Dominique Bastos, Persistent Systems | International Women's Day 2023
(gentle upbeat music) >> Hello, everyone, welcome to theCUBE's coverage of International Women's Day. I'm John Furrier host here in Palo Alto, California. theCUBE's second year covering International Women's Day. It's been a great celebration of all the smart leaders in the world who are making a difference from all kinds of backgrounds, from technology to business and everything in between. Today we've got a great guest, Dominique Bastos, who's the senior Vice President of Cloud at Persistent Systems, formerly with AWS. That's where we first met at re:Invent. Dominique, great to have you on the program here for International Women's Day. Thanks for coming on. >> Thank you John, for having me back on theCUBE. This is an honor, especially given the theme. >> Well, I'm excited to have you on, I consider you one of those typecast personas where you've kind of done a lot of things. You're powerful, you've got great business acumen you're technical, and we're in a world where, you know the world's coming completely digital and 50% of the world is women, 51%, some say. So you got mostly male dominated industry and you have a dual engineering background and that's super impressive as well. Again, technical world, male dominated you're in there in the mix. What inspires you to get these engineering degrees? >> I think even it was more so shifted towards males. When I had the inspiration to go to engineering school I was accused as a young girl of being a tomboy and fiddling around with all my brother's toys versus focusing on my dolls and other kind of stereotypical toys that you would give a girl. I really had a curiosity for building, a curiosity for just breaking things apart and putting them back together. I was very lucky in that my I guess you call it primary school, maybe middle school, had a program for, it was like electronics, that was the class electronics. So building circuit boards and things like that. And I really enjoyed that aspect of building. I think it was more actually going into engineering school. Picking that as a discipline was a little bit, my mom's reaction to when I announced that I wanted to do engineering which was, "No, that's for boys." >> Really. >> And that really, you know, I think she, it came from a good place in trying to protect me from what she has experienced herself in terms of how women are received in those spaces. So I kind of shrugged it off and thought "Okay, well I'm definitely now going to do this." >> (laughs) If I was told not to, you're going to do it. >> I was told not to, that's all I needed to hear. And also, I think my passion was to design cars and I figured if I enroll in an industrial engineering program I could focus on ergonomic design and ultimately, you know have a career doing something that I'm passionate about. So yeah, so my inspiration was kind of a little bit of don't do this, a lot of curiosity. I'm also a very analytical person. I've been, and I don't know what the science is around left right brain to be honest, but been told that I'm a very much a logical person versus a feeler. So I don't know if that's good or bad. >> Straight shooter. What were your engineering degrees if you don't mind sharing? >> So I did industrial engineering and so I did a dual degree, industrial engineering and robotics. At the time it was like a manufacturing robotics program. It was very, very cool because we got to, I mean now looking back, the evolution of robotics is just insane. But you, you know, programmed a robotic arm to pick things up. I actually crashed the Civil Engineering School's Concrete Canoe Building Competition where you literally have to design a concrete canoe and do all the load testing and the strength testing of the materials and basically then, you know you go against other universities to race the canoe in a body of water. We did that at, in Alabama and in Georgia. So I was lucky to experience that two times. It was a lot of fun. >> But you knew, so you knew, deep down, you were technical you had a nerd vibe you were geeking out on math, tech, robotics. What happened next? I mean, what were some of the challenges you faced? How did you progress forward? Did you have any blockers and roadblocks in front of you and how did you handle those? >> Yeah, I mean I had, I had a very eye-opening experience with, in my freshman year of engineering school. I kind of went in gung-ho with zero hesitation, all the confidence in the world, 'cause I was always a very big nerd academically, I hate admitting this but myself and somebody else got most intellectual, voted by the students in high school. It's like, you don't want to be voted most intellectual when you're in high school. >> Now it's a big deal. (laughs) >> Yeah, you want to be voted like popular or anything like that? No, I was a nerd, but in engineering school, it's a, it was very humbling. That whole confidence that I had. I experienced prof, ooh, I don't want to name the school. Everybody can google it though, but, so anyway so I had experience with some professors that actually looked at me and said, "You're in the wrong program. This is difficult." I, and I think I've shared this before in other forums where, you know, my thermodynamic teacher basically told me "Cheerleading's down the hall," and it it was a very shocking thing to hear because it really made me wonder like, what am I up against here? Is this what it's going to be like going forward? And I decided not to pay attention to that. I think at the moment when you hear something like that you just, you absorb it and you also don't know how to react. And I decided immediately to just walk right past him and sit down front center in the class. In my head I was cursing him, of course, 'cause I mean, let's be real. And I was like, I'm going to show this bleep bleep. And proceeded to basically set the curve class crushed it and was back to be the teacher's assistant. So I think that was one. >> But you became his teacher assistant after, or another one? >> Yeah, I gave him a mini speech. I said, do not do this. You, you could, you could have broken me and if you would've done this to somebody who wasn't as steadfast in her goals or whatever, I was really focused like I'm doing this, I would've backed out potentially and said, you know this isn't something I want to experience on the daily. So I think that was actually a good experience because it gave me an opportunity to understand what I was up against but also double down in how I was going to deal with it. >> Nice to slay the misogynistic teachers who typecast people. Now you had a very technical career but also you had a great career at AWS on the business side you've handled 'em all of the big accounts, I won't say the names, but like we're talking about monster accounts, sales and now basically it's not really selling, you're managing a big account, it's like a big business. It's a business development thing. Technical to business transition, how do you handle that? Was that something you were natural for? Obviously you, you stared down the naysayers out of the gate in college and then in business, did that continue and how did you drive through that? >> So I think even when I was coming out of university I knew that I wanted to have a balance between the engineering program and business. A lot of my colleagues went on to do their PEs so continue to get their masters basically in engineering or their PhDs in engineering. I didn't really have an interest for that. I did international business and finance as my MBA because I wanted to explore the ability of taking what I had learned in engineering school and applying it to building businesses. I mean, at the time I didn't have it in my head that I would want to do startups but I definitely knew that I wanted to get a feel for what are they learning in business school that I missed out in engineering school. So I think that helped me when I transitioned, well when I applied, I was asked to come apply at AWS and I kind of went, no I'm going to, the DNA is going to be rejected. >> You thought, you thought you'd be rejected from AWS. >> I thought I'd be, yeah, because I have very much a startup founder kind of disruptive personality. And to me, when I first saw AWS at the stage early 2016 I saw it as a corporation. Even though from a techie standpoint, I was like, these people are insane. This is amazing what they're building. But I didn't know what the cultural vibe would feel like. I had been with GE at the beginning of my career for almost three years. So I kind of equated AWS Amazon to GE given the size because in between, I had done startups. So when I went to AWS I think initially, and I do have to kind of shout out, you know Todd Weatherby basically was the worldwide leader for ProServe and it was being built, he built it and I went into ProServe to help from that standpoint. >> John: ProServe, Professional services >> Professional services, right. To help these big enterprise customers. And specifically my first customer was an amazing experience in taking, basically the company revolves around strategic selling, right? It's not like you take a salesperson with a conventional schooling that salespeople would have and plug them into AWS in 2016. It was very much a consultative strategic approach. And for me, having a technical background and loving to solve problems for customers, working with the team, I would say, it was a dream team that I joined. And also the ability to come to the table with a technical background, knowing how to interact with senior executives to help them envision where they want to go, and then to bring a team along with you to make that happen. I mean, that was like magical for me. I loved that experience. >> So you like the culture, I mean, Andy Jassy, I've interviewed many times, always talked about builders and been a builder mentality. You mentioned that earlier at the top of this interview you've always building things, curious and you mentioned potentially your confidence might have been shaken. So you, you had the confidence. So being a builder, you know, being curious and having confidence seems to be what your superpower is. A lot of people talk about the confidence angle. How important is that and how important is that for encouraging more women to get into tech? Because I still hear that all the time. Not that they don't have confidence, but there's so many signals that potentially could shake confidence in industry >> Yeah, that's actually a really good point that you're making. A lot of signals that women get could shake their confidence and that needs to be, I mean, it's easy to say that it should be innate. I mean that's kind of like textbook, "Oh it has to come from within." Of course it does. But also, you know, we need to understand that in a population where 50% of the population is women but only 7% of the positions in tech, and I don't know the most current number in tech leadership, is women, and probably a smaller percentage in the C-suite. When you're looking at a woman who's wanting to go up the trajectory in a tech company and then there's a subconscious understanding that there's a limit to how far you'll go, your confidence, you know, in even subconsciously gets shaken a little bit because despite your best efforts, you're already seeing the cap. I would say that we need to coach girls to speak confidently to navigate conflict versus running away from it, to own your own success and be secure in what you bring to the table. And then I think a very important thing is to celebrate each other and the wins that we see for women in tech, in the industry. >> That's awesome. What's, the, in your opinion, the, you look at that, the challenges for this next generation women, and women in general, what are some of the challenges for them and that they need to overcome today? I mean, obviously the world's changed for the better. Still not there. I mean the numbers one in four women, Rachel Thornton came on, former CMO of AWS, she's at MessageBird now. They had a study where only one in four women go to the executive board level. And so there's still, still numbers are bad and then the numbers still got to get up, up big time. That's, and the industry's working on that, but it's changed. But today, what are some of the challenges for this current generation and the next generation of women and how can we and the industry meet, we being us, women in the industry, be strong role models for them? >> Well, I think the challenge is one of how many women are there in the pipeline and what are we doing to retain them and how are we offering up the opportunities to fill. As you know, as Rachel said and I haven't had an opportunity to see her, in how are we giving them this opportunity to take up those seats in the C-suite right, in these leadership roles. And I think this is a little bit exacerbated with the pandemic in that, you know when everything shut down when people were going back to deal with family and work at the same time, for better or for worse the brunt of it fell on probably, you know the maternal type caregiver within the family unit. You know, I've been, I raised my daughter alone and for me, even without the pandemic it was a struggle constantly to balance the risk that I was willing to take to show up for those positions versus investing even more of that time raising a child, right? Nevermind the unconscious bias or cultural kind of expectations that you get from the male counterparts where there's zero understanding of what a mom might go through at home to then show up to a meeting, you know fully fresh and ready to kind of spit out some wisdom. It's like, you know, your kid just freaking lost their whatever and you know, they, so you have to sort a bunch of things out. I think the challenge that women are still facing and will we have to keep working at it is making sure that there's a good pipeline. A good amount of young ladies of people taking interest in tech. And then as they're, you know, going through the funnel at stages in their career, we're providing the mentoring we're, there's representation, right? To what they're aspiring to. We're celebrating their interest in the field, right? And, and I think also we're doing things to retain them, because again, the pandemic affected everybody. I think women specifically and I don't know the statistics but I was reading something about this were the ones to tend to kind of pull it back and say well now I need to be home with, you know you name how many kids and pets and the aging parents, people that got sick to take on that position. In addition to the career aspirations that they might have. We need to make it easier basically. >> I think that's a great call out and I appreciate you bringing that up about family and being a single mom. And by the way, you're savage warrior to doing that. It's amazing. You got to, I know you have a daughter in computer science at Stanford, I want to get to that in a second. But that empathy and I mentioned Rachel Thornton, who's the CMO MessageBird and former CMO of AWS. Her thing right now to your point is mentoring and sponsorship is very key. And her company and the video that's on the site here people should look at that and reference that. They talk a lot about that empathy of people's situation whether it's a single mom, family life, men and women but mainly women because they're the ones who people aren't having a lot of empathy for in that situation, as you called it out. This is huge. And I think remote work has opened up this whole aperture of everyone has to have a view into how people are coming to the table at work. So, you know, props are bringing that up, and I recommend everyone look at check out Rachel Thornton. So how do you balance that, that home life and talk about your daughter's journey because sounds like she's nerding out at Stanford 'cause you know Stanford's called Nerd Nation, that's their motto, so you must be proud. >> I am so proud, I'm so proud. And I will say, I have to admit, because I did encounter so many obstacles and so many hurdles in my journey, it's almost like I forgot that I should set that aside and not worry about my daughter. My hope for her was for her to kind of be artistic and a painter or go into something more lighthearted and fun because I just wanted to think, I guess my mom had the same idea, right? She, always been very driven. She, I want to say that I got very lucky that she picked me to be her mom. Biologically I'm her mom, but I told her she was like a little star that fell from the sky and I, and ended up with me. I think for me, balancing being a single mom and a career where I'm leading and mentoring and making big decisions that affect people's lives as well. You have to take the best of everything you get from each of those roles. And I think that the best way is play to your strengths, right? So having been kind of a nerd and very organized person and all about, you know, systems for effectiveness, I mean, industrial engineering, parenting for me was, I'm going to make it sound super annoying and horrible, but (laughs) >> It's funny, you know, Dave Vellante and I when we started SiliconANGLE and theCUBE years ago, one of the things we were all like sports lovers. So we liked sports and we are like we looked at the people in tech as tech athletes and except there's no men and women teams, it's one team. It's all one thing. So, you know, I consider you a tech athlete you're hard charging strong and professional and smart and beautiful and brilliant, all those good things. >> Thank you. >> Now this game is changing and okay, and you've done startups, and you've done corporate jobs, now you're in a new role. What's the current tech landscape from a, you know I won't say athletic per standpoint but as people who are smart. You have all kinds of different skill sets. You have the startup warriors, you have the folks who like to be in the middle of the corporate world grow up through corporate, climb the corporate ladder. You have investors, you have, you know, creatives. What have you enjoyed most and where do you see all the action? >> I mean, I think what I've enjoyed the most has been being able to bring all of the things that I feel I'm strong at and bring it together to apply that to whatever the problem is at hand, right? So kind of like, you know if you look at a renaissance man who can kind of pop in anywhere and, oh, he's good at, you know sports and he's good at reading and, or she's good at this or, take all of those strengths and somehow bring them together to deal with the issue at hand, versus breaking up your mindset into this is textbook what I learned and this is how business should be done and I'm going to draw these hard lines between personal life and work life, or between how you do selling and how you do engineering. So I think my, the thing that I loved, really loved about AWS was a lot of leaders saw something in me that I potentially didn't see, which was, yeah you might be great at running that big account but we need help over here doing go to market for a new product launch and boom, there you go. Now I'm in a different org helping solve that problem and getting something launched. And I think if you don't box yourself in to I'm only good at this, or, you know put a label on yourself as being the rockstar in that. It leaves room for opportunities to present themselves but also it leaves room within your own mind to see yourself as somebody capable of doing anything. Right, I don't know if I answered the question accurately. >> No, that's good, no, that's awesome. I love the sharing, Yeah, great, great share there. Question is, what do you see, what do you currently during now you're building a business of Persistent for the cloud, obviously AWS and Persistent's a leader global system integrator around the world, thousands and thousands of customers from what we know and been reporting on theCUBE, what's next for you? Where do you see yourself going? Obviously you're going to knock this out of the park. Where do you see yourself as you kind of look at the continuing journey of your mission, personal, professional what's on your mind? Where do you see yourself going next? >> Well, I think, you know, again, going back to not boxing yourself in. This role is an amazing one where I have an opportunity to take all the pieces of my career in tech and apply them to building a business within a business. And that involves all the goodness of coaching and mentoring and strategizing. And I'm loving it. I'm loving the opportunity to work with such great leaders. Persistent itself is very, very good at providing opportunities, very diverse opportunities. We just had a huge Semicolon; Hackathon. Some of the winners were females. The turnout was amazing in the CTO's office. We have very strong women leading the charge for innovation. I think to answer your question about the future and where I may see myself going next, I think now that my job, well they say the job is never done. But now that Chloe's kind of settled into Stanford and kind of doing her own thing, I have always had a passion to continue leading in a way that brings me to, into the fold a lot more. So maybe, you know, maybe in a VC firm partner mode or another, you know CEO role in a startup, or my own startup. I mean, I never, I don't know right now I'm super happy but you never know, you know where your drive might go. And I also want to be able to very deliberately be in a role where I can continue to mentor and support up and coming women in tech. >> Well, you got the smarts but you got really the building mentality, the curiosity and the confidence really sets you up nicely. Dominique great story, great inspiration. You're a role model for many women, young girls out there and women in tech and in celebration. It's a great day and thank you for sharing that story and all the good nuggets there. Appreciate you coming on theCUBE, and it's been my pleasure. Thanks for coming on. >> Thank you, John. Thank you so much for having me. >> Okay, theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE here in Palo Alto getting all the content, check out the other interviews some amazing stories, lessons learned, and some, you know some funny stories and some serious stories. So have some fun and enjoy the rest of the videos here for International Women's Days, thanks for watching. (gentle inspirational music)
SUMMARY :
Dominique, great to have you on Thank you John, for and 50% of the world is I guess you call it primary And that really, you know, (laughs) If I was told not design and ultimately, you know if you don't mind sharing? and do all the load testing the challenges you faced? I kind of went in gung-ho Now it's a big deal. and you also don't know how to react. and if you would've done this to somebody Was that something you were natural for? and applying it to building businesses. You thought, you thought and I do have to kind And also the ability to come to the table Because I still hear that all the time. and that needs to be, I mean, That's, and the industry's to be home with, you know and I appreciate you bringing that up and all about, you know, It's funny, you know, and where do you see all the action? And I think if you don't box yourself in I love the sharing, Yeah, I think to answer your and all the good nuggets there. Thank you so much for having me. learned, and some, you know
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Rachel Thornton | PERSON | 0.99+ |
Rachel | PERSON | 0.99+ |
Todd Weatherby | PERSON | 0.99+ |
Georgia | LOCATION | 0.99+ |
GE | ORGANIZATION | 0.99+ |
Dominique Bastos | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Alabama | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
2016 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Dominique | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
50% | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
Chloe | PERSON | 0.99+ |
two times | QUANTITY | 0.99+ |
International Women's Days | EVENT | 0.99+ |
International Women's Day | EVENT | 0.99+ |
51% | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Persistent | ORGANIZATION | 0.99+ |
ProServe | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
Persistent Systems | ORGANIZATION | 0.99+ |
MessageBird | ORGANIZATION | 0.99+ |
second year | QUANTITY | 0.99+ |
7% | QUANTITY | 0.99+ |
early 2016 | DATE | 0.98+ |
one team | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
single | QUANTITY | 0.98+ |
Civil Engineering School | ORGANIZATION | 0.98+ |
four women | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Today | DATE | 0.97+ |
each | QUANTITY | 0.97+ |
pandemic | EVENT | 0.97+ |
first customer | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.95+ |
single mom | QUANTITY | 0.95+ |
Amazon | ORGANIZATION | 0.94+ |
Cloud | ORGANIZATION | 0.88+ |
one thing | QUANTITY | 0.87+ |
almost three years | QUANTITY | 0.87+ |
zero understanding | QUANTITY | 0.86+ |
Concrete Canoe Building Competition | EVENT | 0.86+ |
Nerd Nation | ORGANIZATION | 0.84+ |
zero | QUANTITY | 0.84+ |
second | QUANTITY | 0.8+ |
CTO | ORGANIZATION | 0.76+ |
SiliconANGLE | ORGANIZATION | 0.74+ |
Closing Panel | Generative AI: Riding the Wave | AWS Startup Showcase S3 E1
(mellow music) >> Hello everyone, welcome to theCUBE's coverage of AWS Startup Showcase. This is the closing panel session on AI machine learning, the top startups generating generative AI on AWS. It's a great panel. This is going to be the experts talking about riding the wave in generative AI. We got Ankur Mehrotra, who's the director and general manager of AI and machine learning at AWS, and Clem Delangue, co-founder and CEO of Hugging Face, and Ori Goshen, who's the co-founder and CEO of AI21 Labs. Ori from Tel Aviv dialing in, and rest coming in here on theCUBE. Appreciate you coming on for this closing session for the Startup Showcase. >> Thanks for having us. >> Thank you for having us. >> Thank you. >> I'm super excited to have you all on. Hugging Face was recently in the news with the AWS relationship, so congratulations. Open source, open science, really driving the machine learning. And we got the AI21 Labs access to the LLMs, generating huge scale live applications, commercial applications, coming to the market, all powered by AWS. So everyone, congratulations on all your success, and thank you for headlining this panel. Let's get right into it. AWS is powering this wave here. We're seeing a lot of push here from applications. Ankur, set the table for us on the AI machine learning. It's not new, it's been goin' on for a while. Past three years have been significant advancements, but there's been a lot of work done in AI machine learning. Now it's released to the public. Everybody's super excited and now says, "Oh, the future's here!" It's kind of been going on for a while and baking. Now it's kind of coming out. What's your view here? Let's get it started. >> Yes, thank you. So, yeah, as you may be aware, Amazon has been in investing in machine learning research and development since quite some time now. And we've used machine learning to innovate and improve user experiences across different Amazon products, whether it's Alexa or Amazon.com. But we've also brought in our expertise to extend what we are doing in the space and add more generative AI technology to our AWS products and services, starting with CodeWhisperer, which is an AWS service that we announced a few months ago, which is, you can think of it as a coding companion as a service, which uses generative AI models underneath. And so this is a service that customers who have no machine learning expertise can just use. And we also are talking to customers, and we see a lot of excitement about generative AI, and customers who want to build these models themselves, who have the talent and the expertise and resources. For them, AWS has a number of different options and capabilities they can leverage, such as our custom silicon, such as Trainium and Inferentia, as well as distributed machine learning capabilities that we offer as part of SageMaker, which is an end-to-end machine learning development service. At the same time, many of our customers tell us that they're interested in not training and building these generative AI models from scratch, given they can be expensive and can require specialized talent and skills to build. And so for those customers, we are also making it super easy to bring in existing generative AI models into their machine learning development environment within SageMaker for them to use. So we recently announced our partnership with Hugging Face, where we are making it super easy for customers to bring in those models into their SageMaker development environment for fine tuning and deployment. And then we are also partnering with other proprietary model providers such as AI21 and others, where we making these generative AI models available within SageMaker for our customers to use. So our approach here is to really provide customers options and choices and help them accelerate their generative AI journey. >> Ankur, thank you for setting the table there. Clem and Ori, I want to get your take, because the riding the waves, the theme of this session, and to me being in California, I imagine the big surf, the big waves, the big talent out there. This is like alpha geeks, alpha coders, developers are really leaning into this. You're seeing massive uptake from the smartest people. Whether they're young or around, they're coming in with their kind of surfboards, (chuckles) if you will. These early adopters, they've been on this for a while; Now the waves are hitting. This is a big wave, everyone sees it. What are some of those early adopter devs doing? What are some of the use cases you're seeing right out of the gate? And what does this mean for the folks that are going to come in and get on this wave? Can you guys share your perspective on this? Because you're seeing the best talent now leaning into this. >> Yeah, absolutely. I mean, from Hugging Face vantage points, it's not even a a wave, it's a tidal wave, or maybe even the tide itself. Because actually what we are seeing is that AI and machine learning is not something that you add to your products. It's very much a new paradigm to do all technology. It's this idea that we had in the past 15, 20 years, one way to build software and to build technology, which was writing a million lines of code, very rule-based, and then you get your product. Now what we are seeing is that every single product, every single feature, every single company is starting to adopt AI to build the next generation of technology. And that works both to make the existing use cases better, if you think of search, if you think of social network, if you think of SaaS, but also it's creating completely new capabilities that weren't possible with the previous paradigm. Now AI can generate text, it can generate image, it can describe your image, it can do so many new things that weren't possible before. >> It's going to really make the developers really productive, right? I mean, you're seeing the developer uptake strong, right? >> Yes, we have over 15,000 companies using Hugging Face now, and it keeps accelerating. I really think that maybe in like three, five years, there's not going to be any company not using AI. It's going to be really kind of the default to build all technology. >> Ori, weigh in on this. APIs, the cloud. Now I'm a developer, I want to have live applications, I want the commercial applications on this. What's your take? Weigh in here. >> Yeah, first, I absolutely agree. I mean, we're in the midst of a technology shift here. I think not a lot of people realize how big this is going to be. Just the number of possibilities is endless, and I think hard to imagine. And I don't think it's just the use cases. I think we can think of it as two separate categories. We'll see companies and products enhancing their offerings with these new AI capabilities, but we'll also see new companies that are AI first, that kind of reimagine certain experiences. They build something that wasn't possible before. And that's why I think it's actually extremely exciting times. And maybe more philosophically, I think now these large language models and large transformer based models are helping us people to express our thoughts and kind of making the bridge from our thinking to a creative digital asset in a speed we've never imagined before. I can write something down and get a piece of text, or an image, or a code. So I'll start by saying it's hard to imagine all the possibilities right now, but it's certainly big. And if I had to bet, I would say it's probably at least as big as the mobile revolution we've seen in the last 20 years. >> Yeah, this is the biggest. I mean, it's been compared to the Enlightenment Age. I saw the Wall Street Journal had a recent story on this. We've been saying that this is probably going to be bigger than all inflection points combined in the tech industry, given what transformation is coming. I guess I want to ask you guys, on the early adopters, we've been hearing on these interviews and throughout the industry that there's already a set of big companies, a set of companies out there that have a lot of data and they're already there, they're kind of tinkering. Kind of reminds me of the old hyper scaler days where they were building their own scale, and they're eatin' glass, spittin' nails out, you know, they're hardcore. Then you got everybody else kind of saying board level, "Hey team, how do I leverage this?" How do you see those two things coming together? You got the fast followers coming in behind the early adopters. What's it like for the second wave coming in? What are those conversations for those developers like? >> I mean, I think for me, the important switch for companies is to change their mindset from being kind of like a traditional software company to being an AI or machine learning company. And that means investing, hiring machine learning engineers, machine learning scientists, infrastructure in members who are working on how to put these models in production, team members who are able to optimize models, specialized models, customized models for the company's specific use cases. So it's really changing this mindset of how you build technology and optimize your company building around that. Things are moving so fast that I think now it's kind of like too late for low hanging fruits or small, small adjustments. I think it's important to realize that if you want to be good at that, and if you really want to surf this wave, you need massive investments. If there are like some surfers listening with this analogy of the wave, right, when there are waves, it's not enough just to stand and make a little bit of adjustments. You need to position yourself aggressively, paddle like crazy, and that's how you get into the waves. So that's what companies, in my opinion, need to do right now. >> Ori, what's your take on the generative models out there? We hear a lot about foundation models. What's your experience running end-to-end applications for large foundation models? Any insights you can share with the app developers out there who are looking to get in? >> Yeah, I think first of all, it's start create an economy, where it probably doesn't make sense for every company to create their own foundation models. You can basically start by using an existing foundation model, either open source or a proprietary one, and start deploying it for your needs. And then comes the second round when you are starting the optimization process. You bootstrap, whether it's a demo, or a small feature, or introducing new capability within your product, and then start collecting data. That data, and particularly the human feedback data, helps you to constantly improve the model, so you create this data flywheel. And I think we're now entering an era where customers have a lot of different choice of how they want to start their generative AI endeavor. And it's a good thing that there's a variety of choices. And the really amazing thing here is that every industry, any company you speak with, it could be something very traditional like industrial or financial, medical, really any company. I think peoples now start to imagine what are the possibilities, and seriously think what's their strategy for adopting this generative AI technology. And I think in that sense, the foundation model actually enabled this to become scalable. So the barrier to entry became lower; Now the adoption could actually accelerate. >> There's a lot of integration aspects here in this new wave that's a little bit different. Before it was like very monolithic, hardcore, very brittle. A lot more integration, you see a lot more data coming together. I have to ask you guys, as developers come in and grow, I mean, when I went to college and you were a software engineer, I mean, I got a degree in computer science, and software engineering, that's all you did was code, (chuckles) you coded. Now, isn't it like everyone's a machine learning engineer at this point? Because that will be ultimately the science. So, (chuckles) you got open source, you got open software, you got the communities. Swami called you guys the GitHub of machine learning, Hugging Face is the GitHub of machine learning, mainly because that's where people are going to code. So this is essentially, machine learning is computer science. What's your reaction to that? >> Yes, my co-founder Julien at Hugging Face have been having this thing for quite a while now, for over three years, which was saying that actually software engineering as we know it today is a subset of machine learning, instead of the other way around. People would call us crazy a few years ago when we're seeing that. But now we are realizing that you can actually code with machine learning. So machine learning is generating code. And we are starting to see that every software engineer can leverage machine learning through open models, through APIs, through different technology stack. So yeah, it's not crazy anymore to think that maybe in a few years, there's going to be more people doing AI and machine learning. However you call it, right? Maybe you'll still call them software engineers, maybe you'll call them machine learning engineers. But there might be more of these people in a couple of years than there is software engineers today. >> I bring this up as more tongue in cheek as well, because Ankur, infrastructure's co is what made Cloud great, right? That's kind of the DevOps movement. But here the shift is so massive, there will be a game-changing philosophy around coding. Machine learning as code, you're starting to see CodeWhisperer, you guys have had coding companions for a while on AWS. So this is a paradigm shift. How is the cloud playing into this for you guys? Because to me, I've been riffing on some interviews where it's like, okay, you got the cloud going next level. This is an example of that, where there is a DevOps-like moment happening with machine learning, whether you call it coding or whatever. It's writing code on its own. Can you guys comment on what this means on top of the cloud? What comes out of the scale? What comes out of the benefit here? >> Absolutely, so- >> Well first- >> Oh, go ahead. >> Yeah, so I think as far as scale is concerned, I think customers are really relying on cloud to make sure that the applications that they build can scale along with the needs of their business. But there's another aspect to it, which is that until a few years ago, John, what we saw was that machine learning was a data scientist heavy activity. They were data scientists who were taking the data and training models. And then as machine learning found its way more and more into production and actual usage, we saw the MLOps become a thing, and MLOps engineers become more involved into the process. And then we now are seeing, as machine learning is being used to solve more business critical problems, we're seeing even legal and compliance teams get involved. We are seeing business stakeholders more engaged. So, more and more machine learning is becoming an activity that's not just performed by data scientists, but is performed by a team and a group of people with different skills. And for them, we as AWS are focused on providing the best tools and services for these different personas to be able to do their job and really complete that end-to-end machine learning story. So that's where, whether it's tools related to MLOps or even for folks who cannot code or don't know any machine learning. For example, we launched SageMaker Canvas as a tool last year, which is a UI-based tool which data analysts and business analysts can use to build machine learning models. So overall, the spectrum in terms of persona and who can get involved in the machine learning process is expanding, and the cloud is playing a big role in that process. >> Ori, Clem, can you guys weigh in too? 'Cause this is just another abstraction layer of scale. What's it mean for you guys as you look forward to your customers and the use cases that you're enabling? >> Yes, I think what's important is that the AI companies and providers and the cloud kind of work together. That's how you make a seamless experience and you actually reduce the barrier to entry for this technology. So that's what we've been super happy to do with AWS for the past few years. We actually announced not too long ago that we are doubling down on our partnership with AWS. We're excited to have many, many customers on our shared product, the Hugging Face deep learning container on SageMaker. And we are working really closely with the Inferentia team and the Trainium team to release some more exciting stuff in the coming weeks and coming months. So I think when you have an ecosystem and a system where the AWS and the AI providers, AI startups can work hand in hand, it's to the benefit of the customers and the companies, because it makes it orders of magnitude easier for them to adopt this new paradigm to build technology AI. >> Ori, this is a scale on reasoning too. The data's out there and making sense out of it, making it reason, getting comprehension, having it make decisions is next, isn't it? And you need scale for that. >> Yes. Just a comment about the infrastructure side. So I think really the purpose is to streamline and make these technologies much more accessible. And I think we'll see, I predict that we'll see in the next few years more and more tooling that make this technology much more simple to consume. And I think it plays a very important role. There's so many aspects, like the monitoring the models and their kind of outputs they produce, and kind of containing and running them in a production environment. There's so much there to build on, the infrastructure side will play a very significant role. >> All right, that's awesome stuff. I'd love to change gears a little bit and get a little philosophy here around AI and how it's going to transform, if you guys don't mind. There's been a lot of conversations around, on theCUBE here as well as in some industry areas, where it's like, okay, all the heavy lifting is automated away with machine learning and AI, the complexity, there's some efficiencies, it's horizontal and scalable across all industries. Ankur, good point there. Everyone's going to use it for something. And a lot of stuff gets brought to the table with large language models and other things. But the key ingredient will be proprietary data or human input, or some sort of AI whisperer kind of role, or prompt engineering, people are saying. So with that being said, some are saying it's automating intelligence. And that creativity will be unleashed from this. If the heavy lifting goes away and AI can fill the void, that shifts the value to the intellect or the input. And so that means data's got to come together, interact, fuse, and understand each other. This is kind of new. I mean, old school AI was, okay, got a big model, I provisioned it long time, very expensive. Now it's all free flowing. Can you guys comment on where you see this going with this freeform, data flowing everywhere, heavy lifting, and then specialization? >> Yeah, I think- >> Go ahead. >> Yeah, I think, so what we are seeing with these large language models or generative models is that they're really good at creating stuff. But I think it's also important to recognize their limitations. They're not as good at reasoning and logic. And I think now we're seeing great enthusiasm, I think, which is justified. And the next phase would be how to make these systems more reliable. How to inject more reasoning capabilities into these models, or augment with other mechanisms that actually perform more reasoning so we can achieve more reliable results. And we can count on these models to perform for critical tasks, whether it's medical tasks, legal tasks. We really want to kind of offload a lot of the intelligence to these systems. And then we'll have to get back, we'll have to make sure these are reliable, we'll have to make sure we get some sort of explainability that we can understand the process behind the generated results that we received. So I think this is kind of the next phase of systems that are based on these generated models. >> Clem, what's your view on this? Obviously you're at open community, open source has been around, it's been a great track record, proven model. I'm assuming creativity's going to come out of the woodwork, and if we can automate open source contribution, and relationships, and onboarding more developers, there's going to be unleashing of creativity. >> Yes, it's been so exciting on the open source front. We all know Bert, Bloom, GPT-J, T5, Stable Diffusion, that work up. The previous or the current generation of open source models that are on Hugging Face. It has been accelerating in the past few months. So I'm super excited about ControlNet right now that is really having a lot of impact, which is kind of like a way to control the generation of images. Super excited about Flan UL2, which is like a new model that has been recently released and is open source. So yeah, it's really fun to see the ecosystem coming together. Open source has been the basis for traditional software, with like open source programming languages, of course, but also all the great open source that we've gotten over the years. So we're happy to see that the same thing is happening for machine learning and AI, and hopefully can help a lot of companies reduce a little bit the barrier to entry. So yeah, it's going to be exciting to see how it evolves in the next few years in that respect. >> I think the developer productivity angle that's been talked about a lot in the industry will be accelerated significantly. I think security will be enhanced by this. I think in general, applications are going to transform at a radical rate, accelerated, incredible rate. So I think it's not a big wave, it's the water, right? I mean, (chuckles) it's the new thing. My final question for you guys, if you don't mind, I'd love to get each of you to answer the question I'm going to ask you, which is, a lot of conversations around data. Data infrastructure's obviously involved in this. And the common thread that I'm hearing is that every company that looks at this is asking themselves, if we don't rebuild our company, start thinking about rebuilding our business model around AI, we might be dinosaurs, we might be extinct. And it reminds me that scene in Moneyball when, at the end, it's like, if we're not building the model around your model, every company will be out of business. What's your advice to companies out there that are having those kind of moments where it's like, okay, this is real, this is next gen, this is happening. I better start thinking and putting into motion plans to refactor my business, 'cause it's happening, business transformation is happening on the cloud. This kind of puts an exclamation point on, with the AI, as a next step function. Big increase in value. So it's an opportunity for leaders. Ankur, we'll start with you. What's your advice for folks out there thinking about this? Do they put their toe in the water? Do they jump right into the deep end? What's your advice? >> Yeah, John, so we talk to a lot of customers, and customers are excited about what's happening in the space, but they often ask us like, "Hey, where do we start?" So we always advise our customers to do a lot of proof of concepts, understand where they can drive the biggest ROI. And then also leverage existing tools and services to move fast and scale, and try and not reinvent the wheel where it doesn't need to be. That's basically our advice to customers. >> Get it. Ori, what's your advice to folks who are scratching their head going, "I better jump in here. "How do I get started?" What's your advice? >> So I actually think that need to think about it really economically. Both on the opportunity side and the challenges. So there's a lot of opportunities for many companies to actually gain revenue upside by building these new generative features and capabilities. On the other hand, of course, this would probably affect the cogs, and incorporating these capabilities could probably affect the cogs. So I think we really need to think carefully about both of these sides, and also understand clearly if this is a project or an F word towards cost reduction, then the ROI is pretty clear, or revenue amplifier, where there's, again, a lot of different opportunities. So I think once you think about this in a structured way, I think, and map the different initiatives, then it's probably a good way to start and a good way to start thinking about these endeavors. >> Awesome. Clem, what's your take on this? What's your advice, folks out there? >> Yes, all of these are very good advice already. Something that you said before, John, that I disagreed a little bit, a lot of people are talking about the data mode and proprietary data. Actually, when you look at some of the organizations that have been building the best models, they don't have specialized or unique access to data. So I'm not sure that's so important today. I think what's important for companies, and it's been the same for the previous generation of technology, is their ability to build better technology faster than others. And in this new paradigm, that means being able to build machine learning faster than others, and better. So that's how, in my opinion, you should approach this. And kind of like how can you evolve your company, your teams, your products, so that you are able in the long run to build machine learning better and faster than your competitors. And if you manage to put yourself in that situation, then that's when you'll be able to differentiate yourself to really kind of be impactful and get results. That's really hard to do. It's something really different, because machine learning and AI is a different paradigm than traditional software. So this is going to be challenging, but I think if you manage to nail that, then the future is going to be very interesting for your company. >> That's a great point. Thanks for calling that out. I think this all reminds me of the cloud days early on. If you went to the cloud early, you took advantage of it when the pandemic hit. If you weren't native in the cloud, you got hamstrung by that, you were flatfooted. So just get in there. (laughs) Get in the cloud, get into AI, you're going to be good. Thanks for for calling that. Final parting comments, what's your most exciting thing going on right now for you guys? Ori, Clem, what's the most exciting thing on your plate right now that you'd like to share with folks? >> I mean, for me it's just the diversity of use cases and really creative ways of companies leveraging this technology. Every day I speak with about two, three customers, and I'm continuously being surprised by the creative ideas. And the future is really exciting of what can be achieved here. And also I'm amazed by the pace that things move in this industry. It's just, there's not at dull moment. So, definitely exciting times. >> Clem, what are you most excited about right now? >> For me, it's all the new open source models that have been released in the past few weeks, and that they'll keep being released in the next few weeks. I'm also super excited about more and more companies getting into this capability of chaining different models and different APIs. I think that's a very, very interesting development, because it creates new capabilities, new possibilities, new functionalities that weren't possible before. You can plug an API with an open source embedding model, with like a no-geo transcription model. So that's also very exciting. This capability of having more interoperable machine learning will also, I think, open a lot of interesting things in the future. >> Clem, congratulations on your success at Hugging Face. Please pass that on to your team. Ori, congratulations on your success, and continue to, just day one. I mean, it's just the beginning. It's not even scratching the service. Ankur, I'll give you the last word. What are you excited for at AWS? More cloud goodness coming here with AI. Give you the final word. >> Yeah, so as both Clem and Ori said, I think the research in the space is moving really, really fast, so we are excited about that. But we are also excited to see the speed at which enterprises and other AWS customers are applying machine learning to solve real business problems, and the kind of results they're seeing. So when they come back to us and tell us the kind of improvement in their business metrics and overall customer experience that they're driving and they're seeing real business results, that's what keeps us going and inspires us to continue inventing on their behalf. >> Gentlemen, thank you so much for this awesome high impact panel. Ankur, Clem, Ori, congratulations on all your success. We'll see you around. Thanks for coming on. Generative AI, riding the wave, it's a tidal wave, it's the water, it's all happening. All great stuff. This is season three, episode one of AWS Startup Showcase closing panel. This is the AI ML episode, the top startups building generative AI on AWS. I'm John Furrier, your host. Thanks for watching. (mellow music)
SUMMARY :
