Irene Dankwa-Mullan, Marti Health | WiDS 2023
(light upbeat music) >> Hey, everyone. Welcome back to theCUBE's day long coverage of Women in Data Science 2023. Live from Stanford University, I'm Lisa Martin. We've had some amazing conversations today with my wonderful co-host, as you've seen. Tracy Zhang joins me next for a very interesting and inspiring conversation. I know we've been bringing them to you, we're bringing you another one here. Dr. Irene Dankwa-Mullan joins us, the Chief Medical Officer at Marti Health, and a speaker at WIDS. Welcome, Irene, it's great to have you. >> Thank you. I'm delighted to be here. Thank you so much for this opportunity. >> So you have an MD and a Master of Public Health. Covid must have been an interesting time for you, with an MPH? >> Very much so. >> Yeah, talk a little bit about you, your background, and Marti Health? This is interesting. This is a brand new startup. This is a digital health equity startup. >> Yes, yes. So, I'll start with my story a little bit about myself. So I was actually born in Ghana. I finished high school there and came here for college. What would I say? After I finished my undergraduate, I went to medical school at Dartmouth and I always knew I wanted to go into public health as well as medicine. So my medical education was actually five years. I did the MPH and my medical degree, at the same time, I got my MPH from Yale School of Public Health. And after I finished, I trained in internal medicine, Johns Hopkins, and after that I went into public health. I am currently living in Maryland, so I'm in Bethesda, Maryland, and that's where I've been. And really enjoyed public health, community health, combining that aspect of sort of prevention and wellness and also working in making sure that we have community health clinics and safety net clinics. So a great experience there. I also had the privilege, after eight years in public health, I went to the National Institute of Health. >> Oh, wow. >> Where I basically worked in clinical research, basically on minority health and health disparities. So, I was in various leadership roles and helped to advance the science of health equity, working in collaboration with a lot of scientists and researchers at the NIH, really to advance the science. >> Where did your interest in health equity come from? Was there a defining moment when you were younger and you thought "There's a lot of inequities here, we have to do something about this." Where did that interest start? >> That's a great question. I think this influence was basically maybe from my upbringing as well as my family and also what I saw around me in Ghana, a lot of preventable diseases. I always say that my grandfather on my father's side was a great influence, inspired me and influenced my career because he was the only sibling, really, that went to school. And as a result, he was able to earn enough money and built, you know, a hospital. >> Oh wow. >> In their hometown. >> Oh my gosh! >> It started as a 20 bed hospital and now it's a 350 bed hospital. >> Oh, wow, that's amazing! >> In our hometown. And he knew that education was important and vital as well for wellbeing. And so he really inspired, you know, his work inspired me. And I remember in residency I went with a group of residents to this hospital in Ghana just to help over a summer break. So during a summer where we went and helped take care of the sick patients and actually learned, right? What it is like to care for so many patients and- >> Yeah. >> It was really a humbling experience. But that really inspired me. I think also being in this country. And when I came to the U.S. and really saw firsthand how patients are treated differently, based on their background or socioeconomic status. I did see firsthand, you know, that kind of unconscious bias. And, you know, drew me to the field of health disparities research and wanted to learn more and do more and contribute. >> Yeah. >> Yeah. So, I was curious. Just when did the data science aspect tap in? Like when did you decide that, okay, data science is going to be a problem solving tool to like all the problems you just said? >> Yeah, that's a good question. So while I was at the NIH, I spent eight years there, and precision medicine was launched at that time and there was a lot of heightened interest in big data and how big data could help really revolutionize medicine and healthcare. And I got the opportunity to go, you know, there was an opportunity where they were looking for physicians or deputy chief health officer at IBM. And so I went to IBM, Watson Health was being formed as a new business unit, and I was one of the first deputy chief health officers really to lead the data and the science evidence. And that's where I realized, you know, we could really, you know, the technology in healthcare, there's been a lot of data that I think we are not really using or optimizing to make sure that we're taking care of our patients. >> Yeah. >> And so that's how I got into data science and making sure that we are building technologies using the right data to advance health equity. >> Right, so talk a little bit about health equity? We mentioned you're with Marti Health. You've been there for a short time, but Marti Health is also quite new, just a few months old. Digital health equity, talk about what Marti's vision is, what its mission is to really help start dialing down a lot of the disparities that you talked about that you see every day? >> Yeah, so, I've been so privileged. I recently joined Marti Health as their Chief Medical Officer, Chief Health Officer. It's a startup that is actually trying to promote a value-based care, also promote patient-centered care for patients that are experiencing a social disadvantage as a result of their race, ethnicity. And were starting to look at and focused on patients that have sickle cell disease. >> Okay. >> Because we realize that that's a population, you know, we know sickle cell disease is a genetic disorder. It impacts a lot of patients that are from areas that are endemic malaria. >> Yeah. >> Yeah. >> And most of our patients here are African American, and when, you know, they suffer so much stigma and discrimination in the healthcare system and complications from their sickle cell disease. And so what we want to do that we feel like sickle cell is a litmus test for disparities. And we want to make sure that they get in patient-centered care. We want to make sure that we are leveraging data and the research that we've done in sickle cell disease, especially on the continent of Africa. >> Okay. >> And provide, promote better quality care for the patients. >> That's so inspiring. You know, we've heard so many great stories today. Were you able to watch the keynote this morning? >> Yes. >> I loved how it always inspires me. This conference is always, we were talking about this all day, how you walk in the Arrillaga Alumni Center here where this event is held every year, the vibe is powerful, it's positive, it's encouraging. >> Inspiring, yeah. >> Absolutely. >> Inspiring. >> Yeah, yeah. >> It's a movement, WIDS is a movement. They've created this community where you feel, I don't know, kind of superhuman. "Why can't I do this? Why not me?" We heard some great stories this morning about data science in terms of applications. You have a great application in terms of health equity. We heard about it in police violence. >> Yes. >> Which is an epidemic in this country for sure, as we know. This happens too often. How can we use data and data science as a facilitator of learning more about that, so that that can stop? I think that's so important for more people to understand all of the broad applications of data science, whether it's police violence or climate change or drug discovery or health inequities. >> Irene: Yeah. >> The potential, I think we're scratching the surface. But the potential is massive. >> Tracy: It is. >> And this is an event that really helps women and underrepresented minorities think, "Why not me? Why can't I get involved in that?" >> Yeah, and I always say we use data to make an make a lot of decisions. And especially in healthcare, we want to be careful about how we are using data because this is impacting the health and outcomes of our patients. And so science evidence is really critical, you know? We want to make sure that data is inclusive and we have quality data. >> Yes. >> And it's transparent. Our clinical trials, I always say are not always diverse and inclusive. And if that's going to form the evidence base or data points then we're doing more harm than good for our patients. And so data science, it's huge. I mean, we need a robust, responsible, trustworthy data science agenda. >> "Trust" you just brought up "trust." >> Yeah. >> I did. >> When we talk about data, we can't not talk about security and privacy and ethics but trust is table stakes. We have to be able to evaluate the data and trust in it. >> Exactly. >> And what it says and the story that can be told from it. So that trust factor is, I think, foundational to data science. >> We all see what happened with Covid, right? I mean, when the pandemic came out- >> Absolutely. >> Everyone wanted information. We wanted data, we wanted data we could trust. There was a lot of hesitancy even with the vaccine. >> Yeah. >> Right? And so public health, I mean, like you said, we had to do a lot of work making sure that the right information from the right data was being translated or conveyed to the communities. And so you are totally right. I mean, data and good information, relevant data is always key. >> Well- >> Is there any- Oh, sorry. >> Go ahead. >> Is there anything Marti Health is doing in like ensuring that you guys get the right data that you can put trust in it? >> Yes, absolutely. And so this is where we are, you know, part of it would be getting data, real world evidence data for patients who are being seen in the healthcare system with sickle cell disease, so that we can personalize the data to those patients and provide them with the right treatment, the right intervention that they need. And so part of it would be doing predictive modeling on some of the data, risk, stratifying risk, who in the sickle cell patient population is at risk of progressing. Or getting, you know, they all often get crisis, vaso-occlusive crisis because the cells, you know, the blood cell sickles and you want to avoid those chest crisis. And so part of what we'll be doing is, you know, using predictive modeling to target those at risk of the disease progressing, so that we can put in preventive measures. It's all about prevention. It's all about making sure that they're not being, you know, going to the hospital or the emergency room where sometimes they end up, you know, in pain and wanting pain medicine. And so. >> Do you see AI as being a critical piece in the transformation of healthcare, especially where inequities are concerned? >> Absolutely, and and when you say AI, I think it's responsible AI. >> Yes. >> And making sure that it's- >> Tracy: That's such a good point. >> Yeah. >> Very. >> With the right data, with relevant data, it's definitely key. I think there is so much data points that healthcare has, you know, in the healthcare space there's fiscal data, biological data, there's environmental data and we are not using it to the full capacity and full potential. >> Tracy: Yeah. >> And I think AI can do that if we do it carefully, and like I said, responsibly. >> That's a key word. You talked about trust, responsibility. Where data science, AI is concerned- >> Yeah. >> It has to be not an afterthought, it has to be intentional. >> Tracy: Exactly. >> And there needs to be a lot of education around it. Most people think, "Oh, AI is just for the technology," you know? >> Yeah, right. >> Goop. >> Yes. >> But I think we're all part, I mean everyone needs to make sure that we are collecting the right amount of data. I mean, I think we all play a part, right? >> We do. >> We do. >> In making sure that we have responsible AI, we have, you know, good data, quality data. And the data sciences is a multi-disciplinary field, I think. >> It is, which is one of the things that's exciting about it is it is multi-disciplinary. >> Tracy: Exactly. >> And so many of the people that we've talked to in data science have these very non-linear paths to get there, and so I think they bring such diversity of thought and backgrounds and experiences and thoughts and voices. That helps train the AI models with data that's more inclusive. >> Irene: Yes. >> Dropping down the volume on the bias that we know is there. To be successful, it has to. >> Definitely, I totally agree. >> What are some of the things, as we wrap up here, that you're looking forward to accomplishing as part of Marti Health? Like, maybe what's on the roadmap that you can share with us for Marti as it approaches the the second half of its first year? >> Yes, it's all about promoting health equity. It's all about, I mean, there's so much, well, I would start with, you know, part of the healthcare transformation is making sure that we are promoting care that's based on value and not volume, care that's based on good health outcomes, quality health outcomes, and not just on, you know, the quantity. And so Marti Health is trying to promote that value-based care. We are envisioning a world in which everyone can live their full life potential. Have the best health outcomes, and provide that patient-centered precision care. >> And we all want that. We all want that. We expect that precision and that personalized experience in our consumer lives, why not in healthcare? Well, thank you, Irene, for joining us on the program today. >> Thank you. >> Talking about what you're doing to really help drive the volume up on health equity, and raise awareness for the fact that there's a lot of inequities in there we have to fix. We have a long way to go. >> We have, yes. >> Lisa: But people like you are making an impact and we appreciate you joining theCUBE today and sharing what you're doing, thank you. >> Thank you. >> Thank you- >> Thank you for having me here. >> Oh, our pleasure. For our guest and Tracy Zhang, this is Lisa Martin from WIDS 2023, the eighth Annual Women in Data Science Conference brought to you by theCUBE. Stick around, our show wrap will be in just a minute. Thanks for watching. (light upbeat music)
SUMMARY :
we're bringing you another one here. Thank you so much for this opportunity. So you have an MD and This is a brand new startup. I did the MPH and my medical and researchers at the NIH, and you thought "There's and built, you know, a hospital. and now it's a 350 bed hospital. And so he really inspired, you I did see firsthand, you know, to like all the problems you just said? And I got the opportunity to go, you know, that we are building that you see every day? It's a startup that is that that's a population, you know, and when, you know, they care for the patients. the keynote this morning? how you walk in the community where you feel, all of the broad But the potential is massive. Yeah, and I always say we use data And if that's going to form the We have to be able to evaluate and the story that can be told from it. We wanted data, we wanted And so you are totally right. Is there any- And so this is where we are, you know, Absolutely, and and when you say AI, that healthcare has, you know, And I think AI can do That's a key word. It has to be And there needs to be a I mean, I think we all play a part, right? we have, you know, good the things that's exciting And so many of the that we know is there. and not just on, you know, the quantity. and that personalized experience and raise awareness for the fact and we appreciate you brought to you by theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Irene | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Ghana | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Irene Dankwa-Mullan | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
NIH | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
National Institute of Health | ORGANIZATION | 0.99+ |
eight years | QUANTITY | 0.99+ |
Yale School of Public Health | ORGANIZATION | 0.99+ |
20 bed | QUANTITY | 0.99+ |
Marti Health | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Watson Health | ORGANIZATION | 0.99+ |
pandemic | EVENT | 0.99+ |
U.S. | LOCATION | 0.99+ |
first | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Marti | ORGANIZATION | 0.98+ |
Marti | PERSON | 0.97+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
second half | QUANTITY | 0.96+ |
African American | OTHER | 0.94+ |
theCUBE | ORGANIZATION | 0.92+ |
Johns Hopkins | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Stanford University | ORGANIZATION | 0.91+ |
350 bed hospital | QUANTITY | 0.9+ |
WiDS 2023 | EVENT | 0.88+ |
malaria | OTHER | 0.84+ |
Africa | LOCATION | 0.83+ |
Dartmouth | ORGANIZATION | 0.82+ |
Women in Data Science 2023 | TITLE | 0.82+ |
Covid | PERSON | 0.8+ |
Arrillaga Alumni Center | LOCATION | 0.79+ |
every year | QUANTITY | 0.75+ |
WIDS | ORGANIZATION | 0.69+ |
Bethesda, Maryland | LOCATION | 0.69+ |
Dr. | PERSON | 0.63+ |
2023 | EVENT | 0.57+ |
Kelly Hoang, Gilead | WiDS 2023
(upbeat music) >> Welcome back to The Cubes coverage of WIDS 2023 the eighth Annual Women in Data Science Conference which is held at Stanford University. I'm your host, Lisa Martin. I'm really excited to be having some great co-hosts today. I've got Hannah Freytag with me, who is a data journalism master student at Stanford. We have yet another inspiring woman in technology to bring to you today. Kelly Hoang joins us, data scientist at Gilead. It's so great to have you, Kelly. >> Hi, thank you for having me today. I'm super excited to be here and share my journey with you guys. >> Let's talk about that journey. You recently got your PhD in information sciences, congratulations. >> Thank you. Yes, I just graduated, I completed my PhD in information sciences from University of Illinois Urbana-Champaign. And right now I moved to Bay Area and started my career as a data scientist at Gilead. >> And you're in better climate. Well, we do get snow here. >> Kelly: That's true. >> We proved that the last... And data science can show us all the climate change that's going on here. >> That's true. That's the topic of the data fund this year, right? To understand the changes in the climate. >> Yeah. Talk a little bit about your background. You were mentioning before we went live that you come from a whole family of STEM students. So you had that kind of in your DNA. >> Well, I consider myself maybe I was a lucky case. I did grew up in a family in the STEM environment. My dad actually was a professor in computer science. So I remember when I was at a very young age, I already see like datas, all of these computer science concepts. So grew up to be a data scientist is always something like in my mind. >> You aspired to be. >> Yes. >> I love that. >> So I consider myself in a lucky place in that way. But also, like during this journey to become a data scientist you need to navigate yourself too, right? Like you have this roots, like this foundation but then you still need to kind of like figure out yourself what is it? Is it really the career that you want to pursue? But I'm happy that I'm end up here today and where I am right now. >> Oh, we're happy to have you. >> Yeah. So you' re with Gilead now after you're completing your PhD. And were you always interested in the intersection of data science and health, or is that something you explored throughout your studies? >> Oh, that's an excellent question. So I did have background in computer science but I only really get into biomedical domain when I did my PhD at school. So my research during my PhD was natural language processing, NLP and machine learning and their applications in biomedical domains. And then when I graduated, I got my first job in Gilead Science. Is super, super close and super relevant to what my research at school. And at Gilead, I am working in the advanced analytics department, and our focus is to bring artificial intelligence and machine learning into supporting clinical decision making. And really the ultimate goal is how to use AI to accelerate the precision medicine. So yes, it's something very like... I'm very lucky to get the first job that which is very close to my research at school. >> That's outstanding. You know, when we talk about AI, we can't not talk about ethics, bias. >> Kelly: Right. >> We know there's (crosstalk) Yes. >> Kelly: In healthcare. >> Exactly. Exactly. Equities in healthcare, equities in so many things. Talk a little bit about what excites you about AI, what you're doing at Gilead to really influence... I mean this, we're talking about something that's influencing life and death situations. >> Kelly: Right. >> How are you using AI in a way that is really maximizing the opportunities that AI can bring and maximizing the value in the data, but helping to dial down some of the challenges that come with AI? >> Yep. So as you may know already with the digitalization of medical records, this is nowaday, we have a tremendous opportunities to fulfill the dream of precision medicine. And what I mean by precision medicines, means now the treatments for people can be really tailored to individual patients depending on their own like characteristic or demographic or whatever. And nature language processing and machine learning, and AI in general really play a key role in that innovation, right? Because like there's a vast amount of information of patients and patient journeys or patient treatment is conducted and recorded in text. So that's why our group was established. Actually our department, advanced analytic department in Gilead is pretty new. We established our department last year. >> Oh wow. >> But really our mission is to bring AI into this field because we see the opportunity now. We have a vast amount of data about patient about their treatments, how we can mine these data how we can understand and tailor the treatment to individuals. And give everyone better care. >> I love that you brought up precision medicine. You know, I always think, if I kind of abstract everything, technology, data, connectivity, we have this expectation in our consumer lives. We can get anything we want. Not only can we get anything we want but we expect whoever we're engaging with, whether it's Amazon or Uber or Netflix to know enough about me to get me that precise next step. I don't think about precision medicine but you bring up such a great point. We expect these tailored experiences in our personal lives. Why not expect that in medicine as well? And have a tailored treatment plan based on whatever you have, based on data, your genetics, and being able to use NLP, machine learning and AI to drive that is really exciting. >> Yeah. You recap it very well, but then you also bring up a good point about the challenges to bring AI into this field right? Definitely this is an emerging field, but also very challenging because we talk about human health. We are doing the work that have direct impact to human health. So everything need to be... Whatever model, machine learning model that you are building, developing you need to be precise. It need to be evaluated properly before like using as a product, apply into the real practice. So it's not like recommendation systems for shopping or anything like that. We're talking about our actual health. So yes, it's challenging that way. >> Yeah. With that, you already answered one of the next questions I had because like medical data and health data is very sensitive. And how you at Gilead, you know, try to protect this data to protect like the human beings, you know, who are the data in the end. >> The security aspect is critical. You bring up a great point about sensitive data. We think of healthcare as sensitive data. Or PII if you're doing a bank transaction. We have to be so careful with that. Where is security, data security, in your everyday work practices within data science? Is it... I imagine it's a fundamental piece. >> Yes, for sure. We at Gilead, for sure, in data science organization we have like intensive trainings for employees about data privacy and security, how you use the data. But then also at the same time, when we work directly with dataset, it's not that we have like direct information about patient at like very granular level. Everything is need to be kind of like anonymized at some points to protect patient privacy. So we do have rules, policies to follow to put that in place in our organization. >> Very much needed. So some of the conversations we heard, were you able to hear the keynote this morning? >> Yes. I did. I attended. Like I listened to all of them. >> Isn't it fantastic? >> Yes, yes. Especially hearing these women from different backgrounds, at different level of their professional life, sharing their journeys. It's really inspiring. >> And Hannah, and I've been talking about, a lot of those journeys look like this. >> I know >> You just kind of go... It's very... Yours is linear, but you're kind of the exception. >> Yeah, this is why I consider my case as I was lucky to grow up in STEM environment. But then again, back to my point at the beginning, sometimes you need to navigate yourself too. Like I did mention about, I did my pa... Sorry, my bachelor degree in Vietnam, in STEM and in computer science. And that time, there's only five girls in a class of 100 students. So I was not the smartest person in the room. And I kept my minority in that areas, right? So at some point I asked myself like, "Huh, I don't know. Is this really my careers." It seems that others, like male people or students, they did better than me. But then you kind of like, I always have this passion of datas. So you just like navigate yourself, keep pushing yourself over those journey. And like being where I am right now. >> And look what you've accomplished. >> Thank you. >> Yeah. That's very inspiring. And yeah, you mentioned how you were in the classroom and you were only one of the few women in the room. And what inspired or motivated you to keep going, even though sometimes you were at these points where you're like, "Okay, is this the right thing?" "Is this the right thing for me?" What motivated you to keep going? >> Well, I think personally for me, as a data scientist or for woman working in data science in general, I always try to find a good story from data. Like it's not, when you have a data set, well it's important for you to come up with methodologies, what are you going to do with the dataset? But I think it's even more important to kind of like getting the context of the dataset. Like think about it like what is the story behind this dataset? What is the thing that you can get out of it and what is the meaning behind? How can we use it to help use it in a useful way. To have in some certain use case. So I always have that like curiosity and encouragement in myself. Like every time someone handed me a data set, I always think about that. So it's helped me to like build up this kind of like passion for me. And then yeah. And then become a data scientist. >> So you had that internal drive. I think it's in your DNA as well. When you were one of five. You were 5% women in your computer science undergrad in Vietnam. Yet as Hannah was asking you, you found a lot of motivation from within. You embrace that, which is so key. When we look at some of the statistics, speaking of data, of women in technical roles. We've seen it hover around 25% the last few years, probably five to 10. I was reading some data from anitab.org over the weekend, and it shows that it's now, in 2022, the number of women in technical roles rose slightly, but it rose, 27.6%. So we're seeing the needle move slowly. But one of the challenges that still remains is attrition. Women who are leaving the role. You've got your PhD. You have a 10 month old, you've got more than one child. What would you advise to women who might be at that crossroads of not knowing should I continue my career in climbing the ladder, or do I just go be with my family or do something else? What's your advice to them in terms of staying the path? >> I think it's really down to that you need to follow your passion. Like in any kind of job, not only like in data science right? If you want to be a baker, or you want to be a chef, or you want to be a software engineer. It's really like you need to ask yourself is it something that you're really passionate about? Because if you really passionate about something, regardless how difficult it is, like regardless like you have so many kids to take care of, you have the whole family to take care of. You have this and that. You still can find your time to spend on it. So it's really like let yourself drive your own passion. Drive the way where you leading to. I guess that's my advice. >> Kind of like following your own North Star, right? Is what you're suggesting. >> Yeah. >> What role have mentors played in your career path, to where you are now? Have you had mentors on the way or people who inspired you? >> Well, I did. I certainly met quite a lot of women who inspired me during my journey. But right now, at this moment, one person, particular person that I just popped into my mind is my current manager. She's also data scientist. She's originally from Caribbean and then came to the US, did her PhDs too, and now led a group, all women. So believe it or not, I am in a group of all women working in data science. So she's really like someone inspire me a lot, like someone I look up to in this career. >> I love that. You went from being one of five females in a class of 100, to now having a PhD in information sciences, and being on an all female data science team. That's pretty cool. >> It's great. Yeah, it's great. And then you see how fascinating that, how things shift right? And now today we are here in a conference that all are women in data science. >> Yeah. >> It's extraordinary. >> So this year we're fortunate to have WIDS coincide this year with the actual International Women's Day, March 8th which is so exciting. Which is always around this time of year, but it's great to have it on the day. The theme of this International Women's Day this year is embrace equity. When you think of that theme, and your career path, and what you're doing now, and who inspires you, how can companies like Gilead benefit from embracing equity? What are your thoughts on that as a theme? >> So I feel like I'm very lucky to get my first job at Gilead. Not only because the work that we are doing here very close to my research at school, but also because of the working environment at Gilead. Inclusion actually is one of the five core values of Gilead. >> Nice. >> So by that, we means we try to create and creating a working environment that all of the differences are valued. Like regardless your background, your gender. So at Gilead, we have women at Gilead which is a global network of female employees, that help us to strengthen our inclusion culture, and also to influence our voices into the company cultural company policy and practice. So yeah, I'm very lucky to work in the environment nowadays. >> It's impressive to not only hear that you're on an all female data science team, but what Gilead is doing and the actions they're taking. It's one thing, we've talked about this Hannah, for companies, and regardless of industry, to say we're going to have 50% women in our workforce by 2030, 2035, 2040. It's a whole other ballgame for companies like Gilead to actually be putting pen to paper. To actually be creating a strategy that they're executing on. That's awesome. And it must feel good to be a part of a company who's really adapting its culture to be more inclusive, because there's so much value that comes from inclusivity, thought diversity, that ultimately will help Gilead produce better products and services. >> Yeah. Yes. Yeah. Actually this here is the first year Gilead is a sponsor of the WIDS Conference. And we are so excited to establish this relationship, and looking forward to like having more collaboration with WIDS in the future. >> Excellent. Kelly we've had such a pleasure having you on the program. Thank you for sharing your linear path. You are definitely a unicorn. We appreciate your insights and your advice to those who might be navigating similar situations. Thank you for being on theCUBE today. >> Thank you so much for having me. >> Oh, it was our pleasure. For our guests, and Hannah Freytag this is Lisa Martin from theCUBE. Coming to you from WIDS 2023, the eighth annual conference. Stick around. Our final guest joins us in just a minute.
