizations use external data, they derive even more benefits from the various analyses that they're conducting. And the last great frontier in my opinion on this expanding world of data is the world of driver-based planning. Very few of the major data platform providers provide these capabilities today. These are the types of things you would do in a spreadsheet. And we all know the issues associated with spreadsheets. They're hard to govern, they're error-prone. And so, if we can take that type of analysis, collecting the occupancy of a rental property, the projected rise in rental rates, the fluctuations perhaps in occupancy, the interest rates associated with financing that property, we can project forward. And that's a very common thing to do. What the income might look like from that property income, the expenses, we can plan and purchase things appropriately. So, I think, we need this broader purview and I'm beginning to see some of those things happen. And the evidence today I would say, is more focused around the metric stores and the feature stores starting to see vendors offer those capabilities. And we're starting to see the ML ops elements of managing the AI and ML models find their way closer to the data platforms as well. >> Very interesting. When I hear metrics, I think of KPIs, I think of data apps, orchestrate people and places and things to optimize around a set of KPIs. It sounds like a metadata challenge more... Somebody once predicted they'll have more metadata than data. Carl, what are your thoughts on this prediction? >> Yeah, I think that what Dave is describing as data derivatives is in a way, another word for what I was calling operational metadata, which not about the data itself, but how it's used, where it came from, what the rules are governing it, and that kind of thing. If you have a rich enough set of those things, then not only can you do a model of how well your vacation property rental may do in terms of income, but also how well your application that's measuring that is doing for you. In other words, how many times have I used it, how much data have I used and what is the relationship between the data that I've used and the benefits that I've derived from using it? Well, we don't have ways of doing that. What's interesting to me is that folks in the content world are way ahead of us here, because they have always tracked their content using these kinds of attributes. Where did it come from? When was it created, when was it modified? Who modified it? And so on and so forth. We need to do more of that with the structure data that we have, so that we can track what it's used. And also, it tells us how well we're doing with it. Is it really benefiting us? Are we being efficient? Are there improvements in processes that we need to consider? Because maybe data gets created and then it isn't used or it gets used, but it gets altered in some way that actually misleads people. (laughs) So, we need the mechanisms to be able to do that. So, I would say that that's... And I'd say that it's true that we need that stuff. I think, that starting to expand is probably the right way to put it. It's going to be expanding for some time. I think, we're still a distance from having all that stuff really working together. >> Maybe we should say it's gestating. (Dave and Carl laughing) >> Sorry, if I may- >> Sanjeev, yeah, I was going to say this... Sanjeev, please comment. This sounds to me like it supports Zhamak Dehghani's principles, but please. >> Absolutely. So, whether we call it data mesh or not, I'm not getting into that conversation, (Dave chuckles) but data (audio breaking) (Tony laughing) everything that I'm hearing what Dave is saying, Carl, this is the year when data products will start to take off. I'm not saying they'll become mainstream. They may take a couple of years to become so, but this is data products, all this thing about vacation rentals and how is it doing, that data is coming from different sources. I'm packaging it into our data product. And to Carl's point, there's a whole operational metadata associated with it. The idea is for organizations to see things like developer productivity, how many releases am I doing of this? What data products are most popular? I'm actually in right now in the process of formulating this concept that just like we had data catalogs, we are very soon going to be requiring data products catalog. So, I can discover these data products. I'm not just creating data products left, right, and center. I need to know, do they already exist? What is the usage? If no one is using a data product, maybe I want to retire and save cost. But this is a data product. Now, there's a associated thing that is also getting debated quite a bit called data contracts. And a data contract to me is literally just formalization of all these aspects of a product. How do you use it? What is the SLA on it, what is the quality that I am prescribing? So, data product, in my opinion, shifts the conversation to the consumers or to the business people. Up to this point when, Dave, you're talking about data and all of data discovery curation is a very data producer-centric. So, I think, we'll see a shift more into the consumer space. >> Yeah. Dave, can I just jump in there just very quickly there, which is that what Sanjeev has been saying there, this is really central to what Zhamak has been talking about. It's basically about making, one, data products are about the lifecycle management of data. Metadata is just elemental to that. And essentially, one of the things that she calls for is making data products discoverable. That's exactly what Sanjeev was talking about. >> By the way, did everyone just no notice how Sanjeev just snuck in another prediction there? So, we've got- >> Yeah. (group laughing) >> But you- >> Can we also say that he snuck in, I think, the term that we'll remember today, which is metadata museums. >> Yeah, but- >> Yeah. >> And also comment to, Tony, to your last year's prediction, you're really talking about it's not something that you're going to buy from a vendor. >> No. >> It's very specific >> Mm-hmm. >> to an organization, their own data product. So, touche on that one. Okay, last prediction. Let's bring them up. Doug Henschen, BI analytics is headed to embedding. What does that mean? >> Well, we all know that conventional BI dashboarding reporting is really commoditized from a vendor perspective. It never enjoyed truly mainstream adoption. Always that 25% of employees are really using these things. I'm seeing rising interest in embedding concise analytics at the point of decision or better still, using analytics as triggers for automation and workflows, and not even necessitating human interaction with visualizations, for example, if we have confidence in the analytics. So, leading companies are pushing for next generation applications, part of this low-code, no-code movement we've seen. And they want to build that decision support right into the app. So, the analytic is right there. Leading enterprise apps vendors, Salesforce, SAP, Microsoft, Oracle, they're all building smart apps with the analytics predictions, even recommendations built into these applications. And I think, the progressive BI analytics vendors are supporting this idea of driving insight to action, not necessarily necessitating humans interacting with it if there's confidence. So, we want prediction, we want embedding, we want automation. This low-code, no-code development movement is very important to bringing the analytics to where people are doing their work. We got to move beyond the, what I call swivel chair integration, between where people do their work and going off to separate reports and dashboards, and having to interpret and analyze before you can go back and do take action. >> And Dave Menninger, today, if you want, analytics or you want to absorb what's happening in the business, you typically got to go ask an expert, and then wait. So, what are your thoughts on Doug's prediction? >> I'm in total agreement with Doug. I'm going to say that collectively... So, how did we get here? I'm going to say collectively as an industry, we made a mistake. We made BI and analytics separate from the operational systems. Now, okay, it wasn't really a mistake. We were limited by the technology available at the time. Decades ago, we had to separate these two systems, so that the analytics didn't impact the operations. You don't want the operations preventing you from being able to do a transaction. But we've gone beyond that now. We can bring these two systems and worlds together and organizations recognize that need to change. As Doug said, the majority of the workforce and the majority of organizations doesn't have access to analytics. That's wrong. (chuckles) We've got to change that. And one of the ways that's going to change is with embedded analytics. 2/3 of organizations recognize that embedded analytics are important and it even ranks higher in importance than AI and ML in those organizations. So, it's interesting. This is a really important topic to the organizations that are consuming these technologies. The good news is it works. Organizations that have embraced embedded analytics are more comfortable with self-service than those that have not, as opposed to turning somebody loose, in the wild with the data. They're given a guided path to the data. And the research shows that 65% of organizations that have adopted embedded analytics are comfortable with self-service compared with just 40% of organizations that are turning people loose in an ad hoc way with the data. So, totally behind Doug's predictions. >> Can I just break in with something here, a comment on what Dave said about what Doug said, which (laughs) is that I totally agree with what you said about embedded analytics. And at IDC, we made a prediction in our future intelligence, future of intelligence service three years ago that this was going to happen. And the thing that we're waiting for is for developers to build... You have to write the applications to work that way. It just doesn't happen automagically. Developers have to write applications that reference analytic data and apply it while they're running. And that could involve simple things like complex queries against the live data, which is through something that I've been calling analytic transaction processing. Or it could be through something more sophisticated that involves AI operations as Doug has been suggesting, where the result is enacted pretty much automatically unless the scores are too low and you need to have a human being look at it. So, I think that that is definitely something we've been watching for. I'm not sure how soon it will come, because it seems to take a long time for people to change their thinking. But I think, as Dave was saying, once they do and they apply these principles in their application development, the rewards are great. >> Yeah, this is very much, I would say, very consistent with what we were talking about, I was talking about before, about basically rethinking the modern data stack and going into more of an end-to-end solution solution. I think, that what we're talking about clearly here is operational analytics. There'll still be a need for your data scientists to go offline just in their data lakes to do all that very exploratory and that deep modeling. But clearly, it just makes sense to bring operational analytics into where people work into their workspace and further flatten that modern data stack. >> But with all this metadata and all this intelligence, we're talking about injecting AI into applications, it does seem like we're entering a new era of not only data, but new era of apps. Today, most applications are about filling forms out or codifying processes and require a human input. And it seems like there's enough data now and enough intelligence in the system that the system can actually pull data from, whether it's the transaction system, e-commerce, the supply chain, ERP, and actually do something with that data without human involvement, present it to humans. Do you guys see this as a new frontier? >> I think, that's certainly- >> Very much so, but it's going to take a while, as Carl said. You have to design it, you have to get the prediction into the system, you have to get the analytics at the point of decision has to be relevant to that decision point. >> And I also recall basically a lot of the ERP vendors back like 10 years ago, we're promising that. And the fact that we're still looking at the promises shows just how difficult, how much of a challenge it is to get to what Doug's saying. >> One element that could be applied in this case is (indistinct) architecture. If applications are developed that are event-driven rather than following the script or sequence that some programmer or designer had preconceived, then you'll have much more flexible applications. You can inject decisions at various points using this technology much more easily. It's a completely different way of writing applications. And it actually involves a lot more data, which is why we should all like it. (laughs) But in the end (Tony laughing) it's more stable, it's easier to manage, easier to maintain, and it's actually more efficient, which is the result of an MIT study from about 10 years ago, and still, we are not seeing this come to fruition in most business applications. >> And do you think it's going to require a new type of data platform database? Today, data's all far-flung. We see that's all over the clouds and at the edge. Today, you cache- >> We need a super cloud. >> You cache that data, you're throwing into memory. I mentioned, MySQL heat wave. There are other examples where it's a brute force approach, but maybe we need new ways of laying data out on disk and new database architectures, and just when we thought we had it all figured out. >> Well, without referring to disk, which to my mind, is almost like talking about cave painting. I think, that (Dave laughing) all the things that have been mentioned by all of us today are elements of what I'm talking about. In other words, the whole improvement of the data mesh, the improvement of metadata across the board and improvement of the ability to track data and judge its freshness the way we judge the freshness of a melon or something like that, to determine whether we can still use it. Is it still good? That kind of thing. Bringing together data from multiple sources dynamically and real-time requires all the things we've been talking about. All the predictions that we've talked about today add up to elements that can make this happen. >> Well, guys, it's always tremendous to get these wonderful minds together and get your insights, and I love how it shapes the outcome here of the predictions, and let's see how we did. We're going to leave it there. I want to thank Sanjeev, Tony, Carl, David, and Doug. Really appreciate the collaboration and thought that you guys put into these sessions. Really, thank you. >> Thank you. >> Thanks, Dave. >> Thank you for having us. >> Thanks. >> Thank you. >> All right, this is Dave Valente for theCUBE, signing off for now. Follow these guys on social media. Look for coverage on siliconangle.com, theCUBE.net. Thank you for watching. (upbeat music)

Published Date : Jan 11 2023

SUMMARY :

and pleased to tell you (Tony and Dave faintly speaks) that led them to their conclusion. down, the funding in VC IPO market. And I like how the fact And I happened to have tripped across I talked to Walmart in the prediction of graph databases. But I stand by the idea and maybe to the edge. You can apply graphs to great And so, it's going to streaming data permeates the landscape. and to be honest, I like the tough grading the next 20 to 25% of and of course, the degree of difficulty. that sits on the side, Thank you for that. And I have to disagree. So, the catalog becomes Do you have any stats for just the reasons that And a lot of those catalogs about the modern data stack. and more, the data lakehouse. and the application stack, So, the alternative is to have metadata that SQL is the killer app for big data. but in the perception of the marketplace, and I had to take the NoSQL, being up on stage with Curt Monash. (group laughing) is that the core need in the data lake, And your prediction is the and examine derivatives of the data to optimize around a set of KPIs. that folks in the content world (Dave and Carl laughing) going to say this... shifts the conversation to the consumers And essentially, one of the things (group laughing) the term that we'll remember today, to your last year's prediction, is headed to embedding. and going off to separate happening in the business, so that the analytics didn't And the thing that we're waiting for and that deep modeling. that the system can of decision has to be relevant And the fact that we're But in the end We see that's all over the You cache that data, and improvement of the and I love how it shapes the outcome here Thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Doug HenschenPERSON

0.99+

Dave MenningerPERSON

0.99+

DougPERSON

0.99+

CarlPERSON

0.99+

Carl OlofsonPERSON

0.99+

Dave MenningerPERSON

0.99+

Tony BaerPERSON

0.99+

TonyPERSON

0.99+

Dave ValentePERSON

0.99+

CollibraORGANIZATION

0.99+

Curt MonashPERSON

0.99+

Sanjeev MohanPERSON

0.99+

Christian KleinermanPERSON

0.99+

Dave ValentePERSON

0.99+

WalmartORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

AWSORGANIZATION

0.99+

SanjeevPERSON

0.99+

Constellation ResearchORGANIZATION

0.99+

IBMORGANIZATION

0.99+

Ventana ResearchORGANIZATION

0.99+

2022DATE

0.99+

HazelcastORGANIZATION

0.99+

OracleORGANIZATION

0.99+

Tony BearPERSON

0.99+

25%QUANTITY

0.99+

2021DATE

0.99+

last yearDATE

0.99+

65%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

todayDATE

0.99+

five-yearQUANTITY

0.99+

TigerGraphORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

two servicesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

DavidPERSON

0.99+

RisingWave LabsORGANIZATION

0.99+

Why Should Customers Care About SuperCloud


 