This is the closing panel I'm super excited to have you all on. is to really provide and to me being in California, and then you get your product. kind of the default APIs, the cloud. and kind of making the I saw the Wall Street Journal I think it's important to realize that the app developers out there So the barrier to entry became lower; I have to ask you guys, instead of the other way around. That's kind of the DevOps movement. and the cloud is playing a and the use cases that you're enabling? the barrier to entry And you need scale for that. in the next few years and AI can fill the void, a lot of the intelligence and if we can automate reduce a little bit the barrier to entry. I'd love to get each of you drive the biggest ROI. to folks who are scratching So I think once you think Clem, what's your take on this? and it's been the same of the cloud days early on. And also I'm amazed by the pace in the past few weeks, Please pass that on to your team. and the kind of results they're seeing. This is the AI ML episode,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ankur Mehrotra | PERSON | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Clem | PERSON | 0.99+ |
Ori Goshen | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Ori | PERSON | 0.99+ |
Clem Delangue | PERSON | 0.99+ |
Hugging Face | ORGANIZATION | 0.99+ |
Julien | PERSON | 0.99+ |
Ankur | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Ankur | ORGANIZATION | 0.99+ |
second round | QUANTITY | 0.99+ |
AI21 Labs | ORGANIZATION | 0.99+ |
two separate categories | QUANTITY | 0.99+ |
Amazon.com | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
over 15,000 companies | QUANTITY | 0.98+ |
Both | QUANTITY | 0.98+ |
five years | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
over three years | QUANTITY | 0.98+ |
three customers | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
Trainium | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
Alexa | TITLE | 0.98+ |
Stable Diffusion | ORGANIZATION | 0.97+ |
Swami | PERSON | 0.97+ |
Inferentia | ORGANIZATION | 0.96+ |
GPT-J | ORGANIZATION | 0.96+ |
SageMaker | TITLE | 0.96+ |
AI21 Labs | ORGANIZATION | 0.95+ |
Riding the Wave | TITLE | 0.95+ |
ControlNet | ORGANIZATION | 0.94+ |
one way | QUANTITY | 0.94+ |
a million lines | QUANTITY | 0.93+ |
Startup Showcase | EVENT | 0.92+ |
few months ago | DATE | 0.92+ |
second wave | EVENT | 0.91+ |
theCUBE | ORGANIZATION | 0.91+ |
few years ago | DATE | 0.91+ |
CodeWhisperer | TITLE | 0.9+ |
AI21 | ORGANIZATION | 0.89+ |
Steven Hillion & Jeff Fletcher, Astronomer | AWS Startup Showcase S3E1
(upbeat music) >> Welcome everyone to theCUBE's presentation of the AWS Startup Showcase AI/ML Top Startups Building Foundation Model Infrastructure. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem to talk about data and analytics. I'm your host, Lisa Martin and today we're excited to be joined by two guests from Astronomer. Steven Hillion joins us, it's Chief Data Officer and Jeff Fletcher, it's director of ML. They're here to talk about machine learning and data orchestration. Guys, thank you so much for joining us today. >> Thank you. >> It's great to be here. >> Before we get into machine learning let's give the audience an overview of Astronomer. Talk about what that is, Steven. Talk about what you mean by data orchestration. >> Yeah, let's start with Astronomer. We're the Airflow company basically. The commercial developer behind the open-source project, Apache Airflow. I don't know if you've heard of Airflow. It's sort of de-facto standard these days for orchestrating data pipelines, data engineering pipelines, and as we'll talk about later, machine learning pipelines. It's really is the de-facto standard. I think we're up to about 12 million downloads a month. That's actually as a open-source project. I think at this point it's more popular by some measures than Slack. Airflow was created by Airbnb some years ago to manage all of their data pipelines and manage all of their workflows and now it powers the data ecosystem for organizations as diverse as Electronic Arts, Conde Nast is one of our big customers, a big user of Airflow. And also not to mention the biggest banks on Wall Street use Airflow and Astronomer to power the flow of data throughout their organizations. >> Talk about that a little bit more, Steven, in terms of the business impact. You mentioned some great customer names there. What is the business impact or outcomes that a data orchestration strategy enables businesses to achieve? >> Yeah, I mean, at the heart of it is quite simply, scheduling and managing data pipelines. And so if you have some enormous retailer who's managing the flow of information throughout their organization they may literally have thousands or even tens of thousands of data pipelines that need to execute every day to do things as simple as delivering metrics for the executives to consume at the end of the day, to producing on a weekly basis new machine learning models that can be used to drive product recommendations. One of our customers, for example, is a British food delivery service. And you get those recommendations in your application that says, "Well, maybe you want to have samosas with your curry." That sort of thing is powered by machine learning models that they train on a regular basis to reflect changing conditions in the market. And those are produced through Airflow and through the Astronomer platform, which is essentially a managed platform for running airflow. So at its simplest it really is just scheduling and managing those workflows. But that's easier said than done of course. I mean if you have 10 thousands of those things then you need to make sure that they all run that they all have sufficient compute resources. If things fail, how do you track those down across those 10,000 workflows? How easy is it for an average data scientist or data engineer to contribute their code, their Python notebooks or their SQL code into a production environment? And then you've got reproducibility, governance, auditing, like managing data flows across an organization which we think of as orchestrating them is much more than just scheduling. It becomes really complicated pretty quickly. >> I imagine there's a fair amount of complexity there. Jeff, let's bring you into the conversation. Talk a little bit about Astronomer through your lens, data orchestration and how it applies to MLOps. >> So I come from a machine learning background and for me the interesting part is that machine learning requires the expansion into orchestration. A lot of the same things that you're using to go and develop and build pipelines in a standard data orchestration space applies equally well in a machine learning orchestration space. What you're doing is you're moving data between different locations, between different tools, and then tasking different types of tools to act on that data. So extending it made logical sense from a implementation perspective. And a lot of my focus at Astronomer is really to explain how Airflow can be used well in a machine learning context. It is being used well, it is being used a lot by the customers that we have and also by users of the open source version. But it's really being able to explain to people why it's a natural extension for it and how well it fits into that. And a lot of it is also extending some of the infrastructure capabilities that Astronomer provides to those customers for them to be able to run some of the more platform specific requirements that come with doing machine learning pipelines. >> Let's get into some of the things that make Astronomer unique. Jeff, sticking with you, when you're in customer conversations, what are some of the key differentiators that you articulate to customers? >> So a lot of it is that we are not specific to one cloud provider. So we have the ability to operate across all of the big cloud providers. I know, I'm certain we have the best developers that understand how best practices implementations for data orchestration works. So we spend a lot of time talking to not just the business outcomes and the business users of the product, but also also for the technical people, how to help them better implement things that they may have come across on a Stack Overflow article or not necessarily just grown with how the product has migrated. So it's the ability to run it wherever you need to run it and also our ability to help you, the customer, better implement and understand those workflows that I think are two of the primary differentiators that we have. >> Lisa: Got it. >> I'll add another one if you don't mind. >> You can go ahead, Steven. >> Is lineage and dependencies between workflows. One thing we've done is to augment core Airflow with Lineage services. So using the Open Lineage framework, another open source framework for tracking datasets as they move from one workflow to another one, team to another, one data source to another is a really key component of what we do and we bundle that within the service so that as a developer or as a production engineer, you really don't have to worry about lineage, it just happens. Jeff, may show us some of this later that you can actually see as data flows from source through to a data warehouse out through a Python notebook to produce a predictive model or a dashboard. Can you see how those data products relate to each other? And when something goes wrong, figure out what upstream maybe caused the problem, or if you're about to change something, figure out what the impact is going to be on the rest of the organization. So Lineage is a big deal for us. >> Got it. >> And just to add on to that, the other thing to think about is that traditional Airflow is actually a complicated implementation. It required quite a lot of time spent understanding or was almost a bespoke language that you needed to be able to develop in two write these DAGs, which is like fundamental pipelines. So part of what we are focusing on is tooling that makes it more accessible to say a data analyst or a data scientist who doesn't have or really needs to gain the necessary background in how the semantics of Airflow DAGs works to still be able to get the benefit of what Airflow can do. So there is new features and capabilities built into the astronomer cloud platform that effectively obfuscates and removes the need to understand some of the deep work that goes on. But you can still do it, you still have that capability, but we are expanding it to be able to have orchestrated and repeatable processes accessible to more teams within the business. >> In terms of accessibility to more teams in the business. You talked about data scientists, data analysts, developers. Steven, I want to talk to you, as the chief data officer, are you having more and more conversations with that role and how is it emerging and evolving within your customer base? >> Hmm. That's a good question, and it is evolving because I think if you look historically at the way that Airflow has been used it's often from the ground up. You have individual data engineers or maybe single data engineering teams who adopt Airflow 'cause it's very popular. Lots of people know how to use it and they bring it into an organization and say, "Hey, let's use this to run our data pipelines." But then increasingly as you turn from pure workflow management and job scheduling to the larger topic of orchestration you realize it gets pretty complicated, you want to have coordination across teams, and you want to have standardization for the way that you manage your data pipelines. And so having a managed service for Airflow that exists in the cloud is easy to spin up as you expand usage across the organization. And thinking long term about that in the context of orchestration that's where I think the chief data officer or the head of analytics tends to get involved because they really want to think of this as a strategic investment that they're making. Not just per team individual Airflow deployments, but a network of data orchestrators. >> That network is key. Every company these days has to be a data company. We talk about companies being data driven. It's a common word, but it's true. It's whether it is a grocer or a bank or a hospital, they've got to be data companies. So talk to me a little bit about Astronomer's business model. How is this available? How do customers get their hands on it? >> Jeff, go ahead. >> Yeah, yeah. So we have a managed cloud service and we have two modes of operation. One, you can bring your own cloud infrastructure. So you can say here is an account in say, AWS or Azure and we can go and deploy the necessary infrastructure into that, or alternatively we can host everything for you. So it becomes a full SaaS offering. But we then provide a platform that connects at the backend to your internal IDP process. So however you are authenticating users to make sure that the correct people are accessing the services that they need with role-based access control. From there we are deploying through Kubernetes, the different services and capabilities into either your cloud account or into an account that we host. And from there Airflow does what Airflow does, which is its ability to then reach to different data systems and data platforms and to then run the orchestration. We make sure we do it securely, we have all the necessary compliance certifications required for GDPR in Europe and HIPAA based out of the US, and a whole bunch host of others. So it is a secure platform that can run in a place that you need it to run, but it is a managed Airflow that includes a lot of the extra capabilities like the cloud developer environment and the open lineage services to enhance the overall airflow experience. >> Enhance the overall experience. So Steven, going back to you, if I'm a Conde Nast or another organization, what are some of the key business outcomes that I can expect? As one of the things I think we've learned during the pandemic is access to realtime data is no longer a nice to have for organizations. It's really an imperative. It's that demanding consumer that wants to have that personalized, customized, instant access to a product or a service. So if I'm a Conde Nast or I'm one of your customers, what can I expect my business to be able to achieve as a result of data orchestration? >> Yeah, I think in a nutshell it's about providing a reliable, scalable, and easy to use service for developing and running data workflows. And talking of demanding customers, I mean, I'm actually a customer myself, as you mentioned, I'm the head of data for Astronomer. You won't be surprised to hear that we actually use Astronomer and Airflow to run all of our data pipelines. And so I can actually talk about my experience. When I started I was of course familiar with Airflow, but it always seemed a little bit unapproachable to me if I was introducing that to a new team of data scientists. They don't necessarily want to have to think about learning something new. But I think because of the layers that Astronomer has provided with our Astro service around Airflow it was pretty easy for me to get up and running. Of course I've got an incentive for doing that. I work for the Airflow company, but we went from about, at the beginning of last year, about 500 data tasks that we were running on a daily basis to about 15,000 every day. We run something like a million data operations every month within my team. And so as one outcome, just the ability to spin up new production workflows essentially in a single day you go from an idea in the morning to a new dashboard or a new model in the afternoon, that's really the business outcome is just removing that friction to operationalizing your machine learning and data workflows. >> And I imagine too, oh, go ahead, Jeff. >> Yeah, I think to add to that, one of the things that becomes part of the business cycle is a repeatable capabilities for things like reporting, for things like new machine learning models. And the impediment that has existed is that it's difficult to take that from a team that's an analyst team who then provide that or a data science team that then provide that to the data engineering team who have to work the workflow all the way through. What we're trying to unlock is the ability for those teams to directly get access to scheduling and orchestrating capabilities so that a business analyst can have a new report for C-suite execs that needs to be done once a week, but the time to repeatability for that report is much shorter. So it is then immediately in the hands of the person that needs to see it. It doesn't have to go into a long list of to-dos for a data engineering team that's already overworked that they eventually get it to it in a month's time. So that is also a part of it is that the realizing, orchestration I think is fairly well and a lot of people get the benefit of being able to orchestrate things within a business, but it's having more people be able to do it and shorten the time that that repeatability is there is one of the main benefits from good managed orchestration. >> So a lot of workforce productivity improvements in what you're doing to simplify things, giving more people access to data to be able to make those faster decisions, which ultimately helps the end user on the other end to get that product or the service that they're expecting like that. Jeff, I understand you have a demo that you can share so we can kind of dig into this. >> Yeah, let me take you through a quick look of how the whole thing works. So our starting point is our cloud infrastructure. This is the login. You go to the portal. You can see there's a a bunch of workspaces that are available. Workspaces are like individual places for people to operate in. I'm not going to delve into all the deep technical details here, but starting point for a lot of our data science customers is we have what we call our Cloud IDE, which is a web-based development environment for writing and building out DAGs without actually having to know how the underpinnings of Airflow work. This is an internal one, something that we use. You have a notebook-like interface that lets you write python code and SQL code and a bunch of specific bespoke type of blocks if you want. They all get pulled together and create a workflow. So this is a workflow, which gets compiled to something that looks like a complicated set of Python code, which is the DAG. I then have a CICD process pipeline where I commit this through to my GitHub repo. So this comes to a repo here, which is where these DAGs that I created in the previous step exist. I can then go and say, all right, I want to see how those particular DAGs have been running. We then get to the actual Airflow part. So this is the managed Airflow component. So we add the ability for teams to fairly easily bring up an Airflow instance and write code inside our notebook-like environment to get it into that instance. So you can see it's been running. That same process that we built here that graph ends up here inside this, but you don't need to know how the fundamentals of Airflow work in order to get this going. Then we can run one of these, it runs in the background and we can manage how it goes. And from there, every time this runs, it's emitting to a process underneath, which is the open lineage service, which is the lineage integration that allows me to come in here and have a look and see this was that actual, that same graph that we built, but now it's the historic version. So I know where things started, where things are going, and how it ran. And then I can also do a comparison. So if I want to see how this particular run worked compared to one historically, I can grab one from a previous date and it will show me the comparison between the two. So that combination of managed Airflow, getting Airflow up and running very quickly, but the Cloud IDE that lets you write code and know how to get something into a repeatable format get that into Airflow and have that attached to the lineage process adds what is a complete end-to-end orchestration process for any business looking to get the benefit from orchestration. >> Outstanding. Thank you so much Jeff for digging into that. So one of my last questions, Steven is for you. This is exciting. There's a lot that you guys are enabling organizations to achieve here to really become data-driven companies. So where can folks go to get their hands on this? >> Yeah, just go to astronomer.io and we have plenty of resources. If you're new to Airflow, you can read our documentation, our guides to getting started. We have a CLI that you can download that is really I think the easiest way to get started with Airflow. But you can actually sign up for a trial. You can sign up for a guided trial where our teams, we have a team of experts, really the world experts on getting Airflow up and running. And they'll take you through that trial and allow you to actually kick the tires and see how this works with your data. And I think you'll see pretty quickly that it's very easy to get started with Airflow, whether you're doing that from the command line or doing that in our cloud service. And all of that is available on our website >> astronomer.io. Jeff, last question for you. What are you excited about? There's so much going on here. What are some of the things, maybe you can give us a sneak peek coming down the road here that prospects and existing customers should be excited about? >> I think a lot of the development around the data awareness components, so one of the things that's traditionally been complicated with orchestration is you leave your data in the place that you're operating on and we're starting to have more data processing capability being built into Airflow. And from a Astronomer perspective, we are adding more capabilities around working with larger datasets, doing bigger data manipulation with inside the Airflow process itself. And that lends itself to better machine learning implementation. So as we start to grow and as we start to get better in the machine learning context, well, in the data awareness context, it unlocks a lot more capability to do and implement proper machine learning pipelines. >> Awesome guys. Exciting stuff. Thank you so much for talking to me about Astronomer, machine learning, data orchestration, and really the value in it for your customers. Steve and Jeff, we appreciate your time. >> Thank you. >> My pleasure, thanks. >> And we thank you for watching. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem. I'm your host, Lisa Martin. You're watching theCUBE, the leader in live tech coverage. (upbeat music)
SUMMARY :
of the AWS Startup Showcase let's give the audience and now it powers the data ecosystem What is the business impact or outcomes for the executives to consume how it applies to MLOps. and for me the interesting that you articulate to customers? So it's the ability to run it if you don't mind. that you can actually see as data flows the other thing to think about to more teams in the business. about that in the context of orchestration So talk to me a little bit at the backend to your So Steven, going back to you, just the ability to spin up but the time to repeatability a demo that you can share that allows me to come There's a lot that you guys We have a CLI that you can download What are some of the things, in the place that you're operating on and really the value in And we thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Jeff Fletcher | PERSON | 0.99+ |
Steven | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
Steven Hillion | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Conde Nast | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
HIPAA | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
two guests | QUANTITY | 0.99+ |
Airflow | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
10 thousands | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Electronic Arts | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
two modes | QUANTITY | 0.99+ |
Airflow | TITLE | 0.98+ |
10,000 workflows | QUANTITY | 0.98+ |
about 500 data tasks | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one outcome | QUANTITY | 0.98+ |
tens of thousands | QUANTITY | 0.98+ |
GDPR | TITLE | 0.97+ |
SQL | TITLE | 0.97+ |
GitHub | ORGANIZATION | 0.96+ |
astronomer.io | OTHER | 0.94+ |
Slack | ORGANIZATION | 0.94+ |
Astronomer | ORGANIZATION | 0.94+ |
some years ago | DATE | 0.92+ |
once a week | QUANTITY | 0.92+ |
Astronomer | TITLE | 0.92+ |
theCUBE | ORGANIZATION | 0.92+ |
last year | DATE | 0.91+ |
Kubernetes | TITLE | 0.88+ |
single day | QUANTITY | 0.87+ |
about 15,000 every day | QUANTITY | 0.87+ |
one cloud | QUANTITY | 0.86+ |
IDE | TITLE | 0.86+ |
Robert Nishihara, Anyscale | AWS Startup Showcase S3 E1
(upbeat music) >> Hello everyone. Welcome to theCube's presentation of the "AWS Startup Showcase." The topic this episode is AI and machine learning, top startups building foundational model infrastructure. This is season three, episode one of the ongoing series covering exciting startups from the AWS ecosystem. And this time we're talking about AI and machine learning. I'm your host, John Furrier. I'm excited I'm joined today by Robert Nishihara, who's the co-founder and CEO of a hot startup called Anyscale. He's here to talk about Ray, the open source project, Anyscale's infrastructure for foundation as well. Robert, thank you for joining us today. >> Yeah, thanks so much as well. >> I've been following your company since the founding pre pandemic and you guys really had a great vision scaled up and in a perfect position for this big wave that we all see with ChatGPT and OpenAI that's gone mainstream. Finally, AI has broken out through the ropes and now gone mainstream, so I think you guys are really well positioned. I'm looking forward to to talking with you today. But before we get into it, introduce the core mission for Anyscale. Why do you guys exist? What is the North Star for Anyscale? >> Yeah, like you mentioned, there's a tremendous amount of excitement about AI right now. You know, I think a lot of us believe that AI can transform just every different industry. So one of the things that was clear to us when we started this company was that the amount of compute needed to do AI was just exploding. Like to actually succeed with AI, companies like OpenAI or Google or you know, these companies getting a lot of value from AI, were not just running these machine learning models on their laptops or on a single machine. They were scaling these applications across hundreds or thousands or more machines and GPUs and other resources in the Cloud. And so to actually succeed with AI, and this has been one of the biggest trends in computing, maybe the biggest trend in computing in, you know, in recent history, the amount of compute has been exploding. And so to actually succeed with that AI, to actually build these scalable applications and scale the AI applications, there's a tremendous software engineering lift to build the infrastructure to actually run these scalable applications. And that's very hard to do. So one of the reasons many AI projects and initiatives fail is that, or don't make it to production, is the need for this scale, the infrastructure lift, to actually make it happen. So our goal here with Anyscale and Ray, is to make that easy, is to make scalable computing easy. So that as a developer or as a business, if you want to do AI, if you want to get value out of AI, all you need to know is how to program on your laptop. Like, all you need to know is how to program in Python. And if you can do that, then you're good to go. Then you can do what companies like OpenAI or Google do and get value out of machine learning. >> That programming example of how easy it is with Python reminds me of the early days of Cloud, when infrastructure as code was talked about was, it was just code the infrastructure programmable. That's super important. That's what AI people wanted, first program AI. That's the new trend. And I want to understand, if you don't mind explaining, the relationship that Anyscale has to these foundational models and particular the large language models, also called LLMs, was seen with like OpenAI and ChatGPT. Before you get into the relationship that you have with them, can you explain why the hype around foundational models? Why are people going crazy over foundational models? What is it and why is it so important? >> Yeah, so foundational models and foundation models are incredibly important because they enable businesses and developers to get value out of machine learning, to use machine learning off the shelf with these large models that have been trained on tons of data and that are useful out of the box. And then, of course, you know, as a business or as a developer, you can take those foundational models and repurpose them or fine tune them or adapt them to your specific use case and what you want to achieve. But it's much easier to do that than to train them from scratch. And I think there are three, for people to actually use foundation models, there are three main types of workloads or problems that need to be solved. One is training these foundation models in the first place, like actually creating them. The second is fine tuning them and adapting them to your use case. And the third is serving them and actually deploying them. Okay, so Ray and Anyscale are used for all of these three different workloads. Companies like OpenAI or Cohere that train large language models. Or open source versions like GPTJ are done on top of Ray. There are many startups and other businesses that fine tune, that, you know, don't want to train the large underlying foundation models, but that do want to fine tune them, do want to adapt them to their purposes, and build products around them and serve them, those are also using Ray and Anyscale for that fine tuning and that serving. And so the reason that Ray and Anyscale are important here is that, you know, building and using foundation models requires a huge scale. It requires a lot of data. It requires a lot of compute, GPUs, TPUs, other resources. And to actually take advantage of that and actually build these scalable applications, there's a lot of infrastructure that needs to happen under the hood. And so you can either use Ray and Anyscale to take care of that and manage the infrastructure and solve those infrastructure problems. Or you can build the infrastructure and manage the infrastructure yourself, which you can do, but it's going to slow your team down. It's going to, you know, many of the businesses we work with simply don't want to be in the business of managing infrastructure and building infrastructure. They want to focus on product development and move faster. >> I know you got a keynote presentation we're going to go to in a second, but I think you hit on something I think is the real tipping point, doing it yourself, hard to do. These are things where opportunities are and the Cloud did that with data centers. Turned a data center and made it an API. The heavy lifting went away and went to the Cloud so people could be more creative and build their product. In this case, build their creativity. Is that kind of what's the big deal? Is that kind of a big deal happening that you guys are taking the learnings and making that available so people don't have to do that? >> That's exactly right. So today, if you want to succeed with AI, if you want to use AI in your business, infrastructure work is on the critical path for doing that. To do AI, you have to build infrastructure. You have to figure out how to scale your applications. That's going to change. We're going to get to the point, and you know, with Ray and Anyscale, we're going to remove the infrastructure from the critical path so that as a developer or as a business, all you need to focus on is your application logic, what you want the the program to do, what you want your application to do, how you want the AI to actually interface with the rest of your product. Now the way that will happen is that Ray and Anyscale will still, the infrastructure work will still happen. It'll just be under the hood and taken care of by Ray in Anyscale. And so I think something like this is really necessary for AI to reach its potential, for AI to have the impact and the reach that we think it will, you have to make it easier to do. >> And just for clarification to point out, if you don't mind explaining the relationship of Ray and Anyscale real quick just before we get into the presentation. >> So Ray is an open source project. We created it. We were at Berkeley doing machine learning. We started Ray so that, in order to provide an easy, a simple open source tool for building and running scalable applications. And Anyscale is the managed version of Ray, basically we will run Ray for you in the Cloud, provide a lot of tools around the developer experience and managing the infrastructure and providing more performance and superior infrastructure. >> Awesome. I know you got a presentation on Ray and Anyscale and you guys are positioning as the infrastructure for foundational models. So I'll let you take it away and then when you're done presenting, we'll come back, I'll probably grill you with a few questions and then we'll close it out so take it away. >> Robert: Sounds great. So I'll say a little bit about how companies are using Ray and Anyscale for foundation models. The first thing I want to mention is just why we're doing this in the first place. And the underlying observation, the underlying trend here, and this is a plot from OpenAI, is that the amount of compute needed to do machine learning has been exploding. It's been growing at something like 35 times every 18 months. This is absolutely enormous. And other people have written papers measuring this trend and you get different numbers. But the point is, no matter how you slice and dice it, it' a astronomical rate. Now if you compare that to something we're all familiar with, like Moore's Law, which says that, you know, the processor performance doubles every roughly 18 months, you can see that there's just a tremendous gap between the needs, the compute needs of machine learning applications, and what you can do with a single chip, right. So even if Moore's Law were continuing strong and you know, doing what it used to be doing, even if that were the case, there would still be a tremendous gap between what you can do with the chip and what you need in order to do machine learning. And so given this graph, what we've seen, and what has been clear to us since we started this company, is that doing AI requires scaling. There's no way around it. It's not a nice to have, it's really a requirement. And so that led us to start Ray, which is the open source project that we started to make it easy to build these scalable Python applications and scalable machine learning applications. And since we started the project, it's been adopted by a tremendous number of companies. Companies like OpenAI, which use Ray to train their large models like ChatGPT, companies like Uber, which run all of their deep learning and classical machine learning on top of Ray, companies like Shopify or Spotify or Instacart or Lyft or Netflix, ByteDance, which use Ray for their machine learning infrastructure. Companies like Ant Group, which makes Alipay, you know, they use Ray across the board for fraud detection, for online learning, for detecting money laundering, you know, for graph processing, stream processing. Companies like Amazon, you know, run Ray at a tremendous scale and just petabytes of data every single day. And so the project has seen just enormous adoption since, over the past few years. And one of the most exciting use cases is really providing the infrastructure for building training, fine tuning, and serving foundation models. So I'll say a little bit about, you know, here are some examples of companies using Ray for foundation models. Cohere trains large language models. OpenAI also trains large language models. You can think about the workloads required there are things like supervised pre-training, also reinforcement learning from human feedback. So this is not only the regular supervised learning, but actually more complex reinforcement learning workloads that take human input about what response to a particular question, you know is better than a certain other response. And incorporating that into the learning. There's open source versions as well, like GPTJ also built on top of Ray as well as projects like Alpa coming out of UC Berkeley. So these are some of the examples of exciting projects in organizations, training and creating these large language models and serving them using Ray. Okay, so what actually is Ray? Well, there are two layers to Ray. At the lowest level, there's the core Ray system. This is essentially low level primitives for building scalable Python applications. Things like taking a Python function or a Python class and executing them in the cluster setting. So Ray core is extremely flexible and you can build arbitrary scalable applications on top of Ray. So on top of Ray, on top of the core system, what really gives Ray a lot of its power is this ecosystem of scalable libraries. So on top of the core system you have libraries, scalable libraries for ingesting and pre-processing data, for training your models, for fine tuning those models, for hyper parameter tuning, for doing batch processing and batch inference, for doing model serving and deployment, right. And a lot of the Ray users, the reason they like Ray is that they want to run multiple workloads. They want to train and serve their models, right. They want to load their data and feed that into training. And Ray provides common infrastructure for all of these different workloads. So this is a little overview of what Ray, the different components of Ray. So why do people choose to go with Ray? I think there are three main reasons. The first is the unified nature. The fact that it is common infrastructure for scaling arbitrary workloads, from data ingest to pre-processing to training to inference and serving, right. This also includes the fact that it's future proof. AI is incredibly fast moving. And so many people, many companies that have built their own machine learning infrastructure and standardized on particular workflows for doing machine learning have found that their workflows are too rigid to enable new capabilities. If they want to do reinforcement learning, if they want to use graph neural networks, they don't have a way of doing that with their standard tooling. And so Ray, being future proof and being flexible and general gives them that ability. Another reason people choose Ray in Anyscale is the scalability. This is really our bread and butter. This is the reason, the whole point of Ray, you know, making it easy to go from your laptop to running on thousands of GPUs, making it easy to scale your development workloads and run them in production, making it easy to scale, you know, training to scale data ingest, pre-processing and so on. So scalability and performance, you know, are critical for doing machine learning and that is something that Ray provides out of the box. And lastly, Ray is an open ecosystem. You can run it anywhere. You can run it on any Cloud provider. Google, you know, Google Cloud, AWS, Asure. You can run it on your Kubernetes cluster. You can run it on your laptop. It's extremely portable. And not only that, it's framework agnostic. You can use Ray to scale arbitrary Python workloads. You can use it to scale and it integrates with libraries like TensorFlow or PyTorch or JAX or XG Boost or Hugging Face or PyTorch Lightning, right, or Scikit-learn or just your own arbitrary Python code. It's open source. And in addition to integrating with the rest of the machine learning ecosystem and these machine learning frameworks, you can use Ray along with all of the other tooling in the machine learning ecosystem. That's things like weights and biases or ML flow, right. Or you know, different data platforms like Databricks, you know, Delta Lake or Snowflake or tools for model monitoring for feature stores, all of these integrate with Ray. And that's, you know, Ray provides that kind of flexibility so that you can integrate it into the rest of your workflow. And then Anyscale is the scalable compute platform that's built on top, you know, that provides Ray. So Anyscale is a managed Ray service that runs in the Cloud. And what Anyscale does is it offers the best way to run Ray. And if you think about what you get with Anyscale, there are fundamentally two things. One is about moving faster, accelerating the time to market. And you get that by having the managed service so that as a developer you don't have to worry about managing infrastructure, you don't have to worry about configuring infrastructure. You also, it provides, you know, optimized developer workflows. Things like easily moving from development to production, things like having the observability tooling, the debug ability to actually easily diagnose what's going wrong in a distributed application. So things like the dashboards and the other other kinds of tooling for collaboration, for monitoring and so on. And then on top of that, so that's the first bucket, developer productivity, moving faster, faster experimentation and iteration. The second reason that people choose Anyscale is superior infrastructure. So this is things like, you know, cost deficiency, being able to easily take advantage of spot instances, being able to get higher GPU utilization, things like faster cluster startup times and auto scaling. Things like just overall better performance and faster scheduling. And so these are the kinds of things that Anyscale provides on top of Ray. It's the managed infrastructure. It's fast, it's like the developer productivity and velocity as well as performance. So this is what I wanted to share about Ray in Anyscale. >> John: Awesome. >> Provide that context. But John, I'm curious what you think. >> I love it. I love the, so first of all, it's a platform because that's the platform architecture right there. So just to clarify, this is an Anyscale platform, not- >> That's right. >> Tools. So you got tools in the platform. Okay, that's key. Love that managed service. Just curious, you mentioned Python multiple times, is that because of PyTorch and TensorFlow or Python's the most friendly with machine learning or it's because it's very common amongst all developers? >> That's a great question. Python is the language that people are using to do machine learning. So it's the natural starting point. Now, of course, Ray is actually designed in a language agnostic way and there are companies out there that use Ray to build scalable Java applications. But for the most part right now we're focused on Python and being the best way to build these scalable Python and machine learning applications. But, of course, down the road there always is that potential. >> So if you're slinging Python code out there and you're watching that, you're watching this video, get on Anyscale bus quickly. Also, I just, while you were giving the presentation, I couldn't help, since you mentioned OpenAI, which by the way, congratulations 'cause they've had great scale, I've noticed in their rapid growth 'cause they were the fastest company to the number of users than anyone in the history of the computer industry, so major successor, OpenAI and ChatGPT, huge fan. I'm not a skeptic at all. I think it's just the beginning, so congratulations. But I actually typed into ChatGPT, what are the top three benefits of Anyscale and came up with scalability, flexibility, and ease of use. Obviously, scalability is what you guys are called. >> That's pretty good. >> So that's what they came up with. So they nailed it. Did you have an inside prompt training, buy it there? Only kidding. (Robert laughs) >> Yeah, we hard coded that one. >> But that's the kind of thing that came up really, really quickly if I asked it to write a sales document, it probably will, but this is the future interface. This is why people are getting excited about the foundational models and the large language models because it's allowing the interface with the user, the consumer, to be more human, more natural. And this is clearly will be in every application in the future. >> Absolutely. This is how people are going to interface with software, how they're going to interface with products in the future. It's not just something, you know, not just a chat bot that you talk to. This is going to be how you get things done, right. How you use your web browser or how you use, you know, how you use Photoshop or how you use other products. Like you're not going to spend hours learning all the APIs and how to use them. You're going to talk to it and tell it what you want it to do. And of course, you know, if it doesn't understand it, it's going to ask clarifying questions. You're going to have a conversation and then it'll figure it out. >> This is going to be one of those things, we're going to look back at this time Robert and saying, "Yeah, from that company, that was the beginning of that wave." And just like AWS and Cloud Computing, the folks who got in early really were in position when say the pandemic came. So getting in early is a good thing and that's what everyone's talking about is getting in early and playing around, maybe replatforming or even picking one or few apps to refactor with some staff and managed services. So people are definitely jumping in. So I have to ask you the ROI cost question. You mentioned some of those, Moore's Law versus what's going on in the industry. When you look at that kind of scale, the first thing that jumps out at people is, "Okay, I love it. Let's go play around." But what's it going to cost me? Am I going to be tied to certain GPUs? What's the landscape look like from an operational standpoint, from the customer? Are they locked in and the benefit was flexibility, are you flexible to handle any Cloud? What is the customers, what are they looking at? Basically, that's my question. What's the customer looking at? >> Cost is super important here and many of the companies, I mean, companies are spending a huge amount on their Cloud computing, on AWS, and on doing AI, right. And I think a lot of the advantage of Anyscale, what we can provide here is not only better performance, but cost efficiency. Because if we can run something faster and more efficiently, it can also use less resources and you can lower your Cloud spending, right. We've seen companies go from, you know, 20% GPU utilization with their current setup and the current tools they're using to running on Anyscale and getting more like 95, you know, 100% GPU utilization. That's something like a five x improvement right there. So depending on the kind of application you're running, you know, it's a significant cost savings. We've seen companies that have, you know, processing petabytes of data every single day with Ray going from, you know, getting order of magnitude cost savings by switching from what they were previously doing to running their application on Ray. And when you have applications that are spending, you know, potentially $100 million a year and getting a 10 X cost savings is just absolutely enormous. So these are some of the kinds of- >> Data infrastructure is super important. Again, if the customer, if you're a prospect to this and thinking about going in here, just like the Cloud, you got infrastructure, you got the platform, you got SaaS, same kind of thing's going to go on in AI. So I want to get into that, you know, ROI discussion and some of the impact with your customers that are leveraging the platform. But first I hear you got a demo. >> Robert: Yeah, so let me show you, let me give you a quick run through here. So what I have open here is the Anyscale UI. I've started a little Anyscale Workspace. So Workspaces are the Anyscale concept for interactive developments, right. So here, imagine I'm just, you want to have a familiar experience like you're developing on your laptop. And here I have a terminal. It's not on my laptop. It's actually in the cloud running on Anyscale. And I'm just going to kick this off. This is going to train a large language model, so OPT. And it's doing this on 32 GPUs. We've got a cluster here with a bunch of CPU cores, bunch of memory. And as that's running, and by the way, if I wanted to run this on instead of 32 GPUs, 64, 128, this is just a one line change when I launch the Workspace. And what I can do is I can pull up VS code, right. Remember this is the interactive development experience. I can look at the actual code. Here it's using Ray train to train the torch model. We've got the training loop and we're saying that each worker gets access to one GPU and four CPU cores. And, of course, as I make the model larger, this is using deep speed, as I make the model larger, I could increase the number of GPUs that each worker gets access to, right. And how that is distributed across the cluster. And if I wanted to run on CPUs instead of GPUs or a different, you know, accelerator type, again, this is just a one line change. And here we're using Ray train to train the models, just taking my vanilla PyTorch model using Hugging Face and then scaling that across a bunch of GPUs. And, of course, if I want to look at the dashboard, I can go to the Ray dashboard. There are a bunch of different visualizations I can look at. I can look at the GPU utilization. I can look at, you know, the CPU utilization here where I think we're currently loading the model and running that actual application to start the training. And some of the things that are really convenient here about Anyscale, both I can get that interactive development experience with VS code. You know, I can look at the dashboards. I can monitor what's going on. It feels, I have a terminal, it feels like my laptop, but it's actually running on a large cluster. And I can, with however many GPUs or other resources that I want. And so it's really trying to combine the best of having the familiar experience of programming on your laptop, but with the benefits, you know, being able to take advantage of all the resources in the Cloud to scale. And it's like when, you know, you're talking about cost efficiency. One of the biggest reasons that people waste money, one of the silly reasons for wasting money is just forgetting to turn off your GPUs. And what you can do here is, of course, things will auto terminate if they're idle. But imagine you go to sleep, I have this big cluster. You can turn it off, shut off the cluster, come back tomorrow, restart the Workspace, and you know, your big cluster is back up and all of your code changes are still there. All of your local file edits. It's like you just closed your laptop and came back and opened it up again. And so this is the kind of experience we want to provide for our users. So that's what I wanted to share with you. >> Well, I think that whole, couple of things, lines of code change, single line of code change, that's game changing. And then the cost thing, I mean human error is a big deal. People pass out at their computer. They've been coding all night or they just forget about it. I mean, and then it's just like leaving the lights on or your water running in your house. It's just, at the scale that it is, the numbers will add up. That's a huge deal. So I think, you know, compute back in the old days, there's no compute. Okay, it's just compute sitting there idle. But you know, data cranking the models is doing, that's a big point. >> Another thing I want to add there about cost efficiency is that we make it really easy to use, if you're running on Anyscale, to use spot instances and these preemptable instances that can just be significantly cheaper than the on-demand instances. And so when we see our customers go from what they're doing before to using Anyscale and they go from not using these spot instances 'cause they don't have the infrastructure around it, the fault tolerance to handle the preemption and things like that, to being able to just check a box and use spot instances and save a bunch of money. >> You know, this was my whole, my feature article at Reinvent last year when I met with Adam Selipsky, this next gen Cloud is here. I mean, it's not auto scale, it's infrastructure scale. It's agility. It's flexibility. I think this is where the world needs to go. Almost what DevOps did for Cloud and what you were showing me that demo had this whole SRE vibe. And remember Google had site reliability engines to manage all those servers. This is kind of like an SRE vibe for data at scale. I mean, a similar kind of order of magnitude. I mean, I might be a little bit off base there, but how would you explain it? >> It's a nice analogy. I mean, what we are trying to do here is get to the point where developers don't think about infrastructure. Where developers only think about their application logic. And where businesses can do AI, can succeed with AI, and build these scalable applications, but they don't have to build, you know, an infrastructure team. They don't have to develop that expertise. They don't have to invest years in building their internal machine learning infrastructure. They can just focus on the Python code, on their application logic, and run the stuff out of the box. >> Awesome. Well, I appreciate the time. Before we wrap up here, give a plug for the company. I know you got a couple websites. Again, go, Ray's got its own website. You got Anyscale. You got an event coming up. Give a plug for the company looking to hire. Put a plug in for the company. >> Yeah, absolutely. Thank you. So first of all, you know, we think AI is really going to transform every industry and the opportunity is there, right. We can be the infrastructure that enables all of that to happen, that makes it easy for companies to succeed with AI, and get value out of AI. Now we have, if you're interested in learning more about Ray, Ray has been emerging as the standard way to build scalable applications. Our adoption has been exploding. I mentioned companies like OpenAI using Ray to train their models. But really across the board companies like Netflix and Cruise and Instacart and Lyft and Uber, you know, just among tech companies. It's across every industry. You know, gaming companies, agriculture, you know, farming, robotics, drug discovery, you know, FinTech, we see it across the board. And all of these companies can get value out of AI, can really use AI to improve their businesses. So if you're interested in learning more about Ray and Anyscale, we have our Ray Summit coming up in September. This is going to highlight a lot of the most impressive use cases and stories across the industry. And if your business, if you want to use LLMs, you want to train these LLMs, these large language models, you want to fine tune them with your data, you want to deploy them, serve them, and build applications and products around them, give us a call, talk to us. You know, we can really take the infrastructure piece, you know, off the critical path and make that easy for you. So that's what I would say. And, you know, like you mentioned, we're hiring across the board, you know, engineering, product, go-to-market, and it's an exciting time. >> Robert Nishihara, co-founder and CEO of Anyscale, congratulations on a great company you've built and continuing to iterate on and you got growth ahead of you, you got a tailwind. I mean, the AI wave is here. I think OpenAI and ChatGPT, a customer of yours, have really opened up the mainstream visibility into this new generation of applications, user interface, roll of data, large scale, how to make that programmable so we're going to need that infrastructure. So thanks for coming on this season three, episode one of the ongoing series of the hot startups. In this case, this episode is the top startups building foundational model infrastructure for AI and ML. I'm John Furrier, your host. Thanks for watching. (upbeat music)