SUMMARY :
in technology to bring to you today. and share my journey with you guys. You recently got your PhD And right now I moved to Bay Area And you're in better climate. We proved that the last... That's the topic of the So you had that kind of in your DNA. in the STEM environment. that you want to pursue? or is that something you and our focus is to bring we can't not talk about ethics, bias. what excites you about AI, really tailored to individual patients to bring AI into this field I love that you brought about the challenges to bring And how you at Gilead, you know, We have to be so careful with that. Everything is need to be So some of the conversations we heard, Like I listened to all of them. at different level of And Hannah, and I've kind of the exception. So you just like navigate yourself, And yeah, you mentioned how So it's helped me to like build up So you had that internal drive. I think it's really down to that you Kind of like following and then came to the US, five females in a class of 100, And then you see how fascinating that, but it's great to have it on the day. but also because of the So at Gilead, we have women at Gilead And it must feel good to be a part and looking forward to like Thank you for sharing your linear path. Coming to you from WIDS 2023,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kelly | PERSON | 0.99+ |
Kelly Hoang | PERSON | 0.99+ |
Hannah Freytag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Caribbean | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Vietnam | LOCATION | 0.99+ |
Gilead | ORGANIZATION | 0.99+ |
2030 | DATE | 0.99+ |
2035 | DATE | 0.99+ |
2022 | DATE | 0.99+ |
2040 | DATE | 0.99+ |
Bay Area | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
5% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
WIDS | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
five girls | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
first job | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
100 students | QUANTITY | 0.99+ |
March 8th | DATE | 0.99+ |
more than one child | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
International Women's Day | EVENT | 0.98+ |
five core | QUANTITY | 0.98+ |
Gilead Science | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
five females | QUANTITY | 0.97+ |
University of Illinois Urbana-Champaign | ORGANIZATION | 0.97+ |
10 month old | QUANTITY | 0.96+ |
North Star | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.93+ |
first year | QUANTITY | 0.93+ |
The Cubes | ORGANIZATION | 0.93+ |
around 25% | QUANTITY | 0.91+ |
one thing | QUANTITY | 0.89+ |
WIDS 2023 | EVENT | 0.88+ |
WIDS | EVENT | 0.88+ |
this morning | DATE | 0.88+ |
anitab.org | OTHER | 0.86+ |
Gilead | PERSON | 0.86+ |
Stanford | ORGANIZATION | 0.85+ |
100 | QUANTITY | 0.79+ |
Stanford University | LOCATION | 0.79+ |
eighth annual conference | QUANTITY | 0.78+ |
TheCUBE Insights | WiDS 2023
(energetic music) >> Everyone, welcome back to theCUBE's coverage of WiDS 2023. This is the eighth annual Women in Data Science Conference. As you know, WiDS is not just a conference or an event, it's a movement. This is going to include over 100,000 people in the next year WiDS 2023 in 200-plus countries. It is such a powerful movement. If you've had a chance to be part of the Livestream or even be here in person with us at Stanford University, you know what I'm talking about. This is Lisa Martin. I have had the pleasure all day of working with two fantastic graduate students in Stanford's Data Journalism Master's Program. Hannah Freitag has been here. Tracy Zhang, ladies, it's been such a pleasure working with you today. >> Same wise. >> I want to ask you both what are, as we wrap the day, I'm so inspired, I feel like I could go build an airplane. >> Exactly. >> Probably can't. But WiDS is just the inspiration that comes from this event. When you walk in the front door, you can feel it. >> Mm-hmm. >> Tracy, talk a little bit about what some of the things are that you heard today that really inspired you. >> I think one of the keyword that's like in my mind right now is like finding a mentor. >> Yeah. >> And I think, like if I leave this conference if I leave the talks, the conversations with one thing is that I'm very positive that if I want to switch, say someday, from Journalism to being a Data Analyst, to being like in Data Science, I'm sure that there are great role models for me to look up to, and I'm sure there are like mentors who can guide me through the way. So, like that, I feel reassured for some reason. >> It's a good feeling, isn't it? What do you, Hannah, what about you? What's your takeaway so far of the day? >> Yeah, one of my key takeaways is that anything's possible. >> Mm-hmm. >> So, if you have your vision, you have the role model, someone you look up to, and even if you have like a different background, not in Data Science, Data Engineering, or Computer Science but you're like, "Wow, this is really inspiring. I would love to do that." As long as you love it, you're passionate about it, and you are willing to, you know, take this path even though it won't be easy. >> Yeah. >> Then you can achieve it, and as you said, Tracy, it's important to have mentors on the way there. >> Exactly. >> But as long as you speak up, you know, you raise your voice, you ask questions, and you're curious, you can make it. >> Yeah. >> And I think that's one of my key takeaways, and I was just so inspiring to hear like all these women speaking on stage, and also here in our conversations and learning about their, you know, career path and what they learned on their way. >> Yeah, you bring up curiosity, and I think that is such an important skill. >> Mm-hmm. >> You know, you could think of Data Science and think about all the hard skills that you need. >> Mm, like coding. >> But as some of our guests said today, you don't have to be a statistician or an engineer, or a developer to get into this. Data Science applies to every facet of every part of the world. >> Mm-hmm. >> Finances, marketing, retail, manufacturing, healthcare, you name it, Data Science has the power and the potential to unlock massive achievements. >> Exactly. >> It's like we're scratching the surface. >> Yeah. >> But that curiosity, I think, is a great skill to bring to anything that you do. >> Mm-hmm. >> And I think we... For the female leaders that we're on stage, and that we had a chance to talk to on theCUBE today, I think they all probably had that I think as a common denominator. >> Exactly. >> That curious mindset, and also something that I think as hard is the courage to raise your hand. I like this, I'm interested in this. I don't see anybody that looks like me. >> But that doesn't mean I shouldn't do it. >> Exactly. >> Exactly, in addition to the curiosity that all the women, you know, bring to the table is that, in addition to that, being optimistic, and even though we don't see gender equality or like general equality in companies yet, we make progress and we're optimistic about it, and we're not like negative and complaining the whole time. But you know, this positive attitude towards a trend that is going in the right direction, and even though there's still a lot to be done- >> Exactly. >> We're moving it that way. >> Right. >> Being optimistic about this. >> Yeah, exactly, like even if it means that it's hard. Even if it means you need to be your own role model it's still like worth a try. And I think they, like all of the great women speakers, all the female leaders, they all have that in them, like they have the courage to like raise their hand and be like, "I want to do this, and I'm going to make it." And they're role models right now, so- >> Absolutely, they have drive. >> They do. >> Right. They have that ambition to take something that's challenging and complicated, and help abstract end users from that. Like we were talking to Intuit. I use Intuit in my small business for financial management, and she was talking about how they can from a machine learning standpoint, pull all this data off of documents that you upload and make that, abstract that, all that complexity from the end user, make something that's painful taxes. >> Mm-hmm. >> Maybe slightly less painful. It's still painful when you have to go, "Do I have to write you a check again?" >> Yeah. (laughs) >> Okay. >> But talking about just all the different applications of Data Science in the world, I found that to be very inspiring and really eye-opening. >> Definitely. >> I hadn't thought about, you know, we talk about climate change all the time, especially here in California, but I never thought about Data Science as a facilitator of the experts being able to make sense of what's going on historically and in real-time, or the application of Data Science in police violence. We see far too many cases of police violence on the news. It's an epidemic that's a horrible problem. Data Science can be applied to that to help us learn from that, and hopefully, start moving the needle in the right direction. >> Absolutely. >> Exactly. >> And especially like one sentence from Guitry from the very beginnings I still have in my mind is then when she said that arguments, no, that data beats arguments. >> Yes. >> In a conversation that if you be like, okay, I have this data set and it can actually show you this or that, it's much more powerful than just like being, okay, this is my position or opinion on this. And I think in a world where increasing like misinformation, and sometimes, censorship as we heard in one of the talks, it's so important to have like data, reliable data, but also acknowledge, and we talked about it with one of our interviewees that there's spices in data and we also need to be aware of this, and how to, you know, move this forward and use Data Science for social good. >> Mm-hmm. >> Yeah, for social good. >> Yeah, definitely, I think they like data, and the question about, or like the problem-solving part about like the social issues, or like some just questions, they definitely go hand-in-hand. Like either of them standing alone won't be anything that's going to be having an impact, but combining them together, you have a data set that illustrate a point or like solves the problem. I think, yeah, that's definitely like where Data Set Science is headed to, and I'm glad to see all these great women like making their impact and combining those two aspects together. >> It was interesting in the keynote this morning. We were all there when Margot Gerritsen who's one of the founders of WiDS, and Margot's been on the program before and she's a huge supporter of what we do and vice versa. She asked the non-women in the room, "Those who don't identify as women, stand up," and there was a handful of men, and she said, "That's what it's like to be a female in technology." >> Oh, my God. >> And I thought that vision give me goosebumps. >> Powerful. (laughs) >> Very powerful. But she's right, and one of the things I think that thematically another common denominator that I think we heard, I want to get your opinions as well from our conversations today, is the importance of community. >> Mm-hmm. >> You know, I was mentioning this stuff from AnitaB.org that showed that in 2022, the percentage of females and technical roles is 27.6%. It's a little bit of an increase. It's been hovering around 25% for a while. But one of the things that's still a problem is attrition. It doubled last year. >> Right. >> And I was asking some of the guests, and we've all done that today, "How would you advise companies to start moving the needle down on attrition?" >> Mm-hmm. >> And I think the common theme was network, community. >> Exactly. >> It takes a village like this. >> Mm-hmm. >> So you can see what you can be to help start moving that needle and that's, I think, what underscores the value of what WiDS delivers, and what we're able to showcase on theCUBE. >> Yeah, absolutely. >> I think it's very important to like if you're like a woman in tech to be able to know that there's someone for you, that there's a whole community you can rely on, and that like you are, you have the same mindset, you're working towards the same goal. And it's just reassuring and like it feels very nice and warm to have all these women for you. >> Lisa: It's definitely a warm fuzzy, isn't it? >> Yeah, and both the community within the workplace but also outside, like a network of family and friends who support you to- >> Yes. >> To pursue your career goals. I think that was also a common theme we heard that it's, yeah, necessary to both have, you know your community within your company or organization you're working but also outside. >> Definitely, I think that's also like how, why, the reason why we feel like this in like at WiDS, like I think we all feel very positive right now. So, yeah, I think that's like the power of the connection and the community, yeah. >> And the nice thing is this is like I said, WiDS is a movement. >> Yes. >> This is global. >> Mm-hmm. >> We've had some WiDS ambassadors on the program who started WiDS and Tel Aviv, for example, in their small communities. Or in Singapore and Mumbai that are bringing it here and becoming more of a visible part of the community. >> Tracy: Right. >> I loved seeing all the young faces when we walked in the keynote this morning. You know, we come here from a journalistic perspective. You guys are Journalism students. But seeing all the potential in the faces in that room just seeing, and hearing stories, and starting to make tangible connections between Facebook and data, and the end user and the perspectives, and the privacy and the responsibility of AI is all... They're all positive messages that need to be reinforced, and we need to have more platforms like this to be able to not just raise awareness, but sustain it. >> Exactly. >> Right. It's about the long-term, it's about how do we dial down that attrition, what can we do? What can we do? How can we help? >> Mm-hmm. >> Both awareness, but also giving women like a place where they can connect, you know, also outside of conferences. Okay, how do we make this like a long-term thing? So, I think WiDS is a great way to, you know, encourage this connectivity and these women teaming up. >> Yeah, (chuckles) girls help girls. >> Yeah. (laughs) >> It's true. There's a lot of organizations out there, girls who Code, Girls Inc., et cetera, that are all aimed at helping women kind of find their, I think, find their voice. >> Exactly. >> And find that curiosity. >> Yeah. Unlock that somewhere back there. Get some courage- >> Mm-hmm. >> To raise your hand and say, "I think I want to do this," or "I have a question. You explained something and I didn't understand it." Like, that's the advice I would always give to my younger self is never be afraid to raise your hand in a meeting. >> Mm-hmm. >> I guarantee you half the people weren't listening or, and the other half may not have understood what was being talked about. >> Exactly. >> So, raise your hand, there goes Margot Gerritsen, the founder of WiDS, hey, Margot. >> Hi. >> Keep alumni as you know, raise your hand, ask the question, there's no question that's stupid. >> Mm-hmm. >> And I promise you, if you just take that chance once it will open up so many doors, you won't even know which door to go in because there's so many that are opening. >> And if you have a question, there's at least one more person in the room who has the exact same question. >> Exact same question. >> Yeah, we'll definitely keep that in mind as students- >> Well, I'm curious how Data Journalism, what you heard today, Tracy, we'll start with you, and then, Hannah, to you. >> Mm-hmm. How has it influenced how you approach data-driven, and storytelling? Has it inspired you? I imagine it has, or has it given you any new ideas for, as you round out your Master's Program in the next few months? >> I think like one keyword that I found really helpful from like all the conversations today, was problem-solving. >> Yeah. >> Because I think, like we talked a lot about in our program about how to put a face on data sets. How to put a face, put a name on a story that's like coming from like big data, a lot of numbers but you need to like narrow it down to like one person or one anecdote that represents a bigger problem. And I think essentially that's problem-solving. That's like there is a community, there is like say maybe even just one person who has, well, some problem about something, and then we're using data. We're, by giving them a voice, by portraying them in news and like representing them in the media, we're solving this problem somehow. We're at least trying to solve this problem, trying to make some impact. And I think that's like what Data Science is about, is problem-solving, and, yeah, I think I heard a lot from today's conversation, also today's speakers. So, yeah, I think that's like something we should also think about as Journalists when we do pitches or like what kind of problem are we solving? >> I love that. >> Or like kind of what community are we trying to make an impact in? >> Yes. >> Absolutely. Yeah, I think one of the main learnings for me that I want to apply like to my career in Data Journalism is that I don't shy away from complexity because like Data Science is oftentimes very complex. >> Complex. >> And also data, you're using for your stories is complex. >> Mm-hmm. >> So, how can we, on the one hand, reduce complexity in a way that we make it accessible for broader audience? 'Cause, we don't want to be this like tech bubble talking in data jargon, we want to, you know, make it accessible for a broader audience. >> Yeah. >> I think that's like my purpose as a Data Journalist. But at the same time, don't reduce complexity when it's needed, you know, and be open to dive into new topics, and data sets and circling back to this of like raising your hand and asking questions if you don't understand like a certain part. >> Yeah. >> So, that's definitely a main learning from this conference. >> Definitely. >> That like, people are willing to talk to you and explain complex topics, and this will definitely facilitate your work as a Data Journalist. >> Mm-hmm. >> So, that inspired me. >> Well, I can't wait to see where you guys go from here. I've loved co-hosting with you today, thank you. >> Thank you. >> For joining me at our conference. >> Wasn't it fun? >> Thank you. >> It's a great event. It's, we, I think we've all been very inspired and I'm going to leave here probably floating above the ground a few inches, high on the inspiration of what this community can deliver, isn't that great? >> It feels great, I don't know, I just feel great. >> Me too. (laughs) >> So much good energy, positive energy, we love it. >> Yeah, so we want to thank all the organizers of WiDS, Judy Logan, Margot Gerritsen in particular. We also want to thank John Furrier who is here. And if you know Johnny, know he gets FOMO when he is not hosting. But John and Dave Vellante are such great supporters of women in technology, women in technical roles. We wouldn't be here without them. So, shout out to my bosses. Thank you for giving me the keys to theCube at this event. I know it's painful sometimes, but we hope that we brought you great stories all day. We hope we inspired you with the females and the one male that we had on the program today in terms of raise your hand, ask a question, be curious, don't be afraid to pursue what you're interested in. That's my soapbox moment for now. So, for my co-host, I'm Lisa Martin, we want to thank you so much for watching our program today. You can watch all of this on-demand on thecube.net. You'll find write-ups on siliconeangle.com, and, of course, YouTube. Thanks, everyone, stay safe and we'll see you next time. (energetic music)
SUMMARY :
I have had the pleasure all day of working I want to ask you both But WiDS is just the inspiration that you heard today I think one of the keyword if I leave the talks, is that anything's possible. and even if you have like mentors on the way there. you know, you raise your And I think that's one Yeah, you bring up curiosity, the hard skills that you need. of the world. and the potential to unlock bring to anything that you do. and that we had a chance to I don't see anybody that looks like me. But that doesn't all the women, you know, of the great women speakers, documents that you upload "Do I have to write you a check again?" I found that to be very of the experts being able to make sense from the very beginnings and how to, you know, move this and the question about, or of the founders of WiDS, and And I thought (laughs) of the things I think But one of the things that's And I think the common like this. So you can see what you and that like you are, to both have, you know and the community, yeah. And the nice thing and becoming more of a and the privacy and the It's about the long-term, great way to, you know, et cetera, that are all aimed Unlock that somewhere back there. Like, that's the advice and the other half may not have understood the founder of WiDS, hey, Margot. ask the question, there's if you just take that And if you have a question, and then, Hannah, to you. as you round out your Master's Program from like all the conversations of numbers but you need that I want to apply like to And also data, you're using you know, make it accessible But at the same time, a main learning from this conference. people are willing to talk to you with you today, thank you. at our conference. and I'm going to leave know, I just feel great. (laughs) positive energy, we love it. that we brought you great stories all day.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Johnny | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
Singapore | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Judy Logan | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
2022 | DATE | 0.99+ |
Code | ORGANIZATION | 0.99+ |
Mumbai | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
siliconeangle.com | OTHER | 0.99+ |
WiDS | ORGANIZATION | 0.99+ |
two aspects | QUANTITY | 0.99+ |
Guitry | PERSON | 0.98+ |
both | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
one | QUANTITY | 0.98+ |
thecube.net | OTHER | 0.98+ |
Both | QUANTITY | 0.98+ |
over 100,000 people | QUANTITY | 0.98+ |
WiDS 2023 | EVENT | 0.98+ |
one keyword | QUANTITY | 0.98+ |
next year | DATE | 0.98+ |
200-plus countries | QUANTITY | 0.98+ |
one sentence | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.97+ |
Girls Inc. | ORGANIZATION | 0.97+ |
YouTube | ORGANIZATION | 0.96+ |
one person | QUANTITY | 0.95+ |
two fantastic graduate students | QUANTITY | 0.95+ |
Stanford University | ORGANIZATION | 0.94+ |
Women in Data Science Conference | EVENT | 0.94+ |
around 25% | QUANTITY | 0.93+ |
Stanford | ORGANIZATION | 0.93+ |
this morning | DATE | 0.92+ |
theCUBE | ORGANIZATION | 0.88+ |
half the people | QUANTITY | 0.87+ |
Data Journalism Master's Program | TITLE | 0.86+ |
one thing | QUANTITY | 0.85+ |
eighth annual | QUANTITY | 0.83+ |
at least one more person | QUANTITY | 0.8+ |
next few months | DATE | 0.78+ |
half | QUANTITY | 0.74+ |
one anecdote | QUANTITY | 0.73+ |
AnitaB.org | OTHER | 0.71+ |
key takeaways | QUANTITY | 0.71+ |
TheCUBE | ORGANIZATION | 0.71+ |
Gabriela de Queiroz, Microsoft | WiDS 2023
(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)
SUMMARY :
but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy Yuan | PERSON | 0.99+ |
Megan Smith | PERSON | 0.99+ |
Gabriela de Queiroz | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Gabriela | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Brazil | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
2012 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Obama | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
27.6 | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
15 languages | QUANTITY | 0.99+ |
R Ladies | ORGANIZATION | 0.99+ |
two tutorials | QUANTITY | 0.99+ |
Anitab | ORGANIZATION | 0.99+ |
10 people | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
55 plus countries | QUANTITY | 0.99+ |
first part | QUANTITY | 0.99+ |
more than 200 cities | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
nine | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
WIDS 23 | EVENT | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
CUBE | ORGANIZATION | 0.97+ |
Stanford | LOCATION | 0.97+ |
Women in Data Science | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Disneyland | LOCATION | 0.96+ |
English | OTHER | 0.96+ |
one mentor | QUANTITY | 0.96+ |
Women in Data Science Conference | EVENT | 0.96+ |
once a year | QUANTITY | 0.95+ |
WIDS | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Meetup.com | ORGANIZATION | 0.91+ |
ORGANIZATION | 0.9+ | |
Hadoop | TITLE | 0.89+ |
WiDS 2023 | EVENT | 0.88+ |
Anitab.org | ORGANIZATION | 0.87+ |
ChatJTP | TITLE | 0.86+ |
One | QUANTITY | 0.86+ |
one day | QUANTITY | 0.85+ |
ChatGPT | TITLE | 0.84+ |
pandemic | EVENT | 0.81+ |
Fast Company | ORGANIZATION | 0.78+ |
CTO | PERSON | 0.76+ |
Open | ORGANIZATION | 0.76+ |
Shir Meir Lador, Intuit | WiDS 2023
(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.
SUMMARY :
Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hannah Freitag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Israel | LOCATION | 0.99+ |
Bangalore | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Margaret | PERSON | 0.99+ |
Shir Meir Lador | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Bay Area | LOCATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Shir | PERSON | 0.99+ |
20 submission | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Tracy | PERSON | 0.99+ |
2030 | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
35% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
2015 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
sixth conference | QUANTITY | 0.99+ |
Intuits | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
OpenAI | ORGANIZATION | 0.99+ |
This year | DATE | 0.99+ |
Stanford | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
2018 | DATE | 0.98+ |
over 200 submissions | QUANTITY | 0.98+ |
Eighth Annual Women In Data Science | EVENT | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
TurboTax | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
over 50% | QUANTITY | 0.98+ |
over 35% | QUANTITY | 0.97+ |
five and a half years ago back | DATE | 0.97+ |
Stanford University | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
Netflix | ORGANIZATION | 0.96+ |
one woman | QUANTITY | 0.96+ |
Mobile World Congress | EVENT | 0.94+ |
one thing | QUANTITY | 0.94+ |
AnitaB.org | ORGANIZATION | 0.93+ |
25% | QUANTITY | 0.92+ |
PyData Meetups | EVENT | 0.9+ |
Rhonda Crate, Boeing | WiDS 2023
(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)
SUMMARY :
Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy | PERSON | 0.99+ |
Nairanjana Dasgupta | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Rhonda | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Rhonda Crate | PERSON | 0.99+ |
Susan Doniz | PERSON | 0.99+ |
Susan | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
WSU College of Arts and Sciences | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Iran | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
11 credits | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
last year | DATE | 0.99+ |
51% | QUANTITY | 0.99+ |
Washington State University | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Ahmad Yaghoobi | PERSON | 0.99+ |
200 different events | QUANTITY | 0.99+ |
Carly Fiorina | PERSON | 0.99+ |
60 plus countries | QUANTITY | 0.99+ |
1980s | DATE | 0.99+ |
US | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
100,000 plus people | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
'22 | DATE | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
two separate programs | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
Global Diversity Report | TITLE | 0.98+ |
this year | DATE | 0.98+ |
Myriam Fayad & Alexandre Lapene, TotalEnergies | WiDS 2023
(upbeat music) >> Hey, girls and guys. Welcome back to theCUBE. We are live at Stanford University, covering the 8th Annual Women in Data Science Conference. One of my favorite events. Lisa Martin here. Got a couple of guests from Total Energies. We're going to be talking all things data science, and I think you're going to find this pretty interesting and inspirational. Please welcome Alexandre Lapene, Tech Advisor Data Science at Total Energy. It's great to have you. >> Thank you. >> And Myriam Fayad is here as well, product and value manager at Total Energies. Great to have you guys on theCUBE today. Thank you for your time. >> Thank you for - >> Thank you for receiving us. >> Give the audience, Alexandre, we'll start with you, a little bit about Total Energies, so they understand the industry, and what it is that you guys are doing. >> Yeah, sure, sure. So Total Energies, is a former Total, so we changed name two years ago. So we are a multi-energy company now, working over 130 countries in the world, and more than 100,000 employees. >> Lisa: Oh, wow, big ... >> So we're a quite big company, and if you look at our new logo, you will see there are like seven colors. That's the seven energy that we basically that our business. So you will see the red for the oil, the blue for the gas, because we still have, I mean, a lot of oil and gas, but you will see other color, like blue for hydrogen. >> Lisa: Okay. >> Green for gas, for biogas. >> Lisa: Yeah. >> And a lot of other solar and wind. So we're definitely multi-energy company now. >> Excellent, and you're both from Paris? I'm jealous, I was supposed to go. I'm not going to be there next month. Myriam, talk a little bit about yourself. I'd love to know a little bit about your role. You're also a WiDS ambassador this year. >> Myriam: Yes. >> Lisa: Which is outstanding, but give us a little bit of your background. >> Yes, so today I'm a product manager at the Total Energies' Digital Factory. And at the Digital Factory, our role is to develop digital solutions for all of the businesses of Total Energies. And as a background, I did engineering school. So, and before that I, I would say, I wasn't really aware of, I had never asked myself if being a woman could stop me from being, from doing what I want to do in the professional career. But when I started my engineering school, I started seeing that women are becoming, I would say, increasingly rare in the environment >> Lisa: Yes. >> that, where I was evolving. >> Lisa: Yes. >> So that's why I was, I started to think about, about such initiatives. And then when I started working in the tech field, that conferred me that women are really rare in the tech field and data science field. So, and at Total Energies, I met ambassadors of, of the WiDS initiatives. And that's how I, I decided to be a WiDS Ambassador, too. So our role is to organize events locally in the countries where we work to raise awareness about the importance of having women in the tech and data fields. And also to talk about the WiDS initiative more globally. >> One of my favorite things about WiDS is it's this global movement, it started back in 2015. theCUBE has been covering it since then. I think I've been covering it for theCUBE since 2017. It's always a great day full of really positive messages. One of the things that we talk a lot about when we're focusing on the Q1 Women in Tech, or women in technical roles is you can't be what you can't see. We need to be able to see these role models, but also it, we're not just talking about women, we're talking about underrepresented minorities, we're talking about men like you, Alexander. Talk to us a little bit about what your thoughts are about being at a Women and Data Science Conference and your sponsorship, I'm sure, of many women in Total, and other industries that appreciate having you as a guide. >> Yeah, yeah, sure. First I'm very happy because I'm back to Stanford. So I did my PhD, postdoc, sorry, with Margot, I mean, back in 20, in 2010, so like last decade. >> Lisa: Yeah, yep. >> I'm a film mechanics person, so I didn't start as data scientist, but yeah, WiDS is always, I mean, this great event as you describe it, I mean, to see, I mean it's growing every year. I mean, it's fantastic. And it's very, I mean, I mean, it's always also good as a man, I mean, to, to be in the, in the situation of most of the women in data science conferences. And when Margo, she asked at the beginning of the conference, "Okay, how many men do we have? Okay, can you stand up?" >> Lisa: Yes. I saw that >> It was very interesting because - >> Lisa: I could count on one hand. >> What, like 10 or ... >> Lisa: Yeah. >> Maximum. >> Lisa: Yeah. >> And, and I mean, you feel that, I mean, I mean you could feel what what it is to to be a woman in the field and - >> Lisa: Absolutely. >> Alexandre: That's ... >> And you, sounds like you experienced it. I experienced the same thing. But one of the things that fascinates me about data science is all of the different real world problems it's helping to solve. Like, I keep saying this, we're, we're in California, I'm a native Californian, and we've been in an extreme drought for years. Well, we're getting a ton of rain and snow this year. Climate change. >> Guests: Yeah. We're not used to driving in the rain. We are not very good at it either. But the, just thinking about data science as a facilitator of its understanding climate change better; to be able to make better decisions, predictions, drive better outcomes, or things like, police violence or healthcare inequities. I think the power of data science to help unlock a lot of the unknown is so great. And, and we need that thought diversity. Miriam, you're talking about being in engineering. Talk to me a little bit about what projects interest you with respect to data science, and how you are involved in really creating more diversity and thought. >> Hmm. In fact, at Total Energies in addition to being an energy company we're also a data company in the sense that we produce a lot of data in our activities. For example with the sensors on the fuel on the platforms. >> Lisa: Yes. >> Or on the wind turbines, solar panels and even data related to our clients. So what, what is really exciting about being, working in the data science field at Total Energies is that we really feel the impact of of the project that we're working on. And we really work with the business to understand their problems. >> Lisa: Yeah. >> Or their issues and try to translate it to a technical problem and to solve it with the data that we have. So that's really exciting, to feel the impact of the projects we're working on. So, to take an example, maybe, we know that one of the challenges of the energy transition is the storage of of energy coming from renewable power. >> Yes. >> So I'm working currently on a project to improve the process of creating larger batteries that will help store this energy, by collecting the data, and helping the business to improve the process of creating these batteries. To make it more reliable, and with a better quality. So this is a really interesting project we're working on. >> Amazing, amazing project. And, you know, it's, it's fun I think to think of all of the different people, communities, countries, that are impacted by what you're doing. Everyone, everyone knows about data. Sometimes we think about it as we're paying we're always paying for a lot of data on our phone or "data rates may apply" but we may not be thinking about all of the real world impact that data science is making in our lives. We have this expectation in our personal lives that we're connected 24/7. >> Myriam: Yeah. >> I can get whatever I want from my phone wherever I am in the world. And that's all data driven. And we expect that if I'm dealing with Total Energies, or a retailer, or a car dealer that they're going to have the data, the data to have a personal conversation, conversation with me. We have this expectation. I don't think a lot of people that aren't in data science or technology really realize the impact of data all around their lives. Alexander, talk about some of the interesting data science projects that you're working on. >> There's one that I'm working right now, so I stake advisor. I mean, I'm not the one directly working on it. >> Lisa: Okay. >> But we have, you know, we, we are from the digital factory where we, we make digital products. >> Lisa: Okay. >> And we have different squads. I mean, it's a group of different people with different skills. And one of, one of the, this squad, they're, they're working on the on, on the project that is about safety. We have a lot of site, work site on over the world where we deploy solar panels on on parkings, on, on buildings everywhere. >> Lisa: Okay. Yeah. >> And there's, I mean, a huge, I mean, but I mean, we, we have a lot of, of worker and in term of safety we want to make sure that the, they work safely and, and we want to prevent accidents. So what we, what we do is we, we develop some computer vision approach to help them at improving, you know, the, the, the way they work. I mean the, the basic things is, is detecting, detecting some equipment like the, the the mean the, the vest and so on. But we, we, we, we are working, we're working to really extend that to more concrete recommendation. And that's one a very exciting project. >> Lisa: Yeah. >> Because it's very concrete. >> Yeah. >> And also, I, I'm coming from the R&D of the company and that's one, that's one of this project that started in R&D and is now into the Digital Factory. And it will become a real product deployed over the world on, on our assets. So that's very great. >> The influence and the impact that data can have on every business always is something that, we could talk about that for a very long time. >> Yeah. >> But one of the things I want to address is there, I'm not sure if you're familiar with AnitaB.org the Grace Hopper Institute? It's here in the States and they do this great event every year. It's very pro-women in technology and technical roles. They do a lot of, of survey of, of studies. So they have data demonstrating where are we with respect to women in technical roles. And we've been talking about it for years. It's been, for a while hovering around 25% of technical roles are held by women. I noticed in the AnitaB.org research findings from 2022, It's up to 27.6% I believe. So we're seeing those numbers slowly go up. But one of the things that's a challenge is attrition; of women getting in the roles and then leaving. Miryam, as a woman in, in technology. What inspires you to continue doing what you're doing and to elevate your career in data science? >> What motivates me, is that data science, we really have to look at it as a mean to solve a problem and not a, a fine, a goal in itself. So the fact that we can apply data science to so many fields and so many different projects. So here, for example we took examples of more industrial, maybe, applications. But for example, recently I worked on, on a study, on a data science study to understand what to, to analyze Google reviews of our clients on the service stations and to see what are the the topics that, that are really important to them. So we really have a, a large range of topics, and a diversity of topics that are really interesting, so. >> And that's so important, the diversity of topics alone. There's, I think we're just scratching the surface. We're just at the very beginning of what data science can empower for our daily lives. For businesses, small businesses, large businesses. I'd love to get your perspective as our only male on the show today, Alexandre, you have that elite title. The theme of International Women's Day this year which is today, March 8th, is "Embrace equity." >> Alexandre: Yes. >> Lisa: What is that, when you hear that theme as as a male in technology, as a male in the, in a role where you can actually elevate women and really bring in that thought diversity, what is embracing equity, what does it look like to you? >> To me, it, it's really, I mean, because we, we always talk about how we can, you know, I mean improve, but actually we are fixing a problem, an issue. I mean, it's such a reality. I mean, and the, the reality and and I mean, and force in, in the company. And that's, I think in Total Energy, we, we still have, I mean things, I mean, we, we haven't reached our objective but we're working hard and especially at the Digital Factory to, to, to improve on that. And for example, we have 40% of our women in tech. >> Lisa: 40? >> 40% of our tech people that are women. >> Lisa: Wow, that's fantastic! >> Yeah. That's, that's ... >> You're way ahead of, of the global average. >> Alexandre: Yeah. Yeah. >> That outstanding. >> We're quite proud of that. >> You should be. >> But we, we still, we still know that we, we have at least 10% >> Lisa: Yes. because it's not 50. The target is, the target is to 50 or more. And, and, but I want to insist on the fact that we have, we are correcting an issue. We are fixing an issue. We're not trying to improve something. I mean, that, that's important to have that in mind. >> Lisa: It is. Absolutely. >> Yeah. >> Miryam, I'd love to get your advice to your younger self, before you studied engineering. Obviously you had an interest when you were younger. What advice would you give to young Miriam now, looking back at what you've accomplished and being one of our female, visible females, in a technical role? What do you, what would you say to your younger self? >> Maybe I would say to continue as I started. So as I was saying at the beginning of the interview, when I was at high school, I have never felt like being a woman could stop me from doing anything. >> Lisa: Yeah. Yeah. >> So maybe to continue thinking this way, and yeah. And to, to stay here for, to, to continue this way. Yeah. >> Lisa: That's excellent. Sounds like you have the confidence. >> Mm. Yeah. >> And that's something that, that a lot of people ... I struggled with it when I was younger, have the confidence, "Can I do this?" >> Alexandre: Yeah. >> "Should I do this?" >> Myriam: Yeah. >> And you kind of went, "Why not?" >> Myriam: Yes. >> Which is, that is such a great message to get out to our audience and to everybody else's. Just, "I'm interested in this. I find it fascinating. Why not me?" >> Myriam: Yeah. >> Right? >> Alexandre: Yeah, true. >> And by bringing out, I think, role models as we do here at the conference, it's a, it's a way to to help young girls to be inspired and yeah. >> Alexandre: Yeah. >> We need to have women in leadership positions that we can see, because there's a saying here that we say a lot in the States, which is: "You can't be what you can't see." >> Alexandre: Yeah, that's true. >> And so we need more women and, and men supporting women and underrepresented minorities. And the great thing about WiDS is it does just that. So we thank you so much for your involvement in WiDS, Ambassador, our only male on the program today, Alexander, we thank you. >> I'm very proud of it. >> Awesome to hear that Total Energies has about 40% of females in technical roles and you're on that path to 50% or more. We, we look forward to watching that journey and we thank you so much for joining us on the show today. >> Alexandre: Thank you. >> Myriam: Thank you. >> Lisa: All right. For my guests, I'm Lisa Martin. You're watching theCUBE Live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. We'll be back after a short break, so stick around. (upbeat music)
SUMMARY :
covering the 8th Annual Women Great to have you guys on theCUBE today. and what it is that you guys are doing. So we are a multi-energy company now, That's the seven energy that we basically And a lot of other solar and wind. I'm not going to be there next month. bit of your background. for all of the businesses of the WiDS initiatives. One of the things that we talk a lot about I'm back to Stanford. of most of the women in of the different real world problems And, and we need that thought diversity. in the sense that we produce a lot of the project that we're working on. the data that we have. and helping the business all of the real world impact have the data, the data to I mean, I'm not the one But we have, you know, we, on the project that is about safety. and in term of safety we and is now into the Digital Factory. The influence and the I noticed in the AnitaB.org So the fact that we can apply data science as our only male on the show today, and I mean, and force in, in the company. of the global average. on the fact that we have, Lisa: It is. Miryam, I'd love to get your beginning of the interview, So maybe to continue Sounds like you have the confidence. And that's something that, and to everybody else's. here at the conference, We need to have women So we thank you so much for and we thank you so much for of the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Miriam | PERSON | 0.99+ |
Myriam Fayad | PERSON | 0.99+ |
Alexander | PERSON | 0.99+ |
Alexandre | PERSON | 0.99+ |
Myriam | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Total Energies | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Miryam | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
Alexandre Lapene | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Paris | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
2015 | DATE | 0.99+ |
Grace Hopper Institute | ORGANIZATION | 0.99+ |
Total Energy | ORGANIZATION | 0.99+ |
40 | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
California | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
next month | DATE | 0.99+ |
Margot | PERSON | 0.99+ |
more than 100,000 employees | QUANTITY | 0.99+ |
two years ago | DATE | 0.99+ |
TotalEnergies | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
AnitaB.org | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
8th Annual Women in Data Science Conference | EVENT | 0.99+ |
International Women's Day | EVENT | 0.99+ |
Stanford University | ORGANIZATION | 0.98+ |
Total | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
over 130 countries | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
One | QUANTITY | 0.98+ |
seven colors | QUANTITY | 0.98+ |
Gayatree Ganu, Meta | WiDS 2023
(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.