Hello and welcome back to Supercloud 2 where we examine the intersection of cloud and data in the 2020s. My name is Dave Vellante. Our Supercloud panel, our power panel is back. Maribel Lopez is the founder and principal analyst at Lopez Research. Sanjeev Mohan is former Gartner analyst and principal at Sanjeev Mohan. And Keith Townsend is the CTO advisor. Folks, welcome back and thanks for your participation today. Good to see you. >> Okay, great. >> Great to see you. >> Thanks. Let me start, Maribel, with you. Bob Muglia, we had a conversation as part of Supercloud the other day. And he said, "Dave, I like the work, you got to simplify this a little bit." So he said, quote, "A Supercloud is a platform." He said, "Think of it as a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." And then Nelu Mihai said, "Well, wait a minute. This is just going to create more stove pipes. We need more standards in an architecture," which is kind of what Berkeley Sky Computing initiative is all about. So there's a sort of a debate going on. Is supercloud an architecture, a platform? Or maybe it's just another buzzword. Maribel, do you have a thought on this? >> Well, the easy answer would be to say it's just a buzzword. And then we could just kill the conversation and be done with it. But I think the term, it's more than that, right? The term actually isn't new. You can go back to at least 2016 and find references to supercloud in Cornell University or assist in other documents. So, having said this, I think we've been talking about Supercloud for a while, so I assume it's more than just a fancy buzzword. But I think it really speaks to that undeniable trend of moving towards an abstraction layer to deal with the chaos of what we consider managing multiple public and private clouds today, right? So one definition of the technology platform speaks to a set of services that allows companies to build and run that technology smoothly without worrying about the underlying infrastructure, which really gets back to something that Bob said. And some of the question is where that lives. And you could call that an abstraction layer. You could call it cross-cloud services, hybrid cloud management. So I see momentum there, like legitimate momentum with enterprise IT buyers that are trying to deal with the fact that they have multiple clouds now. So where I think we're moving is trying to define what are the specific attributes and frameworks of that that would make it so that it could be consistent across clouds. What is that layer? And maybe that's what the supercloud is. But one of the things I struggle with with supercloud is. What are we really trying to do here? Are we trying to create differentiated services in the supercloud layer? Is a supercloud just another variant of what AWS, GCP, or others do? You spoken to Walmart about its cloud native platform, and that's an example of somebody deciding to do it themselves because they need to deal with this today and not wait for some big standards thing to happen. So whatever it is, I do think it's something. I think we're trying to maybe create an architecture out of it would be a better way of saying it so that it does get to those set of principles, but it also needs to be edge aware. I think whenever we talk about supercloud, we're always talking about like the big centralized cloud. And I think we need to think about all the distributed clouds that we're looking at in edge as well. So that might be one of the ways that supercloud evolves. >> So thank you, Maribel. Keith, Brian Gracely, Gracely's law, things kind of repeat themselves. We've seen it all before. And so what Muglia brought to the forefront is this idea of a platform where the platform provider is really responsible for the architecture. Of course, the drawback is then you get a a bunch of stove pipes architectures. But practically speaking, that's kind of the way the industry has always evolved, right? >> So if we look at this from the practitioner's perspective and we talk about platforms, traditionally vendors have provided the platforms for us, whether it's distribution of lineage managed by or provided by Red Hat, Windows, servers, .NET, databases, Oracle. We think of those as platforms, things that are fundamental we can build on top. Supercloud isn't today that. It is a framework or idea, kind of a visionary goal to get to a point that we can have a platform or a framework. But what we're seeing repeated throughout the industry in customers, whether it's the Walmarts that's kind of supersized the idea of supercloud, or if it's regular end user organizations that are coming out with platform groups, groups who normalize cloud native infrastructure, AWS multi-cloud, VMware resources to look like one thing internally to their developers. We're seeing this trend that there's a desire for a platform that provides the capabilities of a supercloud. >> Thank you for that. Sanjeev, we often use Snowflake as a supercloud example, and now would presumably would be a platform with an architecture that's determined by the vendor. Maybe Databricks is pushing for a more open architecture, maybe more of that nirvana that we were talking about before to solve for supercloud. But regardless, the practitioner discussions show. At least currently, there's not a lot of cross-cloud data sharing. I think it could be a killer use case, egress charges or a barrier. But how do you see it? Will that change? Will we hide that underlying complexity and start sharing data across cloud? Is that something that you think Snowflake or others will be able to achieve? >> So I think we are already starting to see some of that happen. Snowflake is definitely one example that gets cited a lot. But even we don't talk about MongoDB in this like, but you could have a MongoDB cluster, for instance, with nodes sitting in different cloud providers. So there are companies that are starting to do it. The advantage that these companies have, let's take Snowflake as an example, it's a centralized proprietary platform. And they are building the capabilities that are needed for supercloud. So they're building things like you can push down your data transformations. They have the entire security and privacy suite. Data ops, they're adding those capabilities. And if I'm not mistaken, it'll be very soon, we will see them offer data observability. So it's all works great as long as you are in one platform. And if you want resilience, then Snowflake, Supercloud, great example. But if your primary goal is to choose the most cost-effective service irrespective of which cloud it sits in, then things start falling sideways. For example, I may be a very big Snowflake user. And I like Snowflake's resilience. I can move from one cloud to another cloud. Snowflake does it for me. But what if I want to train a very large model? Maybe Databricks is a better platform for that. So how do I do move my workload from one platform to another platform? That tooling does not exist. So we need server hybrid, cross-cloud, data ops platform. Walmart has done a great job, but they built it by themselves. Not every company is Walmart. Like Maribel and Keith said, we need standards, we need reference architectures, we need some sort of a cost control. I was just reading recently, Accenture has been public about their AWS bill. Every time they get the bill is tens of millions of lines, tens of millions 'cause there are over thousand teams using AWS. If we have not been able to corral a usage of a single cloud, now we're talking about supercloud, we've got multiple clouds, and hybrid, on-prem, and edge. So till we've got some cross-platform tooling in place, I think this will still take quite some time for it to take shape. >> It's interesting. Maribel, Walmart would tell you that their on-prem infrastructure is cheaper to run than the stuff in the cloud. but at the same time, they want the flexibility and the resiliency of their three-legged stool model. So the point as Sanjeev was making about hybrid. It's an interesting balance, isn't it, between getting your lowest cost and at the same time having best of breed and scale? >> It's basically what you're trying to optimize for, as you said, right? And by the way, to the earlier point, not everybody is at Walmart's scale, so it's not actually cheaper for everybody to have the purchasing power to make the cloud cheaper to have it on-prem. But I think what you see almost every company, large or small, moving towards is this concept of like, where do I find the agility? And is the agility in building the infrastructure for me? And typically, the thing that gives you outside advantage as an organization is not how you constructed your cloud computing infrastructure. It might be how you structured your data analytics as an example, which cloud is related to that. But how do you marry those two things? And getting back to sort of Sanjeev's point. We're in a real struggle now where one hand we want to have best of breed services and on the other hand we want it to be really easy to manage, secure, do data governance. And those two things are really at odds with each other right now. So if you want all the knobs and switches of a service like geospatial analytics and big query, you're going to have to use Google tools, right? Whereas if you want visibility across all the clouds for your application of state and understand the security and governance of that, you're kind of looking for something that's more cross-cloud tooling at that point. But whenever you talk to somebody about cross-cloud tooling, they look at you like that's not really possible. So it's a very interesting time in the market. Now, we're kind of layering this concept of supercloud on it. And some people think supercloud's about basically multi-cloud tooling, and some people think it's about a whole new architectural stack. So we're just not there yet. But it's not all about cost. I mean, cloud has not been about cost for a very, very long time. Cloud has been about how do you really make the most of your data. And this gets back to cross-cloud services like Snowflake. Why did they even exist? They existed because we had data everywhere, but we need to treat data as a unified object so that we can analyze it and get insight from it. And so that's where some of the benefit of these cross-cloud services are moving today. Still a long way to go, though, Dave. >> Keith, I reached out to my friends at ETR given the macro headwinds, And you're right, Maribel, cloud hasn't really been about just about cost savings. But I reached out to the ETR, guys, what's your data show in terms of how customers are dealing with the economic headwinds? And they said, by far, their number one strategy to cut cost is consolidating redundant vendors. And a distant second, but still notable was optimizing cloud costs. Maybe using reserve instances, or using more volume buying. Nowhere in there. And I asked them to, "Could you go look and see if you can find it?" Do we see repatriation? And you hear this a lot. You hear people whispering as analysts, "You better look into that repatriation trend." It's pretty big. You can't find it. But some of the Walmarts in the world, maybe even not repatriating, but they maybe have better cost structure on-prem. Keith, what are you seeing from the practitioners that you talk to in terms of how they're dealing with these headwinds? >> Yeah, I just got into a conversation about this just this morning with (indistinct) who is an analyst over at GigaHome. He's reading the same headlines. Repatriation is happening at large scale. I think this is kind of, we have these quiet terms now. We have quiet quitting, we have quiet hiring. I think we have quiet repatriation. Most people haven't done away with their data centers. They're still there. Whether they're completely on-premises data centers, and they own assets, or they're partnerships with QTX, Equinix, et cetera, they have these private cloud resources. What I'm seeing practically is a rebalancing of workloads. Do I really need to pay AWS for this instance of SAP that's on 24 hours a day versus just having it on-prem, moving it back to my data center? I've talked to quite a few customers who were early on to moving their static SAP workloads onto the public cloud, and they simply moved them back. Surprising, I was at VMware Explore. And we can talk about this a little bit later on. But our customers, net new, not a lot that were born in the cloud. And they get to this point where their workloads are static. And they look at something like a Kubernetes, or a OpenShift, or VMware Tanzu. And they ask the question, "Do I need the scalability of cloud?" I might consider being a net new VMware customer to deliver this base capability. So are we seeing repatriation as the number one reason? No, I think internal IT operations are just naturally come to this realization. Hey, I have these resources on premises. The private cloud technologies have moved far along enough that I can just simply move this workload back. I'm not calling it repatriation, I'm calling it rightsizing for the operating model that I have. >> Makes sense. Yeah. >> Go ahead. >> If I missed something, Dave, why we are on this topic of repatriation. I'm actually surprised that we are talking about repatriation as a very big thing. I think repatriation is happening, no doubt, but it's such a small percentage of cloud migration that to me it's a rounding error in my opinion. I think there's a bigger problem. The problem is that people don't know where the cost is. If they knew where the cost was being wasted in the cloud, they could do something about it. But if you don't know, then the easy answer is cloud costs a lot and moving it back to on-premises. I mean, take like Capital One as an example. They got rid of all the data centers. Where are they going to repatriate to? They're all in the cloud at this point. So I think my point is that data observability is one of the places that has seen a lot of traction is because of cost. Data observability, when it first came into existence, it was all about data quality. Then it was all about data pipeline reliability. And now, the number one killer use case is FinOps. >> Maribel, you had a comment? >> Yeah, I'm kind of in violent agreement with both Sanjeev and Keith. So what are we seeing here? So the first thing that we see is that many people wildly overspent in the big public cloud. They had stranded cloud credits, so to speak. The second thing is, some of them still had infrastructure that was useful. So why not use it if you find the right workloads to what Keith was talking about, if they were more static workloads, if it was already there? So there is a balancing that's going on. And then I think fundamentally, from a trend standpoint, these things aren't binary. Everybody, for a while, everything was going to go to the public cloud and then people are like, "Oh, it's kind of expensive." Then they're like, "Oh no, they're going to bring it all on-prem 'cause it's really expensive." And it's like, "Well, that doesn't necessarily get me some of the new features and functionalities I might want for some of my new workloads." So I'm going to put the workloads that have a certain set of characteristics that require cloud in the cloud. And if I have enough capability on-prem and enough IT resources to manage certain things on site, then I'm going to do that there 'cause that's a more cost-effective thing for me to do. It's not binary. That's why we went to hybrid. And then we went to multi just to describe the fact that people added multiple public clouds. And now we're talking about super, right? So I don't look at it as a one-size-fits-all for any of this. >> A a number of practitioners leading up to Supercloud2 have told us that they're solving their cloud complexity by going in monocloud. So they're putting on the blinders. Even though across the organization, there's other groups using other clouds. You're like, "In my group, we use AWS, or my group, we use Azure. And those guys over there, they use Google. We just kind of keep it separate." Are you guys hearing this in your view? Is that risky? Are they missing out on some potential to tap best of breed? What do you guys think about that? >> Everybody thinks they're monocloud. Is anybody really monocloud? It's like a group is monocloud, right? >> Right. >> This genie is out of the bottle. We're not putting the genie back in the bottle. You might think your monocloud and you go like three doors down and figure out the guy or gal is on a fundamentally different cloud, running some analytics workload that you didn't know about. So, to Sanjeev's earlier point, they don't even know where their cloud spend is. So I think the concept of monocloud, how that's actually really realized by practitioners is primary and then secondary sources. So they have a primary cloud that they run most of their stuff on, and that they try to optimize. And we still have forked workloads. Somebody decides, "Okay, this SAP runs really well on this, or these analytics workloads run really well on that cloud." And maybe that's how they parse it. But if you really looked at it, there's very few companies, if you really peaked under the hood and did an analysis that you could find an actual monocloud structure. They just want to pull it back in and make it more manageable. And I respect that. You want to do what you can to try to streamline the complexity of that. >> Yeah, we're- >> Sorry, go ahead, Keith. >> Yeah, we're doing this thing where we review AWS service every day. Just in your inbox, learn about a new AWS service cursory. There's 238 AWS products just on the AWS cloud itself. Some of them are redundant, but you get the idea. So the concept of monocloud, I'm in filing agreement with Maribel on this that, yes, a group might say I want a primary cloud. And that primary cloud may be the AWS. But have you tried the licensed Oracle database on AWS? It is really tempting to license Oracle on Oracle Cloud, Microsoft on Microsoft. And I can't get RDS anywhere but Amazon. So while I'm driven to desire the simplicity, the reality is whether be it M&A, licensing, data sovereignty. I am forced into a multi-cloud management style. But I do agree most people kind of do this one, this primary cloud, secondary cloud. And I guarantee you're going to have a third cloud or a fourth cloud whether you want to or not via shadow IT, latency, technical reasons, et cetera. >> Thank you. Sanjeev, you had a comment? >> Yeah, so I just wanted to mention, as an organization, I'm complete agreement, no organization is monocloud, at least if it's a large organization. Large organizations use all kinds of combinations of cloud providers. But when you talk about a single workload, that's where the program arises. As Keith said, the 238 services in AWS. How in the world am I going to be an expert in AWS, but then say let me bring GCP or Azure into a single workload? And that's where I think we probably will still see monocloud as being predominant because the team has developed its expertise on a particular cloud provider, and they just don't have the time of the day to go learn yet another stack. However, there are some interesting things that are happening. For example, if you look at a multi-cloud example where Oracle and Microsoft Azure have that interconnect, so that's a beautiful thing that they've done because now in the newest iteration, it's literally a few clicks. And then behind the scene, your .NET application and your Oracle database in OCI will be configured, the identities in active directory are federated. And you can just start using a database in one cloud, which is OCI, and an application, your .NET in Azure. So till we see this kind of a solution coming out of the providers, I think it's is unrealistic to expect the end users to be able to figure out multiple clouds. >> Well, I have to share with you. I can't remember if he said this on camera or if it was off camera so I'll hold off. I won't tell you who it is, but this individual was sort of complaining a little bit saying, "With AWS, I can take their best AI tools like SageMaker and I can run them on my Snowflake." He said, "I can't do that in Google. Google forces me to go to BigQuery if I want their excellent AI tools." So he was sort of pushing, kind of tweaking a little bit. Some of the vendor talked that, "Oh yeah, we're so customer-focused." Not to pick on Google, but I mean everybody will say that. And then you say, "If you're so customer-focused, why wouldn't you do a ABC?" So it's going to be interesting to see who leads that integration and how broadly it's applied. But I digress. Keith, at our first supercloud event, that was on August 9th. And it was only a few months after Broadcom announced the VMware acquisition. A lot of people, myself included said, "All right, cuts are coming." Generally, Tanzu is probably going to be under the radar, but it's Supercloud 22 and presumably VMware Explore, the company really... Well, certainly the US touted its Tanzu capabilities. I wasn't at VMware Explore Europe, but I bet you heard similar things. Hawk Tan has been blogging and very vocal about cross-cloud services and multi-cloud, which doesn't happen without Tanzu. So what did you hear, Keith, in Europe? What's your latest thinking on VMware's prospects in cross-cloud services/supercloud? >> So I think our friend and Cube, along host still be even more offended at this statement than he was when I sat in the Cube. This was maybe five years ago. There's no company better suited to help industries or companies, cross-cloud chasm than VMware. That's not a compliment. That's a reality of the industry. This is a very difficult, almost intractable problem. What I heard that VMware Europe were customers serious about this problem, even more so than the US data sovereignty is a real problem in the EU. Try being a company in Switzerland and having the Swiss data solvency issues. And there's no local cloud presence there large enough to accommodate your data needs. They had very serious questions about this. I talked to open source project leaders. Open source project leaders were asking me, why should I use the public cloud to host Kubernetes-based workloads, my projects that are building around Kubernetes, and the CNCF infrastructure? Why should I use AWS, Google, or even Azure to host these projects when that's undifferentiated? I know how to run Kubernetes, so why not run it on-premises? I don't want to deal with the hardware problems. So again, really great questions. And then there was always the specter of the problem, I think, we all had with the acquisition of VMware by Broadcom potentially. 4.5 billion in increased profitability in three years is a unbelievable amount of money when you look at the size of the problem. So a lot of the conversation in Europe was about industry at large. How do we do what regulators are asking us to do in a practical way from a true technology sense? Is VMware cross-cloud great? >> Yeah. So, VMware, obviously, to your point. OpenStack is another way of it. Actually, OpenStack, uptake is still alive and well, especially in those regions where there may not be a public cloud, or there's public policy dictating that. Walmart's using OpenStack. As you know in IT, some things never die. Question for Sanjeev. And it relates to this new breed of data apps. And Bob Muglia and Tristan Handy from DBT Labs who are participating in this program really got us thinking about this. You got data that resides in different clouds, it maybe even on-prem. And the machine polls data from different systems. No humans involved, e-commerce, ERP, et cetera. It creates a plan, outcomes. No human involvement. Today, you're on a CRM system, you're inputting, you're doing forms, you're, you're automating processes. We're talking about a new breed of apps. What are your thoughts on this? Is it real? Is it just way off in the distance? How does machine intelligence fit in? And how does supercloud fit? >> So great point. In fact, the data apps that you're talking about, I call them data products. Data products first came into limelight in the last couple of years when Jamal Duggan started talking about data mesh. I am taking data products out of the data mesh concept because data mesh, whether data mesh happens or not is analogous to data products. Data products, basically, are taking a product management view of bringing data from different sources based on what the consumer needs. We were talking earlier today about maybe it's my vacation rentals, or it may be a retail data product, it may be an investment data product. So it's a pre-packaged extraction of data from different sources. But now I have a product that has a whole lifecycle. I can version it. I have new features that get added. And it's a very business data consumer centric. It uses machine learning. For instance, I may be able to tell whether this data product has stale data. Who is using that data? Based on the usage of the data, I may have a new data products that get allocated. I may even have the ability to take existing data products, mash them up into something that I need. So if I'm going to have that kind of power to create a data product, then having a common substrate underneath, it can be very useful. And that could be supercloud where I am making API calls. I don't care where the ERP, the CRM, the survey data, the pricing engine where they sit. For me, there's a logical abstraction. And then I'm building my data product on top of that. So I see a new breed of data products coming out. To answer your question, how early we are or is this even possible? My prediction is that in 2023, we will start seeing more of data products. And then it'll take maybe two to three years for data products to become mainstream. But it's starting this year. >> A subprime mortgages were a data product, definitely were humans involved. All right, let's talk about some of the supercloud, multi-cloud players and what their future looks like. You can kind of pick your favorites. VMware, Snowflake, Databricks, Red Hat, Cisco, Dell, HP, Hashi, IBM, CloudFlare. There's many others. cohesive rubric. Keith, I wanted to start with CloudFlare because they actually use the term supercloud. and just simplifying what they said. They look at it as taking serverless to the max. You write your code and then you can deploy it in seconds worldwide, of course, across the CloudFlare infrastructure. You don't have to spin up containers, you don't go to provision instances. CloudFlare worries about all that infrastructure. What are your thoughts on CloudFlare this approach and their chances to disrupt the current cloud landscape? >> As Larry Ellison said famously once before, the network is the computer, right? I thought that was Scott McNeley. >> It wasn't Scott McNeley. I knew it was on Oracle Align. >> Oracle owns that now, owns that line. >> By purpose or acquisition. >> They should have just called it cloud. >> Yeah, they should have just called it cloud. >> Easier. >> Get ahead. >> But if you think about the CloudFlare capability, CloudFlare in its own right is becoming a decent sized cloud provider. If you have compute out at the edge, when we talk about edge in the sense of CloudFlare and points of presence, literally across the globe, you have all of this excess computer, what do you do with it? First offering, let's disrupt data in the cloud. We can't start the conversation talking about data. When they say we're going to give you object-oriented or object storage in the cloud without egress charges, that's disruptive. That we can start to think about supercloud capability of having compute EC2 run in AWS, pushing and pulling data from CloudFlare. And now, I've disrupted this roach motel data structure, and that I'm freely giving away bandwidth, basically. Well, the next layer is not that much more difficult. And I think part of CloudFlare's serverless approach or supercloud approaches so that they don't have to commit to a certain type of compute. It is advantageous. It is a feature for me to be able to go to EC2 and pick a memory heavy model, or a compute heavy model, or a network heavy model, CloudFlare is taken away those knobs. and I'm just giving code and allowing that to run. CloudFlare has a massive network. If I can put the code closest using the CloudFlare workers, if I can put that code closest to where the data is at or residing, super compelling observation. The question is, does it scale? I don't get the 238 services. While Server List is great, I have to know what I'm going to build. I don't have a Cognito, or RDS, or all these other services that make AWS, GCP, and Azure appealing from a builder's perspective. So it is a very interesting nascent start. It's great because now they can hide compute. If they don't have the capacity, they can outsource that maybe at a cost to one of the other cloud providers, but kind of hiding the compute behind the surplus architecture is a really unique approach. >> Yeah. And they're dipping their toe in the water. And they've announced an object store and a database platform and more to come. We got to wrap. So I wonder, Sanjeev and Maribel, if you could maybe pick some of your favorites from a competitive standpoint. Sanjeev, I felt like just watching Snowflake, I said, okay, in my opinion, they had the right strategy, which was to run on all the clouds, and then try to create that abstraction layer and data sharing across clouds. Even though, let's face it, most of it might be happening across regions if it's happening, but certainly outside of an individual account. But I felt like just observing them that anybody who's traditional on-prem player moving into the clouds or anybody who's a cloud native, it just makes total sense to write to the various clouds. And to the extent that you can simplify that for users, it seems to be a logical strategy. Maybe as I said before, what multi-cloud should have been. But are there companies that you're watching that you think are ahead in the game , or ones that you think are a good model for the future? >> Yes, Snowflake, definitely. In fact, one of the things we have not touched upon very much, and Keith mentioned a little bit, was data sovereignty. Data residency rules can require that certain data should be written into certain region of a certain cloud. And if my cloud provider can abstract that or my database provider, then that's perfect for me. So right now, I see Snowflake is way ahead of this pack. I would not put MongoDB too far behind. They don't really talk about this thing. They are in a different space, but now they have a lakehouse, and they've got all of these other SQL access and new capabilities that they're announcing. So I think they would be quite good with that. Oracle is always a dark forest. Oracle seems to have revived its Cloud Mojo to some extent. And it's doing some interesting stuff. Databricks is the other one. I have not seen Databricks. They've been very focused on lakehouse, unity, data catalog, and some of those pieces. But they would be the obvious challenger. And if they come into this space of supercloud, then they may bring some open source technologies that others can rely on like Delta Lake as a table format. >> Yeah. One of these infrastructure players, Dell, HPE, Cisco, even IBM. I mean, I would be making my infrastructure as programmable and cloud friendly as possible. That seems like table stakes. But Maribel, any companies that stand out to you that we should be paying attention to? >> Well, we already mentioned a bunch of them, so maybe I'll go a slightly different route. I'm watching two companies pretty closely to see what kind of traction they get in their established companies. One we already talked about, which is VMware. And the thing that's interesting about VMware is they're everywhere. And they also have the benefit of having a foot in both camps. If you want to do it the old way, the way you've always done it with VMware, they got all that going on. If you want to try to do a more cross-cloud, multi-cloud native style thing, they're really trying to build tools for that. So I think they have really good access to buyers. And that's one of the reasons why I'm interested in them to see how they progress. The other thing, I think, could be a sleeping horse oddly enough is Google Cloud. They've spent a lot of work and time on Anthos. They really need to create a certain set of differentiators. Well, it's not necessarily in their best interest to be the best multi-cloud player. If they decide that they want to differentiate on a different layer of the stack, let's say they want to be like the person that is really transformative, they talk about transformation cloud with analytics workloads, then maybe they do spend a good deal of time trying to help people abstract all of the other underlying infrastructure and make sure that they get the sexiest, most meaningful workloads into their cloud. So those are two people that you might not have expected me to go with, but I think it's interesting to see not just on the things that might be considered, either startups or more established independent companies, but how some of the traditional providers are trying to reinvent themselves as well. >> I'm glad you brought that up because if you think about what Google's done with Kubernetes. I mean, would Google even be relevant in the cloud without Kubernetes? I could argue both sides of that. But it was quite a gift to the industry. And there's a motivation there to do something unique and different from maybe the other cloud providers. And I'd throw in Red Hat as well. They're obviously a key player and Kubernetes. And Hashi Corp seems to be becoming the standard for application deployment, and terraform, or cross-clouds, and there are many, many others. I know we're leaving lots out, but we're out of time. Folks, I got to thank you so much for your insights and your participation in Supercloud2. Really appreciate it. >> Thank you. >> Thank you. >> Thank you. >> This is Dave Vellante for John Furrier and the entire Cube community. Keep it right there for more content from Supercloud2.

Published Date : Jan 10 2023

SUMMARY :

And Keith Townsend is the CTO advisor. And he said, "Dave, I like the work, So that might be one of the that's kind of the way the that we can have a Is that something that you think Snowflake that are starting to do it. and the resiliency of their and on the other hand we want it But I reached out to the ETR, guys, And they get to this point Yeah. that to me it's a rounding So the first thing that we see is to Supercloud2 have told us Is anybody really monocloud? and that they try to optimize. And that primary cloud may be the AWS. Sanjeev, you had a comment? of a solution coming out of the providers, So it's going to be interesting So a lot of the conversation And it relates to this So if I'm going to have that kind of power and their chances to disrupt the network is the computer, right? I knew it was on Oracle Align. Oracle owns that now, Yeah, they should have so that they don't have to commit And to the extent that you And if my cloud provider can abstract that that stand out to you And that's one of the reasons Folks, I got to thank you and the entire Cube community.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
KeithPERSON

0.99+

Dave VellantePERSON

0.99+

Jamal DugganPERSON

0.99+

Nelu MihaiPERSON

0.99+

IBMORGANIZATION

0.99+

MaribelPERSON

0.99+

Bob MugliaPERSON

0.99+

CiscoORGANIZATION

0.99+

DellORGANIZATION

0.99+

EuropeLOCATION

0.99+

OracleORGANIZATION

0.99+

Tristan HandyPERSON

0.99+

Keith TownsendPERSON

0.99+

Larry EllisonPERSON

0.99+

Brian GracelyPERSON

0.99+

BobPERSON

0.99+

HPORGANIZATION

0.99+

AWSORGANIZATION

0.99+

EquinixORGANIZATION

0.99+

QTXORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

Maribel LopezPERSON

0.99+

August 9thDATE

0.99+

DavePERSON

0.99+

GracelyPERSON

0.99+

AmazonORGANIZATION

0.99+

WalmartsORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

SanjeevPERSON

0.99+

MicrosoftORGANIZATION

0.99+

HashiORGANIZATION

0.99+

GigaHomeORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

2023DATE

0.99+

Hawk TanPERSON

0.99+

GoogleORGANIZATION

0.99+

two companiesQUANTITY

0.99+

two thingsQUANTITY

0.99+

BroadcomORGANIZATION

0.99+

SwitzerlandLOCATION

0.99+

SnowflakeTITLE

0.99+

SnowflakeORGANIZATION

0.99+

HPEORGANIZATION

0.99+

twoQUANTITY

0.99+

238 servicesQUANTITY

0.99+

two peopleQUANTITY

0.99+

2016DATE

0.99+

GartnerORGANIZATION

0.99+

tens of millionsQUANTITY

0.99+

three yearsQUANTITY

0.99+

DBT LabsORGANIZATION

0.99+

fourth cloudQUANTITY

0.99+

Why Attend Supercloud2?