SUMMARY :
episode one of the ongoing and you guys really had and other resources in the Cloud. and particular the large language and what you want to achieve. and the Cloud did that with data centers. the point, and you know, if you don't mind explaining and managing the infrastructure and you guys are positioning is that the amount of compute needed to do But John, I'm curious what you think. because that's the platform So you got tools in the platform. and being the best way to of the computer industry, Did you have an inside prompt and the large language models and tell it what you want it to do. So I have to ask you and you can lower your So I want to get into that, you know, and you know, your big cluster is back up So I think, you know, the on-demand instances. and what you were showing me that demo and run the stuff out of the box. I know you got a couple websites. and the opportunity is there, right. and you got growth ahead
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Robert Nishihara | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Robert | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
35 times | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
100% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Ant Group | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
20% | QUANTITY | 0.99+ |
32 GPUs | QUANTITY | 0.99+ |
Lyft | ORGANIZATION | 0.99+ |
hundreds | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
Anyscale | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
128 | QUANTITY | 0.99+ |
September | DATE | 0.99+ |
today | DATE | 0.99+ |
Moore's Law | TITLE | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
PyTorch | TITLE | 0.99+ |
Ray | ORGANIZATION | 0.99+ |
second reason | QUANTITY | 0.99+ |
64 | QUANTITY | 0.99+ |
each worker | QUANTITY | 0.99+ |
each worker | QUANTITY | 0.99+ |
Photoshop | TITLE | 0.99+ |
UC Berkeley | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
Shopify | ORGANIZATION | 0.99+ |
OpenAI | ORGANIZATION | 0.99+ |
Anyscale | PERSON | 0.99+ |
third | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
ByteDance | ORGANIZATION | 0.99+ |
Spotify | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
95 | QUANTITY | 0.99+ |
Asure | ORGANIZATION | 0.98+ |
one line | QUANTITY | 0.98+ |
one GPU | QUANTITY | 0.98+ |
ChatGPT | TITLE | 0.98+ |
TensorFlow | TITLE | 0.98+ |
last year | DATE | 0.98+ |
first bucket | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
two layers | QUANTITY | 0.98+ |
Cohere | ORGANIZATION | 0.98+ |
Alipay | ORGANIZATION | 0.98+ |
Ray | PERSON | 0.97+ |
one | QUANTITY | 0.97+ |
Instacart | ORGANIZATION | 0.97+ |
Irene Dankwa-Mullan, Marti Health | WiDS 2023
(light upbeat music) >> Hey, everyone. Welcome back to theCUBE's day long coverage of Women in Data Science 2023. Live from Stanford University, I'm Lisa Martin. We've had some amazing conversations today with my wonderful co-host, as you've seen. Tracy Zhang joins me next for a very interesting and inspiring conversation. I know we've been bringing them to you, we're bringing you another one here. Dr. Irene Dankwa-Mullan joins us, the Chief Medical Officer at Marti Health, and a speaker at WIDS. Welcome, Irene, it's great to have you. >> Thank you. I'm delighted to be here. Thank you so much for this opportunity. >> So you have an MD and a Master of Public Health. Covid must have been an interesting time for you, with an MPH? >> Very much so. >> Yeah, talk a little bit about you, your background, and Marti Health? This is interesting. This is a brand new startup. This is a digital health equity startup. >> Yes, yes. So, I'll start with my story a little bit about myself. So I was actually born in Ghana. I finished high school there and came here for college. What would I say? After I finished my undergraduate, I went to medical school at Dartmouth and I always knew I wanted to go into public health as well as medicine. So my medical education was actually five years. I did the MPH and my medical degree, at the same time, I got my MPH from Yale School of Public Health. And after I finished, I trained in internal medicine, Johns Hopkins, and after that I went into public health. I am currently living in Maryland, so I'm in Bethesda, Maryland, and that's where I've been. And really enjoyed public health, community health, combining that aspect of sort of prevention and wellness and also working in making sure that we have community health clinics and safety net clinics. So a great experience there. I also had the privilege, after eight years in public health, I went to the National Institute of Health. >> Oh, wow. >> Where I basically worked in clinical research, basically on minority health and health disparities. So, I was in various leadership roles and helped to advance the science of health equity, working in collaboration with a lot of scientists and researchers at the NIH, really to advance the science. >> Where did your interest in health equity come from? Was there a defining moment when you were younger and you thought "There's a lot of inequities here, we have to do something about this." Where did that interest start? >> That's a great question. I think this influence was basically maybe from my upbringing as well as my family and also what I saw around me in Ghana, a lot of preventable diseases. I always say that my grandfather on my father's side was a great influence, inspired me and influenced my career because he was the only sibling, really, that went to school. And as a result, he was able to earn enough money and built, you know, a hospital. >> Oh wow. >> In their hometown. >> Oh my gosh! >> It started as a 20 bed hospital and now it's a 350 bed hospital. >> Oh, wow, that's amazing! >> In our hometown. And he knew that education was important and vital as well for wellbeing. And so he really inspired, you know, his work inspired me. And I remember in residency I went with a group of residents to this hospital in Ghana just to help over a summer break. So during a summer where we went and helped take care of the sick patients and actually learned, right? What it is like to care for so many patients and- >> Yeah. >> It was really a humbling experience. But that really inspired me. I think also being in this country. And when I came to the U.S. and really saw firsthand how patients are treated differently, based on their background or socioeconomic status. I did see firsthand, you know, that kind of unconscious bias. And, you know, drew me to the field of health disparities research and wanted to learn more and do more and contribute. >> Yeah. >> Yeah. So, I was curious. Just when did the data science aspect tap in? Like when did you decide that, okay, data science is going to be a problem solving tool to like all the problems you just said? >> Yeah, that's a good question. So while I was at the NIH, I spent eight years there, and precision medicine was launched at that time and there was a lot of heightened interest in big data and how big data could help really revolutionize medicine and healthcare. And I got the opportunity to go, you know, there was an opportunity where they were looking for physicians or deputy chief health officer at IBM. And so I went to IBM, Watson Health was being formed as a new business unit, and I was one of the first deputy chief health officers really to lead the data and the science evidence. And that's where I realized, you know, we could really, you know, the technology in healthcare, there's been a lot of data that I think we are not really using or optimizing to make sure that we're taking care of our patients. >> Yeah. >> And so that's how I got into data science and making sure that we are building technologies using the right data to advance health equity. >> Right, so talk a little bit about health equity? We mentioned you're with Marti Health. You've been there for a short time, but Marti Health is also quite new, just a few months old. Digital health equity, talk about what Marti's vision is, what its mission is to really help start dialing down a lot of the disparities that you talked about that you see every day? >> Yeah, so, I've been so privileged. I recently joined Marti Health as their Chief Medical Officer, Chief Health Officer. It's a startup that is actually trying to promote a value-based care, also promote patient-centered care for patients that are experiencing a social disadvantage as a result of their race, ethnicity. And were starting to look at and focused on patients that have sickle cell disease. >> Okay. >> Because we realize that that's a population, you know, we know sickle cell disease is a genetic disorder. It impacts a lot of patients that are from areas that are endemic malaria. >> Yeah. >> Yeah. >> And most of our patients here are African American, and when, you know, they suffer so much stigma and discrimination in the healthcare system and complications from their sickle cell disease. And so what we want to do that we feel like sickle cell is a litmus test for disparities. And we want to make sure that they get in patient-centered care. We want to make sure that we are leveraging data and the research that we've done in sickle cell disease, especially on the continent of Africa. >> Okay. >> And provide, promote better quality care for the patients. >> That's so inspiring. You know, we've heard so many great stories today. Were you able to watch the keynote this morning? >> Yes. >> I loved how it always inspires me. This conference is always, we were talking about this all day, how you walk in the Arrillaga Alumni Center here where this event is held every year, the vibe is powerful, it's positive, it's encouraging. >> Inspiring, yeah. >> Absolutely. >> Inspiring. >> Yeah, yeah. >> It's a movement, WIDS is a movement. They've created this community where you feel, I don't know, kind of superhuman. "Why can't I do this? Why not me?" We heard some great stories this morning about data science in terms of applications. You have a great application in terms of health equity. We heard about it in police violence. >> Yes. >> Which is an epidemic in this country for sure, as we know. This happens too often. How can we use data and data science as a facilitator of learning more about that, so that that can stop? I think that's so important for more people to understand all of the broad applications of data science, whether it's police violence or climate change or drug discovery or health inequities. >> Irene: Yeah. >> The potential, I think we're scratching the surface. But the potential is massive. >> Tracy: It is. >> And this is an event that really helps women and underrepresented minorities think, "Why not me? Why can't I get involved in that?" >> Yeah, and I always say we use data to make an make a lot of decisions. And especially in healthcare, we want to be careful about how we are using data because this is impacting the health and outcomes of our patients. And so science evidence is really critical, you know? We want to make sure that data is inclusive and we have quality data. >> Yes. >> And it's transparent. Our clinical trials, I always say are not always diverse and inclusive. And if that's going to form the evidence base or data points then we're doing more harm than good for our patients. And so data science, it's huge. I mean, we need a robust, responsible, trustworthy data science agenda. >> "Trust" you just brought up "trust." >> Yeah. >> I did. >> When we talk about data, we can't not talk about security and privacy and ethics but trust is table stakes. We have to be able to evaluate the data and trust in it. >> Exactly. >> And what it says and the story that can be told from it. So that trust factor is, I think, foundational to data science. >> We all see what happened with Covid, right? I mean, when the pandemic came out- >> Absolutely. >> Everyone wanted information. We wanted data, we wanted data we could trust. There was a lot of hesitancy even with the vaccine. >> Yeah. >> Right? And so public health, I mean, like you said, we had to do a lot of work making sure that the right information from the right data was being translated or conveyed to the communities. And so you are totally right. I mean, data and good information, relevant data is always key. >> Well- >> Is there any- Oh, sorry. >> Go ahead. >> Is there anything Marti Health is doing in like ensuring that you guys get the right data that you can put trust in it? >> Yes, absolutely. And so this is where we are, you know, part of it would be getting data, real world evidence data for patients who are being seen in the healthcare system with sickle cell disease, so that we can personalize the data to those patients and provide them with the right treatment, the right intervention that they need. And so part of it would be doing predictive modeling on some of the data, risk, stratifying risk, who in the sickle cell patient population is at risk of progressing. Or getting, you know, they all often get crisis, vaso-occlusive crisis because the cells, you know, the blood cell sickles and you want to avoid those chest crisis. And so part of what we'll be doing is, you know, using predictive modeling to target those at risk of the disease progressing, so that we can put in preventive measures. It's all about prevention. It's all about making sure that they're not being, you know, going to the hospital or the emergency room where sometimes they end up, you know, in pain and wanting pain medicine. And so. >> Do you see AI as being a critical piece in the transformation of healthcare, especially where inequities are concerned? >> Absolutely, and and when you say AI, I think it's responsible AI. >> Yes. >> And making sure that it's- >> Tracy: That's such a good point. >> Yeah. >> Very. >> With the right data, with relevant data, it's definitely key. I think there is so much data points that healthcare has, you know, in the healthcare space there's fiscal data, biological data, there's environmental data and we are not using it to the full capacity and full potential. >> Tracy: Yeah. >> And I think AI can do that if we do it carefully, and like I said, responsibly. >> That's a key word. You talked about trust, responsibility. Where data science, AI is concerned- >> Yeah. >> It has to be not an afterthought, it has to be intentional. >> Tracy: Exactly. >> And there needs to be a lot of education around it. Most people think, "Oh, AI is just for the technology," you know? >> Yeah, right. >> Goop. >> Yes. >> But I think we're all part, I mean everyone needs to make sure that we are collecting the right amount of data. I mean, I think we all play a part, right? >> We do. >> We do. >> In making sure that we have responsible AI, we have, you know, good data, quality data. And the data sciences is a multi-disciplinary field, I think. >> It is, which is one of the things that's exciting about it is it is multi-disciplinary. >> Tracy: Exactly. >> And so many of the people that we've talked to in data science have these very non-linear paths to get there, and so I think they bring such diversity of thought and backgrounds and experiences and thoughts and voices. That helps train the AI models with data that's more inclusive. >> Irene: Yes. >> Dropping down the volume on the bias that we know is there. To be successful, it has to. >> Definitely, I totally agree. >> What are some of the things, as we wrap up here, that you're looking forward to accomplishing as part of Marti Health? Like, maybe what's on the roadmap that you can share with us for Marti as it approaches the the second half of its first year? >> Yes, it's all about promoting health equity. It's all about, I mean, there's so much, well, I would start with, you know, part of the healthcare transformation is making sure that we are promoting care that's based on value and not volume, care that's based on good health outcomes, quality health outcomes, and not just on, you know, the quantity. And so Marti Health is trying to promote that value-based care. We are envisioning a world in which everyone can live their full life potential. Have the best health outcomes, and provide that patient-centered precision care. >> And we all want that. We all want that. We expect that precision and that personalized experience in our consumer lives, why not in healthcare? Well, thank you, Irene, for joining us on the program today. >> Thank you. >> Talking about what you're doing to really help drive the volume up on health equity, and raise awareness for the fact that there's a lot of inequities in there we have to fix. We have a long way to go. >> We have, yes. >> Lisa: But people like you are making an impact and we appreciate you joining theCUBE today and sharing what you're doing, thank you. >> Thank you. >> Thank you- >> Thank you for having me here. >> Oh, our pleasure. For our guest and Tracy Zhang, this is Lisa Martin from WIDS 2023, the eighth Annual Women in Data Science Conference brought to you by theCUBE. Stick around, our show wrap will be in just a minute. Thanks for watching. (light upbeat music)
SUMMARY :
we're bringing you another one here. Thank you so much for this opportunity. So you have an MD and This is a brand new startup. I did the MPH and my medical and researchers at the NIH, and you thought "There's and built, you know, a hospital. and now it's a 350 bed hospital. And so he really inspired, you I did see firsthand, you know, to like all the problems you just said? And I got the opportunity to go, you know, that we are building that you see every day? It's a startup that is that that's a population, you know, and when, you know, they care for the patients. the keynote this morning? how you walk in the community where you feel, all of the broad But the potential is massive. Yeah, and I always say we use data And if that's going to form the We have to be able to evaluate and the story that can be told from it. We wanted data, we wanted And so you are totally right. Is there any- And so this is where we are, you know, Absolutely, and and when you say AI, that healthcare has, you know, And I think AI can do That's a key word. It has to be And there needs to be a I mean, I think we all play a part, right? we have, you know, good the things that's exciting And so many of the that we know is there. and not just on, you know, the quantity. and that personalized experience and raise awareness for the fact and we appreciate you brought to you by theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Irene | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Ghana | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Irene Dankwa-Mullan | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
NIH | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
National Institute of Health | ORGANIZATION | 0.99+ |
eight years | QUANTITY | 0.99+ |
Yale School of Public Health | ORGANIZATION | 0.99+ |
20 bed | QUANTITY | 0.99+ |
Marti Health | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Watson Health | ORGANIZATION | 0.99+ |
pandemic | EVENT | 0.99+ |
U.S. | LOCATION | 0.99+ |
first | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Marti | ORGANIZATION | 0.98+ |
Marti | PERSON | 0.97+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
second half | QUANTITY | 0.96+ |
African American | OTHER | 0.94+ |
theCUBE | ORGANIZATION | 0.92+ |
Johns Hopkins | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Stanford University | ORGANIZATION | 0.91+ |
350 bed hospital | QUANTITY | 0.9+ |
WiDS 2023 | EVENT | 0.88+ |
malaria | OTHER | 0.84+ |
Africa | LOCATION | 0.83+ |
Dartmouth | ORGANIZATION | 0.82+ |
Women in Data Science 2023 | TITLE | 0.82+ |
Covid | PERSON | 0.8+ |
Arrillaga Alumni Center | LOCATION | 0.79+ |
every year | QUANTITY | 0.75+ |
WIDS | ORGANIZATION | 0.69+ |
Bethesda, Maryland | LOCATION | 0.69+ |
Dr. | PERSON | 0.63+ |
2023 | EVENT | 0.57+ |
Gabriela de Queiroz, Microsoft | WiDS 2023
(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)
SUMMARY :
but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy Yuan | PERSON | 0.99+ |
Megan Smith | PERSON | 0.99+ |
Gabriela de Queiroz | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Gabriela | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Brazil | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
2012 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Obama | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
27.6 | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
15 languages | QUANTITY | 0.99+ |
R Ladies | ORGANIZATION | 0.99+ |
two tutorials | QUANTITY | 0.99+ |
Anitab | ORGANIZATION | 0.99+ |
10 people | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
55 plus countries | QUANTITY | 0.99+ |
first part | QUANTITY | 0.99+ |
more than 200 cities | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
nine | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
WIDS 23 | EVENT | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
CUBE | ORGANIZATION | 0.97+ |
Stanford | LOCATION | 0.97+ |
Women in Data Science | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Disneyland | LOCATION | 0.96+ |
English | OTHER | 0.96+ |
one mentor | QUANTITY | 0.96+ |
Women in Data Science Conference | EVENT | 0.96+ |
once a year | QUANTITY | 0.95+ |
WIDS | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Meetup.com | ORGANIZATION | 0.91+ |
ORGANIZATION | 0.9+ | |
Hadoop | TITLE | 0.89+ |
WiDS 2023 | EVENT | 0.88+ |
Anitab.org | ORGANIZATION | 0.87+ |
ChatJTP | TITLE | 0.86+ |
One | QUANTITY | 0.86+ |
one day | QUANTITY | 0.85+ |
ChatGPT | TITLE | 0.84+ |
pandemic | EVENT | 0.81+ |
Fast Company | ORGANIZATION | 0.78+ |
CTO | PERSON | 0.76+ |
Open | ORGANIZATION | 0.76+ |
Gayatree Ganu, Meta | WiDS 2023
(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.
SUMMARY :
in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Susan Wojcicki | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Hannah Freitag | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Gayatree | PERSON | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Tahoe | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Sheryl | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
two spouses | QUANTITY | 0.99+ |
Engagement Ecosystem | ORGANIZATION | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
last week | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
Mumbai, India | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
over 12 years | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
200 million businesses | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Women in Data Science 2023 | TITLE | 0.98+ |
ORGANIZATION | 0.98+ | |
Gayatree Ganu | PERSON | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
second month | QUANTITY | 0.97+ |
nadb.org | ORGANIZATION | 0.97+ |
sixth grade | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
'22 | DATE | 0.97+ |
Jacqueline Kuo, Dataiku | WiDS 2023
(upbeat music) >> Morning guys and girls, welcome back to theCUBE's live coverage of Women in Data Science WIDS 2023 live at Stanford University. Lisa Martin here with my co-host for this segment, Tracy Zhang. We're really excited to be talking with a great female rockstar. You're going to learn a lot from her next, Jacqueline Kuo, solutions engineer at Dataiku. Welcome, Jacqueline. Great to have you. >> Thank you so much. >> Thank for being here. >> I'm so excited to be here. >> So one of the things I have to start out with, 'cause my mom Kathy Dahlia is watching, she's a New Yorker. You are a born and raised New Yorker and I learned from my mom and others. If you're born in New York no matter how long you've moved away, you are a New Yorker. There's you guys have like a secret club. (group laughs) >> I am definitely very proud of being born and raised in New York. My family immigrated to New York, New Jersey from Taiwan. So very proud Taiwanese American as well. But I absolutely love New York and I can't imagine living anywhere else. >> Yeah, yeah. >> I love it. >> So you studied, I was doing some research on you you studied mechanical engineering at MIT. >> Yes. >> That's huge. And you discovered your passion for all things data-related. You worked at IBM as an analytics consultant. Talk to us a little bit about your career path. Were you always interested in engineering STEM-related subjects from the time you were a child? >> I feel like my interests were ranging in many different things and I ended up landing in engineering, 'cause I felt like I wanted to gain a toolkit like a toolset to make some sort of change with or use my career to make some sort of change in this world. And I landed on engineering and mechanical engineering specifically, because I felt like I got to, in my undergrad do a lot of hands-on projects, learn every part of the engineering and design process to build products which is super-transferable and transferable skills sort of is like the trend in my career so far. Where after undergrad I wanted to move back to New York and mechanical engineering jobs are kind of few and fall far in between in the city. And I ended up landing at IBM doing analytics consulting, because I wanted to understand how to use data. I knew that data was really powerful and I knew that working with it could allow me to tell better stories to influence people across different industries. And that's also how I kind of landed at Dataiku to my current role, because it really does allow me to work across different industries and work on different problems that are just interesting. >> Yeah, I like the way that, how you mentioned building a toolkit when doing your studies at school. Do you think a lot of skills are still very relevant to your job at Dataiku right now? >> I think that at the core of it is just problem solving and asking questions and continuing to be curious or trying to challenge what is is currently given to you. And I think in an engineering degree you get a lot of that. >> Yeah, I'm sure. >> But I think that we've actually seen that a lot in the panels today already, that you get that through all different types of work and research and that kind of thoughtfulness comes across in all different industries too. >> Talk a little bit about some of the challenges, that data science is solving, because every company these days, whether it's an enterprise in manufacturing or a small business in retail, everybody has to be data-driven, because the end user, the end customer, whoever that is whether it's a person, an individual, a company, a B2B, expects to have a personalized custom experience and that comes from data. But you have to be able to understand that data treated properly, responsibly. Talk about some of the interesting projects that you're doing at Dataiku or maybe some that you've done in the past that are really kind of transformative across things climate change or police violence, some of the things that data science really is impacting these days. >> Yeah, absolutely. I think that what I love about coming to these conferences is that you hear about those really impactful social impact projects that I think everybody who's in data science wants to be working on. And I think at Dataiku what's great is that we do have this program called Ikig.AI where we work with nonprofits and we support them in their data and analytics projects. And so, a project I worked on was with the Clean Water, oh my goodness, the Ocean Cleanup project, Ocean Cleanup organization, which was amazing, because it was sort of outside of my day-to-day and it allowed me to work with them and help them understand better where plastic is being aggregated across the world and where it appears, whether that's on beaches or in lakes and rivers. So using data to help them better understand that. I feel like from a day-to-day though, we, in terms of our customers, they're really looking at very basic problems with data. And I say basic, not to diminish it, but really just to kind of say that it's high impact, but basic problems around how do they forecast sales better? That's a really kind of, sort of basic problem, but it's actually super-complex and really impactful for people, for companies when it comes to forecasting how much headcount they need to have in the next year or how much inventory to have if they're retail. And all of those are going to, especially for smaller companies, make a huge impact on whether they make profit or not. And so, what's great about working at Dataiku is you get to work on these high-impact projects and oftentimes I think from my perspective, I work as a solutions engineer on the commercial team. So it's just, we work generally with smaller customers and sometimes talking to them, me talking to them is like their first introduction to what data science is and what they can do with that data. And sort of using our platform to show them what the possibilities are and help them build a strategy around how they can implement data in their day-to-day. >> What's the difference? You were a data scientist by title and function, now you're a solutions engineer. Talk about the ascendancy into that and also some of the things that you and Tracy will talk about as those transferable, those transportable skills that probably maybe you learned in engineering, you brought data science now you're bringing to solutions engineering. >> Yeah, absolutely. So data science, I love working with data. I love getting in the weeds of things and I love, oftentimes that means debugging things or looking line by line at your code and trying to make it better. I found that on in the data science role, while those things I really loved, sometimes it also meant that I didn't, couldn't see or didn't have visibility into the broader picture of well like, well why are we doing this project? And who is it impacting? And because oftentimes your day-to-day is very much in the weeds. And so, I moved into sales or solutions engineering at Dataiku to get that perspective, because what a sales engineer does is support the sale from a technical perspective. And so, you really truly understand well, what is the customer looking for and what is going to influence them to make a purchase? And how do you tell the story of the impact of data? Because oftentimes they need to quantify well, if I purchase a software like Dataiku then I'm able to build this project and make this X impact on the business. And that is really powerful. That's where the storytelling comes in and that I feel like a lot of what we've been hearing today about connecting data with people who can actually do something with that data. That's really the bridge that we as sales engineers are trying to connect in that sales process. >> It's all about connectivity, isn't it? >> Yeah, definitely. We were talking about this earlier that it's about making impact and it's about people who we are analyzing data is like influencing. And I saw that one of the keywords or one of the biggest thing at Dataiku is everyday AI, so I wanted to just ask, could you please talk more about how does that weave into the problem solving and then day-to-day making an impact process? >> Yes, so I started working on Dataiku around three years ago and I fell in love with the product itself. The product that we have is we allow for people with different backgrounds. If you're coming from a data analyst background, data science, data engineering, maybe you are more of like a business subject matter expert, to all work in one unified central platform, one user interface. And why that's powerful is that when you're working with data, it's not just that data scientist working on their own and their own computer coding. We've heard today that it's all about connecting the data scientists with those business people, with maybe the data engineers and IT people who are actually going to put that model into production or other folks. And so, they all use different languages. Data scientists might use Python and R, your business people are using PowerPoint and Excel, everyone's using different tools. How do we bring them all in one place so that you can have conversations faster? So the business people can understand exactly what you're building with the data and can get their hands on that data and that model prediction faster. So that's what Dataiku does. That's the product that we have. And I completely forgot your question, 'cause I got so invested in talking about this. Oh, everyday AI. Yeah, so the goal of of Dataiku is really to allow for those maybe less technical people with less traditional data science backgrounds. Maybe they're data experts and they understand the data really well and they've been working in SQL for all their career. Maybe they're just subject matter experts and want to get more into working with data. We allow those people to do that through our no and low-code tools within our platform. Platform is very visual as well. And so, I've seen a lot of people learn data science, learn machine learning by working in the tool itself. And that's sort of, that's where everyday AI comes in, 'cause we truly believe that there are a lot of, there's a lot of unutilized expertise out there that we can bring in. And if we did give them access to data, imagine what we could do in the kind of work that they can do and become empowered basically with that. >> Yeah, we're just scratching the surface. I find data science so fascinating, especially when you talk about some of the real world applications, police violence, health inequities, climate change. Here we are in California and I don't know if you know, we're experiencing an atmospheric river again tomorrow. Californians and the rain- >> Storm is coming. >> We are not good... And I'm a native Californian, but we all know about climate change. People probably don't associate all of the data that is helping us understand it, make decisions based on what's coming what's happened in the past. I just find that so fascinating. But I really think we're truly at the beginning of really understanding the impact that being data-driven can actually mean whether you are investigating climate change or police violence or health inequities or your a grocery store that needs to become data-driven, because your consumer is expecting a personalized relevant experience. I want you to offer me up things that I know I was doing online grocery shopping, yesterday, I just got back from Europe and I was so thankful that my grocer is data-driven, because they made the process so easy for me. And but we have that expectation as consumers that it's going to be that easy, it's going to be that personalized. And what a lot of folks don't understand is the data the democratization of data, the AI that's helping make that a possibility that makes our lives easier. >> Yeah, I love that point around data is everywhere and the more we have, the actually the more access we actually are providing. 'cause now compute is cheaper, data is literally everywhere, you can get access to it very easily. And so, I feel like more people are just getting themselves involved and that's, I mean this whole conference around just bringing more women into this industry and more people with different backgrounds from minority groups so that we get their thoughts, their opinions into the work is so important and it's becoming a lot easier with all of the technology and tools just being open source being easier to access, being cheaper. And that I feel really hopeful about in this field. >> That's good. Hope is good, isn't it? >> Yes, that's all we need. But yeah, I'm glad to see that we're working towards that direction. I'm excited to see what lies in the future. >> We've been talking about numbers of women, percentages of women in technical roles for years and we've seen it hover around 25%. I was looking at some, I need to AnitaB.org stats from 2022 was just looking at this yesterday and the numbers are going up. I think the number was 26, 27.6% of women in technical roles. So we're seeing a growth there especially over pre-pandemic levels. Definitely the biggest challenge that still seems to be one of the biggest that remains is attrition. I would love to get your advice on what would you tell your younger self or the previous prior generation in terms of having the confidence and the courage to pursue engineering, pursue data science, pursue a technical role, and also stay in that role so you can be one of those females on stage that we saw today? >> Yeah, that's the goal right there one day. I think it's really about finding other people to lift and mentor and support you. And I talked to a bunch of people today who just found this conference through Googling it, and the fact that organizations like this exist really do help, because those are the people who are going to understand the struggles you're going through as a woman in this industry, which can get tough, but it gets easier when you have a community to share that with and to support you. And I do want to definitely give a plug to the WIDS@Dataiku team. >> Talk to us about that. >> Yeah, I was so fortunate to be a WIDS ambassador last year and again this year with Dataiku and I was here last year as well with Dataiku, but we have grown the WIDS effort so much over the last few years. So the first year we had two events in New York and also in London. Our Dataiku's global. So this year we additionally have one in the west coast out here in SF and another one in Singapore which is incredible to involve that team. But what I love is that everyone is really passionate about just getting more women involved in this industry. But then also what I find fortunate too at Dataiku is that we have a strong female, just a lot of women. >> Good. >> Yeah. >> A lot of women working as data scientists, solutions engineer and sales and all across the company who even if they aren't doing data work in a day-to-day, they are super-involved and excited to get more women in the technical field. And so. that's like our Empower group internally that hosts events and I feel like it's a really nice safe space for all of us to speak about challenges that we encounter and feel like we're not alone in that we have a support system to make it better. So I think from a nutrition standpoint every organization should have a female ERG to just support one another. >> Absolutely. There's so much value in a network in the community. I was talking to somebody who I'm blanking on this may have been in Barcelona last week, talking about a stat that showed that a really high percentage, 78% of people couldn't identify a female role model in technology. Of course, Sheryl Sandberg's been one of our role models and I thought a lot of people know Sheryl who's leaving or has left. And then a whole, YouTube influencers that have no idea that the CEO of YouTube for years has been a woman, who has- >> And she came last year to speak at WIDS. >> Did she? >> Yeah. >> Oh, I missed that. It must have been, we were probably filming. But we need more, we need to be, and it sounds like Dataiku was doing a great job of this. Tracy, we've talked about this earlier today. We need to see what we can be. And it sounds like Dataiku was pioneering that with that ERG program that you talked about. And I completely agree with you. That should be a standard program everywhere and women should feel empowered to raise their hand ask a question, or really embrace, "I'm interested in engineering, I'm interested in data science." Then maybe there's not a lot of women in classes. That's okay. Be the pioneer, be that next Sheryl Sandberg or the CTO of ChatGPT, Mira Murati, who's a female. We need more people that we can see and lean into that and embrace it. I think you're going to be one of them. >> I think so too. Just so that young girls like me like other who's so in school, can see, can look up to you and be like, "She's my role model and I want to be like her. And I know that there's someone to listen to me and to support me if I have any questions in this field." So yeah. >> Yeah, I mean that's how I feel about literally everyone that I'm surrounded by here. I find that you find role models and people to look up to in every conversation whenever I'm speaking with another woman in tech, because there's a journey that has had happen for you to get to that place. So it's incredible, this community. >> It is incredible. WIDS is a movement we're so proud of at theCUBE to have been a part of it since the very beginning, since 2015, I've been covering it since 2017. It's always one of my favorite events. It's so inspiring and it just goes to show the power that data can have, the influence, but also just that we're at the beginning of uncovering so much. Jacqueline's been such a pleasure having you on theCUBE. Thank you. >> Thank you. >> For sharing your story, sharing with us what Dataiku was doing and keep going. More power to you girl. We're going to see you up on that stage one of these years. >> Thank you so much. Thank you guys. >> Our pleasure. >> Our pleasure. >> For our guests and Tracy Zhang, this is Lisa Martin, you're watching theCUBE live at WIDS '23. #EmbraceEquity is this year's International Women's Day theme. Stick around, our next guest joins us in just a minute. (upbeat music)
SUMMARY :
We're really excited to be talking I have to start out with, and I can't imagine living anywhere else. So you studied, I was the time you were a child? and I knew that working Yeah, I like the way and continuing to be curious that you get that through and that comes from data. And I say basic, not to diminish it, and also some of the I found that on in the data science role, And I saw that one of the keywords so that you can have conversations faster? Californians and the rain- that it's going to be that easy, and the more we have, Hope is good, isn't it? I'm excited to see what and also stay in that role And I talked to a bunch of people today is that we have a strong and all across the company that have no idea that the And she came last and lean into that and embrace it. And I know that there's I find that you find role models but also just that we're at the beginning We're going to see you up on Thank you so much. #EmbraceEquity is this year's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sheryl | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Jacqueline | PERSON | 0.99+ |
Kathy Dahlia | PERSON | 0.99+ |
Jacqueline Kuo | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Dataiku | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Taiwan | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
last week | DATE | 0.99+ |
two events | QUANTITY | 0.99+ |
26, 27.6% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
this year | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Dataiku | PERSON | 0.99+ |
New York, New Jersey | LOCATION | 0.99+ |
tomorrow | DATE | 0.99+ |
2017 | DATE | 0.99+ |
SF | LOCATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
78% | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Ocean Cleanup | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
next year | DATE | 0.98+ |
International Women's Day | EVENT | 0.97+ |
R | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Californians | PERSON | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
one day | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
WIDS | ORGANIZATION | 0.89+ |
first introduction | QUANTITY | 0.88+ |
Stanford University | LOCATION | 0.87+ |
one place | QUANTITY | 0.87+ |
Keynote Analysis | WiDS 2023
(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)
SUMMARY :
So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mira Murati | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Boeing Air Company | ORGANIZATION | 0.99+ |
Berlin | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
78% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
12 year | QUANTITY | 0.99+ |
three year | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Humboldt University | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
hundreds of thousands | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
'22 | DATE | 0.98+ |
today | DATE | 0.98+ |
WiDS | EVENT | 0.98+ |
John Furrier | PERSON | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
two co-hosts | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
first step | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
six | QUANTITY | 0.97+ |
'21 | DATE | 0.97+ |
about 350 people | QUANTITY | 0.96+ |
100 million-plus users | QUANTITY | 0.95+ |
2021 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
AnitaB.org | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
Krista Satterthwaite | International Women's Day
(upbeat music) >> Hello, welcome to the Cube's coverage of International Women's Day 2023. I'm John Furrier, host of the CUBE series of profiles around leaders in the tech industry sharing their stories, advice, best practices, what they're doing in their jobs their vision of the future, and more importantly, passing it on and encouraging more and more networking and telling the stories that matter. Our next guest is a great executive leader talking about how to lead in challenging times. Krista Satterthwaite, who is Senior Vice President and GM of Mainstream Compute. Krista great to see you're Cube alumni. We've had you on before talking about compute power. And by the way, congratulations on your BPT and Black Professional Tech Network 2023 Black Tech Exec of the Year Award. >> Thank you very much. Appreciate it. And thanks for having me. >> I knew I liked you the first time we were doing interviews together. You were so smart and so on top of it. Thanks for coming on. >> No problem. >> All kidding aside, let's get into it. You know, one of the things that's coming out on these interviews is leadership is being showcased and there's a network effect happening in the industry and you're starting to see people look and hear stories that they may or may not have heard before or news stories are coming out. So, one of the things that's interesting is that also in the backdrop of post pandemic, there's been a turn in the industry a little bit, there's a little bit of headwind in certain areas, some tailwinds in cloud and other areas. Compute, your area is doing very well. It could be challenging. And as a leader, has the conversation changed? And where are you at right now in the network of folks you're working with? What's the mood? >> Yeah, so actually I, things are much better. Obviously we had a chip shortage last year. Things are much, much better. But I learned a lot when it came to going through challenging times and leadership. And I think when we talk to customers, a lot of 'em are in challenging situations. Sometimes it's budget, sometimes it's attracting and retaining talent and sometimes it's just demands because, it's really exciting that technology is behind everything. But that means the demands on IT are bigger than ever before. So what I find when it comes to challenging times is that there's really three qualities that are game changers when it comes to leading and challenging times. And the first one is positivity. People have to feel like there's a light at the end of the tunnel to make sure that, their attitudes stay up, that they stay working really really hard and they look to the leader for that. The second one is communication. And I read somewhere that communication is leadership. And we had a great example from our CEO Antonio Neri when the pandemic hit and everything shut down. He had an all employee meeting every week for a month and we have tens of thousands of employees. And then even after that month, we had 'em very regularly. But he wanted to make sure that everybody heard from, him his thoughts had all the updates, knew how their peers were doing, how we were helping customers. And I really learned a lot from that in terms of communicating and communicating more during tough times. And then I would say the third one is making sure that they are informed and they feel empowered. So I would say a leader who is able to do that really, really stands out in a challenging time. >> So how do you get yourself together? Obviously you the chip shortage everyone knows in the industry and for the folks not in the tech industry, it was an economic potential disaster, because you don't get the chips you need. You guys make servers and technology, chips power everything. If you miss a shipment, it could cause a lot of backlash. So Cisco had an earnings impact. It has impact to the business. When do you have that code red moment where it's like, okay, we have to kind of put the pause and go into emergency mode. And how do you handle that? >> Well, you know, it is funny 'cause when it, when we have challenges, I come to learn that people can look at challenges and hard work as a burden or a mission and they behave totally different. If they see it as a burden, then they're doing the bare minimum and they're pointing fingers and they're complaining and they're probably not getting a whole lot done. If they see it as a mission, then all of a sudden they're going above and beyond. They're working really hard, they're really partnering. And if it affects customers for HPE, obviously we, HPE is a very customer centric company, so everyone pays attention and tries to pitch in. But when it comes to a mission, I started thinking, what are the real ingredients for a mission? And I think it's important. I think it's, people feel like they can make an impact. And then I think the third one is that the goal is clear, even if the path isn't, 'cause you may have to pivot a lot if it's a challenge. And so when it came to the chip shortage, it was a mission. We wanted to make sure that we could ship to customers as quickly as possible. And it was a mission. Everybody pulled together. I learned how much our team could pull off and pull together through that challenge. >> And the consequences can be quantified in economics. So it's like the burn the boats example, you got to burn the boats, you're stuck. You got to figure out a solution. How does that change the demands on people? Because this is, okay, there's a mission it they're not, it's not normal. What are some of those new demands that arise during those times and how do you manage that? How do you be a leader? >> Yeah, so it's funny, I was reading this statement from James White who used to be the CEO of Jamba Juice. And he was talking about how he got that job. He said, "I think it was one thing I said that really convinced them that I was the right person." And what he said was something like, "I will get more out of people than nine out of 10 leaders on the planet." He said, "Because I will look at their strengths and their capabilities and I will play to their passions." and their capabilities and I will play their passions. and getting the most out people in difficult times, it is all about how much you can get out of people for their own sake and for the company's sake. >> That's great feedback. And to people watching who are early in their careers, leading is getting the best out of your team, attitude. Some of the things you mentioned. What advice would you give folks that are starting to get into the workforce, that are starting to get into that leadership track or might have a trajectory or even might have an innate ability that they know they have and they want to pursue that dream? >> Yeah so. >> What advice would you give them? >> Yeah, what I would say, I say this all the time that, for the first half of my career I was very job conscious, but I wasn't very career conscious. So I'd get in a role and I'd stay in that role for long periods of time and I'd do a good job, but I wasn't really very career conscious. And what I would say is, everybody says how important risk taking is. Well, risk taking can be a little bit of a scary word, right? Or term. And the way I see it is give it a shot and see what happens. You're interested in something, give it a shot and see what happens. It's kind of a less intimidating way of looking at risk because even though I was job conscious, and not career conscious, one thing I did when people asked me to take something on, hey Krista, would you like to take on more responsibility here? The answer was always yes, yes, yes, yes. So I said yes because I said, hey I'll give it a shot and see what happens. And that helped me tremendously because I felt like I am giving it a try. And the more you do that, the the better it is. >> It's great. >> And actually the the less scary it is because you do that, a few times and it goes well. It's like a muscle that builds. >> It's funny, a woman executive was on the program. I said, the word balance comes up a lot. And she stopped and said, "Let's just talk about balance for a second." And then she went contrarian and said, "It's about not being unbalanced. It's about being, taking a chance and being a little bit off balance to put yourself outside your comfort zone to try new things." And then she also came up and followed and said, "If you do that alone, you increase your risk. But if you do it with people, a team that you trust and you're authentic and you're vulnerable and you're communicating, that is the chemistry." And that was a really good point. What's your reaction? 'Cause you were talking about authentic conversations good communications with Antonio. How does someone get, feel, find that team and do you agree with it? And what was your, how would you react to that? >> Yes, I agree with that. And when it comes to being authentic, that's the magic and when someone isn't, if someone's not really being themselves, it's really funny because you can feel it, you can sense it. There's kind of a wall between you and them. And over time people won't be able to put their finger on it, but they'll feel a distance from you. But when you're authentic and you share who you are, what you find is you find things in common with other people. 