SUMMARY :
in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Susan Wojcicki | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Hannah Freitag | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Gayatree | PERSON | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Tahoe | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Sheryl | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
two spouses | QUANTITY | 0.99+ |
Engagement Ecosystem | ORGANIZATION | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
last week | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
Mumbai, India | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
over 12 years | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
200 million businesses | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Women in Data Science 2023 | TITLE | 0.98+ |
ORGANIZATION | 0.98+ | |
Gayatree Ganu | PERSON | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
second month | QUANTITY | 0.97+ |
nadb.org | ORGANIZATION | 0.97+ |
sixth grade | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
'22 | DATE | 0.97+ |
Jacqueline Kuo, Dataiku | WiDS 2023
(upbeat music) >> Morning guys and girls, welcome back to theCUBE's live coverage of Women in Data Science WIDS 2023 live at Stanford University. Lisa Martin here with my co-host for this segment, Tracy Zhang. We're really excited to be talking with a great female rockstar. You're going to learn a lot from her next, Jacqueline Kuo, solutions engineer at Dataiku. Welcome, Jacqueline. Great to have you. >> Thank you so much. >> Thank for being here. >> I'm so excited to be here. >> So one of the things I have to start out with, 'cause my mom Kathy Dahlia is watching, she's a New Yorker. You are a born and raised New Yorker and I learned from my mom and others. If you're born in New York no matter how long you've moved away, you are a New Yorker. There's you guys have like a secret club. (group laughs) >> I am definitely very proud of being born and raised in New York. My family immigrated to New York, New Jersey from Taiwan. So very proud Taiwanese American as well. But I absolutely love New York and I can't imagine living anywhere else. >> Yeah, yeah. >> I love it. >> So you studied, I was doing some research on you you studied mechanical engineering at MIT. >> Yes. >> That's huge. And you discovered your passion for all things data-related. You worked at IBM as an analytics consultant. Talk to us a little bit about your career path. Were you always interested in engineering STEM-related subjects from the time you were a child? >> I feel like my interests were ranging in many different things and I ended up landing in engineering, 'cause I felt like I wanted to gain a toolkit like a toolset to make some sort of change with or use my career to make some sort of change in this world. And I landed on engineering and mechanical engineering specifically, because I felt like I got to, in my undergrad do a lot of hands-on projects, learn every part of the engineering and design process to build products which is super-transferable and transferable skills sort of is like the trend in my career so far. Where after undergrad I wanted to move back to New York and mechanical engineering jobs are kind of few and fall far in between in the city. And I ended up landing at IBM doing analytics consulting, because I wanted to understand how to use data. I knew that data was really powerful and I knew that working with it could allow me to tell better stories to influence people across different industries. And that's also how I kind of landed at Dataiku to my current role, because it really does allow me to work across different industries and work on different problems that are just interesting. >> Yeah, I like the way that, how you mentioned building a toolkit when doing your studies at school. Do you think a lot of skills are still very relevant to your job at Dataiku right now? >> I think that at the core of it is just problem solving and asking questions and continuing to be curious or trying to challenge what is is currently given to you. And I think in an engineering degree you get a lot of that. >> Yeah, I'm sure. >> But I think that we've actually seen that a lot in the panels today already, that you get that through all different types of work and research and that kind of thoughtfulness comes across in all different industries too. >> Talk a little bit about some of the challenges, that data science is solving, because every company these days, whether it's an enterprise in manufacturing or a small business in retail, everybody has to be data-driven, because the end user, the end customer, whoever that is whether it's a person, an individual, a company, a B2B, expects to have a personalized custom experience and that comes from data. But you have to be able to understand that data treated properly, responsibly. Talk about some of the interesting projects that you're doing at Dataiku or maybe some that you've done in the past that are really kind of transformative across things climate change or police violence, some of the things that data science really is impacting these days. >> Yeah, absolutely. I think that what I love about coming to these conferences is that you hear about those really impactful social impact projects that I think everybody who's in data science wants to be working on. And I think at Dataiku what's great is that we do have this program called Ikig.AI where we work with nonprofits and we support them in their data and analytics projects. And so, a project I worked on was with the Clean Water, oh my goodness, the Ocean Cleanup project, Ocean Cleanup organization, which was amazing, because it was sort of outside of my day-to-day and it allowed me to work with them and help them understand better where plastic is being aggregated across the world and where it appears, whether that's on beaches or in lakes and rivers. So using data to help them better understand that. I feel like from a day-to-day though, we, in terms of our customers, they're really looking at very basic problems with data. And I say basic, not to diminish it, but really just to kind of say that it's high impact, but basic problems around how do they forecast sales better? That's a really kind of, sort of basic problem, but it's actually super-complex and really impactful for people, for companies when it comes to forecasting how much headcount they need to have in the next year or how much inventory to have if they're retail. And all of those are going to, especially for smaller companies, make a huge impact on whether they make profit or not. And so, what's great about working at Dataiku is you get to work on these high-impact projects and oftentimes I think from my perspective, I work as a solutions engineer on the commercial team. So it's just, we work generally with smaller customers and sometimes talking to them, me talking to them is like their first introduction to what data science is and what they can do with that data. And sort of using our platform to show them what the possibilities are and help them build a strategy around how they can implement data in their day-to-day. >> What's the difference? You were a data scientist by title and function, now you're a solutions engineer. Talk about the ascendancy into that and also some of the things that you and Tracy will talk about as those transferable, those transportable skills that probably maybe you learned in engineering, you brought data science now you're bringing to solutions engineering. >> Yeah, absolutely. So data science, I love working with data. I love getting in the weeds of things and I love, oftentimes that means debugging things or looking line by line at your code and trying to make it better. I found that on in the data science role, while those things I really loved, sometimes it also meant that I didn't, couldn't see or didn't have visibility into the broader picture of well like, well why are we doing this project? And who is it impacting? And because oftentimes your day-to-day is very much in the weeds. And so, I moved into sales or solutions engineering at Dataiku to get that perspective, because what a sales engineer does is support the sale from a technical perspective. And so, you really truly understand well, what is the customer looking for and what is going to influence them to make a purchase? And how do you tell the story of the impact of data? Because oftentimes they need to quantify well, if I purchase a software like Dataiku then I'm able to build this project and make this X impact on the business. And that is really powerful. That's where the storytelling comes in and that I feel like a lot of what we've been hearing today about connecting data with people who can actually do something with that data. That's really the bridge that we as sales engineers are trying to connect in that sales process. >> It's all about connectivity, isn't it? >> Yeah, definitely. We were talking about this earlier that it's about making impact and it's about people who we are analyzing data is like influencing. And I saw that one of the keywords or one of the biggest thing at Dataiku is everyday AI, so I wanted to just ask, could you please talk more about how does that weave into the problem solving and then day-to-day making an impact process? >> Yes, so I started working on Dataiku around three years ago and I fell in love with the product itself. The product that we have is we allow for people with different backgrounds. If you're coming from a data analyst background, data science, data engineering, maybe you are more of like a business subject matter expert, to all work in one unified central platform, one user interface. And why that's powerful is that when you're working with data, it's not just that data scientist working on their own and their own computer coding. We've heard today that it's all about connecting the data scientists with those business people, with maybe the data engineers and IT people who are actually going to put that model into production or other folks. And so, they all use different languages. Data scientists might use Python and R, your business people are using PowerPoint and Excel, everyone's using different tools. How do we bring them all in one place so that you can have conversations faster? So the business people can understand exactly what you're building with the data and can get their hands on that data and that model prediction faster. So that's what Dataiku does. That's the product that we have. And I completely forgot your question, 'cause I got so invested in talking about this. Oh, everyday AI. Yeah, so the goal of of Dataiku is really to allow for those maybe less technical people with less traditional data science backgrounds. Maybe they're data experts and they understand the data really well and they've been working in SQL for all their career. Maybe they're just subject matter experts and want to get more into working with data. We allow those people to do that through our no and low-code tools within our platform. Platform is very visual as well. And so, I've seen a lot of people learn data science, learn machine learning by working in the tool itself. And that's sort of, that's where everyday AI comes in, 'cause we truly believe that there are a lot of, there's a lot of unutilized expertise out there that we can bring in. And if we did give them access to data, imagine what we could do in the kind of work that they can do and become empowered basically with that. >> Yeah, we're just scratching the surface. I find data science so fascinating, especially when you talk about some of the real world applications, police violence, health inequities, climate change. Here we are in California and I don't know if you know, we're experiencing an atmospheric river again tomorrow. Californians and the rain- >> Storm is coming. >> We are not good... And I'm a native Californian, but we all know about climate change. People probably don't associate all of the data that is helping us understand it, make decisions based on what's coming what's happened in the past. I just find that so fascinating. But I really think we're truly at the beginning of really understanding the impact that being data-driven can actually mean whether you are investigating climate change or police violence or health inequities or your a grocery store that needs to become data-driven, because your consumer is expecting a personalized relevant experience. I want you to offer me up things that I know I was doing online grocery shopping, yesterday, I just got back from Europe and I was so thankful that my grocer is data-driven, because they made the process so easy for me. And but we have that expectation as consumers that it's going to be that easy, it's going to be that personalized. And what a lot of folks don't understand is the data the democratization of data, the AI that's helping make that a possibility that makes our lives easier. >> Yeah, I love that point around data is everywhere and the more we have, the actually the more access we actually are providing. 'cause now compute is cheaper, data is literally everywhere, you can get access to it very easily. And so, I feel like more people are just getting themselves involved and that's, I mean this whole conference around just bringing more women into this industry and more people with different backgrounds from minority groups so that we get their thoughts, their opinions into the work is so important and it's becoming a lot easier with all of the technology and tools just being open source being easier to access, being cheaper. And that I feel really hopeful about in this field. >> That's good. Hope is good, isn't it? >> Yes, that's all we need. But yeah, I'm glad to see that we're working towards that direction. I'm excited to see what lies in the future. >> We've been talking about numbers of women, percentages of women in technical roles for years and we've seen it hover around 25%. I was looking at some, I need to AnitaB.org stats from 2022 was just looking at this yesterday and the numbers are going up. I think the number was 26, 27.6% of women in technical roles. So we're seeing a growth there especially over pre-pandemic levels. Definitely the biggest challenge that still seems to be one of the biggest that remains is attrition. I would love to get your advice on what would you tell your younger self or the previous prior generation in terms of having the confidence and the courage to pursue engineering, pursue data science, pursue a technical role, and also stay in that role so you can be one of those females on stage that we saw today? >> Yeah, that's the goal right there one day. I think it's really about finding other people to lift and mentor and support you. And I talked to a bunch of people today who just found this conference through Googling it, and the fact that organizations like this exist really do help, because those are the people who are going to understand the struggles you're going through as a woman in this industry, which can get tough, but it gets easier when you have a community to share that with and to support you. And I do want to definitely give a plug to the WIDS@Dataiku team. >> Talk to us about that. >> Yeah, I was so fortunate to be a WIDS ambassador last year and again this year with Dataiku and I was here last year as well with Dataiku, but we have grown the WIDS effort so much over the last few years. So the first year we had two events in New York and also in London. Our Dataiku's global. So this year we additionally have one in the west coast out here in SF and another one in Singapore which is incredible to involve that team. But what I love is that everyone is really passionate about just getting more women involved in this industry. But then also what I find fortunate too at Dataiku is that we have a strong female, just a lot of women. >> Good. >> Yeah. >> A lot of women working as data scientists, solutions engineer and sales and all across the company who even if they aren't doing data work in a day-to-day, they are super-involved and excited to get more women in the technical field. And so. that's like our Empower group internally that hosts events and I feel like it's a really nice safe space for all of us to speak about challenges that we encounter and feel like we're not alone in that we have a support system to make it better. So I think from a nutrition standpoint every organization should have a female ERG to just support one another. >> Absolutely. There's so much value in a network in the community. I was talking to somebody who I'm blanking on this may have been in Barcelona last week, talking about a stat that showed that a really high percentage, 78% of people couldn't identify a female role model in technology. Of course, Sheryl Sandberg's been one of our role models and I thought a lot of people know Sheryl who's leaving or has left. And then a whole, YouTube influencers that have no idea that the CEO of YouTube for years has been a woman, who has- >> And she came last year to speak at WIDS. >> Did she? >> Yeah. >> Oh, I missed that. It must have been, we were probably filming. But we need more, we need to be, and it sounds like Dataiku was doing a great job of this. Tracy, we've talked about this earlier today. We need to see what we can be. And it sounds like Dataiku was pioneering that with that ERG program that you talked about. And I completely agree with you. That should be a standard program everywhere and women should feel empowered to raise their hand ask a question, or really embrace, "I'm interested in engineering, I'm interested in data science." Then maybe there's not a lot of women in classes. That's okay. Be the pioneer, be that next Sheryl Sandberg or the CTO of ChatGPT, Mira Murati, who's a female. We need more people that we can see and lean into that and embrace it. I think you're going to be one of them. >> I think so too. Just so that young girls like me like other who's so in school, can see, can look up to you and be like, "She's my role model and I want to be like her. And I know that there's someone to listen to me and to support me if I have any questions in this field." So yeah. >> Yeah, I mean that's how I feel about literally everyone that I'm surrounded by here. I find that you find role models and people to look up to in every conversation whenever I'm speaking with another woman in tech, because there's a journey that has had happen for you to get to that place. So it's incredible, this community. >> It is incredible. WIDS is a movement we're so proud of at theCUBE to have been a part of it since the very beginning, since 2015, I've been covering it since 2017. It's always one of my favorite events. It's so inspiring and it just goes to show the power that data can have, the influence, but also just that we're at the beginning of uncovering so much. Jacqueline's been such a pleasure having you on theCUBE. Thank you. >> Thank you. >> For sharing your story, sharing with us what Dataiku was doing and keep going. More power to you girl. We're going to see you up on that stage one of these years. >> Thank you so much. Thank you guys. >> Our pleasure. >> Our pleasure. >> For our guests and Tracy Zhang, this is Lisa Martin, you're watching theCUBE live at WIDS '23. #EmbraceEquity is this year's International Women's Day theme. Stick around, our next guest joins us in just a minute. (upbeat music)
SUMMARY :
We're really excited to be talking I have to start out with, and I can't imagine living anywhere else. So you studied, I was the time you were a child? and I knew that working Yeah, I like the way and continuing to be curious that you get that through and that comes from data. And I say basic, not to diminish it, and also some of the I found that on in the data science role, And I saw that one of the keywords so that you can have conversations faster? Californians and the rain- that it's going to be that easy, and the more we have, Hope is good, isn't it? I'm excited to see what and also stay in that role And I talked to a bunch of people today is that we have a strong and all across the company that have no idea that the And she came last and lean into that and embrace it. And I know that there's I find that you find role models but also just that we're at the beginning We're going to see you up on Thank you so much. #EmbraceEquity is this year's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sheryl | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Jacqueline | PERSON | 0.99+ |
Kathy Dahlia | PERSON | 0.99+ |
Jacqueline Kuo | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Dataiku | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Taiwan | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
last week | DATE | 0.99+ |
two events | QUANTITY | 0.99+ |
26, 27.6% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
this year | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Dataiku | PERSON | 0.99+ |
New York, New Jersey | LOCATION | 0.99+ |
tomorrow | DATE | 0.99+ |
2017 | DATE | 0.99+ |
SF | LOCATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
78% | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Ocean Cleanup | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
next year | DATE | 0.98+ |
International Women's Day | EVENT | 0.97+ |
R | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Californians | PERSON | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
one day | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
WIDS | ORGANIZATION | 0.89+ |
first introduction | QUANTITY | 0.88+ |
Stanford University | LOCATION | 0.87+ |
one place | QUANTITY | 0.87+ |
Keynote Analysis | WiDS 2023
(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)
SUMMARY :
So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mira Murati | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Boeing Air Company | ORGANIZATION | 0.99+ |
Berlin | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
78% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
12 year | QUANTITY | 0.99+ |
three year | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Humboldt University | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
hundreds of thousands | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
'22 | DATE | 0.98+ |
today | DATE | 0.98+ |
WiDS | EVENT | 0.98+ |
John Furrier | PERSON | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
two co-hosts | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
first step | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
six | QUANTITY | 0.97+ |
'21 | DATE | 0.97+ |
about 350 people | QUANTITY | 0.96+ |
100 million-plus users | QUANTITY | 0.95+ |
2021 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
AnitaB.org | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
WiDS & Women in Tech: International Women's Day Wrap
>>Welcome back to the cubes coverage of women in data science, 2022. We've been live all day at Stanford at the Arriaga alumni center. Lisa Martin, John furrier joins me next, trying to, to cure your FOMO that you have. >>I love this events. My favorite events is 2015. We've been coming, growing community over 60 countries, 500 ambassadors and growing so many members. Widths has become a global phenomenon. And it's so exciting to be part of just being part of the ride. Judy and Karen, the team have been amazing partners and it's been fun to watch the progression and international women's day is tomorrow. And just the overall environment's changed a lot since then. It's gotten better. I'm still a lot more work to do, but we're getting the word out, but this year seems different. It seems more like a tipping point is happening and real-time cultural change. A lot of problems. COVID pulled forward. A lot of things, there's a war going on in Europe. It's just really weird time. And it's just seems like it's a tipping point. >>I think that's what we felt today was that it was a tipping point. There was a lot of our guests on the program that are first time with attendees. So in seven, just seven short years, this is the seventh annual width it's gone from this one day technical conference to this global movement, as you talked about. And I think that we definitely felt that women of all ages and men that are here as well understand we're at that tipping point and what needs to be done next to push it over the edge. >>Well, I'm super excited that you are able to do all the amazing interviews. I watched some of them online. I had to come by and, and join the team because I have FOMO. I love doing the interviews, but they're including me. I'm happy to be included, but I got to ask you, I mean, what was different this year? Because it was interesting. It's a hybrid event. It's in part, they didn't have it in person last year, right? So it's hybrid. I showed the streams where everywhere good interviews, what was some of the highlights? >>Just a very inspiring stories of women who really this morning's conversation that I got to hear before I came to set was about mentors and sponsors and how important it is for women of any age and anybody really to build their own personal board of directors with mentors and sponsors. And they were very clear in the difference between a mentor and a sponsor and John something. I didn't understand the difference between the two until a few years ago. I think it was at a VMware event and it really surprised me that I have mentors do ask sponsors. And so that was a discussion that everybody on this onset talked about. >>It was interesting. We're doing also the international women's day tomorrow, big 24 interviews, including the winds of content, as well as global women leaders around the world and to new J Randori, who runs all of AWS, Amy are your maps. And she told me the same thing. She's like, there's too many mentors, not enough sponsors. And she said that out loud. I felt, wow. That was a defining moment because he or she is so impressive. Worked at McKinsey, okay. Was an operator in, in running businesses. Now she heads up AWS saying out loud, we have too many mentors, this get down to business and get sponsors. And I asked her the same thing and she said, sponsors, create opportunities. Mentors, give feedback. And mentors go both ways. And she said, my S my teenage son is a mentor to me for some of the cool new stuff, but ventures can go both ways. Sponsors is specifically about opportunities, and I'm like, I felt like that comment hit home. >>It's so important, but it's also important to teach girls. And especially the there's younger girls here this year, there's high school and middle, I think even middle school girls here, how to have the confidence to, to find those mentors, those sponsors and cultivate those relationships. That's a whole, those are skills that are incredibly important, as important as it is to understand AI data science, machine learning. It's to be able to, to have the confidence in a capability to create that and find those sponsors to help you unlock those opportunities. >>You know, I feel lucky to do the interviews, certainly being included as a male, but you've been doing a lot of the interviews as females and females. I got to ask you what was the biggest, because every story is different. Some people will it's about taking charge of their career. Sometimes it's maybe doing something different. What some of the story themes did you see in your interviews out there? What were some of the, the coverings personal? Yeah. >>Yeah. A lot of, a lot of the guests had stem backgrounds and were interested in the stem studies from when they were quite young and had strong family backgrounds that helps to nurture that. I >>Also heard that role models. Yes, >>Exactly, exactly. A strong family backgrounds. I did talk to a few women who come from different backgrounds, like international business and, but loved data and wanted to be able to apply that and really learn data analytics and understand data science and understand the opportunities that, that it brings. And also some of the challenges there. Everybody had an inspiring story. >>Yeah. It's interesting. One of the senior women I interviewed, she was from Singapore and she fled India during a bombing war and then ended up getting her PhD. Now she's in space and weld and all that stuff. And she said, we're now living in nerd, native environment, me and the younger generation they're nerds. And I, you know, were at Stanford dirt nation. Of course we're Stanford, it's nerd nerd nation here. But her point is, is that everything's digital now. So the younger generation, they're not necessarily looking for programmers, certainly coding. Great. But if you're not into coding, you can still solve society problems. There's plenty of jobs that are open for the first time that weren't around years ago, which means there's problems that are new to that need new minds and new, fresh perspectives. So I thought that aperture of surface area of opportunities to contribute in women in tech is not just coding. No, and that was a huge, >>That was, and we also, this morning, I got to hear, and we've talked about, we talked with several of the women before the event about data science in healthcare, data science, in transportation equity. That was a new thing for me, John, that I didn't know, I didn't, I never thought about transient equity and transportation or lack thereof. And so w what this conference showed, I think this year is that the it's not just coding, but it's every industry. As we know, every company is a data company. Every company is a tech company. If they're not, they're not going to be here for a long. So the opportunities for women is the door is just blown. >>And I said, from my interviews, it's a data problem. That's our line. We always say in the cube, people who know our program programming, we say that, but it actually, when we get the data on the pipeline and the pipeline, it has data points where the ages of drop-off of girls and young women is 12 to 14 and 16 to 18, where the drop-off is significant. So attack the pipelining problem is one that I heard a lot of. And the other one that comes out a lot, it's kind of common sense, and it's talked about it, but it's nuanced, but it became very elevated this year in the breaking, the bias theme, which was role models are huge. So seeing powerful women in leadership positions is really a focus and that's inspires people and they can see themselves. And so I think when people see role models of women and, and folks on in positions, not just coded, but even at the executive suite huge focus. So I think that's going to be a next step function in my mind. That's that's, if I had to predict the trend, it would be you see a lot more role modeling, flexing that big time. >>Good that's definitely needed. You know, we, we often used to say she can't be what she can't see, but one of the interviews that I had said, she can be what she can see. And I loved the pivot on that because it put a positive light, but to your point, there needs to be more female role models that, that girls can look up to. So they can see, I can do this. Like she's doing leading, you know, YouTube, for example, or Sheryl Sandberg of Facebook. We need more of these role models to show the tremendous amount of opportunities that are there, and to help those, not just the younger girls, those even that are maybe more mature find that confidence to build. >>And I think that was another king that came out role models from family members, dad, or a relative, or someone that could see was a big one. The other common thread was, yeah. I tend to break stuff and like to put it together. So at a young age, they kind of realized that they were kind of nerdy and they like to do stuff very engineering, but mind is where math or science. And that was interesting. Sally eaves from in the UK brought this up, she's a professor and does cyber policy. She said, it's a stems gray, but put the arts in there, make it steam. So steam and stem are in two acronyms. Stem is, is obviously the technical, but adding arts because of the creativity needs, we need creativity and problem solving with technical. Yes. So it's not just stem it's theme. We've heard that before, but not as much this year, it's amplified big >>Time. Sally's great. I had the chance to interview her in the last couple of months. And you, you bring up creativity, which is an incredibly important point. You know, there are the, obviously the hard skills, the technical skills that are needed, but there's also creativity. Curiosity being curious to ask a question, there's probably many questions that we haven't even thought to ask yet. So encouraging that curiosity, that natural curiosity is as important as maybe someone say as the actual technical knowledge, >>What was the biggest thing you saw this year? If you zoom out and you look at the forest from the trees, what was the big observation for you this year? >>I think it's the growth of woods. We've decided seven years. It's now in 60 countries, 200 events, 500 ambassadors, probably 500 plus. And the number of people that I had on the program, John, that this is their first woods. So just the fact that it's growing, we, we we've seen it for years, but I think we really saw a lot of the fresh faces and heard from them today had stories of how they got involved and how they met Margo, how she found them. I had a younger Alon who'd just graduated from Harvard back in the spring. So maybe not even a year ago, working at Skydio, doing drone work and had a great perspective on why it's important to have women in the drone industry, the opportunities Jones for good. And it was just nice to hear that fresh perspective. And also to S to hear the women who are new to woods, get it immediately. You walk into the Arriaga alumni center in the morning and you feel the energy and the support and that it was just perpetuated year after year. >>Yeah, it's awesome. I think one of the things I think it was reflecting on this morning was how many women we've interviewed in our cube alumni database now. And we yet are massing quite the database of really amazing people and there's more coming in. So that was kind of on a personal kind of reflection on the cube and what we've been working on together. All of us, the other thing that jumped out at me was the international aspect this year. It just seems like there's a community of tribal vibe where it's not just the tech industry, you know, saying rod, rod, it's a complete call to arms around more stories, tell your story. Yes. More enthusiasm outside of the corporate kind of swim lanes into like more of, Hey, let's get the stories out there. And the catalyst from an interview turned into follow up on LinkedIn, just a lot more like viral network effect so much more this year than ever before. So, you know, we just got to get the stories. >>Absolutely. And I think people given what we've been through the last two years are just really hungry for that. In-person collaboration, the opportunity to see more leadership to get inspired and any level of their career. I think the women here this today have had that opportunity and it's been overwhelmingly positive as you can imagine as it is every year. But I agree. I think it's been more international and definitely much more focused on teaching some of the other skills, the confidence, the creativity, the curiosity. >>Well, Lisa, as of right now, it's March 8th in Japan. So today, officially is kicking off right now. It's kicking off international women's day, March 8th, and the cube has a four region portal that we're going to make open, thanks to the sponsors with widths and Stanford and AWS supporting our mission. We're going to have Latin America, AMIA Asia Pacific and north America content pumping on the cube all day today, tomorrow. >>Exactly. And we've had such great conversations. I really enjoyed talking to the women. I always, I love hearing the stories as you talked about, we need more stories to make it personal, to humanize it, to learn from these people who either had some of them had linear paths, but a lot of emergency zig-zaggy, as you would say. And I always find that so interesting to understand how they got to where they are. Was it zig-zaggy, was it zig-zaggy intentionally? Yes. Some of the women that I talked to had very intentional pivots in their career to get them where they are, but I still thought that story was a very, >>And I like how you're here at Stanford university with winds the day before international Wednesday, technically now in Asia, it's starting, this is going to be a yearly trend. This is season one episode, one of the cube covering international women's day, and then every day for the rest of the year, right? >>What were some of your takeaways from some of the international women's day conversations that you had? >>Number one thing was community. The number one vibe was besides the message of more roles or available role models are important. You don't have to be a coder, but community was inherently the fabric of every conversation. The people were high energy, highly knowledgeable about on being on point around the core issue. It wasn't really politicized was much more of about this is really goodness and real examples of force multipliers of diversity, inclusion and equity, when, what works together as a competitive advantage. And, you know, as a student of business, that is a real change. I think, you know, the people who do it are going to have a competitive advantage. So community competitive advantage and just, and just overall break that bias through the mentoring and the sponsorships. >>And we've had a lot of great conversations about, I loved the theme of international women's day, this year breaking the bias. I asked everybody that I spoke with for international women's day and for width. What does that mean to you? And where are we on that journey? And everyone had a really insightful stories to share about where we are with that in their opinions, in their fields industries. Why, and ultimately, I think the general theme was we have the awareness now that we need, we have the awareness from an equity perspective, that's absolutely needed. We have to start there, shine the light on it so that the bias can be broken and opportunities for everybody can just proliferate >>Global community is going to rise and it's going to tend to rise. The tide is rising. It's going to get better and better. It was a fun year this year. And I think it was relief that COVID kind of going out, people getting back into physical events has been, been really, really great. >>Yep, absolutely. So, John, I, I appreciate all the opportunities that you've given me as a female anchor on the show. International women's day coverage was fantastic. Widths 2022 coming to an end was fantastic. Look forward to next year. >>Well, Margo, Judy and Karen who put this together, had a vision and that vision was right and it was this working and when it gets going, it has escape, velocity unstoppable. >>It's a rocket ship. That's a rocket. I love that. I love to be part of John. Thanks for joining me on the wrap. We want to thank you for watching the cubes coverage of international women's day. The women's showcase as well as women in data science, 2022. We'll see you next time.