 

>> Ed, Supercloud 2, why should I go? >> So I would say supercloud is really a megatrend. You always talk about cloud and data analytics who are the megatrends? And if you're focused on those things, you need to be looking at the principles. I look at design principles about you can use your supercloud. 'Cause companies, end user companies and big companies are using these type of principles to get results that you just simply can't do if you're not looking at these principles. So if you're looking at cloud, data or analytics, these are the principles you got to understand 'cause it's really a megatrend in the industry. >> January 17th, go to supercloud.world and register. You don't want to miss the conversations with data mesh founder, Zhamak Dehghani, technologists like Bob Muglia, and customers building superclouds like Walmart. Don't miss it.

Published Date : Jan 6 2023

SUMMARY :

So if you're looking at January 17th, go to

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
WalmartORGANIZATION

0.99+

January 17thDATE

0.99+

Bob MugliaPERSON

0.99+

Zhamak DehghaniPERSON

0.99+

supercloudORGANIZATION

0.99+

Supercloud2ORGANIZATION

0.98+

supercloudsORGANIZATION

0.92+

EdPERSON

0.69+

Supercloud 2ORGANIZATION

0.67+

supercloud.worldORGANIZATION

0.64+

Breaking Analysis: Grading our 2022 Enterprise Technology Predictions


 

>>From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from the cube and E T R. This is breaking analysis with Dave Valante. >>Making technology predictions in 2022 was tricky business, especially if you were projecting the performance of markets or identifying I P O prospects and making binary forecast on data AI and the macro spending climate and other related topics in enterprise tech 2022, of course was characterized by a seesaw economy where central banks were restructuring their balance sheets. The war on Ukraine fueled inflation supply chains were a mess. And the unintended consequences of of forced march to digital and the acceleration still being sorted out. Hello and welcome to this week's weekly on Cube Insights powered by E T R. In this breaking analysis, we continue our annual tradition of transparently grading last year's enterprise tech predictions. And you may or may not agree with our self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, tell us what you think. >>All right, let's get right to it. So our first prediction was tech spending increases by 8% in 2022. And as we exited 2021 CIOs, they were optimistic about their digital transformation plans. You know, they rushed to make changes to their business and were eager to sharpen their focus and continue to iterate on their digital business models and plug the holes that they, the, in the learnings that they had. And so we predicted that 8% rise in enterprise tech spending, which looked pretty good until Ukraine and the Fed decided that, you know, had to rush and make up for lost time. We kind of nailed the momentum in the energy sector, but we can't give ourselves too much credit for that layup. And as of October, Gartner had it spending growing at just over 5%. I think it was 5.1%. So we're gonna take a C plus on this one and, and move on. >>Our next prediction was basically kind of a slow ground ball. The second base, if I have to be honest, but we felt it was important to highlight that security would remain front and center as the number one priority for organizations in 2022. As is our tradition, you know, we try to up the degree of difficulty by specifically identifying companies that are gonna benefit from these trends. So we highlighted some possible I P O candidates, which of course didn't pan out. S NQ was on our radar. The company had just had to do another raise and they recently took a valuation hit and it was a down round. They raised 196 million. So good chunk of cash, but, but not the i p O that we had predicted Aqua Securities focus on containers and cloud native. That was a trendy call and we thought maybe an M SS P or multiple managed security service providers like Arctic Wolf would I p o, but no way that was happening in the crummy market. >>Nonetheless, we think these types of companies, they're still faring well as the talent shortage in security remains really acute, particularly in the sort of mid-size and small businesses that often don't have a sock Lacework laid off 20% of its workforce in 2022. And CO C e o Dave Hatfield left the company. So that I p o didn't, didn't happen. It was probably too early for Lacework. Anyway, meanwhile you got Netscope, which we've cited as strong in the E T R data as particularly in the emerging technology survey. And then, you know, I lumia holding its own, you know, we never liked that 7 billion price tag that Okta paid for auth zero, but we loved the TAM expansion strategy to target developers beyond sort of Okta's enterprise strength. But we gotta take some points off of the failure thus far of, of Okta to really nail the integration and the go to market model with azero and build, you know, bring that into the, the, the core Okta. >>So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge with others holding their own, not the least of which was Palo Alto Networks as it continued to expand beyond its core network security and firewall business, you know, through acquisition. So overall we're gonna give ourselves an A minus for this relatively easy call, but again, we had some specifics associated with it to make it a little tougher. And of course we're watching ve very closely this this coming year in 2023. The vendor consolidation trend. You know, according to a recent Palo Alto network survey with 1300 SecOps pros on average organizations have more than 30 tools to manage security tools. So this is a logical way to optimize cost consolidating vendors and consolidating redundant vendors. The E T R data shows that's clearly a trend that's on the upswing. >>Now moving on, a big theme of 2020 and 2021 of course was remote work and hybrid work and new ways to work and return to work. So we predicted in 2022 that hybrid work models would become the dominant protocol, which clearly is the case. We predicted that about 33% of the workforce would come back to the office in 2022 in September. The E T R data showed that figure was at 29%, but organizations expected that 32% would be in the office, you know, pretty much full-time by year end. That hasn't quite happened, but we were pretty close with the projection, so we're gonna take an A minus on this one. Now, supply chain disruption was another big theme that we felt would carry through 2022. And sure that sounds like another easy one, but as is our tradition, again we try to put some binary metrics around our predictions to put some meat in the bone, so to speak, and and allow us than you to say, okay, did it come true or not? >>So we had some data that we presented last year and supply chain issues impacting hardware spend. We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain above pre covid levels, which would reverse a decade of year on year declines, which I think started in around 2011, 2012. Now, while demand is down this year pretty substantially relative to 2021, I D C has worldwide unit shipments for PCs at just over 300 million for 22. If you go back to 2019 and you're looking at around let's say 260 million units shipped globally, you know, roughly, so, you know, pretty good call there. Definitely much higher than pre covid levels. But so what you might be asking why the B, well, we projected that 30% of customers would replace security appliances with cloud-based services and that more than a third would replace their internal data center server and storage hardware with cloud services like 30 and 40% respectively. >>And we don't have explicit survey data on exactly these metrics, but anecdotally we see this happening in earnest. And we do have some data that we're showing here on cloud adoption from ET R'S October survey where the midpoint of workloads running in the cloud is around 34% and forecast, as you can see, to grow steadily over the next three years. So this, well look, this is not, we understand it's not a one-to-one correlation with our prediction, but it's a pretty good bet that we were right, but we gotta take some points off, we think for the lack of unequivocal proof. Cause again, we always strive to make our predictions in ways that can be measured as accurate or not. Is it binary? Did it happen, did it not? Kind of like an O K R and you know, we strive to provide data as proof and in this case it's a bit fuzzy. >>We have to admit that although we're pretty comfortable that the prediction was accurate. And look, when you make an hard forecast, sometimes you gotta pay the price. All right, next, we said in 2022 that the big four cloud players would generate 167 billion in IS and PaaS revenue combining for 38% market growth. And our current forecasts are shown here with a comparison to our January, 2022 figures. So coming into this year now where we are today, so currently we expect 162 billion in total revenue and a 33% growth rate. Still very healthy, but not on our mark. So we think a w s is gonna miss our predictions by about a billion dollars, not, you know, not bad for an 80 billion company. So they're not gonna hit that expectation though of getting really close to a hundred billion run rate. We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're gonna get there. >>Look, we pretty much nailed Azure even though our prediction W was was correct about g Google Cloud platform surpassing Alibaba, Alibaba, we way overestimated the performance of both of those companies. So we're gonna give ourselves a C plus here and we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, but the misses on GCP and Alibaba we think warrant a a self penalty on this one. All right, let's move on to our prediction about Supercloud. We said it becomes a thing in 2022 and we think by many accounts it has, despite the naysayers, we're seeing clear evidence that the concept of a layer of value add that sits above and across clouds is taking shape. And on this slide we showed just some of the pickup in the industry. I mean one of the most interesting is CloudFlare, the biggest supercloud antagonist. >>Charles Fitzgerald even predicted that no vendor would ever use the term in their marketing. And that would be proof if that happened that Supercloud was a thing and he said it would never happen. Well CloudFlare has, and they launched their version of Supercloud at their developer week. Chris Miller of the register put out a Supercloud block diagram, something else that Charles Fitzgerald was, it was was pushing us for, which is rightly so, it was a good call on his part. And Chris Miller actually came up with one that's pretty good at David Linthicum also has produced a a a A block diagram, kind of similar, David uses the term metacloud and he uses the term supercloud kind of interchangeably to describe that trend. And so we we're aligned on that front. Brian Gracely has covered the concept on the popular cloud podcast. Berkeley launched the Sky computing initiative. >>You read through that white paper and many of the concepts highlighted in the Supercloud 3.0 community developed definition align with that. Walmart launched a platform with many of the supercloud salient attributes. So did Goldman Sachs, so did Capital One, so did nasdaq. So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud storm. We're gonna take an a plus on this one. Sorry, haters. Alright, let's talk about data mesh in our 21 predictions posts. We said that in the 2020s, 75% of large organizations are gonna re-architect their big data platforms. So kind of a decade long prediction. We don't like to do that always, but sometimes it's warranted. And because it was a longer term prediction, we, at the time in, in coming into 22 when we were evaluating our 21 predictions, we took a grade of incomplete because the sort of decade long or majority of the decade better part of the decade prediction. >>So last year, earlier this year, we said our number seven prediction was data mesh gains momentum in 22. But it's largely confined and narrow data problems with limited scope as you can see here with some of the key bullets. So there's a lot of discussion in the data community about data mesh and while there are an increasing number of examples, JP Morgan Chase, Intuit, H S P C, HelloFresh, and others that are completely rearchitecting parts of their data platform completely rearchitecting entire data platforms is non-trivial. There are organizational challenges, there're data, data ownership, debates, technical considerations, and in particular two of the four fundamental data mesh principles that the, the need for a self-service infrastructure and federated computational governance are challenging. Look, democratizing data and facilitating data sharing creates conflicts with regulatory requirements around data privacy. As such many organizations are being really selective with their data mesh implementations and hence our prediction of narrowing the scope of data mesh initiatives. >>I think that was right on J P M C is a good example of this, where you got a single group within a, within a division narrowly implementing the data mesh architecture. They're using a w s, they're using data lakes, they're using Amazon Glue, creating a catalog and a variety of other techniques to meet their objectives. They kind of automating data quality and it was pretty well thought out and interesting approach and I think it's gonna be made easier by some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to eliminate ET t l, better connections between Aurora and Redshift and, and, and better data sharing the data clean room. So a lot of that is gonna help. Of course, snowflake has been on this for a while now. Many other companies are facing, you know, limitations as we said here and this slide with their Hadoop data platforms. They need to do new, some new thinking around that to scale. HelloFresh is a really good example of this. Look, the bottom line is that organizations want to get more value from data and having a centralized, highly specialized teams that own the data problem, it's been a barrier and a blocker to success. The data mesh starts with organizational considerations as described in great detail by Ash Nair of Warner Brothers. So take a listen to this clip. >>Yeah, so when people think of Warner Brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of H B O, you think of t n t, you think of C N N. We have 30 plus brands in our portfolio and each have their own needs. So the, the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against, as an example, HBO if Game of Thrones is going on. >>So it's often the case that data mesh is in the eyes of the implementer. And while a company's implementation may not strictly adhere to Jamma Dani's vision of data mesh, and that's okay, the goal is to use data more effectively. And despite Gartner's attempts to deposition data mesh in favor of the somewhat confusing or frankly far more confusing data fabric concept that they stole from NetApp data mesh is taking hold in organizations globally today. So we're gonna take a B on this one. The prediction is shaping up the way we envision, but as we previously reported, it's gonna take some time. The better part of a decade in our view, new standards have to emerge to make this vision become reality and they'll come in the form of both open and de facto approaches. Okay, our eighth prediction last year focused on the face off between Snowflake and Databricks. >>And we realized this popular topic, and maybe one that's getting a little overplayed, but these are two companies that initially, you know, looked like they were shaping up as partners and they, by the way, they are still partnering in the field. But you go back a couple years ago, the idea of using an AW w s infrastructure, Databricks machine intelligence and applying that on top of Snowflake as a facile data warehouse, still very viable. But both of these companies, they have much larger ambitions. They got big total available markets to chase and large valuations that they have to justify. So what's happening is, as we've previously reported, each of these companies is moving toward the other firm's core domain and they're building out an ecosystem that'll be critical for their future. So as part of that effort, we said each is gonna become aggressive investors and maybe start doing some m and a and they have in various companies. >>And on this chart that we produced last year, we studied some of the companies that were targets and we've added some recent investments of both Snowflake and Databricks. As you can see, they've both, for example, invested in elation snowflake's, put money into Lacework, the Secur security firm, ThoughtSpot, which is trying to democratize data with ai. Collibra is a governance platform and you can see Databricks investments in data transformation with D B T labs, Matillion doing simplified business intelligence hunters. So that's, you know, they're security investment and so forth. So other than our thought that we'd see Databricks I p o last year, this prediction been pretty spot on. So we'll give ourselves an A on that one. Now observability has been a hot topic and we've been covering it for a while with our friends at E T R, particularly Eric Bradley. Our number nine prediction last year was basically that if you're not cloud native and observability, you are gonna be in big trouble. >>So everything guys gotta go cloud native. And that's clearly been the case. Splunk, the big player in the space has been transitioning to the cloud, hasn't always been pretty, as we reported, Datadog real momentum, the elk stack, that's open source model. You got new entrants that we've cited before, like observe, honeycomb, chaos search and others that we've, we've reported on, they're all born in the cloud. So we're gonna take another a on this one, admittedly, yeah, it's a re reasonably easy call, but you gotta have a few of those in the mix. Okay, our last prediction, our number 10 was around events. Something the cube knows a little bit about. We said that a new category of events would emerge as hybrid and that for the most part is happened. So that's gonna be the mainstay is what we said. That pure play virtual events are gonna give way to hi hybrid. >>And the narrative is that virtual only events are, you know, they're good for quick hits, but lousy replacements for in-person events. And you know that said, organizations of all shapes and sizes, they learn how to create better virtual content and support remote audiences during the pandemic. So when we set at pure play is gonna give way to hybrid, we said we, we i we implied or specific or specified that the physical event that v i p experience is going defined. That overall experience and those v i p events would create a little fomo, fear of, of missing out in a virtual component would overlay that serves an audience 10 x the size of the physical. We saw that really two really good examples. Red Hat Summit in Boston, small event, couple thousand people served tens of thousands, you know, online. Second was Google Cloud next v i p event in, in New York City. >>Everything else was, was, was, was virtual. You know, even examples of our prediction of metaverse like immersion have popped up and, and and, and you know, other companies are doing roadshow as we predicted like a lot of companies are doing it. You're seeing that as a major trend where organizations are going with their sales teams out into the regions and doing a little belly to belly action as opposed to the big giant event. That's a definitely a, a trend that we're seeing. So in reviewing this prediction, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, but the, but the organization still haven't figured it out. They have hybrid experiences but they generally do a really poor job of leveraging the afterglow and of event of an event. It still tends to be one and done, let's move on to the next event or the next city. >>Let the sales team pick up the pieces if they were paying attention. So because of that, we're only taking a B plus on this one. Okay, so that's the review of last year's predictions. You know, overall if you average out our grade on the 10 predictions that come out to a b plus, I dunno why we can't seem to get that elusive a, but we're gonna keep trying our friends at E T R and we are starting to look at the data for 2023 from the surveys and all the work that we've done on the cube and our, our analysis and we're gonna put together our predictions. We've had literally hundreds of inbounds from PR pros pitching us. We've got this huge thick folder that we've started to review with our yellow highlighter. And our plan is to review it this month, take a look at all the data, get some ideas from the inbounds and then the e t R of January surveys in the field. >>It's probably got a little over a thousand responses right now. You know, they'll get up to, you know, 1400 or so. And once we've digested all that, we're gonna go back and publish our predictions for 2023 sometime in January. So stay tuned for that. All right, we're gonna leave it there for today. You wanna thank Alex Myerson who's on production and he manages the podcast, Ken Schiffman as well out of our, our Boston studio. I gotta really heartfelt thank you to Kristen Martin and Cheryl Knight and their team. They helped get the word out on social and in our newsletters. Rob Ho is our editor in chief over at Silicon Angle who does some great editing for us. Thank you all. Remember all these podcasts are available or all these episodes are available is podcasts. Wherever you listen, just all you do Search Breaking analysis podcast, really getting some great traction there. Appreciate you guys subscribing. I published each week on wikibon.com, silicon angle.com or you can email me directly at david dot valante silicon angle.com or dm me Dante, or you can comment on my LinkedIn post. And please check out ETR AI for the very best survey data in the enterprise tech business. Some awesome stuff in there. This is Dante for the Cube Insights powered by etr. Thanks for watching and we'll see you next time on breaking analysis.

Published Date : Dec 18 2022

SUMMARY :

From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, We kind of nailed the momentum in the energy but not the i p O that we had predicted Aqua Securities focus on And then, you know, I lumia holding its own, you So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge put some meat in the bone, so to speak, and and allow us than you to say, okay, We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain Kind of like an O K R and you know, we strive to provide data We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, Chris Miller of the register put out a Supercloud block diagram, something else that So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud But it's largely confined and narrow data problems with limited scope as you can see here with some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to the company so that, you know, CNN can work at their own pace. So it's often the case that data mesh is in the eyes of the implementer. but these are two companies that initially, you know, looked like they were shaping up as partners and they, So that's, you know, they're security investment and so forth. So that's gonna be the mainstay is what we And the narrative is that virtual only events are, you know, they're good for quick hits, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, You know, overall if you average out our grade on the 10 predictions that come out to a b plus, You know, they'll get up to, you know,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Cheryl KnightPERSON

0.99+

Ken SchiffmanPERSON

0.99+

Chris MillerPERSON

0.99+

CNNORGANIZATION

0.99+

Rob HoPERSON

0.99+

AlibabaORGANIZATION

0.99+

Dave ValantePERSON

0.99+

AmazonORGANIZATION

0.99+

5.1%QUANTITY

0.99+

2022DATE

0.99+

Charles FitzgeraldPERSON

0.99+

Dave HatfieldPERSON

0.99+

Brian GracelyPERSON

0.99+

2019DATE

0.99+

LaceworkORGANIZATION

0.99+

twoQUANTITY

0.99+

GCPORGANIZATION

0.99+

33%QUANTITY

0.99+

WalmartORGANIZATION

0.99+

DavidPERSON

0.99+

2021DATE

0.99+

20%QUANTITY

0.99+

Kristen MartinPERSON

0.99+

Palo AltoLOCATION

0.99+

2020DATE

0.99+

Ash NairPERSON

0.99+

Goldman SachsORGANIZATION

0.99+

162 billionQUANTITY

0.99+

New York CityLOCATION

0.99+

DatabricksORGANIZATION

0.99+

OctoberDATE

0.99+

last yearDATE

0.99+

Arctic WolfORGANIZATION

0.99+

two companiesQUANTITY

0.99+

38%QUANTITY

0.99+

SeptemberDATE

0.99+

FedORGANIZATION

0.99+

JP Morgan ChaseORGANIZATION

0.99+

80 billionQUANTITY

0.99+

29%QUANTITY

0.99+

32%QUANTITY

0.99+

21 predictionsQUANTITY

0.99+

30%QUANTITY

0.99+

HBOORGANIZATION

0.99+

75%QUANTITY

0.99+

Game of ThronesTITLE

0.99+

JanuaryDATE

0.99+

2023DATE

0.99+

10 predictionsQUANTITY

0.99+

bothQUANTITY

0.99+

22QUANTITY

0.99+

ThoughtSpotORGANIZATION

0.99+

196 millionQUANTITY

0.99+

30QUANTITY

0.99+

eachQUANTITY

0.99+

last yearDATE

0.99+

Palo Alto NetworksORGANIZATION

0.99+

2020sDATE

0.99+

167 billionQUANTITY

0.99+

OktaORGANIZATION

0.99+

SecondQUANTITY

0.99+

GartnerORGANIZATION

0.99+

Eric BradleyPERSON

0.99+

Aqua SecuritiesORGANIZATION

0.99+

DantePERSON

0.99+

8%QUANTITY

0.99+

Warner BrothersORGANIZATION

0.99+

IntuitORGANIZATION

0.99+

Cube StudiosORGANIZATION

0.99+

each weekQUANTITY

0.99+

7 billionQUANTITY

0.99+

40%QUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

Krishna Mohan & Sowmya Rajagopalan, Tata Consultancy Services | AWS re:Invent 2022