'Cause you're sharing more of who you are and it's like, oh, I do that too. Oh, I'm interested in that too. And build the bonds between people and the authenticity. And that's what people crave. They want people to be authentic and people can tell when you're authentic and when you're not. >> Is managing and leading through a crisis a born talent or can you learn it? >> Oh, definitely learned. I think that we're born knowing nothing and I once read people are nurtured into greatness and I think that's true. So yeah, definitely learned. >> What are some examples that can come out of a tough time as folks may look at a crisis and be shy away from it? How do they lean into it? What advice would you give folks? How do you handle it? I mean, everyone's got different personality. Okay, they get to a position but stepping through that door. >> Yeah, well, I do this presentation called, "10 things I Wish I Knew Earlier in my Career." And one of those things is about the growth mindset and the growth mindset. There's a book called "Mindset" by Carol Dweck and the growth mindset is all about learning and not always having to know everything, but really the winning is in the learning. And so if you have a growth mindset it makes you feel better about everything because you can't lose. You're winning because you're learning. So when I've learned that, I started looking at things much differently. And when it comes to going through tough times, what I find is you're exercising muscles that you didn't even know you had, which makes you stronger when the crisis is over, obviously. And I also feel like you become a lot a much more creative when you're in challenging times. You're forced to do things that you hadn't had to do before. And it also bonds the team. It's almost like going through bootcamp together. When you go through a challenge together it bonds you for life. >> I mean, you could have bonding, could be trauma bonding or success bonding. People love to be on the success side because that's positive and that's really the key mindset. You're always winning if you have that attitude. And learnings is also positive. So it's not, it's never a failure unless you make it. >> That's right, exactly. As long as you learn from it. And that's the name of the game. So, learning is the goal. >> So I have to ask you, on your job now, you have a really big responsibility HPE compute and big division. What's the current mindset that you have right now in your career, where you're at? What are some of the things on your mind that you think about? We had other, other seniors leaders say, hey, you know I got the software as my brain and the hardware's my body. I like to keep software and hardware working together. What is your current state of your career and how you looking at it, what's next and what's going on in your mind right now? >> Yeah, so for me, I really want to make sure that for my team we're nurturing the next generation of leadership and that we're helping with career development and career growth. And people feel like they can grow their careers here. Luckily at HPE, we have a lot of people stay at HPE a long time, and even people who leave HPE a lot of times they come back because the culture's fantastic. So I just want to make sure I'm contributing to that culture and I'm bringing up the next generation of leaders. >> What's next for you? What are you looking at from a career personal standpoint? >> You know, it's funny, I, I love what I'm doing right now. I'm actually on a joint venture board with H3C, which is HPE Joint Venture Company. And so I'm really enjoying that and exploring more board service opportunities. >> You have a focus of good growth mindset, challenging through, managing through tough times. How do you stay focused on that North star? How do you keep the reinforcement of the mission? How do you nurture the team to greatness? >> Yeah, so I think it's a lot of clarity, providing a lot of clarity about what's important right now. And it goes back to some of the communication that I mentioned earlier, making sure that everybody knows where the North Star is, so everybody's focused on the same thing, because I feel like with the, I always felt like throughout my career I was set up for success if I had the right information, the right guidance and the right goals. And I try to make sure that I do that with my team. >> What are some of the things that you could share as we wrap up here for the folks watching, as the networks increase, as the stories start to unfold more and more on digital like we're doing here, what do you hope people walk away with? What's working, what needs work, and what is some things that people aren't talking about that should be discussed publicly? >> Do you mean from a career standpoint or? >> For career? For growing into tech and into leadership positions. >> Okay. >> Big migration tech is now a wide field. I mean, when I grew up, broke into the eighties, it was computer science, software engineering, and three degrees in engineering, right? >> I see huge swath of AI coming. So many technical careers. There's a lot more women. >> Yeah. And that's what's so exciting about being in a technical career, technical company, is that everything's always changing. There's always opportunity to learn something new. And frankly, you know, every company is in the business of technology right now, because they want to closer to their customers. Typically, they're using technology to do that. Everyone's digitally transforming. And so what I would say is that there's so much opportunity, keep your mind open, explore what interests you and keep learning because it's changing all the time. >> You know I was talking with Sue, former HP, she's on a lot of boards. The balance at the board level still needs a lot of work and the leaderships are getting better, but the board at the seats at the table needs work. Where do you see that transition for you in the future? Is that something on your mind? Maybe a board seat? You mentioned you're on a board with HPE, but maybe sitting on some other boards? Any, any? >> Yes, actually, actually, we actually have a program here at HPE called the Board Ready Now program that I'm a part of. And so HPE is very supportive of me exploring an independent board seat. And so they have some education and programming around that. And I know Sue well, she's awesome. And so yes, I'm looking into those opportunities right now. >> She advises do one no more than two. The day job. >> Yeah, I would only be doing one current job that I have. >> Well, kris, it was great to chat with you about these topics and leadership and challenging times. Great masterclass, great advice. As SVP and GM of mainstream compute for HPE, what's going on in your job these days? What's the most exciting thing happening? Share some of your work situations. >> Sure, so the most exciting thing happening right now is HPE Gen 11, which we just announced and started shipping, brings tremendous performance benefit, has an intuitive operating experience, a trusted security by design, and it's optimized to run workloads so much faster. So if anybody is interested, they should go check it out on hpe.com. >> And of course the CUBE will be at HPE Discover. We'll see you there. Any final wisdom you'd like to share as we wrap up the last minute here? >> Yeah, so I think the last thing I'll say is that when it comes to setting your sights, I think, expecting it, good things to happen usually happens when you believe you deserve it. So what happens is you believe you deserve it, then you expect it and you get it. And so sometimes that's about making sure you raise your thermostat to expect more. And I always talk about you don't have to raise it all up at once. You could do that incrementally and other people can set your thermostat too when they say, hey, you should be, you should get a level this high or that high, but raise your thermostat because what you expect is what you get. >> Krista, thank you so much for contributing to this program. We're going to do it quarterly. We're going to do getting more stories out there, so we'll have you back and if you know anyone with good stories, send them our way. And congratulations on your BPTN Tech Executive of the Year award for 2023. Congratulations, great prize there and great recognition for your hard work. >> Thank you so much, John, I appreciate it. >> Okay, this is the Cube's coverage of National Woodman's Day. I'm John Furrier, stories from the front lines, management ranks, developers, all there, global coverage of international events with theCUBE. Thanks for watching. (soft music)
SUMMARY :
And by the way, Thank you very much. I knew I liked you And where are you at right now And the first one is positivity. And how do you handle that? that the goal is clear, And the consequences can and for the company's sake. Some of the things you mentioned. And the more you do that, And actually the the less scary it is find that team and do you agree with it? and you share who you are, and I once read What advice would you give folks? And I also feel like you become a lot I mean, you could have And that's the name of the game. that you have right now of leadership and that we're helping And so I'm really enjoying that How do you nurture the team to greatness? of the communication For growing into tech and broke into the eighties, I see huge swath of AI coming. And frankly, you know, every company is Where do you see that transition And so they have some education She advises do one no more than two. one current job that I have. great to chat with you Sure, so the most exciting And of course the CUBE So what happens is you and if you know anyone with Thank you so much, from the front lines,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Nutanix | ORGANIZATION | 0.99+ |
Western Digital | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Krista | PERSON | 0.99+ |
Bernie Hannon | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Bernie | PERSON | 0.99+ |
H3C | ORGANIZATION | 0.99+ |
Citrix | ORGANIZATION | 0.99+ |
September of 2015 | DATE | 0.99+ |
Dave Tang | PERSON | 0.99+ |
Krista Satterthwaite | PERSON | 0.99+ |
SanDisk | ORGANIZATION | 0.99+ |
Martin | PERSON | 0.99+ |
James White | PERSON | 0.99+ |
Sue | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Carol Dweck | PERSON | 0.99+ |
Martin Fink | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave allante | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Raghu | PERSON | 0.99+ |
Raghu Nandan | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Lee Caswell | PERSON | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Antonio Neri | PERSON | 0.99+ |
five years | QUANTITY | 0.99+ |
three-month | QUANTITY | 0.99+ |
four-year | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
Gary | PERSON | 0.99+ |
Antonio | PERSON | 0.99+ |
Feb 2018 | DATE | 0.99+ |
2023 | DATE | 0.99+ |
seven dollars | QUANTITY | 0.99+ |
three months | QUANTITY | 0.99+ |
Arm Holdings | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
Sue Barsamian | International Women's Day
(upbeat music) >> Hi, everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. As part of International Women's Day, we're featuring some of the leading women in business technology from developer to all types of titles and to the executive level. And one topic that's really important is called Getting a Seat at the Table, board makeup, having representation at corporate boards, private and public companies. It's been a big push. And former technology operating executive and corporate board member, she's a board machine Sue Barsamian, formerly with HPE, Hewlett Packard. Sue, great to see you. CUBE alumni, distinguished CUBE alumni. Thank you for coming on. >> Yes, I'm very proud of my CUBE alumni title. >> I'm sure it opens a lot of doors for you. (Sue laughing) We're psyched to have you on. This is a really important topic, and I want to get into the whole, as women advance up, and they're sitting on the boards, they can implement policy and there's governance. Obviously public companies have very strict oversight, and not strict, but like formal. Private boards have to operate, be nimble. They don't have to share all their results. But still, boards play an important role in the success of scaled up companies. So super important, that representation there is key. >> Yes. >> I want to get into that, but first, before we get started, how did you get into tech? How did it all start for you? >> Yeah, long time ago, I was an electrical engineering major. Came out in 1981 when, you know, opportunities for engineering, if you were kind, I went to Kansas State as an undergrad, and basically in those days you went to Texas and did semiconductors. You went to Atlanta and did communication satellites. You went to Boston or you went to Silicon Valley. And for me, that wasn't too hard a choice. I ended up going west and really, I guess what, embarked on a 40 year career in Silicon Valley and absolutely loved it. Largely software, but some time on the hardware side. Started out in networking, but largely software. And then, you know, four years ago transitioned to my next chapter, which is the corporate board director. And again, focused on technology software and cybersecurity boards. >> For the folks watching, we'll cut through another segment we can probably do about your operating career, but you rose through the ranks and became a senior operating executive at the biggest companies in the world. Hewlett Packard Enterprise, Hewlett Packard Enterprise and others. Very great career, okay. And so now you're kind of like, put that on pause, and you're moving on to the next chapter, which is being a board director. What inspired you to be a board director for multiple public companies and multiple private companies? Well, how many companies are you on? But what's the inspiration? What's the inspiration? First tell me how many board ships you're on, board seats you're on, and then what inspired you to become a board director? >> Yeah, so I'm on three public, and you are limited in terms of the number of publics that you can do to four. So I'm on three public, and I'm on four private from a tech perspective. And those range from, you know, a $4 billion in revenue public company down to a 35 person private company. So I've got the whole range. >> So you're like freelancing, I mean, what is it like? It's a full-time job, obviously. It's a lot of work involved. >> Yeah, yeah, it's. >> John: Why are you doing it? >> Well, you know, so I retired from being an operating executive after 37 years. And, but I loved, I mean, it's tough, right? It's tough these days, particularly with all the pressures out there in the market, not to mention the pandemic, et cetera. But I loved it. I loved working. I loved having a career, and I was ready to back off on, I would say the stresses of quarterly results and the stresses of international travel. You have so much of it. But I wasn't ready to back off from being involved and engaged and continuing to learn new things. I think this is why you come to tech, and for me, why I went to the valley to begin with was really that energy and that excitement, and it's like it's constantly reinventing itself. And I felt like that wasn't over for me. And I thought because I hadn't done boards before I retired from operating roles, I thought, you know, that would fill the bill. And it's honestly, it has exceeded expectations. >> In a good way. You feel good about where you're at and. >> Yeah. >> What you went in, what was the expectation going in and what surprised you? And were there people along the way that kind of gave you some pointers or don't do this, stay away from this. Take us through your experiences. >> Yeah, honestly, there is an amazing network of technology board directors, you know, in the US and specifically in the Valley. And we are all incredibly supportive. We have groups where we get together as board directors, and we talk about topics, and we share best practices and stories, and so I underestimated that, right? I thought I was going to, I thought I was going to enter this chapter where I would be largely giving back after 37 years. You've learned a little bit, right? What I underestimated was just the power of continuing to learn and being surrounded by so many amazing people. When, you know, when you do, you know, multiple boards, your learnings are just multiplied, right? Because you see not just one model, but you see many models. You see not just one problem, but many problems. Not just one opportunity, but many opportunities. And I underestimated how great that would be for me from a learning perspective and then your ability to share from one board to the other board because all of my boards are companies who are also quite close to each other, the executives collaborate. So that has turned out to be really exciting for me. >> So you had the stressful job. You rose to the top of the ranks, quarterly shot clock earnings, and it's hard charging. It's like, it's like, you know, being an athlete, as we say tech athlete. You're a tech athlete. Now you're taking that to the next level, which is now you're juggling multiple operational kind of things, but not with super pressure. But there's still a lot of responsibility. I know there's one board, you got compensation committee, I mean there's work involved. It's not like you're clipping coupons and having pizza. >> Yeah, no, it's real work. Believe me, it's real work. But I don't know how long it took me to not, to stop waking up and looking at my phone and thinking somebody was going to be dropping their forecast, right? Just that pressure of the number, and as a board member, obviously you are there to support and help guide the company and you feel, you know, you feel the pressure and the responsibility of what that role entails, but it's not the same as the frontline pressure every quarter. It's different. And so I did the first type. I loved it, you know. I'm loving this second type. >> You know, the retirement, it's always a cliche these days, but it's not really like what people think it is. It's not like getting a boat, going fishing or whatever. It's doing whatever you want to do, that's what retirement is. And you've chose to stay active. Your brain's being tested, and you're working it, having fun without all the stress. But it's enough, it's like going the gym. You're not hardcore workout, but you're working out with the brain. >> Yeah, no, for sure. It's just a different, it's just a different model. But the, you know, the level of conversations, the level of decisions, all of that is quite high. Which again, I like, yeah. >> Again, you really can't talk about some of the fun questions I want to ask, like what's the valuations like? How's the market, your headwinds? Is there tailwinds? >> Yes, yes, yes. It's an amazing, it's an amazing market right now with, as you know, counter indicators everywhere, right? Something's up, something's down, you know. Consumer spending's up, therefore interest rates go up and, you know, employment's down. And so or unemployment's down. And so it's hard. Actually, I really empathize with, you know, the, and have a great deal of respect for the CEOs and leadership teams of my board companies because, you know, I kind of retired from operating role, and then everybody else had to deal with running a company during a pandemic and then running a company through the great resignation, and then running a company through a downturn. You know, those are all tough things, and I have a ton of respect for any operating executive who's navigating through this and leading a company right now. >> I'd love to get your take on the board conversations at the end if we have more time, what the mood is, but I want to ask you about one more thing real quick before we go to the next topic is you're a retired operating executive. You have multiple boards, so you've got your hands full. I noticed there's a lot of amazing leaders, other female tech athletes joining boards, but they also have full-time jobs. >> Yeah. >> And so what's your advice? Cause I know there's a lot of networking, a lot of sharing going on. There's kind of a balance between how much you can contribute on the board versus doing the day job, but there's a real need for more women on boards, so yet there's a lot going on boards. What's the current state of the union if you will, state of the market relative to people in their careers and the stresses? >> Yeah. >> Cause you left one and jumped in all in there. >> Yeah. >> Some can't do that. They can't be on five boards, but they're on a few. What's the? >> Well, and you know, and if you're an operating executive, you wouldn't be on five boards, right? You would be on one or two. And so I spend a lot of time now bringing along the next wave of women and helping them both in their career but also to get a seat at the table on a board. And I'm very vocal about telling people not to do it the way I do it. There's no reason for it to be sequential. You can, you know, I thought I was so busy and was traveling all the time, and yes, all of that was true, but, and maybe I should say, you know, you can still fit in a board. And so, and what I see now is that your learnings are so exponential with outside perspective that I believe I would've been an even better operating executive had I done it earlier. I know I would've been an even better operating executive had I done it earlier. And so my advice is don't do it the way I did it. You know, it's worked out fine for me, but hindsight's 2020, I would. >> If you can go back and do a mulligan or a redo, what would you do? >> Yeah, I would get on a board earlier, full stop, yeah. >> Board, singular, plural? >> Well, I really, I don't think as an operating executive you can do, you could do one, maybe two. I wouldn't go beyond that, and I think that's fine. >> Yeah, totally makes sense. Okay, I got to ask you about your career. I know technical, you came in at that time in the market, I remember when I broke into the business, very male dominated, and then now it's much better. When you went through the ranks as a technical person, I know you had some blockers and definitely some, probably some people like, well, you know. We've seen that. How did you handle that? What were some of the key pivot points in your journey? And we've had a lot of women tell their stories here on theCUBE, candidly, like, hey, I was going to tell that professor, I'm going to sit in the front row. I'm going to, I'm getting two degrees, you know, robotics and aerospace. So, but they were challenged, even with the aspiration to do tech. I'm not saying that was something that you had, but like have you had experience like that, that you overcome? What were those key points and how did you handle them and how does that help people today? >> Yeah, you know, I have to say, you know, and not discounting that obviously this has been a journey for women, and there are a lot of things to overcome both in the workforce and also just balancing life honestly. And they're all real. There's also a story of incredible support, and you know, I'm the type of person where if somebody blocked me or didn't like me, I tended to just, you know, think it was me and like work harder and get around them, and I'm sure that some of that was potentially gender related. I didn't interpret it that way at the time. And I was lucky to have amazing mentors, many, many, many of whom were men, you know, because they were in the positions of power, and they made a huge difference on my career, huge. And I also had amazing female mentors, Meg Whitman, Ann Livermore at HPE, who you know well. So I had both, but you know, when I look back on the people who made a difference, there are as many men on the list as there are women. >> Yeah, and that's a learning there. Create those coalitions, not just one or the other. >> Yeah, yeah, yeah, absolutely. >> Well, I got to ask you about the, well, you brought up the pandemic. This has come up on some interviews this year, a little bit last year on the International Women's Day, but this year it's resonating, and I would never ask in an interview. I saw an interview once where a host asked a woman, how do you balance it all? And I was just like, no one asked men that. And so it's like, but with remote work, it's come up now the word empathy around people knowing each other's personal situation. In other words, when remote work happened, everybody went home. So we all got a glimpse of the backdrop. You got, you can see what their personal life was on Facebook. We were just commenting before we came on camera about that. So remote work really kind of opened up this personal side of everybody, men and women. >> Yeah. >> So I think this brings this new empathy kind of vibe or authentic self people call it. Is remote work an opportunity or a threat for advancement of women in tech? >> It's a much debated topic. I look at it as an opportunity for many of the reasons that you just said. First of all, let me say that when I was an operating executive and would try to create an environment on my team that was family supportive, I would do that equally for young or, you know, early to mid-career women as I did for early to mid-career men. And the reason is I needed those men, you know, chances are they had a working spouse at home, right? I needed them to be able to share the load. It's just as important to the women that companies give, you know, the partner, male or female, the partner support and the ability to share the love, right? So to me it's not just a woman thing. It's women and men, and I always tried to create the environment where it was okay to go to your soccer game. I knew you would be online later in the evening when the kids were in bed, and that was fine. And I think the pandemic has democratized that and made that, you know, made that kind of an everyday occurrence. >> Yeah the baby walks in. They're in the zoom call. The dog comes in. The leaf blower going on the outside the window. I've seen it all on theCUBE. >> Yeah, and people don't try to pretend anymore that like, you know, the house is clean, the dog's behaved, you know, I mean it's just, it's just real, and it's authentic, and I think that's healthy. >> Yeah. >> I do, you know, I also love, I also love the office, and you know, I've got a 31 year old and a soon to be 27 year old daughter, two daughters. And you know, they love going into the office, and I think about when I was their age, how just charged up I would get from being in the office. I also see how great it is for them to have a couple of days a week at home because you can get a few things done in between Zoom calls that you don't have to end up piling onto the weekend, and, you know, so I think it's a really healthy, I think it's a really healthy mix now. Most tech companies are not mandating five days in. Most tech companies are at two to three days in. I think that's a, I think that's a really good combination. >> It's interesting how people are changing their culture to get together more as groups and even events. I mean, while I got you, I might as well ask you, what's the board conversations around, you know, the old conferences? You know, before the pandemic, every company had like a user conference. Right, now it's like, well, do we really need to have that? Maybe we do smaller, and we do digital. Have you seen how companies are handling the in-person? Because there's where the relationships are really formed face-to-face, but not everyone's going to be going. But now certain it's clearly back to face-to-face. We're seeing that with theCUBE as you know. >> Yeah, yeah. >> But the numbers aren't coming back, and the numbers aren't that high, but the stakeholders. >> Yeah. >> And the numbers are actually higher if you count digital. >> Yeah, absolutely. But you know, also on digital there's fatigue from 100% digital, right? It's a hybrid. People don't want to be 100% digital anymore, but they also don't want to go back to the days when everybody got on a plane for every meeting, every call, every sales call. You know, I'm seeing a mix on user conferences. I would say two-thirds of my companies are back, but not at the expense level that they were on user conferences. We spend a lot of time getting updates on, cause nobody has put, interestingly enough, nobody has put T&E, travel and expense back to pre-pandemic levels. Nobody, so everybody's pulled back on number of trips. You know, marketing events are being very scrutinized, but I think very effective. We're doing a lot of, and, you know, these were part of the old model as well, like some things, some things just recycle, but you know, there's a lot of CIO and customer round tables in regional cities. You know, those are quite effective right now because people want some face-to-face, but they don't necessarily want to get on a plane and go to Las Vegas in order to do it. I mean, some of them are, you know, there are a lot of things back in Las Vegas. >> And think about the meetings that when you were an operating executive. You got to go to the sales kickoff, you got to go to this, go to that. There were mandatory face-to-faces that you had to go to, but there was a lot of travel that you probably could have done on Zoom. >> Oh, a lot, I mean. >> And then the productivity to the family impact too. Again, think about again, we're talking about the family and people's personal lives, right? So, you know, got to meet a customer. All right. Salesperson wants you to get in front of a customer, got to fly to New York, take a red eye, come on back. Like, I mean, that's gone. >> Yeah, and oh, by the way, the customer doesn't necessarily want to be in the office that day, so, you know, they may or may not be happy about that. So again, it's and not or, right? It's a mix. And I think it's great to see people back to some face-to-face. It's great to see marketing and events back to some face-to-face. It's also great to see that it hasn't gone back to the level it was. I think that's a really healthy dynamic. >> Well, I'll tell you that from our experience while we're on the topic, we'll move back to the International Women's Day is that the productivity of digital, this program we're doing is going to be streamed. We couldn't do this face-to-face because we had to have everyone fly to an event. We're going to do hundreds of stories that we couldn't have done. We're doing it remote. Because it's better to get the content than not have it. I mean it's offline, so, but it's not about getting people to the event and watch the screen for seven hours. It's pick your interview, and then engage. >> Yeah. >> So it's self-service. So we're seeing a lot, the new user experience kind of direct to consumer, and so I think there will be an, I think there's going to be a digital first class citizen with events, so that that matches up with the kind of experience, but the offline version. Face-to-face optimized for relationships, and that's where the recruiting gets done. That's where, you know, people can build these relationships with each other. >> Yeah, and it can be asynchronous. I think that's a real value proposition. It's a great point. >> Okay, I want to get, I want to get into the technology side of the education and re-skilling and those things. I remember in the 80s, computer science was software engineering. You learned like nine languages. You took some double E courses, one or two, and all the other kind of gut classes in school. Engineering, you had the four class disciplines and some offshoots of specialization. Now it's incredible the diversity of tracks in all engineering programs and computer science and outside of those departments. >> Yeah. >> Can you speak to the importance of STEM and the diversity in the technology industry and how this brings opportunity to lower the bar to get in and how people can stay in and grow and keep leveling up? >> Yeah, well look, we're constantly working on how to, how to help the incoming funnel. But then, you know, at a university level, I'm on the foundation board of Kansas State where I got my engineering degree. I was also Chairman of the National Action Council for Minorities in Engineering, which was all about diversity in STEM and how do you keep that pipeline going because honestly the US needs more tech resources than we have. And if you don't tap into the diversity of our entire workforce, we won't be able to fill that need. And so we focused a lot on both the funnel, right, that starts at the middle school level, particularly for girls, getting them in, you know, the situation of hands-on comfort level with coding, with robot building, you know, whatever gives them that confidence. And then keeping that going all the way into, you know, university program, and making sure that they don't attrit out, right? And so there's a number of initiatives, whether it's mentoring and support groups and financial aid to make sure that underrepresented minorities, women and other minorities, you know, get through the funnel and stay, you know, stay in. >> Got it. Now let me ask you, you said, I have two daughters. You have a family of girls too. Is there a vibe difference between the new generation and what's the trends that you're seeing in this next early wave? I mean, not maybe, I don't know how this is in middle school, but like as people start getting into their adult lives, college and beyond what's the current point of view, posture, makeup of the talent coming in? >> Yeah, yeah. >> Certain orientations, do you see any patterns? What's your observation? >> Yeah, it's interesting. So if I look at electrical engineering, my major, it's, and if I look at Kansas State, which spends a lot of time on this, and I think does a great job, but the diversity of that as a major has not changed dramatically since I was there in the early 80s. Where it has changed very significantly is computer science. There are many, many university and college programs around the country where, you know, it's 50/50 in computer science from a gender mix perspective, which is huge progress. Huge progress. And so, and to me that's, you know, I think CS is a fantastic degree for tech, regardless of what function you actually end up doing in these companies. I mean, I was an electrical engineer. I never did core electrical engineering work. I went right into sales and marketing and general management roles. So I think, I think a bunch of, you know, diverse CS graduates is a really, really good sign. And you know, we need to continue to push on that, but progress has been made. I think the, you know, it kind of goes back to the thing we were just talking about, which is the attrition of those, let's just talk about women, right? The attrition of those women once they got past early career and into mid-career then was a concern, right? And that goes back to, you know, just the inability to, you know, get it all done. And that I am hopeful is going to be better served now. >> Well, Sue, it's great to have you on. I know you're super busy. I appreciate you taking the time and contributing to our program on corporate board membership and some of your story and observations and opinions and analysis. Always great to have you and call you a contributor for theCUBE. You can jump on on one more board, be one of our board contributors for our analysts. (Sue laughing) >> I'm at capacity. (both laughing) >> Final, final word. What's the big seat at the table issue that's going well and areas that need to be improved? >> So I'll speak for my boards because they have made great progress in efficiency. You know, obviously with interest rates going up and the mix between growth and profitability changing in terms of what investors are looking for. Many, many companies have had to do a hard pivot from grow at all costs to healthy balance of growth and profit. And I'm very pleased with how my companies have made that pivot. And I think that is going to make much better companies as a result. I think diversity is something that has not been solved at the corporate level, and we need to keep working it. >> Awesome. Thank you for coming on theCUBE. CUBE alumni now contributor, on multiple boards, full-time job. Love the new challenge and chapter you're on, Sue. We'll be following, and we'll check in for more updates. And thank you for being a contributor on this program this year and this episode. We're going to be doing more of these quarterly, so we're going to move beyond once a year. >> That's great. (cross talking) It's always good to see you, John. >> Thank you. >> Thanks very much. >> Okay. >> Sue: Talk to you later. >> This is theCUBE coverage of IWD, International Women's Day 2023. I'm John Furrier, your host. Thanks for watching. (upbeat music)
SUMMARY :
Thank you for coming on. of my CUBE alumni title. We're psyched to have you on. And then, you know, four years ago and then what inspired you And those range from, you know, I mean, what is it like? I think this is why you come to tech, You feel good about where you're at and. that kind of gave you some directors, you know, in the US I know there's one board, you and you feel, you know, It's doing whatever you want to But the, you know, the right now with, as you know, but I want to ask you about of the union if you will, Cause you left one and but they're on a few. Well, and you know, Yeah, I would get on a executive you can do, Okay, I got to ask you about your career. have to say, you know, not just one or the other. Well, I got to ask you about the, So I think this brings and made that, you know, made that They're in the zoom call. that like, you know, the house is clean, I also love the office, and you know, around, you know, and the numbers aren't that And the numbers are actually But you know, also on that you had to go to, So, you know, got to meet a customer. that day, so, you know, is that the productivity of digital, That's where, you know, people Yeah, and it can be asynchronous. and all the other kind all the way into, you know, and what's the trends that you're seeing And so, and to me that's, you know, Well, Sue, it's great to have you on. I'm at capacity. that need to be improved? And I think that is going to And thank you for being a It's always good to see you, John. I'm John Furrier, your host.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Meg Whitman | PERSON | 0.99+ |
Ann Livermore | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Hewlett Packard Enterprise | ORGANIZATION | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Sue Barsamian | PERSON | 0.99+ |
1981 | DATE | 0.99+ |
Texas | LOCATION | 0.99+ |
40 year | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
31 year | QUANTITY | 0.99+ |
National Action Council for Minorities in Engineering | ORGANIZATION | 0.99+ |
$4 billion | QUANTITY | 0.99+ |
35 person | QUANTITY | 0.99+ |
two daughters | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
five days | QUANTITY | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
Sue | PERSON | 0.99+ |
International Women's Day | EVENT | 0.99+ |
US | LOCATION | 0.99+ |
First | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
three days | QUANTITY | 0.99+ |
Atlanta | LOCATION | 0.99+ |
hundreds | QUANTITY | 0.99+ |
seven hours | QUANTITY | 0.99+ |
one problem | QUANTITY | 0.99+ |
one opportunity | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Kansas State | LOCATION | 0.99+ |
this year | DATE | 0.98+ |
one model | QUANTITY | 0.98+ |
second type | QUANTITY | 0.98+ |
80s | DATE | 0.98+ |
2020 | DATE | 0.98+ |
two-thirds | QUANTITY | 0.98+ |
one board | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
five boards | QUANTITY | 0.98+ |
one topic | QUANTITY | 0.98+ |
first type | QUANTITY | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
two degrees | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.97+ |
50/50 | QUANTITY | 0.96+ |
early 80s | DATE | 0.96+ |
four years ago | DATE | 0.96+ |
four class | QUANTITY | 0.95+ |
nine languages | QUANTITY | 0.95+ |
pandemic | EVENT | 0.95+ |
ORGANIZATION | 0.93+ | |
once a year | QUANTITY | 0.92+ |
27 year old | QUANTITY | 0.91+ |
today | DATE | 0.88+ |
Phil Kippen, Snowflake, Dave Whittington, AT&T & Roddy Tranum, AT&T | | MWC Barcelona 2023
(gentle music) >> Narrator: "TheCUBE's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Hello everybody, welcome back to day four of "theCUBE's" coverage of MWC '23. We're here live at the Fira in Barcelona. Wall-to-wall coverage, John Furrier is in our Palo Alto studio, banging out all the news. Really, the whole week we've been talking about the disaggregation of the telco network, the new opportunities in telco. We're really excited to have AT&T and Snowflake here. Dave Whittington is the AVP, at the Chief Data Office at AT&T. Roddy Tranum is the Assistant Vice President, for Channel Performance Data and Tools at AT&T. And Phil Kippen, the Global Head Of Industry-Telecom at Snowflake, Snowflake's new telecom business. Snowflake just announced earnings last night. Typical Scarpelli, they beat earnings, very conservative guidance, stocks down today, but we like Snowflake long term, they're on that path to 10 billion. Guys, welcome to "theCUBE." Thanks so much >> Phil: Thank you. >> for coming on. >> Dave and Roddy: Thanks Dave. >> Dave, let's start with you. The data culture inside of telco, We've had this, we've been talking all week about this monolithic system. Super reliable. You guys did a great job during the pandemic. Everything shifting to landlines. We didn't even notice, you guys didn't miss a beat. Saved us. But the data culture's changing inside telco. Explain that. >> Well, absolutely. So, first of all IoT and edge processing is bringing forth new and exciting opportunities all the time. So, we're bridging the world between a lot of the OSS stuff that we can do with edge processing. But bringing that back, and now we're talking about working, and I would say traditionally, we talk data warehouse. Data warehouse and big data are now becoming a single mesh, all right? And the use cases and the way you can use those, especially I'm taking that edge data and bringing it back over, now I'm running AI and ML models on it, and I'm pushing back to the edge, and I'm combining that with my relational data. So that mesh there is making all the difference. We're getting new use cases that we can do with that. And it's just, and the volume of data is immense. >> Now, I love ChatGPT, but I'm hoping your data models are more accurate than ChatGPT. I never know. Sometimes it's really good, sometimes it's really bad. But enterprise, you got to be clean with your AI, don't you? >> Not only you have to be clean, you have to monitor it for bias and be ethical about it. We're really good about that. First of all with AT&T, our brand is Platinum. We take care of that. So, we may not be as cutting-edge risk takers as others, but when we go to market with an AI or an ML or a product, it's solid. >> Well hey, as telcos go, you guys are leaning into the Cloud. So I mean, that's a good starting point. Roddy, explain your role. You got an interesting title, Channel Performance Data and Tools, what's that all about? >> So literally anything with our consumer, retail, concenters' channels, all of our channels, from a data perspective and metrics perspective, what it takes to run reps, agents, all the way to leadership levels, scorecards, how you rank in the business, how you're driving the business, from sales, service, customer experience, all that data infrastructure with our great partners on the CDO side, as well as Snowflake, that comes from my team. >> And that's traditionally been done in a, I don't mean the pejorative, but we're talking about legacy, monolithic, sort of data warehouse technologies. >> Absolutely. >> We have a love-hate relationship with them. It's what we had. It's what we used, right? And now that's evolving. And you guys are leaning into the Cloud. >> Dramatic evolution. And what Snowflake's enabled for us is impeccable. We've talked about having, people have dreamed of one data warehouse for the longest time and everything in one system. Really, this is the only way that becomes a reality. The more you get in Snowflake, we can have golden source data, and instead of duplicating that 50 times across AT&T, it's in one place, we just share it, everybody leverages it, and now it's not duplicated, and the process efficiency is just incredible. >> But it really hinges on that separation of storage and compute. And we talk about the monolithic warehouse, and one of the nightmares I've lived with, is having a monolithic warehouse. And let's just go with some of my primary, traditional customers, sales, marketing and finance. They are leveraging BSS OSS data all the time. For me to coordinate a deployment, I have to make sure that each one of these units can take an outage, if it's going to be a long deployment. With the separation of storage, compute, they own their own compute cluster. So I can move faster for these people. 'Cause if finance, I can implement his code without impacting finance or marketing. This brings in CI/CD to more reality. It brings us faster to market with more features. So if he wants to implement a new comp plan for the field reps, or we're reacting to the marketplace, where one of our competitors has done something, we can do that in days, versus waiting weeks or months. >> And we've reported on this a lot. This is the brilliance of Snowflake's founders, that whole separation >> Yep. >> from compute and data. I like Dave, that you're starting with sort of the business flexibility, 'cause there's a cost element of this too. You can dial down, you can turn off compute, and then of course the whole world said, "Hey, that's a good idea." And a VC started throwing money at Amazon, but Redshift said, "Oh, we can do that too, sort of, can't turn off the compute." But I want to ask you Phil, so, >> Sure. >> it looks from my vantage point, like you're taking your Data Cloud message which was originally separate compute from storage simplification, now data sharing, automated governance, security, ultimately the marketplace. >> Phil: Right. >> Taking that same model, break down the silos into telecom, right? It's that same, >> Mm-hmm. >> sorry to use the term playbook, Frank Slootman tells me he doesn't use playbooks, but he's not a pattern matcher, but he's a situational CEO, he says. But the situation in telco calls for that type of strategy. So explain what you guys are doing in telco. >> I think there's, so, what we're launching, we launched last week, and it really was three components, right? So we had our platform as you mentioned, >> Dave: Mm-hmm. >> and that platform is being utilized by a number of different companies today. We also are adding, for telecom very specifically, we're adding capabilities in marketplace, so that service providers can not only use some of the data and apps that are in marketplace, but as well service providers can go and sell applications or sell data that they had built. And then as well, we're adding our ecosystem, it's telecom-specific. So, we're bringing partners in, technology partners, and consulting and services partners, that are very much focused on telecoms and what they do internally, but also helping them monetize new services. >> Okay, so it's not just sort of generic Snowflake into telco? You have specific value there. >> We're purposing the platform specifically for- >> Are you a telco guy? >> I am. You are, okay. >> Total telco guy absolutely. >> So there you go. You see that Snowflake is actually an interesting organizational structure, 'cause you're going after verticals, which is kind of rare for a company of your sort of inventory, I'll say, >> Absolutely. >> I don't mean that as a negative. (Dave laughs) So Dave, take us through the data journey at AT&T. It's a long history. You don't have to go back to the 1800s, but- (Dave laughs) >> Thank you for pointing out, we're a 149-year-old company. So, Jesse James was one of the original customers, (Dave laughs) and we have no longer got his data. So, I'll go back. I've been 17 years singular AT&T, and I've watched it through the whole journey of, where the monolithics were growing, when the consolidation of small, wireless carriers, and we went through that boom. And then we've gone through mergers and acquisitions. But, Hadoop came out, and it was going to solve all world hunger. And we had all the aspects of, we're going to monetize and do AI and ML, and some of the things we learned with Hadoop was, we had this monolithic warehouse, we had this file-based-structured Hadoop, but we really didn't know how to bring this all together. And we were bringing items over to the relational, and we were taking the relational and bringing it over to the warehouse, and trying to, and it was a struggle. Let's just go there. And I don't think we were the only company to struggle with that, but we learned a lot. And so now as tech is finally emerging, with the cloud, companies like Snowflake, and others that can handle that, where we can create, we were discussing earlier, but it becomes more of a conducive mesh that's interoperable. So now we're able to simplify that environment. And the cloud is a big thing on that. 'Cause you could not do this on-prem with on-prem technologies. It would be just too cost prohibitive, and too heavy of lifting, going back and forth, and managing the data. The simplicity the cloud brings with a smaller set of tools, and I'll say in the data space specifically, really allows us, maybe not a single instance of data for all use cases, but a greatly reduced ecosystem. And when you simplify your ecosystem, you simplify speed to market and data management. >> So I'm going to ask you, I know it's kind of internal organizational plumbing, but it'll inform my next question. So, Dave, you're with the Chief Data Office, and Roddy, you're kind of, you all serve in the business, but you're really serving the, you're closer to those guys, they're banging on your door for- >> Absolutely. I try to keep the 130,000 users who may or may not have issues sometimes with our data and metrics, away from Dave. And he just gets a call from me. >> And he only calls when he has a problem. He's never wished me happy birthday. (Dave and Phil laugh) >> So the reason I asked that is because, you describe Dave, some of the Hadoop days, and again love-hate with that, but we had hyper-specialized roles. We still do. You've got data engineers, data scientists, data analysts, and you've got this sort of this pipeline, and it had to be this sequential pipeline. I know Snowflake and others have come to simplify that. My question to you is, how is that those roles, how are those roles changing? How is data getting closer to the business? Everybody talks about democratizing business. Are you doing that? What's a real use example? >> From our perspective, those roles, a lot of those roles on my team for years, because we're all about efficiency, >> Dave: Mm-hmm. >> we cut across those areas, and always have cut across those areas. So now we're into a space where things have been simplified, data processes and copying, we've gone from 40 data processes down to five steps now. We've gone from five steps to one step. We've gone from days, now take hours, hours to minutes, minutes to seconds. Literally we're seeing that time in and time out with Snowflake. So these resources that have spent all their time on data engineering and moving data around, are now freed up more on what they have skills for and always have, the data analytics area of the business, and driving the business forward, and new metrics and new analysis. That's some of the great operational value that we've seen here. As this simplification happens, it frees up brain power. >> So, you're pumping data from the OSS, the BSS, the OKRs everywhere >> Everywhere. >> into Snowflake? >> Scheduling systems, you name it. If you can think of what drives our retail and centers and online, all that data, scheduling system, chat data, call center data, call detail data, all of that enters into this common infrastructure to manage the business on a day in and day out basis. >> How are the roles and the skill sets changing? 