SUMMARY :
Welcome back to the cubes coverage of women in data science, 2022. And it's so exciting to be part of just being part of the ride. And I think that we definitely felt that I showed the streams where everywhere good interviews, what was some of the highlights? And so that was a discussion that everybody on this onset talked And I asked her the same thing and she said, sponsors, create opportunities. And especially the there's younger girls here I got to ask you what was the biggest, because every story is different. had strong family backgrounds that helps to nurture that. Also heard that role models. I did talk to a few women who come from different backgrounds, One of the senior women I interviewed, she was from Singapore So the opportunities for women And the other one that comes out a lot, it's kind of common sense, and it's talked about it, but it's nuanced, but it became very And I loved the pivot on that because it put a positive light, but to your point, And I think that was another king that came out role models from family members, dad, or a relative, I had the chance to interview her in the last couple of months. And the number of people that I had on the program, John, that this is their first woods. I think one of the things I think it was reflecting on this morning was how many women we've interviewed in our cube In-person collaboration, the opportunity to see more leadership to on the cube all day today, tomorrow. And I always find that so interesting to And I like how you're here at Stanford university with winds the day before You don't have to be a coder, but community was And everyone had a really insightful stories to share about where we are And I think it was relief that COVID kind of going out, Widths 2022 coming to an end was fantastic. and it was this working and when it gets going, it has escape, velocity unstoppable. I love to be part of John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Judy | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Sally | PERSON | 0.99+ |
Japan | LOCATION | 0.99+ |
Karen | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Asia | LOCATION | 0.99+ |
J Randori | PERSON | 0.99+ |
2015 | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
Singapore | LOCATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
500 ambassadors | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
12 | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
March 8th | DATE | 0.99+ |
next year | DATE | 0.99+ |
seven | QUANTITY | 0.99+ |
seven years | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
200 events | QUANTITY | 0.99+ |
UK | LOCATION | 0.99+ |
McKinsey | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
north America | LOCATION | 0.99+ |
Amy | PERSON | 0.99+ |
first time | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
18 | QUANTITY | 0.99+ |
14 | QUANTITY | 0.99+ |
seven short years | QUANTITY | 0.99+ |
two acronyms | QUANTITY | 0.99+ |
both ways | QUANTITY | 0.99+ |
this year | DATE | 0.98+ |
16 | QUANTITY | 0.98+ |
John furrier | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
500 plus | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
a year ago | DATE | 0.98+ |
Skydio | ORGANIZATION | 0.98+ |
60 countries | QUANTITY | 0.98+ |
first woods | QUANTITY | 0.98+ |
over 60 countries | QUANTITY | 0.98+ |
AMIA | ORGANIZATION | 0.97+ |
International Women's Day | EVENT | 0.97+ |
Alon | PERSON | 0.97+ |
Latin America | LOCATION | 0.96+ |
ORGANIZATION | 0.96+ | |
this morning | DATE | 0.96+ |
Harvard | ORGANIZATION | 0.95+ |
international women's day | EVENT | 0.94+ |
Arriaga | ORGANIZATION | 0.93+ |
international women's day | EVENT | 0.93+ |
four region | QUANTITY | 0.93+ |
seventh annual | QUANTITY | 0.92+ |
Stanford university | ORGANIZATION | 0.91+ |
widths | ORGANIZATION | 0.9+ |
women's day | EVENT | 0.89+ |
Sharon Hutchins, Intuit | WiDS 2022
>>Welcome everyone to the cubes coverage of women in data science conference width 2022. Live from Stanford at the Arriaga alumni center. I'm Lisa Martin. My next guest is joined me. Sharon Hutchins is here the VP and chief of AI plus data operations at Intuit Sharon. Welcome. Thank you. >>Excited to >>Be here. This is your first woods, very first but into it in words. >>That's right. Intuitively it's goes way back. I'm relatively new to the organization, but Intuit has been a long time sponsor of woods, and we love this organization. We have a great alignment with our goals, which has a passion and commitment to advancing women in technology and data science. And we have the same goal added to it. We are at 30% women in technology with the goal of hitting 37% by 2024. And I know that widths has a great goal of 30 by 30, so that's awesome. >>30 by 30. And here we are around, I think it's still less than 25% of stem positions are filled by women. But obviously you're ahead of that on Intuit congratulate. >>I think we're ahead of that. And I think part of the reason why we're ahead of that is because we've got great programs at Intuit to support women. One of our key programs is tech women at Intuit. And so it's an internal initiative where we focus on attracting, retaining and advancing women. So it's a great way for women across technology to support one another. Sure. You've heard of the term there's power in the pack, and we believe that when we connect women, we can help elevate their voices, which elevates our business and elevates our products. >>It does. In fact, there's some stats I was looking at recently that just showed if there was even 30% females at the executive level, how much more profitable organizations can be in how much higher performance they can have. So the data is there that suggests this is a really smart business decision to be making. >>Absolutely absolutely the data is, is no lie. I see it firsthand in my own business. And in fact, at Intuit, we've got a broader initiative around diversity and inclusion. It's led from the top. We have set goals across the company and we hold ourselves accountable because we know that if there are more women at the table and more diversity at the table, all around, we make better business decisions. And if you look at our product suite, which is a terrible tax, QuickBooks, mint, credit, karma, and MailChimp, we've got a diverse customer base of a hundred thousand, sorry, a hundred million customers. And so it's a lot of diversity in our customer base and we want a lot of diversity in the company. >>Fantastic. That there's such a dedicated effort to it. You just came in here from the career panel. Talk to me about that. What were some of the key things that were discussed? Yeah, >>I have my notebook open here because there were so many great takeaways from actually just from the day in general. I'm just so at, at the types of issues that women are tackling across different industries, they're tackling bias. And we know that bias is corrected when women are at the table, but from a career perspective, some of the things that were mentioned from the panel is the fact that women need to own their own careers and they need to actively manage their careers. And there's only so much your manager can do and should do. You've got to be in the driver's seat, driving your own career. One of the things that we've done at Intuit as we've implemented sort of a self promoting process. So twice a year during our promotion period, either your manager can nominate you for a promotion or you can self promote. So it's all about you creating a portfolio of all of your great work. And of course, you know, managers are very supportive of the process and support, you know, women and, and all technologists in crafting their portfolios for a fair chance at promotion. And so we just believe that if you take bias out of a career progression, you can close that fair and equitable gap that we see sometimes across industries with compensation. >>This is, that would be great if we can ever get there. One of the things that's nice about woods, I think it was last year or the year before they opened it up to high school students. So it was so nice walking in this morning, seeing the young, fresh faces, the mature faces, but you bring up a great point of women need to be their own mini to create their own personal board of directors and really be able to, to be at the helm of their career. Do you, did you find that the audience is receptive to that? Do they have the confidence to be able to do that? >>Yeah, absolutely. And, and that was a point that was raised a couple of times this morning, there were women who talked about having great mentors, but it is more important to have a board of your personal board of directors than one mentor, because you've got to make sure that you sort of tackle all aspects of your career life. And you know, it's not all about the technology, a good portion of how you spend your time and where you spend your time is collaborating and negotiating and communicating across the company. And so that's very important. And so that was a key message that folks shared this morning. >>That's good. That's incredibly important. I wish we had more time. You've got to run to the airport. Sharon, it's been a pleasure to have you on the program. Thank you for sharing what Intuit and woods are doing together, your involvement and some of the great messages, inspiring messages from the career panel. >>Exactly. And for all of the young expiring high school students. Yes. We want them to check out into it. www.intuit.com, careers, >>Intuit.com. Is it slash careers slash careers slash careers perfectly. I'm an Intuit customer. I will say. Awesome. It's been a pleasure talking to you. Thank you, Sharon. Bye-bye for Sharon Hutchins. I'm Lisa Martin. You're watching the cubes coverage of women in data science, 2022.
SUMMARY :
Welcome everyone to the cubes coverage of women in data science conference width This is your first woods, very first but into it in words. And we have the same goal added to it. are filled by women. You've heard of the term there's power in the pack, So the data is there that suggests and more diversity at the table, all around, we make You just came in here from the career And so we just believe that if you take bias out One of the things that's nice about woods, And so that was a key message that folks shared this morning. it's been a pleasure to have you on the program. And for all of the young expiring high school students. It's been a pleasure talking to you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sharon | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Sharon Hutchins | PERSON | 0.99+ |
Sharon Hutchins | PERSON | 0.99+ |
last year | DATE | 0.99+ |
30% | QUANTITY | 0.99+ |
2024 | DATE | 0.99+ |
30 | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
37% | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
one mentor | QUANTITY | 0.98+ |
2022 | DATE | 0.98+ |
less than 25% | QUANTITY | 0.98+ |
www.intuit.com | OTHER | 0.97+ |
Arriaga | ORGANIZATION | 0.95+ |
this morning | DATE | 0.95+ |
twice a year | QUANTITY | 0.94+ |
Intuit.com | ORGANIZATION | 0.86+ |
a hundred million customers | QUANTITY | 0.85+ |
a hundred thousand | QUANTITY | 0.84+ |
first woods | QUANTITY | 0.83+ |
2022 | OTHER | 0.78+ |
mint | ORGANIZATION | 0.75+ |
this morning | DATE | 0.67+ |
MailChimp | ORGANIZATION | 0.62+ |
QuickBooks | TITLE | 0.6+ |
Stanford | LOCATION | 0.59+ |
science | EVENT | 0.57+ |
karma | ORGANIZATION | 0.55+ |
woods | ORGANIZATION | 0.53+ |
things | QUANTITY | 0.49+ |
credit | ORGANIZATION | 0.47+ |
Hannah Sperling, SAP | WiDS 2022
>>Hey everyone. Welcome back to the cubes. Live coverage of women in data science, worldwide conference widths 2022. I'm Lisa Martin coming to you from Stanford university at the Arriaga alumni center. And I'm pleased to welcome my next guest. Hannah Sperling joins me business process intelligence or BPI, academic and research alliances at SAP HANA. Welcome to the program. >>Hi, thank you so much for having me. >>So you just flew in from Germany. >>I did last week. Yeah. Long way away. I'm very excited to be here. Uh, but before we get started, I would like to say that I feel very fortunate to be able to be here and that my heart and vicious still goes out to people that might be in more difficult situations right now. I agree >>Such a it's one of my favorite things about Wiz is the community that it's grown into. There's going to be about a 100,000 people that will be involved annually in woods, but you walk into the Arriaga alumni center and you feel this energy from all the women here, from what Margo and teams started seven years ago to what it has become. I was happened to be able to meet listening to one of the panels this morning, and they were talking about something that's just so important for everyone to hear, not just women, the importance of mentors and sponsors, and being able to kind of build your own personal board of directors. Talk to me about some of the mentors that you've had in the past and some of the ones that you have at SAP now. >>Yeah. Thank you. Um, that's actually a great starting point. So maybe talk a bit about how I got involved in tech. Yeah. So SAP is a global software company, but I actually studied business and I was hired directly from university, uh, around four years ago. And that was to join SAP's analytics department. And I've always had a weird thing for databases, even when I was in my undergrad. Um, I did enjoy working with data and so working in analytics with those teams and some people mentoring me, I got into database modeling and eventually ventured even further into development was working in analytics development for a couple of years. And yeah, still am with a global software provider now, which brought me to women and data science, because now I'm also involved in research again, because yeah, some reason couldn't couldn't get enough of that. Um, maybe learn about the stuff that I didn't do in my undergrad. >>And post-grad now, um, researching at university and, um, yeah, one big part in at least European data science efforts, um, is the topic of sensitive data and data privacy considerations. And this is, um, also topic very close to my heart because you can only manage what you measure, right. But if everybody is afraid to touch certain pieces of sensitive data, I think we might not get to where we want to be as fast as we possibly could be. And so I've been really getting into a data and anonymization procedures because I think if we could random a workforce data usable, especially when it comes to increasing diversity in stem or in technology jobs, we should really be, um, letting the data speak >>And letting the data speak. I like that. One of the things they were talking about this morning was the bias in data, the challenges that presents. And I've had some interesting conversations on the cube today, about data in health care data in transportation equity. Where do you, what do you think if we think of international women's day, which is tomorrow the breaking the bias is the theme. Where do you think we are from your perspective on breaking the bias that's across all these different data sets, >>Right. So I guess as somebody working with data on a daily basis, I'm sometimes amazed at how many people still seem to think that data can be unbiased. And this has actually touched upon also in the first keynote that I very much enjoyed, uh, talking about human centered data science people that believe that you can take the human factor out of any effort related to analysis, um, are definitely on the wrong path. So I feel like the sooner that we realize that we need to take into account certain bias sees that will definitely be there because data is humanly generated. Um, the closer we're going to get to something that represents reality better and might help us to change reality for the better as well, because we don't want to stick with the status quo. And any time you look at data, it's definitely gonna be a backward looking effort. So I think the first step is to be aware of that and not to strive for complete objectivity, but understanding and coming to terms with the fact just as it was mentioned in the equity panel, that that is logically impossible, right? >>That's an important, you bring up a really important point. It's important to understand that that is not possible, but what can we work with? What is possible? What can we get to, where do you think we are on the journey of being able to get there? >>I think that initiatives like widths of playing an important role in making that better and increasing that awareness there a big trend around explainability interpretability, um, an AI that you see, not just in Europe, but worldwide, because I think the awareness around those topics is increasing. And that will then, um, also show you the blind spots that you may still have, no matter how much you think about, um, uh, the context. Um, one thing that we still need to get a lot better at though, is including everybody in these types of projects, because otherwise you're always going to have a certain selection in terms of prospectus that you're getting it >>Right. That thought diversity there's so much value in thought diversity. That's something that I think I first started talking about thought diversity at a Wood's conference a few years ago, and really understanding the impact there that that can make to every industry. >>Totally. And I love this example of, I think it was a soap dispenser. I'm one of these really early examples of how technology, if you don't watch out for these, um, human centered considerations, how technology can, can go wrong and just, um, perpetuate bias. So a soap dispenser that would only recognize the hand, whether it was a certain, uh, light skin type that w you know, be placed underneath it. So it's simple examples like that, um, that I think beautifully illustrate what we need to watch out for when we design automatic decision aids, for example, because anywhere where you don't have a human checking, what's ultimately decided upon you end up, you might end up with much more grave examples, >>Right? No, it's, it's I agree. I, Cecilia Aragon gave the talk this morning on the human centered guy. I was able to interview her a couple of weeks ago for four winds and a very inspiring woman and another herself, but she brought up a great point about it's the humans and the AI working together. You can't ditch the humans completely to your point. There are things that will go wrong. I think that's a sends a good message that it's not going to be AI taking jobs, but we have to have those two components working better. >>Yeah. And maybe to also refer to the panel discussion we heard, um, on, on equity, um, I very much liked professor Bowles point. Um, I, and how she emphasized that we're never gonna get to this perfectly objective state. And then also during that panel, um, uh, data scientists said that 80% of her work is still cleaning the data most likely because I feel sometimes there is this, um, uh, almost mysticism around the role of a data scientist that sounds really catchy and cool, but, um, there's so many different aspects of work in data science that I feel it's hard to put that all in a nutshell narrowed down to one role. Um, I think in the end, if you enjoy working with data, and maybe you can even combine that with a certain domain that you're particularly interested in, be it sustainability, or, you know, urban planning, whatever that is the perfect match >>It is. And having that passion that goes along with that also can be very impactful. So you love data. You talked about that, you said you had a strange love for databases. Where do you, where do you want to go from where you are now? How much more deeply are you going to dive into the world of data? >>That's a good question because I would, at this point, definitely not consider myself a data scientist, but I feel like, you know, taking baby steps, I'm maybe on a path to becoming one in the future. Um, and so being at university, uh, again gives me, gives me the opportunity to dive back into certain courses and I've done, you know, smaller data science projects. Um, and I was actually amazed at, and this was touched on in a panel as well earlier. Um, how outdated, so many, um, really frequently used data sets are shown the realm of research, you know, AI machine learning, research, all these models that you feed with these super outdated data sets. And that's happened to me like something I can relate to. Um, and then when you go down that path, you come back to the sort of data engineering path that I really enjoy. So I could see myself, you know, keeping on working on that, the whole data, privacy and analytics, both topics that are very close to my heart, and I think can be combined. They're not opposites. That is something I would definitely stay true to >>Data. Privacy is a really interesting topic. We're seeing so many, you know, GDPR was how many years did a few years old that is now, and we've got other countries and states within the United States, for example, there's California has CCPA, which will become CPRA next year. And it's expanding the definition of what private sensitive data is. So we're companies have to be sensitive to that, but it's a huge challenge to do so because there's so much potential that can come from the data yet, we've got that personal aspect, that sensitive aspect that has to be aware of otherwise there's huge fines. Totally. Where do you think we are with that in terms of kind of compliance? >>So, um, I think in the past years we've seen quite a few, uh, rather shocking examples, um, in the United States, for instance, where, um, yeah, personal data was used or all proxies, um, that led to, uh, detrimental outcomes, um, in Europe, thanks to the strong data regulations. I think, um, we haven't had as many problems, but here the question remains, well, where do you draw the line? And, you know, how do you design this trade-off in between increasing efficiency, um, making business applications better, for example, in the case of SAP, um, while protecting the individual, uh, privacy rights of, of people. So, um, I guess in one way, SAP has a, as an easier position because we deal with business data. So anybody who doesn't want to care about the human element maybe would like to, you know, try building models and machine generated data first. >>I mean, at least I would feel much more comfortable because as soon as you look at personally identifiable data, you really need to watch out, um, there is however ways to make that happen. And I was touching upon these anonymization techniques that I think are going to be, um, more and more important in the, in the coming years, there is a proposed on the way by the European commission. And I was actually impressed by the sophisticated newness of legislation in, in that area. And the plan is for the future to tie the rules around the use of data science, to the specific objectives of the project. And I think that's the only way to go because of the data's out there it's going to be used. Right. We've sort of learned that and true anonymization might not even be possible because of the amount of data that's out there. So I think this approach of, um, trying to limit the, the projects in terms of, you know, um, looking at what do they want to achieve, not just for an individual company, but also for us as a society, think that needs to play a much bigger role in any data-related projects where >>You said getting true anonymization isn't really feasible. Where are we though on the anonymization pathway, >>If you will. I mean, it always, it's always the cost benefit trade off, right? Because if the question is not interesting enough, so if you're not going to allocate enough resources in trying to reverse engineer out an old, the tie to an individual, for example, sticking true to this, um, anonymization example, um, nobody's going to do it right. We live in a world where there's data everywhere. So I feel like that that's not going to be our problem. Um, and that is why this approach of trying to look at the objectives of a project come in, because, you know, um, sometimes maybe we're just lucky that it's not valuable enough to figure out certain details about our personal lives so that nobody will try, because I am sure that if people, data scientists tried hard enough, um, I wonder if there's challenges they wouldn't be able to solve. >>And there has been companies that have, you know, put out data sets that were supposedly anonymized. And then, um, it wasn't actually that hard to make interferences and in the, in the panel and equity one lab, one last thought about that. Um, we heard Jessica speak about, uh, construction and you know, how she would, um, she was trying to use, um, synthetic data because it's so hard to get the real data. Um, and the challenge of getting the synthetic data to, um, sort of, uh, um, mimic the true data. And the question came up of sensors in, in the household and so on. That is obviously a huge opportunity, but for me, it's somebody who's, um, very sensitive when it comes to privacy considerations straight away. I'm like, but what, you know, if we generate all this data, then somebody uses it for the wrong reasons, which might not be better urban planning for all different communities, but simple profit maximization. Right? So this is something that's also very dear to my heart, and I'm definitely going to go down that path further. >>Well, Hannah, it's been great having you on the program. Congratulations on being a Wood's ambassador. I'm sure there's going to be a lot of great lessons and experiences that you'll take back to Germany from here. Thank you so much. We appreciate your time for Hannah Sperling. I'm Lisa Martin. You're watching the QS live coverage of women in data science conference, 2020 to stick around. I'll be right back with my next guest.
SUMMARY :
I'm Lisa Martin coming to you from Stanford Uh, but before we get started, I would like to say that I feel very fortunate to be able to and some of the ones that you have at SAP now. And that was to join SAP's analytics department. And this is, um, also topic very close to my heart because Where do you think we are data science people that believe that you can take the human factor out of any effort related What can we get to, where do you think we are on the journey um, an AI that you see, not just in Europe, but worldwide, because I think the awareness around there that that can make to every industry. hand, whether it was a certain, uh, light skin type that w you know, be placed underneath it. I think that's a sends a good message that it's not going to be AI taking jobs, but we have to have those two Um, I think in the end, if you enjoy working So you love data. data sets are shown the realm of research, you know, AI machine learning, research, We're seeing so many, you know, many problems, but here the question remains, well, where do you draw the line? And the plan is for the future to tie the rules around the use of data Where are we though on the anonymization pathway, So I feel like that that's not going to be our problem. And there has been companies that have, you know, put out data sets that were supposedly anonymized. Well, Hannah, it's been great having you on the program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hannah | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Cecilia Aragon | PERSON | 0.99+ |
Hannah Sperling | PERSON | 0.99+ |
Jessica | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Germany | LOCATION | 0.99+ |
80% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
2020 | DATE | 0.99+ |
Bowles | PERSON | 0.99+ |
next year | DATE | 0.99+ |
today | DATE | 0.99+ |
seven years ago | DATE | 0.99+ |
first step | QUANTITY | 0.99+ |
one role | QUANTITY | 0.99+ |
SAP | ORGANIZATION | 0.99+ |
tomorrow | DATE | 0.99+ |
last week | DATE | 0.99+ |
first keynote | QUANTITY | 0.99+ |
European commission | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
two components | QUANTITY | 0.98+ |
One | QUANTITY | 0.97+ |
SAP HANA | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
this morning | DATE | 0.95+ |
around four years ago | DATE | 0.94+ |
both topics | QUANTITY | 0.94+ |
100,000 people | QUANTITY | 0.93+ |
four winds | QUANTITY | 0.93+ |
international women's day | EVENT | 0.91+ |
California | LOCATION | 0.9+ |
GDPR | TITLE | 0.89+ |
one way | QUANTITY | 0.88+ |
couple of weeks ago | DATE | 0.87+ |
few years ago | DATE | 0.87+ |
2022 | DATE | 0.86+ |
Stanford university | ORGANIZATION | 0.84+ |
European | OTHER | 0.82+ |
Arriaga | ORGANIZATION | 0.8+ |
CPRA | ORGANIZATION | 0.8+ |
Wood | PERSON | 0.78+ |
one thing | QUANTITY | 0.75+ |
one last | QUANTITY | 0.74+ |
one of | QUANTITY | 0.74+ |
QS | EVENT | 0.72+ |
CCPA | ORGANIZATION | 0.69+ |
years | DATE | 0.6+ |
Margo | PERSON | 0.6+ |
about | QUANTITY | 0.54+ |
years | QUANTITY | 0.52+ |
WiDS | EVENT | 0.47+ |
Wiz | ORGANIZATION | 0.39+ |
Rukmini Iyer, Microsoft | WiDS 2022
>>Live from Stanford university on your host. Lisa Martin. My next guest joins me with many I, our corporate vice president at Microsoft, Rick Minnie. It's great to have you on the program. Thank you for having me. Tell me a little bit about your background. So you run Microsoft advertising, engineering organizations. You also manage a multi-billion dollar marketplace globally. Yes. Big responsibilities. >>A little bit >>About you and your role at Microsoft. >>So basically online advertising, you know, funds a lot of the consumer services like search, you know, feeds. And so I run all of the online advertising pieces. And so my team is a combination of machine learning in theory, software engineers, online services. So you think of you think of what needs to happen for running an online advertising ecosystem? That's billions of dollars. I have all these people on my team when I get to work with these fantastic people. So that's my >>Roles. We have a really diverse team. >>Yes. My background itself is in AI. So my PhD was in language modeling and natural language processing. That's how I got into the space. And then I did, you know, machine learning. Then I did some auctions and then I'd, you know, I basically have touched almost all pieces of the puzzle. So from, I appreciate what's required to run a business the size. And so from that perspective, you know, yeah, it is a lot of diverse people, but at the same time, I feel like I know what they do >>Right then interdisciplinary collaboration must be incredibly important and >>Powerful. It is. I mean, for machine learning engineer or machine learning scientists to be successful, when you're running a production system, they have to really appreciate what constraints are there, you know, required online. So you have to look at how much CPU you use, how much memory you need, how fast can your model inference run with your model. And so they have to work very closely with the soft, soft engineering field. But at the same time, the software engineering guys need to know that their job is not to constrain the machine learning scientists. So, you know, as the models get larger, they have to get more creative. Right. And if that balance is right, then you get a really ambitious product. If that balance is not right, then you end up with a very small micro micro system. And so my job is to really make sure that the team is really ambitious in their thinking, not always liking, pushing the borders of what can be done. >>I like that pushing the borders of what can be done. You know, we, we often, when we talk about roles in, in stammered technology, we've talked about the hard skills, but the soft skills you've mentioned creativity. I always think creativity and curiosity are two soft skills that are really important in data science and AI. Talk to me about what your thoughts are. There >>Definitely creativity, because a lot of the problems that you, you know, when you're in school, the problems you face are very theoretical problems. And when you go into the industry and you realize that you need to solve a problem using the theory you learned, then you have to either start making different kinds of assumptions or realize that some assumptions just can be made because life is messy and online. You know, users are messy. They don't all interact with your system the same way. So you get creative in what can be solved. And then what needs to be controlled and folks who can't figure that piece out, they try to solve everything using machine learning, and they become a perfectionist, but nothing ever gets done then. So you need this balance and, and creativity plays a huge role in that space. And collaboration is you're always working with a diverse group of people. So explaining the problem space to someone who's selling your product, say someone is, you know, you build this automated bidding engine and they have to take this full mouth full and sell it to a customer. You've got to give them the terminology to use, tell, explain to them what are the benefits if somebody uses that. So I, I feel people who can empathize with the fact that this has to be explained, do a lot better when they're working in a product system, you know, bringing machine learning to a production system. >>Right. There's a lot of enablement >>There. Yes, exactly. Yeah. Yeah. >>Were you always interested in, in stem and engineering and AIS from when you were small? >>Somewhat? I mean, I've been, I got to my college degree. I was very certain by that point I wanted to be an engineer and my path to AI was kind of weird because I didn't really want to do computer science. So I ended up doing electrical engineering, but in my last year I did a project on speech recognition and I got introduced to computer programming. That was my first introduction to computer programming at the end of it, I knew I was going to work in the space. And so I came to the U S with less than three or four months of a computer engineering background. You know, I barely knew how to code. I had done some statistics, but not nearly enough to be in machine learning. And, but I landed in a good place. And I came to be in Boston university and I landed in a great lab. And I learned everything on my feet in that lab. I do feel like from that point onwards, I have always been interested and I'm never satisfied with just being interested in what's hot right now. I really want to know what can be solved later in the future. So that combination, I think, you know, really keeps me always learning, growing, and I'm never happy with just what's being done. >>Right? Yeah. We here, we've been hearing a lot about that today at weds. Just the tremendous opportunities that are here, the opportunities for data science, for good drones, for good data science and AI in healthcare and in public transportation. For example, you've been involved in with winds from the beginning. So you've gotten to see this small movement grow into this global really kind of is a >>Phenomenon. It is, >>It's a movement. Yes. You talk to me about your involvement with winds from the beginning and some of the things that you're helping them do. And now, >>So I, I first met Karen and marble initially when I was trying to get students from ICME to apply for roles in Microsoft. I really thought they had the right mix of applied and research mindset and the skill sets that were coming out of ICME rock solid in their math and theoretical foundations. So that's how I got to know them. And then they were just thinking about bids at that point in time. And so I said, you know, how can I help? And so I think I've been a keynote speaker, Pam list run a workshop. And then I got involved with the woods high school volunteer effort. And I'd say, that's the most rewarding piece of my visit involvement. And so I've been with them every year. I never Ms. Woods. I'm always here. And I think it is, you know, Grace Hopper was the technology conference for women and, and it's, it's, it's an awesome conference. I mean, it's amazing to sit next to so many women engineers, but data science was a part of it, but not a critical part of it. And so having this conference, that's completely focused on data science and making it accessible. The talks are accessible, making it more personable to, to all the invitees here. I think it creates a great community. So for me, I think it's, I hope they can run this and grow this for >>Yeah. Over 200 online events this year in 60 countries, they're aiming to reach a hundred thousand people annually. It's, it's grown dramatically in a short time period. Yes, >>Absolutely. Yeah. It hasn't been that long. It hasn't been that long and every year they add something new to the table. So for this year, I mean last year I thought the high schoolers, they started bringing in the high schoolers and this year again, I thought the high school. >>Yeah, >>Exactly. And I think the mix of getting data science from across a diversity, because a lot of the conferences are very focused. Like, you know, they, they will be the focused on healthcare and data science or pure AI or pure machine learning. This conference has a mix of a lot of different elements. And so attendees get to see how it's something is being used in healthcare and how something is being used in recommendations. And I think that diversity is really valuable. >>Oh, it's hugely valuable that the thought diversity is this is probably the conference where I discovered what thought diversity was if only a few years ago and the power and the opportunities that it can unlock for people everywhere for businesses in any industry. Yes. >>I want to kind of play off one of the things you said before, you know, data science for good, the, the incredible part of data sciences, you can do good wherever you are with data science. So take online advertising, you know, we build products for all advertisers, but we quickly figured out that are really large advertisers. They have their own data science teams and they are optimizing and, you know, creating new ads and making sure the best ads are serving at all times. They have figured out, you know, they have machine learning pipelines, so they are really doing their best already. But then there's this whole tale of small advertisers who just don't have the wherewithal or the knowledge to do any of that. Now, can you make data, use data science and your machine learning models and make it accessible for that long table? Pretty much any product you build, you will have the symptom of heavy users and then the tail users. And can you create an experience that is as valuable for those tailored users as it is for the heavy users. So data science for good exists, whatever problem you're solving, basically, >>That's nice to hear. And so you're going to be participating in some of the closing remarks today. What are some of the pearls of wisdom that you're going to enlighten the audience with today? >>Well, I mean the first thing I, to tell this audiences that they need to participate, you know, in whatever they shaped form, they need to participate in this movement of getting more women into stem and into data science. And my reasoning is, you know, I joined the lab and my professor was a woman and she was very strong scientists, very strong engineer. And that one story was enough to convince me that I belong. And if you can imagine that we create thousands of these stories, this is how you create that feeling of inclusion, where people feel like they belong. Yeah. Look, just look at those other 50 people here, those other a hundred stories here. This is how you create that movement. And so the first thing I want the audience to do is participate, come back, volunteer, you know, submit papers for keynote speeches, you know, be a part of this movement. >>So that's one. And then the second is I want them to be ambitious. So I don't want them to just read a book and apply the theory. I really want them to think about what problem are they solving and could they have solved it in the, in the scale manner that it can be solved. So I'll give a few examples and problems and I'll throw them out there as well. So for instance, experimentation, one of the big breakthroughs that happened in a lot of these large companies in data science is experimentation. You can AB experiment pretty much anything. You know, we can, Google has this famous paper where they talk about how they experimented with thousands of different blues just to get the right blue. And so experimentation has been evolving and data scientists are figuring out that if they can figure out interactions between experiments, you can actually run multiple experiments on the same user. >>So at any given time, you may be subject to four or five different experiments. Now, can we now scale that to infinity so that you can actually run as many experiments as you want questions like these, you shouldn't stop with just saying, oh, I know how AB experimentation works. The question you should be asking is how many such experiments can I run? How do I scale the system? As one of the keynote speakers initially talked about the unasked questions. And I think that's what I want to leave this audience with that don't stop at, you know, answering the questions that you're asked or solving the problems. You know, of you think about the problems you haven't solved your blind spots, you know, those blind spots and that I think I want ambitious data scientists. And so that's the message I want to give this audience. >>I can feel your energy when you say that. And you're involved with, with, with Stanford program for middle school and high school girls. If we look at the data and we see, there's still only about a quarter of stem positions are filled by females, what do you see? Do you see an inspiring group of young women in those middle school and high school girls that, that you see we're, we're on trend to start increasing that percentage. >>So I had a high schooler who just went, you know, she, she, she just, she's at UCLA now shout out to her and she, but she just went through high school. And what I realized is it's the same problem of not having enough stories around you, not having enough people around you that are all echoing the sentiment for, Hey, I love math. A lot of girls just don't talk about us. Yeah. And so I think the reason I want to start in middle school and high school is I think the momentum needs to start there. Yes. Because they get to college. And actually you heard my story. I didn't know any programming until I came here and I had already finished my four years of college and I still figured it out. Right. But a lot of women lose confidence to change fields after four years of college. >>Yes. And so if you don't catch them in early and you're catching them late, then you need to give them this boost of confidence or give them that ramp up time to learn, to figure out, like, I have a few people who are joining me from pure math nowadays. And these kids, these kids come in and within six months they're off and running. So, you know, in the interview phase, people might say, oh, they don't have any coding skills. Six months later, if you interview them, they pick up coding skills. Yeah. And so if you can get them started early on, I think, you know, they don't have this crisis of confidence of moving, changing fields. That's why I feel, and I don't think we are there yet, to be honest, I don't think yet. I think >>You still think there are plenty of girls being told. Now you can't do computer science. No, you can't do physics. No, you can't do math. >>Actually. They are denying it to themselves in many cases because they say, Hey, I go to physics class and there are two boys, two girls out of 50 boys. And I don't think girls are in, you know, you get the stereotype that maybe girls are not interested in physics. And it's not about, Hey, as a girl, I'm doing really well in physics. Maybe I should take this as my career. So I do feel we need to create more resounding stories in the area. And then I think we'll drum up that momentum. That's >>A great point. More stories, more and names to success here so that she can be what she can see exactly what many it's been great having you on the program. Thank you for joining me and sharing your background and some of the pearls of wisdom that you're gonna be dropping on the audience shortly today. We appreciate your insights. Thank you. My pleasure. Who Rick, Minnie, I are. I'm Lisa Martin. You're watching the cubes coverage weds 2022. We'll be right back after a short break.