 

(corporate electronic xylophone jingle intro) >> Good afternoon and welcome back to our very last segment of Tuesday's live broadcast here on theCUBE from AWS re:Invent in fabulous Las Vegas, Nevada. My name is Savannah Peterson and I am joined here by the brilliant Paul Gillin. Paul, end of our first day. You holding up, are you still feeling overwhelmed with fire hose... >> Savannah, yet my feet are killing me. (savannah laughs) >> Yeah, we've done so much walking in these chairs. >> 14,000 steps already today. It's not even dinner time. >> Hey, well, at least you've earned your dinner, Paul. I love that. I love that. I'm very excited about our next guests. We have Krishna and Sowmya joining us from Tata Consultancy Services. Now, I was impressed when I was doing my background research on you all. The Tata Group has locations in 150 different spots, 46 different countries. You have over 600,000 employees on the team. We are talking about absolutely massive scale here but, today we're going to be focused specifically on the Tata Consultancy Services. Sowmya, can you tell me what you all do? What is that team specifically in charge of? >> Yeah, TCS, first of all, thank you very much for inviting us. >> Savannah: Our pleasure. >> Maybe the last session but, we'll make it very lively. >> Savannah: It's going to be the best session. That's the best part of the day. >> Yes, that's the attitude. From a company standpoint, we are a 50 plus year old company. Part of the Tata group. We focus on IT services. We are categorized as industry verticals and we have horizontal services where AWS is one of the horizontal services that we have. And, when I talk about TCS, we focus a lot more on growth and transformation of our customers. That is one of the key objectives of the current company's growth, I would say. So, that is TCS in a nutshell. >> Extraordinarily important topic to be focused on right now. Growth, transformation, pretty much the core topics of the show. I know you're on the hospitality and transportation side of the business, which is very exciting. And, we're going to dig into that a little bit more. Krishna, you're overseeing the world. Tell us a little bit more about your role within the whole ecosystem. >> Yeah, thank you for the opportunity. Great meeting all of you. It's been awesome experience here. re:Invent is coming back, catching up, right? 50,000 people compared to 25,000 last year. So, great to see and meet all of you. Coming to my role, I am responsible for AWS Business Unit within TCS. That means I am responsible for anything that happens on cloud, on AWS. It's a Full Stack unit. I have the global responsibility. That's whether it's a applications, data, infrastructure, transformation that happens, as well as OT at the edge. So, that's my responsibility. >> Savannah: Well, I love talking about the edge. One of my favorite. >> Transformation is a theme of what you do. We heard that the pandemic accelerated digital transformation initiatives at many companies. How did you see the pandemic affecting your business, affecting the customers you were working with? >> Pandemic definitely kind of accelerated a lot of cloud adoption, right? A lot of companies initially focused on resiliency, coming back to handling the pandemic, the situation. But, it also drove a lot of innovation in the business models. They had to think on their feet, re-look at their business models, change the channels and that continued. Pandemic is thankfully gone by but, the transformation actually continued. The way that we actually see on cloud, especially transformation, it has evolved. What we call as Cloud 2.0. Now, cloud is actually more focused on future-proofing the businesses. And, the initial days it was more about future-proofing the technology and technology architecture. But, it has evolved to future-proofing businesses. That means implementing new business models, bringing in agility, measuring the business value. And, that's where we see a significant traction. >> So, it's not about technology then. It's not about infrastructure. >> It is about technology but, really delivering business value. It's about, how can I improve the customer experience? >> Well, can you give us a couple of examples of companies you work with that embody this idea? >> I can imagine in the travel and hospitality zone. Probably few communities more sensitive than when someone's having a disruption or frustration within that process. And, perhaps few time periods less chaotic than the last few years. Tell us about your experience and what you've seen. >> Absolutely. To answer your question, first of all, coming out of pandemic, right? Many customers in the travel and hospitality industry where legacy, did not modernize for the last decade or so because, there have been many ups and downs in the industry. So, during pandemic, post-pandemic, one of the the way they wanted to rebound was, can we do the transformation? First of all, cloud as a technology adoption, but, beyond that, how do customers derive value, business value? That is one of the key aspects of the old transformation. And, if you take, I can give a couple of examples. Avis Car Rental, they had monolith mainframe applications and, that was there for almost couple of decades, right? But, over a period of time, they were not able to have the availability of those applications. There were many outages. As a result, businesses could not do the bookings. Like OTAs, customers could not do the bookings, the application was not available most of the time. And, it's all legacy, right? So, that is where we all came in, TCS. How do we first of all, simplify the complexity of the landscape? That is one. Then, second is, modernize the legacy application. That's the second thing. Third is, how do you scale it? Because, everyone wants to go faster, right? How do you scale it? That is where we partnered with AWS as well, to bring in some specific solutions. One example for Avis', their Rent Shop. Because, of the lack of availability, because, it's monolith application and legacy application. It was not available. So, as a result, we partnered and we brought in our contextual knowledge of the car rental industry to kind of transform, move it to cloud. And, today, as a result of it, Avis was able to save millions of dollars from a MIB standpoint. Second, in terms of availability, that was 99.9% availability. As a result, they had a pick in their business revenue as well. So, this is one of the ways that its helped. The second example I want to quote is, United Airlines. Here again, we've been present for a long time. We have a deep industry knowledge of the airline industry. So, we brought in our airline contextual knowledge and the United landscape to bring in a TCS's solution that we developed. It's called the Aviana. It's an intelligent operations solution for the airline industry, which we have developed. It's on AWS as well, that is being implemented in United. As a result, the ground staff, they have to take decisions on the moment when there is a irregular operation. That could be flight delays, as a result, customers connections will be lost. >> Savannah: Baggage. >> Baggage, right? Baggage delays. >> So many variables. The complexity... >> exactly >> in this matrix is wild. >> So, leveraging the Aviana solution, the ground staff were able to take decisions based on exceptions. They were able to take decisions quickly so that, they improved the customer experience. I think that was one of the key successes for United in the recent times. So, those two are the examples that I would call where customers have the right business value. So, cloud was not just for technology. They all are deriving a lot of business value as well. I would say. >> How important do you think it is for companies facing these unique challenges and scaling to work with partners like TCS? And, I'm sure you would say very important, but, tell me a little bit more why it's so important and those core benefits that they're going to get. Krishna, let's start off with you. Yeah, let me take again the AWS cloud transformation, right? TCS has formed AWS Business Unit two years back. So, we are a covid baby in a way. We have been working with the AWS for more than a decade but, we formed a dedicated Full-Stack Unit to drive cloud transformation on AWS. In these last two years, we've grown three X and customers we have added 400 new customers we have added. >> Nicely done. Just want to see you there. That's huge. Especially during these times. Congratulations. >> So, it's basically about the scale that we bring in. What we have done as a differentiation is, if you look at the entire cloud journey, right from taking a decision which cloud is, right, all the way to the cloud migration modernization and running operations. So, we have built complete platform. AML based platforms, where we have taken our delivery wisdom and codified it onto these platforms. So, we support around thousand plus customers on AWS in varying capacity. All of that knowledge is codified and, that is what we bring to the table, to the customers. And, so, customers obviously appreciate that value that best practices that are coming. And, coupled with that, the industry knowledge that we have on banking, life sciences, healthcare, automotive. So, it's partly the IT, it is the industry transformation as well. Because, we are working on connected cars, for example, in automotive. We are working on accelerated drug development platforms. We're working on complete banks as a platform that we have. TCS has built on AWS. So, 400 customers are there. It's the complete banking and insurance platform. So, this is the combination of the technical expertize that is digitized using platforms, as well as the industry knowledge, is the reason why customers work with us on the cloud transformation. >> So, we're seeing you talk about the vertical industry knowledge. AWS also has its own vertical industry plays. How do you, I guess, coordinate with them or, do you compete with them or, do you stay out of each other's way? >> No, we actually collaborate aggressively. >> Savannah: I like that (laughs) >> Right, so, it's not.. >> Savannah: With vigor. >> With vigor. TCS supports approximately 14 verticals. With AWS, we went with the focused industry play. We said we look at financial services, travel, transportation, hospitality, healthcare, life sciences and automotive, to start with. And, we have Go Big plans with AWS. very focused. The collaboration is actually at the industry solutions because, AWS is a great platform, ever evolving, keeps you on on your toes to really adapt it. But, that is always going on, the collaboration. But, the industry, I'm actually glad AWS last year took a pivot on focusing on industries. Now, we talk the same language when we go in front of a board or a CEO or COO. Present it. We are talking about the future of the industry not just the future of the technology. So, it's a win-win. >> You are also developing products on top of AWS that are not industry verticals, that build on the platform. What kinds of products are those? >> For cloud transformation, for example, consulting. We have a product called Cloud Counsell. We have a decision engine on the data side. We have something called Cloud Foundation, Mason. CloudMason. It's just the foundation, right? And, entire migration and modernization factory. And, the last one on cloud operations is actually Cloud Exponence. So, these are time tested. You have Fortune 500 customers using this regularly actively leveraging that. And, these are all AWS in a well architecture framework certified. So, they work well and they're designed to work on cloud, not only in the native environment, but, also legacy environment. Because, enterprises is not just only native, cloud-native. There is a lot of legacy. Sowmya spoke about the mainframe model... >> So much legacy, we were talking about it. >> So, you have to have a combination of solutions. So, the platforms that we're building, the products we're building, work in both the environments. >> Yeah, and that agility and ability to help customers navigate that prioritization. I mean, there's so many options. We talk about how many new companies there are every year. New solutions. Our adoption of technology is accelerating. As, McKinsey said, we went through 10 years of technological evolution and workplace evolution over the first six months of the pandemic. So, really everything's moving at unprecedented velocity unlike ever before. We have a new game here on theCUBE specifically for this show. And, we are challenging our guests, prompting our guests, to give us a 30 second sizzly sound bite with your hot take on the most important themes of this year's show. Think of it as a thought leadership moment. Opportunity to plug if you really want it. Krishna, you've just given me the nod. I'm going to start with you first and then we'll then we'll pass it along, yeah >> Sure. I think on thought leadership, the way that on cloud, business value is the focus, not the technology. Technology is important, but business value is the focus. And, the way that I see it evolving is with quantum computing coming out more and more, becoming relevant, and Edge is actually becoming quite active as well. All this while on cloud, we focused on business value at the centralized place at the corporate. But, I think the real value of cloud is when you deliver the results, business results, where the customers consume it, that is at the edge. I think that's basically the combination of centralized and the edge is where the real value of cloud is, right. And, I also loud, I know you said 30 seconds but, give me 30 more seconds. >> I like your answer right now. So, I'm going to give you a little more time. Yeah, thank you. >> You've earned more time. (laughs) >> So, I like the way Adam said in the keynote, if you look at it broadly, I categorizes two things. There are a lot of offerings that are becoming comprehensive, like AWS Connect, bringing in workforce management into it, making it a complete end to end product. Similarly, Security Lake, all bringing in the entire security and compliance under one, similarly data. So, there are lot of things that he announced where it is an end to end comprehensiveness of the thing. But, what I love about is, what Amazon is known for, supply chain. So, they rolled out AWS Supply Chain offering. Walk Out technology. So, the Amazon proposition is actually being brought to AWS as a core proposition. I think that's very futuristic and I think we can see more and more customers, enterprise customers, adopting AWS more to drive transformation >> Badly needed right now. Supply chain resiliency. >> Supply chain really having its moment the last two years. File under two words. No one knew, many of us did who worked in it before this. And, here we are, soon as we lost our toilet paper, everyone's freaked out. I love that you talked about business value and also that the end customer is on the edge and, everyone kind of forgets we are essentially the edge device. This is the edge device, it's all around us. And, all the technology that we're all using that you're even talking about is built right inside here from my airlines app to my car rentals to all of it. All right Sowmya, give us your 30 second hot take, roughly. >> Taking the cue from Krishna, right? Today, things are available on AWS Marketplace. So, tomorrow, somebody wants to start an airline, they just have to come and plug and play the apps that are available in the marketplace. Especially your supply chain. The Amazon is known for that. And, a small and medium business they want to start something, right, a .com. It's very easy. So, that's something that we are all looking for. The future is going to be very, very bright and great for the businesses, is what I would say because, most of it could be plug and play with all the solutions. >> Paul: It's already been built. >> On the cloud, so, we are looking forward to it. The second thing I would talk about is, we have to take it to scale. How more and more people can leverage AWS, right? The talent is very important and, that is where partners like us focus on re-scaling our talent. We have 600,000 people, right? We are not just... >> 600,000 people! That's basically as many people live in the San Francisco Bay area for contexts for our listeners. It's how many people work for Walmart? >> It's 1.2 million in Walmart? >> Is it really? >> It is, yes, yes. That's work for Walmart, sidebar. >> So from that standpoint, as the company, we are focusing on re-skilling, up-skilling our talent in order to work AWS cloud and so on, so, that they can go and support our customers. That is something that is very important and that's going to be the future as well. Bring it to scale, go faster. >> I love that you just touched on the fact that you essentially have to practice what you preach because, you've got to think about those 600,000 people in a 100 locations across 40 plus different countries. I love it. Sowmya, I'm going to close on that note. The future is bright, just like your fabulous blazer. >> Thank you so much. Krishna, Sowmya, thank you so much for being here with us. We can't wait to see what happens next, who you help next, and how Tata continues to transform. Thank all of you for tuning in today. A full jam packed day of coverage live here from Las Vegas, Nevada. We are at AWS re:Invent with Paul Gillin. I'm Savannah Peterson. We're theCUBE, the leader in High-Tech Coverage. (corporate electronic xylophone jingle outro)

Published Date : Nov 30 2022

SUMMARY :

by the brilliant Paul Gillin. Yeah, we've done so much It's not even dinner time. on the Tata Consultancy Services. Yeah, TCS, first of Maybe the last session That's the best part of the day. Part of the Tata group. of the business, which is very exciting. I have the global responsibility. talking about the edge. We heard that the pandemic of innovation in the business models. So, it's not about technology then. the customer experience? I can imagine in the Because, of the lack of availability, Baggage, right? The complexity... So, leveraging the Aviana solution, Yeah, let me take again the AWS Just want to see you there. the table, to the customers. about the vertical industry knowledge. No, we actually future of the industry that build on the platform. And, the last one on cloud operations So much legacy, we So, the platforms that we're building, over the first six months of the pandemic. it, that is at the edge. So, I'm going to give You've earned more time. So, I like the way Badly needed right now. and also that the end that are available in the marketplace. On the cloud, so, we in the San Francisco Bay area for contexts That's work for Walmart, sidebar. standpoint, as the company, I love that you just Thank all of you for tuning in today.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SavannahPERSON

0.99+

AWSORGANIZATION

0.99+

Paul GillinPERSON

0.99+

AmazonORGANIZATION

0.99+

Savannah PetersonPERSON

0.99+

AdamPERSON

0.99+

KrishnaPERSON

0.99+

PaulPERSON

0.99+

Tata Consultancy ServicesORGANIZATION

0.99+

SowmyaPERSON

0.99+

WalmartORGANIZATION

0.99+

30 secondQUANTITY

0.99+

1.2 millionQUANTITY

0.99+

twoQUANTITY

0.99+

Sowmya RajagopalanPERSON

0.99+

400 new customersQUANTITY

0.99+

400 customersQUANTITY

0.99+

oneQUANTITY

0.99+

San Francisco BayLOCATION

0.99+

30 secondsQUANTITY

0.99+

100 locationsQUANTITY

0.99+

tomorrowDATE

0.99+

last yearDATE

0.99+

Tata GroupORGANIZATION

0.99+

United AirlinesORGANIZATION

0.99+

two thingsQUANTITY

0.99+

14,000 stepsQUANTITY

0.99+

10 yearsQUANTITY

0.99+

SecondQUANTITY

0.99+

Krishna MohanPERSON

0.99+

50,000 peopleQUANTITY

0.99+

TuesdayDATE

0.99+

30 more secondsQUANTITY

0.99+

savannahPERSON

0.99+

46 different countriesQUANTITY

0.99+

todayDATE

0.99+

600,000 peopleQUANTITY

0.99+

second exampleQUANTITY

0.99+

99.9%QUANTITY

0.99+

TodayDATE

0.99+

Las Vegas, NevadaLOCATION

0.99+

ThirdQUANTITY

0.99+

pandemicEVENT

0.99+

over 600,000 employeesQUANTITY

0.99+

Avis'ORGANIZATION

0.99+

Avis Car RentalORGANIZATION

0.99+

second thingQUANTITY

0.99+

bothQUANTITY

0.99+

AvisORGANIZATION

0.98+

secondQUANTITY

0.98+

three XQUANTITY

0.98+

Charu Kapur, NTT Data & Rachel Mushahwar, AWS & Jumi Barnes, Goldman Sachs | AWS re:Invent 2022


 