'Cause you're doing a lot less ETL, you're doing a lot less moving of data around. There were guys that were probably really good at that. I used to joke in the, when I was in the storage world, like if your job is bandaging lungs, you need to look for a new job, right? So, and they did and people move on. So, are you able to sort of redeploy those assets, and those people, those human resources? >> These folks are highly skilled. And we were talking about earlier, SQL hasn't gone away. Relational databases are not going away. And that's one thing that's made this migration excellent, they're just transitioning their skills. Experts in legacy systems are now rapidly becoming experts on the Snowflake side. And it has not been that hard a transition. There are certainly nuances, things that don't operate as well in the cloud environment that we have to learn and optimize. But we're making that transition. >> Dave: So just, >> Please. >> within the Chief Data Office we have a couple of missions, and Roddy is a great partner and an example of how it works. We try to bring the data for democratization, so that we have one interface, now hopefully know we just have a logical connection back to these Snowflake instances that we connect. But we're providing that governance and cleansing, and if there's a business rule at the enterprise level, we provide it. But the goal at CDO is to make sure that business units like Roddy or marketing or finance, that they can come to a platform that's reliable, robust, and self-service. I don't want to be in his way. So I feel like I'm providing a sub-level of platform, that he can come to and anybody can come to, and utilize, that they're not having to go back and undo what's in Salesforce, or ServiceNow, or in our billers. So, I'm sort of that layer. And then making sure that that ecosystem is robust enough for him to use. >> And that self-service infrastructure is predominantly through the Azure Cloud, correct? >> Dave: Absolutely. >> And you work on other clouds, but it's predominantly through Azure? >> We're predominantly in Azure, yeah. >> Dave: That's the first-party citizen? >> Yeah. >> Okay, I like to think in terms sometimes of data products, and I know you've mentioned upfront, you're Gold standard or Platinum standard, you're very careful about personal information. >> Dave: Yeah. >> So you're not trying to sell, I'm an AT&T customer, you're not trying to sell my data, and make money off of my data. So the value prop and the business case for Snowflake is it's simpler. You do things faster, you're in the cloud, lower cost, et cetera. But I presume you're also in the business, AT&T, of making offers and creating packages for customers. I look at those as data products, 'cause it's not a, I mean, yeah, there's a physical phone, but there's data products behind it. So- >> It ultimately is, but not everybody always sees it that way. Data reporting often can be an afterthought. And we're making it more on the forefront now. >> Yeah, so I like to think in terms of data products, I mean even if the financial services business, it's a data business. So, if we can think about that sort of metaphor, do you see yourselves as data product builders? Do you have that, do you think about building products in that regard? >> Within the Chief Data Office, we have a data product team, >> Mm-hmm. >> and by the way, I wouldn't be disingenuous if I said, oh, we're very mature in this, but no, it's where we're going, and it's somewhat of a journey, but I've got a peer, and their whole job is to go from, especially as we migrate from cloud, if Roddy or some other group was using tables three, four and five and joining them together, it's like, "Well look, this is an offer for data product, so let's combine these and put it up in the cloud, and here's the offer data set product, or here's the opportunity data product," and it's a journey. We're on the way, but we have dedicated staff and time to do this. >> I think one of the hardest parts about that is the organizational aspects of it. Like who owns the data now, right? It used to be owned by the techies, and increasingly the business lines want to have access, you're providing self-service. So there's a discussion about, "Okay, what is a data product? Who's responsible for that data product? Is it in my P&L or your P&L? Somebody's got to sign up for that number." So, it sounds like those discussions are taking place. >> They are. And, we feel like we're more the, and CDO at least, we feel more, we're like the guardians, and the shepherds, but not the owners. I mean, we have a role in it all, but he owns his metrics. >> Yeah, and even from our perspective, we see ourselves as an enabler of making whatever AT&T wants to make happen in terms of the key products and officers' trade-in offers, trade-in programs, all that requires this data infrastructure, and managing reps and agents, and what they do from a channel performance perspective. We still ourselves see ourselves as key enablers of that. And we've got to be flexible, and respond quickly to the business. >> I always had empathy for the data engineer, and he or she had to service all these different lines of business with no business context. >> Yeah. >> Like the business knows good data from bad data, and then they just pound that poor individual, and they're like, "Okay, I'm doing my best. It's just ones and zeros to me." So, it sounds like that's, you're on that path. >> Yeah absolutely, and I think, we do have refined, getting more and more refined owners of, since Snowflake enables these golden source data, everybody sees me and my organization, channel performance data, go to Roddy's team, we have a great team, and we go to Dave in terms of making it all happen from a data infrastructure perspective. So we, do have a lot more refined, "This is where you go for the golden source, this is where it is, this is who owns it. If you want to launch this product and services, and you want to manage reps with it, that's the place you-" >> It's a strong story. So Chief Data Office doesn't own the data per se, but it's your responsibility to provide the self-service infrastructure, and make sure it's governed properly, and in as automated way as possible. >> Well, yeah, absolutely. And let me tell you more, everybody talks about single version of the truth, one instance of the data, but there's context to that, that we are taking, trying to take advantage of that as we do data products is, what's the use case here? So we may have an entity of Roddy as a prospective customer, and we may have a entity of Roddy as a customer, high-value customer over here, which may have a different set of mix of data and all, but as a data product, we can then create those for those specific use cases. Still point to the same data, but build it in different constructs. One for marketing, one for sales, one for finance. By the way, that's where your data engineers are struggling. >> Yeah, yeah, of course. So how do I serve all these folks, and really have the context-common story in telco, >> Absolutely. >> or are these guys ahead of the curve a little bit? Or where would you put them? >> I think they're definitely moving a lot faster than the industry is generally. I think the enabling technologies, like for instance, having that single copy of data that everybody sees, a single pane of glass, right, that's definitely something that everybody wants to get to. Not many people are there. I think, what AT&T's doing, is most definitely a little bit further ahead than the industry generally. And I think the successes that are coming out of that, and the learning experiences are starting to generate momentum within AT&T. So I think, it's not just about the product, and having a product now that gives you a single copy of data. It's about the experiences, right? And now, how the teams are getting trained, domains like network engineering for instance. They typically haven't been a part of data discussions, because they've got a lot of data, but they're focused on the infrastructure. >> Mm. >> So, by going ahead and deploying this platform, for platform's purpose, right, and the business value, that's one thing, but also to start bringing, getting that experience, and bringing new experience in to help other groups that traditionally hadn't been data-centric, that's also a huge step ahead, right? So you need to enable those groups. >> A big complaint of course we hear at MWC from carriers is, "The over-the-top guys are killing us. They're riding on our networks, et cetera, et cetera. They have all the data, they have all the client relationships." Do you see your client relationships changing as a result of sort of your data culture evolving? >> Yes, I'm not sure I can- >> It's a loaded question, I know. >> Yeah, and then I, so, we want to start embedding as much into our network on the proprietary value that we have, so we can start getting into that OTT play, us as any other carrier, we have distinct advantages of what we can do at the edge, and we just need to start exploiting those. But you know, 'cause whether it's location or whatnot, so we got to eat into that. Historically, the network is where we make our money in, and we stack the services on top of it. It used to be *69. >> Dave: Yeah. >> If anybody remembers that. >> Dave: Yeah, of course. (Dave laughs) >> But you know, it was stacked on top of our network. Then we stack another product on top of it. It'll be in the edge where we start providing distinct values to other partners as we- >> I mean, it's a great business that you're in. I mean, if they're really good at connectivity. >> Dave: Yeah. >> And so, it sounds like it's still to be determined >> Dave: Yeah. >> where you can go with this. You have to be super careful with private and for personal information. >> Dave: Yep. >> Yeah, but the opportunities are enormous. >> There's a lot. >> Yeah, particularly at the edge, looking at, private networks are just an amazing opportunity. Factories and name it, hospital, remote hospitals, remote locations. I mean- >> Dave: Connected cars. >> Connected cars are really interesting, right? I mean, if you start communicating car to car, and actually drive that, (Dave laughs) I mean that's, now we're getting to visit Xen Fault Tolerance people. This is it. >> Dave: That's not, let's hold the traffic. >> Doesn't scare me as much as we actually learn. (all laugh) >> So how's the show been for you guys? >> Dave: Awesome. >> What're your big takeaways from- >> Tremendous experience. I mean, someone who doesn't go outside the United States much, I'm a homebody. The whole experience, the whole trip, city, Mobile World Congress, the technologies that are out here, it's been a blast. >> Anything, top two things you learned, advice you'd give to others, your colleagues out in general? >> In general, we talked a lot about technologies today, and we talked a lot about data, but I'm going to tell you what, the accelerator that you cannot change, is the relationship that we have. So when the tech and the business can work together toward a common goal, and it's a partnership, you get things done. So, I don't know how many CDOs or CIOs or CEOs are out there, but this connection is what accelerates and makes it work. >> And that is our audience Dave. I mean, it's all about that alignment. So guys, I really appreciate you coming in and sharing your story in "theCUBE." Great stuff. >> Thank you. >> Thanks a lot. >> All right, thanks everybody. Thank you for watching. I'll be right back with Dave Nicholson. Day four SiliconANGLE's coverage of MWC '23. You're watching "theCUBE." (gentle music)
SUMMARY :
that drive human progress. And Phil Kippen, the Global But the data culture's of the OSS stuff that we But enterprise, you got to be So, we may not be as cutting-edge Channel Performance Data and all the way to leadership I don't mean the pejorative, And you guys are leaning into the Cloud. and the process efficiency and one of the nightmares I've lived with, This is the brilliance of the business flexibility, like you're taking your Data Cloud message But the situation in telco and that platform is being utilized You have specific value there. I am. So there you go. I don't mean that as a negative. and some of the things we and Roddy, you're kind of, And he just gets a call from me. (Dave and Phil laugh) and it had to be this sequential pipeline. and always have, the data all of that enters into How are the roles and in the cloud environment that But the goal at CDO is to and I know you've mentioned upfront, So the value prop and the on the forefront now. I mean even if the and by the way, I wouldn't and increasingly the business and the shepherds, but not the owners. and respond quickly to the business. and he or she had to service Like the business knows and we go to Dave in terms doesn't own the data per se, and we may have a entity and really have the and having a product now that gives you and the business value, that's one thing, They have all the data, on the proprietary value that we have, Dave: Yeah, of course. It'll be in the edge business that you're in. You have to be super careful Yeah, but the particularly at the edge, and actually drive that, let's hold the traffic. much as we actually learn. the whole trip, city, is the relationship that we have. and sharing your story in "theCUBE." Thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Whittington | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Roddy | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Phil | PERSON | 0.99+ |
Phil Kippen | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Jesse James | PERSON | 0.99+ |
AT&T. | ORGANIZATION | 0.99+ |
five steps | QUANTITY | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
50 times | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Roddy Tranum | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
one step | QUANTITY | 0.99+ |
17 years | QUANTITY | 0.99+ |
130,000 users | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
1800s | DATE | 0.99+ |
last week | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
last night | DATE | 0.99+ |
MWC '23 | EVENT | 0.98+ |
telco | ORGANIZATION | 0.98+ |
one system | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
40 data processes | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one place | QUANTITY | 0.97+ |
P&L | ORGANIZATION | 0.97+ |
telcos | ORGANIZATION | 0.97+ |
CDO | ORGANIZATION | 0.97+ |
149-year-old | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
single | QUANTITY | 0.96+ |
three components | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
Day 2 MWC Analyst Hot Takes  MWC Barcelona 2023
(soft music) >> Announcer: TheCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Welcome back to Spain, everybody. We're here at the Fira in MWC23. Is just an amazing day. This place is packed. They said 80,000 people. I think it might even be a few more walk-ins. I'm Dave Vellante, Lisa Martin is here, David Nicholson. But right now we have the Analyst Hot Takes with three friends of theCUBE. Chris Lewis is back again with me in the co-host seat. Zeus Kerravala, analyst extraordinaire. Great to see you, Z. and Sarbjeet SJ Johal. Good to see you again, theCUBE contributor. And that's my new name for him. He says that is his nickname. Guys, thanks for coming back on. We got the all male panel, sorry, but it is what it is. So Z, is this the first time you've been on it at MWC. Take aways from the show, Hot Takes. What are you seeing? Same wine, new bottle? >> In a lot of ways, yeah. I mean, I was talking to somebody this earlier that if you had come from like MWC five years ago to this year, a lot of the themes are the same. Telco transformation, cloud. I mean, 5G is a little new. Sustainability is certainly a newer theme here. But I think it highlights just the difficulty I think the telcos have in making this transformation. And I think, in some ways, I've been unfair to them in some degree 'cause I've picked on them in the past for not moving fast enough. These are, you know, I think these kind of big transformations almost take like a perfect storm of things that come together to happen, right? And so, in the past, we had technologies that maybe might have lowered opex, but they're hard to deploy. They're vertically integrated. We didn't have the software stacks. But it appears today that between the cloudification of, you know, going to cloud native, the software stacks, the APIs, the ecosystems, I think we're actually in a position to see this industry finally move forward. >> Yeah, and Chris, I mean, you have served this industry for a long time. And you know, when you, when you do that, you get briefed as an analyst, you actually realize, wow, there's a lot of really smart people here, and they're actually, they have challenges, they're working through it. So Zeus was saying he's been tough on the industry. You know, what do you think about how the telcos have evolved in the last five years? >> I think they've changed enormously. I think the problem we have is we're always looking for the great change, the big step change, and there is no big step change in a way. What telcos deliver to us as individuals, businesses, society, the connectivity piece, that's changed. We get better and better and more reliable connectivity. We're shunting a load more capacity through. What I think has really changed is their attitude to their suppliers, their attitude to their partners, and their attitude to the ecosystem in which they play. Understanding that connectivity is not the end game. Connectivity is part of the emerging end game where it will include storage, compute, connect, and analytics and everything else. So I think the realization that they are not playing their own game anymore, it's a much more open game. And some things they will continue to do, some things they'll stop doing. We've seen them withdraw from moving into adjacent markets as much as we used to see. So a lot of them in the past went off to try and do movies, media, and a lot went way way into business IT stuff. They've mainly pulled back from that, and they're focusing on, and let's face it, it's not just a 5G show. The fixed environment is unbelievably important. We saw that during the pandemic. Having that fixed broadband connection using wifi, combining with cellular. We love it. But the problem as an industry is that the users often don't even know the connectivity's there. They only know when it doesn't work, right? >> If it's not media and it's not business services, what is it? >> Well, in my view, it will be enabling third parties to deliver the services that will include media, that will include business services. So embedding the connectivity all the way into the application that gets delivered or embedding it so the quality mechanism deliver the gaming much more accurately or, I'm not a gamer, so I can't comment on that. But no, the video quality if you want to have a high quality video will come through better. >> And those cohorts will pay for that value? >> Somebody will pay somewhere along the line. >> Seems fuzzy to me. >> Me too. >> I do think it's use case dependent. Like you look at all the work Verizon did at the Super Bowl this year, that's a perfect case where they could have upsold. >> Explain that. I'm not familiar with it. >> So Verizon provided all the 5G in the Super Bowl. They provided a lot of, they provided private connectivity for the coaches to talk to the sidelines. And that's a mission critical application, right? In the NFL, if one side can't talk, the other side gets shut down. You can't communicate with the quarterback or the coaches. There's a lot of risk at that. So, but you know, there's a case there, though, I think where they could have even made that fan facing. Right? And if you're paying 2000 bucks to go to a game, would you pay 50 bucks more to have a higher tier of bandwidth so you can post things on social? People that go there, they want people to know they were there. >> Every football game you go to, you can't use your cell. >> Analyst: Yeah, I know, right? >> All right, let's talk about developers because we saw the eight APIs come out. I think ISVs are going to be a big part of this. But it's like Dee Arthur said. Hey, eight's better than zero, I guess. Okay, so, but so the innovation is going to come from ISVs and developers, but what are your hot takes from this show and now day two, we're a day and a half in, almost two days in. >> Yeah, yeah. There's a thing that we have talked, I mentioned many times is skills gravity, right? Skills have gravity, and also, to outcompete, you have to also educate. That's another theme actually of my talks is, or my research is that to puts your technology out there to the practitioners, you have to educate them. And that's the only way to democratize your technology. What telcos have been doing is they have been stuck to the proprietary software and proprietary hardware for too long, from Nokia's of the world and other vendors like that. So now with the open sourcing of some of the components and a few others, right? And they're open source space and antenna, you know? Antennas are becoming software now. So with the invent of these things, which is open source, it helps us democratize that to the other sort of skirts of the practitioners, if you will. And that will bring in more applications first into the IOT space, and then maybe into the core sort of California, if you will. >> So what does a telco developer look like? I mean, all the blockchain developers and crypto developers are moving into generative AI, right? So maybe those worlds come together. >> You'd like to think though that the developers would understand everything's network centric today. So you'd like to think they'd understand that how the network responds, you know, you'd take a simple app like Zoom or something. If it notices the bandwidth changes, it should knock down the resolution. If it goes up it, then you can add different features and things and you can make apps a lot smarter that way. >> Well, G2 was saying today that they did a deal with Mercedes, you know this probably better than I do, where they're going to embed WebEx in the car. And if you're driving, it'll shut off the camera. >> Of course. >> I'm like, okay. >> I'll give you a better example though. >> But that's my point. Like, isn't there more that we can do? >> You noticed down on the SKT stand the little helicopter. That's a vertical lift helicopter. So it's an electric vertical lift helicopter. Just think of that for a second. And then think of the connectivity to control that, to securely control that. And then I was recently at an event with Zeus actually where we saw an air traffic control system where there was no people manning the tower. It was managed by someone remotely with all the cameras around them. So managing all of those different elements, we call it IOT, but actually it's way more than what we thought of as IOT. All those components connecting, communicating securely and safely. 'Cause I don't want that helicopter to come down on my head, do you? (men laugh) >> Especially if you're in there. (men laugh) >> Okay, so you mentioned sustainability. Everybody's talking about power. I don't know if you guys have a lot of experience around TCO, but I'm trying to get to, well, is this just because energy costs are so high, and then when the energy becomes cheap again, nobody's going to pay any attention to it? Or is this the real deal? >> So one of the issues around the, if we want to experience all that connectivity locally or that helicopter wants to have that connectivity, we have to ultimately build denser, more reliable networks. So there's a CapEx, we're going to put more base stations in place. We need more fiber in the ground to support them. Therefore, the energy consumption will go up. So we need to be more efficient in the use of energy. Simple as that. >> How much of the operating expense is energy? Like what percent of it? Is it 10%? Is it 20%? Is it, does anybody know? >> It depends who you ask and it depends on the- >> I can't get an answer to that. I mean, in the enterprise- >> Analyst: The data centers? >> Yeah, the data centers. >> We have the numbers. I think 10 to 15%. >> It's 10 to 12%, something like that. Is it much higher? >> I've got feeling it's 30%. >> Okay, so if it's 30%, that's pretty good. >> I do think we have to get better at understanding how to measure too. You know, like I was talking with John Davidson at Sysco about this that every rev of silicon they come out with uses more power, but it's a lot more dense. So at the surface, you go, well, that's using a lot more power. But you can consolidate 10 switches down to two switches. >> Well, Intel was on early and talking about how they can intelligently control the cores. >> But it's based off workload, right? That's the thing. So what are you running over it? You know, and so, I don't think our industry measures that very well. I think we look at things kind of boxed by box versus look at total consumption. >> Well, somebody else in theCUBE was saying they go full throttle. That the networks just say just full throttle everything. And that obviously has to change from the power consumption standpoint. >> Obviously sustainability and sensory or sensors from IOT side, they go hand in hand. Just simple examples like, you know, lights in the restrooms, like in public areas. Somebody goes in there and just only then turns. The same concept is being applied to servers and compute and storage and every aspects and to networks as well. >> Cell tower. >> Yeah. >> Cut 'em off, right? >> Like the serverless telco? (crosstalk) >> Cell towers. >> Well, no, I'm saying, right, but like serverless, you're not paying for the compute when you're not using it, you know? >> It is serverless from the economics point of view. Yes, it's like that, you know? It goes to the lowest level almost like sleep on our laptops, sleep level when you need more power, more compute. >> I mean, some of that stuff's been in networking equipment for a long time, it just never really got turned on. >> I want to ask you about private networks. You wrote a piece, Athenet was acquired by HPE right after Dell announced a relationship with Athenet, which was kind of, that was kind of funny. And so a good move, good judo move by by HP. I asked Dell about it, and they said, look, we're open. They said the right things. We'll see, but I think it's up to HP. >> Well, and the network inside Dell is. >> Yeah, okay, so. Okay, cool. So, but you said something in that article you wrote on Silicon Angle that a lot of people feel like P5G is going to basically replace wireless or cannibalize wireless. You said you didn't agree with that. Explain why? >> Analyst: Wifi. >> Wifi, sorry, I said wireless. >> No, that's, I mean that's ridiculous. Pat Gelsinger said that in his last VMware, which I thought was completely irresponsible. >> That it was going to cannibalize? >> Cannibalize wifi globally is what he said, right? Now he had Verizon on stage with him, so. >> Analyst: Wifi's too inexpensive and flexible. >> Wifi's cheap- >> Analyst: It's going to embed really well. Embedded in that. >> It's reached near ubiquity. It's unlicensed. So a lot of businesses don't want to manage their own spectrum, right? And it's great for this, right? >> Analyst: It does the job. >> For casual connectivity. >> Not today. >> Well, it does for the most part. Right now- >> For the most part. But never at these events. >> If it's engineered correctly, it will. Right? Where you need private 5G is when reliability is an absolute must. So, Chris, you and I visited the Port of Rotterdam, right? So they're putting 5G, private 5G there, but there's metal containers everywhere, right? And that's going to disrupt it. And so there are certain use cases where it makes sense. >> I've been in your basement, and you got some pretty intense equipment in there. You have private 5G in there. >> But for carpeted offices, it does not make sense to bring private. The economics don't make any sense. And you know, it runs hot. >> So where's it going to be used? Give us some examples of where we should be looking for. >> The early ones are obviously in mining, and you say in ports, in airports. It broadens cities because you've got so many moving parts in there, and always think about it, very expensive moving parts. The cranes in the port are normally expensive piece of kits. You're moving that, all that logistics around. So managing that over a distance where the wifi won't work over the distance. And in mining, we're going to see enormous expensive trucks moving around trying to- >> I think a great new use case though, so the Cleveland Browns actually the first NFL team to use it for facial recognition to enter the stadium. So instead of having to even pull your phone out, it says, hey Dave Vellante. You've got four tickets, can we check you all in? And you just walk through. You could apply that to airports. You could do put that in a hotel. You could walk up and check in. >> Analyst: Retail. >> Yeah, retail. And so I think video, realtime video analytics, I think it's a perfect use case for that. >> But you don't need 5G to do that. You could do that through another mechanism, couldn't you? >> You could do wire depending on how mobile you want to do it. Like in a stadium, you're pulling those things in and out all the time. You're moving 'em around and things, so. >> Yeah, but you're coming in at a static point. >> I'll take the contrary view here. >> See, we can't even agree on that. (men laugh) >> Yeah, I love it. Let's go. >> I believe the reliability of connection is very important, right? And the moving parts. What are the moving parts in wifi? We have the NIC card, you know, the wifi card in these suckers, right? In a machine, you know? They're bigger in size, and the radios for 5G are smaller in size. So neutralization is important part of the whole sort of progress to future, right? >> I think 5G costs as well. Yes, cost as well. But cost, we know that it goes down with time, right? We're already talking about 60, and the 5G stuff will be good. >> Actually, sorry, so one of the big boom areas at the moment is 4G LTE because the component price has come down so much, so it is affordable, you can afford to bring it all together. People don't, because we're still on 5G, if 5G standalone everywhere, you're not going to get a consistent service. So those components are unbelievably important. The skillsets of the people doing integration to bring them all together, unbelievably important. And the business case within the business. So I was talking to one of the heads of one of the big retail outlets in the UK, and I said, when are you going to do 5G in the stores? He said, well, why would I tear out all the wifi? I've got perfectly functioning wifi. >> Yeah, that's true. It's already there. But I think the technology which disappears in front of you, that's the best technology. Like you don't worry about it. You don't think it's there. Wifi, we think we think about that like it's there. >> And I do think wifi 5G switching's got to get easier too. Like for most users, you don't know which is better. You don't even know how to test it. And to your point, it does need to be invisible where the user doesn't need to think about it, right? >> Invisible. See, we came back to invisible. We talked about that yesterday. Telecom should be invisible. >> And it should be, you know? You don't want to be thinking about telecom, but at the same time, telecoms want to be more visible. They want to be visible like Netflix, don't they? I still don't see the path. It's fuzzy to me the path of how they're not going to repeat what happened with the over the top providers if they're invisible. >> Well, if you think about what telcos delivers to consumers, to businesses, then extending that connectivity into your home to help you support secure and extend your connection into Zeus's basement, whatever it is. Obviously that's- >> His awesome setup down there. >> And then in the business environment, there's a big change going on from the old NPLS networks, the old rigid structures of networks to SD1 where the control point is moved outside, which can be under control of the telco, could be under the control of a third party integrator. So there's a lot changing. I think we obsess about the relative role of the telco. The demand is phenomenal for connectivity. So address that, fulfill that. And if they do that, then they'll start to build trust in other areas. >> But don't you think they're going to address that and fulfill that? I mean, they're good at it. That's their wheelhouse. >> And it's a 1.6 trillion market, right? So it's not to be sniffed at. That's fixed on mobile together, obviously. But no, it's a big market. And do we keep changing? As long as the service is good, we don't move away from it. >> So back to the APIs, the eight APIs, right? >> I mean- >> Eight APIs is a joke actually almost. I think they released it too early. The release release on the main stage, you know? Like, what? What is this, right? But of course they will grow into hundreds and thousands of APIs. But they have to spend a lot of time and effort in that sort of context. >> I'd actually like to see the GSMA work with like AWS and Microsoft and VMware and software companies and create some standardization across their APIs. >> Yeah. >> I spoke to them yes- >> We're trying to reinvent them. >> Is that not what they're doing? >> No, they said we are not in the business of a defining standards. And they used a different term, not standard. I mean, seriously. I was like, are you kidding me? >> Let's face it, there aren't just eight APIs out there. There's so many of them. The TM forum's been defining when it's open data architecture. You know, the telcos themselves are defining them. The standards we talked about too earlier with Danielle. There's a lot of APIs out there, but the consistency of APIs, so we can bring them together, to bring all the different services together that will support us in our different lives is really important. I think telcos will do it, it's in their interest to do it. >> All right, guys, we got to wrap. Let's go around the horn here, starting with Chris, Zeus, and then Sarbjeet, just bring us home. Number one hot take from Mobile World Congress MWC23 day two. >> My favorite hot take is the willingness of all the participants who have been traditional telco players who looked inwardly at the industry looking outside for help for partnerships, and to build an ecosystem, a more open ecosystem, which will address our requirements. >> Zeus? >> Yeah, I was going to talk about ecosystem. I think for the first time ever, when I've met with the telcos here, I think they're actually, I don't think they know how to get there yet, but they're at least aware of the fact that they need to understand how to build a big ecosystem around them. So if you think back like 50 years ago, IBM and compute was the center of everything in your company, and then the ecosystem surrounded it. I think today with digital transformation being network centric, the telcos actually have the opportunity to be that center of excellence, and then build an ecosystem around them. I think the SIs are actually in a really interesting place to help them do that 'cause they understand everything top to bottom that I, you know, pre pandemic, I'm not sure the telcos were really understand. I think they understand it today, I'm just not sure they know how to get there. . >> Sarbjeet? >> I've seen the lot of RN demos and testing companies and I'm amazed by it. Everything is turning into software, almost everything. The parts which are not turned into software. I mean every, they will soon. But everybody says that we need the hardware to run something, right? But that hardware, in my view, is getting miniaturized, and it's becoming smaller and smaller. The antennas are becoming smaller. The equipment is getting smaller. That means the cost on the physicality of the assets is going down. But the cost on the software side will go up for telcos in future. And telco is a messy business. Not everybody can do it. So only few will survive, I believe. So that's what- >> Software defined telco. So I'm on a mission. I'm looking for the monetization path. And what I haven't seen yet is, you know, you want to follow the money, follow the data, I say. So next two days, I'm going to be looking for that data play, that potential, the way in which this industry is going to break down the data silos I think there's potential goldmine there, but I haven't figured out yet. >> That's a subject for another day. >> Guys, thanks so much for coming on. You guys are extraordinary partners of theCUBE friends, and great analysts and congratulations and thank you for all you do. Really appreciate it. >> Analyst: Thank you. >> Thanks a lot. >> All right, this is a wrap on day two MWC 23. Go to siliconangle.com for all the news. Where Rob Hope and team are just covering all the news. John Furrier is in the Palo Alto studio. We're rocking all that news, taking all that news and putting it on video. Go to theCUBE.net, you'll see everything on demand. Thanks for watching. This is a wrap on day two. We'll see you tomorrow. (soft music)
SUMMARY :
that drive human progress. Good to see you again, And so, in the past, we had technologies have evolved in the last five years? is that the users often don't even know So embedding the connectivity somewhere along the line. at the Super Bowl this year, I'm not familiar with it. for the coaches to talk to the sidelines. you can't use your cell. Okay, so, but so the innovation of the practitioners, if you will. I mean, all the blockchain developers that how the network responds, embed WebEx in the car. Like, isn't there more that we can do? You noticed down on the SKT Especially if you're in there. I don't know if you guys So one of the issues around the, I mean, in the enterprise- I think 10 to 15%. It's 10 to 12%, something like that. Okay, so if it's So at the surface, you go, control the cores. That's the thing. And that obviously has to change and to networks as well. the economics point of view. I mean, some of that stuff's I want to ask you P5G is going to basically replace wireless Pat Gelsinger said that is what he said, right? Analyst: Wifi's too to embed really well. So a lot of businesses Well, it does for the most part. For the most part. And that's going to disrupt it. and you got some pretty it does not make sense to bring private. So where's it going to be used? The cranes in the port are You could apply that to airports. I think it's a perfect use case for that. But you don't need 5G to do that. in and out all the time. Yeah, but you're coming See, we can't even agree on that. Yeah, I love it. I believe the reliability of connection and the 5G stuff will be good. I tear out all the wifi? that's the best technology. And I do think wifi 5G We talked about that yesterday. I still don't see the path. to help you support secure from the old NPLS networks, But don't you think So it's not to be sniffed at. the main stage, you know? the GSMA work with like AWS are not in the business You know, the telcos Let's go around the horn here, of all the participants that they need to understand But the cost on the the data silos I think there's and thank you for all you do. John Furrier is in the Palo Alto studio.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Chris Lewis | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Mercedes | ORGANIZATION | 0.99+ |
Zeus Kerravala | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
50 bucks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
UK | LOCATION | 0.99+ |
Z. | PERSON | 0.99+ |
10 switches | QUANTITY | 0.99+ |
Sysco | ORGANIZATION | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
2000 bucks | QUANTITY | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Cleveland Browns | ORGANIZATION | 0.99+ |
30% | QUANTITY | 0.99+ |
Spain | LOCATION | 0.99+ |
20% | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
10% | QUANTITY | 0.99+ |
telco | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
two switches | QUANTITY | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
80,000 people | QUANTITY | 0.99+ |
Athenet | ORGANIZATION | 0.99+ |
tomorrow | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John Davidson | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Super Bowl | EVENT | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Dee Arthur | PERSON | 0.99+ |
G2 | ORGANIZATION | 0.99+ |
Zeus | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
15% | QUANTITY | 0.99+ |
Rob Hope | PERSON | 0.99+ |
five years ago | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
first time | QUANTITY | 0.99+ |
California | LOCATION | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
MWC23 | LOCATION | 0.99+ |
SKT | ORGANIZATION | 0.99+ |
theCUBE.net | OTHER | 0.99+ |
12% | QUANTITY | 0.98+ |
GSMA | ORGANIZATION | 0.98+ |
Eight APIs | QUANTITY | 0.98+ |
Danielle | PERSON | 0.98+ |
Telco | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
eight APIs | QUANTITY | 0.98+ |
5G | ORGANIZATION | 0.98+ |
telcos | ORGANIZATION | 0.98+ |
three friends | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
Mobile World Congress | EVENT | 0.97+ |
CapEx | ORGANIZATION | 0.97+ |
50 years ago | DATE | 0.97+ |
day two | QUANTITY | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
four tickets | QUANTITY | 0.96+ |
a day and a half | QUANTITY | 0.96+ |
MWC | EVENT | 0.96+ |
TheCUBE | ORGANIZATION | 0.96+ |
pandemic | EVENT | 0.95+ |
Zeus | PERSON | 0.95+ |
Deania Davidson, Dell Technologies & Dave Lincoln, Dell Technologies | MWC Barcelona 2023
>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Hey everyone and welcome back to Barcelona, Spain, it's theCUBE. We are live at MWC 23. This is day two of our coverage, we're giving you four days of coverage, but you already know that because you were here yesterday. Lisa Martin with Dave Nicholson. Dave this show is massive. I was walking in this morning and almost getting claustrophobic with the 80,000 people that are joining us. There is, seems to be at MWC 23 more interest in enterprise-class technology than we've ever seen before. What are some of the things that you've observed with that regard? >> Well I've observed a lot of people racing to the highest level messaging about how wonderful it is to have the kiss of a breeze on your cheek, and to feel the flowing wheat. (laughing) I want to hear about the actual things that make this stuff possible. >> Right. >> So I think we have a couple of guests here who can help us start to go down that path of actually understanding the real cool stuff that's behind the scenes. >> And absolutely we got some cool stuff. We've got two guests from Dell. Dave Lincoln is here, the VP of Networking and Emerging the Server Solutions, and Deania Davidson, Director Edge Server Product Planning and Management at Dell. So great to have you. >> Thank you. >> Two Daves, and a Davidson. >> (indistinct) >> Just me who stands alone here. (laughing) So guys talk about, Dave, we'll start with you the newest generation of PowerEdge servers. What's new? Why is it so exciting? What challenges for telecom operators is it solving? >> Yeah, well so this is actually Dell's largest server launch ever. It's the most expansive, which is notable because of, we have a pretty significant portfolio. We're very proud of our core mainstream portfolio. But really since the Supercompute in Dallas in November, that we started a rolling thunder of launches. MWC being part of that leading up to DTW here in May, where we're actually going to be announcing big investments in those parts of the market that are the growth segments of server. Specifically AIML, where we in, to address that. We're investing heavy in our XE series which we, as I said, we announced at Supercompute in November. And then we have to address the CSP segment, a big investment around the HS series which we just announced, and then lastly, the edge telecom segment which we're, we had the biggest investment, biggest announce in portfolio launch with XR series. >> Deania, lets dig into that. >> Yeah. >> Where we see the growth coming from you mentioned telecom CSPs with the edge. What are some of the growth opportunities there that organizations need Dell's help with to manage, so that they can deliver what they're demanding and user is wanting? >> The biggest areas being obviously, in addition the telecom has been the biggest one, but the other areas too we're seeing is in retail and manufacturing as well. And, so internally, I mean we're going to be focused on hardware, but we also have a solutions team who are working with us to build the solutions focused on retail, and edge and telecom as well on top of the servers that we'll talk about shortly. >> What are some of the biggest challenges that retailers and manufacturers are facing? And during the pandemic retailers, those that were successful pivoted very quickly to curbside delivery. >> Deania: Yeah. >> Those that didn't survive weren't able to do that digitally. >> Deania: Yeah. >> But we're seeing such demand. >> Yeah. >> At the retail edge. On the consumer side we want to get whatever we want right now. >> Yes. >> It has to be delivered, it has to be personalized. Talk a little bit more about some of the challenges there, within those two verticals and how Dell is helping to address those with the new server technologies. >> For retail, I think there's couple of things, the one is like in the fast food area. So obviously through COVID a lot of people got familiar and comfortable with driving through. >> Lisa: Yeah. >> And so there's probably a certain fast food restaurant everyone's pretty familiar with, they're pretty efficient in that, and so there are other customers who are trying to replicate that, and so how do we help them do that all, from a technology perspective. From a retail, it's one of the pickup and the online experience, but when you go into a store, I don't know about you but I go to Target, and I'm looking for something and I have kids who are kind of distracting you. Its like where is this one thing, and so I pull up the Target App for example, and it tells me where its at, right. And then obviously, stores want to make more money, so like hey, since you picked this thing, there are these things around you. So things like that is what we're having conversations with customers about. >> It's so interesting because the demand is there. >> Yeah, it is. >> And its not going to go anywhere. >> No. >> And it's certainly not going to be dialed down. We're not going to want less stuff, less often. >> Yeah (giggles) >> And as typical consumers, we don't necessarily make the association between what we're seeing in the palm of our hand on a mobile device. >> Deania: Right. >> And the infrastructure that's actually supporting all of it. >> Deania: Right. >> People hear the term Cloud and they think cloud-phone mystery. >> Yeah, magic just happens. >> Yeah. >> Yeah. >> But in fact, in order to support the things that we want to be able to do. >> Yeah. >> On the move, you have to optimize the server hardware. >> Deania: Yes. >> In certain ways. What does that mean exactly? When you say that its optimized, what are the sorts of decisions that you make when you're building? I think of this in the terms of Lego bricks. >> Yes, yeah >> Put together. What are some of the decisions that you make? >> So there were few key things that we really had to think about in terms of what was different from the Data center, which obviously supports the cloud environment, but it was all about how do we get closer to the customer right? How do we get things really fast and how do we compute that information really quickly. So for us, it's things like size. All right, so our server is going to weigh one of them is the size of a shoe box and (giggles), we have a picture with Dave. >> Dave: It's true. >> Took off his shoe. >> Its actually, its actually as big as a shoe. (crowd chuckles) >> It is. >> It is. >> To be fair, its a pretty big shoe. >> True, true. >> It is, but its small in relative to the old big servers that you see. >> I see what you're doing, you find a guy with a size 12, (crowd giggles) >> Yeah. >> Its the size of your shoe. >> Yeah. >> Okay. >> Its literally the size of a shoe, and that's our smallest server and its the smallest one in the portfolio, its the XR 4000, and so we've actually crammed a lot of technology in there going with the Intel ZRT processors for example to get into that compute power. The XR 8000 which you'll be hearing a lot more about shortly with our next guest is one I think from a telco perspective is our flagship product, and its size was a big thing there too. Ruggedization so its like (indistinct) certification, so it can actually operate continuously in negative 5 to 55 C, which for customers, or they need that range of temperature operation, flexibility was a big thing too. In meaning that, there are some customers who wanted to have one system in different areas of deployment. So can I take this one system and configure it one way, take that same system, configure another way and have it here. So flexibility was really key for us as well, and so we'll actually be seeing that in the next segment coming. >> I think one of, some of the common things you're hearing from this is our focus on innovation, purpose build servers, so yes our times, you know economic situation like in itself is tough yeah. But far from receding we've doubled down on investment and you've seen that with the products that we are launching here, and we will be launching in the years to come. >> I imagine there's a pretty sizeable day impact to the total adjustable market for PowerEdge based on the launch what you're doing, its going to be a tam, a good size tam expansion. >> Yeah, absolutely. Depending on how you look at it, its roughly we add about $30 Billion of adjustable tam between the three purposeful series that we've launched, XE, HS and XR. >> Can you comment on, I know Dell and customers are like this. Talk about, I'd love to get both of your perspective, I'm sure you have a favorite customer stories. But talk about the involvement of the customer in the generation, and the evolution of PowerEdge. Where are they in that process? What kind of feedback do they deliver? >> Well, I mean, just to start, one thing that is essential Cortana of Dell period, is it all is about the customer. All of it, everything that we do is about the customer, and so there is a big focus at our level, from on high to get out there and talk with customers, and actually we have a pretty good story around XR8000 which is call it our flagship of the XR line that we've just announced, and because of this deep customer intimacy, there was a last minute kind of architectural design change. >> Hm-mm. >> Which actually would have been, come to find out it would have been sort of a fatal flaw for deployment. So we corrected that because of this tight intimacy with our customers. This was in two Thanksgiving ago about and, so anyways it's super cool and the fact that we were able to make a change so late in development cycle, that's a testament to a lot of the speed and, speed of innovation that we're driving, so anyway that was that's one, just case of one example. >> Hm-mm. >> Let talk about AI, we can't go to any trade show without talking about AI, the big thing right now is ChatGPT. >> Yeah. >> I was using it the other day, it's so interesting. But, the growing demand for AI, talk about how its driving the evolution of the server so that more AI use cases can become more (indistinct). >> In the edge space primarily, we actually have another product, so I guess what you'll notice in the XR line itself because there are so many different use cases and technologies that support the different use cases. We actually have a range form factor, so we have really small, I guess I would say 350 ml the size of a shoe box, you know, Dave's shoe box. (crowd chuckles) And then we also have, at the other end a 472, so still small, but a little bit bigger, but we did recognize obviously AI was coming up, and so that is our XR 7620 platform and that does support 2 GPUs right, so, like for Edge infrencing, making sure that we have the capability to support customers in that too, but also in the small one, we do also have a GPU capability there, that also helps in those other use cases as well. So we've built the platforms even though they're small to be able to handle the GPU power for customers. >> So nice tight package, a lot of power there. >> Yes. >> Beside as we've all clearly demonstrated the size of Dave's shoe. (crowd chuckles) Dave, talk about Dell's long standing commitment to really helping to rapidly evolve the server market. >> Dave: Yeah. >> Its a pivotal payer there. >> Well, like I was saying, we see innovation, I mean, this is, to us its a race to the top. You talked about racing and messaging that sort of thing, when you opened up the show here, but we see this as a race to the top, having worked at other server companies where maybe its a little bit different, maybe more of a race to the bottom source of approach. That's what I love about being at Dell. This is very much, we understand that it's innovation is that is what's going to deliver the most value for our customers. So whether its some of the first to market, first of its kind sort of innovation that you find in the XR4000, or XR8000, or any of our XE line, we know that at the end of day, that is what going to propel Dell, do the best for our customers and thereby do the best for us. To be honest, its a little bit surprising walking by some of our competitors booths, there's been like a dearth of zero, like no, like it's almost like you wouldn't even know that there was a big launch here right? >> Yeah. >> Or is it just me? >> No. >> It was a while, we've been walking around and yet we've had, and its sort of maybe I should take this as a flattery, but a lot of our competitors have been coming by to our booth everyday actually. >> Deania: Yeah, everyday. >> They came by multiple times yesterday, they came by multiple times today, they're taking pictures of our stuff I kind of want to just send 'em a sample. >> Lisa: Or your shoe. >> Right? Or just maybe my shoe right? But anyway, so I suppose I should take it as an honor. >> Deania: Yeah. >> And conversely when we've walked over there we actually get in back (indistinct), maybe I need a high Dell (indistinct). (crowd chuckles) >> We just had that experience, yeah. >> Its kind of funny but. >> Its a good position to be in. >> Yeah. >> Yes. >> You talked about the involvement of the customers, talk a bit more about Dell's ecosystem is also massive, its part of what makes Dell, Dell. >> Wait did you say ego-system? (laughing) After David just. >> You caught that? Darn it! The talk about the influence or the part of the ecosystem and also some of the feedback from the partners as you've been rapidly evolving the server market and clearly your competitors are taking notice. >> Yeah, sorry. >> Deania: That's okay. >> Dave: you want to take that? >> I mean I would say generally, one of the things that Dell prides itself on is being able to deliver the worlds best innovation into the hands of our customers, faster and better that any other, the optimal solution. So whether its you know, working with our great partners like Intel, AMD Broadcom, these sorts of folks. That is, at the end of the day that is our core mantra, again its retractor on service, doing the best, you know, what's best for the customers. And we want to bring the world's best innovation from our technology partners, get it into the hands of our partners you know, faster and better than any other option out there. >> Its a satisfying business for all of us to be in, because to your point, I made a joke about the high level messaging. But really, that's what it comes down to. >> Lisa: Yeah. >> We do these things, we feel like sometimes we're toiling in obscurity, working with the hardware. But what it delivers. >> Deania: Hm-mm. >> The experiences. >> Dave: Absolutely. >> Deania: Yes. >> Are truly meaningful. So its a fun. >> Absolutely. >> Its a really fun thing to be a part of. >> It is. >> Absolutely. >> Yeah. Is there a favorite customer story that you have that really articulates the value of what Dell is doing, full PowerEdge, at the Edge? >> Its probably one I can't particularly name obviously but, it was, they have different environments, so, in one case there's like on flights or on sea vessels, and just being able to use the same box in those different environments is really cool. And they really appreciate having the small compact, where they can just take the server with them and go somewhere. That was really cool to me in terms of how they were using the products that we built for them. >> I have one that's kind of funny. It around XR8000. Again a customer I won't name but they're so proud of it, they almost kinds feel like they co defined it with us, they want to be on the patent with us so, anyways that's. >> Deania: (indistinct). >> That's what they went in for, yeah. >> So it shows the strength of the partnership that. >> Yeah, exactly. >> Of course, the ecosystem of partners, customers, CSVs, telecom Edge. Guys thank you so much for joining us today. >> Thank you. >> Thank you. >> Sharing what's new with the PowerEdge. We can't wait to, we're just, we're cracking open the box, we saw the shoe. (laughing) And we're going to be dealing a little bit more later. So thank you. >> We're going to be able to touch something soon? >> Yes, yes. >> Yeah. >> In couple of minutes? >> Next segment I think. >> All right! >> Thanks for setting the table for that guys. We really appreciate your time. >> Thank you for having us. >> Thank you. >> Alright, our pleasure. >> For our guests and for Dave Nicholson, I'm Lisa Martin . You're watching theCUBE. The leader in live tech coverage, LIVE in Barcelona, Spain, MWC 23. Don't go anywhere, we will be right back with our next guests. (gentle music)