SUMMARY :
It's great to have you on the program. So basically online advertising, you know, funds a lot of the consumer services like search, We have a really diverse team. And so from that perspective, you know, yeah, it is a lot of diverse people, And so they have to work I like that pushing the borders of what can be done. And when you go into the industry and you realize There's a lot of enablement And so I came to the U S with less than opportunities that are here, the opportunities for data science, It is, And now, And so I said, you know, how can I help? Yes, So for this year, I mean last year I thought the high schoolers, And so attendees get to see how it's something is being used in healthcare and how the power and the opportunities that it can unlock for people everywhere I want to kind of play off one of the things you said before, you know, data science for good, And so you're going to be participating in some of the closing remarks today. And if you can imagine that we create thousands of these stories, this is how you create out that if they can figure out interactions between experiments, you can actually run multiple experiments You know, of you think about the problems you haven't solved your blind spots, what do you see? So I had a high schooler who just went, you know, she, she, she just, she's at UCLA now shout out to her and And so if you can get them started early on, No, you can't do physics. you know, you get the stereotype that maybe girls are not interested in physics. what many it's been great having you on the program.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Karen | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Woods | PERSON | 0.99+ |
Rick Minnie | PERSON | 0.99+ |
Rukmini Iyer | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
two girls | QUANTITY | 0.99+ |
four years | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
two boys | QUANTITY | 0.99+ |
50 people | QUANTITY | 0.99+ |
less than three | QUANTITY | 0.99+ |
one story | QUANTITY | 0.99+ |
60 countries | QUANTITY | 0.99+ |
UCLA | ORGANIZATION | 0.99+ |
Six months later | DATE | 0.99+ |
Rick | PERSON | 0.98+ |
second | QUANTITY | 0.98+ |
five different experiments | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Over 200 online events | QUANTITY | 0.98+ |
ICME | ORGANIZATION | 0.97+ |
billions of dollars | QUANTITY | 0.97+ |
50 boys | QUANTITY | 0.96+ |
Minnie | PERSON | 0.96+ |
six months | QUANTITY | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
first | QUANTITY | 0.95+ |
this year | DATE | 0.95+ |
few years ago | DATE | 0.94+ |
thousands of different blues | QUANTITY | 0.93+ |
first introduction | QUANTITY | 0.9+ |
hundred stories | QUANTITY | 0.89+ |
Boston | LOCATION | 0.89+ |
two soft skills | QUANTITY | 0.89+ |
first thing | QUANTITY | 0.86+ |
multi-billion dollar | QUANTITY | 0.85+ |
a hundred thousand people | QUANTITY | 0.85+ |
Pam | PERSON | 0.84+ |
four months | QUANTITY | 0.78+ |
Stanford university | ORGANIZATION | 0.77+ |
2022 | DATE | 0.7+ |
U S | ORGANIZATION | 0.7+ |
thousands of these stories | QUANTITY | 0.69+ |
woods | ORGANIZATION | 0.67+ |
annually | QUANTITY | 0.65+ |
Grace Hopper | EVENT | 0.57+ |
2022 | OTHER | 0.41+ |
weds | DATE | 0.39+ |
university | ORGANIZATION | 0.35+ |
Nandi Leslie, Raytheon | WiDS 2022
(upbeat music) >> Hey everyone. Welcome back to theCUBE's live coverage of Women in Data Science, WiDS 2022, coming to live from Stanford University. I'm Lisa Martin. My next guest is here. Nandi Leslie, Doctor Nandi Leslie, Senior Engineering Fellow at Raytheon Technologies. Nandi, it's great to have you on the program. >> Oh it's my pleasure, thank you. >> This is your first WiDS you were saying before we went live. >> That's right. >> What's your take so far? >> I'm absolutely loving it. I love the comradery and the community of women in data science. You know, what more can you say? It's amazing. >> It is. It's amazing what they built since 2015, that this is now reaching 100,000 people 200 online event. It's a hybrid event. Of course, here we are in person, and the online event going on, but it's always an inspiring, energy-filled experience in my experience of WiDS. >> I'm thoroughly impressed at what the organizers have been able to accomplish. And it's amazing, that you know, you've been involved from the beginning. >> Yeah, yeah. Talk to me, so you're Senior Engineering Fellow at Raytheon. Talk to me a little bit about your role there and what you're doing. >> Well, my role is really to think about our customer's most challenging problems, primarily at the intersection of data science, and you know, the intersectional fields of applied mathematics, machine learning, cybersecurity. And then we have a plethora of government clients and commercial clients. And so what their needs are beyond those sub-fields as well, I address. >> And your background is mathematics. >> Yes. >> Have you always been a math fan? >> I have, I actually have loved math for many, many years. My dad is a mathematician, and he introduced me to, you know mathematical research and the sciences at a very early age. And so, yeah, I went on, I studied in a math degree at Howard undergrad, and then I went on to do my PhD at Princeton in applied math. And later did a postdoc in the math department at University of Maryland. >> And how long have you been with Raytheon? >> I've been with Raytheon about six years. Yeah, and before Raytheon, I worked at a small to midsize defense company, defense contracting company in the DC area, systems planning and analysis. And then prior to that, I taught in a math department where I also did my postdoc, at University of Maryland College Park. >> You have a really interesting background. I was doing some reading on you, and you have worked with the Navy. You've worked with very interesting organizations. Talk to the audience a little bit about your diverse background. >> Awesome yeah, I've worked with the Navy on submarine force security, and submarine tracking, and localization, sensor performance. Also with the Army and the Army Research Laboratory during research at the intersection of machine learning and cyber security. Also looking at game theoretic and graph theoretic approaches to understand network resilience and robustness. I've also supported Department of Homeland Security, and other government agencies, other governments, NATO. Yeah, so I've really been excited by the diverse problems that our various customers have you know, brought to us. >> Well, you get such great experience when you are able to work in different industries and different fields. And that really just really probably helps you have such a much diverse kind of diversity of thought with what you're doing even now with Raytheon. >> Yeah, it definitely does help me build like a portfolio of topics that I can address. And then when new problems emerge, then I can pull from a toolbox of capabilities. And, you know, the solutions that have previously been developed to address those wide array of problems, but then also innovate new solutions based on those experiences. So I've been really blessed to have those experiences. >> Talk to me about one of the things I heard this morning in the session I was able to attend before we came to set was about mentors and sponsors. And, you know, I actually didn't know the difference between that until a few years ago. But it's so important. Talk to me about some of the mentors you've had along the way that really helped you find your voice in research and development. >> Definitely, I mean, beyond just the mentorship of my my family and my parents, I've had amazing opportunities to meet with wonderful people, who've helped me navigate my career. One in particular, I can think of as and I'll name a number of folks, but Dr. Carlos Castillo-Chavez was one of my earlier mentors. I was an undergrad at Howard University. He encouraged me to apply to his summer research program in mathematical and theoretical biology, which was then at Cornell. And, you know, he just really developed an enthusiasm with me for applied mathematics. And for how it can be, mathematics that is, can be applied to epidemiological and theoretical immunological problems. And then I had an amazing mentor in my PhD advisor, Dr. Simon Levin at Princeton, who just continued to inspire me, in how to leverage mathematical approaches and computational thinking for ecological conservation problems. And then since then, I've had amazing mentors, you know through just a variety of people that I've met, through customers, who've inspired me to write these papers that you mentioned in the beginning. >> Yeah, you've written 55 different publications so far. 55 and counting I'm sure, right? >> Well, I hope so. I hope to continue to contribute to the conversation and the community, you know, within research, and specifically research that is computationally driven. That really is applicable to problems that we face, whether it's cyber security, or machine learning problems, or others in data science. >> What are some of the things, you're giving a a tech vision talk this afternoon. Talk to me a little bit about that, and maybe the top three takeaways you want the audience to leave with. >> Yeah, so my talk is entitled "Unsupervised Learning for Network Security, or Network Intrusion Detection" I believe. And essentially three key areas I want to convey are the following. That unsupervised learning, that is the mathematical and statistical approach, which tries to derive patterns from unlabeled data is a powerful one. And one can still innovate new algorithms in this area. Secondly, that network security, and specifically, anomaly detection, and anomaly-based methods can be really useful to discerning and ensuring, that there is information confidentiality, availability, and integrity in our data >> A CIA triad. >> There you go, you know. And so in addition to that, you know there is this wealth of data that's out there. It's coming at us quickly. You know, there are millions of packets to represent communications. And that data has, it's mixed, in terms of there's categorical or qualitative data, text data, along with numerical data. And it is streaming, right. And so we need methods that are efficient, and that are capable of being deployed real time, in order to detect these anomalies, which we hope are representative of malicious activities, and so that we can therefore alert on them and thwart them. >> It's so interesting that, you know, the amount of data that's being generated and collected is growing exponentially. There's also, you know, some concerning challenges, not just with respect to data that's reinforcing social biases, but also with cyber warfare. I mean, that's a huge challenge right now. We've seen from a cybersecurity perspective in the last couple of years during the pandemic, a massive explosion in anomalies, and in social engineering. And companies in every industry have to be super vigilant, and help the people understand how to interact with it, right. There's a human component. >> Oh, for sure. There's a huge human component. You know, there are these phishing attacks that are really a huge source of the vulnerability that corporations, governments, and universities face. And so to be able to close that gap and the understanding that each individual plays in the vulnerability of a network is key. And then also seeing the link between the network activities or the cyber realm, and physical systems, right. And so, you know, especially in cyber warfare as a remote cyber attack, unauthorized network activities can have real implications for physical systems. They can, you know, stop a vehicle from running properly in an autonomous vehicle. They can impact a SCADA system that's, you know there to provide HVAC for example. And much more grievous implications. And so, you know, definitely there's the human component. >> Yes, and humans being so vulnerable to those social engineering that goes on in those phishing attacks. And we've seen them get more and more personal, which is challenging. You talking about, you know, sensitive data, personally identifiable data, using that against someone in cyber warfare is a huge challenge. >> Oh yeah, certainly. And it's one that computational thinking and mathematics can be leveraged to better understand and to predict those patterns. And that's a very rich area for innovation. >> What would you say is the power of computational thinking in the industry? >> In industry at-large? >> At large. >> Yes, I think that it is such a benefit to, you know, a burgeoning scientist, if they want to get into industry. There's so many opportunities, because computational thinking is needed. We need to be more objective, and it provides that objectivity, and it's so needed right now. Especially with the emergence of data, and you know, across industries. So there are so many opportunities for data scientists, whether it's in aerospace and defense, like Raytheon or in the health industry. And we saw with the pandemic, the utility of mathematical modeling. There are just so many opportunities. >> Yeah, there's a lot of opportunities, and that's one of the themes I think, of WiDS, is just the opportunities, not just in data science, and for women. And there's obviously even high school girls that are here, which is so nice to see those young, fresh faces, but opportunities to build your own network and your own personal board of directors, your mentors, your sponsors. There's tremendous opportunity in data science, and it's really all encompassing, at least from my seat. >> Oh yeah, no I completely agree with that. >> What are some of the things that you've heard at this WiDS event that inspire you going, we're going in the right direction. If we think about International Women's Day tomorrow, "Breaking the Bias" is the theme, do you think we're on our way to breaking that bias? >> Definitely, you know, there was a panel today talking about the bias in data, and in a variety of fields, and how we are, you know discovering that bias, and creating solutions to address it. So there was that panel. There was another talk by a speaker from Pinterest, who had presented some solutions that her, and her team had derived to address bias there, in you know, image recognition and search. And so I think that we've realized this bias, and, you know, in AI ethics, not only in these topics that I've mentioned, but also in the implications for like getting a loan, so economic implications, as well. And so we're realizing those issues and bias now in AI, and we're addressing them. So I definitely am optimistic. I feel encouraged by the talks today at WiDS that you know, not only are we recognizing the issues, but we're creating solutions >> Right taking steps to remediate those, so that ultimately going forward. You know, we know it's not possible to have unbiased data. That's not humanly possible, or probably mathematically possible. But the steps that they're taking, they're going in the right direction. And a lot of it starts with awareness. >> Exactly. >> Of understanding there is bias in this data, regardless. All the people that are interacting with it, and touching it, and transforming it, and cleaning it, for example, that's all influencing the veracity of it. >> Oh, for sure. Exactly, you know, and I think that there are for sure solutions are being discussed here, papers written by some of the speakers here, that are driving the solutions to the mitigation of this bias and data problem. So I agree a hundred percent with you, that awareness is you know, half the battle, if not more. And then, you know, that drives creation of solutions >> And that's what we need the creation of solutions. Nandi, thank you so much for joining me today. It was a pleasure talking with you about what you're doing with Raytheon, what you've done and your path with mathematics, and what excites you about data science going forward. We appreciate your insights. >> Thank you so much. It was my pleasure. >> Good, for Nandi Leslie, I'm Lisa Martin. You're watching theCUBE's coverage of Women in Data Science 2022. Stick around, I'll be right back with my next guest. (upbeat flowing music)
SUMMARY :
have you on the program. This is your first WiDS you were saying You know, what more can you say? and the online event going on, And it's amazing, that you know, and what you're doing. and you know, the intersectional fields and he introduced me to, you And then prior to that, I and you have worked with the Navy. have you know, brought to us. And that really just And, you know, the solutions that really helped you that you mentioned in the beginning. 55 and counting I'm sure, right? and the community, you and maybe the top three takeaways that is the mathematical and so that we can therefore and help the people understand And so, you know, Yes, and humans being so vulnerable and to predict those patterns. and you know, across industries. and that's one of the themes I think, completely agree with that. that inspire you going, and how we are, you know And a lot of it starts with awareness. that's all influencing the veracity of it. And then, you know, that and what excites you about Thank you so much. of Women in Data Science 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Nandi | PERSON | 0.99+ |
Carlos Castillo-Chavez | PERSON | 0.99+ |
Simon Levin | PERSON | 0.99+ |
Nandi Leslie | PERSON | 0.99+ |
Nandi Leslie | PERSON | 0.99+ |
NATO | ORGANIZATION | 0.99+ |
Raytheon | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
Department of Homeland Security | ORGANIZATION | 0.99+ |
Raytheon Technologies | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
today | DATE | 0.99+ |
University of Maryland | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Army Research Laboratory | ORGANIZATION | 0.99+ |
Navy | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
millions of packets | QUANTITY | 0.97+ |
55 | QUANTITY | 0.97+ |
Cornell | ORGANIZATION | 0.97+ |
Howard University | ORGANIZATION | 0.97+ |
each individual | QUANTITY | 0.97+ |
about six years | QUANTITY | 0.97+ |
Howard | ORGANIZATION | 0.96+ |
55 different publications | QUANTITY | 0.96+ |
Stanford University | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
Unsupervised Learning for Network Security, or Network Intrusion Detection | TITLE | 0.96+ |
University of Maryland College Park | ORGANIZATION | 0.96+ |
Army | ORGANIZATION | 0.96+ |
WiDS | EVENT | 0.95+ |
Women in Data Science 2022 | TITLE | 0.95+ |
Women in Data Science | EVENT | 0.95+ |
Princeton | ORGANIZATION | 0.94+ |
hundred percent | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.93+ |
CIA | ORGANIZATION | 0.93+ |
Secondly | QUANTITY | 0.92+ |
tomorrow | DATE | 0.89+ |
WiDS | ORGANIZATION | 0.88+ |
Doctor | PERSON | 0.88+ |
200 online | QUANTITY | 0.87+ |
WiDS 2022 | EVENT | 0.87+ |
this afternoon | DATE | 0.85+ |
three takeaways | QUANTITY | 0.84+ |
last couple of years | DATE | 0.83+ |
this morning | DATE | 0.83+ |
few years ago | DATE | 0.82+ |
SCADA | ORGANIZATION | 0.78+ |
top | QUANTITY | 0.75+ |
three | QUANTITY | 0.71+ |
2022 | DATE | 0.7+ |
DC | LOCATION | 0.64+ |
Breaking the Bias | EVENT | 0.52+ |
WiDS | TITLE | 0.39+ |
Maggie Wang, Skydio | WiDS 2022
(upbeat music) >> Hey, everyone. Welcome back to theCUBE's live coverage of Women in Data Science Worldwide Conference, WiDS 2022, live from Stanford Uni&versity. I'm Lisa Martin. I have a guest next here with me. Maggie Wang is here, Autonomy Engineer at Skydio. Maggie, welcome to the program. >> Thanks so much. I'm so happy to be here. >> Excited to talk to you. You are one of the event speakers, but this is your first WiDS. What's your take so far? >> I'm really excited that there's a conference dedicated to getting more women in STEM. I think it's extremely important, and I'm so happy to be here. >> Were you always interested in STEM subjects when you were growing up? >> I think I've always been drawn to STEM, but not only STEM, but I've always been interested in arts, humanities. I'm getting more interested in the science as well. And I think STEM robotics was really my way to express myself and make things move in the real world. >> Nice. So you've got interests, I was reading about you, interests in motion planning, control theory, computer vision and deep learning. Talk to me about those interests. It sounds very fascinating. >> Yeah. So I think what really drew me into robotics was just how interdisciplinary the subject is. So I think a lot goes into creating a robot. So not only is it about actually understanding where you are in the world, it's also about seeing where you are in the world. And it's so interesting, because I feel like humans, you know, we take this all for granted, but it's actually so difficult to do that in an actual robot. So I'm excited about the possibilities of robotics now and in the future. >> Lots of possibilities. And you only graduated from Harvard last May, with a Bachelor's and a Masters? >> Yeah. >> Tell me a little bit about what you studied at Harvard. >> Yeah, so I studied Physics as my undergrad degree. And that was really interesting, because I've always been interested in science. And, actually, part of what got me interested in STEM was just learning about the universe and astrophysics. And that's what gets me excited. And I think I also wanted to supplement that with computer science and building things in the real world. And so that's why I got my Masters in that. And I always knew that I wanted to kind of blend a lot of different disciplines and study them. >> There's so much benefit from blending disciplines, in terms of even the thought diversity alone, which just opens up the opportunities to be almost endless. So you graduated in May. You're now at Skydio. Autonomy Engineer. Talk to me a little bit, first of all, tell me a bit about Skydio as a company, the products, what differentiates it, and then talk to me about what you're doing there specifically. >> So Skydio is a really amazing company. I'm super-fortunate to work there. So what they do is create autonomous drones, and what differentiates them is the autonomy. So in typical drones, it's very difficult to actually make sure that it has full understanding of the environment and obstacle avoidance. So what happens is we fly these drones manually, but we aren't able to harness the full potential of these drones because of lack of autonomy. So what we do is really push into this autonomous sphere, and make sure that we're able to understand the environment. We have deep learning algorithms on the drone, and we have really good planning and controls on the drone as well. So yeah, our company basically makes the most autonomous drones in the market. >> Nice. And tell me about your role specifically. >> Yeah. So as an autonomy engineer, I write algorithms that run on the drone, which is super-exciting. I can create some algorithms and design it, and then also fly it in simulation, and then fly it in the real world. So it's just really amazing to see the things I work with actually come to life. >> And talk to me about how you got involved in WiDS. You were saying it was your first WiDS, and Margot Gerritsen found you on LinkedIn, but what are some of the things that you've heard so far? I mean, I was in one of the panels this morning before we came out to the set, and I loved how they were talking about the importance of mentors and sponsors. Talk to me about some of your mentors along the way. >> Yeah, I had so many great mentors along the way. I definitely would not be here had it not been for them. Starting from my parents, they're immigrants from China, and they inspire me in so many ways. They're very hard-working, and they always encourage me to fail, and just be courageous, and, you know, follow my passions. And I think beyond that, like in high school, I had great mentors. One was an astrophysics professor. >> Wow. >> Yeah. So it was very amazing that I was able to have these opportunities at a young age. And even in high school, I was involved in all girls robotics team. And that really opened my eyes to how technology can be used and why more women should be in STEM. And that, you know, STEM should not be only for males. And it's really important for everyone to be involved. >> It is, for so many reasons. If we look at the data, and the workforce is about 50-50, but the number of women in STEM positions is less than 25%. It's something that's new to the tech industry. What are some of the things that... Do you see that, do you feel that, or are you just really excited to be able to focus on doing the autonomous engineering that you're doing? >> Well, I think that it's kind of easy to try to separate yourself and your identity from your work, but I don't necessarily agree with that. I think you need to, as best as possible, bring yourself to the table and bring your whole identity. And I think part of growing up for me was trying to understand who I was as a woman and also as an Asian American, and try to combine all of my identities into how I bring myself to the workplace. And I think as we become more vulnerable and try to understand ourselves and express ourselves to others, we're able to build more inclusive communities, in STEM and beyond. >> I agree. Very wise words. So you're going to be talking on the career panel today. What are some of the parts of wisdom are you going to leave the audience with this afternoon? >> Well, wisdom. I think everyone should be able to know, and have intuitive understanding of what they actually bring to the table. I think so many times women shy away from bringing themselves and showing up as themselves. And I think it's really important for a woman to understand that they hold a lot of power, that they have a voice that need to be heard. And I think I just want to encourage everyone to be passionate and show up. >> Be passionate and show up. That's great advice. One of the things that was talked about this morning, and we talk about this a lot when we talk about data or data science, is the inherent bias in data. Talk to me about the importance of data in robotics. Is there bias there? How do you navigate around that? >> Yeah, there's definitely bias in robotics. There's definitely a lot of data involved in robotics. So in many cases right now in robotics, we work in specialized fields, so you can see picking robots that will pick in specific factory locations. But if you bring them to other locations, like in your garage or something, and make it clean up, it's really difficult to do so. So I think having a lot of different streams of data and having very diverse sets of data is very important. And also being able to run these in the real world I think is also super-important, and something that Skydio addresses a lot. >> So you talked about Skydio, what you guys do there, and some of the differentiators. What are some of the technical challenges that you face in trying to do what you're doing? >> Well, first of all, Skydio's trying to run everything on board on the drone. So already there's a lot of technical challenges that goes into putting everything in a small form factor and making sure that we trade off between compute and all of these different resources. And yeah, making sure that we utilize all of our resources in the best possible way. So that's definitely one challenge. And making sure that we have these trade-offs, and understand the trade-offs that we make. >> That's a good point. Talk to me about why robotics researchers and industry practitioners, what should be some of the key things that they're focusing on? >> Yeah, so I think right now, as I said, a lot of robotics is in very specialized environments, and what we're trying to do in robotics is try to expand to more complex real world applications. And I think Skydio's at the forefront of this. And trying to get these drones in all different types of locations is very difficult, because you might not have good priors, you might not have good information on your data sources. So I think, yeah, getting good, diverse data and making sure that these robots can work in multiple environments can hopefully help us in the future when we use robots. >> Right. There's got to be so many real world a applications of that. >> Yeah, for sure. >> I imagine. Definitely. So talk to me about being a female in the drone industry. What's that like? Why do you think it's important to have the female voice in mind in the drone industry? >> Well, I think first of all, I think it's kind of sad to see not many women in the drone space, because I think there's a lot of potential for drones to be used for good in all the different areas that women care about. And for instance, like climate change, there's a lot of ways that drones can help in reducing waste in many different ways. Search and rescue, for instance. Those are huge issues, and potential solutions from drones. And I think that if women understand these solutions and understand how drones can be used for good, I think we could get more women in and excited about this. >> And how do you see your role in that, in helping to get more women excited, and maybe even just aware of it as a career opportunity? >> Yeah. So I think sometimes robotics can be a very niche subject, and a lot of people get into it from gaming or other things. But I think if we come to it as a way to solve humanity's greatest problems, I think that's what really inspires me. I think that's what would inspire a lot of young women, is to see that robotics is a way to help others. And also that it may not, if we don't consciously make it so that robotics helps others, and if we don't put our voices into the table, then potentially robotics will do harm. But we need to push it into the right direction. >> Do you feel it's going in the right direction? >> Yes, I think with more conferences like this, like WiDS, I think we're going in the right direction. >> Yeah, this is a great conference. It's one of my favorite shows to host. And you know, it only started back in 2015 as a one-day technical conference. And look at it now. It's a global movement. They found you. You're now part of the community. But there's hundreds of events going on in 60 countries. You have the opportunity there to really grow your network, but also reach a much bigger audience, just based on something like what Margot Gerritsen and the team have done with WiDS. What does that mean to you? >> It means a lot. I think it's so amazing that we're able to spread the word of how technology can be used in many different fields, not just robotics, but in healthcare, in search and rescue, in environmental protection. So just seeing the power that technology can bring, and spreading that to underserved communities, not just in the United States, I love how WiDS is a global community and there's regional chapters everywhere. And I think there should be more of this global collaboration in technology. >> I agree. You know, every company these days is a technology company, or a data company, or both. You think of even your local retailer or grocery store that has to be a technology company. So for women to get involved in technology, there's so many different applications of that. It doesn't have to be just coding, for example. You're doing work with drones. There's so much potential there. I think the more that we can do events like this, and leverage platforms like theCUBE, the more we can get that word out there. >> I agree. >> So you have the career panel. And then you're also doing a tech vision talk. >> Yeah, a tech talk. >> What are some of the things you're going to talk about there? >> Yeah, so I'm going to talk about... So at the career panel, just advice in general to young people who may be as confused and starting off their career, just like I am. And at the tech talk, I'll be talking about some different aspects of Skydio, and a specific use case, which is 3D scanning any physical object and putting that into a digital model. >> Ooh, wow. Tell me a little bit more about that. >> Yeah, so 3D scan is one of our products, and it allows for us to take pictures of anything in the physical world and make sure that we can put it into a digital form. So we can create digital twins into digital form, which is very cool. >> Very cool. So we're talking any type of physical object. >> Mm hm. So if you want to inspect a building, or any crumbling infrastructure, a lot of the times right now we use helicopters, or big snooper trucks, or just things that could be expensive or potentially dangerous. Instead, we can use a drone. So this is just one example of how drones can be used to help save lives, potentially. >> Tremendous amount of opportunity that drones provide. It's very exciting. What are some of the things that you're looking forward to this year? We are very early in calendar year 2022, but what are you excited about as the year progresses? >> Hmm. What am I excited about? I think there's a lot of really interesting drone-related companies, and also a lot of robotics companies in general, a lot of startups, and there's a lot of excitement there. And I think as the robotics community grows and grows, we'll be seeing more robots in real life. And I think that's just extremely exciting to me. >> It is. And you're at the forefront of that. Maggie, it's great to have you on the program. Thank you for sharing what you're doing at Skydio, your history, your past, and what you're going to be encouraging the audience to be able to go and achieve. We appreciate your time. >> Thanks so much. >> All right. From Maggie Wang. I'm Lisa Martin. You're watching theCUBE's coverage of Women in Data Science Worldwide Conference, WiDS 2022. Stick around. I'll be right back with my next guest. (upbeat music)
SUMMARY :
Welcome back to theCUBE's live coverage I'm so happy to be here. You are one of the event speakers, and I'm so happy to be here. I think I've always been drawn to STEM, Talk to me about those interests. and in the future. And you only graduated what you studied at Harvard. And I think I also and then talk to me about and make sure that we're able And tell me about your role specifically. to see the things I work And talk to me about how And I think beyond that, And that, you know, STEM What are some of the things that... And I think as we become more vulnerable What are some of the parts of wisdom I think everyone should be able to know, One of the things that was And also being able to run to do what you're doing? and making sure that we Talk to me about why robotics researchers And I think Skydio's at There's got to be so many real So talk to me about being a And I think that if women But I think if we come to it going in the right direction. and the team have done with WiDS. and spreading that to I think the more that we So you have the career panel. And at the tech talk, Tell me a little bit more about that. and make sure that we can So we're talking any a lot of the times right What are some of the things And I think as the robotics and what you're going to of Women in Data Science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Maggie | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Skydio | ORGANIZATION | 0.99+ |
Maggie Wang | PERSON | 0.99+ |
China | LOCATION | 0.99+ |
United States | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
one-day | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
May | DATE | 0.99+ |
last May | DATE | 0.99+ |
less than 25% | QUANTITY | 0.99+ |
one example | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
ORGANIZATION | 0.98+ | |
one | QUANTITY | 0.98+ |
60 countries | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one challenge | QUANTITY | 0.98+ |
Women in Data Science Worldwide Conference | EVENT | 0.98+ |
WiDS | ORGANIZATION | 0.98+ |
WiDS | EVENT | 0.97+ |
WiDS 2022 | EVENT | 0.96+ |
Stanford Uni | ORGANIZATION | 0.96+ |
this morning | DATE | 0.96+ |
hundreds of events | QUANTITY | 0.96+ |
Harvard | ORGANIZATION | 0.95+ |
theCUBE | ORGANIZATION | 0.94+ |
this year | DATE | 0.94+ |
Asian American | OTHER | 0.88+ |
this afternoon | DATE | 0.81+ |
about 50-50 | QUANTITY | 0.81+ |
2022 | DATE | 0.67+ |
versity | ORGANIZATION | 0.42+ |
Tina Hernandez Boussard | WiDS 2022
(upbeat music) >> Hey, everyone, welcome to theCUBE's live coverage of the Women in Data Science Worldwide Conference 2022. I'm your host, Lisa Martin, coming to you live from Stanford University. I'm pleased to welcome fresh from the main stage, Tina Hernandez-Boussard the Associate Professor of medicine here at Stanford. Tina, it's great to have you on the program. >> Thank you so much for this opportunity. I love being here and I've been coming to WIDS for many years, so it's exciting to be part of this and participate. >> It is exciting, it's one of my favorite events since I was telling you before we went live. And if you think about, they only started back in 2015. And how it's now, it was a one day technical conference and now it's this worldwide- >> It's amazing >> Phenomenon in 60 countries, and Just 200 different local events. Talk to me about, I caught part of the panel that you were on this morning. And one of the things that I love that you were talking about was mentors and sponsors. Talk to me about what you guys were talking about on the panel overall and some of who your mentors were as you came up in your career. >> Yeah, so mentorship is so important and really it makes a difference in people's careers. So I come from first generation family. No one in my family has had any higher education. So having a mentor, an academic mentor just made all the difference in the world for me. So I started undergraduate and I was immediately paired with somebody, a mentor because I was first generation. And this person, he's no longer with us today, but he believed in me and he opened doors for me. And he opened my eyes to all of these different opportunities. And having somebody who believes in you and really can help you pursue these other ideas, it's so important. And so we talked about in the panel, we talked about the importance of having a mentor but we also talked about the importance of being a mentor. And you know, helping people and students coming into the field, find that place and develop the confidence that this is for everybody. There's something for everybody here. And you've got to try, you've got to put your name out there. And having support is really important. >> Oh, it's critical. Even some interviews I was doing last week for International Women's Day which is tomorrow, I was surprised at the number of women that I talked to who said, well, I was told no, no you can't study computer science. No, you can't study physics and talking- >> This is a really difficult field, are you sure you want to pursue this? Well, yeah. You know, yeah. >> So having those mentors and that encouragement to help build that confidence from within is a game changer. >> Absolutely. Absolutely. >> Tell me a little bit about your research. >> Yeah, so we use electronic health data, all types of different health data to really define and predict prognose healthcare outcomes. We develop AI algorithms, tools to analyze the data and we really try, and one incorporate the patient's voice in the tools we develop. And two, we try and get those back to point of care. So I think a lot of emphasis has been about model development and model performance, and we really focus on, okay, that's great but it's only useful if we can get it back to the hands of the clinician, back to the patients to really improve health outcomes. And so that's a big piece of what we do. And as part of that, understanding patient values and patient preferences is really a big, important aspect of developing optimal treatment and optimal models. >> That's good involving them in the process. How can data science promote health equity? First of all, what is health equity, and how can data science help drive it? >> So health equity is really an important topic and there's a lot of different definitions about what is health equity. Health equity, what we want is we want equal outcomes and that's not equal resources. And so a lot of times, there's this contingency behind, you know are we trying to have equal resources for every patient or is it equal outcomes? And so we really focus on equal outcomes. We want everyone to have the opportunity to have the same outcomes. So health equity requires that we really think about different populations and their different needs, different preferences, et cetera. So that's what we focus on. And so to your question about how data science can promote health equity, one of the things we've been working on is really thinking about the gold standard of clinical care which is the clinical trial, right? So a clinical trial is our gold standard for what treatments work, in what situation and for what populations. However, a lot of the clinical trials are developed in a non-represented population, right? So we have to have patients who can come into the care setting at multiple times during a period, they can't have particular diseases, They can't, you know, for example, in one particular trial we were looking at, they had to have a specific BMI, they couldn't have diabetes they couldn't have all of these other healthcare conditions which at the end of the day it doesn't really represent the community at risk. And so when we develop these models using clinical trial data, a lot of times it's not generalizable to routine care. And so AI can really help that. AI can help us understand, how we can better identify patients to include in trials, what patients are going to be more likely to complete the trials. And so there's a lot of opportunity there to think about how we diversify clinical trials and also how we can start thinking stimulating and doing pragmatic clinical trials if we don't have enough data to represent certain populations. >> Right, one of the, the exciting things about data science is all the things that it's informing. It's also, there's pros and cons. >> Absolutely, right. >> But when we talk about AI, we always talk about ethics. How is it being used in healthcare? How are you seeing it being used? Ethically and effectively in healthcare to really turn the table on some of those biases... >> Exactly. >> To your point, weren't representing some of the most vulnerable part of the community. >> Right. And I think we've been taking this holistic approach of the AI life cycle. So not just focusing on the data we capture, but the whole life cycle. So what does that mean? That means, you know where's the data coming from, who's capturing it, and in what setting, right. If we're only looking at the healthcare setting, well, we're missing another large population. It is only collected via a mobile device. There's another population we're missing. So thinking about where the data's coming from, and then thinking about who it represents and who's missing from that. The next step is really thinking about the questions we're asking. I'll give you a good example. We can ask, you know, can I use AI to predict a no-show appointment? Or can I use AI to identify barriers for this patient to access care? So really even thinking about how we can flip that question to make it more equitable, make it more diverse is really important. And then there's been a lot of work in model development and algorithm fairness, and so there's a lot of research on that. But then there's another piece that we don't really see a lot on, and that's model deployment. So what are the biases when you introduce this into the healthcare system? The clinicians, how do they understand the data we're giving them, the tools. How do they use that to make clinical decisions? And then also, what systems can actually deploy these AI algorithms because they're very resource intensive. So we think about the AI and equity along all of those aspects of the AI life cycle. And it really helps us get a more holistic view because each of these components intersects. >> They do, you're right. Tell me, I'm curious a little bit about your background. You are associate professor