>>Hey everyone. Hello from Las Vegas. Lisa Martin here with you, and I'm on the show floor at Reinvent. But we have a very special program series that the Cube has been doing called Women of the Cloud. It's brought to you by aws and I'm so pleased to have an excellent panel of women leaders in technology and in cloud to talk about their tactical recommendations for you, what they see as found, where they've helped organizations be successful with cloud. Please welcome my three guests, Tara Kapor, president and Chief Revenue Officer, consulting and Digital Transformations, NTT Data. We have Rachel Mu, aws, head of North America, partner sales from aws, and Jimmy Barnes joins us as well, managing director, investment banking engineering at Goldman Sachs. It is so great to have you guys on this power panel. I love it. Thank you for joining me. >>Thank >>You. Let's start with you. Give us a little bit of, of your background at NTT Data and I, and I understand NTT has a big focus on women in technology and in stem. Talk to us a little bit about that and then we'll go around the table. >>Perfect, thank you. Thank you. So brand new role for me at Entity Data. I started three months back and it's a fascinating company. We are about 22 billion in size. We work across industries on multiple innovative use cases. So we are doing a ton of work on edge analytics in the cloud, and that's where we are here with aws. We are also doing a ton of work on the private 5G that we are rolling out and essentially building out industry-wide use cases across financial services, manufacturing, tech, et cetera. Lots of women identity. We essentially have women run cloud program today. We have a gal called Nore Hanson who is our practice leader for cloud. We have Matine who's Latifa, who's our AWS cloud leader. We have Molly Ward who leads up a solutions on the cloud. We have an amazing lady in Mona who leads up our marketing programs. So a fantastic plethora of diverse women driving amazing work identity on cloud. >>That's outstanding to hear because it's one of those things that you can't be what you can't see. Right. We all talk about that. Rachel, talk a little bit about your role and some of the focus that AWS has. I know they're big customer obsession, I'm sure obsessed with other things as well. >>Sure. So Rachel Muir, pleased to be here again. I think this will be my third time. So a big fan of the Cube. I'm fortunate enough to lead our North America partner and channel business, and I'll tell you, I've been at AWS for a little under two years, and honestly, it's been probably the best two years of my career. Just in terms of where the cloud is, where it's headed, the business outcomes that we can deliver with our customers and with our partners is absolutely remarkable. We get to, you know, make the impossible possible every day. So I'm, I'm thrilled to be here and I'm thrilled to, to be part of this inaugural Women of the Cloud panel. >>Oh, I'm prepared to have all three of you. One of the things that feedback, kind of pivoting off what, Rachel, one of the things that you said that one of our guests, some of several of our guests have said is that coming out of Adams keynote this morning, it just seems limitless what AWS can do and I love that it gives me kind of chills what they can do with cloud computing and technology, with its ecosystem of partners with its customers like Goldman Sachs. Jimmy, talk to us a little bit about you, your role at Goldman Sachs. You know, we think of Goldman Sachs is a, is a huge financial institution, but it's also a technology company. >>Yeah. I mean, since the age of 15 I've been super passionate about how we can use technology to transform business and simplify modernized business processes. And it's, I'm so thrilled that I have the opportunity to do that at Goldman Sachs as an engineer. I recently moved about two years ago into the investment banking business and it's, you know, it's best in class, one of the top companies in terms of mergers and acquisitions, IPOs, et cetera. But what surprised me is how technology enables all the businesses across the board. Right? And I get to be leading the digital platform for building out the digital platform for in the investment banking business where we're modernizing and transforming existing businesses. These are not new businesses. It's like sometimes I liken it to trying to change the train while it's moving, right? These are existing businesses, but now we get to modernize and transform on the cloud. Right. Not just efficiency for the business by efficiency for technologists as >>Well. Right, right. Sticking with you, Jimmy. I wanna understand, so you've been, you've been interested in tech since you were young. I only got into tech and accidentally as an adult. I'm curious about your career path, but talk to us about that. What are some of the recommendations that you would have for other women who might be looking at, I wanna be in technology, but I wanna work for some of the big companies and they don't think about the Goldman Sachs or some of the other companies like Walmart that are absolutely technology driven. What's your advice for those women who want to grow their career? >>I also, growing up, I was, I was interested in various things. I, I loved doing hair. I used to do my own hair and I used to do hair for other students at school and I was also interested in running an entertainment company. And I used actually go around performing and singing and dancing with a group of friends, especially at church. But what amazed me is when I landed my first job at a real estate agent and everything was being done manually on paper, I was like, wow, technology can bring transformation anywhere and everywhere. And so whilst I have a myriad of interest, there's so many ways that technology can be applied. There's so many different types of disciplines within technology. It's not, there's hands on, like I'm colder, I like to code, but they're product managers, there are business analysts, there are infrastructure specialist. They're a security specialist. And I think it's about pursuing your passion, right? Pursuing your passion and identifying which aspects of technology peak your interest. And then diving in. >>Love that. Diving in. Rachel, you're shaking your head. You definitely are in alignment with a lot of what >>Duties I am. So, you know, interesting enough, I actually started my career as a civil engineer and eventually made it into, into technology. So very similar. I saw in, you know, heavy highway construction how manual some of these processes were. And mind you, this was before the cloud. And I sat down and wrote a little computer program to automate a lot of these manual tasks. And for me it was about simplification of the customer journey and really figuring out how do you deliver value. You know, on fast forward, say 20 plus years, here I am with AWS who has got this amazing cloud platform with over 200 services. And when I think about what we do in tech, from business transformation to modernizing to helping customers think about how do they create new business models, I've really found, I've really found my sweet spot, and I'll say for anyone who wants to get into tech or even switch careers, there's just a couple words of advice that I have. And it's really two words, just start. >>Yes, >>That's it. Just start. Because sometimes later becomes never. And you know, fuel your passion, be curious, think about new things. Yes. And just >>Start, I love that. Just start, you should get t-shirts made with that. Tell me a little bit about some of your recommendations. Obviously just start is great when follow your passion. What would you say to those out there looking to plan the letter? >>So, you know, my, my story's a little bit like jus because I did not want to be in tech. You know, I wanted an easy life. I did well in school and I wanted to actually be an air hostess. And when I broke that to my father, you know, the standard Indian person, now he did, he, you know, he wanted me to go in and be an engineer. Okay? So I was actually push into computer engineering, graduated. But then really two things today, right? When I look back, really two pieces, two areas I believe, which are really important for success. One is, you know, we need to be competent. And the second is we need to be confident, right? Yes, yes. It's so much easier to be competent because a lot of us diverse women, diverse people tend to over rotate on knowing their technical skills, right? Knowing technical skills important, but you need to know how to potentially apply those to business, right? Be able to define a business roi. And I see Julie nodding because she wants people to come in and give her a business ROI for programs that you're executing at Goldman Sachs. I presume the more difficult part though is confidence. >>Absolutely. It's so hard, especially when, when we're younger, we don't know. Raise your hand because I guarantee you either half the people in the, in the room or on the zoom these days weren't listening or have the same question and are too afraid to ask because they don't have the confidence. That's right. Give me, let's pivot on confidence for a minute, Jim, and let's go back to how would you advise your younger self to find your confidence? >>That's, that's a tough one because I feel like even this older self is still finding exercise to, to be real. But I think it's about, I would say it's not praise. I think it's about praising yourself, like recognizing your accomplishments. When I think about my younger self, I think I, I like to focus more on what I didn't do or what I didn't accomplish, instead of majoring and focusing on all the accomplishments and the achievements and reminding myself of those day after day after day. And I think it's about celebrating your wins. >>I love that. Celebrating your wins. Do you agree, Rachel? >>I do. Here's the hard part, and I look around this table of amazing business leaders and I can guarantee that every single one of us sometime this year woke up and said, oh my gosh, I don't know how to do that. Oh >>Yeah. But >>What we haven't followed that by is, I don't know how to do that yet. Right. And here's the other thing I would tell my younger self is there will be days where every single one of us falls apart. There will be days when we feel like we failed at work. There will be days when you feel like you failed as a parent or you failed as a spouse. There'll be days where you have a kid in the middle of target screaming and crying while you're trying to close a big business deal and you just like, oh my gosh, is this really my life? But what I would tell my younger self is, look, the crying, the chaos, the second guessing yourself, the successes, every single one of those are milestones. And it's triumphant, it's tragic, but every single thing that we have been through is fiercely worthwhile. And it's what got us >>Here. Absolutely. Absolutely. Think of all the trials and tribulations and six and Zacks that got you to this table right now. Yep. So Terry, you brought up confidence. How would you advise the women out there won't say you're gonna know stuff. The women out there now that are watching those that are watching right there. Hi. How would you advise them to really find their, their ability to praise themselves, recognize all of the trials and the tribulations as milestones as Rachel said, and really give themselves a seat at the table, raise their hand regardless of who else is in the room? >>You know, it's a, it's a more complex question just because confidence stems from courage, right? Confidence also stems from the belief that you're going to be treated fairly right now in an organization for you to be treated fairly. You need to have, be surrounded by supporters that are going to promote your voice. And very often women don't invest enough in building that support system around them. Yeah. Right. We have mentors, and mentors are great because they come in and they advise us and they'll tell us what we need to go out and do. We really need a team of sponsors Yes. Who come in and support us in the moment in the business. Give us the informal channel because very often we are not plugged into the informal channel, right. So we don't get those special projects or assignments or even opportunities to prove that we can do the tough task. Yeah. So, you know, my, my advice would be to go out and build a network of sponsors. Yes. And if you don't have one, be a sponsor for someone else. That's right. I love that. Great way to win sponsorship is by extending it todos. >>And sometimes too, it's about, honestly, I didn't even know the difference between a mentor and a sponsor until a few years ago. And I started thinking, who are I? And then I started realizing who they were. That's right. And some of the conversations that we've had on the cube about women in technology, women of the cloud with some of the women leaders have said, build, and this is kind of like, sort of what you were saying, build your own personal board of directors. Yeah. And that, oh, it gives me chills. It's just, it's so important for, for not just women, but anybody, for everybody. But it's so important to do that. And if you, you think about LinkedIn as an example, you have a network, it's there, utilize it, figure out who your mentors are, who your sponsors are, who are gonna help you land the next thing, start building that reputation. But having that board of directors that you can kind of answer to or have some accountability towards, I think is hugely very >>Important. Yeah. >>Very important. I think, you know, just for, just for those that are listening, a really important distinction for me was mentors are people that you have that help you with, Hey, here's the situation that you were just in. They advise you on the situation. Sponsors are the people that stick up for you when you're not in the room to them. Right. Sponsors are the ones that say, Hey, I think so and so not only needs to have a seat at the table, but they need to build the table. And that's a really important delineation. Yeah. Between mentors and sponsors. And everybody's gotta have a sponsor both within their company and outside of their company. Someone that's advocating for them on their behalf when they don't even know it. Yeah. Yeah. >>I love that you said that. Build the table. It reminds me of a quote that I heard from Will I am, I know, very random. It was a podcast he did with Oprah Winfrey on ai. He's very into ai and I was doing a panel on ai, so I was doing a lot of research and he said, similar for Rachel to build the table, don't wait for a door to open. You go build a door. And I just thought, God, that is such brilliant advice. It is. It's hard to do. It is. Especially when, you know, the four of us in this room, there's a lot of women around here, but we are in an environment where we are the minority women of color are also the minority. What do you guys think where tech is in terms of de and I and really focusing on De and I as as really a very focused strategic initiative. Turner, what do you think? >>So, you know, I just, I, I spoke earlier about the women that we have at Entity Data, right? We have a fabulous team of women. And joining this team has been a moment of revelation for me coming in. I think to promote dni, we all need to start giving back, right? Yes. So today, I would love to announce that we at Entity would like to welcome all of you out there. You know, folks that have diverse ideas, you know, ISV, partners with diverse solutions, thought leaders out there who want to contribute into the ecosystem, right? Customers out there who want to work with companies that are socially responsible, right? We want to work with all of you, come back, reach out to us and be a part of the ecosystem because we can build this together, right? AWS has an amazing platform that gives us an opportunity to do things differently. Yes. Right. Entity data is building a women powered cloud team. And I want to really extend that out to everyone else to be a part this ecosystem, >>But a fantastic opportunity. You know, when we talk about diversity and inclusion and equity, it needs to be intentional for organization. It sounds very intentional at ntt. I know that that intention is definitely there at AWS as well. What are your thoughts on where tech is with respect to diversity? Even thought diversity? Because a lot of times we tend to go to our comfort zones. We do. And so we tend to start creating these circles of kind of like, you know, think tanks and they think alike people to go outside of that comfort zone. It's part of building the table, of building the, is the table and getting people from outside your comfort zone to come in and bring in diverse thought. Because can you imagine the potential of technology if we have true thought diversity in an organization? >>Right? It's, it's incredible. So one of the things that I always share with my team is we've got the opportunity to really change the outcome, right? As you know, you talked about Will I am I'm gonna talk about Bono from you too, right? One of, one of his favorite quotes is, we are the people we've been waiting for. Oh, I love that. And when you think about that, that is us. There is no one else that's gonna change the outcome and continue to deliver some of the business outcomes and the innovation that we are if we don't continue to raise our hand and we don't continue to, to inspire the next generation of leaders to do the same thing. And what I've found is when you start openly sharing what your innovation ideas are or how you're leveraging your engineering background, your stories and your successes, and, and frankly, some of your failures become the inspiration for someone you might not even know. Absolutely. And that's the, you know, that's the key. You're right. Inclusion, diversity, equity and accessibility, yes. Have to be at the forefront of every business decision. And I think too often companies think that, you know, inclusion, diversity, equity and accessibility is one thing, and business outcomes are another. And they're not. No, they are one in the same. You can't build business outcomes without also focusing on inclusion, diversity, equity, accessibility. That's the deliberate piece. >>And, and it has to be deliberate. Jimmy, I wanna ask you, we only have a couple of minutes left, but you're a woman in tech, you're a woman of color. What was that like for you? You, you were very intentional knowing when you were quite young. Yeah. What you wanted to do, but how have you navigated that? Because I can't imagine that was easy. >>It wasn't. I remember, I always tell the story and the, the two things that I really wanted to emphasize today when I thought about this panel is rep representation matters and showing up matters, right? And there's a statement, there's a flow, I don't know who it's attributed to, but be the change you want to see. And I remember walking through the doors of Goldman Sachs 15 years ago and not seeing a black female engineer leader, right? And at that point in time, I had a choice. I could be like, oh, there's no one look like, there's no one that looks like me. I don't belong here. Or I could do what I actually did and say, well, I'm gonna be that person. >>Good, >>Right? I'm going to be the chain. I'm going to show up and I am going to have a seat at the table so that other people behind me can also have a seat at the table. And I think that I've had the privilege to work for a company who has been inclusive, who has had the right support system, the right structures in place, so that I can be that person who is the first black woman tech fellow at Goldman Sachs, who is one of the first black females to be promoted up the rank as a, from analysts to managing director at the company. You know, that was not just because I determined that I belong here, but because the company ensure that I felt that I belong. >>Right. >>That's a great point. They ensure that you felt that. Yeah. You need to be able to feel that. Last question, we've only got about a minute left. 2023 is just around the corner. What comes to your mind, Jimmy will stick with you as you head into the new year. >>Sorry, can you repeat >>What comes to mind priorities for 2023 that you're excited about? >>I'm excited about the democratization of data. Yeah. I'm excited about a lot of the announcements today and I, I think there is a, a huge shift going on with this whole concept of marketplaces and data exchanges and data sharing. And I think both internally and externally, people are coming together more. Companies are coming together more to really de democratize and make data available. And data is power. But a lot of our businesses are running, running on insights, right? And we need to bring that data together and I'm really excited about the trends that's going on in cloud, in technology to actually bring the data sets together. >>Touro, what are you most excited about as we head to 2023? >>I think I'm really excited about the possibilities that entity data has right here, right now, city of Las Vegas, we've actually rolled out a smart city project. So saving citizens life, using data edge analytics, machine learning, being able to predict adverse incidents before they happen, and then being able to take remediation action, right? So that's technology actually working in real time to give us tangible results. We also sponsor the Incar races. Lots of work happening there in delivering amazing customer experience across the platform to millions of users real time. So I think I'm just excited about technology coming together, but while that's happening, I think we really need to be mindful at this time that we don't push our planet into per right. We need to be sustainable, we need to be responsible. >>Absolutely. Rachel, take us out. What are you most excited about going into 2023? >>So, you know, there are so many trends that are, that we could talk about, but I'll tell you at aws, you know, we're big. We, we impact the world. So we've gotta be really thoughtful and humble about what it is that we do. So for me, what I'm most excited about is, you know, one of our leadership principles is about, you know, with what broad responsibility brings, you know, you've got to impact sustainability and many of those other things. And for me, I think it's about waking up every day for our customers, for our partners, and for the younger generations. And being better, doing better, and making better for this planet and for, you know, the future generations to come. So >>I think your tag line just start applies to all of that. It does. It has been an absolute pleasure. And then really an honor to talk to you on the program. Thank you all for joining me, sharing your experiences, sharing what you've accomplished, your recommendations for those others who might be our same generation or older or younger. All really beautiful advice. Thank you so much for your time and your insights. We appreciate it. >>Thank you. Thank you. >>For my guests, I'm Lisa Martin. You're watching The Cube, the leader in live enterprise and emerging tech coverage. Thanks for watching.

Published Date : Nov 30 2022

SUMMARY :

It is so great to have you guys on this power panel. Talk to us a little bit about that and then we'll go around the table. So we are doing a ton of work on edge analytics in the That's outstanding to hear because it's one of those things that you can't be what you can't see. the business outcomes that we can deliver with our customers and Jimmy, talk to us a little bit about you, your role at Goldman Sachs. And I get to be leading the digital platform What are some of the recommendations that you would have for other And I think it's about pursuing Rachel, you're shaking your head. So, you know, interesting enough, I actually started my career as a And you know, fuel your passion, be curious, What would you say to And when I broke that to my father, you know, the standard Indian Give me, let's pivot on confidence for a minute, Jim, and let's go back to how would you advise your And I think it's about celebrating your wins. Do you agree, Rachel? don't know how to do that. And here's the other thing I would tell my younger self is there and Zacks that got you to this table right now. And if you don't have one, be a sponsor for someone else. some of the women leaders have said, build, and this is kind of like, sort of what you were saying, build your own personal board Yeah. Sponsors are the people that stick up for you when you're not in the room I love that you said that. You know, folks that have diverse ideas, you know, ISV, And so we tend to start creating these circles of kind of like, you know, think tanks and they think alike And when you think about that, that What you wanted to do, but how have you navigated that? but be the change you want to see. And I think that I've Jimmy will stick with you as you head into the new year. And I think both internally and We need to be sustainable, we need to be responsible. What are you most excited about going into 2023? this planet and for, you know, the future generations to come. And then really an honor to talk to you on the program. Thank you. and emerging tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AWSORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

JuliePERSON

0.99+

RachelPERSON

0.99+

Tara KaporPERSON

0.99+

TerryPERSON

0.99+

Rachel MuPERSON

0.99+

WalmartORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

JimmyPERSON

0.99+

JimPERSON

0.99+

TurnerPERSON

0.99+

Molly WardPERSON

0.99+

NTTORGANIZATION

0.99+

Entity DataORGANIZATION

0.99+

Rachel MuirPERSON

0.99+

Las VegasLOCATION

0.99+

NTT DataORGANIZATION

0.99+

Oprah WinfreyPERSON

0.99+

Jimmy BarnesPERSON

0.99+

Charu KapurPERSON

0.99+

todayDATE

0.99+

2023DATE

0.99+

millionsQUANTITY

0.99+

two yearsQUANTITY

0.99+

first jobQUANTITY

0.99+

two piecesQUANTITY

0.99+

LinkedInORGANIZATION

0.99+

two wordsQUANTITY

0.99+

The CubeTITLE

0.99+

Rachel MushahwarPERSON

0.99+

over 200 servicesQUANTITY

0.99+

Nore HansonPERSON

0.99+

two thingsQUANTITY

0.99+

20 plus yearsQUANTITY

0.99+

third timeQUANTITY

0.99+

EntityORGANIZATION

0.99+

threeQUANTITY

0.99+

three guestsQUANTITY

0.99+

firstQUANTITY

0.99+

oneQUANTITY

0.99+

OneQUANTITY

0.99+

fourQUANTITY

0.98+

secondQUANTITY

0.98+

sixQUANTITY

0.98+

three months backDATE

0.98+

TouroPERSON

0.98+

bothQUANTITY

0.98+

two areasQUANTITY

0.97+

North AmericaLOCATION

0.97+

about 22 billionQUANTITY

0.97+

LatifaPERSON

0.97+

under two yearsQUANTITY

0.96+

this yearDATE

0.95+

Kelly Gaither, University of Texas | SuperComputing 22


 