SUMMARY :
that drive human progress. What are some of the have the kiss of a breeze that's behind the scenes. the VP of Networking and and a Davidson. the newest generation that are the growth segments of server. What are some of the but the other areas too we're seeing is What are some of the biggest challenges do that digitally. On the consumer side we some of the challenges there, the one is like in the fast food area. and the online experience, because the demand is there. going to be dialed down. in the palm of our hand And the infrastructure People hear the term Cloud the things that we want to be able to do. the server hardware. decisions that you make What are some of the from the Data center, its actually as big as a shoe. that you see. and its the smallest one in the portfolio, some of the common things for PowerEdge based on the between the three purposeful and the evolution of PowerEdge. flagship of the XR line and the fact that we were able the big thing right now is ChatGPT. the evolution of the server but also in the small one, a lot of power there. the size of Dave's shoe. the first to market, and its sort of maybe I should I kind of want to just send 'em a sample. But anyway, so I suppose I should take it we actually get in back (indistinct), involvement of the customers, Wait did you say ego-system? and also some of the one of the things that I made a joke about the we feel like sometimes So its a fun. that really articulates the the server with them they want to be on the patent with us so, So it shows the Of course, the ecosystem of partners, we saw the shoe. the table for that guys. we will be right back
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Deania | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
May | DATE | 0.99+ |
Dave Lincoln | PERSON | 0.99+ |
David | PERSON | 0.99+ |
November | DATE | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Cortana | TITLE | 0.99+ |
350 ml | QUANTITY | 0.99+ |
Dallas | LOCATION | 0.99+ |
Target | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
Two | QUANTITY | 0.99+ |
XR 4000 | COMMERCIAL_ITEM | 0.99+ |
four days | QUANTITY | 0.99+ |
80,000 people | QUANTITY | 0.99+ |
two guests | QUANTITY | 0.99+ |
XR 8000 | COMMERCIAL_ITEM | 0.99+ |
XR8000 | COMMERCIAL_ITEM | 0.99+ |
55 C | QUANTITY | 0.99+ |
2 GPUs | QUANTITY | 0.99+ |
Deania Davidson | PERSON | 0.99+ |
XR4000 | COMMERCIAL_ITEM | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
two verticals | QUANTITY | 0.99+ |
Barcelona, Spain | LOCATION | 0.98+ |
both | QUANTITY | 0.98+ |
Lego | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
XR series | COMMERCIAL_ITEM | 0.98+ |
one system | QUANTITY | 0.98+ |
about $30 Billion | QUANTITY | 0.97+ |
Supercompute | ORGANIZATION | 0.97+ |
MWC | EVENT | 0.97+ |
zero | QUANTITY | 0.95+ |
5 | QUANTITY | 0.95+ |
first | QUANTITY | 0.94+ |
MWC 23 | EVENT | 0.94+ |
this morning | DATE | 0.94+ |
telco | ORGANIZATION | 0.93+ |
one way | QUANTITY | 0.93+ |
Davidson | ORGANIZATION | 0.92+ |
couple | QUANTITY | 0.92+ |
two | DATE | 0.91+ |
Edge | ORGANIZATION | 0.91+ |
Yousef Khalidi, Microsoft & Dennis Hoffman, Dell Technologies | MWC Barcelona 2023
>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Welcome back to the Fira in Barcelona. This is Dave Vellante with David Nicholson. Lisa Martin is also here. This is day two of our coverage of MWC 23 on theCUBE. We're super excited. We're in between hall four and five. Stop by if you're here. Dennis Hoffman is here. He's the senior vice president and general manager of the Telecom systems business at Dell Technologies, and he's joined by Yousef Khalidi, who's the corporate vice president of Azure for Operators from Microsoft. Gents, Welcome. >> Thanks, Dave. >> Thank you. >> So we saw Satya in the keynote. He wired in. We saw T.K. came in. No AWS. I don't know. They're maybe not part of the show, but maybe next year they'll figure it out. >> Indeed, indeed. >> Lots of stuff happened in the Telecom, but the Azure operator distributed service is the big news, you guys got here. What's that all about? >> Oh, first of all, we changed the name. >> Oh, you did? >> You did? >> Oh, yeah. We have a real name now. It's called the Azure Operator Nexus. >> Oh, I like Nexus better than that. >> David: That's much better, much better. >> Dave: The engineers named it first time around. >> I wish, long story, but thank you for our marketing team. But seriously, not only did we rename the platform, we expanded the platform. >> Dave: Yeah. >> So it now covers the whole spectrum from the far-edge to the public cloud as well, including the near-edge as well. So essentially, it's a hybrid platform that can also run network functions. So all these operators around you, they now have a platform which combines cloud technologies with the choice where they want to run, optimized for the network. >> Okay and so, you know, we've talked about the disaggregation of the network and how you're bringing kind of engineered systems to the table. We've seen this movie before, but Dennis, there are differences, right? I mean, you didn't really have engineered systems in the 90s. You didn't have those integration points. You really didn't have the public cloud, you didn't have AI. >> Right. >> So you have all those new powers that you can tap, so give us the update from your perspective, having now spent a day and a half here. What's the vibe, what's the buzz, and what's your take on everything? >> Yeah, I think to build on what Yousef said, there's a lot going on with people still trying to figure out exactly how to architect the Telecom network of the future. They know it's got to have a lot to do with cloud. It does have some pretty significant differences, one of those being, there's definitely got to be a hybrid component because there are pieces of the Telecom network that even when modernized will not end up centralized, right? They're going to be highly distributed. I would say though, you know, we took away two things, yesterday, from all the meetings. One, people are done, I think the network operators are done, questioning technology readiness. They're now beginning to wrestle with operationalization of it all, right? So it's like, okay, it's here. I can in fact build a modern network in a very cloud native way, but I've got to figure out how to do that all. And another big part of it is the ecosystem and certainly the partnership long standing between Dell and Microsoft which we're extending into this space is part of that, making it easier on people to actually acquire, deploy, and importantly, support these new technologies. >> So a lot of the traditional carriers, like you said, they're sort of beyond the technology readiness. Jose Maria Alvarez in the keynote said there are three pillars to the future Telecom network. He said low latency, programmable networks, and then cloud and edge, kind of threw that in. You agree with that, Yousef? (Dave and Yousef speaking altogether) >> I mean, we've been for years talking about the cloud and edge. >> Yeah. >> Satya for years had the same graphic. We still have it. Today, we have expanded the graphic a bit to include the network as one, because you can have a cloud without connectivity as well but this is very, very, very, very much true. >> And so the question then, Dennis, is okay, you've got disruptors, we had Dish on yesterday. >> Oh, did you? Good. >> Yeah, yeah, and they're talking about what they're doing with, you know, ORAN and all the applications, really taking account of it. What I see is a developer friendly, you know, environment. You got the carriers talking about how they're going to charge developers for APIs. I think they've published eight APIs which is nowhere near enough. So you've got that sort of, you know, inertia and yet, you have the disruptors that are going to potentially be a catalyst to, you know, cross the chasm, if you will. So, you know, put on your strategy hat. >> Yeah. >> Dave: How do you see that playing out? >> Well, they're trying to tap into three things, the disruptors. You know, I think the thesis is, "If I get to a truly cloud native, communications network first, I ought to have greater agility so that I can launch more services and create more revenue streams. I ought to be lower cost in terms of both acquisition cost and operating cost, right, and I ought to be able to create scale between my IT organization, everything I know how to do there and my Telecom network." You know, classic, right? Better, faster, cheaper if I embrace cloud early on. And people like Dish, you know, they have a clean sheet of paper with which to do that. So innovation and rate of innovation is huge for them. >> So what would you do? We put your Clay Christensen hat on, now. What if you were at a traditional Telco who's like, complaining about- >> You're going to get me in trouble. >> Dave: Come on, come on. >> Don't do it. >> Dave: Help him out. Help him out, help him out. So if, you know, they're complaining about CapEx, they're highly regulated, right, they want net neutrality but they want to be able to sort of dial up the cost of those using the network. So what would you do? Would you try to disrupt yourself? Would you create a skunkworks? Would you kind of spin off a disruptor? That's a real dilemma for those guys. >> Well for mobile network operators, the beauty of 5G is it's the first cloud native cellular standard. So I don't know if anybody's throwing these terms around, but 5G SA is standalone, right? >> Dave: Yeah, yeah. >> So a lot of 'em, it's not a skunkworks. They're just literally saying, "I've got to have a 5G network." And some of 'em are deciding, "I'm going to stand it up all by itself." Now, that's duplicative expense in a lot of ways, but it creates isolation from the two networks. Others are saying, "No, it's got to be NSA. I've got to be able to combine 4G and 5G." And then you're into the brownfield thing. >> That's the hybrid. >> Not hybrid as in cloud, but hybrid as in, you know. >> Yeah, yeah. >> It's a converge network. >> Dave: Yeah, yeah. >> So, you know, I would say for a lot of them, they're adopting, probably rightly so, a wait and see attitude. One thing we haven't talked about and you got to get on the table, their high order bit is resilience. >> Dave: Yeah, totally. >> David: Yeah. >> Right? Can't go down. It's national, secure infrastructure, first responder. >> Indeed. >> Anytime you ask them to embrace any new technology, the first thing that they have to work through in their minds is, you know, "Is the juice worth the squeeze? Like, can I handle the risk?" >> But you're saying they're not questioning the technology. Aren't they questioning ORAN in terms of the quality of service, or are they beyond that? >> Dennis: They're questioning the timing, not the inevitability. >> Okay, so they agree that ORAN is going to be open over time. >> At some point, RAN will be cloud native, whether it's ORAN the spec, open RAN the concept, (Yousef speaking indistinctly) >> Yeah. >> Virtual RAN. But yeah, I mean I think it seems pretty evident at this point that the mainframe will give way to open systems once again. >> Dave: Yeah, yeah, yeah. >> ERAN, ecosystem RAN. >> Any RAN. (Dave laughing) >> You don't have to start with the ORAN where they're inside the house. So as you probably know, our partner AT&T started with the core. >> Dennis: They almost all have. >> And they've been on the virtualization path since 2014 and 15. And what we are working with them on is the hybrid cloud model to expand all the way, if you will, as I mentioned to the far-edge or the public cloud. So there's a way to be in the brownfield environment, yet jump on the new bandwagon of technology without necessarily taking too much risk, because you're quite right. I mean, resiliency, security, service assurance, I mean, for example, AT&T runs the first responder network for the US on their network, on our platform, and I'm personally very familiar of how high the bar is. So it's doable, but you need to go in stages, of course. >> And they've got to do that integration. >> Yes. >> They do. >> And Yousef made a great point. Like, out of the top 30 largest Telcos by CapEx outside of China, three quarters of them have virtualized their core. So the cloudification, if you will, software definition run on industry standard hardware, embraced cloud native principles, containerized apps, that's happened in the core. It's well accepted. Now it's just a ripple-down through the network which will happen as and when things are faster, better, cheaper. >> Right. >> So as implemented, what does this look like? Is it essentially what we used to loosely refer to as Azure stacked software, running with Dell optimized Telecom infrastructure together, sometimes within a BBU, out in a hybrid cloud model communicating back to Azure locations in some cases? Is that what we're looking at? >> Approximately. So you start with the near-edge, okay? So the near-edge lives in the operator's data centers, edges, whatever the case may be, built out of off the shelf hardware. Dell is our great partner there but in principle, it could be different mix and match. So once you have that true near-edge, then you can think of, "Okay, how can I make sure this environment is as uniform, same APIs, same everything, regardless what the physical location is?" And this is key, key for the network function providers and the NEPs because they need to be able to port once, run everywhere, and it's key for the operator to reduce their costs. You want to teach your workforce, your operations folks, if you will, how to manage this system one time, to automation and so forth. So, and that is actually an expansion of the Azure capabilities that people are familiar with in a public cloud, projected into different locations. And we have technology called Arc which basically models everything. >> Yeah, yeah. >> So if you have trained your IT side, you are halfway there, how to manage your new network. Even though of course the network is carrier graded, there's different gear. So yes, what you said, a lot of it is true but the actual components, whatever they might be running, are carrier grade, highly optimized, the next images and our solution is not a DIY solution, okay? I know you cater to a wide spectrum here but for us, we don't believe in the TCO. The proper TCO can be achieved by just putting stuff by yourself. We just published a report with Analysys Mason that shows that our approach will save 36 percent of the cost compared to a DIY approach. >> Dave: What percent? >> 36 percent. >> Dave: Of the cost? >> Of, compared to DIY, which is already cheaper than classical models. >> And there's a long history of fairly failed DIY, right, >> Yeah. >> That preceded this. As in the early days of public cloud, the network operators wrestled with, "Do I have to become one to survive?" >> Dave: Yeah. Right. >> So they all ended up having cloud projects and by and large, they've all dematerialized in favor of this. >> Yeah, and it's hard for them to really invest at scale. Let me give you an example. So, your biggest tier one operator, without naming anybody, okay, how many developers do they have that can build and maintain an OS image, or can keep track of container technology, or build monitoring at scale? In our company, we have literally thousands of developers doing it already for the cloud and all we're doing for the operator segment is customizing it and focusing it at the carrier grade aspects of it. But so, I don't have half a dozen exterior experts. I literally have a building of developers who can do that and I'm being literal, here. So it's a scale thing. Once you have a product that you can give to multiple people, everybody benefits. >> Dave: Yeah, and the carriers are largely, they're equipment engineers in a large setting. >> Oh, they have a tough job. I always have total respect what they do. >> Oh totally, and a lot of the work happens, you know, kind of underground and here they are. >> They are network operators. >> They don't touch. >> It's their business. >> Right, absolutely, and they're good at it. They're really good at it. That's right. You know, you think about it, we love to, you know, poke fun at the big carriers, but think about what happened during the pandemic. When they had us shift everything to remote work, >> Dennis: Yes. >> Landline traffic went through the roof. You didn't even notice. >> Yep. That's very true. >> I mean, that's the example. >> That's very true. >> However, in the future where there's innovation and it's going to be driven by developers, right, that's where the open ecosystem comes in. >> Yousef: Indeed. >> And that's the hard transition for a lot of these folks because the developers are going to win that with new workloads, new applications that we can't even think of. >> Dennis: Right. And a lot of it is because if you look at it, there's the fundamental back strategy hat back on, fundamental dynamics of the industry, forced investment, flat revenues. >> Dave: Yeah. Right. >> Very true. >> Right? Every few years, a new G comes out. "Man, I got to retool this massive thing and where I can't do towers, I'm dropping fiber or vice a versa." And meanwhile, most diversification efforts into media have failed. They've had to unwind them and resell them. There's a lot of debt in the industry. >> Yousef: Yeah. >> Dennis: And so, they're looking for that next big, adjacent revenue stream and increasingly deciding, "If I don't modernize my network, I can't get it." >> Can't do it. >> Right, and again, what I heard from some of the carriers in the keynote was, "We're going to charge for API access 'cause we have data in the network." Okay, but I feel like there's a lot more innovation beyond that that's going to come from the disruptors. >> Dennis: Oh yeah. >> Yousef: Yes. >> You know, that's going to blow that away, right? And then that may not be the right model. We'll see, you know? I mean, what would Microsoft do? They would say, "Here, here's a platform. Go develop." >> No, I'll tell you. We are actually working with CAMARA and GSMA on the whole API layer. We actually announced a service as well as (indistinct). >> Dave: Yeah, yeah, right. >> And the key there, frankly, in my opinion, are not the disruptors as in operators. It's the ISV community. You want to get developers that can write to a global set of APIs, not per Telco APIs, such that they can do the innovation. I mean, this is what we've seen in other industries, >> Absolutely. >> That I critically can think of. >> This is the way they get a slice of that pie, right? The recent history of this industry is one where 4G LTE begot the smartphone and app store era, a bevy of consumer services, and almost every single profit stream went somewhere other than the operator, right? >> Yousef: Someone else. So they're looking at this saying, "Okay, 5G is the enterprise G and there's going to be a bevy of applications that are business service related, based on 5G capability and I can't let the OTT, over the top, thing happen again." >> Right. >> They'll say that. "We cannot let this happen." >> "We can't let this happen again." >> Okay, but how do they, >> Yeah, how do they make that not happen? >> Not let it happen again? >> Eight APIs, Dave. The answer is eight APIs. No, I mean, it's this approach. They need to make it easy to work with people like Yousef and more importantly, the developer community that people like Yousef and his company have found a way to harness. And by the way, they need to be part of that developer community themselves. >> And they're not, today. They're not speaking that developer language. >> Right. >> It's hard. You know, hey. >> Dennis: Hey, what's the fastest way to sell an enterprise, a business service? Resell Azure, Teams, something, right? But that's a resale. >> Yeah, that's a resale thing. >> See, >> That's not their service. >> They also need to free their resources from all the plumbing they do and leave it to us. We are plumbers, okay? >> Dennis: We are proud plumbers. >> We are proud plumbers. I'm a plumber. I keep telling people this thing. We had the same discussion with banks and enterprises 10 years ago, by the way. Don't do the plumbing. Go add value on the top. Retool your workforce to do applications and work with ISVs to the verticals, as opposed to either reselling, which many do, or do the plumbing. You'd be surprised. Traditionally, many operators do around, "I want to plumb this thing to get this small interrupt per second." Like, who cares? >> Well, 'cause they made money on connectivity. >> Yes. >> And we've seen this before. >> And in a world without telephone poles and your cables- >> Hey, if what you have is a hammer, everything's a nail, right? And we sell connectivity services and that's what we know how to do, and that both build and sell. And if that's no longer driving a revenue stream sufficient to cover this forced investment march, not to mention Huawei rip and government initiatives to pull infrastructure out and accelerate investment, they got to find new ways. >> I mean, the regulations have been tough, right? They don't go forward and ask for permission. They really can't, right? They have to be much more careful. >> Dennis: It is tough. >> So, we don't mean to sound like it's easy for these guys. >> Dennis: No, it's not. >> But it does require a new mindset, new skillsets, and I think some of 'em are going to figure it out and then pff, the wave, and you guys are going to be riding that wave. >> We're going to try. >> Definitely. Definitely. >> As a veteran of working with both Dell and Microsoft, specifically Azure on things, I am struck by how you're very well positioned in this with Microsoft in particular. Because of Azure's history, coming out of the on-premises world that Microsoft knows so well, there's a natural affinity to the hybrid nature of Telecom. We talk about edge, we talk about hybrid, this is it, absolutely the center of it. So it seems like a- >> Yousef: Indeed. Actually, if you look at the history of Azure, from day one, and I was there from day one, we always spoke of the hybrid model. >> Yeah. >> The third point, we came from the on-premises world. >> David: Right. >> And don't get me wrong, I want people to use the public cloud, but I also know due to physics, regulation, geopolitical boundaries, there's something called on-prem, something called an edge here. I want to add something else. Remember our deal on how we are partner-centric? We're applying the same playbook, here. So, you know, for every dollar we make, so many of it's been done by the ecosystem. Same applies here. So we have announced partnerships with Ericson, Nokia, (indistinct), all the names, and of course with Dell and many others. The ecosystem has to come together and customers must retain their optionality to drum up whatever they are on. So it's the same playbook, with this. >> And enterprise technology companies are, actually, really good at, you know, decoding the customer, figuring out specific requirements, making some mistakes the first time through and then eventually getting it right. And as these trends unfold, you know, you're in a good position, I think, as are others and it's an exciting time for enterprise tech in this industry, you know? >> It really is. >> Indeed. >> Dave: Guys, thanks so much for coming on. >> Thank you. >> Dave: It's great to see you. Have a great rest of the show. >> Thank you. >> Thanks, Dave. Thank you, Dave. >> All right, keep it right there. John Furrier is live in our studio. He's breaking down all the news. Go to siliconangle.com to go to theCUBE.net. Dave Vellante, David Nicholson and Lisa Martin, we'll be right back from the theater in Barcelona, MWC 23 right after this short break. (relaxing music)
SUMMARY :
that drive human progress. of the Telecom systems They're maybe not part of the show, Lots of stuff happened in the Telecom, It's called the Azure Operator Nexus. Dave: The engineers you for our marketing team. from the far-edge to the disaggregation of the network What's the vibe, and certainly the So a lot of the traditional about the cloud and edge. to include the network as one, And so the question Oh, did you? cross the chasm, if you will. and I ought to be able to create scale So what would you do? So what would you do? of 5G is it's the first cloud from the two networks. but hybrid as in, you know. and you got to get on the table, It's national, secure in terms of the quality of Dennis: They're questioning the timing, is going to be open over time. to open systems once again. (Dave laughing) You don't have to start with the ORAN familiar of how high the bar is. So the cloudification, if you will, and it's key for the operator but the actual components, Of, compared to DIY, As in the early days of public cloud, dematerialized in favor of this. and focusing it at the Dave: Yeah, and the I always have total respect what they do. the work happens, you know, poke fun at the big carriers, but think You didn't even notice. and it's going to be driven And that's the hard fundamental dynamics of the industry, There's a lot of debt in the industry. and increasingly deciding, in the keynote was, to blow that away, right? on the whole API layer. And the key there, and I can't let the OTT, over "We cannot let this happen." And by the way, And they're not, today. You know, hey. to sell an enterprise, a business service? from all the plumbing they We had the same discussion Well, 'cause they made they got to find new ways. I mean, the regulations So, we don't mean to sound and you guys are going Definitely. coming out of the on-premises of the hybrid model. from the on-premises world. So it's the same playbook, with this. the first time through Dave: Guys, thanks Have a great rest of the show. Thank you, Dave. from the theater in
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dennis | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
David | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Yousef Khalidi | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Dennis Hoffman | PERSON | 0.99+ |
Yousef | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Jose Maria Alvarez | PERSON | 0.99+ |
CapEx | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
36 percent | QUANTITY | 0.99+ |
36 percent | QUANTITY | 0.99+ |
GSMA | ORGANIZATION | 0.99+ |
China | LOCATION | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
yesterday | DATE | 0.99+ |
Ericson | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
theCUBE.net | OTHER | 0.99+ |
2014 | DATE | 0.99+ |
Eight APIs | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
Huawei | ORGANIZATION | 0.99+ |
CAMARA | ORGANIZATION | 0.99+ |
Satya | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
MWC 23 | EVENT | 0.99+ |
third point | QUANTITY | 0.99+ |
Jeetu Patel, Cisco | MWC Barcelona 2023
>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (bright upbeat music plays) >> Welcome back to Barcelona, everybody. You're watching theCUBE's coverage of MWC '23, my name is Dave Vellante. Just left a meeting with the CEO of Cisco, Chuck Robbins, to meet with Jeetu Patel, who's our Executive Vice President and General Manager of security and collaboration at Cisco. Good to see you. >> You never leave a meeting with Chuck Robbins to meet with Jeetu Patel. >> Well, I did. >> That's a bad idea. >> Walked right out. I said, hey, I got an interview to do, right? So, and I'm excited about this. Thanks so much for coming on. >> Thank you for having me. It's a pleasure. >> So, I mean you run such an important part of the business. I mean, obviously the collaboration business but also security. So many changes going on in the security market. Maybe we could start there. I mean, there hasn't been a ton of security talk here Jeetu, because I think it's almost assumed. It was 45 minutes into the keynote yesterday before anybody even mentioned security. >> Huh. >> Right? And so, but it's the most important topic in the enterprise IT world. And obviously is important here. So why is it you think that it's not the first topic that people mention. >> You know, it's a complicated subject area and it's intimidating. And actually that's one of the things that the industry screwed up on. Where we need to simplify security so it actually gets to be relatable for every person on the planet. But, if you think about what's happening in security, it's not just important for business it's critical infrastructure that if you had a breach, you know lives are cost now. Because hospitals could go down, your water supply could go down, your electricity could go down. And so it's one of these things that we have to take pretty seriously. And, it's 51% of all breaches happen because of negligence, not because of malicious intent. >> It's that low. Interesting. I always- >> Someone else told me the same thing, that they though it'd be higher, yeah. >> I always say bad user behavior is going to trump good security every time. >> Every single time. >> You can't beat it. But, you know, it's funny- >> Jeetu: Every single time. >> Back, the earlier part of last decade, you could see that security was becoming a board level issue. It became, it was on the agenda every quarter. And, I remember doing some research at the time, and I asked, I was interviewing Robert Gates, former Defense Secretary, and I asked him, yeah, but we're getting attacked but don't we have the best offense? Can't we have the best technology? He said, yeah but we have so much critical infrastructure the risks to United States are higher. So we have to be careful about how we use security as an offensive weapon, you know? And now you're seeing the future of war involves security and what's going on in Ukraine. It's a whole different ballgame. >> It is, and the scales always tip towards the adversary, not towards the defender, because you have to be right every single time. They have to be right once. >> Yeah. And, to the other point, about bad user behavior. It's going now beyond the board level, to it's everybody's responsibility. >> That's right. >> And everybody's sort of aware of it, everybody's been hacked. And, that's where it being such a complicated topic is problematic. >> It is, and it's actually, what got us this far will not get us to where we need to get to if we don't simplify security radically. You know? The experience has to be almost invisible. And what used to be the case was sophistication had to get to a certain level, for efficacy to go up. But now, that sophistication has turned to complexity. And there's an inverse relationship between complexity and efficacy. So the simpler you make security, the more effective it gets. And so I'll give you an example. We have this great kind of innovation we've done around passwordless, right? Everyone hates passwords. You shouldn't have passwords in 2023. But, when you get to passwordless security, not only do you reduce a whole lot of friction for the user, you actually make the system safer. And that's what you need to do, is you have to make it simpler while making it more effective. And, I think that's what the future is going to hold. >> Yeah, and CISOs tell me that they're, you know zero trust before the pandemic was like, yeah, yeah zero trust. And now it's like a mandate. >> Yeah. >> Every CISO you talk to says, yes we're implementing a zero trust architecture. And a big part of that is that, if they can confirm zero trust, they can get to market a lot faster with revenue generating or critical projects. And many projects as we know are being pushed back, >> Yeah. >> you know? 'Cause of the macro. But, projects that drive revenue and value they want to accelerate, and a zero trust confirmation allows people to rubber stamp it and go faster. >> And the whole concept of zero trust is least privileged access, right? But what we want to make sure that we get to is continuous assessment of least privileged access, not just a one time at login. >> Dave: 'Cause things change so frequently. >> So, for example, if you happen to be someone that's logged into the system and now you start doing some anomalous behavior that doesn't sound like Dave, we want to be able to intercept, not just do it at the time that you're authenticating Dave to come in. >> So you guys got a good business. I mentioned the macro before. >> Yeah. >> The big theme is consolidating redundant vendors. So a company with a portfolio like Cisco's obviously has an advantage there. You know, you guys had great earnings. Palo Alto is another company that can consolidate. Tom Gillis, great pickup. Guy's amazing, you know? >> Love Tom. >> Great respect. Just had a little webinar session with him, where he was geeking out with the analyst and so- >> Yeah, yeah. >> Learned a lot there. Now you guys have some news, at the event event with Mercedes? >> We do. >> Take us through that, and I want to get your take on hybrid work and what's happening there. But what's going on with Mercedes? >> Yeah so look, it all actually stems from the hybrid work story, which is the future is going to be hybrid, people are going to work in mixed mode. Sometimes you'll be in the office, sometimes at home, sometimes somewhere in the middle. One of the places that people are working more and more from is their cars. And connected cars are getting to be a reality. And in fact, cars sometimes become an extension of your home office. And many a times I have found myself in a parking lot, because I didn't have enough time to get home and I was in a parking lot taking a conference call. And so we've made that section easier, because we have now partnered with Mercedes. And they aren't the first partner, but they're a very important partner where we are going to have Webex available, through the connected car, natively in Mercedes. >> Ah, okay. So I could take a call, I can do it all the time. I find good service, pull over, got to take the meeting. >> Yeah. >> I don't want to be driving. I got to concentrate. >> That's right. >> You know, or sometimes, I'll have the picture on and it's not good. >> That's right. >> Okay, so it'll be through the console, and all through the internet? >> It'll be through the console. And many people ask me like, how's safety going to work over that? Because you don't want to do video calls while you're driving. Exactly right. So when you're driving, the video automatically turns off. And you'll have audio going on, just like a conference call. But the moment you stop and put it in park, you can have video turned on. >> Now, of course the whole hybrid work trend, we, seems like a long time ago but it doesn't, you know? And it's really changed the security dynamic as well, didn't it? >> It has, it has. >> I mean, immediately you had to go protect new endpoints. And those changes, I felt at the time, were permanent. And I think it's still the case, but there's an equilibrium now happening. People as they come back to the office, you see a number of companies are mandating back to work. Maybe the central offices, or the headquarters, were underfunded. So what's going on out there in terms of that balance? >> Well firstly, there's no unanimous consensus on the way that the future is going to be, except that it's going to be hybrid. And the reason I say that is some companies mandate two days a week, some companies mandate five days a week, some companies don't mandate at all. Some companies are completely remote. But whatever way you go, you want to make sure that regardless of where you're working from, people can have an inclusive experience. You know? And, when they have that experience, you want to be able to work from a managed device or an unmanaged device, from a corporate network or from a Starbucks, from on the road or stationary. And whenever you do any of those things, we want to make sure that security is always handled, and you don't have to worry about that. And so the way that we say it is the company that created the VPN, which is Cisco, is the one that's going to kill it. Because what we'll do is we'll make it simple enough so that you don't, you as a user, never have to worry about what connection you're going to use to dial in to what app. You will have one, seamless way to dial into any application, public application, private application, or directly to the internet. >> Yeah, I got a love, hate with my VPN. I mean, it's protecting me, but it's in the way a lot. >> It's going to be simple as ever. >> Do you have kids? >> I do, I have a 12 year old daughter. >> Okay, so not quite high school age yet. She will be shortly. >> No, but she's already, I'm not looking forward to high school days, because she has a very, very strong sense of debate and she wins 90% of the arguments. >> So when my kids were that age, I've got four kids, but the local high school banned Wikipedia, they can't use Wikipedia for research. Many colleges, I presume high schools as well, they're banning Chat GPT, can't use it. Now at the same time, I saw recently on Medium a Wharton school professor said he's mandating Chat GPT to teach his students how to prompt in progressively more sophisticated prompts, because the future is interacting with machines. You know, they say in five years we're all going to be interacting in some way, shape, or form with AI. Maybe we already are. What's the intersection between AI and security? >> So a couple very, very consequential things. So firstly on Chat GPT, the next generation skill is going to be to learn how to go out and have the right questions to ask, which is the prompt revolution that we see going on right now. But if you think about what's happening in security, and there's a few areas which are, firstly 3,500 hundred vendors in this space. On average, most companies have 50 to 70 vendors in security. Not a single vendor owns more than 10% of the market. You take out a couple vendors, no one owns more than 5%. Highly fractured market. That's a problem. Because it's untenable for companies to go out and manage 70 policy engines. And going out and making sure that there's no contention. So as you move forward, one of the things that Chat GPT will be really good for is it's fundamentally going to change user experiences, for how software gets built. Because rather than it being point and click, it's going to be I'm going to provide an instruction and it's going to tell me what to do in natural language. Imagine Dave, when you joined a company if someone said, hey give Dave all the permissions that he needs as a direct report to Chuck. And instantly you would get all of the permissions. And it would actually show up in a screen that says, do you approve? And if you hit approve, you're done. The interfaces of the future will get more natural language kind of dominated. The other area that you'll see is the sophistication of attacks and the surface area of attacks is increasing quite exponentially. And we no longer can handle this with human scale. You have to handle it in machine scale. So detecting breaches, making sure that you can effectively and quickly respond in real time to the breaches, and remediate those breaches, is all going to happen through AI and machine learning. >> So, I agree. I mean, just like Amazon turned the data center into an API, I think we're now going to be interfacing with technology through human language. >> That's right. >> I mean I think it's a really interesting point you're making. Now, from a security standpoint as well, I mean, the state of the art today in my email is be careful, this person's outside your organization. I'm like, yeah I know. So it's a good warning sign, but it's really not automated in any way. So two part question. One is, can AI help? You know, with the phishing, obviously it can, but the bad guys have AI too. >> Yeah. >> And they're probably going to be smarter than I am about using it. >> Yeah, and by the way, Talos is our kind of threat detection and response >> Yes. >> kind of engine. And, they had a great kind of piece that came out recently where they talked about this, where Chat GPT, there is going to be more sophistication of the folks that are the bad actors, the adversaries in using Chat GPT to have more sophisticated phishing attacks. But today it's not something that is fundamentally something that we can't handle just yet. But you still need to do the basic hygiene. That's more important. Over time, what you will see is attacks will get more bespoke. And in order, they'll get more sophisticated. And, you will need to have better mechanisms to know that this was actually not a human being writing that to you, but it was actually a machine pretending to be a human being writing something to you. And that you'll have to be more clever about it. >> Oh interesting. >> And so, you will see attacks get more bespoke and we'll have to get smarter and smarter about it. >> The other thing I wanted to ask you before we close is you're right on. I mean you take the top security vendors and they got a single digit market share. And it's like it's untenable for organizations, just far too many tools. We have a partner at ETR, they do quarterly survey research and one of the things they do is survey emerging technology companies. And when we look at in the security sector just the number of emerging technology companies that are focused on cybersecurity is as many as there are out there already. And so, there's got to be consolidation. Maybe that's through M & A. I mean, what do you think happens? Are company's going to go out of business? There's going to be a lot of M & A? You've seen a lot of companies go private. You know, the big PE companies are sucking up all these security companies and may be ready to spit 'em out and go back public. How do you see the landscape? You guys are obviously an inquisitive company. What are your thoughts on that? >> I think there will be a little bit of everything. But the biggest change that you'll see is a shift that's going to happen with an integrated platform, rather than point solution vendors. So what's going to happen is the market's going to consolidate towards very few, less than a half a dozen, integrated platforms. We believe Cisco is going to be one. Microsoft will be one. There'll be others over there. But these, this platform will essentially be able to provide a unified kind of policy engine across a multitude of different services to protect multiple different entities within the organization. And, what we found is that platform will also be something that'll provide, through APIs, the ability for third parties to be able to get their technology incorporated in, and their telemetry ingested. So we certainly intend to do that. We don't believe, we are not arrogant enough to think that every single new innovation will be built by us. When there's someone else who has built that, we want to make sure that we can ingest that telemetry as well, because the real enemy is not the competitor. The real enemy is the adversary. And we all have to get together, so that we can keep humanity safe. >> Do you think there's been enough collaboration in the industry? I mean- >> Jeetu: Not nearly enough. >> We've seen companies, security companies try to monetize private data before, instead of maybe sharing it with competitors. And so I think the industry can do better there. >> Well I think the industry can do better. And we have this concept called the security poverty line. And the security poverty line is the companies that fall below the security poverty line don't have either the influence or the resources or the know how to keep themselves safe. And when they go unsafe, everyone else that communicates with them also gets that exposure. So it is in our collective interest for all of us to make sure that we come together. And, even if Palo Alto might be a competitor of ours, we want to make sure that we invite them to say, let's make sure that we can actually exchange telemetry between our companies. And we'll continue to do that with as many companies that are out there, because actually that's better for the market, that's better for the world. >> The enemy of the enemy is my friend, kind of thing. >> That's right. >> Now, as it relates to, because you're right. I mean I, I see companies coming up, oh, we do IOT security. I'm like, okay, but what about cloud security? Do you that too? Oh no, that's somebody else. But, so that's another stove pipe. >> That's a huge, huge advantage of coming with someone like Cisco. Because we actually have the entire spectrum, and the broadest portfolio in the industry of anyone else. From the user, to the device, to the network, to the applications, we provide the entire end-to-end story for security, which then has the least amount of cracks that you can actually go out and penetrate through. The biggest challenges that happen in security is you've got way too many policy engines with way too much contention between the policies from these different systems. And eventually there's a collision course. Whereas with us, you've actually got a broad portfolio that operates as one platform. >> We were talking about the cloud guys earlier. You mentioned Microsoft. They're obviously a big competitor in the security space. >> Jeetu: But also a great partner. >> So that's right. To my opinion, the cloud has been awesome as a first line of defense if you will. But the shared responsibility model it's different for each cloud, right? So, do you feel that those guys are working together or will work together to actually improve? 'Cause I don't see that yet. >> Yeah so if you think about, this is where we feel like we have a structural advantage in this, because what does a company like Cisco become in the future? I think as the world goes multicloud and hybrid cloud, what'll end up happening is there needs to be a way, today all the CSPs provide everything from storage to computer network, to security, in their own stack. If we can abstract networking and security above them, so that we can acquire and steer any and all traffic with our service providers and steer it to any of those CSPs, and make sure that the security policy transcends those clouds, you would actually be able to have the public cloud economics without the public cloud lock-in. >> That's what we call super cloud Jeetu. It's securing the super cloud. >> Yeah. >> Hey, thanks so much for coming to theCUBE. >> Thank you for having me. >> Really appreciate you coming on our editorial program. >> Such a pleasure. >> All right, great to see you again. >> Cheers. >> All right, keep it right there. Dave Vellante with David Nicholson and Lisa Martin. We'll be back, right after this short break from MWC '23 live, in the Fira, in Barcelona. (bright music resumes) (music fades out)
SUMMARY :
that drive human progress. Chuck Robbins, to meet with Jeetu Patel, meet with Jeetu Patel. interview to do, right? Thank you for having I mean, obviously the And so, but it's the most important topic And actually that's one of the things It's that low. Someone else is going to trump good But, you know, it's funny- the risks to United States are higher. It is, and the scales always It's going now beyond the board level, And everybody's So the simpler you make security, Yeah, and CISOs tell me that they're, And a big part of that is that, 'Cause of the macro. And the whole concept of zero trust Dave: 'Cause things change so not just do it at the time I mentioned the macro before. You know, you guys had great earnings. geeking out with the analyst and so- at the event event with Mercedes? But what's going on with Mercedes? One of the places that people I can do it all the time. I got to concentrate. the picture on and it's not good. But the moment you stop or the headquarters, were underfunded. is the one that's going to kill it. but it's in the way a lot. Okay, so not quite high school age yet. to high school days, because she has because the future is and have the right questions to ask, I mean, just like Amazon I mean, the state of the going to be smarter than folks that are the bad actors, you will see attacks get more bespoke And so, there's got to be consolidation. is the market's going to And so I think the industry or the know how to keep themselves safe. The enemy of the enemy is my friend, Do you that too? and the broadest portfolio in competitor in the security space. But the shared responsibility model and make sure that the security policy It's securing the super cloud. to theCUBE. Really appreciate you coming great to see you again. the Fira, in Barcelona.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeetu Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Mercedes | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Tom Gillis | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Robert Gates | PERSON | 0.99+ |
50 | QUANTITY | 0.99+ |
Chuck | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Starbucks | ORGANIZATION | 0.99+ |
Chuck Robbins | PERSON | 0.99+ |
51% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
more than 10% | QUANTITY | 0.99+ |
45 minutes | QUANTITY | 0.99+ |
two part | QUANTITY | 0.99+ |
one time | QUANTITY | 0.99+ |
four kids | QUANTITY | 0.99+ |
Jeetu | PERSON | 0.99+ |
five years | QUANTITY | 0.99+ |
less than a half a dozen | QUANTITY | 0.99+ |
first topic | QUANTITY | 0.99+ |
3,500 hundred vendors | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
two days a week | QUANTITY | 0.99+ |
70 vendors | QUANTITY | 0.99+ |
first partner | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
five days a week | QUANTITY | 0.98+ |
Ukraine | LOCATION | 0.98+ |
one platform | QUANTITY | 0.98+ |
12 year old | QUANTITY | 0.98+ |
more than 5% | QUANTITY | 0.98+ |
each cloud | QUANTITY | 0.98+ |
MWC '23 | EVENT | 0.98+ |
first line | QUANTITY | 0.98+ |
pandemic | EVENT | 0.97+ |
Chat GPT | TITLE | 0.96+ |
one | QUANTITY | 0.96+ |
last decade | DATE | 0.96+ |
Fira | LOCATION | 0.95+ |
single vendor | QUANTITY | 0.95+ |
Chat GPT | TITLE | 0.92+ |
Webex | ORGANIZATION | 0.92+ |
firstly | QUANTITY | 0.91+ |
70 policy engines | QUANTITY | 0.89+ |
zero trust | QUANTITY | 0.87+ |
couple vendors | QUANTITY | 0.86+ |
Alto | LOCATION | 0.86+ |
United States | LOCATION | 0.84+ |
theCUBE | ORGANIZATION | 0.82+ |
single time | QUANTITY | 0.82+ |
M & A. | ORGANIZATION | 0.82+ |
cloud | ORGANIZATION | 0.8+ |
Tibor Fabry Asztalos, Dell Technologies & Gautam Bhagra, Dell Technologies | MWC Barcelona 2023