of medicine here at Stanford. Give the audience an overview of the path that you took to get where you are. >> Yeah, so not a straight path, which is often typical that we're hearing today. So I started getting a Master's in Epidemiology and Public Health. And from there, I was like, you know, I wasn't really sure what I wanted to do. I applied to medical school, but I'm like, I'm not sure that's what I want to do. So I went and got a PhD in Computational Biology. I'm always data savvy. And so thinking about how I could use data and I was interested in healthcare. And so I got my PhD in Computational Biology. And from there, I was thinking about, well, I was really interested in the application of data science to the healthcare field. So then I got a Master's in Health Services Research. So it's the combination of all these different degrees that make me really have, I think, a diverse view. I really understand the need for multidisciplinary teams and how we need opinions and viewpoints from so many different disciplines to really create something that's equitable and fair and something that is feasible and usable. >> Thought diversity is so important. >> Oh, it is. >> In every aspect of life, whether we're talking about business life, personal life and without it, there's bias. >> Absolutely. Absolutely. And so we see this, we'll have a clinician maybe come to us with a question and then we'll have, you know the health economists think about it. We'll have the other people think about it. And we kind of work it and we massage it to get to something that's meaningful and something that we can really use that's going to change care for patients or particular patients. And so it really important to have that diversity. >> Absolutely, talk to me about your team that you're working with. >> Yeah, so my team is very diverse and I'm very proud of that. We have diversity across every aspect. So we have racial-ethnic diversity. We're probably about 80% female on my team. And so interestingly, one of my members was like, wow, I didn't realize I'm such a minority on your team. It was a male. And so I'm like, and I'm very proud of that. But we also have very diverse disciplines. So we have a lot of medical students, medical faculty we have computer scientists, engineers, epidemiologists, health policy experts. And so it's very, very diverse. And what I like to do is I like to pair people up in teams. So I might put a health economist with a computer scientist and watch them go. And it's just amazing how they can learn from each other and the directions they go in. It's just, it's really incredible. >> Well, and the opportunities that that interdisciplinary relationship builds I mean, opportunities and possibilities must be endless. >> Yeah, and it also allows students to understand how to speak to different groups because we don't speak the same language, we really don't. And equity is a good example. So equity to me might have a certain meaning, but equity to the health policy expert might have a different meaning. And so even understanding how we speak to other groups is so important and being able to translate something in a simple language that other people get is really key. >> Absolutely. >> Yeah, now here we are, tomorrow was International Women's Day- >> Exciting. >> It is exciting and Women's History Month, we get a whole month to ourselves, which is fantastic. But one of the things, you know, when we look at the at the data, the workforce 50- 50 males to females, but the STEM positions are still so low, right? Below 25%. Are you seeing, obviously WIDS is a positive step in that direction to start shifting that. But what do you tell the younger set in terms of- >> Yeah, it is a challenge. It is a challenge to really, and this is the example I always give. As a woman, we've all walked into these rooms that are all male. >> Lisa: Oh, yes. >> We've all walked into these rooms where you're sitting at the table. Oh, can you take notes? And it's hard, it's really hard. But you know what, it takes courage. So again, that mentorship being able to speak up, being able to set your place at that table I think is really important. And we're doing better. We're doing better. But it really is through consistent mentorship, consistent confidence building, et cetera. >> It is. >> Yeah. Yeah. >> And this, this event is fantastic for that. It's going to reach about 100,000 people annually. >> Amazing. >> Yeah. Men and women of all, of all ages, of all different career backgrounds, which is fantastic. But the International Women's Day theme tomorrow, is "Breaking the Bias." Hashtag breaking the bias. Where do you think we are on that? >> I think we have a lot of ways to go. And so there's bias in our teams, there's bias in the way we think, there's bias in our data. And there's been a lot of publicity and hype about the bias in the data. And it is so true and certainly in healthcare systems. And, you know, it's important to understand that when we're developing AI and all these machine learning or data-driven models, they learn from the data we give it. So if we're giving it a biased data sample, or an unrepresented data sample, it's going to learnt those characteristics. And so I think it's important that we think about, you know how do we do a better job at capturing data, diversity, voices from different populations? And it's not just using the same tools and technology we have today and going to another community and saying, okay, here's what I have. You know, it's not working that way. So I think we need to think outside of the box. To think how do these people want to communicate with us? How do they want to share our data? It's about trust too, because trust is a big issue with that. So I think there's a lot of opportunities there to just further develop that. Do you think there really is going to be such a thing one of these days of an a non-biased unbiased set of data? >> I don't think so. I don't think so because the more we dig, the more biases we find and while we're making great strides in race and ethnicity, diversity in our data sets, there's other biases. You know, male, female, age biases, disease biases, et cetera. So just the more we dig into this, the more we identify. But it's great because when we find these gaps in our data or gaps, we take steps to address that and to mitigate those biases. So we're, we're moving in the right direction for sure putting the spotlight on it and being transparent about it, I think is key to move forward. >> I agree that transparency is critical. >> Yes, absolutely. >> And, you know, we often say she can't be what she can't see. Right, and so from a transparency perspective in data and also in the visibility of the leaders and the mentors and the sponsors, that transparency is table stakes. >> Absolutely. Absolutely. >> What are some of the things that you're looking forward to as we hopefully move out of the pandemic and to the end- I can imagine with the Masters in public health you have in MPH. Yes, your prospect must be so interesting on living through it during the pandemic. >> It is, and, and it's interesting because we've gone through the pandemic and now it's turning into this endemic, right? And so how do we deal with that? And one of the things I think that is really important is we find way to still meet and collaborate face to face, share ideas. This conference is amazing where we can share ideas, we can meet new people, we can learn new perspectives and being able to continue to do that is so important. I think that during the pandemic, we really took a big hit in the transfer of learning in our labs and in our teams. And now it's funny because my team they're like let's go to lunch, let's do a happy hour. Let's, you know, they just want that social interaction. And it's more to better understand the perspectives of where they're coming from with their questions, better understanding of the skills they bring to the table. But it's just this wonderful opportunity to think about how we move forward now in our new world, right? >> Yes. We're getting there slowly, but surely. Well, Tina, thank you for joining me talking about your role, what you're doing, the importance of mentors and sponsors, and the opportunity for data science in healthcare. We appreciate your insights. >> Absolutely. Thank you for having me. It's my pleasure. >> You're welcome. >> Excellent. >> Thank you, For Tina Hernandez-Boussard, I'm Lisa Martin. You're watching theCUBE's live coverage of Women In Data Science Worldwide Conference 2022. Stick around, my next guest will join me shortly. (gentle music)
SUMMARY :
coming to you live from so it's exciting to be part And if you think about, they And one of the things that I love And so we talked about in the panel, that I talked to who said, are you sure you want to pursue this? and that encouragement Absolutely. about your research. in the tools we develop. and how can data science help drive it? And so to your question about data science is all the Ethically and effectively in healthcare of the most vulnerable on the data we capture, of the path that you took and how we need opinions and viewpoints In every aspect of life, and something that we can really use Absolutely, talk to me about your team So we have a lot of medical Well, and the opportunities So equity to me might But one of the things, It is a challenge to really, being able to set your place at that table It's going to reach about is "Breaking the Bias." that we think about, you know So just the more we dig into and the mentors and the sponsors, Absolutely. the pandemic and to the end- And one of the things I think and the opportunity for Thank you for of Women In Data Science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
2015 | DATE | 0.99+ |
Tina | PERSON | 0.99+ |
Tina Hernandez-Boussard | PERSON | 0.99+ |
International Women's Day | EVENT | 0.99+ |
one day | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
25% | QUANTITY | 0.99+ |
Tina Hernandez Boussard | PERSON | 0.99+ |
tomorrow | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
50 | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two | QUANTITY | 0.98+ |
about 100,000 people | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
60 countries | QUANTITY | 0.98+ |
first generation | QUANTITY | 0.98+ |
each | QUANTITY | 0.97+ |
pandemic | EVENT | 0.97+ |
Women's History Month | EVENT | 0.96+ |
Women in Data Science Worldwide Conference 2022 | EVENT | 0.96+ |
about 80% | QUANTITY | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
200 different local events | QUANTITY | 0.94+ |
Women In Data Science Worldwide Conference 2022 | EVENT | 0.94+ |
First | QUANTITY | 0.9+ |
Stanford | LOCATION | 0.81+ |
trial | QUANTITY | 0.76+ |
this morning | DATE | 0.76+ |
annually | QUANTITY | 0.73+ |
one of my members | QUANTITY | 0.69+ |
events | QUANTITY | 0.54+ |
WiDS | EVENT | 0.37+ |
2022 | EVENT | 0.29+ |
Tierra Bills, UCLA | WiDS 2022
>>Welcome everyone to the cubes coverage of women in data science, worldwide conference 2022. I'm Lisa Martin, coming to you live from Stanford university at the Arriaga alumni center. It's great to be back at widths in person, and I'm pleased to welcome fresh from the main stage Tiara Bill's assistant professor at UCLA Tierra. Welcome to the program. >>I'm glad to be here. Thank you for having me. Tell >>Me a little bit about your background. You're a civil engineer and I was telling you, so it was my dad. So I'm, I'm partial to civil engineers, but give our audience an overview of your background, what you studied and all that. Good. >>Yeah. So I'm a civil engineer, um, specifically transportation engineer, um, at UCLA. I also have an appointment in the public policy department. And so, um, I'm split between the two, my work focuses on travel demand modeling and how to use these tools to better inform, uh, and learn more about transportation equity and how to advance transportation equity. Um, and what that means is that we are prioritizing the needs of vulnerable communities, um, in terms of the data that we're using, the models that we're using to guide decision-making, um, in terms of the very projects that we evaluate and ultimately the decisions that we make to invest in certain transportation improvements. How >>Did you get interested in transportation equity? >>Yeah, so I think it, it stems from growing up, uh, in Detroit, some or Detroit born and raised native, and it stems from growing up in an environment where it was very clear that space matters that where you live the most, that you have access to, uh, whether you have a car or not. Um, whether you have flexibility in your, in your travel, it all matters. And it all governs the opportunities that you have access to. So it was very clear to me, um, when I would realize that certain certain kids didn't really leave their neighborhood, you know, they didn't travel about the city, let alone outside of the city and abroad. And so, um, and there are also other, you know, examples of, um, there are examples and cases after case where it's clear that communities are, um, being exposed to a high level of emissions, for example, um, that might result from transportation, but they're not positioned to benefit, um, in the same ways that the people who own the infrastructure on the freight or what have you. So, um, these are all very real experiences that have motivated my interest in transportation equity. >>Interesting. It's something I actually had never thought about, but you bring up a great point. How are talk to me about the travel demand models, how they're relevant and, and where some of the biases are in travel data, >>Right? So travel demand models, they are they're computational tools. They're empirically estimated meaning that their estimated from raw data, um, everything about them is driven by the data that you have access to. And how they're used is in largely in regional transportation planning, when it is necessary for regions to assess 10, maybe 15, 20 years into the future. Um, how is transportation going to change as a result of changes in travel patterns, growth in the population, um, changes and how firms are distributed across the landscape. Um, environmental changes, all sorts of changes that, um, that guide and direct our transportation decisions at an individual level. So regions are assessing these things over time and they need these powerful travel demand models in order to perform those assessments. And then they also, once they have an understanding of what the need is, because for example, they expect traffic congestion to improve, or sorry to increase over time. Um, there needs to be a means of assessing alternatives for mitigating those issues. And so they use the same types of models to understand if we expand highway capacity, if we, uh, build a new form of transit, is that going to mitigate, uh, the challenges that we're going to face in the future >>And travel demand, modeling and equity? What's the connection there? I imagine there's a pretty good >>Deep connection, right? So the connection is that. So we're using these tools to decide on the future of transportation investments and because of a history of understanding that we have around how ignoring the conditions for vulnerable communities, ignoring how, um, uh, transportation decisions might differentially impact different, different groups, different segments. Um, if we ignore that, then it can lead to devastating outcomes. And so I'm citing, um, examples of the construction of the Eisenhower interstate system back in the fifties and sixties, where, uh, we know today that there were millions of black and minority communities that were, uh, displace. Um, they weren't fairly compensated all because of lack of consideration for, for outcomes to these communities and the planning process. And so we are aware that these kinds of things can happen. Um, and because of that, we now have federal regulations that require, uh, equity analysis to occur for any project that's going to leverage federal funding. And so it's, it's tied to our understanding of what can happen when we don't focus on equity is also tied to what the current regulations are, but challenge is that we need better guidance on how to do this, how to perform the equity analysis. What types of improvements are actually going to move the needle and advance us toward a state where we can prioritize the needs of the vulnerable travelers and residents? What >>Excites you about the work that you're doing? >>You know, I, I have a vested interest in seeing conditions improve for, um, for the underdog, if you will, for folks who, um, they, they work hard, but they still struggle, um, for folks who experience discrimination in different forms. Um, and so I have a vested interest in seeing conditions improve for them. And so I'm really excited about, uh, the time that we're in, I'm excited that equity is now at the height of many discussions, um, because it's opening up resources, right? To have, uh, more folks paying attention, more folks, researching more folks, developing methods and processes that will actually help to advance equity, >>Advancing equity. We definitely need that. And you're right. There's, there's good V visibility on it right now. And let's take advantage of that for the good things that can come out of it. Talk to me a little bit about what you talked about in your talk earlier today here at widths. >>Right? So today I got a chance to elaborate on how travel demand models can end up, um, uh, with, with issues of bias and under-representation, and it's tied to a number of things, but one of them is the data that reusing, because these are, uh, empirically estimated tools. They take their form, they take their, uh, significance. Everything about them is shaped by the data that we use. Um, and at the same time, we are aware that vulnerable communities are more prone to issues that contribute to data bias. And under-representation so issues, for example, like non-response, um, issues like coverage bias with means that, um, certain groups are for whatever reason, not in the sample link frame. Um, and so, because we know that these types of errors are more prevalent for vulnerable communities, it brings, uh, it raises questions about, um, the quality of the decisions that come out of these models that we estimate based on these data. >>And so I'm interested in weaving these parts together. Um, and part of it has to do with understanding the conditions that, um, that underlie the data. So what do I mean by conditions? I gave an example of, uh, cases where there is discrimination and as evidenced by the data that we have available as evidenced, uh, for example, by examining, um, the quality of service across racial groups, um, using Uber and Lyft, right? So we have information that, that, that presents this to us, but that information is still outside of what we typically use to estimate travel, demand models. That information is not being used to understand the context under which people are making decisions. It's not being used to better understand the constraints that people are facing when they're making, uh, decisions. And so what is the connection that means that we are using data, um, that does not will capture the target group. >>People who are low income, elderly, um, transit dependent, uh, we're not capturing these groups very well because of the prevalence of, of various types of survey bias. Um, and it is shaping our models in unknown ways. And so my group is really trying to make that connection between, okay, how do we collect Bader, better data, first of all, but second, what does that mean? What are the ramifications for prediction, accuracy for VR, for various groups, and then beyond that, what are the policy implications? Right. Um, I think that the risk is that we might be making wrong decisions, right? We might be assuming that, uh, certain types of improvements are actually going to improve quality of service for vulnerable communities when they actually don't. Right. Um, and so that's the worry and that's part of the unknown, and that's why I'm working in this >>Part of the anonymity. Also, I'm sure part of your passion and your interest international women's day is tomorrow. And the theme this year is break the bias of breaking the bias with >>Mercy back >>To travel equity. Where do you think we are on, on being able to start mitigating some of the biases that you've talked about? >>I think that it's all about phasing. I think that there are things that we can do now, right? And so, um, at the point of making decisions, um, we can view the results that we have through this lens, that it might be an incomplete picture. We can view it through a historical lens. We can also view it, um, using emerging data that allows for us to explore some of these constraints that, you know, might be exogenous to the models or X, not in, not included in how we estimate the models. Um, and so that's one thing that we can do in practice is okay. We already know that there are some challenges let's view this from a different lens, as opposed to assuming that it's giving us the complete picture. Right. Um, and that's kind of been my theme, uh, today is that, you know, as decision-makers, as analysts, as data scientists, as researchers, we do have tendency of assuming that the data that we have, the results that we have is giving us the complete picture when we know, but it's not, we know that we act as if it is, but we know that it's not right. >>So, you know, we need to, there's a lot of learning and changing of behaviors, um, that that has to happen. >>Changing behaviors is challenging. >>It is behavior changes is tough, but it's necessary, but it's necessary. It's necessary. And it's urgent. And it's critical, especially if you're going to, uh, improve conditions for vulnerable community. >>What are some of the things that excite you, that looking at where we are now, we've got a nice visibility on equity. There, there's the conscious understanding of the bias and data and the work to help to mitigate that. What are some of the things that excite you about what you're doing and maybe even some of the policies that you think should be enacted as a result of more encompassing datasets? >>It's a good question. Um, one thing I will say is what excites me is it's also tied to the emerging data that we have available. So I'm trying to go back to an example that I gave about measuring constraints. Think that we can now do that in interesting ways, because we're collecting data about everything we're collecting data about, um, not just about where we travel, but how we travel, why we travel. Um, you know, we, we collect information on who we're traveling with, you know, so there's a lot more information that we can make use of, um, in particular to understand constraints. So it's, it's really exciting to me. And when I say that again, um, talking about, um, how would we make a choice to take a certain mode of transportation or to leave our house at a certain time in the morning to, to get to work. >>Um, we're making that under some conditions, right? Right. And those conditions aren't always observed and traditional data sets. I think now we're at a time where emerging data sources can start to capture some of that. And so we can ask questions that we weren't able to, or answer questions that we weren't able to answer before. And the reason why it's important in the modeling is because in the models, you have this sort of choice driven side and you have the alternatives. So you're making a choice amongst some set of alternatives. We model the choices and we spend a lot of time and pay a lot of attention to the decision process. And what factors goes into making the choice, assuming that everyone really has the same set of universal choices. Right. I think that we need to take a little, pay a little more intention, um, to understanding the constraints that people have, um, and how that guides the overall outcomes. Right? So, so that's what I'm excited about. I mean, it's basically leveraging the new data in new ways that we weren't able to before >>Leveraging the data in new ways. Love it. Tierra, thank you for joining me, talking about transportation equity, what you're doing there, the opportunities and kind of where we are on that road. If you will. Thank you so much for having me, my pleasure. I'm Lisa Martin. You're watching the cubes coverage of women in data science conference, 2022. We'll be right back with our next guest.
SUMMARY :
I'm Lisa Martin, coming to you live from Stanford university at I'm glad to be here. So I'm, I'm partial to civil engineers, in terms of the very projects that we evaluate and ultimately the decisions that we make to invest And it all governs the opportunities that you have access to. the travel demand models, how they're relevant and, and where some of the biases are And so they use the same types of models to understand if we And so it's, it's tied to our understanding of what can happen when we don't focus for, um, for the underdog, if you will, And let's take advantage of that for the good things that can come out of it. Um, and at the same time, we are aware that vulnerable the quality of service across racial groups, um, using Uber and Lyft, Um, and so that's the worry and that's part of the unknown, And the theme this year is break the bias of breaking the bias with on being able to start mitigating some of the biases that you've talked about? at the point of making decisions, um, we can view the results that So, you know, we need to, there's a lot of learning and changing of behaviors, And it's critical, especially if you're going to, What are some of the things that excite you about what you're doing and maybe even some of the policies the emerging data that we have available. And so we can ask questions that we weren't able to, Leveraging the data in new ways.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Detroit | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Tiara Bill | PERSON | 0.99+ |
UCLA | ORGANIZATION | 0.99+ |
15 | QUANTITY | 0.99+ |
Lyft | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
millions | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
UCLA Tierra | ORGANIZATION | 0.99+ |
this year | DATE | 0.98+ |
second | QUANTITY | 0.98+ |
fifties | DATE | 0.97+ |
20 years | QUANTITY | 0.96+ |
one thing | QUANTITY | 0.95+ |
Arriaga | ORGANIZATION | 0.92+ |
women's day | EVENT | 0.87+ |
Tierra | PERSON | 0.85+ |
earlier today | DATE | 0.83+ |
Tierra Bills | ORGANIZATION | 0.83+ |
2022 | EVENT | 0.76+ |
Stanford university | ORGANIZATION | 0.71+ |
first | QUANTITY | 0.7+ |
black | QUANTITY | 0.55+ |
sixties | DATE | 0.55+ |
science | EVENT | 0.51+ |
Eisenhower | PERSON | 0.41+ |
WiDS | EVENT | 0.26+ |
Alex Hanna, The DAIR Institute | WiDS 2022
(upbeat music) >> Hey everyone. Welcome to theCUBE's coverage of Women in Data Science, 2022. I'm Lisa Martin, excited to be coming to you live from Stanford University at the Ariaga alumni center. I'm pleased to welcome fresh keynote stage Alex Hanna the director of research at the dare Institute. Alex, it's great to have you on the program. >> Yeah, lovely to be here. >> Talk to me a little bit about yourself. I know your background is in sociology. We were talking before we went live about your hobbies and roller derby, which I love. >> Yes. >> But talk to me a little bit about your background and what the DAIR Institute this is, distributed AI research Institute, what it actually is doing. >> Sure, absolutely. So happy to be here talking to the women in data science community. So my background's in sociology, but also in computer science and machine learning. So my dissertation work was actually focusing on developing some machine learning and natural language processing tools for analyzing protest event data and generating that and applying it to pertinent questions within social movement scholarship. After that, I was a faculty at University of Toronto and then research scientist at Google on the ethical AI team where I met Dr. Timnit Gebru who is the founder of DAIR. And so, DAIR is a nonprofit research Institute oriented on around independent community based AI work, focused really on, the kind of, lots of discussions around AI are done by big companies or companies focus on solutions that are very much oriented around collecting as much data as they can. Not really knowing if it's going to be for community benefit. At DAIR, we want to flip that, we want to really want to prioritize what that would mean if communities had input into data driven technologies what it would mean for those communities and how we can help there. >> Double click and just some of your research, where do your passions lie? >> So I'm a sociologist and a lot of that being, I think one of the big insights of sociology is to really highlight at how society can be more just, how we can interrogate inequality and understanding how to make those distances between people who are underserved and over served who already have quite a lot, how we can reduce the disparities. So finding out where that lies, especially in technology that's really what I'm passionate about. So it's not just technology, which I think can be helpful but it's really understanding what it means to reduce those gaps and make the world more just. >> And that's so important. I mean, as more and more data is generated, exponentially growing, so are some of the biases and the challenges that that causes. You just gave your tech vision talk which I had a chance to see most of it. And you were talking about something that's very interesting. That is the biases in facial recognition software. Maybe on a little bit about what you talked about and why that is such a challenge. And also what are some of the steps being made in the right direction where that's concerned? >> Yeah. So there's the work I was talking about in the talk was highlighting, not work I've done, but the work by doctors (indistinct) and (indistinct) focusing on the distance that exists and the biases that exist in facial recognition as a technical system. The fact remains also that facial recognition is used and is disproportionately deployed on marginalized population. So in the U.S, that means black and brown communities. That's where facial recognition is used disproportionately. And we also see this in refugee context where refugees will be leaving the country. And those facial recognition software will be used in those contexts and surveilling them. So these are people already in a really precarious place. And so, some of the movements there have been to debias some of the facial recognition tools. I actually don't think that's far enough. I'm fundamentally against facial recognition. I think that it shouldn't be used as a technology because it is used so pervasively in surveillance and policing. And if we're going to approach that we really need to think, rethink our models of security models of immigration and whatnot. >> Right, it's such an important topic to discuss because I think it needs more awareness about some of the the biases, but also some to your point about some of those vulnerable communities that are really potentially being harmed by technologies like that. We have to be, there's a fine line. Or maybe it's not so fine. >> I don't think it's that fine. So like, I think it's used, in an incredibly harsh way. And for instance there's research that's being done in which, so I'm a transgender woman and there's a research being done by researchers who collected data sets that people had on YouTube documenting their transitions. And already there was a researcher collecting those data and saying, well, we could have terrorists or something take hormones and cross borders. And you talk to any trans person, you're like, well, that's not how it works, first off. Second off, it's already viewing trans people and a trans body as kind of a mode of deception. And so that's, whereas researchers in this space were collecting those data and saying that well, we should collect these data to help make these facial recognitions more fair. But that's not fair if it's going to be used on a population that's already intensely surveilled and held in suspicion. >> Right. That's, the question of fairness is huge, absolutely. Were you always interested in tech, you talked about your background in sociology. Was it something that you always, were you a stem kid from the time you were little? Talk to me about your background and how you got to where you are now? >> Yeah. I've been using computers since I was four. I've been using, I was taking a part, my parents' gateway computer. yeah, when I was 10. Going to computer shows, slapping hard drives into things, seeing how much we could upgrade computer on our own and ruining more than in one computer, to my parents chagrin but I've always been that. I went to undergrad in triple major to computer science, math and sociology, and originally just in computer science and then added the other two where I got interested in things and understanding that, was really interested in this section of tech and society. And I think the more and more I sat within the field and went and did my graduate work in sociology and other social sciences really found that there was a place to interrogate those, that intersection of the two. >> Exactly. What are some of the things that excite you now about where technology is going? What are some of the positives that you see? >> I talk so much about the negatives. It's really hard to, I mean, there's I think, some of the things that I think that are positive are really the community driven initiatives that are saying, well, what can we do to remake this in such a way that is going to more be more positive for our community? And so seeing projects like, that try to do community control over certain kinds of AI models or really try to tie together different kinds of fields. I mean, that's exciting. And I think right now we're seeing a lot of people that are super politically and justice literate and they how to work and they know what's behind all these data driven technologies and they can really try to flip the script and try to understand what would it mean to kind of turn this into something that empowers us instead of being something that is really becoming centralized in a few companies >> Right. We need to be empowered with that for sure. How did you get involved with WIS? >> So Margo, one of the co-directors, we sit on a board together, the human rights data analysis group and I've been a huge fan of HR dag for a really long time because HR dag is probably one of the first projects I've seen that's really focused on using data for accountability for justice. Their methodology has been, called on to hold perpetrators of genocide to accounts to hold state violence, perpetrators to account. And I always thought that was really admirable. And so being on their board is sort of, kind of a dream. Not that they're actually coming to me for advice. So I met Margo and she said, come on down and let's do a thing for WIS and I happily obliged >> Is this your first Wis? >> This is my very first Wis. >> Oh, excellent. >> Yeah. >> What's your interpretation so far? >> I'm having a great time. I'm learning a lot meeting a lot of great people and I think it's great to bring folks from all levels here. Not only, people who are a super senior which they're not going to get the most out of it it's going to be the high school students the undergrads, grad students, folks who, and you're never too old to be mentored, so, fighting your own mentors too. >> You know, it's so great to see the young faces here and the mature faces as well. But one of the things that I was, I caught in the panel this morning was the the talk about mentors versus sponsors. And that's actually, I didn't know the difference until a few years ago in another women in tech event. And I thought it was such great advice for those panelists to be talking to the audience, talking about the importance of mentors, but also the difference between a mentor and sponsor. Who are some of your mentors? >> Yeah, I mean, great question. It's going to sound cheesy, but my boss (indistinct) I mean, she's been a huge mentor for me and with her and another mentor (indistinct) Mitchell, I wouldn't have been a research scientist. I was the first social scientist on the research scientist ladder at Google before I left and if it wasn't for their, they did sponsor but then they all also mentored me greatly. My PhD advisor, (indistinct) huge mentor by, and I mean, lots of primarily and then peer mentors, people that are kind of at the same stage as me academically but also in professionally, but are mentors. So folks like Anna Lauren Hoffman, who's at the UDub, she's a great inspiration in collaborating, co-conspirator, so yeah. >> Co-conspirator, I like that. I'm sure you have quite a few mentees as well. Talk to me a little bit about that and what excites you about being a mentor. >> Yeah. I have a lot of mentees either informally or formally. And I sought that out purposefully. I think one of the speakers this morning on the panel was saying, if you can mentor do it. And that's what I did and sought out that, I mean, it excites me because folks, I don't have all the answers, no one person does. You only get to those places, if you have a large community. And I think being smart is often something that people think comes like, there's kind of like a smart gene or whatever but like there probably is, like I'm not a biologist or a cognitive, anything, but what really takes cultivation is being kind and really advocating for other people and building solidarity. And so that's what mentorship really means to me is building that solidarity and really trying to lift other people up. I mean, I'm only here and where I'm at in my career, because many people were mentors and sponsors to me and that's only right to pay that forward. >> I love that, paying that forward. That's so true. There's nothing like a good community, right? I mean, there's so much opportunity that that ground swell just generates, which is what I love. We are, tomorrow is international women's day. And if we look at the numbers, women are 50% of the workforce, but only less than a quarter in stem positions. What's your advice and recommendation for those young girls who might be intimidated or might be being told even to this day, no, you can't do physics. You can't do computer science. What can you tell them? >> Yeah, I mean, so individual solutions to that are putting a bandaid on a very big wound. And I mean I think, finding other people in a working to change it, I mean, I think building structures of solidarity and care are really the only way we'll get out of that. >> I agree. Well, Alex, it's been great to have you on the program. Thank you for coming and sharing what you're doing at DAIR. The intersection of sociology and technology was fascinating and your roller derby, we'll have to talk well about that. >> For sure. >> Excellent. >> Thanks for joining me. >> Yeah, thank you Lisa. >> For Alex Hanna, I'm Lisa Martin. You're watching theCUBE's coverage live, of women in data science worldwide conference, 2022. Stick around, my next guest is coming right up. (upbeat music)
SUMMARY :
to be coming to you live Talk to me a little bit about yourself. But talk to me a little and applying it to pertinent questions and a lot of that being, and the challenges that that causes. and the biases that exist but also some to your point it's going to be used Talk to me about your background And I think the more and What are some of the and they how to work and they know what's We need to be empowered and I've been a huge fan of and I think it's great to bring I caught in the panel this morning people that are kind of at the and what excites you about being a mentor. and that's only right to pay that forward. even to this day, no, and care are really the only to have you on the program. of women in data science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Alex Hanna | PERSON | 0.99+ |
Anna Lauren Hoffman | PERSON | 0.99+ |
Timnit Gebru | PERSON | 0.99+ |
DAIR | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
50% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Mitchell | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
DAIR Institute | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
University of Toronto | ORGANIZATION | 0.99+ |
Second | QUANTITY | 0.99+ |
U.S | LOCATION | 0.99+ |
tomorrow | DATE | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
2022 | DATE | 0.98+ |
dare Institute | ORGANIZATION | 0.98+ |
four | QUANTITY | 0.97+ |
YouTube | ORGANIZATION | 0.97+ |
less than a quarter | QUANTITY | 0.96+ |
AI research Institute | ORGANIZATION | 0.96+ |
UDub | ORGANIZATION | 0.95+ |
WIS | ORGANIZATION | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
theCUBE | ORGANIZATION | 0.93+ |
Dr. | PERSON | 0.92+ |
few years ago | DATE | 0.91+ |
Double click | QUANTITY | 0.91+ |
this morning | DATE | 0.91+ |
HR dag | ORGANIZATION | 0.9+ |
first social | QUANTITY | 0.9+ |
first projects | QUANTITY | 0.88+ |
international women's day | EVENT | 0.8+ |
one computer | QUANTITY | 0.77+ |
triple | QUANTITY | 0.65+ |
Wis | ORGANIZATION | 0.65+ |
more | QUANTITY | 0.58+ |
WiDS | EVENT | 0.55+ |
Ariaga | ORGANIZATION | 0.52+ |
Vidya Setlur, Tableau | WiDS 2022