>>Good afternoon everyone, and thank you so much for joining us. My name is Savannah Peterson, joined by my co-host Paul for the afternoon. Very excited. Oh, Savannah. Hello. I'm, I'm pumped for this. This is our first bit together. Exactly. >>It's gonna be fun. Yes. We have a great guest to kick off with. >>We absolutely do. We're at Supercomputing 2022 today, and very excited to talk to our next guest. We're gonna be talking about data at scale and data that really matters to us joining us. Kelly Gayer, thank you so much for being here and you are with tech. Tell everyone what TAC is. >>Tech is the Texas Advanced Computing Center at the University of Texas at Austin. And thank you so much for having me here. >>It is wonderful to have you. Your smile's contagious. And one of the themes that's come up a lot with all of our guests, and we just talked about it, is how good it is to be back in person, how good it is to be around our hardware, community tech. You did some very interesting research during the pandemic. Can you tell us about that? >>I can. I did. So when we realized sort of mid-March, we realized that, that this was really not normal times and the pandemic was statement. Yes. That pandemic was really gonna touch everyone. I think a lot of us at the center and me personally, we dropped everything to plug in and that's what we do. So UT's tagline is what starts here changes the world and tax tagline is powering discoveries that change the world. So we're all about impact, but I plugged in with the research group there at UT Austin, Dr. Lauren Myers, who's an epidemiologist, and just we figured out how to plug in and compute so that we could predict the spread of, of Covid 19. >>And you did that through the use of mobility data, cell phone signals. Tell us more about what exactly you were choreographing. >>Yeah, so that was really interesting. Safe graph during the pandemic made their mobility data. Typically it was used for marketing purposes to know who was going into Walmart. The offenses >>For advertising. >>Absolutely, yeah. They made all of their mobility data available for free to people who were doing research and plugging in trying to understand Covid. 19, I picked that data up and we used it as a proxy for human behavior. So we knew we had some idea, we got weekly mobility updates, but it was really mobility all day long, you know, anonymized. I didn't know who they were by cell phones across the US by census block group or zip code if we wanted to look at it that way. And we could see how people were moving around. We knew what their neighbor, their home neighborhoods were. We knew how they were traveling or not traveling. We knew where people were congregating, and we could get some idea of, of how people were behaving. Were they really, were they really locking down or were they moving in their neighborhoods or were they going outside of their neighborhoods? >>What a, what a fascinating window into our pandemic lives. So now that you were able to do this for this pandemic, as we look forward, what have you learned? How quickly could we forecast? What's the prognosis? >>Yeah, so we, we learned a tremendous amount. I think during the pandemic we were reacting, we were really trying. It was a, it was an interesting time as a scientist, we were reacting to things almost as if the earth was moving underneath us every single day. So it was something new every day. And I've told people since I've, I haven't, I haven't worked that hard since I was a graduate student. So it was really daylight to dark 24 7 for a long period of time because it was so important. And we knew, we, we knew we were, we were being a part of history and affecting something that was gonna make a difference for a really long time. And, and I think what we've learned is that indeed there is a lot of data being collected that we can use for good. We can really understand if we get organized and we get set up, we can use this data as a means of perhaps predicting our next pandemic or our next outbreak of whatever. It is almost like using it as a canary in the coal mine. There's a lot in human behavior we can use, given >>All the politicization of, of this last pandemic, knowing what we know now, making us better prepared in theory for the next one. How confident are you that at least in the US we will respond proactively and, and effectively when the next one comes around? >>Yeah, I mean, that's a, that's a great question and, and I certainly understand why you ask. I think in my experience as a scientist, certainly at tech, the more transparent you are with what you do and the more you explain things. Again, during the pandemic, things were shifting so rapidly we were reacting and doing the best that we could. And I think one thing we did right was we admitted where we felt uncertain. And that's important. You have to really be transparent to the general public. I, I don't know how well people are gonna react. I think if we have time to prepare, to communicate and always be really transparent about it. I think those are three factors that go into really increasing people's trust. >>I think you nailed it. And, and especially during times of chaos and disaster, you don't know who to trust or what to believe. And it sounds like, you know, providing a transparent source of truth is, is so critical. How do you protect the sensitive data that you're working with? I know it's a top priority for you and the team. >>It is, it is. And we, we've adopted the medical mantra, do no harm. So we have, we feel a great responsibility there. There's, you know, two things that you have to really keep in mind when you've got sensitive data. One is the physical protection of it. And so that's, that's governed by rule, federal rules, hipaa, ferpa, whatever, whatever kind of data that you have. So we certainly focus on the physical protection of it, but there's also sort of the ethical protection of it. What, what is the quote? There's lies, damn lies and statistics. >>Yes. Twain. >>Yeah. So you, you really have to be responsible with what you're doing with the data, how you're portraying the results. And again, I think it comes back to transparency is is basically if people are gonna reproduce what I did, I have to be really transparent with what I did. >>I, yeah, I think that's super important. And one of the themes with, with HPC that we've been talking about a lot too is, you know, do people trust ai? Do they trust all the data that's going into these systems? And I love that you just talked about the storytelling aspect of that, because there is a duty, it's not, you can cut data kind of however you want. I mean, I come from marketing background and we can massage it to, to do whatever we want. So in addition to being the deputy director at Tech, you are also the DEI officer. And diversity I know is important to you probably both as an individual, but also in the work that you're doing. Talk to us about that. >>Yeah, I mean, I, I very passionate about diversity, equity and inclusion in a sense of belongingness. I think that's one of the key aspects of it. Core >>Of community too. >>I got a computer science degree back in the eighties. I was akin to a unicorn in a, in an engineering computer science department. And, but I was really lucky in a couple of respects. I had a, I had a father that was into science that told me I could do anything I, I wanted to set my mind to do. So that was my whole life, was really having that support system. >>He was cheers to dad. >>Yeah. Oh yeah. And my mom as well, actually, you know, they were educators. I grew up, you know, in that respect, very, very privileged, but it was still really hard to make it. And I couldn't have told you back in that time why I made it and, and others didn't, why they dropped out. But I made it a mission probably back, gosh, maybe 10, 15 years ago, that I was really gonna do all that I could to change the needle. And it turns out that there are a number of things that you can do grassroots. There are certainly best practices. There are rules and there are things that you really, you know, best practices to follow to make people feel more included in an organization, to feel like they belong it, shared mission. But there are also clever things that you can do with programming to really engage students, to meet people and students where they are interested and where they are engaged. And I think that's what, that's what we've done over, you know, the course of our programming over the course of about maybe since 2016. We have built a lot of programming ATAC that really focuses on that as well, because I'm determined the needle is gonna change before it's all said and done. It just really has to. >>So what, what progress have you made and what goals have you set in this area? >>Yeah, that, that's a great question. So, you know, at first I was a little bit reluctant to set concrete goals because I really didn't know what we could accomplish. I really wasn't sure what grassroots efforts was gonna be able to, you're >>So honest, you can tell how transparent you are with the data as well. That's >>Great. Yeah, I mean, if I really, most of the successful work that I've done is both a scientist and in the education and outreach space is really trust relationships. If I break that trust, I'm done. I'm no longer effective. So yeah, I am really transparent about it. But, but what we did was, you know, the first thing we did was we counted, you know, to the extent that we could, what does the current picture look like? Let's be honest about it. Start where we are. Yep. It was not a pretty picture. I mean, we knew that anecdotally it was not gonna be a great picture, but we put it out there and we leaned into it. We said, this is what it is. We, you know, I hesitated to say we're gonna look 10% better next year because I'm, I'm gonna be honest, I don't always know we're gonna do our best. >>The things that I think we did really well was that we stopped to take time to talk and find out what people were interested in. It's almost like being present and listening. My grandmother had a saying, you have two errors in one mouth for a reason, just respect the ratio. Oh, I love that. Yeah. And I think it's just been building relationships, building trust, really focusing on making a difference, making it a priority. And I think now what we're doing is we've been successful in pockets of people in the center and we are, we are getting everybody on board. There's, there's something everyone can do, >>But the problem you're addressing doesn't begin in college. It begins much, much, that's right. And there's been a lot of talk about STEM education, particularly for girls, how they're pushed out of the system early on. Also for, for people of color. Do you see meaningful progress being made there now after years of, of lip service? >>I do. I do. But it is, again, grassroots. We do have a, a, a researcher who was a former teacher at the center, Carol Fletcher, who is doing research and for CS for all we know that the workforce, so if you work from the current workforce, her projected workforce backwards, we know that digital skills of some kind are gonna be needed. We also know we have a, a, a shortage. There's debate on how large that shortage is, but about roughly about 1 million unmet jobs was projected in 2020. It hasn't gotten a lot better. We can work that problem backwards. So what we do there is a little, like a scatter shot approach. We know that people come in all forms, all shapes, all sizes. They get interested for all different kinds of reasons. We expanded our set of pathways so that we can get them where they can get on to the path all the way back K through 12, that's Carol's work. Rosie Gomez at the center is doing sort of the undergraduate space. We've got Don Hunter that does it, middle school, high school space. So we are working all parts of the problem. I am pretty passionate about what we consider opportunity youth people who never had the opportunity to go to college. Is there a way that we can skill them and get, get them engaged in some aspect and perhaps get them into this workforce. >>I love that you're starting off so young. So give us an example of one of those programs. What are you talking to kindergartners about when it comes to CS education? >>You know, I mean, gaming. Yes. Right. It's what everybody can wrap their head around. So most kids have had some sort of gaming device. You talk in the context, in the context of something they understand. I'm not gonna talk to them about high performance computing. It, it would go right over their heads. And I think, yeah, you know, I, I'll go back to something that you said Paul, about, you know, girls were pushed out. I don't know that girls are being pushed out. I think girls aren't interested and things that are being presented and I think they, I >>Think you're generous. >>Yeah. I mean, I was a young girl and I don't know why I stayed. Well, I do know why I stayed with it because I had a father that saw something in me and I had people at critical points in my life that saw something in me that I didn't see. But I think if we ch, if we change the way we teach it, maybe in your words they don't get pushed out or they, or they won't lose interest. There's, there's some sort of computing in everything we do. Well, >>Absolutely. There's also the bro culture, which begins at a very early >>Age. Yeah, that's a different problem. Yeah. That's just having boys in the classroom. Absolutely. You got >>It. That's a whole nother case. >>That's a whole other thing. >>Last question for you, when we are sitting here, well actually I've got, it's two parter, let's put it that way. Is there a tool or something you wish you could flick a magic wand that would make your job easier? Where you, you know, is there, can you identify the, the linchpin in the DEI challenge? Or is it all still prototyping and iterating to figure out the best fit? >>Yeah, that is a, that's a wonderful question. I can tell you what I get frustrated with is that, that >>Counts >>Is that I, I feel like a lot of people don't fully understand the level of effort and engagement it takes to do something meaningful. The >>Commitment to a program, >>The commitment to a program. Totally agree. It's, there is no one and done. No. And in fact, if I do that, I will lose them forever. They'll be, they will, they will be lost in the space forever. Rather. The engagement is really sort of time intensive. It's relationship intensive, but there's a lot of follow up too. And the, the amount of funding that goes into this space really is not, it, it, it's not equal to the amount of time and effort that it really takes. And I think, you know, I think what you work in this space, you realize that what you gain is, is really more of, it's, it really feels good to make a difference in somebody's life, but it's really hard to do on a shoer budget. So if I could kind of wave a magic wand, yes, I would increase understanding. I would get people to understand that it's all of our responsibility. Yes, everybody is needed to make the difference and I would increase the funding that goes to the programs. >>I think that's awesome, Kelly, thank you for that. You all heard that. More funding for diversity, equity, and inclusion. Please Paul, thank you for a fantastic interview, Kelly. Hopefully everyone is now inspired to check out tac perhaps become a, a Longhorn, hook 'em and, and come deal with some of the most important data that we have going through our systems and predicting the future of our pandemics. Ladies and gentlemen, thank you for joining us online. We are here in Dallas, Texas at Supercomputing. My name is Savannah Peterson and I look forward to seeing you for our next segment.

Published Date : Nov 16 2022

SUMMARY :

Good afternoon everyone, and thank you so much for joining us. It's gonna be fun. Kelly Gayer, thank you so much for being here and you are with tech. And thank you so much for having me here. And one of the themes that's come up a to plug in and compute so that we could predict the spread of, And you did that through the use of mobility data, cell phone signals. Yeah, so that was really interesting. but it was really mobility all day long, you know, So now that you were able to do this for this pandemic, as we look forward, I think during the pandemic we were reacting, in the US we will respond proactively and, and effectively when And I think one thing we did right was we I think you nailed it. There's, you know, two things that you have to really keep And again, I think it comes back to transparency is is basically And I love that you just talked about the storytelling aspect of I think that's one of the key aspects of it. I had a, I had a father that was into science I grew up, you know, in that respect, very, very privileged, I really wasn't sure what grassroots efforts was gonna be able to, you're So honest, you can tell how transparent you are with the data as well. but what we did was, you know, the first thing we did was we counted, you And I think now what we're doing is we've been successful in Do you see meaningful progress being all we know that the workforce, so if you work from the current workforce, I love that you're starting off so young. And I think, yeah, you know, I, I'll go back to something that But I think if we ch, There's also the bro culture, which begins at a very early That's just having boys in the classroom. you know, is there, can you identify the, the linchpin in the DEI challenge? I can tell you what I get frustrated with of effort and engagement it takes to do something meaningful. you know, I think what you work in this space, you realize that what I look forward to seeing you for our next segment.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Kelly GayerPERSON

0.99+

KellyPERSON

0.99+

SavannahPERSON

0.99+

Savannah PetersonPERSON

0.99+

Carol FletcherPERSON

0.99+

Rosie GomezPERSON

0.99+

2020DATE

0.99+

PaulPERSON

0.99+

Lauren MyersPERSON

0.99+

CarolPERSON

0.99+

Kelly GaitherPERSON

0.99+

WalmartORGANIZATION

0.99+

2016DATE

0.99+

10%QUANTITY

0.99+

USLOCATION

0.99+

next yearDATE

0.99+

Dallas, TexasLOCATION

0.99+

todayDATE

0.99+

two errorsQUANTITY

0.99+

firstQUANTITY

0.99+

Covid 19OTHER

0.99+

AustinLOCATION

0.99+

eightiesDATE

0.99+

three factorsQUANTITY

0.99+

bothQUANTITY

0.99+

TACORGANIZATION

0.98+

two parterQUANTITY

0.98+

one mouthQUANTITY

0.98+

earthLOCATION

0.98+

UTORGANIZATION

0.98+

mid-MarchDATE

0.97+

pandemicEVENT

0.97+

two thingsQUANTITY

0.97+

University of TexasORGANIZATION

0.97+

first bitQUANTITY

0.97+

oneQUANTITY

0.97+

OneQUANTITY

0.97+

one thingQUANTITY

0.96+

SupercomputingORGANIZATION

0.96+

Don HunterPERSON

0.95+

Texas Advanced Computing CenterORGANIZATION

0.95+

ATACORGANIZATION

0.93+

Covid. 19OTHER

0.93+

24 7QUANTITY

0.86+

UT AustinORGANIZATION

0.82+

10, 15 years agoDATE

0.81+

Supercomputing 2022ORGANIZATION

0.79+

every single dayQUANTITY

0.79+

about 1 million unmet jobsQUANTITY

0.77+

12QUANTITY

0.74+

SuperComputingORGANIZATION

0.74+

outbreakEVENT

0.7+

Dr.PERSON

0.56+

DEIORGANIZATION

0.54+

TwainPERSON

0.51+

The Truth About MySQL HeatWave


 