>> Announcer: "theCUBE's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Good evening, everyone. Live from Barcelona, Spain, it's "theCUBE". We are at Mobile World, MWC, excuse me, '23. New name this year. I'm Lisa Martin with Dave Vellante. Dave, we have had some great conversations. This is only day one of four days of coverage from "theCUBE" but one of the things that we've been talking about is disaggregation. You've wrote about it in your breaking analysis. We've been talking about it. Today is a big thing that's happening. We're going to be talking about that next. >> Yeah, open ecosystems require integration. Integration requires certification. And so, you got to have labs. We're going to talk about that and what value that brings to the community. >> Right. Please welcome Tibor Fabry-Asztalos, senior vice president of telecom systems and product engineering at Dell. >> Hi. >> And back to "theCUBE" after a couple of hours, Gautam Bhagra, vice president of partnerships at Dell. Guys, great to have you here. >> I love to be here. Thank you. >> Great to be here. >> So, day one, I'm sure lots of conversations, lots of meetings, lots of jet lag that we're all trying to get over. Talk about, Gautam, we'll start with you. Talk about the disaggregation era. What it is intended to support? What is it intended to enable? >> Yeah, so I mean, I think to be honest with you, Lisa, we spoke about this earlier also, like the whole vision with the disaggregation is to make sure our telco providers can take the benefits of having the innovation that comes along with it, right? So currently, we all know they're tied into like lock systems, which kind of constricts them in going after this whole innovative space. So, our hope is by working with our operators and our partners, we can help make that disaggregation journey a lot easier and work on some of these challenges, and make it easier for the telcos to innovate and consolidate going forward. So, we're working very closely and we talked about the community this morning. We're working very closely with Tibor and his team from an engineering perspective to help build those solutions with our partners and we're excited about the announcements we made this morning. >> When you hear challenges from this ecosystem, can you stack rank 'em? What are you hearing? Kind of what's top of mind? And so, the top three, if you would. >> Some of the challenges are just to define moving from a closed system and open system, just to making sure that the acceptance of that to see what's the value proposition is for an open system and then for the carriers to see the path going from a closed system to an open system. Of course, at the end, people realize the value at the end and speed of innovation that you're going to get all the new technologies and new features, functionality you get in an open system. But then the challenge comes with it, how you actually integrate those and then validate them, and you are to deploy them. So in a sense, that's the opportunity and also some of the challenge along the way. And that's where, as Gautam said, that's where we are also looking at playing the key role with the OTEL lab, the Open Telecom Ecosystem Lab, where we take these pieces of the open ecosystem and have combined them, validate them, and provide the pipeline to the customer. Pre-integration and then full integration into the production network. >> Those challenges, I presume, vary whether you're talking to a greenfield network operator versus somebody who's got a 40, 50 year history, a hundred-year history in the business, right? I mean migration is a big issue for them, right? Whereas the greenfield, we heard from DISH earlier, they want to drive innovation so they might be willing to sacrifice some other areas. So, is that a fair summarization and what are you hearing? >> [Tibor and Gautam] Yeah. >> Absolutely it is. I mean, that's where you see that DISH being kind of a leader in the space, as they were deploying in greenfield, they defined what the open ecosystem should look like, defined all the components of it, how you integrate them, validate them, and they were able to, well, go through it and deploy it. To your point, for an open, closed systems, as how you actually start transforming the existing network into the open one, that's going to go to a different process, right? You need to figure out how these new open systems can interrupt and work together with existing networks. So, that's one likely some of those carriers will start in an isolated area and grow from there. Deploy an open system in a rural area, for example, and then build from there. >> So, what a bank would do is they say, "Okay, we're going to write in our own abstraction layer." >> Gautam: Yeah. >> Right? "Using microservices, we're going to connect to the cloud. And we're going to, you know, put maybe some lower risk applications in the cloud first and then we're going to create our own cloud." Is there a similar dynamic here? >> Yeah, I mean, so I think you're spot on, right? Like, I think one of the things that we are seeing with the telco operators that we've spoken to is they're very risk averse. >> Yep. >> Right, they have very strong SLA requirements. They cannot go down even for a second. So, what that basically means is the innovation aspect is constrained by the risks that they perceive on any changes that you want to make on the architecture. So, the question that comes up is how do we make it easier for them to not worry about the bare minimum requirements of making sure the network's running and working while thinking about the new innovative technologies and solutions you want to build on the start. So, back to your bank example, nine years ago, no one in a bank even was thinking about like applications that will run on the cloud. Like for them, it was like a side project. They'll try and test something, see if it works, and then they'll think about cloud in the future, right? But now, core applications on banks are actually being built on public cloud. I think we see the same happening with the telco operators as well. Right now, they're understanding the move from a closed ecosystem to an open ecosystem. They understand the value proposition. On the core side, it's already happening a lot. And I think they are slowly moving there and that's where I think Tibor and team have been doing a great job working with our customers to make the transition happen. >> But there are so many permutations. >> Right. >> And integration points. How is Dell addressing that across the ecosystem? >> So, to give you an example, we talked about OTEL, which is our brand new, kind of 13,000 square feet lab that we kind of inaugurated last year based in Round Rock, Texas. >> Dave: Open Telecom. >> Dave and Tibor: Ecosystem Lab. >> Correct, great. And so, as part of that, that's a physical lab but more importantly, that's kind of a community where partners, customers come together to actually, and collaborate and work on these solutions. And as part of this, we also develop what we call the SIP, or Solution Integration Platform, to enable exactly what you just said. Making sure that we have a platform that actually can take all these various components, validate them individually, combine them, and then provide a DevOps and GitOps model, how you actually combine them, provide the BOM or SBOM, and then push that to pre-production and deployments for our customers. So, that's part of the challenge as we talked earlier. And that's how Dell and we are looking at actually enabling this basically, the validation of this disaggregated wall. >> Oh. >> Sorry, I just wanted to- >> Go ahead. >> just going to add one more point, right? So, when we look at the partners that we are working with as well in the OTEL and there are three ways we are working with them. At the bare minimum, we want to make sure that solution will run on the Dell infrastructure and the hardware, right? So, we have the self-certification process. We had a lot of good uptake on it and we are seeing a lot more come in. In fact, I had a check-in with "theCUBE" this morning in our side and it's more than a hundred plus partners already interested in going through that. Awesome. Then we have other places where we work on with partners to build reference architectures together, right? So, we want some sort of validated solution that will work together that we can take to the market. And then we also have engineered solutions that we are building with partners like the infrastructure block offering that we have taken where it's all pre-packaged, pre-built by Dell, working very closely with our partners. So, the telcos don't have to worry about deployment, integration, and everything else that comes along. >> And I presume the security supply chain is part of that- >> Yes. >> bill of materials- >> Absolutely. >> you just described. >> Yeah. >> Exactly. >> And that would include all those levels, the engineered systems, the reference architectures as well? And how do you decide like candidates, we can't do it all, right? So, it's the big markets get the engineered system, is that right? How do you adjudicate there? >> Yeah, so I mean, I think there are a couple of angles to look at it, right? I think the first and foremost is where we see the biggest demand is coming from the customers in terms of the stack they already have and where they have the pain points. >> Dave: Okay. >> Right, so this is why we are working with Red Hat and Wind River, as an example, because they are in most of the deployments that we are aware of with the customers and where we see an opportunity for Dell to partner with these partners. I think we are seeing a lot of new players also coming up the stack. And as they come up the stack and we find opportunities to co-build and co-innovate, absolutely we'll be building joint solutions with them as well. >> Where are you on, from a partnership perspective, on the strategic vision? You mentioned a number of things that have already been accomplished, quite a few. But from your journey perspective on that strategy, where are you? >> Yeah, so it's a really good question. I think we really want to be the partner of choice for all technology and services company within the telecom space. We're looking to drive the transformation in the network area, right? So, that's the vision that we have in the telecom system business from a partnership side. We have created some really good strategic partnerships with key providers, with independent software vendors, the network equipment providers. We're having some really good, strategic conversations with them. You've heard some of the announcement come out today, the work we are doing with Nokia, with Samsung, the Red Hat announcement, the Wind River, and so on and so forth. And there's a lot more in the pipeline. But more importantly, we want to grow the impact of the ecosystem. So, that's why we are launching the partner community today as well to make that happen. >> How does the lab work? Who has access to it? Can I self-certify? If I can self-certify, how do you make sure that I'm following the rules, all of the stuff- >> Sure. >> that you would- >> Absolutely. >> expect. >> So yes, you can self-certify, that's Gautam just mentioned. We already had quite a few ISVs go through that self-certification. And then there's also, there's reference architecture that's being done and other engineered solutions that we talked about earlier. And the lab is set up in a way that when needed, test lines can be isolated. So, only certain set of partners have access to it. So, it's made up in a way that enables collaborations. At the same times, it kind of enables a certain set of customers and partners working together without having challenges of having a completely open system. >> Okay, but so, if I want to do something with you guys and let's say, I am a candidate for an engineered system, so how does it work? Somebody's got to buy the equipment, right? He's got to ship it, right? There's a lot of Dell equipment involved. >> Tibor: That's correct. >> There's other third-party CapEx software, et cetera. So, you fund that, the partners fund that, it's a hybrid funding model, how does that all get done? >> So today, for obviously, we work closely with those partners. The engineered solutions we've developed so far, we've been funding it largely and as you said, is Dell infrastructure plus the cast layers and the cloud players we work with. So, we actually put those in place. We funded them, of course, with participation from them. And that's being done through those labs. >> Okay, great. So, you guys are providing that benefit to the ecosystem. Writing checks, bringing engineering talent to the table. >> Gautam: Yeah. >> Okay. >> And at the same time, I mean, it's a partnership at the end of the day, right? So, depending on the kind of partnership we are. So, if you're an ISV, it's fairly simple. Come into our labs. You don't have to worry about the infrastructure. >> Sure. >> Run it all in our labs and you're good. If you're a hardware vendor or a NEP, network equipment provider, that's where it gets interesting where they need to send us stuff, we need to send them stuff. And usually, like Tibor mentioned, it's a joint collaboration. We all put in our chips on the table and we work together. >> So, when you're having conversations with prospective partners, obviously different types of partners, Gautam, that you just talked about, what's in it for them? What's the value proposition? What does this community- >> Gautam: Yeah. >> give them from a competitive advantage standpoint? >> Yeah, so I mean there are, so the way I think about it, right? There are three things that Dell is bringing to the table. The first one is our experience and expertise on doing this transformation within the enterprise space and the learnings we have from there that we're bringing to telco now, right? So, Dell's been working with enterprises for many, many years. We are one of the big providers there. We all know what transformation enterprise went through. >> Tibor: Telco transformation, IT transformation. >> Exactly. And that's the experience we have, which we're bringing to telco. The second one is our investment, both from a go-to market side as well as the way we are working with our sales and marketing, and so on and so forth, with the engineering side. And finally, I think, and this for me is the best one, is Dell is a very partner-centric organization. >> Lisa: Yes. >> Our strategy is built around partnerships. So, that's the other piece that we bring to the table. >> Where are the labs? Oh, go ahead. >> And what's one more note on that, and also, we are talking about the engineered solutions. There's also the supply chain then because that's a basically appliance and then that goes to Dell's supply chain, which is best in class. >> Dave: And where are the labs? How many are there? >> So Round Rock, Texas is the biggest one, the 13,000 square feet. We also have extension to it. We just announced opening one in Cork for the EME market to making sure that we can cover any regulatory challenges. But also, basically any test lines that we need to cover that have latency challenges. That's why we want to make sure that we have labs in other areas as well. >> And the go-to market, is it an overlay organization, a dedicated organization? >> Yeah, so it's a bit of both as you know. But yeah, in the telecom business unit, we have a dedicated sales organization as well as an alliance organization working very closely with product and engineering to take it to market. >> Given the strength and the breadth of the partner program in the community, based on this is only day one of MWC but is there anything that you've heard today that excites you where telecom is going and where Dell and its ecosystem is going and really burgeoning? >> Oh, I've had I don't know how many meetings since 6:00 AM this morning. So, it's been an amazing event and we're just having so many great conversations with partners, our customers. And I think a lot of today is all about figuring out what our strategy and our vision is, where is each side going and what the overlap is. I think the end result's going to be follow up conversations with a lot of these partners that we are working with or will be working with soon. And then thinking about, do we build engineered solutions together? Do we go validated route? Like we going to figure that out. But I mean, for me, this is like the perfect place to come and share your vision and strategy and understand what we are trying to solve for. >> To me, what's been interesting that all the interactions and discussions are about how to get to or render open ecosystem. That's great to see that the focus is on how to make it work versus still questioning it and I think that's pretty good. >> Well, you guys launched this business I think during the pandemic, right? >> Yes. >> Yeah, that's right. >> So I mean, you could do a lot over Zoom, but as we were talking about earlier, having the face-to-face interaction, there's no replacement for it. The 6:00 AM meetings versus the 30 minute zoom calls and your body language, I mean, you learn so much that you can take away from these events. >> Absolutely. Seeing someone in 3D is so different and it's good to build that relationship and rapport as well with the folks. >> I agree. >> It is. There's so much value in the hallway conversations that you can't have over Zoom. So, I guess last question for you as we head into to day two, what are some of the things that we can be on the lookout for from Dell and its ecosystem? >> Hmm. >> Interesting. (Tibor chuckling) >> I mean, all our announcements are out. I think what you can look at for us to really be leading in this segment, taking a leadership role, and continuously looking at how we can really enable the open ecosystem and how we can provide more value there, and how we can see how we can lead in this space. >> How you can lead in this space. >> Yeah, I mean for me, I mean, day two is like, I have a lot more meetings in day two than day one so I don't know if it's like people flying in today or what, but it's amazing to just meet the partners and customers. >> So, that theme of velocity for you is going to keep going. >> Oh, it's not stopping. (Lisa laughing) That's for sure. We are excited about it. >> Well, thank you for carving out some time to talk to with us on "theCUBE" about the partner program, the open ecosystem and the commitment to growing that and enabling partners to really differentiate their services with Dell. We appreciate it. >> We appreciate it as well. >> Thank you very much. >> Thank you for having us. >> Thanks. >> Our pleasure. For our guests and for Dave Vellante, I'm Lisa Martin. You're watching "theCUBE" live in Barcelona, Spain at MWC '23. Day one of our coverage. Be right back with our final guest of the day so stick around. (upbeat music continues)
SUMMARY :
that drive human progress. from "theCUBE" but one of the things And so, you got to have labs. of telecom systems and Guys, great to have you here. I love to be here. Talk about the disaggregation era. for the telcos to innovate And so, the top three, and provide the pipeline to the customer. Whereas the greenfield, we a leader in the space, So, what a bank would do is they say, applications in the cloud first things that we are seeing So, the question that comes that across the ecosystem? So, to give you an example, So, that's part of the At the bare minimum, we want to make sure in terms of the stack they already have that we are aware of with the customers on the strategic vision? So, that's the vision that we have And the lab is set up in the equipment, right? the partners fund that, and the cloud players we work with. that benefit to the ecosystem. So, depending on the kind We all put in our chips on the and the learnings we have from there Tibor: Telco transformation, And that's the experience we have, So, that's the other piece Where are the labs? and then that goes to Dell's supply chain, to making sure that we can of both as you know. that we are working with that all the interactions having the face-to-face interaction, different and it's good to build that we can be on the lookout for and how we can see how we the partners and customers. So, that theme of velocity We are excited about it. about the partner program, final guest of the day
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Samsung | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Gautam | PERSON | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Tibor | PERSON | 0.99+ |
Gautam Bhagra | PERSON | 0.99+ |
30 minute | QUANTITY | 0.99+ |
Tibor Fabry-Asztalos | PERSON | 0.99+ |
OTEL | ORGANIZATION | 0.99+ |
13,000 square feet | QUANTITY | 0.99+ |
6:00 AM | DATE | 0.99+ |
last year | DATE | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Cork | LOCATION | 0.99+ |
Wind River | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Barcelona, Spain | LOCATION | 0.99+ |
Round Rock, Texas | LOCATION | 0.99+ |
Tibor Fabry Asztalos | PERSON | 0.99+ |
Today | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
more than a hundred plus partners | QUANTITY | 0.99+ |
DISH | ORGANIZATION | 0.99+ |
three ways | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
40, 50 year | QUANTITY | 0.98+ |
'23 | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
Open Telecom Ecosystem Lab | ORGANIZATION | 0.98+ |
nine years ago | DATE | 0.98+ |
each side | QUANTITY | 0.98+ |
Mobile World | LOCATION | 0.98+ |
four days | QUANTITY | 0.98+ |
theCUBE | TITLE | 0.97+ |
this year | DATE | 0.97+ |
first one | QUANTITY | 0.97+ |
day two | QUANTITY | 0.96+ |
MWC | EVENT | 0.96+ |
OTEL lab | ORGANIZATION | 0.95+ |
day one | QUANTITY | 0.95+ |
6:00 AM this morning | DATE | 0.95+ |
Meagen Eisenberg, Lacework | International Women's Day 2023
>> Hello and welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. Got a variety of interviews across the gamut from topics, women in tech, mentoring, pipelining, developers, open source, executives. Stanford's having International Women's Day celebration with the women in data science, which we're streaming that live as well. Variety of programs. In this segment, Meagen Eisenberg, friend of theCUBE, she's the CMO of Laceworks, is an amazing executive, got a great journey story as a CMO but she's also actively advising startups, companies and really pays it forward. I want to say Meagen, thank you for coming on the program and thanks for sharing. >> Yeah, thank you for having me. I'm happy to be here. >> Well, we're going to get into some of the journey celebrations that you've gone through and best practice what you've learned is pay that forward. But I got to say, one of the things that really impresses me about you as an executive is you get stuff done. You're a great CMO but also you're advised a lot of companies, you have a lot of irons in the fires and you're advising companies and sometimes they're really small startups to bigger companies, and you're paying it forward, which I love. That's kind of the spirit of this day. >> Yeah, I mean, I agree with you. When I think about my career, a lot of it was looking to mentors women out in the field. This morning I was at a breakfast by Eileen and we had the CEO of General Motors on, and she was talking about her journey nine years as a CEO. And you know, and she's paying it forward with us. But I think about, you know, when you're advising startups, you know, I've gathered knowledge and pattern recognition and to be able to share that is, you know, I enjoy it. >> Yeah. And the startups are also fun too, but it's not always easy and it can get kind of messy as you know. Some startups don't make it some succeed and it's always like the origination story is kind of rewritten and then that's that messy middle. And then it's like that arrows that don't look like a straight line but everyone thinks it's great and you know, it's not for the faint of heart. And Teresa Carlson, who I've interviewed many times, former Amazon, now she's the president of Flexport, she always says, sometimes startups on certain industries aren't for the faint of heart so you got to have a little bit of metal, right? You got to be tough. And some cases that you don't need that, but startups, it's not always easy. What have you learned? >> Yeah, I mean, certainly in the startup world, grit, creativity. You know, when I was at TripActions travel company, pandemic hits, nobody's traveling. You cut budget, you cut heads, but you focus on the core, right? You focus on what you need to survive. And creativity, I think, wins. And, you know, as a CMO when you're marketing, how do you get through that noise? Even the security space, Lacework, it's a fragmented market. You've got to be differentiated and position yourself and you know, be talking to the right target audience and customers. >> Talk about your journey over the years. What have you learned? What's some observations? Can you share any stories and best practices that someone watching could learn from? I know there's a lot of people coming into the tech space with the generative AI things going on in Cloud computing, scaling to the edge, there's a lot more aperture for technical jobs as well as just new roles and new roles that haven't, you really don't go to college for anymore. You got cybersecurity you're in. What are some of the things that you've done over your career if you can share and some best practices? >> Yeah, I think number one, continual learning. When I look through my career, I was constantly reading, networking. Part of the journey is who you're meeting along the way. As you become more senior, your ability to hire and bring in talent matters a lot. I'm always trying to meet with new people. Yeah, if I look at my Amazon feed of books I've bought, right, it kind of chronicle of my history of things I was learning about. Right now I'm reading a lot about cybersecurity, how the, you know, how how they tell me the world ends is the one I'm reading most recently. But you've got to come up to speed and then know the product, get in there and talk to customers. Certainly on the marketing front, anytime I can talk with the customer and find out how they're using us, why they love us, that, you know, helps me better position and differentiate our company. >> By the way, that book is amazing. I saw Nicole speak on Tuesday night with John Markoff and Palo Alto here. What a great story she told there. I recommend that book to everyone. It goes in and she did eight years of research into that book around zero day marketplaces to all the actors involved in security. And it was very interesting. >> Yeah, I mean, it definitely wakes you up, makes you think about what's going on in the world. Very relevant. >> It's like, yeah, it was happening all the time, wasn't it. All the hacking. But this brings me, this brings up an interesting point though, because you're in a cybersecurity area, which by the way, it's changing very fast. It's becoming a bigger industry. It's not just male dominated, although it is now, it's still male dominated, but it's becoming much more and then just tech. >> Yeah, I mean it's a constantly evolving threat landscape and we're learning, and I think more than ever you need to be able to use the data that companies have and, you know, learn from it. That's one of the ways we position ourselves. We're not just about writing rules that won't help you with those zero day attacks. You've got to be able to understand your particular environment and at any moment if it changes. And that's how we help you detect a threat. >> How is, how are things going with you? Is there any new things you guys got going on? Initiatives or programs for women in tech and increasing the range of diversity inclusion in the industry? Because again, this industry's getting much wider too. It's not just specialized, it's also growing. >> Yes, actually I'm excited. We're launching secured by women, securedbywomen.com and it's very much focused on women in the industry, which some studies are showing it's about 25% of security professionals are women. And we're going to be taking nominations and sponsoring women to go to upcoming security events. And so excited to launch that this month and really celebrate women in security and help them, you know, part of that continual learning that I talked about, making sure they're there learning, having the conversations at the conferences, being able to network. >> I have to ask you, what inspired you to pursue the career in tech? What was the motivation? >> You know, if I think way back, originally I wanted to be on the art side and my dad said, "You can do anything as long as it's in the sciences." And so in undergrad I did computer science and MIS. Graduated with MIS and computer science minor. And when I came out I was a IT engineer at Cisco and you know, that kind of started my journey and decided to go back and get my MBA. And during that process I fell in love with marketing and I thought, okay, I understand the buyer, I can come out and market technology to the IT world and developers. And then from there went to several tech companies. >> I mean my father was an engineer. He had the same kind of thing. You got to be an engineer, it's a steady, stable job. But that time, computer science, I mean we've seen the evolution of computer science now it's the most popular degree at Berkeley we've heard and around the world and the education formats are changing. You're seeing a lot of people's self-training on YouTube. The field has really changed. What are some of the challenges you see for folks trying to get into the industry and how would you advise today if you were talking to your young self, what would you, what would be the narrative? >> Yeah, I mean my drawback then was HTML pages were coming out and I thought it would be fun to design, you know, webpages. So you find something you're passionate about in the space today, whether it's gaming or it's cybersecurity. Go and be excited about it and apply and don't give up, right? Do whatever you can to read and learn. And you're right, there are a ton of online self-help. I always try to hire women and people who are continual learners and are teaching themselves something. And I try to find that in an interview to know that they, because when you come to a business, you're there to solve problems and challenges. And the folks that can do that and be innovative and learn, those are the ones I want on my team. >> It's interesting, you know, technology is now impacting society and we need everyone involved to participate and give requirements. And that kind of leads my next question for you is, like, in your opinion, or let me just step back, let me rephrase. What are some of the things that you see technology being used for, for society right now that will impact people's lives? Because this is not a gender thing. We need everybody involved 'cause society is now digital. Technology's pervasive. The AI trends now we're seeing is clearly unmasking to the mainstream that there's some cool stuff happening. >> Yeah, I mean, I think ChatGPT, think about that. All the different ways we're using it we're writing content and marketing with it. We're, you know, I just read an article yesterday, folks are using it to write children's stories and then selling those stories on Amazon, right? And the amount that they can produce with it. But if you think about it, there's unlimited uses with that technology and you've got all the major players getting involved on it. That one major launch and piece of technology is going to transform us in the next six months to a year. And it's the ability to process so much data and then turn that into just assets that we use and the creativity that's building on top of it. Even TripActions has incorporated ChatGPT into your ability to figure out where you want when you're traveling, what's happening in that city. So it's just, you're going to see that incorporated everywhere. >> I mean we've done an interview before TripAction, your other company you were at. Interesting point you don't have to type in a box to say, I'm traveling, I want a hotel. You can just say, I'm going to Barcelona for Mobile World Congress, I want to have a good time. I want some tapas and a nice dinner out. >> Yes. Yeah. That easy. We're making it easy. >> It's efficiency. >> And actually I was going to say for women specifically, I think the reason why we can do so much today is all the technology and apps that we have. I think about DoorDash, I think about Waze you know, when I was younger you had to print out instructions. Now I get in the car real quick, I need to go to soccer practice, I enter it, I need to pick them up at someone's house. I enter it. It's everything's real time. And so it takes away all the things that I don't add value to and allows me to focus on what I want in business. And so there's a bunch of, you know, apps out there that have allowed me to be so much more efficient and productive that my mother didn't have for sure when I was growing up. >> That is an amazing, I think that actually illustrates, in my opinion, the best example of ChatGPT because the maps and GPS integration were two techs, technologies merged together that replace driving and looking at the map. You know, like how do you do that? Like now it's automatically. This is what's going to happen to creative, to writing, to ideation. I even heard Nicole from her book read said that they're using ChatGPT to write zero day exploits. So you seeing it... >> That's scary stuff. You're right. >> You're seeing it everywhere. Super exciting. Well, I got to ask you before you get into some of the Lacework things that you're involved with, cause I think you're doing great work over there is, what was the most exciting projects you've worked on in your career? You came in Cisco, very technical company, so got the technical chops, CSMIS which stands for Management of Information Science for all the young people out there, that was the state of the art back then. What are some of the exciting things you've done? >> Yeah, I mean, I think about, I think about MongoDB and learning to market to developers. Taking the company public in 2017. Launching Atlas database as a service. Now there's so much more of that, you know, the PLG motion, going to TripActions, you know, surviving a pandemic, still being able to come out of that and all the learnings that went with it. You know, they recently, I guess rebranded, so they're Navan now. And then now back in the security space, you know, 14 years ago I was at ArcSite and we were bought by HP. And so getting back into the security world is exciting and it's transformed a ton as you know, it's way more complicated than it was. And so just understanding the pain of our customers and how we protect them as is fun. And I like, you know, being there from a marketing standpoint. >> Well we really appreciate you coming on and sharing that. I got to ask you, for folks watching they might be interested in some advice that you might have for them and their career in tech. I know a lot of young people love the tech. It's becoming pervasive in our lives, as we mentioned. What advice would you give for folks watching that want to start a career in tech? >> Yeah, so work hard, right? Study, network, your first job, be the best at it because every job after that you get pulled into a network. And every time I move, I'm hiring people from the last job, two jobs before, three jobs before. And I'm looking for people that are working hard, care, you know, are continual learners and you know, add value. What can you do to solve problems at your work and add value? >> What's your secret networking hack or growth hack or tip that you can share? Because you're a great networker by the way. You're amazing and you do add a lot of value. I've seen you in action. >> Well, I try never to eat alone. I've got breakfast, I've got lunch, I've got coffee breaks and dinner. And so when I'm at work, I try and always sit and eat with a team member, new group. If I'm out on the road, I'm, you know, meeting people for lunch, going for dinner, just, you know, don't sit at your desk by yourself and don't sit in the hotel room. Get out and meet with people. >> What do you think about now that we're out of the pandemic or somewhat out of the pandemic so to speak, events are back. >> Yes. >> RSA is coming up. It's a big event. The bigger events are getting bigger and then the other events are kind of smaller being distributed. What's your vision of how events are evolving? >> Yeah, I mean, you've got to be in person. Those are the relationships. Right now more than ever people care about renewals and you are building that rapport. And if you're not meeting with your customers, your competitors are. So what I would say is get out there Lacework, we're going to be at RSA, we're going to be at re:Inforce, we're going to be at all of these events, building relationships, you know, coffee, lunch, and yeah, I think the future of events are here to stay and those that don't embrace in person are going to give up business. They're going to lose market share to us. >> And networking is obviously very key on events as well. >> Yes. >> A good opportunity as always get out to the events. What's the event networking trick or advice do you give folks that are going to get out to the networking world? >> Yeah, schedule ahead of time. Don't go to an event and expect people just to come by for great swag. You should be partnering with your sales team and scheduling ahead of time, getting on people's calendars. Don't go there without having 100 or 200 meetings already booked. >> Got it. All right. Let's talk about you, your career. You're currently at Lacework. It's a very hot company in a hot field, security, very male dominated, you're a leader there. What's it like? What's the strategies? How does a woman get in there and be successful? What are some tricks, observations, any data you can share? What's the best practice? What's the secret sauce from Meagen Eisenberg? >> Yes. Yeah, for Meagen Eisenberg. For Lacework, you know, we're focused on our customers. There's nothing better than getting, being close to them, solving their pain, showcasing them. So if you want to go into security, focus on their, the issues and their problems and make sure they're aware of what you're delivering. I mean, we're focused on cloud security and we go from build time to run time. And that's the draw for me here is we had a lot of, you know, happy, excited customers by what we were doing. And what we're doing is very different from legacy security providers. And it is tapping into the trend of really understanding how much data you have and what's happening in the data to detect the anomalies and the threats that are there. >> You know, one of the conversations that I was just having with a senior leader, she was amazing and I asked her what she thought of the current landscape, the job market, the how to get promoted through the careers, all those things. And the response was interesting. I want to get your reaction. She said interdisciplinary skills are critical. And now more than ever, the having that, having a set of skills, technical and social and emotional are super valuable. Do you agree? What's your reaction to that and what would, how would you reframe that? >> Yeah, I mean, I completely agree. You can't be a leader without balance. You've got to know your craft because you're developing and training your team, but you also need to know the, you know, how to build relationships. You're not going to be successful as a C-level exec if you're not partnering across the functions. As a CMO I need to partner with product, I need to partner with the head of sales, I need to partner with finance. So those relationships matter a ton. I also need to attract the right talent. I want to have solid people on the team. And what I will say in the security, cybersecurity space, there's a talent shortage and you cannot hire enough people to protect your company in that space. And that's kind of our part of it is we reduce the number of alerts that you're getting. So you don't need hundreds of people to detect an issue. You're using technology to show, you know, to highlight the issue and then your team can focus on those alerts that matter. >> Yeah, there's a lot of emerging markets where leveling up and you don't need pedigree. You can just level up skill-wise pretty quickly. Which brings me to the next question for you is how do you keep up with all the tech day-to-day and how should someone watching stay on top of it? Because I mean, you got to be on top of this stuff and you got to ride the wave. It's pretty turbulent, but it's still growing and changing. >> Yeah, it's true. I mean, there's a lot of reading. I'm watching the news. Anytime something comes out, you know, ChatGPT I'm playing with it. I've got a great network and sharing. I'm on, you know, LinkedIn reading articles all the time. I have a team, right? Every time I hire someone, they bring new information and knowledge in and I'm you know, Cal Poly had this learn by doing that was the philosophy at San Luis Obispo. So do it. Try it, don't be afraid of it. I think that's the advice. >> Well, I love some of the points you mentioned community and network. You mentioned networking. That brings up the community question, how could people get involved? What communities are out there? How should they approach communities? 'Cause communities are also networks, but also they're welcoming people in that form networks. So it's a network of networks. So what's your take on how to engage and work with communities? How do you find your tribe? If someone's getting into the business, they want support, they might want technology learnings, what's your approach? >> Yeah, so a few, a few different places. One, I'm part of the operator collective, which is a strong female investment group that's open and works a lot with operators and they're in on the newest technologies 'cause they're investing in it. Chief I think is a great organization as well. You've got a lot of, if you're in marketing, there's a ton of CMO networking events that you can go to. I would say any field, even for us at Lacework, we've got some strong CISO networks and we do dinners around you know, we have one coming up in the Bay area, in Boston, New York, and you can come and meet other CISOs and security leaders. So when I get an invite and you know we all do, I will go to it. I'll carve out the time and meet with others. So I think, you know, part of the community is get out there and, you know, join some of these different groups. >> Meagen, thank you so much for spending the time. Final question for you. How do you see the future of tech evolving and how do you see your role in it? >> Yeah, I mean, marketing's changing wildly. There's so many different channels. You think about all the social media channels that have changed over the last five years. So when I think about the future of tech, I'm looking at apps on my phone. I have three daughters, 13, 11, and 8. I'm telling you, they come to me with new apps and new technology all the time, and I'm paying attention what they're, you know, what they're participating in and what they want to be a part of. And certainly it's going to be a lot more around the data and AI. I think we're only at the beginning of that. So we will continue to, you know, learn from it and wield it and deal with the mass amount of data that's out there. >> Well, you saw TikTok just got banned by the European Commission today around their staff. Interesting times. >> It is. >> Meagen, thank you so much as always. You're a great tech athlete. Been following your career for a while, a long time. You're an amazing leader. Thank you for sharing your story here on theCUBE, celebration of International Women's Day. Every day is IWD and thanks for coming on. >> Thank you for having me. >> Okay. I'm John Furrier here in theCUBE Studios in Palo Alto. Thank you for watching, more to come stay with us. (bright music)
SUMMARY :
you for coming on the program Yeah, thank you for having me. That's kind of the spirit of this day. But I think about, you know, and it can get kind of messy as you know. and you know, be talking to the right What are some of the how the, you know, I recommend that book to everyone. makes you think about what's happening all the time, wasn't it. rules that won't help you you guys got going on? and help them, you know, and you know, that kind and around the world and the to design, you know, webpages. It's interesting, you know, to figure out where you Interesting point you That easy. I think about Waze you know, and looking at the map. You're right. Well, I got to ask you before you get into And I like, you know, some advice that you might have and you know, add value. You're amazing and you If I'm out on the road, I'm, you know, What do you think about now and then the other events and you are building that rapport. And networking is obviously do you give folks that just to come by for great swag. any data you can share? and the threats that are there. the how to get promoted You're using technology to show, you know, and you got to ride the wave. and I'm you know, the points you mentioned and you can come and meet other and how do you see your role in it? and new technology all the time, Well, you saw TikTok just got banned Thank you for sharing your Thank you for watching,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Teresa Carlson | PERSON | 0.99+ |
Nicole | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
General Motors | ORGANIZATION | 0.99+ |
Meagen Eisenberg | PERSON | 0.99+ |
European Commission | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Meagen | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Cal Poly | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
100 | QUANTITY | 0.99+ |
Lacework | ORGANIZATION | 0.99+ |
nine years | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
two jobs | QUANTITY | 0.99+ |
eight years | QUANTITY | 0.99+ |
Tuesday night | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Flexport | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
John Markoff | PERSON | 0.99+ |
three jobs | QUANTITY | 0.99+ |
13 | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Eileen | PERSON | 0.99+ |
14 years ago | DATE | 0.99+ |
two techs | QUANTITY | 0.99+ |
ArcSite | ORGANIZATION | 0.99+ |
securedbywomen.com | OTHER | 0.99+ |
TripActions | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
today | DATE | 0.99+ |
first job | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
ChatGPT | TITLE | 0.98+ |
200 meetings | QUANTITY | 0.98+ |
three daughters | QUANTITY | 0.98+ |
11 | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
YouTube | ORGANIZATION | 0.98+ |
8 | QUANTITY | 0.98+ |
Laceworks | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.97+ |
about 25% | QUANTITY | 0.97+ |
International Women's Day 2023 | EVENT | 0.97+ |
ORGANIZATION | 0.97+ | |
Bay | LOCATION | 0.96+ |
TripAction | ORGANIZATION | 0.95+ |
One | QUANTITY | 0.94+ |
Meagen Eisenberg | ORGANIZATION | 0.93+ |
a year | QUANTITY | 0.93+ |
RSA | ORGANIZATION | 0.92+ |
This morning | DATE | 0.92+ |
Navan | ORGANIZATION | 0.91+ |
MongoDB | TITLE | 0.91+ |
zero day | QUANTITY | 0.91+ |
this month | DATE | 0.9+ |
DoorDash | ORGANIZATION | 0.89+ |
IWD | ORGANIZATION | 0.88+ |
Atlas | TITLE | 0.87+ |
Luis Obispo | ORGANIZATION | 0.86+ |
CSMIS | ORGANIZATION | 0.85+ |
theCUBE Studios | ORGANIZATION | 0.83+ |
around zero day | QUANTITY | 0.82+ |
hundreds of people | QUANTITY | 0.82+ |
Waze | TITLE | 0.81+ |
Driving Business Results with Cloud Transformation | Jim Shook and Andrew Gonzalez
(upbeat music) >> Welcome back to the program, and we're going to dig into the number one topic on the minds of every technology organization, that's cybersecurity. You know, survey data from ETR, our data partner, shows that among CIOs and IT decision makers, cybersecurity continues to rank as the number one technology priority to be addressed in the coming year. That's ahead of even cloud migration and analytics. And with me to discuss this critical topic area, are Jim Shook, who's the Global Director of Cybersecurity and Compliance Practice at Dell Technologies, and he's joined by Andrew Gonzalez, who focuses on cloud and infrastructure consulting at DXC Technology. Gents, welcome, good to have you. >> Thanks Dave, great to be here. >> Thank you. >> Jim, let's start with you. What are you seeing from the front lines in terms of the attack surface and how are customers responding these days? >> It's always up and down and back and forth. The bad actors are smart, they adapt to everything that we do. So we're seeing more and more, kind of living off the land. They're not necessarily deploying malware, makes it harder to find what they're doing. And I think though, Dave, we've adapted and this whole notion of cyber resilience really helps our customers figure this out. And the idea there goes beyond cybersecurity, it's, let's protect as much as possible so we keep the bad actors out as much as we can, but then let's have the ability to adapt to, and recover to the extent that the bad actors are successful. So we're recognizing that we can't be perfect a hundred percent of the time against a hundred percent of the bad actors. Let's keep out what we can, but then recognize and have that ability to recover when necessary. >> Yeah, thank you. So Andrew, you know, I like what Jim was saying, about living off the land, of course, meaning using your own tooling against you, kind of hiding in plain sight, if you will. But, and as Jim was saying, you can't be perfect. But, so given that, what's your perspective on what good cybersecurity hygiene looks like? >> Yeah, so you have to understand what your crown jewel data looks like, what a good copy of a recoverable asset looks like when you look at an attack if it were to occur, right? How you get that copy of data back into production, and not only that but what that golden image actually entails. So, whether it's networking, storage, some copy of a source code, intellectual property, maybe seem to be data or an active directory or DNS dump, right? Understanding what your data actually entails that you can protect it, and that you can build out your recovery plan for it. >> So, and, where's that live? Where's that gold copy? You put in a yellow sticky? No, it's got to be, you got to be somewhere safe, right? So you have to think about that chain as well, right? >> Absolutely, yeah. So, a lot of folks have not gone through the exercise of identifying what that golden copy looks like. Everyone has a DR scenario, everyone has a DR strategy but actually identifying what that golden crown jewel data, let's call it, actually entails as one aspect of it and then where to put it, how to protect it, how to make it immutable and isolated? That's the other portion of it. >> You know, if I go back to sort of earlier part of last decade, you know, cybersecurity was kind of a checkoff item. And then as you got toward the middle part of the decade and I'd say clearly by 2016 it, security became a boardroom issue. It was on the agenda, you know, every quarter at the board meetings. So, compliance is no longer the driver, is my point. The driver is business risk, real loss of reputation or data, you know, or money, et cetera. What are the business implications of not having your cyber house in order today? >> They're extreme, Dave. I mean the, you know, bad actors are good at what they do. These losses by organizations, tens, hundreds of millions into the billions sometimes, plus the reputational damage that's difficult to really measure. There haven't been a lot of organizations that have actually been put out of business by an attack, at least not directly, if they're larger organizations, but that's also on the table too. So you can't just rely on, oh, we need to do, you know, A, B, and C because our regulators require it. You need to look at what the actual risk is to the business and then come up with the strategy from there. >> You know, Jim, staying with you, one of the most common targets we hear of attackers is to go after the backup corpus. So how should customers think about protecting themselves from that tactic? >> Well, Dave, you hit on it before, right? Everybody's had the backup and DR strategies for a long time going back to requirements that we had in place for physical disaster or human error. And that's a great starting point for a resilience capability, but that's all it is, is a starting point. Because the bad actors will, they also understand that you have those capabilities and they've adapted to that. In every sophisticated attack that we see the backup is a target, the bad actors want to take it out or corrupt it or do something else to that backup so that it's not available to you. That's not to say they're always successful and it's still a good control to have in place because maybe it will survive. But you have to plan beyond that. So, the capabilities that we talk about with resilience, let's harden that backup infrastructure. You've already got it in place, let's use the capabilities that are there like immutability and other controls to make it more difficult for the bad actors to get to. But then, as Andrew said, that gold copy, that critical systems, you need to protect that in something that's more secure which commonly we might say a cyber vault, although there's a lot of different capabilities for cyber vaulting, some far better than others, and that's some of the things that we focus on. >> You know, it's interesting, but I've talked to a lot of CIOs about this is, prior to the pandemic, they, you know, had their, as you're pointing out, Jim, they had their DR strategy in place but they felt like they weren't business resilient and they realized that when we had the forced march to digital. So, Andrew, are there solutions out there to help with this problem? Do you guys have an answer to this? >> Yeah, absolutely. So, I'm glad you brought up resiliency. We take a position that to be cyber resilient it includes operational resiliency, it includes understanding at the C-level what the implication of an attack means, as we stated, and then how to recover back into production. When you look at protecting that data, not only do you want to put it into what we call a vault, which is a Dell technology that is an offline immutable copy of your crown jewel data but also how to recover it in real-time. So DXC offers a, I don't want to call it a turnkey solution, since we architect these specific each client needs, right? When we look at what client data entails, their recovery point objectives, recovery time objectives, what we call quality of the restoration. But when we architect these out we look at not only how to protect the data but how to alert and monitor for attacks in real-time. How to understand what we should do when a breaches in progress. Putting together with our security operations centers a forensic and recovery plan and a runbook for the client. And then being able to cleanse and remediate so that we can get that data back into production. These are all services that DXC offers in conjunction with the Dell solution to protect and recover, and keep bad actors out. And if we can't keep 'em out, to ensure that we are back into production in short order. >> You know, this discussion we've been having about DR kind of versus resilience, and you were just talking about RPO and RTO, I mean, it used to be that a lot of firms wouldn't even test their recovery 'cause it was too risky or, you know, maybe they tested it on, you know, July 4th or something like that. But I'm inferring that's changed. I wonder if we could, you know, double click on recovery, how hard is it to test that recovery and how quickly are you seeing organizations recover from attacks? >> So it depends, right, on the industry vertical, what kind of data, again. Financial services client compared to a manufacturing client are going to be two separate conversations. We've seen it as quickly as being able to recover in six hours, in 12 hours. In some instances we have the grace period of a day to a couple days. We do offer the ability to run scenarios once a quarter where we can stand up in our systems the production data that we are protecting to ensure that we have a good recoverable copy, but it depends on the client. >> I really like the emphasis here, Dave, that you're raising and that Andrew's talking about. It's not on the technology of how the data gets protected it's focused on the recovery, that's all that we want to do. And so the solution with DXC really focuses on generating that recovery for customers. I think where people get a little bit twisted up on their testing capability is you have to think about different scenarios. So, there are scenarios where the attack might be small, it might be limited to a database or an application. It might be really broadly-based, like the NotPetya attacks from a few years ago. The regulatory environment, we call those attacks severe but plausible. So you can't necessarily test everything with the infrastructure but you can test some things with the infrastructure. Others, you might sit around on a tabletop exercise or walk through what that looks like to really get that recovery kind of muscle memory so that people know what to do when those things occur. But the key to it, as Andrew said before, have to focus down what are those critical applications? What do we need? What's most important? What has to come back first? And that really will go a long way towards having the right recovery points and recovery times from a cyber disaster. >> Yeah, makes sense, understanding the value of that data is going to inform you how to respond and how to prioritize. Andrew, one of the things that we hear a lot on theCUBE, especially lately is around, you know, IOT, IIOT, Industry 4.0, the whole OT security piece of it. And the problem being that, you know, traditionally operations technologies have been air-gapped often by design. But as businesses, increasingly they're driving initiatives like Industry 4.0 and they're connecting these OT systems to IT systems. They're, you know, driving efficiency, preventative maintenance, et cetera. So, a lot of data flowing through the pipes, if you will. What are you seeing in terms of the threats to critical infrastructure and how should customers think about addressing these issues? >> Yeah, so bad actors can come in many forms. We've seen instances of social engineering, we've seen, USB stick dropped in a warehouse. That data that is flowing through the IOT devices is as sensitive now as your core mainframe infrastructure data. So, when you look at it from a protection standpoint, conceptually it's not dissimilar from what we've been talking about, where you want to understand, again, what the most critical data is. Looking at IOT data and applications is no different than your core systems now, right? Depending on what your business is, right? So when we're looking at protecting these, yes, we want firewalls, yes, we want air gap solutions, yes, we want front-end protection but we're looking at it from a resiliency perspective. Putting that data, understanding what data entails to put in the vault from an IOT perspective is just as critical as it is for your core systems. >> Jim, anything you can add to this topic? >> Yeah, I think you hit on the key points there, everything is interconnected. So even in the days where maybe people thought the OT systems weren't online, oftentimes the IT systems are talking to them or controlling theM, SCADA systems, or perhaps supporting them. Think back to the pipeline attack of last year. All the public testimony was that the OT systems didn't get attacked directly but there was uncertainty around that and the IT systems hadn't been secured so that caused the OT systems to have to shut down. It certainly is a different recovery when you're shutting them down on your own versus being attacked but the outcome was the same that the business couldn't operate. So, you really have to take all of those into account. And I think that does go back to exactly what Andrew's saying, understanding your critical business services and then the applications and data, and other components that support those and drive those and making sure those are protected, you understand them, you have the ability to recover them if necessary. >> So guys, I mean you made the point, I mean, you're right, the adversary is highly capable, they're motivated 'cause the ROI is so, it's so lucrative. It's like this never ending battle that cybersecurity pros, you know, go through. It really is kind of frontline, sort of technical heroes, if you will. And so, but sometimes it just feels daunting. Why are you optimistic about the future of cyber from the good guys' perspective? >> I think we're coming at the problem the right way, Dave, so that focus. I'm so pleased with the idea that we are planning that the systems aren't going to be a hundred percent capable every single time and let's figure that out, right? That's real world stuff. So, just as the bad actors continue to adapt and expand, so do we. And I think the differences there, the common criminals, it's getting harder and harder for them. The more sophisticated ones, they're tough to beat all the time. And of course, you've raised the question of some nation states and other activities but there's a lot more information sharing, there's a lot more focus from the business side of the house and not just the IT side of the house that we need to figure these things out. >> Yeah, to add to that, I think furthering education for the client base is important. You brought up a point earlier, it used to be a boardroom conversation due to compliance reasons. Now as we have been in the market for a while we continue to mature the offerings, it's further education for not only the business itself but for the IT systems and how they interconnect, and working together so that these systems can be protected and continue to be evolved and continue to be protected through multiple frameworks as opposed to seeing it as another check the box item that the board has to adhere to. >> All right guys, we got to go. Thank you so much. Great conversation on a really important topic. Keep up the good work, appreciate it. >> Thanks Dan. >> Thank you. >> All right, thank you for watching. Stay tuned for more excellent discussions around the partnership between Dell Technologies and DXC Technology. We're talking about solving real world problems, how this partnership has evolved over time. Really meeting the changing enterprise landscape challenges. Keep it right there. (upbeat music)