(bright music) >> Hi, everyone. Welcome to theCUBE's coverage of WiDS 2022. I'm Lisa Martin, very happy to be covering this conference. I've got Vidya Setlur here with me, the director of Tableau Research. Vidya, welcome to the program. >> Thanks, Lisa. It's great to be here. >> So this is one of my favorite events. You're a keynote this year. You're going to be talking about what makes intelligent visual analytics tools really intelligent. Talk to me a little bit about some of the key takeaways that the audience is going to glean from your conversation. >> Yeah, definitely. I think we've reached a point where everybody understands that data is important, trying to understand that data is equally important. And we're also getting to that point where technology and AI is really picking up. Algorithms are getting better, computers are getting faster. And so there's a lot of dialogue and conversation around how AI can help with visual analysis to make our jobs easier, help us glean insights. So I thought it was a really timely point where we can really actually talk about it, and distilling into the specifics of how these tools can actually be intelligent beyond just the general buzz of AI. >> And that's a great point that you bring up. There's been a lot of buzz around AI for a long time. The organizations talk about it, software vendors talk about it being integrated into their technologies, but how can AI really help to make visual analytics interpretable in a way that makes sense for the data enthusiast and the business? >> Yeah, so to me, I think my point of view, which tends to be the general agreement among the research community, is AI is getting better. And there are certain types of algorithms, especially these repetitive tasks. We see this with even Instagram, right? You put a picture on Instagram, there are filters that can maybe make the image look better, some fun backgrounds. And those, generally speaking, are AI algorithms at work. So there are these simple, either fun ways or tasks that reduce friction where AI can play a role, and they tend to be really good with these repetitive tasks, right? If I had to upload a picture and constantly edit the background manually, that's a pain. So AI algorithms are really good at figuring out where people tend to do a particular task often, and that's a good place for these algorithms to come into play. But that being said, I think fundamentally speaking, there are going to be tasks where AI can't simply replace a human. Humans have a really strong visual system. We have a very highly cognitive system where we can glean insights and takeaways beyond just the pixels, or just the text. And so how do we actually design systems where algorithms augment a human, where a human can stay in the driver's seat, stay creative, but defer all these mundane or repetitive tasks that simply add friction to the computer? And that's what the keynote is about. >> And talk to me about when you're talking with organizations, where are they in terms of appetite to understand the benefits that natural language processing, AI and humans together, can have on visual analytics, and being able to interpret that data? >> Yeah. So I would say it's really moving fast. So three years ago, organizations were like AI, it's a great buzzword, we're weary because when rubber hits the road, it's really hard to take that into action. But now we're slowly seeing places where it can actually work. So organizations are really thirsty to figure out how do we actually add customer value? How do we actually build products where AI can move from a simple, cute proof of concept working in a lab to actual production? And that is where organizations are right now. And we've already seen that with various types of examples, like machine translation. You open up a Google page in Spanish, and you can hit auto translate and it will convert it into English. Now, is it perfect? Not, but is it good enough? Yes. And I think that's where AI algorithms are heading, and organizations are really trying to figure out what's in it for us, and what's in it for our customers. >> What are some of the cultural, anytime we talk about AI, we always talk about ethics. But what are some of the cultural, or the language specific challenges with respect to natural language techniques that organizations need to be aware of? >> Yeah, that's a great question, and it's a common question, and really important. So as I've said, these AI algorithms are only as good as the data that they're often trained on. And so it's really important, in addition to the cultural aspects of incorporating those into the techniques, is to really figure out what sort of biases come into play, right? So a simple example is there's sarcasm in language, and different cultures have different ways of interpreting it. There are subtleties in language, jokes. My kids have a certain type of language when they're talking with each other that I may not understand. So there's a whole complexity around cultural appropriation generations that, where language constantly evolves, as well as biases. For example, we've had conversations in the news where AI algorithms are trained on a particular data set for detecting crime. And there are hidden biases that go into play with that sort of data. So we're really, it's important to be acknowledged of where the data is, and what sorts of cultural biases come into play. But translation, simple language translation is already more or less a solved problem. But beyond the simple language translation, we also have to account for language subtleties as well. >> Right, and the subtleties can be very dramatic. When you're talking with organizations that are really looking to become data driven. Everybody talks about being data driven, and we hear it on the news all the time, it's mainstream. But what that actually really means, and how an organization actually delivers on that are two different things. When you're talking with customers that are, okay, we've got to talk about ethics. We know that there's biases and data. How do you help them get around that so that they can actually adopt that technology, and make it useful and impactful to the business? >> Yeah. So just as important as figuring out how AI algorithms can help an organization's business, it's equally important for an organization to be more data literate about the data that feeds into these algorithms. So making data as a first class citizen, and figuring out are there hidden biases? Is the data comprehensive enough? Acknowledging where there are limitations in the data and being completely transparent about that. And sharing that with customers, I think, is really key. And coming back to humans being in the driver's seat. If these experiences are designed where humans are, in fact, in the driver's seat, as a human, they can intervene and correct and repair the system if they do see certain types of oddities that come into play with these algorithms. >> Going to ask you in our final few minutes here, I know that you have a PhD in computer graphics from Northwestern, is it? >> Yep. >> Northwestern. >> Go Wildcats, yep. >> Were you always interested in STEM and data? Talk to me a little bit about your background. >> Yeah. I grew up in a family full of academics and female academics. And now, yes, I have boys, including my dog. Everybody's male, but I have a really strong vested interest in supporting women in STEM. And I actually would go further and say, STEAM. I think arts and science are both equally important. In fact, I would say that on our research team, there's a good representation of minorities and women. And data analysis and visual analysis, in particular, is a field that is very conducive for women in the field, because women tend to be naturally meticulous. They're very good at distilling what they're seeing. So I would argue that there are a host of disciplines in this space that make it equally exciting and conducive for women to jump in. >> I'm glad that you said that. That's actually quite exciting, and that's a real positive thing that's going on in the industry, and what you're seeing. So I'm looking forward to your keynote, and I'm sure the audience is as well. Vidya, it was a pleasure to have you on the program talking about intelligent visual analytics tools, and the opportunities that they bring to organizations. Thanks for your time. >> Thanks, Lisa. >> For Vidya Setlur, I'm Lisa Martin. You're watching theCUBE's coverage of WiDS conference 2022. Stick around, more great content coming up next. (bright music)
SUMMARY :
Welcome to theCUBE's It's great to be here. that the audience is going to and distilling into the specifics to make visual analytics there are going to be tasks where AI And that is where that organizations need to be aware of? in addition to the cultural Right, and the subtleties and repair the system if they do see Talk to me a little bit and conducive for women to jump in. and I'm sure the audience is as well. coverage of WiDS conference 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Vidya | PERSON | 0.99+ |
Vidya Setlur | PERSON | 0.99+ |
Tableau Research | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.98+ |
three years ago | DATE | 0.98+ |
English | OTHER | 0.98+ |
two different things | QUANTITY | 0.97+ |
WiDS 2022 | EVENT | 0.97+ |
ORGANIZATION | 0.97+ | |
Northwestern | LOCATION | 0.93+ |
theCUBE | ORGANIZATION | 0.91+ |
WiDS conference 2022 | EVENT | 0.9+ |
ORGANIZATION | 0.86+ | |
Spanish | OTHER | 0.83+ |
this year | DATE | 0.82+ |
first class | QUANTITY | 0.81+ |
Northwestern | ORGANIZATION | 0.79+ |
one of my favorite events | QUANTITY | 0.66+ |
Tableau | ORGANIZATION | 0.64+ |
Cecilia Aragon, University of Washington | WiDS Worldwide Conference 2022
>>Hey, everyone. Welcome to the cubes coverage of women in data science, 2022. I'm Lisa Martin. And I'm here with one of the key featured keynotes for this year is with events. So the Aragon, the professor and department of human centered design and engineering at the university of Washington Cecilia, it's a pleasure to have you on the cube. >>Thank you so much, Lisa Lisa, it's a pleasure to be here as well. >>You got an amazing background that I want to share with the audience. You are a professor, you are a data scientist, an aerobatic pilot, and an author with expertise in human centered, data science, visual analytics, aviation safety, and analysis of extremely large and complex data sets. That's quite the background. >>Well, thank you so much. It's it's all very interesting and fun. So, >>And as a professor, you study how people make sense of vast data sets, including a combination of computer science and art, which I love. And as an author, you write about interesting things. You write about how to overcome fear, which is something that everybody can benefit from and how to expand your life until it becomes amazing. I need to take a page out of your book. You were also honored by president Obama a few years back. My goodness. >>Thank you so much. Yes. I I've had quite a journey to come here, but I feel really fortunate to be here today. >>Talk about that journey. I'd love to understand if you were always interested in stem, if it was something that you got into later, I know that you are the co-founder of Latinas in computing, a passionate advocate for girls and women in stem. Were you always interested in stem or was it something that you got into in a kind of a non-linear path? >>I was always interested in it when I was a young girl. I grew up in a small Midwestern town and my parents are both immigrants and I was one of the few Latinas in a mostly white community. And I was, um, I loved math, but I also wanted to be an astronaut. And I remember I, when we were asked, I think it was in second grade. What would you like to be when you grow up? I said, oh, I want to be an astronaut. And my teacher said, oh, you can't do that. You're a girl pick something else. And um, so I picked math and she was like, okay. >>Um, so I always wanted to, well, maybe it would be better to say I never really quite lost my love of being up in the air and potentially space. But, um, but I ended up working in math and science and, um, I, I loved it because one of the great advantages of math is that it's kind of like a magic trick for young people, especially if you're a girl or if you are from an underrepresented group, because if you get the answers right on a math test, no one can mark you wrong. It doesn't matter what the color of your skin is or what your gender is. Math is powerful that way. And I will say there's nothing like standing in a room in front of a room of people who think little of you and you silence them with your love with numbers. >>I love that. I never thought about math as power before, but it clearly is. But also, you know, and, and I wish we had more time because I would love to get into how you overcame that fear. And you write books about that, but being told you can't be an astronaut. You're a girl and maybe laughing at you because you liked Matt. How did you overcome that? And so nevermind I'm doing it anyway. >>Well, that's a, it's a, okay. The short answer is I had incredible imposter syndrome. I didn't believe that I was smart enough to get a PhD in math and computer science. But what enabled me to do that was becoming a pilot and I B I learned how to fly small airplanes. I learned how to fly them upside down and pointing straight at the ground. And I know this might sound kind of extreme. So this is not what I recommend to everybody. But if you are brought up in a way where everybody thinks little of you, one of the best things you can possibly do is take on a challenge. That's scary. I was afraid of everything, but by learning to fly and especially learning to fly loops and rolls, it gave me confidence to do everything else because I thought I appointed the airplane at the ground at 250 miles an hour and waited, why am I afraid to get a PhD in computer science? >>Wow. How empowering is that? >>Yeah, it really was. So that's really how I overcame the fear. And I will say that, you know, I encountered situations getting my PhD in computer science where I didn't believe that I was good enough to finish the degree. I didn't believe that I was smart enough. And what I've learned later on is that was just my own emotional, you know, residue from my childhood and from people telling me that they, you know, that they, that I couldn't achieve >>As I look what, look what you've achieved so far. It's amazing. And we're going to be talking about some of the books that you've written, but I want to get into data science and AI and get your thoughts on this. Why is it necessary to think about human issues and data science >>And what are your thoughts there? So there's been a lot of work in data science recently looking at societal impacts. And if you just address data science as a purely technical field, and you don't think about unintended consequences, you can end up with tremendous injustices and societal harms and harms to individuals. And I think any of us who has dealt with an inflexible algorithm, even if you just call up, you know, customer service and you get told, press five for this press four for that. And you say, well, I don't fit into any of those categories, you know, or have the system hang up on you after an hour. I think you'll understand that any type of algorithmic approach, especially on very large data sets has the risk of impacting people, particularly from low income or marginalized groups, but really any of us can be impacted in a negative way. >>And so, as a developer of algorithms that work over very large data sets, I've always found it really important to consider the humans on the other end of the algorithm. And that's why I believe that all data science is truly human centered or should be human centered, should be human centered and also involves both technical issues as well as social issues. Absolutely correct. So one example is that, um, many of us who started working in data science, including I have to admit me when I started out assume that data is unbiased. It's scrubbed of human influence. It is pure in some ways, however, that's really not true as I've started working with datasets. And this is generally known in the field that data sets are touched by humans everywhere. As a matter of fact, in our, in the recent book that we're, that we're coming out with human centered data science, we talk about five important points where humans touch data, no matter how scrubbed of human influence it's support it's supposed to be. >>Um, so the first one is discovery. So when a human encounters, a data set and starts to use it, it's a human decision. And then there's capture, which is the process of searching for a data set. So any data that has to be selected and chosen by an individual, um, then once that data set is brought in there's curation, a human will have to select various data sets. They'll have to decide what is, what is the proper set to use. And they'll be making judgements on this the time. And perhaps one of the most important ways the data is changed and touched by humans is what we call the design of data. And what that means is whenever you bring in a data set, you have to categorize it. No, for example, let's suppose you are, um, a geologist and you are classifying soil data. >>Well, you don't just take whatever the description of the soil data is. You actually may put it into a previously established taxonomy and you're making human judgments on that. So even though you think, oh, geology data, that's just rocks. You know, that's soil. It has nothing to do with people, but it really does. Um, and finally, uh, people will label the data that they have. And this is especially critical when humans are making subjective judgments, such as what race is the person in this dataset. And they may judge it based on looking at the individual skin color. They may try to apply an algorithm to it, but you know what? We all have very different skin colors, categorizing us into race boxes, really diminishes us and makes us less than we truly are. So it's very important to realize that humans touch the data. We interpret the data. It is not scrubbed of bias. And when we make algorithmic decisions, even the very fact of having an algorithm that makes a judgment say on whether a prisoner's likely to offend again, the judge just by having an algorithm, even if the algorithm makes a recommended statement, they are impacted by that algorithms recommendation. And that has obviously an impact on that human's life. So we consider all of this. >>So you just get given five solid reasons why data science and AI are inevitably human centric should be, but in the past, what's led to the separation between data science and humans. >>Well, I think a lot of it simply has to do with incorrect mental models. So many of us grew up thinking that, oh, humans have biases, but computers don't. And so if we just take decision-making out of people's hands and put it into the hands of an algorithm, we will be having less biased results. However, recent work in the field of data science and artificial intelligence has shown that that's simply not true that algorithmic algorithms reinforce human biases. They amplify them. So algorithmic biases can be much worse than human biases and can greater impact. >>So how do we pull ethics into all of this data science and AI and that ethical component, which seems to be that it needs to be foundational. >>It absolutely has to be foundational. And this is why we believe. And what we teach at the university of Washington in our data science courses is that ethical and human centered approaches and ideas have to be brought in at the very beginning of the algorithm. It's not something you slap on at the end or say, well, I'll wait for the ethicists to weigh in on this. Now we are all human. We can all make human decisions. We can all think about the unintended consequences of our algorithms as we develop them. And we should do that at the very beginning. And all algorithm designers really need to spend some time thinking about the impact that their algorithm may have. >>Right. Do you, do you find that people are still in need of convincing of that or is it generally moving in that direction of understanding? We need to bring ethics in from the beginning, >>It's moving in that direction, but there are still people who haven't modified their mental models yet. So we're working on it. And we hope that with the publication of our book, that it will be used as a supplemental textbook in many data science courses that are focused exclusively on the algorithms and that they can open up the idea that considering the human centered approaches at the beginning of learning about algorithms and data science and the mathematical and statistical techniques, that the next generation of data scientists and artificial intelligence developers will be able to mitigate some of the potentially harmful effects. And we're very excited about this. This is why I'm a professor, because I want to teach the next generation of data scientists and artificial intelligence experts, how to make sure that their work really achieves what they intended it to, which is to make the world a better place, not a worse place, but to enable humans to do better and to mitigate biases and really to lead us into this century in a positive way. >>So the book, human centered data science, you can see it there over Sicily, his right shoulder. When does this come out and how can folks get a copy of it? >>So it came out March 1st and it's available in bookstores everywhere. It was published by MIT press, and you can go online or you can go to your local independent bookstore, or you can order it from your university bookstore as well. >>Excellent. Got to, got to get a copy of, get my hands on that. Got cut and get a copy and dig into that. Cause it sounds so interesting, but also so thoughtful and, um, clear in the way that you described that. And also all the opportunities that, that AI data science and humans are gonna unlock for the world and humans and jobs and, and great things like that. So I'm sure there's lots of great information there. Last question I mentioned, you are keynoting at this year's conference. Talk to me about like the top three takeaways that the audience is going to get from your keynote. >>So I'm very excited to have been invited to wins this year, which of course is a wonderful conference to support women in data science. And I've been a big fan of the conference since it was first developed here, uh, here at Stanford. Um, the three, the three top takeaways I would say is to really consider the data. Science can be rigorous and mathematical and human centered and ethical. It's not a trade-off, it's both at the same time. And that's really the, the number one that, that I'm hoping to keynote will bring to, to the entire audience. And secondly, I hope that it will encourage women or people who've been told that maybe you're not a science person or this isn't for you, or you're not good at math. I hope it will encourage them to disbelieve those views. And to realize that if you, as a member of any type of unread, underrepresented group have ever felt, oh, I'm not good enough for this. >>I'm not smart enough. It's not for me that you will reconsider because I firmly believe that everyone can be good at math. And it's a matter of having the information presented to you in a way that honors your, the background you had. So when I started out my, my high school didn't have AP classes and I needed to learn in a somewhat different way than other people around me. And it's really, it's really something. That's what I tell young people today is if you are struggling in a class, don't think it's because you're not good enough. It might just be that the teacher is not presenting it in a way that is best for someone with your particular background. So it doesn't mean they're a bad teacher. It doesn't mean you're unintelligent. It just means the, maybe you need to find someone else that can explain it to you in a simple and clear way, or maybe you need to get some scaffolding that is Tate, learn extra, take extra classes that will help you. Not necessarily remedial classes. I believe very strongly as a teacher in giving students very challenging classes, but then giving them the scaffolding so that they can learn that difficult material. And I have longer stories on that, but I think I've already talked a bit too long. >>I love that. The scaffolding, I th I think the, the one, one of the high level takeaways that we're all going to get from your keynote is inspiration. Thank you so much for sharing your path to stem, how you got here, why humans, data science and AI are, have to be foundationally human centered, looking forward to the keynote. And again, Cecilia, Aragon. Thank you so much for spending time with me today. >>Thank you so much, Lisa. It's been a pleasure, >>Likewise versus silly Aragon. I'm Lisa Martin. You're watching the cubes coverage of women in data science, 2022.
SUMMARY :
of Washington Cecilia, it's a pleasure to have you on the cube. You are a professor, you are a data scientist, Well, thank you so much. And as a professor, you study how people make sense of vast data sets, including a combination of computer Thank you so much. if it was something that you got into later, I know that you are the co-founder of Latinas in computing, And my teacher said, oh, you can't do that. And I will say there's nothing like standing in And you write books about that, but being told you can't be an astronaut. And I know this might sound kind of extreme. And I will say that, you know, I encountered situations And we're going to be talking about some of the books that you've written, but I want to get into data science and AI And you say, well, I don't fit into any of those categories, you know, And so, as a developer of algorithms that work over very large data sets, And what that means is whenever you bring in a And that has obviously an impact on that human's life. So you just get given five solid reasons why data science and AI Well, I think a lot of it simply has to do with incorrect So how do we pull ethics into all of this data science and AI and that ethical And all algorithm designers really need to spend some time thinking about the is it generally moving in that direction of understanding? that considering the human centered approaches at the beginning So the book, human centered data science, you can see it there over Sicily, his right shoulder. or you can go to your local independent bookstore, or you can order it from your university takeaways that the audience is going to get from your keynote. And I've been a big fan of the conference since it was first developed here, the information presented to you in a way that honors your, to stem, how you got here, why humans, data science and AI women in data science, 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cecilia | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Aragon | PERSON | 0.99+ |
March 1st | DATE | 0.99+ |
Lisa | PERSON | 0.99+ |
2022 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Lisa Lisa | PERSON | 0.99+ |
president | PERSON | 0.99+ |
Cecilia Aragon | PERSON | 0.99+ |
Sicily | LOCATION | 0.99+ |
Matt | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
five important points | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
250 miles an hour | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
MIT press | ORGANIZATION | 0.97+ |
second grade | QUANTITY | 0.97+ |
five solid reasons | QUANTITY | 0.97+ |
one example | QUANTITY | 0.97+ |
an hour | QUANTITY | 0.97+ |
three top takeaways | QUANTITY | 0.97+ |
four | QUANTITY | 0.96+ |
five | QUANTITY | 0.96+ |
first one | QUANTITY | 0.95+ |
this year | DATE | 0.94+ |
University of Washington | ORGANIZATION | 0.94+ |
this year | DATE | 0.94+ |
Midwestern | LOCATION | 0.93+ |
three takeaways | QUANTITY | 0.88+ |
WiDS Worldwide Conference 2022 | EVENT | 0.87+ |
few years back | DATE | 0.8+ |
university of Washington Cecilia | ORGANIZATION | 0.77+ |
Stanford | LOCATION | 0.76+ |
university of Washington | ORGANIZATION | 0.75+ |
silly | PERSON | 0.74+ |
Obama | PERSON | 0.74+ |
Tate | PERSON | 0.71+ |
Aragon | ORGANIZATION | 0.69+ |
top | QUANTITY | 0.6+ |
Latinas | PERSON | 0.57+ |
Latinas | OTHER | 0.57+ |
WiDS 2020 Highlights on theCUBE
yeah so that talks sort of stemmed out of the TED talk that I gave on owning your body is data and it's really challenging people to think about how they can use data that they collect about their bodies to help make better health decisions and so ways that you can use like air temperature data or your heart rate data or what is this data say over time what does it say about your body's health and really challenging the audience to get excited about looking at that data we have so many devices that collect data automatically for us and often we don't pause long enough to actually look at that historical data and so that was what the talk was about today like here's what you can find when you actually sit down and look at that data what's the most important data you think people should be collecting about themselves well definitely not your weight it depends you know I think for women who are in the fertile years of life taking your daily waking temperature can tell you when your body is fertile when you're ovulating it can so that information could give women during that time period really critical information but in general I think it's just a matter of being aware of of how your body is changing so for some people maybe it's your blood pressure or your blood sugar you have high blood pressure or high blood sugar those things become really critical to keep an eye on and and I really encourage people whatever data they take to be active in the understanding of an interpretation of the data so it's not like if you take this data you'll be healthier you know you live to a hundred it's really a matter of challenging people to own the data that they have and get excited about understanding the data that they are taking so I think there's a lot of ways to get into data science math is one of them but there's also statistics or physics and I would say that especially for the field that I'm currently in which is at the intersection of machine learning data science on the one hand and biology and health on the other one can get there from biology or medicine as well but what I think is important is not to shy away from the more mathematically oriented courses in whatever major you're in because that foundation is a really strong one there's a lot of people out there who are basically lightweight consumers of data science and they don't really understand how the methods that they're deploying how they work and that limits them in their ability to advance the field and come up with new methods that are better suited perhaps to the problems that they're tackling so I think it's totally fine and in fact there's a lot of value to coming into data science from fields other than math or computer science but I think taking courses in those fields even while you're majoring in whatever field you're interested in is going to make you a much better person who lives at that intersection so I think one of the key things about the ethics panel here at woods this morning was that first of all it started the day which is a good sign if it shouldn't be a separate topic of discussion we need this conversation about values about what we're trying to build for who were trying to protect how we're trying to recognize individual human agency that has to be built in throughout data science so it's a good start to have a panel about it at the beginning of the conference but I'm hopeful that the rest of the conversation will not leave it behind we talked about the fact that just as civil society is now dependent on these digital systems that it doesn't control data scientists are building data sets and algorithmic forms of analyses that are both of those two things are just in coded sets of values and if you try to have a conversation about that at just the math level you're gonna miss the social level you're gonna miss the fact that that's humanity you're talking about so it needs to really be integrated throughout the process talking about the values of what you're manipulating and the values of the world that you're releasing these tools into yeah so into it we are a champion of gender life diversity and also all sorts of diversity and when we first learned about wig we said we need to be a champion of the women in data science conference because for me personally oftentimes when I'm in a room going over technical details I'm often the only woman and not just I'm often the only woman executive and so part of the sponsorship is to create this community of women very technical women in this field to share our work together to build this community and also to show the great diversity of work that's going on across the field of data science so first of all having doing we which should I believe in the vision that we are working towards which is really creating you can mount an economic opportunity for every member of the global workforce and if you're kind of starting from that and thinking about that is our sort of the the the the axiom that we're working towards and I thinking about how you can do that and obviously the sort of the table stake or just the the the the fundamental saying that we have to start with is to be able to preserve the privacy of our members as we are leveraging the data there are members in trust with us right so how can we do that we have some early effort in using and developing differential privacy as a technique for us to do a lot better ways regarding preserving their privacy as really leveraging the data and but also at the same time it doesn't end there right because you're thinking about creating opportunity it's not just about its preserve the privacy but also when we are leveraging the data how can we leverage the data in a way that is able to create opportunity in a fair way so so there is also a lot of effort that we're having with regarding how can we do that and what does fairness mean what are the ways we can actually turn some of the key concepts that we have into action that is really able to drive the way we develop products the way that we're thinking about responsible design and the way that we build our algorithms the way that we measure in every single dimension you
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
two things | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
one | QUANTITY | 0.96+ |
both | QUANTITY | 0.95+ |
first | QUANTITY | 0.87+ |
lot of ways | QUANTITY | 0.82+ |
one of them | QUANTITY | 0.81+ |
this morning | DATE | 0.78+ |
lot of people | QUANTITY | 0.78+ |
so many devices | QUANTITY | 0.71+ |
a hundred | QUANTITY | 0.67+ |
every single dimension | QUANTITY | 0.59+ |
TED talk | EVENT | 0.54+ |
woods | ORGANIZATION | 0.46+ |
wig | PERSON | 0.44+ |
2020 | COMMERCIAL_ITEM | 0.38+ |
WiDS | TITLE | 0.37+ |
Daphne Koller, insitro | Stanford Women in Data Science (WiDS) Conference 2020
>>live from Stanford University. It's the queue covering Stanford women in data science 2020. Brought to you by Silicon Angle Media. >>Hi! And welcome to the Cube. I'm your host, Sonia, to guard. And we're live at Stanford University covering Woods Women in Data Science Conference The fifth annual one And joining us today is Daphne Koller, who is the co founder who sorry is the CEO and founder of In Citro that Daphne. Welcome to the Cube. >>Nice to be here, Sonia. Thank you for having me. So >>tell us a little bit about in Citro how you how you got founded and more about your >>role. So I've been working in the intersection of machine learning and biology and health for quite a while, and it was always a bit of an interesting journey and that the data sets were quite small and limited. We're now in a different world where there's tools that are allowing us to create massive biological data sense that I think can help us solve really significant societal problems. And one of those problems that I think is really important is drug discovery and development, where despite many important advancements, the costs just keep going up and up and up. And the question is, can we use machine learning to solve that problem >>better? And you talk about this more in your keynote, so give us a few highlights of what you talked about. So in the last, you can think of >>drug discovery development in the last 50 to 70 years as being a bit of a glass half full glass, half empty. The glass half full is the fact that there's diseases that used to be a death sentence or of sentenced, a lifelong of pain and suffering that >>are now >>addressed by some of the modern day medicines. And I think that's absolutely amazing. The >>other side of >>it is that the cost of developing new drugs has been growing exponentially and what's come to be known as the Rooms law being the inverse of Moore's law, which is the one we're all familiar with because the number of drugs approved per 1,000,000,000 U. S. Dollars just keeps going down exponentially. So the question is, can we change that curve? >>And you talked in your keynote about the interdisciplinary culture to tell us more about that? I think in >>order to address some of the critical problems that we're facing. One needs to really build a culture of people who work together at from different disciplines, each bringing their own insights and their own ideas into the mix. So and in Citro, we actually have a company. That's half life scientists, many of whom are producing data for the purpose of driving machine learning models and the other Halford machine learning people in data scientists who are working on those. But it's not a handoff where one group produces that they then the other one consumes and interpreted. But really, they start from the very beginning to understand. What are the problems that one could solve together? How do you design the experiment? How do you build the model and how do you derive insights from that that can help us make better medicines for people? >>And, um, I also wanted to ask you the you co founded coursera, so tell us a little bit more about that platform. So I found that >>coursera as a result of work that I've been doing at Stanford, working on how technology can make education better and more accessible. This was a project that I did here, number of my colleagues as well. And at some point in the fall of 2011 there was an experiment of Let's take some of the content that we've been we've been developing within within Stanford and put it out there for people to just benefit from, and we didn't know what would happen. Would it be a few 1000 people, but within a matter of weeks with minimal advertising Other than one New York Times article that went viral, we had 100,000 people in each of those courses. And that was a moment in time where, you know, we looked at it at this and said, Can we just go back to writing more papers or is there an incredible opportunity to transform access to education to people all over the world? And so I ended up taking a what was supposed to be to really absence from Stanford to go and co found coursera, and I thought I'd go back after two years, but the But at the end of that two year period, the there was just so much more to be done and so much more impact that we could bring to people all over the world, people of both genders, people of different social economic status, every single country around the world. We just felt like this was something that I couldn't not dio. >>And how did you Why did you decide to go from an educational platform to then going into machine learning and biomedicine? >>So I've been doing Corsair for about five years in 2016 and the company was on a great trajectory. But it's primarily >>a >>a content company, and around me, machine learning was transforming the world, and I wanted to come back and be part of that. And when I looked around, I saw machine learning being applied to e commerce and the natural language and to self driving cars. But there really wasn't a lot of impact being made on the life science area. I wanted to be part of making that happen, partly because I felt like coming back to your earlier comment that in order to really have that impact, you need to have someone who speaks both languages. And while there's a new generation of researchers who are bilingual in biology and machine learning, there's still a small group in there, very few of those in kind of my age cohort and I thought that I would be able to have a real impact by bullying company in the space. >>So it sounds like your background is pretty varied. What advice would you give to women who are just starting college now who may be interested in the similar field? Would you tell them they have to major in math? Or or do you think that maybe, like there's some other majors that may be influential as well? I think >>there is a lot of ways to get into data science. Math is one of them. But there's also statistics or physics. And I would say that especially for the field that I'm currently in, which is at the intersection of machine learning data science on the one hand, and biology and health on the other one can, um, get there from biology or medicine as well. But what I think is important is not to shy away from the more mathematically oriented courses in whatever major you're in, because that foundation is a really strong one. There is ah lot of people out there who are basically lightweight consumers of data science, and they don't really understand how the methods that they're deploying, how they work and that limits thumb in their ability to advance the field and come up with new methods that are better suited, perhaps, of the problems of their tackling. So I think it's totally fine. And in fact, there's a lot of value to coming into data science from fields other than now third computer science. But I think taking courses in those fields, even while you're majoring in whatever field you're interested in, is going to make you a much better person who lives at that intersection. >>And how do you think having a technology background has helped you in in founding your companies and has helped you become a successful CEO in companies >>that are very strongly R and D, focused like like in Citro and others? Having a technical co founder is absolutely essential because it's fine to have and understanding of whatever the user needs and so on and come from the business side of it. And a lot of companies have a business co founder. But not understanding what the technology can actually do is highly limiting because you end up hallucinating. Oh, if we could only do this and that would be great. But you can't and people end up often times making ridiculous promises about what's technology will or will not do because they just don't understand where the land mines sit. And, um, and where you're going to hit reels, obstacles in the path. So I think it's really important to have a strong technical foundation in these companies. >>And that being said, Where do you see in Teacher in the future? And how do you see it solving, Say, Nash, that you talked about in your keynote. >>So we hope that in Citro will be a fully integrated drug discovery and development company that is based on a completely different foundation than a traditional pharma company where they grew up. In the old approach of that is very much a bespoke scientific um, analysis of the biology of different diseases and then going after targets are ways of dealing with the disease that are driven by human intuition. Where I think we have the opportunity to go today is to build a very data driven approach that collects massive amounts of data and then let analysis of those data really reveal new hypotheses that might not be the ones that accord with people's preconceptions of what matters and what doesn't. And so hopefully we'll be able to overtime create enough data and applying machine learning to address key bottlenecks in the drug discovery development process that we can bring better drugs to people, and we can do it faster and hopefully it much lower cost. >>That's great. And you also mention in your keynote that you think the 20 twenties is like a digital biology era, so tell us more about that. So I think if >>you look, if you take a historical perspective on science and think back, you realize that there's periods in history where one discipline has made a tremendous amount of progress in relatively short amount of time because of a new technology or a new way of looking at things in the 18 seventies, that discipline was chemistry with the understanding of the periodic table, and that you actually couldn't turn lead into gold in the 19 hundreds. That was physics with understanding the connection between matter and energy in between space and time. In the 19 fifties that was computing where silicon chips were suddenly able to perform calculations that up until that point, only people have been able to >>dio. And then in 19 nineties, >>there was an interesting bifurcation. One was three era of data, which is related to computing but also involves elements, statistics and optimization of neuroscience. And the other one was quantitative biology. In which file do you move from a descriptive signs of taxonomy izing phenomenon to really probing and measuring biology in a very detailed on high throughput way, using techniques like micro arrays that measure the activity of 20,000 genes at once, or the human genome sequencing of the human genome and many others. But >>these two fields kind of >>evolved in parallel, and what I think is coming now, 30 years later, is the convergence of those two fields into one field that I like to think of a digital biology where we are able using the tools that have and continue to be developed, measure biology, an entirely new levels of detail, of fidelity of scale. We can use the techniques of machine learning and data signs to interpret what we're seeing and then use some of the technologies that are also emerging to engineer biology to do things that it otherwise wouldn't do. And that will have implications and bio materials in energy and the environment in agriculture. And I think also in human health. And it's a incredibly exciting space toe to be in right now, because just so much is happening in the opportunities to make a difference and make the world a better place or just so large. >>That sounds awesome. Stephanie. Thank you for your insight. And thanks for being on the Cube. Thank you. I'm Sonia. Taqueria. Thanks for watching. Stay tuned for more. Okay? Great. Yeah, yeah, yeah.