>>When Oracle acquired my SQL via the Sun acquisition, nobody really thought the company would put much effort into the platform preferring to focus all the wood behind its leading Oracle database, Arrow pun intended. But two years ago, Oracle surprised many folks by announcing my SQL Heatwave a new database as a service with a massively parallel hybrid Columbia in Mary Mary architecture that brings together transactional and analytic data in a single platform. Welcome to our latest database, power panel on the cube. My name is Dave Ante, and today we're gonna discuss Oracle's MySQL Heat Wave with a who's who of cloud database industry analysts. Holgar Mueller is with Constellation Research. Mark Stammer is the Dragon Slayer and Wikibon contributor. And Ron Westfall is with Fu Chim Research. Gentlemen, welcome back to the Cube. Always a pleasure to have you on. Thanks for having us. Great to be here. >>So we've had a number of of deep dive interviews on the Cube with Nip and Aggarwal. You guys know him? He's a senior vice president of MySQL, Heatwave Development at Oracle. I think you just saw him at Oracle Cloud World and he's come on to describe this is gonna, I'll call it a shock and awe feature additions to to heatwave. You know, the company's clearly putting r and d into the platform and I think at at cloud world we saw like the fifth major release since 2020 when they first announced MySQL heat wave. So just listing a few, they, they got, they taken, brought in analytics machine learning, they got autopilot for machine learning, which is automation onto the basic o l TP functionality of the database. And it's been interesting to watch Oracle's converge database strategy. We've contrasted that amongst ourselves. Love to get your thoughts on Amazon's get the right tool for the right job approach. >>Are they gonna have to change that? You know, Amazon's got the specialized databases, it's just, you know, the both companies are doing well. It just shows there are a lot of ways to, to skin a cat cuz you see some traction in the market in, in both approaches. So today we're gonna focus on the latest heat wave announcements and we're gonna talk about multi-cloud with a native MySQL heat wave implementation, which is available on aws MySQL heat wave for Azure via the Oracle Microsoft interconnect. This kind of cool hybrid action that they got going. Sometimes we call it super cloud. And then we're gonna dive into my SQL Heatwave Lake house, which allows users to process and query data across MyQ databases as heatwave databases, as well as object stores. So, and then we've got, heatwave has been announced on AWS and, and, and Azure, they're available now and Lake House I believe is in beta and I think it's coming out the second half of next year. So again, all of our guests are fresh off of Oracle Cloud world in Las Vegas. So they got the latest scoop. Guys, I'm done talking. Let's get into it. Mark, maybe you could start us off, what's your opinion of my SQL Heatwaves competitive position? When you think about what AWS is doing, you know, Google is, you know, we heard Google Cloud next recently, we heard about all their data innovations. You got, obviously Azure's got a big portfolio, snowflakes doing well in the market. What's your take? >>Well, first let's look at it from the point of view that AWS is the market leader in cloud and cloud services. They own somewhere between 30 to 50% depending on who you read of the market. And then you have Azure as number two and after that it falls off. There's gcp, Google Cloud platform, which is further way down the list and then Oracle and IBM and Alibaba. So when you look at AWS and you and Azure saying, hey, these are the market leaders in the cloud, then you start looking at it and saying, if I am going to provide a service that competes with the service they have, if I can make it available in their cloud, it means that I can be more competitive. And if I'm compelling and compelling means at least twice the performance or functionality or both at half the price, I should be able to gain market share. >>And that's what Oracle's done. They've taken a superior product in my SQL heat wave, which is faster, lower cost does more for a lot less at the end of the day and they make it available to the users of those clouds. You avoid this little thing called egress fees, you avoid the issue of having to migrate from one cloud to another and suddenly you have a very compelling offer. So I look at what Oracle's doing with MyQ and it feels like, I'm gonna use a word term, a flanking maneuver to their competition. They're offering a better service on their platforms. >>All right, so thank you for that. Holger, we've seen this sort of cadence, I sort of referenced it up front a little bit and they sat on MySQL for a decade, then all of a sudden we see this rush of announcements. Why did it take so long? And and more importantly is Oracle, are they developing the right features that cloud database customers are looking for in your view? >>Yeah, great question, but first of all, in your interview you said it's the edit analytics, right? Analytics is kind of like a marketing buzzword. Reports can be analytics, right? The interesting thing, which they did, the first thing they, they, they crossed the chasm between OTP and all up, right? In the same database, right? So major engineering feed very much what customers want and it's all about creating Bellevue for customers, which, which I think is the part why they go into the multi-cloud and why they add these capabilities. And they certainly with the AI capabilities, it's kind of like getting it into an autonomous field, self-driving field now with the lake cost capabilities and meeting customers where they are, like Mark has talked about the e risk costs in the cloud. So that that's a significant advantage, creating value for customers and that's what at the end of the day matters. >>And I believe strongly that long term it's gonna be ones who create better value for customers who will get more of their money From that perspective, why then take them so long? I think it's a great question. I think largely he mentioned the gentleman Nial, it's largely to who leads a product. I used to build products too, so maybe I'm a little fooling myself here, but that made the difference in my view, right? So since he's been charged, he's been building things faster than the rest of the competition, than my SQL space, which in hindsight we thought was a hot and smoking innovation phase. It kind of like was a little self complacent when it comes to the traditional borders of where, where people think, where things are separated between OTP and ola or as an example of adjacent support, right? Structured documents, whereas unstructured documents or databases and all of that has been collapsed and brought together for building a more powerful database for customers. >>So I mean it's certainly, you know, when, when Oracle talks about the competitors, you know, the competitors are in the, I always say they're, if the Oracle talks about you and knows you're doing well, so they talk a lot about aws, talk a little bit about Snowflake, you know, sort of Google, they have partnerships with Azure, but, but in, so I'm presuming that the response in MySQL heatwave was really in, in response to what they were seeing from those big competitors. But then you had Maria DB coming out, you know, the day that that Oracle acquired Sun and, and launching and going after the MySQL base. So it's, I'm, I'm interested and we'll talk about this later and what you guys think AWS and Google and Azure and Snowflake and how they're gonna respond. But, but before I do that, Ron, I want to ask you, you, you, you can get, you know, pretty technical and you've probably seen the benchmarks. >>I know you have Oracle makes a big deal out of it, publishes its benchmarks, makes some transparent on on GI GitHub. Larry Ellison talked about this in his keynote at Cloud World. What are the benchmarks show in general? I mean, when you, when you're new to the market, you gotta have a story like Mark was saying, you gotta be two x you know, the performance at half the cost or you better be or you're not gonna get any market share. So, and, and you know, oftentimes companies don't publish market benchmarks when they're leading. They do it when they, they need to gain share. So what do you make of the benchmarks? Have their, any results that were surprising to you? Have, you know, they been challenged by the competitors. Is it just a bunch of kind of desperate bench marketing to make some noise in the market or you know, are they real? What's your view? >>Well, from my perspective, I think they have the validity. And to your point, I believe that when it comes to competitor responses, that has not really happened. Nobody has like pulled down the information that's on GitHub and said, Oh, here are our price performance results. And they counter oracles. In fact, I think part of the reason why that hasn't happened is that there's the risk if Oracle's coming out and saying, Hey, we can deliver 17 times better query performance using our capabilities versus say, Snowflake when it comes to, you know, the Lakehouse platform and Snowflake turns around and says it's actually only 15 times better during performance, that's not exactly an effective maneuver. And so I think this is really to oracle's credit and I think it's refreshing because these differentiators are significant. We're not talking, you know, like 1.2% differences. We're talking 17 fold differences, we're talking six fold differences depending on, you know, where the spotlight is being shined and so forth. >>And so I think this is actually something that is actually too good to believe initially at first blush. If I'm a cloud database decision maker, I really have to prioritize this. I really would know, pay a lot more attention to this. And that's why I posed the question to Oracle and others like, okay, if these differentiators are so significant, why isn't the needle moving a bit more? And it's for, you know, some of the usual reasons. One is really deep discounting coming from, you know, the other players that's really kind of, you know, marketing 1 0 1, this is something you need to do when there's a real competitive threat to keep, you know, a customer in your own customer base. Plus there is the usual fear and uncertainty about moving from one platform to another. But I think, you know, the traction, the momentum is, is shifting an Oracle's favor. I think we saw that in the Q1 efforts, for example, where Oracle cloud grew 44% and that it generated, you know, 4.8 billion and revenue if I recall correctly. And so, so all these are demonstrating that's Oracle is making, I think many of the right moves, publishing these figures for anybody to look at from their own perspective is something that is, I think, good for the market and I think it's just gonna continue to pay dividends for Oracle down the horizon as you know, competition intens plots. So if I were in, >>Dave, can I, Dave, can I interject something and, and what Ron just said there? Yeah, please go ahead. A couple things here, one discounting, which is a common practice when you have a real threat, as Ron pointed out, isn't going to help much in this situation simply because you can't discount to the point where you improve your performance and the performance is a huge differentiator. You may be able to get your price down, but the problem that most of them have is they don't have an integrated product service. They don't have an integrated O L T P O L A P M L N data lake. Even if you cut out two of them, they don't have any of them integrated. They have multiple services that are required separate integration and that can't be overcome with discounting. And the, they, you have to pay for each one of these. And oh, by the way, as you grow, the discounts go away. So that's a, it's a minor important detail. >>So, so that's a TCO question mark, right? And I know you look at this a lot, if I had that kind of price performance advantage, I would be pounding tco, especially if I need two separate databases to do the job. That one can do, that's gonna be, the TCO numbers are gonna be off the chart or maybe down the chart, which you want. Have you looked at this and how does it compare with, you know, the big cloud guys, for example, >>I've looked at it in depth, in fact, I'm working on another TCO on this arena, but you can find it on Wiki bod in which I compared TCO for MySEQ Heat wave versus Aurora plus Redshift plus ML plus Blue. I've compared it against gcps services, Azure services, Snowflake with other services. And there's just no comparison. The, the TCO differences are huge. More importantly, thefor, the, the TCO per performance is huge. We're talking in some cases multiple orders of magnitude, but at least an order of magnitude difference. So discounting isn't gonna help you much at the end of the day, it's only going to lower your cost a little, but it doesn't improve the automation, it doesn't improve the performance, it doesn't improve the time to insight, it doesn't improve all those things that you want out of a database or multiple databases because you >>Can't discount yourself to a higher value proposition. >>So what about, I wonder ho if you could chime in on the developer angle. You, you followed that, that market. How do these innovations from heatwave, I think you used the term developer velocity. I've heard you used that before. Yeah, I mean, look, Oracle owns Java, okay, so it, it's, you know, most popular, you know, programming language in the world, blah, blah blah. But it does it have the, the minds and hearts of, of developers and does, where does heatwave fit into that equation? >>I think heatwave is gaining quickly mindshare on the developer side, right? It's not the traditional no sequel database which grew up, there's a traditional mistrust of oracles to developers to what was happening to open source when gets acquired. Like in the case of Oracle versus Java and where my sql, right? And, but we know it's not a good competitive strategy to, to bank on Oracle screwing up because it hasn't worked not on Java known my sequel, right? And for developers, it's, once you get to know a technology product and you can do more, it becomes kind of like a Swiss army knife and you can build more use case, you can build more powerful applications. That's super, super important because you don't have to get certified in multiple databases. You, you are fast at getting things done, you achieve fire, develop velocity, and the managers are happy because they don't have to license more things, send you to more trainings, have more risk of something not being delivered, right? >>So it's really the, we see the suite where this best of breed play happening here, which in general was happening before already with Oracle's flagship database. Whereas those Amazon as an example, right? And now the interesting thing is every step away Oracle was always a one database company that can be only one and they're now generally talking about heat web and that two database company with different market spaces, but same value proposition of integrating more things very, very quickly to have a universal database that I call, they call the converge database for all the needs of an enterprise to run certain application use cases. And that's what's attractive to developers. >>It's, it's ironic isn't it? I mean I, you know, the rumor was the TK Thomas Curian left Oracle cuz he wanted to put Oracle database on other clouds and other places. And maybe that was the rift. Maybe there was, I'm sure there was other things, but, but Oracle clearly is now trying to expand its Tam Ron with, with heatwave into aws, into Azure. How do you think Oracle's gonna do, you were at a cloud world, what was the sentiment from customers and the independent analyst? Is this just Oracle trying to screw with the competition, create a little diversion? Or is this, you know, serious business for Oracle? What do you think? >>No, I think it has lakes. I think it's definitely, again, attriting to Oracle's overall ability to differentiate not only my SQL heat wave, but its overall portfolio. And I think the fact that they do have the alliance with the Azure in place, that this is definitely demonstrating their commitment to meeting the multi-cloud needs of its customers as well as what we pointed to in terms of the fact that they're now offering, you know, MySQL capabilities within AWS natively and that it can now perform AWS's own offering. And I think this is all demonstrating that Oracle is, you know, not letting up, they're not resting on its laurels. That's clearly we are living in a multi-cloud world, so why not just make it more easy for customers to be able to use cloud databases according to their own specific, specific needs. And I think, you know, to holder's point, I think that definitely lines with being able to bring on more application developers to leverage these capabilities. >>I think one important announcement that's related to all this was the JSON relational duality capabilities where now it's a lot easier for application developers to use a language that they're very familiar with a JS O and not have to worry about going into relational databases to store their J S O N application coding. So this is, I think an example of the innovation that's enhancing the overall Oracle portfolio and certainly all the work with machine learning is definitely paying dividends as well. And as a result, I see Oracle continue to make these inroads that we pointed to. But I agree with Mark, you know, the short term discounting is just a stall tag. This is not denying the fact that Oracle is being able to not only deliver price performance differentiators that are dramatic, but also meeting a wide range of needs for customers out there that aren't just limited device performance consideration. >>Being able to support multi-cloud according to customer needs. Being able to reach out to the application developer community and address a very specific challenge that has plagued them for many years now. So bring it all together. Yeah, I see this as just enabling Oracles who ring true with customers. That the customers that were there were basically all of them, even though not all of them are going to be saying the same things, they're all basically saying positive feedback. And likewise, I think the analyst community is seeing this. It's always refreshing to be able to talk to customers directly and at Oracle cloud there was a litany of them and so this is just a difference maker as well as being able to talk to strategic partners. The nvidia, I think partnerships also testament to Oracle's ongoing ability to, you know, make the ecosystem more user friendly for the customers out there. >>Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able to be best of breed. That's the kind of surprising thing that I'm hearing about, about heatwave. I want to, I want to talk about Lake House because when I think of Lake House, I think data bricks, and to my knowledge data bricks hasn't been in the sites of Oracle yet. Maybe they're next, but, but Oracle claims that MySQL, heatwave, Lakehouse is a breakthrough in terms of capacity and performance. Mark, what are your thoughts on that? Can you double click on, on Lakehouse Oracle's claims for things like query performance and data loading? What does it mean for the market? Is Oracle really leading in, in the lake house competitive landscape? What are your thoughts? >>Well, but name in the game is what are the problems you're solving for the customer? More importantly, are those problems urgent or important? If they're urgent, customers wanna solve 'em. Now if they're important, they might get around to them. So you look at what they're doing with Lake House or previous to that machine learning or previous to that automation or previous to that O L A with O ltp and they're merging all this capability together. If you look at Snowflake or data bricks, they're tacking one problem. You look at MyQ heat wave, they're tacking multiple problems. So when you say, yeah, their queries are much better against the lake house in combination with other analytics in combination with O ltp and the fact that there are no ETLs. So you're getting all this done in real time. So it's, it's doing the query cross, cross everything in real time. >>You're solving multiple user and developer problems, you're increasing their ability to get insight faster, you're having shorter response times. So yeah, they really are solving urgent problems for customers. And by putting it where the customer lives, this is the brilliance of actually being multicloud. And I know I'm backing up here a second, but by making it work in AWS and Azure where people already live, where they already have applications, what they're saying is, we're bringing it to you. You don't have to come to us to get these, these benefits, this value overall, I think it's a brilliant strategy. I give Nip and Argo wallet a huge, huge kudos for what he's doing there. So yes, what they're doing with the lake house is going to put notice on data bricks and Snowflake and everyone else for that matter. Well >>Those are guys that whole ago you, you and I have talked about this. Those are, those are the guys that are doing sort of the best of breed. You know, they're really focused and they, you know, tend to do well at least out of the gate. Now you got Oracle's converged philosophy, obviously with Oracle database. We've seen that now it's kicking in gear with, with heatwave, you know, this whole thing of sweets versus best of breed. I mean the long term, you know, customers tend to migrate towards suite, but the new shiny toy tends to get the growth. How do you think this is gonna play out in cloud database? >>Well, it's the forever never ending story, right? And in software right suite, whereas best of breed and so far in the long run suites have always won, right? So, and sometimes they struggle again because the inherent problem of sweets is you build something larger, it has more complexity and that means your cycles to get everything working together to integrate the test that roll it out, certify whatever it is, takes you longer, right? And that's not the case. It's a fascinating part of what the effort around my SQL heat wave is that the team is out executing the previous best of breed data, bringing us something together. Now if they can maintain that pace, that's something to to, to be seen. But it, the strategy, like what Mark was saying, bring the software to the data is of course interesting and unique and totally an Oracle issue in the past, right? >>Yeah. But it had to be in your database on oci. And but at, that's an interesting part. The interesting thing on the Lake health side is, right, there's three key benefits of a lakehouse. The first one is better reporting analytics, bring more rich information together, like make the, the, the case for silicon angle, right? We want to see engagements for this video, we want to know what's happening. That's a mixed transactional video media use case, right? Typical Lakehouse use case. The next one is to build more rich applications, transactional applications which have video and these elements in there, which are the engaging one. And the third one, and that's where I'm a little critical and concerned, is it's really the base platform for artificial intelligence, right? To run deep learning to run things automatically because they have all the data in one place can create in one way. >>And that's where Oracle, I know that Ron talked about Invidia for a moment, but that's where Oracle doesn't have the strongest best story. Nonetheless, the two other main use cases of the lake house are very strong, very well only concern is four 50 terabyte sounds long. It's an arbitrary limitation. Yeah, sounds as big. So for the start, and it's the first word, they can make that bigger. You don't want your lake house to be limited and the terabyte sizes or any even petabyte size because you want to have the certainty. I can put everything in there that I think it might be relevant without knowing what questions to ask and query those questions. >>Yeah. And you know, in the early days of no schema on right, it just became a mess. But now technology has evolved to allow us to actually get more value out of that data. Data lake. Data swamp is, you know, not much more, more, more, more logical. But, and I want to get in, in a moment, I want to come back to how you think the competitors are gonna respond. Are they gonna have to sort of do a more of a converged approach? AWS in particular? But before I do, Ron, I want to ask you a question about autopilot because I heard Larry Ellison's keynote and he was talking about how, you know, most security issues are human errors with autonomy and autonomous database and things like autopilot. We take care of that. It's like autonomous vehicles, they're gonna be safer. And I went, well maybe, maybe someday. So Oracle really tries to emphasize this, that every time you see an announcement from Oracle, they talk about new, you know, autonomous capabilities. It, how legit is it? Do people care? What about, you know, what's new for heatwave Lakehouse? How much of a differentiator, Ron, do you really think autopilot is in this cloud database space? >>Yeah, I think it will definitely enhance the overall proposition. I don't think people are gonna buy, you know, lake house exclusively cause of autopilot capabilities, but when they look at the overall picture, I think it will be an added capability bonus to Oracle's benefit. And yeah, I think it's kind of one of these age old questions, how much do you automate and what is the bounce to strike? And I think we all understand with the automatic car, autonomous car analogy that there are limitations to being able to use that. However, I think it's a tool that basically every organization out there needs to at least have or at least evaluate because it goes to the point of it helps with ease of use, it helps make automation more balanced in terms of, you know, being able to test, all right, let's automate this process and see if it works well, then we can go on and switch on on autopilot for other processes. >>And then, you know, that allows, for example, the specialists to spend more time on business use cases versus, you know, manual maintenance of, of the cloud database and so forth. So I think that actually is a, a legitimate value proposition. I think it's just gonna be a case by case basis. Some organizations are gonna be more aggressive with putting automation throughout their processes throughout their organization. Others are gonna be more cautious. But it's gonna be, again, something that will help the overall Oracle proposition. And something that I think will be used with caution by many organizations, but other organizations are gonna like, hey, great, this is something that is really answering a real problem. And that is just easing the use of these databases, but also being able to better handle the automation capabilities and benefits that come with it without having, you know, a major screwup happened and the process of transitioning to more automated capabilities. >>Now, I didn't attend cloud world, it's just too many red eyes, you know, recently, so I passed. But one of the things I like to do at those events is talk to customers, you know, in the spirit of the truth, you know, they, you know, you'd have the hallway, you know, track and to talk to customers and they say, Hey, you know, here's the good, the bad and the ugly. So did you guys, did you talk to any customers my SQL Heatwave customers at, at cloud world? And and what did you learn? I don't know, Mark, did you, did you have any luck and, and having some, some private conversations? >>Yeah, I had quite a few private conversations. The one thing before I get to that, I want disagree with one point Ron made, I do believe there are customers out there buying the heat wave service, the MySEQ heat wave server service because of autopilot. Because autopilot is really revolutionary in many ways in the sense for the MySEQ developer in that it, it auto provisions, it auto parallel loads, IT auto data places it auto shape predictions. It can tell you what machine learning models are going to tell you, gonna give you your best results. And, and candidly, I've yet to meet a DBA who didn't wanna give up pedantic tasks that are pain in the kahoo, which they'd rather not do and if it's long as it was done right for them. So yes, I do think people are buying it because of autopilot and that's based on some of the conversations I had with customers at Oracle Cloud World. >>In fact, it was like, yeah, that's great, yeah, we get fantastic performance, but this really makes my life easier and I've yet to meet a DBA who didn't want to make their life easier. And it does. So yeah, I've talked to a few of them. They were excited. I asked them if they ran into any bugs, were there any difficulties in moving to it? And the answer was no. In both cases, it's interesting to note, my sequel is the most popular database on the planet. Well, some will argue that it's neck and neck with SQL Server, but if you add in Mariah DB and ProCon db, which are forks of MySQL, then yeah, by far and away it's the most popular. And as a result of that, everybody for the most part has typically a my sequel database somewhere in their organization. So this is a brilliant situation for anybody going after MyQ, but especially for heat wave. And the customers I talk to love it. I didn't find anybody complaining about it. And >>What about the migration? We talked about TCO earlier. Did your t does your TCO analysis include the migration cost or do you kind of conveniently leave that out or what? >>Well, when you look at migration costs, there are different kinds of migration costs. By the way, the worst job in the data center is the data migration manager. Forget it, no other job is as bad as that one. You get no attaboys for doing it. Right? And then when you screw up, oh boy. So in real terms, anything that can limit data migration is a good thing. And when you look at Data Lake, that limits data migration. So if you're already a MySEQ user, this is a pure MySQL as far as you're concerned. It's just a, a simple transition from one to the other. You may wanna make sure nothing broke and every you, all your tables are correct and your schema's, okay, but it's all the same. So it's a simple migration. So it's pretty much a non-event, right? When you migrate data from an O LTP to an O L A P, that's an ETL and that's gonna take time. >>But you don't have to do that with my SQL heat wave. So that's gone when you start talking about machine learning, again, you may have an etl, you may not, depending on the circumstances, but again, with my SQL heat wave, you don't, and you don't have duplicate storage, you don't have to copy it from one storage container to another to be able to be used in a different database, which by the way, ultimately adds much more cost than just the other service. So yeah, I looked at the migration and again, the users I talked to said it was a non-event. It was literally moving from one physical machine to another. If they had a new version of MySEQ running on something else and just wanted to migrate it over or just hook it up or just connect it to the data, it worked just fine. >>Okay, so every day it sounds like you guys feel, and we've certainly heard this, my colleague David Foyer, the semi-retired David Foyer was always very high on heatwave. So I think you knows got some real legitimacy here coming from a standing start, but I wanna talk about the competition, how they're likely to respond. I mean, if your AWS and you got heatwave is now in your cloud, so there's some good aspects of that. The database guys might not like that, but the infrastructure guys probably love it. Hey, more ways to sell, you know, EC two and graviton, but you're gonna, the database guys in AWS are gonna respond. They're gonna say, Hey, we got Redshift, we got aqua. What's your thoughts on, on not only how that's gonna resonate with customers, but I'm interested in what you guys think will a, I never say never about aws, you know, and are they gonna try to build, in your view a converged Oola and o LTP database? You know, Snowflake is taking an ecosystem approach. They've added in transactional capabilities to the portfolio so they're not standing still. What do you guys see in the competitive landscape in that regard going forward? Maybe Holger, you could start us off and anybody else who wants to can chime in, >>Happy to, you mentioned Snowflake last, we'll start there. I think Snowflake is imitating that strategy, right? That building out original data warehouse and the clouds tasking project to really proposition to have other data available there because AI is relevant for everybody. Ultimately people keep data in the cloud for ultimately running ai. So you see the same suite kind of like level strategy, it's gonna be a little harder because of the original positioning. How much would people know that you're doing other stuff? And I just, as a former developer manager of developers, I just don't see the speed at the moment happening at Snowflake to become really competitive to Oracle. On the flip side, putting my Oracle hat on for a moment back to you, Mark and Iran, right? What could Oracle still add? Because the, the big big things, right? The traditional chasms in the database world, they have built everything, right? >>So I, I really scratched my hat and gave Nipon a hard time at Cloud world say like, what could you be building? Destiny was very conservative. Let's get the Lakehouse thing done, it's gonna spring next year, right? And the AWS is really hard because AWS value proposition is these small innovation teams, right? That they build two pizza teams, which can be fit by two pizzas, not large teams, right? And you need suites to large teams to build these suites with lots of functionalities to make sure they work together. They're consistent, they have the same UX on the administration side, they can consume the same way, they have the same API registry, can't even stop going where the synergy comes to play over suite. So, so it's gonna be really, really hard for them to change that. But AWS super pragmatic. They're always by themselves that they'll listen to customers if they learn from customers suite as a proposition. I would not be surprised if AWS trying to bring things closer together, being morely together. >>Yeah. Well how about, can we talk about multicloud if, if, again, Oracle is very on on Oracle as you said before, but let's look forward, you know, half a year or a year. What do you think about Oracle's moves in, in multicloud in terms of what kind of penetration they're gonna have in the marketplace? You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at the, the Microsoft Azure deal. I think that's really interesting. I've, I've called it a little bit of early days of a super cloud. What impact do you think this is gonna have on, on the marketplace? But, but both. And think about it within Oracle's customer base, I have no doubt they'll do great there. But what about beyond its existing install base? What do you guys think? >>Ryan, do you wanna jump on that? Go ahead. Go ahead Ryan. No, no, no, >>That's an excellent point. I think it aligns with what we've been talking about in terms of Lakehouse. I think Lake House will enable Oracle to pull more customers, more bicycle customers onto the Oracle platforms. And I think we're seeing all the signs pointing toward Oracle being able to make more inroads into the overall market. And that includes garnishing customers from the leaders in, in other words, because they are, you know, coming in as a innovator, a an alternative to, you know, the AWS proposition, the Google cloud proposition that they have less to lose and there's a result they can really drive the multi-cloud messaging to resonate with not only their existing customers, but also to be able to, to that question, Dave's posing actually garnish customers onto their platform. And, and that includes naturally my sequel but also OCI and so forth. So that's how I'm seeing this playing out. I think, you know, again, Oracle's reporting is indicating that, and I think what we saw, Oracle Cloud world is definitely validating the idea that Oracle can make more waves in the overall market in this regard. >>You know, I, I've floated this idea of Super cloud, it's kind of tongue in cheek, but, but there, I think there is some merit to it in terms of building on top of hyperscale infrastructure and abstracting some of the, that complexity. And one of the things that I'm most interested in is industry clouds and an Oracle acquisition of Cerner. I was struck by Larry Ellison's keynote, it was like, I don't know, an hour and a half and an hour and 15 minutes was focused on healthcare transformation. Well, >>So vertical, >>Right? And so, yeah, so you got Oracle's, you know, got some industry chops and you, and then you think about what they're building with, with not only oci, but then you got, you know, MyQ, you can now run in dedicated regions. You got ADB on on Exadata cloud to customer, you can put that OnPrem in in your data center and you look at what the other hyperscalers are, are doing. I I say other hyperscalers, I've always said Oracle's not really a hyperscaler, but they got a cloud so they're in the game. But you can't get, you know, big query OnPrem, you look at outposts, it's very limited in terms of, you know, the database support and again, that that will will evolve. But now you got Oracle's got, they announced Alloy, we can white label their cloud. So I'm interested in what you guys think about these moves, especially the industry cloud. We see, you know, Walmart is doing sort of their own cloud. You got Goldman Sachs doing a cloud. Do you, you guys, what do you think about that and what role does Oracle play? Any thoughts? >>Yeah, let me lemme jump on that for a moment. Now, especially with the MyQ, by making that available in multiple clouds, what they're doing is this follows the philosophy they've had the past with doing cloud, a customer taking the application and the data and putting it where the customer lives. If it's on premise, it's on premise. If it's in the cloud, it's in the cloud. By making the mice equal heat wave, essentially a plug compatible with any other mice equal as far as your, your database is concern and then giving you that integration with O L A P and ML and Data Lake and everything else, then what you've got is a compelling offering. You're making it easier for the customer to use. So I look the difference between MyQ and the Oracle database, MyQ is going to capture market more market share for them. >>You're not gonna find a lot of new users for the Oracle debate database. Yeah, there are always gonna be new users, don't get me wrong, but it's not gonna be a huge growth. Whereas my SQL heatwave is probably gonna be a major growth engine for Oracle going forward. Not just in their own cloud, but in AWS and in Azure and on premise over time that eventually it'll get there. It's not there now, but it will, they're doing the right thing on that basis. They're taking the services and when you talk about multicloud and making them available where the customer wants them, not forcing them to go where you want them, if that makes sense. And as far as where they're going in the future, I think they're gonna take a page outta what they've done with the Oracle database. They'll add things like JSON and XML and time series and spatial over time they'll make it a, a complete converged database like they did with the Oracle database. The difference being Oracle database will scale bigger and will have more transactions and be somewhat faster. And my SQL will be, for anyone who's not on the Oracle database, they're, they're not stupid, that's for sure. >>They've done Jason already. Right. But I give you that they could add graph and time series, right. Since eat with, Right, Right. Yeah, that's something absolutely right. That's, that's >>A sort of a logical move, right? >>Right. But that's, that's some kid ourselves, right? I mean has worked in Oracle's favor, right? 10 x 20 x, the amount of r and d, which is in the MyQ space, has been poured at trying to snatch workloads away from Oracle by starting with IBM 30 years ago, 20 years ago, Microsoft and, and, and, and didn't work, right? Database applications are extremely sticky when they run, you don't want to touch SIM and grow them, right? So that doesn't mean that heat phase is not an attractive offering, but it will be net new things, right? And what works in my SQL heat wave heat phases favor a little bit is it's not the massive enterprise applications which have like we the nails like, like you might be only running 30% or Oracle, but the connections and the interfaces into that is, is like 70, 80% of your enterprise. >>You take it out and it's like the spaghetti ball where you say, ah, no I really don't, don't want to do all that. Right? You don't, don't have that massive part with the equals heat phase sequel kind of like database which are more smaller tactical in comparison, but still I, I don't see them taking so much share. They will be growing because of a attractive value proposition quickly on the, the multi-cloud, right? I think it's not really multi-cloud. If you give people the chance to run your offering on different clouds, right? You can run it there. The multi-cloud advantages when the Uber offering comes out, which allows you to do things across those installations, right? I can migrate data, I can create data across something like Google has done with B query Omni, I can run predictive models or even make iron models in different place and distribute them, right? And Oracle is paving the road for that, but being available on these clouds. But the multi-cloud capability of database which knows I'm running on different clouds that is still yet to be built there. >>Yeah. And >>That the problem with >>That, that's the super cloud concept that I flowed and I I've always said kinda snowflake with a single global instance is sort of, you know, headed in that direction and maybe has a league. What's the issue with that mark? >>Yeah, the problem with the, with that version, the multi-cloud is clouds to charge egress fees. As long as they charge egress fees to move data between clouds, it's gonna make it very difficult to do a real multi-cloud implementation. Even Snowflake, which runs multi-cloud, has to pass out on the egress fees of their customer when data moves between clouds. And that's really expensive. I mean there, there is one customer I talked to who is beta testing for them, the MySQL heatwave and aws. The only reason they didn't want to do that until it was running on AWS is the egress fees were so great to move it to OCI that they couldn't afford it. Yeah. Egress fees are the big issue but, >>But Mark the, the point might be you might wanna root query and only get the results set back, right was much more tinier, which been the answer before for low latency between the class A problem, which we sometimes still have but mostly don't have. Right? And I think in general this with fees coming down based on the Oracle general E with fee move and it's very hard to justify those, right? But, but it's, it's not about moving data as a multi-cloud high value use case. It's about doing intelligent things with that data, right? Putting into other places, replicating it, what I'm saying the same thing what you said before, running remote queries on that, analyzing it, running AI on it, running AI models on that. That's the interesting thing. Cross administered in the same way. Taking things out, making sure compliance happens. Making sure when Ron says I don't want to be American anymore, I want to be in the European cloud that is gets migrated, right? So tho those are the interesting value use case which are really, really hard for enterprise to program hand by hand by developers and they would love to have out of the box and that's yet the innovation to come to, we have to come to see. But the first step to get there is that your software runs in multiple clouds and that's what Oracle's doing so well with my SQL >>Guys. Amazing. >>Go ahead. Yeah. >>Yeah. >>For example, >>Amazing amount of data knowledge and, and brain power in this market. Guys, I really want to thank you for coming on to the cube. Ron Holger. Mark, always a pleasure to have you on. Really appreciate your time. >>Well all the last names we're very happy for Romanic last and moderator. Thanks Dave for moderating us. All right, >>We'll see. We'll see you guys around. Safe travels to all and thank you for watching this power panel, The Truth About My SQL Heat Wave on the cube. Your leader in enterprise and emerging tech coverage.

Published Date : Nov 1 2022

SUMMARY :

Always a pleasure to have you on. I think you just saw him at Oracle Cloud World and he's come on to describe this is doing, you know, Google is, you know, we heard Google Cloud next recently, They own somewhere between 30 to 50% depending on who you read migrate from one cloud to another and suddenly you have a very compelling offer. All right, so thank you for that. And they certainly with the AI capabilities, And I believe strongly that long term it's gonna be ones who create better value for So I mean it's certainly, you know, when, when Oracle talks about the competitors, So what do you make of the benchmarks? say, Snowflake when it comes to, you know, the Lakehouse platform and threat to keep, you know, a customer in your own customer base. And oh, by the way, as you grow, And I know you look at this a lot, to insight, it doesn't improve all those things that you want out of a database or multiple databases So what about, I wonder ho if you could chime in on the developer angle. they don't have to license more things, send you to more trainings, have more risk of something not being delivered, all the needs of an enterprise to run certain application use cases. I mean I, you know, the rumor was the TK Thomas Curian left Oracle And I think, you know, to holder's point, I think that definitely lines But I agree with Mark, you know, the short term discounting is just a stall tag. testament to Oracle's ongoing ability to, you know, make the ecosystem Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able So when you say, yeah, their queries are much better against the lake house in You don't have to come to us to get these, these benefits, I mean the long term, you know, customers tend to migrate towards suite, but the new shiny bring the software to the data is of course interesting and unique and totally an Oracle issue in And the third one, lake house to be limited and the terabyte sizes or any even petabyte size because you want keynote and he was talking about how, you know, most security issues are human I don't think people are gonna buy, you know, lake house exclusively cause of And then, you know, that allows, for example, the specialists to And and what did you learn? The one thing before I get to that, I want disagree with And the customers I talk to love it. the migration cost or do you kind of conveniently leave that out or what? And when you look at Data Lake, that limits data migration. So that's gone when you start talking about So I think you knows got some real legitimacy here coming from a standing start, So you see the same And you need suites to large teams to build these suites with lots of functionalities You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at Ryan, do you wanna jump on that? I think, you know, again, Oracle's reporting I think there is some merit to it in terms of building on top of hyperscale infrastructure and to customer, you can put that OnPrem in in your data center and you look at what the So I look the difference between MyQ and the Oracle database, MyQ is going to capture market They're taking the services and when you talk about multicloud and But I give you that they could add graph and time series, right. like, like you might be only running 30% or Oracle, but the connections and the interfaces into You take it out and it's like the spaghetti ball where you say, ah, no I really don't, global instance is sort of, you know, headed in that direction and maybe has a league. Yeah, the problem with the, with that version, the multi-cloud is clouds And I think in general this with fees coming down based on the Oracle general E with fee move Yeah. Guys, I really want to thank you for coming on to the cube. Well all the last names we're very happy for Romanic last and moderator. We'll see you guys around.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MarkPERSON

0.99+

Ron HolgerPERSON

0.99+

RonPERSON

0.99+

Mark StammerPERSON

0.99+

IBMORGANIZATION

0.99+

Ron WestfallPERSON

0.99+

RyanPERSON

0.99+

AWSORGANIZATION

0.99+

DavePERSON

0.99+

WalmartORGANIZATION

0.99+

Larry EllisonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

OracleORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Holgar MuellerPERSON

0.99+

AmazonORGANIZATION

0.99+

Constellation ResearchORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

17 timesQUANTITY

0.99+

twoQUANTITY

0.99+

David FoyerPERSON

0.99+

44%QUANTITY

0.99+

1.2%QUANTITY

0.99+

4.8 billionQUANTITY

0.99+

JasonPERSON

0.99+

UberORGANIZATION

0.99+

Fu Chim ResearchORGANIZATION

0.99+

Dave AntePERSON

0.99+

Steve Mullaney, Aviatrix | Supercloud22


 

[Music] we're here with steve melanie the president and ceo of aviatrix steve john and i started this whole super cloud narrative as a way to describe that something different is happening specifically within the aws ecosystem but more broadly across the cloud landscape at re invent last year you and i spoke on the cube and you said one of your investors guy named nick sterile said to you at the show it's happening steve welcome to the cube what's happening what did nick mean by that yeah we were we were just getting ready to go on and i leaned over and he looked at me and he whispered in my ear and said it's happening he said it just like that and and you're right it was it was kind of funny and we talked about that and what he means is enterprises you know this is why i went to aviatrix three and a half years ago is the the the flip switch for enterprises and they said now we mean it we've been talking about cloud for 12 years or 15 years now we mean it we are digitally transforming we are the movement to cloud is going to make that happen and oh by the way of course it's multi-cloud because enterprises put workloads where they run best where they have the best security the best performance the best cost and the business is driving this transformation and they decide that i'm going to use that azure and another business unit decides i'm using google and another one says i'm using aws and so of course it's going to be multi-cloud and i think we're going to start seeing actual multi-cloud applications once that infrastructure and you know you call it the super cloud once that starts getting built developers are going to go wait a minute so i can pick this feature from google and and that service from azure and that service from aws easily without any hesitation once that happens they're going to start really developing today there aren't multi-cloud applications but but but the what's happening is the enterprise embracing public cloud they're using multiple clouds many of them call it four plus one right they're four different public clouds plus what they have on prem that to me is what's happening i am now re-architecting my enterprise infrastructure from applications all the way down to the network and i am embracing uh uh public clouds in that in that process so i mean you nailed us so many things in there i mean digitally transforming to me this is the digital transformation it's leveraging embracing the capex from the hyperscalers now you know people in the industry we're not trying to do what gartner does and create a new category per se but we do use super cloud as a metaphor so i don't expect necessarily vendors to use it or not but but i and i get that but when you talk about multi-cloud what specifically is new in other words what you touched on some of this stuff what constitutes a modern multi-cloud or what we would call a super cloud you know network architecture what are the salient attributes yeah i would say today so two years ago there was no such thing even as multiple clouds it was aws let's be clear everything was aws and for people to even back then two three years ago to even envision that there would be anything else other than aws people couldn't even envision now people kind of go yeah that was done we now see that we're going to use multiple clouds we're going to use azure we're going to use gcp and we're going to use this and we'll guess we're going to use oracle and even ollie cloud we're going to use five or four or five different public clouds what's but that would be i think of as multiple clouds but from an i.t perspective they need to be able to support all those clouds in these shared services and what they're going to do i actually think we're starting and you may have hit on something in the super cloud or i know you've talked about metacloud that that's got bad connotations for facebook i know everybody's like no please not another meta thing but there is that concept of this abstracted layer above you know writing we call it you know altitude you know aviatrix everything's you know riding above the clouds right that that that common abstracted layer this application infrastructure that runs the application that rides above all the different public clouds and i think once we do that you know dave what's going to happen is i think really what's going to happen is you're going to start seeing these these multi-cloud applications which to my knowledge really doesn't exist today i i think that might be the next phase and in order for that to happen you have to have all of the infrastructure be multi-cloud meaning not just networking and network security from from from aviation but you need snowflake you need hashtag you need datadog you need all the new horsemen of the new multi-cloud which isn't the old guys right this is all new people aviatrix dashie snowflake datadonk you name it that are going to be able to deliver all this multi-cloud cross-cloud wherever you want to talk about it such that application development and deployment can happen seamlessly and frictionlessly across multi-cloud once that happens the entire stack then you're going to start seeing and that to me starts enabling this what you guys call you know the super cloud the meta cloud the whatever cloud but that then rides above all the individual clouds that that's going to start getting a whole new realm of application development in my mind so we've got some work to do to basic do some basic blocking and tackling then the application developers can really build on top of that so so some of the skeptics on on this topic would ask how do you envision this changing networking versus it just being a bolt-on to existing fossilized network infrastructure in other words yeah how do we get from point a where we are today to point b you know so-called networking so we can actually build those uh super cloud applications yeah so you know what it is it's interesting because it goes back to my background at nasira and what we used to talk about then it isn't about managing complexity it's about creating simplicity it's very different and when you put the intelligence into the software right this is what computer science is all about we're turning networking into computer science when you create an abstraction layer we are not just an overlay day we dave we actually integrate in with the native services of the cloud we are not managing the complexity of these multi-clouds we are using it you know controlling the native constructs adding our own intelligence to this and then creating what is basically simplification for the people above it so we're simplifying things not just managing the complexity that's how you get the agility for cloud that's how you get to be able to do this because if all you are is a veneer on top of complexity you're just hiding complexity you're not creating simplicity and what happens is it actually probably gets more complex because if all you're doing is hiding the bad stuff you're not getting rid of it i love that i love that we're doing that at the networking and network security layer you're going to see snowflake and datadog and other people do it at their layers you know i reminds of a conversation i had with cause the one of the founders of pure storage who they're all about simplicity this idea of of creating simplicity versus like you said just creating you know a way to handle the complexity compare you know pure storage with the sort of old legacy emc storage devices and that's what you had you had you you had emc managing the complexity at pure storage disrupting by creating simplicity so what are the challenges of creating that simplicity and delivering that seamless experience that continuous experience across cloud is it engineering is it mindset is it culture is it technology what is it well i mean look at look you see the recession that we're we're hitting you see there is a significant problem that we have in the general it industry right now and it's called skills gap skills shortage it's two problems we don't have enough people and we don't have enough people that know cloud and the reason is everybody on the same tuesday three and a half years ago all said now i mean i'm moving the cloud we're a technology company we don't make sneakers anymore we don't make beer we're a technology company and we're going to digitally transform and we're going to move the cloud guess what three years ago there were probably seven people that understood cloud now everyone on the same tuesday morning all decides to try to hire those same seven people there's just not enough people around so you're going to need software and you're going to have to put the intelligence into the software because you're not going to be able to a hire those people and b even if you hire them you can't keep them as soon as they learn cloud guess what happens dave they're off they're on to the next job at the next highest bidder so how are you going to handle that you have to have software that intelligent software that is going to simplify things for you we have people managing massive multi-cloud network and network security people with two people on-prem they got hundreds right you it's not about taking that complex model that it had on-prem and jam it into the cloud you don't have the people to do it and you're not going to get the people to do it you know i want to ask you yeah so i want to ask you about the go to market challenges because we our industry gets a bad rap for for selling we're really good at selling and then but but actually delivering what we sell sometimes we fall down there so so i love tom sweet as cfo of of dell he talks about the the say do ratio uh how that's actually got to be low but you know but you know what i mean uh the math the fraction guy right so but do do what you say you're going to do are there specific go to market challenges related to this type of cross cloud selling where you can set you have to set the customer's expectations because what you're describing is not going to happen overnight it's a journey but how do you handle that go to market challenge in terms of setting those customer expectations and actually delivering what you say you can sell and selling enough to actually have a successful business um so i think everything's outside in so so i think the the what really is exciting to me about this cloud computing model that with the transformation that we're going through is it is business-led and it is led by the ceo and it is led by the business units they run the business it is all about agility is about enabling my developers and it's all about driving the business market share revenue all these kind of things you know the last transformation of mainframe to on to pc client server was led by technologists it wasn't led by the business and it was it was really hard to tie that to the business so then so this is great because we can look at the initiatives you can look at the the the initiatives of the ceo in your company and now as an i.t person you can tie to that and they're going to have two or three or four initiatives and you can actually map it to that so that's where we start is let's look at what the c your ceo cares about he cares about this he cares about that he cares about driving revenue he cares about agility of getting new applications out to the market sooner to get more revenue there's this and oh by the way transfer made transforming your infrastructure to the cloud is the number one thing so it's all about agility so guess what you need to be able to respond to that immediately because tomorrow the business is going to go to you and say great news dave we're moving to gcp wait what no one told me about that well we're telling you now and uh you need to be ready tomorrow and if you're sitting there and you're tied to the low-level constructs and all you know is aws well i don't have those people and even if i have even if i could hire them i'm not allowed to because i can't hire anybody how am i going to respond to the business and the needs of the business now all of a sudden i'm in the way as the infrastructure team of the ceo's goals because we decided we need to we need to get the ai capabilities of gcp and we're moving to gcp or i just did a big deal with gcp and uh miraculously they said i need to run on gcp right i did a big deal with google right guess what comes along with that oh you're moving to gcp great the business says we're moving to gcp and the i.t guys are sitting there going well no one told me well sorry so it's all about agility it's all about that and the and and complexity is the killer to agility this is all about business they're going to come to you and say we just acquired a company we need to integrate them oh but they got they use the same ip address range as we do there's overlapping ips and oh by the way they're in a different cloud how do i do that no one cares the business doesn't care they're like me they're very impatient get it done or we'll find someone who will yeah so you've got to get ahead of that and so when we in terms of when we talk to customers that's what we do this isn't just about defenses this is about making you get promoted making you do good for your company such that you can respond to that and maybe even enable the company to go do that like we're going to enable people to do true multi-cloud applications because the infrastructure has to come first right you you put the foundation in your big skyscraper like the crew behind me and the plumbing before you start building the floors right so infrastructure comes first then comes then comes the applications yeah so you know again some people call it super cloud like us multi-cloud 2.0 but the the real mega trend that i see steve and i'd love you to bottom line this and bring us home is you know andreessen's all companies are software companies it's like version 2.0 of that and the applications that are going to be built on that top this tie into the digital transformations it was goldman it's jpmc it's walmart it's capital one b of a oracle's acquisition of cerner is going to be really interesting to see these super clouds form within industries bringing their data their tooling and their specific software expertise built on top of that hyperscale infrastructure and infrastructure for companies like yours so bottom line is stephen steve what's the future of cloud how do you see it the future is n plus one so two years ago people had one plus one i had what i had on prem and then what i had in aws they today if you talk to an enterprise they'll have what they call four plus one right which is four public clouds plus what i have on prem it's going to n plus one right and what's going to happen is exactly what you said you're going to have industry clouds you're going to the the multi-cloud aspect of it is going to end it's not going to go from four to one some people think oh it's not going to be four it's going down to one or two bs it's going to end it's going to a lot as they start extending to the edge and they start integrating out to the to the branch offices it's not going to be about that branch offer so that edge iot or edge computing or data centers or campus connecting into the cloud it's going to be the other way around the cloud is going to extend to those areas and you're going to have ai clouds you know whether it's you know ultra beauty who's a customer of ours who's starting to roll out ar and vr out to their retail stores to show you know makeup and this and the other thing these are new applications transformations are always driven by new applications that don't exist this isn't about lift and shift of the existing applications the 10x tam in this market is going to becomes all the new things that's where the explosion is going to happen and you're going to see end level those those branch offices are going to look like clouds and they're going to need to be stitched together and treated like one infrastructure so it's going to go from four plus one to n plus one and that's what you're gonna want as an enterprise i'm gonna want n clouds so we're gonna see an explosion it's not going to be four it's going to be end now at the end underneath all of that will be leveraging and effectively commoditizing the existing csps yeah and but you're going to have an explosion of people commoditizing them and just like the goldmans and the industry clubs are going to do they're going to build their own eye as well right no way no way it's that's what's going to happen it's going to be a 10x on what we saw last decade with sas it's all going to happen around clouds and supercloud steve malini thanks so much for coming back in the cube and helping us sort of formulate this thinking i mean it really started with with with you and myself and john and nick and really trying to think this through and watching this unfold before our eyes so great to have you back thank you yeah it's fun thanks for having me are you welcome but keep it right there for more action from super cloud 22 be right back [Music] you

Published Date : Sep 9 2022

SUMMARY :

that to me starts enabling this what you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
12 yearsQUANTITY

0.99+

threeQUANTITY

0.99+

twoQUANTITY

0.99+

tomorrowDATE

0.99+

Steve MullaneyPERSON

0.99+

nick sterilePERSON

0.99+

15 yearsQUANTITY

0.99+

fourQUANTITY

0.99+

fiveQUANTITY

0.99+

stevePERSON

0.99+

steve johnPERSON

0.99+

two problemsQUANTITY

0.99+

hundredsQUANTITY

0.99+

seven peopleQUANTITY

0.99+

awsORGANIZATION

0.99+

johnPERSON

0.99+

two years agoDATE

0.99+

todayDATE

0.99+

facebookORGANIZATION

0.99+

AviatrixORGANIZATION

0.98+

three years agoDATE

0.98+

nickPERSON

0.98+

gartnerORGANIZATION

0.98+

two peopleQUANTITY

0.98+

steve maliniPERSON

0.98+

steve melaniePERSON

0.98+

last yearDATE

0.97+

tuesdayDATE

0.97+

two three years agoDATE

0.97+

tuesday morningDATE

0.97+

oneQUANTITY

0.97+

googleORGANIZATION

0.96+

walmartORGANIZATION

0.96+

three and a half years agoDATE

0.96+

aviatrixORGANIZATION

0.96+

azureORGANIZATION

0.94+

last decadeDATE

0.94+

Supercloud22ORGANIZATION

0.93+

firstQUANTITY

0.93+

version 2.0OTHER

0.93+

three and a half years agoDATE

0.89+

a minuteQUANTITY

0.88+

10xQUANTITY

0.88+

four initiativesQUANTITY

0.85+

stephenPERSON

0.84+

supercloudORGANIZATION

0.82+

ultra beautyORGANIZATION

0.8+

super cloud 22ORGANIZATION

0.8+

andreessenPERSON

0.72+

pointOTHER

0.72+

nasiraORGANIZATION

0.72+

goldmansORGANIZATION

0.67+

oracleORGANIZATION

0.63+

tom sweetPERSON

0.62+

number oneQUANTITY

0.61+

dellORGANIZATION

0.57+

public cloudsQUANTITY

0.57+

premORGANIZATION

0.54+

snowflakeEVENT

0.52+

presidentPERSON

0.5+

azureTITLE

0.46+

cloudsORGANIZATION

0.43+