SUMMARY :
Brought to you by Silicon Angle Media. And we're live at Stanford University covering Thank you for having me. And the question is, can we use machine learning to solve that problem So in the last, you can think of drug discovery development in the last 50 to 70 years as being a bit of a glass half full glass, And I think that's absolutely amazing. it is that the cost of developing new drugs has been growing exponentially and the other Halford machine learning people in data scientists who are working And, um, I also wanted to ask you the you co founded coursera, so tell us a little bit more about And at some point in the fall of 2011 there was an experiment the company was on a great trajectory. comment that in order to really have that impact, you need to have someone who speaks both languages. What advice would you give to women who are just starting methods that are better suited, perhaps, of the problems of their tackling. So I think it's really important to have a strong technical And that being said, Where do you see in Teacher in the future? key bottlenecks in the drug discovery development process that we can bring better drugs to people, And you also mention in your keynote that you think the 20 twenties is like the understanding of the periodic table, and that you actually couldn't turn lead into gold in And then in 19 nineties, And the other one was quantitative biology. is the convergence of those two fields into one field that I like to think of a digital biology And thanks for being on the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sonia | PERSON | 0.99+ |
Daphne Koller | PERSON | 0.99+ |
Stephanie | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
Silicon Angle Media | ORGANIZATION | 0.99+ |
20,000 genes | QUANTITY | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
Stanford University | ORGANIZATION | 0.99+ |
18 seventies | DATE | 0.99+ |
Corsair | ORGANIZATION | 0.99+ |
19 fifties | DATE | 0.99+ |
one field | QUANTITY | 0.99+ |
two fields | QUANTITY | 0.99+ |
Moore | PERSON | 0.99+ |
Daphne | PERSON | 0.99+ |
fall of 2011 | DATE | 0.99+ |
20 twenties | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
both genders | QUANTITY | 0.99+ |
each | QUANTITY | 0.98+ |
both languages | QUANTITY | 0.98+ |
30 years later | DATE | 0.97+ |
Taqueria | PERSON | 0.97+ |
One | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
Nash | PERSON | 0.97+ |
two year | QUANTITY | 0.97+ |
third | QUANTITY | 0.97+ |
Stanford | ORGANIZATION | 0.96+ |
Woods Women in Data Science Conference | EVENT | 0.96+ |
19 hundreds | DATE | 0.96+ |
one discipline | QUANTITY | 0.96+ |
Halford | ORGANIZATION | 0.95+ |
2020 | DATE | 0.95+ |
New York Times | ORGANIZATION | 0.94+ |
about five years | QUANTITY | 0.94+ |
Citro | ORGANIZATION | 0.94+ |
70 years | QUANTITY | 0.93+ |
1000 people | QUANTITY | 0.93+ |
Stanford Women in Data Science | EVENT | 0.89+ |
19 nineties | DATE | 0.86+ |
one group | QUANTITY | 0.77+ |
fifth annual one | QUANTITY | 0.76+ |
Citro | TITLE | 0.72+ |
WiDS) Conference 2020 | EVENT | 0.69+ |
three | QUANTITY | 0.66+ |
single country | QUANTITY | 0.65+ |
50 | QUANTITY | 0.64+ |
half full | QUANTITY | 0.62+ |
two years | QUANTITY | 0.6+ |
1,000,000,000 U. S. Dollars | QUANTITY | 0.59+ |
in Citro | ORGANIZATION | 0.53+ |
Rooms | TITLE | 0.52+ |
In | ORGANIZATION | 0.51+ |
Cube | ORGANIZATION | 0.47+ |
Talithia Williams, Harvey Mudd College | Stanford Women in Data Science (WiDS) Conference 2020
>>live from Stanford University. It's the queue covering Stanford women in Data Science 2020. Brought to you by Silicon Angle Media >>and welcome to the Cube. I'm your host Sonia category, and we're live at Stanford University, covering the fifth annual Woods Women in Data Science conference. Joining us today is Tilapia Williams, who's the associate professor of mathematics at Harvey Mudd College and host of Nova Wonders at PBS to leave a welcome to the Cappy to be here. Thanks for having me. So you have a lot of rules. So let's first tell us about being an associate professor at Harvey Mudd. >>Yeah, I've been at Harvey Mudd now for 11 years, so it's been really a lot of fun in the math department, but I'm a statistician by training, so I teach a lot of courses and statistics and data science and things like that. >>Very cool. And you're also a host of API s show called Novo Wonders. >>Yeah, that came about a couple of years ago. Folks at PBS reached out they had seen my Ted talk, and they said, Hey, it looks like you could be fund host of this science documentary shows So, Nova Wonders, is a six episode Siri's. It kind of takes viewers on a journey of what the cutting edge questions and science are. Um, so I got to host the show with a couple other co host and really think about like, you know, what are what are the animals saying? And so we've got some really fun episodes to do. What's the universe made of? Was one of them what's living inside of us. That was definitely a gross win. Todo figure out all the different micro organisms that live inside our body. So, yeah, it's been funded in hopes that show as well. >>And you talk about data science and AI and all that stuff on >>Yeah. Oh, yeah, yeah, one of the episodes. Can we build a Brain was dealt with a lot of data, big data and artificial intelligence, and you know, how good can we get? How good can computers get and really sort of compared to what we see in the movies? We're a long way away from that, but it seems like you know we're getting better every year, building technology that is truly intelligent, >>and you gave a talk today about mining for your own personal data. So give us some highlights from your talk. Yeah, >>so that talks sort of stemmed out of the Ted talk that I gave on owning your body's data. And it's really challenging people to think about how they can use data that they collect about their bodies to help make better health decisions on DSO ways that you can use, like your temperature data or your heart rate. Dina. Or what is data say over time? What does it say about your body's health and really challenging the audience to get excited about looking at that data? We have so many devices that collect data automatically for us, and often we don't pause on enough to actually look at that historical data. And so that was what the talk was about today, like, here's what you can find when you actually sit down and look at that data. >>What's the most important data you think people should be collecting about themselves? >>Well, definitely not. Your weight is. I don't >>want to know what that >>is. Um, it depends, you know, I think for women who are in the fertile years of life taking your daily waking temperature can tell you when your body's fertile. When you're ovulating, it can. So that information could give women during that time period really critical information. But in general, I think it's just a matter of being aware of of how your body is changing. So for some people, maybe it's your blood pressure or your blood sugar. You have high blood pressure or high blood sugar. Those things become really critical to keep an eye on. And, um, and I really encourage people whatever data they take, too, the active in the understanding of an interpretation of the data. It's not like if you take this data, you'll be healthy radio. You live to 100. It's really a matter of challenging people to own the data that they have and get excited about understanding the data that they are taking. So >>absolutely put putting people in charge of their >>own bodies. That's >>right. >>And actually speaking about that in your Ted talk, you mentioned how you were. Your doctor told you to have a C section and you looked at the data and he said, No, I'm gonna have this baby naturally. So tell us more about that. >>Yes, you should always listen to your medical pressures. But in this case, I will say that it was It was definitely more of a dialogue. And so I wasn't just sort of trying to lean on the fact that, like, I have a PhD in statistics and I know data, he was really kind of objectively with the on call doctor at the time, looking at the data >>and talking about it. >>And this doctor was this is his first time seeing me. And so I think it would have been different had my personal midwife or my doctor been telling me that. But this person would have only looked at this one chart and was it was making a decision without thinking about my historical data. And so I tried to bring that to the conversation and say, like, let me tell you more about you know, my body and this is pregnancy number three like, here's how my body works. And I think this person in particular just wasn't really hearing any of that. It was like, Here's my advice. We just need to do this. I'm like, >>Oh, >>you know, and so is gently as possible. I tried to really share that data. Um, and then it got to the point where it was sort of like either you're gonna do what I say or you're gonna have to sign a waiver. And we were like, Well, to sign the waiver that cost quite a buzz in the hospital that day. But we came back and had a very successful labor and delivery. And so, yeah, >>I think >>that at the time, >>But, >>you know, with that caveat that you should listen to what, your doctors >>Yeah. I mean, there's really interesting, like, what's the boundary between, Like what the numbers tell you and what professional >>tells me Because I don't have an MD. Right. And so, you know, I'm cautious not to overstep that, but I felt like in that case, the doctor wasn't really even considering the data that I was bringing. Um, I was we were actually induced with our first son, but again, that was more of a conversation, more of a dialogue. Here's what's happening here is what we're concerned about and the data to really back it up. And so I felt like in that case, like Yeah, I'm happy to go with your suggestion, but I could number three. It was just like, No, this isn't really >>great. Um, so you also wrote a book called Power In Numbers. The Rebel Women of Mathematics. So what inspired you to write this book? And what do you hope readers take away from it? >>A couple different things. I remember when I saw the movie hidden figures. And, um, I spent three summers at NASA working at JPL, the Jet Propulsion Laboratory. And so I had this very fun connection toe, you know, having worked at NASA. And, um, when this movie came out and I'm sitting there watching it and I'm, like ball in just crying, like I didn't know that there were black women who worked at NASA like, before me, you know, um and so it felt it felt it was just so transformative for me to see these stories just sort of unfold. And I thought, like, Well, why didn't I learn about these women growing up? Like imagine, Had I known about Katherine Johnsons of the world? Maybe that would have really inspired Not just me, but, you know, thinking of all the women of color who aren't in mathematics or who don't see themselves working at at NASA. And so for me, the book was really a way to leave that legacy to the generation that's coming up and say, like, there have been women who've done mathematics, um, and statistics and data science for years, and they're women who are doing it now. So a lot of the about 1/3 of the book are women who were still here and, like, active in the field and doing great things. And so I really wanted to highlight sort of where we've been, where we've been, but also where we're going and the amazing women that are doing work in it. And it's very visual. So some things like, Oh my gosh, >>women in math >>It is really like a very picturesque book of showing this beautiful images of the women and their mathematics and their work. And yes, I'm really proud of it. >>That's awesome. And even though there is like greater diversity now in the tech industry, there's still very few African American women, especially who are part of this industry. So what advice would you give to those women who who feel like they don't belong. >>Yeah, well, a they really do belong. Um, and I think it's also incumbent of people in the industry to sort of recognize ways that they could be advocate for women, and especially for women of color, because often it takes someone who's already at the table to invite other people to the table. And I can't just walk up like move over, get out the way I'm here now. But really being thoughtful about who's not representative, how do we get those voices here? And so I think the onus is often mawr on. People who occupy those spaces are ready to think about how they can be more intentional in bringing diversity in other spaces >>and going back to your talk a little bit. Um uh, how how should people use their data? >>Yeah, so I mean, I think, um, the ways that we've used our data, um, have been to change our lifestyle practices. And so, for example, when I first got a Fitbit, um, it wasn't really that I was like, Oh, I have a goal. It was just like I want something to keep track of my steps And then I look at him and I feel like, Oh, gosh, I didn't even do anything today. And so I think having sort of even that baseline data gave me a place to say, Okay, let me see if I hit 10 stuff, you know, 10,000 >>steps in a day or >>and so, in some ways, having the data allows you to set goals. Some people come in knowing, like, I've got this goal. I want to hit it. But for me, it was just sort of like, um and so I think that's also how I've started to use additional data. So when I take my heart rate data or my pulse, I'm really trying to see if I can get lower than how it was before. So the push is really like, how is my exercise and my diet changing so that I can bring my resting heart rate down? And so having the data gives me a gold up, restore it, and it also gives me that historical information to see like, Oh, this is how far I've come. Like I can't stop there, you know, >>that's a great social impact. >>That's right. Yeah, absolutely. >>and, um, Do you think that so in terms of, like, a security and privacy point of view, like if you're recording all your personal data on these devices, how do you navigate that? >>Yeah, that's a tough one. I mean, because you are giving up that data privacy. Um, I usually make sure that the data that I'm allowing access to this sort of data that I wouldn't care if it got published on the cover of you know, the New York Times. Maybe I wouldn't want everyone to see what my weight is, but, um, and so in some ways, while it is my personal data, there's something that's a bit abstract from it. Like it could be anyone's data as opposed to, say, my DNA. Like I'm not going to do a DNA test. You know, I don't want my data to be mapped it out there for the world. Um, but I think that that's increasingly become a concern because people are giving access to of their information to different companies. It's not clear how companies would use that information, so if they're using my data to build a product will make a product better. You know we don't see any world from that way. We don't have the benefit of it, but they have access to our data. And so I think in terms of data, privacy and data ethics, there's a huge conversation to have around that. We're only kind >>of at the beginning of understanding what that is. Yeah, >>well, thank you so much for being on the Cube. Really having you here. Thank you. Thanks. So I'm Sonia to Gary. Thanks so much for watching the cube and stay tuned for more. Yeah, yeah, yeah.
SUMMARY :
Brought to you by Silicon Angle Media So you have a lot of rules. the math department, but I'm a statistician by training, so I teach a lot of courses and statistics and data And you're also a host of API s show called Novo Wonders. so I got to host the show with a couple other co host and really think about like, with a lot of data, big data and artificial intelligence, and you know, how good can we get? and you gave a talk today about mining for your own personal data. And so that was what the talk was about today, like, here's what you can find when you actually sit down and look at that data. I don't is. Um, it depends, you know, I think for women who are in That's And actually speaking about that in your Ted talk, you mentioned how you were. And so I wasn't just bring that to the conversation and say, like, let me tell you more about you know, my body and this is pregnancy number Um, and then it got to the point where it was sort of like either you're gonna do what I say or you're gonna have you and what professional And so I felt like in that case, like Yeah, I'm happy to go with your suggestion, And what do you hope readers take away from it? And so I had this very fun connection toe, you know, having worked at NASA. And yes, I'm really proud of it. So what advice would you give to those women who who feel like they don't belong. And so I think the onus and going back to your talk a little bit. me a place to say, Okay, let me see if I hit 10 stuff, you know, 10,000 so I think that's also how I've started to use additional data. Yeah, absolutely. And so I think in terms of data, of at the beginning of understanding what that is. well, thank you so much for being on the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tilapia Williams | PERSON | 0.99+ |
Sonia | PERSON | 0.99+ |
Talithia Williams | PERSON | 0.99+ |
PBS | ORGANIZATION | 0.99+ |
Gary | PERSON | 0.99+ |
11 years | QUANTITY | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
10,000 | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
100 | QUANTITY | 0.99+ |
Novo Wonders | TITLE | 0.99+ |
Jet Propulsion Laboratory | ORGANIZATION | 0.99+ |
Power In Numbers | TITLE | 0.99+ |
Silicon Angle Media | ORGANIZATION | 0.99+ |
Katherine Johnsons | PERSON | 0.99+ |
Stanford University | ORGANIZATION | 0.99+ |
first son | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Harvey Mudd College | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
Dina | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
JPL | ORGANIZATION | 0.99+ |
three summers | QUANTITY | 0.98+ |
six episode | QUANTITY | 0.98+ |
Harvey Mudd | ORGANIZATION | 0.97+ |
So, Nova Wonders | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
The Rebel Women of Mathematics | TITLE | 0.96+ |
10 stuff | QUANTITY | 0.94+ |
New York Times | ORGANIZATION | 0.94+ |
couple of years ago | DATE | 0.93+ |
Stanford | ORGANIZATION | 0.93+ |
Stanford Women in Data Science | EVENT | 0.92+ |
Woods Women in Data Science conference | EVENT | 0.92+ |
a day | QUANTITY | 0.92+ |
one chart | QUANTITY | 0.91+ |
about 1/3 | QUANTITY | 0.88+ |
Fitbit | ORGANIZATION | 0.86+ |
pregnancy | QUANTITY | 0.81+ |
Ted | TITLE | 0.8+ |
hidden figures | TITLE | 0.79+ |
fifth | QUANTITY | 0.77+ |
Ted talk | TITLE | 0.71+ |
African American | OTHER | 0.7+ |
couple | QUANTITY | 0.7+ |
WiDS) Conference 2020 | EVENT | 0.68+ |
three | QUANTITY | 0.68+ |
number three | QUANTITY | 0.67+ |
Nova Wonders | TITLE | 0.63+ |
co | QUANTITY | 0.63+ |
2020 | DATE | 0.5+ |
Data | EVENT | 0.46+ |
Science | TITLE | 0.42+ |
Cappy | ORGANIZATION | 0.37+ |
Newsha Ajami, Stanford University | Stanford Women in Data Science (WiDS) Conference 2020
>>live from Stanford University. It's the queue covering Stanford women in data science 2020. Brought to you by Silicon Angle Media. >>Yeah, yeah, and welcome to the Cube. I'm your host Sonia Category and we're live at Stanford University, covering the fifth annual Woods Women in Data Science Conference. Joining us today is new Sha Ajami, who's the director of urban water policy for Stanford. You should welcome to the Cube. Thank you for having me. Absolutely. So tell us a little bit about your role. So >>I directed around water policy program at Stanford. We focused on building solutions for resilient cities to try to use data science and also the mathematical models to better understand how water use is changing and how we can build a future cities and infrastructure to address the needs of the people in the US, in California and across the world. >>That's great. And you're gonna give a talk today about how to build water security using big data. So give us a preview of your talk. >>Sure. So the 20th century water infrastructure model was very much of a >>top down model, >>so we built solutions or infrastructure to bring water to people, but people were not part of the loop. They were not the way that they behaved their decision making process. What they used, how they use it wasn't necessarily part of the process and the assume. There's enough water out there to bring water to people, and they can do whatever they want with it. So what we're trying to do is you want to change this paradigm and try to make it more bottom up at to engage people's decision making process and the uncertainty associated with that as part of the infrastructure planning process. Until I'll be talking, I'll talk a little bit about that. >>And where is the most water usage coming from? So, >>interestingly enough, in developed world, especially in the in the western United States, 50% of our water is used outdoors for grass and outdoor spacing, which we don't necessarily are dependent on. Our lives depend on it. I'll talk about the statistics and my talk, but grass is the biggest club you're going in the US while you're not really needing it for food consumption and also uses four times more water >>than than >>corn, which is which is a lot of water. And in California alone, if you just think about some of the spaces that we have grass or green spaces, we have our doors in the in. The in the malls are institutional buildings or different outdoor spaces. We have some of that water. If we can save, it can provide water for about a 1,000,000 or two million people a year. So that's a lot of water that we can be able to we can save and use, or you are actually a repurpose for needs that you really half. >>So does that also boil down to like people of watering their own lawns? Or is the problem for a much bigger grass message? >>Actually, interestingly enough, that's only 10% of that water out the water use. The rest of it is actually the residential water use, which is what you and I, the grass you and I have in our backyard and watering it so that water is even more than that amount that I mentioned. So we use a lot of water outdoors and again. Some of these green spaces are important for community building for making sure everybody has access to green spaces and people. Kids can play soccer or play outdoors, but really our individual lawns and outdoor spaces. If there are not really a native you know landscaping, it's not something that views enough to justify the amount of water you use for that purpose. >>So taking longer showers and all the stuff is very minimal compared to no, not >>at all. Sure, those are also very, very important. That's another 50% of our water. They're using that urban areas. It is important to be mindful the baby wash dishes. Maybe take shower the baby brush rt. They're not wasting water while you're doing that. And a lot of other individual decisions that we make that can impact water use on a daily basis. >>Right, So So tell us a little bit more about right now in California, We just had a dry February was the 1st 150 years, and you know, this is a huge issue for cities, agriculture and for potential wildfires. So tell us about your opinion about that. So, >>um, the 20th century's infrastructure model I mentioned at the beginning One of the flaws in that system is that it assumes that we will have enough snow in the mountains that would melt during the spring and summer time and would provide us water. The problem is, climate change has really, really impacted that assumption, and now you're not getting as much snow, which is comes back to the fact that this February we have not received any snow. We're still in the winter and we have spring weather and we don't really have much snow on the mountain. Which means that's going to impact the amount of water we have for summer and spring time this year. We had a great last year. We got enough water in our reservoirs, which means that you can potentially make it through. But then you have consecutive years that are dry and they don't receive a lot of water precipitation in form of snow or rain. That will become a very problematic issue to meet future water demands in California. >>And do you think this issue is along with not having enough rainfall, but also about how we store water, or do you think there should be a change in that policy? >>Sure, I think that it definitely has something also in the way we store water and be definitely you're in the 21st century. We have different problems and challenges. It's good to think about alternative ways off a storing water, including using groundwater sources. Groundwater as a way off, storing excess water or moving water around faster and making sure we use every drop of water that falls on the ground and also protecting our water supplies from contamination or pollution. >>And you see it's ever going to desalination or to get clean water. So, interestingly >>enough, I think desalination definitely has worth in other parts of the world, and then they have. Then you have smaller population or you have already tapped out of all the other options that are available to you. Desalination is expensive. Solution costs a lot of money to build this infrastructure and also again depends on you know, this centralized approach that we will build something and provide resources to people from from that location. So it's very costly to build this kind of solutions. I think for for California we still have plenty of water that we can save and repurpose, I would say, and also we still can do recycling and reuse. We can capture our stone water and reuse it, so there's so many other, cheaper, more accessible options available before you go ahead and build a desalination plants >>and you're gonna be talking about sustainable water resource management. So tell us a little bit more about that, too. So the thing with >>water mismanagement and occasionally I use also the word like building resilient water. Future is all about diversifying our water supply and being mindful of how they use our water, every drop of water that use its degraded on. It needs to be cleaned up and put back in the environment, so it always starts from the bottom. The more you save, the less impact you have on the environment. The second thing is you want to make sure every trouble wanted have used. We can use it as many times possible and not make it not not. Take it, use it, lose its right away, but actually be able to use it multiple times for different purposes. Another point that's very important, as actually majority of the water they've used on a daily basis is it doesn't need to be extremely clean drinking water quality. For example, if you tell someone that you're flushing down our toilets. Drinkable water would surprise you that we would spend this much time and resources and money and energy to clean that water to flush it down the toilet video using it. So So basically rethinking the way we built this infrastructure model is very important, being able to tailor water to the needs that we have and also being mindful of Have you use that resource? >>So is your research focus mainly on California or the local community? We actually >>are solutions that we built on our California focus. Actually, we try to build solutions that can be easily applied to different places. Having said that, because you're working from the bottom up, wavy approach water from the bottom up, you need to have a local collaboration and local perspective to bring to their to this picture on. A lot of our collaborators have been so far in California, we have had data from them. We were able to sort of demonstrate some of the assumptions we had in California. But we work actually all over the world. We have collaborators in Europe in Asia and they're all trying to do the same thing that we dio on. You're trying to sort of collaborate with them on some of the projects in other parts of the world. >>That's awesome. So going forward, what do you hope to see with sustainable water management? So, to >>be honest with you, I would often we think about technology as a way that would solve all our problems and move us out of the challenges we have. I would say technology is great, but we need to really rethink the way we manager resource is on the institutions that we have on there. We manage our data and information that we have. And I really hope that became revolutionized that part of the water sector and disrupt that part because as we disrupt this institutional part >>on the >>system, provide more system level thinking to the water sector, I'm hoping that that would change the way we manage our water and then actually opens up space for some of these technologies to come into play as >>we go forward. That's awesome. So before we leave here, you're originally from Tehran. Um and and now you're in this data science industry. What would you say to a kid who's abroad, who wants to maybe move here and have a career in data science? >>I would say Study hard, Don't let anything to disk or do you know we're all equal? Our brains are all made the same way. Doesn't matter what's on the surface. So, um so I and encourage all the girls study hard and not get discouraged and fail as many times as you can, because failing is an opportunity to become more resilient and learn how to grow. And, um and I have, and I really hope to see more girls and women in this in these engineering and stem fields, to be more active on, become more prominent. >>Have you seen a large growth within the past few years? Definitely, >>the conversation is definitely there, and there are a lot more women, and I love how Margot and her team are sort of trying to highlight the number of people who are out there. And working on these issues because that demonstrates that the field wasn't necessarily empty was just not not highlighted as much. So for sure, it's very encouraging to see how much growth you have seen over the years for sure >>you shed. Thank you so much. It's really inspiring all the work you do. Thank you for having me. So no, Absolutely nice to meet you. I'm Senator Gary. Thanks for watching the Cube and stay tuned for more. Yeah, yeah, yeah.
SUMMARY :
Brought to you by Silicon Angle Media. Thank you for having me. models to better understand how water use is changing So give us a preview of your talk. to do is you want to change this paradigm and try to make it more bottom up at and my talk, but grass is the biggest club you're going in the US So that's a lot of water that we can be able to we can save and use, The rest of it is actually the residential water use, which is what you and I, They're not wasting water while you're doing that. We just had a dry February was the 1st 150 years, and you know, Which means that's going to impact the amount of water we have for summer and spring time this year. Sure, I think that it definitely has something also in the way we store water and be definitely you're And you see it's ever going to desalination or to get clean water. I think for for California we still have plenty of water that we can save and repurpose, So the thing with the needs that we have and also being mindful of Have you use that resource? the bottom up, you need to have a local collaboration and local So going forward, what do you hope to see with sustainable that part of the water sector and disrupt that part because as we disrupt this institutional So before we leave here, you're originally from Tehran. and fail as many times as you can, because failing is an opportunity to become more resilient it's very encouraging to see how much growth you have seen over the years for sure It's really inspiring all the work you do.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Europe | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
Sha Ajami | PERSON | 0.99+ |
Tehran | LOCATION | 0.99+ |
Silicon Angle Media | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
20th century | DATE | 0.99+ |
50% | QUANTITY | 0.99+ |
21st century | DATE | 0.99+ |
Newsha Ajami | PERSON | 0.99+ |
Stanford University | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
February | DATE | 0.99+ |
Sonia | PERSON | 0.98+ |
second thing | QUANTITY | 0.98+ |
10% | QUANTITY | 0.98+ |
Asia | LOCATION | 0.98+ |
today | DATE | 0.98+ |
Gary | PERSON | 0.97+ |
Stanford | ORGANIZATION | 0.96+ |
Woods Women in Data Science Conference | EVENT | 0.96+ |
four times | QUANTITY | 0.95+ |
Senator | PERSON | 0.94+ |
western United States | LOCATION | 0.93+ |
1st 150 years | QUANTITY | 0.93+ |
2020 | DATE | 0.92+ |
Stanford Women in Data Science ( | EVENT | 0.9+ |
this year | DATE | 0.86+ |
two million people a year | QUANTITY | 0.85+ |
Cube | ORGANIZATION | 0.82+ |
about a 1,000,000 | QUANTITY | 0.8+ |
WiDS) Conference 2020 | EVENT | 0.77+ |
this February | DATE | 0.75+ |
One | QUANTITY | 0.74+ |
Cube | TITLE | 0.63+ |
past | DATE | 0.55+ |
fifth | EVENT | 0.54+ |
data | TITLE | 0.52+ |
drop | QUANTITY | 0.51+ |
years | DATE | 0.49+ |
annual | QUANTITY | 0.41+ |