SUMMARY :
to be addressed in the coming year. in terms of the attack surface and recover to the extent that So Andrew, you know, I and that you can build out how to protect it, of last decade, you know, You need to look at what the is to go after the backup corpus. for the bad actors to get to. the forced march to digital. and then how to recover how hard is it to test that recovery We do offer the ability to But the key to it, as Andrew said before, And the problem being that, you know, So, when you look at it from so that caused the OT about the future of cyber that the systems aren't going to be that the board has to adhere to. Thank you so much. around the partnership
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim | PERSON | 0.99+ |
Andrew Gonzalez | PERSON | 0.99+ |
Andrew | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jim Shook | PERSON | 0.99+ |
six hours | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
July 4th | DATE | 0.99+ |
12 hours | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
last year | DATE | 0.99+ |
tens | QUANTITY | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
DXC Technology | ORGANIZATION | 0.99+ |
Dan | PERSON | 0.99+ |
DXC | ORGANIZATION | 0.99+ |
billions | QUANTITY | 0.99+ |
last decade | DATE | 0.98+ |
hundred percent | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
a day | QUANTITY | 0.97+ |
each client | QUANTITY | 0.97+ |
one aspect | QUANTITY | 0.97+ |
first | QUANTITY | 0.95+ |
hundreds of millions | QUANTITY | 0.93+ |
today | DATE | 0.89+ |
once a quarter | QUANTITY | 0.89+ |
couple days | QUANTITY | 0.83+ |
few years ago | DATE | 0.82+ |
two separate conversations | QUANTITY | 0.81+ |
pandemic | EVENT | 0.77+ |
coming year | DATE | 0.7+ |
single time | QUANTITY | 0.64+ |
theCUBE | ORGANIZATION | 0.63+ |
double | QUANTITY | 0.6+ |
4.0 | OTHER | 0.54+ |
SCADA | ORGANIZATION | 0.52+ |
Practice | ORGANIZATION | 0.48+ |
IOT | ORGANIZATION | 0.42+ |
IIOT | ORGANIZATION | 0.41+ |
NotPetya | OTHER | 0.39+ |
Driving Business Results with Cloud Transformation | Jay Dowling and Jim Miller
(upbeat music) >> Hello and welcome to what is sure to be an insightful conversation about getting business results with cloud transformation. My name is Dave Vellante and I'm here with James Miller, Chief Technologist for Cloud and Infrastructure Services and Jay Dowling, America's Sales Lead for cloud and infrastructure services both with DXC Technology. Gentlemen, thanks for your time today. Welcome to the Cube. >> Great. Thanks for having us. >> Thank you Dave. Appreciate it. >> So let's get right into it. You know, I've talked to a lot of practitioners who've said, look, if you really want to drop zeros, like a lot of zeros to the bottom line, you can't just lift and shift. You really got to think about modernizing the application portfolio, you got to think about your business model and really think about transforming your business particularly the operating model. So my first question Jim is what role does the cloud play in modernization? >> Well, there are really three aspects that the cloud plays in modernization. You mentioned multiple zeros. One is cost optimization and that can be achieved through business operations, through environmental, social and governance. Also being more efficient with your IT investments. But that's not the only aspect. There's also agility and innovation and that can be achieved through automation and productivity, speed to market for new features and functions, improvements in the customer experience and the capability to metabolize a great deal more data in your environment which the end result is an improvement in releasing of new things to the field. And finally, there's resilience and I'm not really talking about IT resilience, but more of business resilience. To be able to handle operational risk, improve your securities and controls, deal with some of the talent gap that's in the industry and also protect your brand reputation. So modernization is really about balancing these three aspects, cost optimization, agility and innovation and resilience. >> So, thank you for that. So Jay, I got to ask you, in the current climate everybody's sort of concerned and there's not great visibility on the macro. So Jim mentioned cost optimization. That seems to be one of the top areas that customers are focused on. The two I hear a lot are consolidating redundant vendors and optimizing cloud costs. So that's, you know, top of mind today. I think everybody really, you know understands the innovation and agility piece at least at a high level, maybe realizing it is different. And then the business resilience piece is really interesting because, you know, prior to the pandemic people you know, they had a DR strategy, but they realized, wow, my business might not be that resilient. So Jay, my question to you is what are you hearing when you talk to customers? What's the priority today? >> You know, priority is often an overused term in digital transformation, you know people want to get ready for next generation environments, customer experience, making sure they're improving, you know, how they engage with their clients and what their branding is. And what we find is a lot of clients don't have the underlying infrastructure in place today to get to where they want to get to. So cloud becomes an important element of that. But, you know, with DXC'S philosophy not everything necessarily needs to go to cloud to be cost optimized for instance, in many cases you can run applications, you know in your own data center or on-prem or in other environments in a hybrid environment or multi-cloud environment and still be very optimized from a cost spend standpoint, and also put yourself in position for modernization and for be able to do the bring the things to the business that the clients are you know, that their clients are looking for like the CMO and the CFO, et cetera, trying to use IT as a lever to drive business and to drive, you know business acceleration and drive profitability, frankly. So there's a lot of dependency on infrastructure, but there's a lot of elements to it. And we advocate for, you know there's not a single answer to that. We'd like to evaluate clients' environments and work with them to get them to an optimal target operating model you know, so that they can really deliver on what the promises are for their departments. >> So let's talk about some of the barriers to realizing value in a context of modernization. We talked about cost optimization, agility and resilience. But there's a business angle and there's a technical angle here. We always talk about people process and technology, technology oftentimes CIOs will tell us, well, that's the easy part, We'll figure that out whether it's true or not but I agree, people and process are sometimes the tough ones. So Jay, why don't you start, what do you see as the barriers, particularly from a business standpoint? >> Well, I think people need to let their guard down and be open to the ideas that are out there in the market from, you know, the standards that are being built by, you know best in class models, and there's many people that have gone on, you know cloud journeys and been very successful with it. There's others that have set high expectations with their business leaders that haven't necessarily met the goals that they need to meet or maybe haven't met them as quickly as they promised. So there's a, you know, there's a change management aspect that you'd need to look at with the, you know, with the environments, there's a, you know, there's a skillset environment that they need to be prepared for. Do they have the people, you know, to deliver with the, you know, with the tools and the skills and the models that they're putting themselves in place for in the future versus where they are now? There's just a lot of, you know there's a lot of different elements. It's not just a this price is better or this can operate better than one environment over the other. I think we like to try to look at things holistically and make sure that, you know, we're being, you know as much of a consultative advocate for the client, for, you know, where they want to go, what their destiny is, and based on what we've learned with other clients, you know and we can bring those best practices forward because we've worked, you know across such a broad spectrum of clients versus them being somewhat contained and sometimes can't see outside of their own, you know their own challenges if you would. So they need advocacy to help, you know bring them to the next level. And we like to translate that through you know, technology advances, which, you know Jim's really good at doing for us. >> Yeah. Jim, is the big barrier a skills issue, you know, bench strength? Are there other considerations from your perspective? >> Well, we've identified a number of factors that inhibit success of customers. One is, thinking it's only a technology change in moving to cloud when it's much broader than that. There are changes in governance, changes in process that need to take place. The other is evaluating the cloud providers on their current pricing structure and performance. And we see pricing and structure changing dramatically every few months between the various cloud providers. And you have to be flexible enough to determine which providers you want, and it may not be feasible to just have a single cloud provider in this world. The other thing is a big bang approach to transformation. I want to move everything and I want to move it all at once. That's not necessarily the best approach. A well thought out cloud journey and strategy and timing your investments, are really important to get maximizing your business return on a journey to the cloud. And finally, not engaging stakeholders early and continuously. You have to manage expectations in moving to cloud on what business factors will get affected, how you will achieve your cost savings and how you will achieve the business impact over the journey and reporting out on that with very strict metrics to all of the stakeholders. >> You know, mentioned multi-cloud just then we had in January 17th we had our Supercloud two event and Supercloud is basically, it's really what multi-cloud should have been, I'd like to say. So it's just creating a common experience across clouds, and you guys were talking about, you know there's different governance, there's different security there's different pricing. So, and one of the takeaways from this event, in talking to customers and practitioners and technologists is you can't go it alone. So I wonder if you could talk about your partnership strategy, what do partners bring to the table and what is DXC's, you know, unique value? >> I'd be happy to lead with that if you'd like. >> Great. >> I, you know, we've got a vast partner ecosystem at DXC given the size and the history of the company. I can use several examples. One of the larger partners in my particular space is Dell technology, right? They're a great, you know, partner for us across many different areas of the business. It's not just a storage and compute play anymore. They're, on the edge. They're, you know, they've got intelligence in their networking devices now and they've really brought, you know a lot of value to us as a partner. And, you know, there's somebody who could look at Dell technology as somebody that might, you know have a victim, you know, effect because of all the hyperscaler activity and all the cloud activity. But they've really taken an outstanding attitude with this and said, listen, not all things are destined for cloud or not all things would operate better in a cloud environment, and they'd like to be part of those discussions to see how they can, you know how we can bring a multi-cloud environment, you know both private and public, you know to clients and let's look at the applications and the infrastructure and, and what's, you know what's the best optimal running environment, you know for us to be able to bring, you know the greatest value to the business with speed, with security, with, you know, and, you know the things that they want to keep closest to the business are often things that you want to kind of you know, keep on your premise or keep in your own data center. So they're an ideal model of somebody that's resourced us well, partners with us well in the market and we continue to grow that relationship day in and day out with those guys. And we really appreciate, you know their support of our strategy and we like to also compliment their strategy and work, you know work together hand in hand in front of our clients. >> Yeah. You know, Jim, Matt Baker, who's the Head of Strategic Planning at Dell talks about it's not a zero sum game. And I think, you know, you're right Jay, I think initially people felt like, oh wow, it is a zero sum game, but it's clearly not. And this idea of whether you call it super cloud or Uber cloud or multi-cloud, clearly Dell is headed in that direction and I've, you know, look at some of their future projects, their narrative. I'm curious from a technology standpoint, Jim, what your role is. Is it to make it all work? Is it to, you know, end to end? I wonder if you could help, you know, us understand that. >> Help us figure this out Jim (all laughing) >> Glad to expand on that. One of my key roles is developing our product roadmap for DXC offerings. And we do that roadmap in conjunction with our partners where we can leverage the innovation that our partners bring to the table, and we often utilize engineering resources from our partners to help us jointly build those offerings that adapt to changes in the market and also adapt to many of our customers changing needs over time. So my primary role is to look at the market, talk to our customers, and work with our partners, to develop a product roadmap for delivering DXC products and services to our clients so that they can get the return on investment on their technology journeys. >> You know, we've been working with these two firms for a while now. Even predates, you know, the name DXC and that transformation. I'm curious as to what's, how you would respond to what's unique. You know, you hear a lot about partnerships, you guys got a lot of competition, Dell has a lot of competition. What's specifically unique about this combination? >> I would say our unique approach, we call it cloud right. And that approach is making the right investments at the right time and on the right platforms. And our partners play a key role in that. So we encourage our customers to not necessarily have a cloud first approach but a cloud right approach, where they place the workloads in the environment that is best suited from a technology perspective, a business perspective and even a security and governance perspective. And the right approach might include mainframe, it might include an on-premises infrastructure, it could include private cloud, public cloud and SaaS components all integrated together to deliver that value. >> Yeah, Jay, please. It's a complicated situation for a lot of customers, but chime in here. >> And now if you were speaking still specifically to Dell here, like they also walk the talk, right? They invest in DXC as a partnership they put people on the ground that their only purpose in life is to help DXC succeed with Dell in, you know, arm in arm in front of clients. And it's not, you know, it's not a winner take all thing at all. It's really true partnership. They've brought solution resources. We have an account CTO, we've got executive sponsorship, we do regular QBR meetings, we have regular executive touchpoint meetings. It's really important that you keep a high level of intimacy with the client with the partners, you know, in the GSI community. And I've been with several GSI's and this is an exceptional example of true partnership and commitment to success with Dell technology. I'm really extremely impressed on the engagement level that we've had there and, you know, continue to show a lot of support, you know, both for them, you know there's other OEM partners of course in the market there's always going to be other technology solutions for certain clients but this has been a particularly strong element for us in our partnership and our go-to-market strategy. >> Well, I think too, just my observation is a lot of it is about trust. You guys have both earned the trust, kind of over the years, taking your arrows, you know, over decades, and you know, that just doesn't happen overnight. So guys, I appreciate it. Thanks for your time. It's all about getting cloud right, isn't it? >> That's right. Thank you Dave. Appreciate it very much. >> Thank you. >> Great to have you on. Keep it right there for more action on the cube right back. (upbeat music)
SUMMARY :
and I'm here with James Miller, Thanks for having us. you got to think about your business model and the capability to metabolize So Jay, my question to you is and to drive, you know So Jay, why don't you start, So they need advocacy to help, you know a skills issue, you know, and how you will achieve and what is DXC's, you know, unique value? I'd be happy to lead to see how they can, you know and I've, you know, look at and also adapt to many of Even predates, you know, in the environment that is for a lot of customers, with the partners, you know, and you know, that just Thank you Dave. Great to have you on.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jay Dowling | PERSON | 0.99+ |
Matt Baker | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
James Miller | PERSON | 0.99+ |
Jay | PERSON | 0.99+ |
DXC | ORGANIZATION | 0.99+ |
Jim Miller | PERSON | 0.99+ |
January 17th | DATE | 0.99+ |
two firms | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
DXC Technology | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
one | QUANTITY | 0.98+ |
first question | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
first approach | QUANTITY | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
three aspects | QUANTITY | 0.96+ |
GSI | ORGANIZATION | 0.95+ |
pandemic | EVENT | 0.91+ |
three | QUANTITY | 0.91+ |
single answer | QUANTITY | 0.89+ |
zeros | QUANTITY | 0.83+ |
America | LOCATION | 0.82+ |
single cloud provider | QUANTITY | 0.81+ |
and Infrastructure Services | ORGANIZATION | 0.76+ |
Supercloud | EVENT | 0.74+ |
DXC | TITLE | 0.49+ |
Applying Smart Data Fabrics Across Industries
(upbeat music) >> Today more than ever before, organizations are striving to gain a competitive advantage, deliver more value to customers, reduce risk, and respond more quickly to the needs of businesses. Now, to achieve these goals, organizations need easy access to a single view of accurate, consistent and very importantly, trusted data. If it's not trusted, nobody's going to use it and all in near real time. However, the growing volumes and complexities of data make this difficult to achieve in practice. Not to mention the organizational challenges that have evolved as data becomes increasingly important to winning in the marketplace. Specifically as data grows, so does the prevalence of data silos, making, integrating and leveraging data from internal and external sources a real challenge. Now, in this final segment, we'll hear from Joe Lichtenberg who's the global head of product and industry marketing, and he's going to discuss how smart data fabrics can be applied to different industries. And by way of these use cases, we'll probe Joe's vast knowledge base and ask him to highlight how InterSystems, which touts a next gen approach to Customer 360, how the company leverages a smart data fabric to provide organizations of varying sizes and sectors in financial services, supply chain, logistics and healthcare with a better, faster and easier way to deliver value to the business. Joe welcome, great to have you here. >> Thank you, it's great to be here. That was some intro. I could not have said it better myself, so thank you for that. >> Thank you. Well, we're happy to have you on this show now. I understand- >> It's great to be here. >> You you've made a career helping large businesses with technology solutions, small businesses, and then scale those solutions to meet whatever needs they had. And of course, you're a vocal advocate as is your company of data fabrics. We talked to Scott earlier about data fabrics, how it relates to data mesh big discussions in the industry. So tell us more about your perspective. >> Sure, so first I would say that I have been in this industry for a very long time so I've been like you, I'm sure, for decades working with customers and with technology, really to solve these same kinds of challenges. So for decades, companies have been working with lots and lots of data and trying to get business value to solve all sorts of different challenges. And I will tell you that I've seen many different approaches and different technologies over the years. So, early on, point to point connections with custom coding, and I've worked with integration platforms 20 years ago with the advent of web services and service-oriented architectures and exposing endpoints with wisdom and getting access to disparate data from across the organization. And more recently, obviously with data warehouses and data lakes and now moving workloads to the cloud with cloud-based data marts and data warehouses. Lots of approaches that I've seen over the years but yet still challenges remain in terms of getting access to a single trusted real-time view of data. And so, recently, we ran a survey of more than 500 different business users across different industries and 86% told us that they still lack confidence in using their data to make decisions. That's a huge number, right? And if you think about all of the work and all of the technology and approaches over the years, that is a surprising number and drilling into why that is, there were three main reasons. One is latency. So the amount of time that it takes to access the data and process the data and make it fit for purpose by the time the business has access to the data and the information that they need, the opportunity has passed. >> Elapsed time, not speed a light, right? But that too maybe. >> But it takes a long time if you think about these processes and you have to take the data and copy it and run ETL processes and prepare it. So that's one, one is just the amount of data that's disparate in data silos. So still struggling with data that is dispersed across different systems in different formats. And the third, is data democratization. So the business really wants to have access to the data so that they can drill into the data and ask ad hoc questions and the next question and drill into the information and see where it leads them rather than having sort of pre-structured data and pre-structured queries and having to go back to IT and put the request back on the queue again and waiting. >> So it takes too long, the data's too hard to get to 'cause it's in silos and the data lacks context because it's technical people that are serving up the data to the business people. >> Exactly. >> And there's a mismatch. >> Exactly right. So they call that data democratization or giving the business access to the data and the tools that they need to get the answers that they need in the moment. >> So the skeptic in me, 'cause you're right I have seen this story before and the problems seem like they keep coming up, year after year, decade after decade. But I'm an optimist and so. >> As am I. >> And so I sometimes say, okay, same wine new bottle, but it feels like it's different this time around with data fabrics. You guys talk about smart data fabrics from your perspective, what's different? >> Yeah, it's very exciting and it's a fundamentally different approach. So if you think about all of these prior approaches, and by the way, all of these prior approaches have added value, right? It's not like they were bad, but there's still limitations and the business still isn't getting access to all the data that they need in the moment, right? So data warehouses are terrific if you know the questions that you want answered and you take the data and you structure the data in advance. And so now you're serving the business with sort of pre-planned answers to pre-planned queries, right? The data fabric, what we call a smart data fabric is fundamentally different. It's a fundamentally different approach in that rather than sort of in batch mode, taking the data and making it fit for purpose with all the complexity and delays associated with it, with a data fabric where accessing the data on demand as it's needed, as it's requested, either by the business or by applications or by the data scientists directly from the source systems. >> So you're not copying it necessarily to that to make that you're not FTPing it, for instance. I've got it, you take it, you're basically using the same source. >> You're pulling the data on demand as it's being requested by the consumers. And then all of the data management processes that need to be applied for integration and transformation to get the data into a consistent format and business rules and analytic queries. And with Jess showed with machine learning, predictive prescriptive analytics all sorts of powerful capabilities are built into the fabric so that as you're pulling the data on demand, right, all of these processes are being applied and the net result is you're addressing these limitations around latency and silos that we've seen in the past. >> Okay, so you've talked about you have a lot of customers, InterSystems does in different industries supply chain, financial services, manufacturing. We heard from just healthcare. What are you seeing in terms of applications of smart data fabrics in the real world? >> Yeah, so we see it in every industry. So InterSystems, as you know, has been around now for 43 years, and we have tens of thousands of customers in every industry. And this architectural pattern now is providing value for really critical use cases in every industry. So I'm happy to talk to you about some that we're seeing. I could actually spend like three hours here and there but I'm very passionate about working with customers and there's all sorts of exciting. >> What are some of your favorites? >> So, obviously supply chain right now is going through a very challenging time. So the combination of what's happening with the pandemic and disruptions and now I understand eggs are difficult to come by I just heard on NPR. >> Yeah and it's in part a data problem and a big part of data problem, is that fair? >> Yeah and so, in supply chain, first there's supply chain visibility. So organizations want a real time or near real time expansive view of what's happening across the entire supply chain from a supply all the way through distribution, right? So that's only part of the issue but that's a huge sort of real-time data silos problem. So if you think about your extended supply chain, it's complicated enough with all the systems and silos inside your firewall, before all of your suppliers even just thinking about your tier one suppliers let alone tier two and tier three. And then building on top of real-time visibility is what the industry calls a control tower, what we call the ultimate control tower. And so it's built in analytics to be able to sense disruptions and exceptions as they occur and predict the likelihood of these disruptions occurring. And then having data driven and analytics driven guidance in terms of the best way to deal with these disruptions. So for example, an order is missing line items or a cargo ship is stuck off port somewhere. What do you do about it? Do you reroute a different cargo ship, right? Do you take an order that's en route to a different client and reroute that? What's the cost associated? What's the impact associated with it? So that's a huge issue right now around control towers for supply chain. So that's one. >> Can I ask you a question about that? Because you and I have both seen a lot but we've never seen, at least I haven't the economy completely shut down like it was in March of 2020, and now we're seeing this sort of slingshot effect almost like you're driving on the highway sometimes you don't know why, but all of a sudden you slow down and then you speed up, you think it's okay then you slow down again. Do you feel like you guys can help get a handle on that product because it goes on both sides. Sometimes you can't get the product, sometimes there's too much of a product as well and that's not good for business. >> Yeah, absolutely. You want to smooth out the peaks and valleys. >> Yeah. >> And that's a big business goal, business challenge for supply chain executives, right? So you want to make sure that you can respond to demand but you don't want to overstock because there's cost associated with that as well. So how do you optimize the supply chains and it's very much a data silo and a real time challenge. So it's a perfect fit for this new architectural pattern. >> All right, what else? >> So if we look at financial services, we have many, many customers in financial services and that's another industry where they have many different sources of data that all have information that organizations can use to really move the needle if they could just get to that single source of truth in real time. So we sort of bucket many different implementations and use cases that we do around what we call Business 360 and Customer 360. So Business 360, there's all sorts of ways to add business value in terms of having a real-time operational view across all of the different GOs and parts of the business, especially in these very large global financial services institutions like capital markets and investment firms and so forth. So around Business 360, having a realtime view of risk, operational performance regulatory compliance, things like that. Customer 360, there's a whole set of use cases around Customer 360 around hyper-personalization of customers and in realtime next best action looking to see how you can sell more increase share of wallet, cross-sell, upsell to customers. We also do a lot in terms of predicting customer churn. So if you have all the historical data and what's the likelihood of customers churning to be able to proactively intercede, right? It's much more cost effective to keep assets under management and keep clients rather than going and getting new clients to come to the firm. A very interesting use case from one of our customers in Latin America, so Banco do Brasil largest bank in all of Latin America and they have a very innovative CTO who's always looking for new ways to move the needle for the bank. And so one of their ideas and we're working with them to do this is how can they generate net new revenue streams by bringing in new business to the bank? And so they identified a large percentage of the population in Latin America that does no banking. So they have no banking history not only with Banco do Brasil, but with any bank. So there's a fair amount of risk associated with offering services to this segment of the population that's not associated with any banks or financial institutions. >> There is no historical data on them, there's no. >> So it's a data challenge. And so, they're bringing in data from a variety of different sources, social media, open source data that they find online and so forth. And with us running risk models to identify which are the citizens that there's acceptable risk to offer their services. >> It's going to be huge market of unbanked people in vision Latin America. >> Wow, that's interesting. >> Yeah, yeah, totally vision. >> And if you can lower the risk and you could tap that market and be first >> And they are, yeah. >> Yeah. >> So very exciting. Manufacturing, we know industry 4.0 which is about taking the OT data, so the data from the MES systems and the streaming data, real-time streaming data from the machine controllers and integrating it with the IT data, so your data warehouses and your ERP systems and so forth to have not only a real-time view of manufacturing from supply and source all the way through demand but also predictive maintenance and things like that. So that's very big right now in manufacturing. >> Kind of cool to hear these use cases beyond your healthcare, which is obviously, your wheelhouse, Scott defined this term of smart data fabrics, different than data fabrics, I guess. So when we think about these use cases what's the value add of so-called smart data fabrics? >> Yeah, it's a great question. So we did not define the term data fabric or enterprise data fabric. The analysts now are all over it. They're all saying it's the future of data management. It's a fundamentally different approach this architectural approach to be able to access the data on demand. The canonical definition of a data fabric is to access the data where it lies and apply a set of data management processes, but it does not include analytics, interestingly. And so we firmly believe that most of these use cases gain value from having analytics built directly into the fabric. So whether that's business rules or predictive analytics to predict the likelihood of a customer churn or a machine on the shop floor failing or prescriptive analytics. So if there's a problem in the supply chain, what's the guidance for the supply chain managers to take the best action, right? Prescriptive analytics based on data. So rather than taking the data and the data fabric and moving it to another environment to run those analytics where you have complexity and latency, having tall of those analytics capabilities built directly into the fabric, which is why we call it a smart data fabric, brings a lot of value to our customers. >> So simplifies the whole data lifecycle, data pipelining, the hyper-specialized roles that you have to have, you can really just focus on one platform, is that? >> Exactly, basically, yeah. And it's a simplicity of architecture and faster speed to production. So a big differentiator for our technology, for InterSystems, Iris, is most if not all of the capabilities that are needed are built into one engine, right? So you don't need to stitch together 10 or 15 or 20 different data management services for relational database in a non-relational database and a caching layer and a data warehouse and security and so forth. And so you can do that. There's many ways to build this data fabric architecture, right? InterSystems is not the only way. >> Right? >> But if you can speed and simplify the implementation of the fabric by having most of what you need in one engine, one product that gets you to where you need to go much, much faster. >> Joe, how can people learn more about smart data Fabric some of the use cases that you've presented here? >> Yeah, come to our website, intersystems.com. If you go to intersystems.com/smartdatafabric that'll take you there. >> I know that you have like probably dozens more examples but it would be cool- >> I do. >> If people reach out to you, how can they get in touch? >> Oh, I would love that. So feel free to reach out to me on LinkedIn. It's Joe Lichtenberg I think it's linkedin.com/joeLichtenberg and I'd love to connect. >> Awesome. Joe, thanks so much for your time. Really appreciate it. >> It was great to be here. Thank you, Dave. >> All right, I hope you've enjoyed our program today. You know, we heard Scott now he helped us understand this notion of data fabrics and smart data fabrics and how they can address the data challenges faced by the vast majority of organizations today. Jess Jody's demo was awesome. It was really a highlight of the program where she showed the smart data fabrics inaction and Joe Lichtenberg, we just heard from him dug in to some of the prominent use cases and proof points. We hope this content was educational and inspires you to action. Now, don't forget all these videos are available on Demand to watch, rewatch and share. Go to theCUBE.net, check out siliconangle.com for all the news and analysis and we'll summarize the highlights of this program and go to intersystems.com because there are a ton of resources there. In particular, there's a knowledge hub where you'll find some excellent educational content and online learning courses. There's a resource library with analyst reports, technical documentation videos, some great freebies. So check it out. This is Dave Vellante. On behalf of theCUBE and our supporter, InterSystems, thanks for watching and we'll see you next time. (upbeat music)
SUMMARY :
and ask him to highlight how InterSystems, so thank you for that. you on this show now. big discussions in the industry. and all of the technology and But that too maybe. and drill into the information and the data lacks context or giving the business access to the data and the problems seem And so I sometimes say, okay, and by the way, to that to make that you're and the net result is you're fabrics in the real world? So I'm happy to talk to you So the combination and predict the likelihood of but all of a sudden you slow the peaks and valleys. So how do you optimize the supply chains of the different GOs and parts data on them, there's no. risk models to identify It's going to be huge market and integrating it with the IT Kind of cool to hear these use cases and moving it to another if not all of the capabilities and simplify the Yeah, come to our and I'd love to connect. Joe, thanks so much for your time. It was great to be here. and go to intersystems.com
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Joe | PERSON | 0.99+ |
Joe Lichtenberg | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Banco do Brasil | ORGANIZATION | 0.99+ |
Scott | PERSON | 0.99+ |
March of 2020 | DATE | 0.99+ |
Jess Jody | PERSON | 0.99+ |
Latin America | LOCATION | 0.99+ |
InterSystems | ORGANIZATION | 0.99+ |
Latin America | LOCATION | 0.99+ |
Banco do Brasil | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
43 years | QUANTITY | 0.99+ |
three hours | QUANTITY | 0.99+ |
15 | QUANTITY | 0.99+ |
86% | QUANTITY | 0.99+ |
Jess | PERSON | 0.99+ |
one product | QUANTITY | 0.99+ |
linkedin.com/joeLichtenberg | OTHER | 0.99+ |
theCUBE.net | OTHER | 0.99+ |
ORGANIZATION | 0.99+ | |
both sides | QUANTITY | 0.99+ |
intersystems.com/smartdatafabric | OTHER | 0.99+ |
One | QUANTITY | 0.99+ |
one engine | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
third | QUANTITY | 0.98+ |
Today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
intersystems.com | OTHER | 0.98+ |
more than 500 different business users | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
one platform | QUANTITY | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
single | QUANTITY | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
tens of thousands of customers | QUANTITY | 0.95+ |
three main reasons | QUANTITY | 0.94+ |
20 years ago | DATE | 0.92+ |
dozens more examples | QUANTITY | 0.9+ |
today | DATE | 0.9+ |
NPR | ORGANIZATION | 0.9+ |
tier one | QUANTITY | 0.9+ |
single view | QUANTITY | 0.89+ |
single source | QUANTITY | 0.88+ |
Business 360 | TITLE | 0.82+ |
pandemic | EVENT | 0.81+ |
one of | QUANTITY | 0.77+ |
20 different data management services | QUANTITY | 0.76+ |
tier | QUANTITY | 0.74+ |
resources | QUANTITY | 0.73+ |
Customer 360 | ORGANIZATION | 0.72+ |
tier three | OTHER | 0.72+ |
Business 360 | ORGANIZATION | 0.72+ |
decade | QUANTITY | 0.68+ |
Business | ORGANIZATION | 0.68+ |
decades | QUANTITY | 0.68+ |
Iris | ORGANIZATION | 0.63+ |
360 | TITLE | 0.63+ |
two | OTHER | 0.61+ |
Customer 360 | TITLE | 0.47+ |
ton | QUANTITY | 0.43+ |
360 | OTHER | 0.24+ |
Driving Business Results with Cloud
>> If you really want to make an impact to your business, it takes more than just moving your workloads into the cloud. So-called lift and shift is fine to reduce data center footprints and associated costs, but to really drive change, you don't want to simply "pave the cow path," as the saying goes. Rather, you need to think about the operating model, and that requires more comprehensive systems thinking. In other words, how will changes in technology affect business productivity? Or, you know what? Even flip that. What changes in my business process could lower cost, cut elapse times, and accelerate time to market, increase user productivity, and lower operational risks? And what role can technology play in supporting these mandates through modernization, automation, machine intelligence, and business resilience? And that's what we're here to discuss today. Welcome to Driving Business Results with Cloud Transformation, made Possible by Dell and DXC. My name is Dave Vellante, and today we're going to zoom out and explore many aspects of cloud transformation that leading organizations are acting on today. Yeah, sure, we're going to look at optimizing infrastructure, but we'll also dig deeper into cloud considerations, governance, compliance, and security angles, as well as the impact of emerging opportunities around edge and Industry 4.0. Our focus will be on how to remove barriers and help you achieve business outcomes. And to do this, our program features the long-term partnership between Dell and DXC. And we bring to this program six experts in three separate sessions, who are working directly with top organizations in virtually every industry to achieve high impact results. We're going to start with a conversation about cloud, the cloud operating model, and transforming key aspects of your infrastructure. And then we'll look into governance, security, and business resilience. And in our third session, we'll discuss exciting transformations that are occurring in smart manufacturing and facilities innovations. So let's get right into it with our first session. Enjoy the program. (bright music) Hello, and welcome to what is sure to be an insightful conversation about getting business results with cloud transformation. My name is Dave Vellante, and I'm here with James Miller, Chief Technologist for Cloud and Infrastructure Services, and Jay Dowling, Americas Sales Lead for Cloud and Infrastructure Services, both with DXC Technology. Gentlemen, thanks for your time today. Welcome to theCube. >> Great. Thanks for having us. >> Thank you Dave. Appreciate it. >> So let's get right into it. You know, I've talked to a lot of practitioners who've said, "Look, if you really want to drop zeros, like a lot of zeros to the bottom line, you can't just lift and shift." You really got to think about modernizing, the application portfolio. You got to think about your business model, and really think about transforming your business, particularly the operating model. So my first question, Jim, is, What role does the cloud play in modernization? >> Well, there are really three aspects that the, the cloud plays in modernization. You mentioned multiple zeros. One is cost optimization, and that can be achieved through business operations, through environmental, social, and governance. Also being more efficient with your IT investments. But that's not the only aspect. There's also agility and innovation. And that can be achieved through automation and productivity, speed to market for new features and functions, improvements in the customer experience, and the capability to metabolize a great deal more data in your environment, which the end result is an improvement in releasing of new things to the field. And finally, there's resilience. And I'm not really talking about IT resilience, but more of business resilience, to be able, to be able to handle operational risk, improve your securities and controls, deal with some of the talent gap that's in the industry, and also protect your brand reputation. So modernization is really about balancing these three aspects, cost optimization, agility and innovation, and resilience. >> So, so thank you for that. So Jay, I got to ask you, in the current climate, everybody's, you know, concerned, and there's not great visibility on the macro. So, Jim mentioned cost optimization. That seems to be one of the top areas that customers are focused on. The two I hear a lot are consolidating redundant vendors and optimizing cloud costs. So that's, you know, top of mind today. I think everybody really, you know, understands the innovation and, and, and agility piece, at least at a high level, maybe realizing it is different. And then the business resilience piece is really interesting because, you know, prior to the pandemic people, you know, they had a DR strategy, but they realized, "Wow, my business might not be that resilient." So Jay, my question to you is, What are you hearing when you talk to customers? What's the priority today? >> Yeah, the priority is an often overused term of digital transformation. You know, people want to get ready for next generation environments, customer experience, making sure they're improving, you know, how they engage with their clients and what their branding is. And what we find is a lot of clients don't have the underlying infrastructure in place today to get to where they want to get to. So cloud becomes an important element of that. But, you know, with DXC's philosophy, not everything goes to, not everything necessarily needs to go to cloud to be cost optimized, for instance. In many cases, you can run applications, you know, in your own data center, or on-prem, or in other environments, in a hybrid environment, or multi-cloud environment, and, and still be very optimized from a cost spend standpoint and also put yourself in position for modernization and for be able to do the, bring the things to the business that the clients are, you know, that their clients are looking for, like the CMO and the CFO, et cetera. Trying to use IT as a lever to drive business and to drive, you know, business acceleration and drive profitability, frankly. So there's a lot of dependency on infrastructure, but there's a lot of elements to it. And, and we advocate for, you know, there's not a single answer to that. We like to evaluate clients' environments and work with them to get them to an optimal target operating model, you know, so that they can really deliver on what the promises are for their departments. >> So if, let's talk about some of the, the barriers to realizing value in, in a context of modernization. We talked about cost optimization, agility, and, and, and resilience. But there's a business angle, and there's a technical angle here. 'Cause we always talk about people, process, and technology. Technology, oftentimes, CIOs will tell us, "Well, that's the easy part. We'll figured that out," whether it's true or not. But I agree, people and process is sometimes the tough one. So Jay, why don't you start. What do you see as the barriers, particularly from a business standpoint? >> I think people need to let their guard down and be open to the ideas that are, that are out there in the market from, you know, the, the standards that are being built by, you know, best in class models. And, and there's many people that have gone on, you know, cloud journeys and been very successful with it. There's others that have set high expectations with their business leaders that haven't necessarily met the goals that they need to meet or maybe haven't met them as quickly as they promised. So there's a, you know, there's a change management aspect that you'd need to look at with the, you know, with the environments. There's a, you know, there's a skillset set environment that they need to be prepared for. Do they have the people, you know, to deliver with the, you know, with the tools and the skills and the, and the models that that they're putting themselves in place for in the future versus where they are now? There's just a lot of, you know, there's a lot of different elements. It's not just a, "This price is better," or, "This can operate better than one environment over the other." I think we like to try to look at things holistically and make sure that, you know, we're being, you know, as much of a consultative advocate for the client, for where they want to go, what their destiny is, and based on what we've learned with other clients. You know, and we can bring those best practices forward because we've worked, you know, across such a broad spectra of clients versus them being somewhat contained and sometimes can't see outside of their own, you know, their own challenges, if you would. So they need, they need advocacy to help, you know, bring them to the next level. And we like to translate that through, you know, technology advances, which, you know, Jim's really good at doing for us. >> Yeah, Jim, is, is it, is it a, is the big barrier a skills issue, you know, bench strength? Are there other considerations from your perspective? >> Well, we, we've identified a number of factors that inhibit success of, of customers. One is thinking it's only a technology change in moving to cloud when it's much broader than that. There are changes in governance, changes in process that need to take place. The other is evaluating the cloud providers on their current pricing structure and performance. And, and we see pricing and structure changing dramatically every few months between the various cloud providers. And you have to be flexible enough to, to determine which providers you want. And it may not be feasible to just have a single cloud provider in this world. The other thing is a big bang approach to transformation, "I want to move everything, and I want to move it all at once." That's not necessarily the best approach. A well thought out cloud journey and strategy and timing your investments are really important to get at maximizing your business return on the journey to the cloud. And finally, not engaging stakeholders early and continuously. You have to manage expectations in moving to cloud on what business factors will get affected, how you will achieve your cost savings, and, and how you will achieve the business impact over the journey and reporting out on that with very strict metrics to all of the stakeholders. >> You know, mentioned multi-cloud just then. We had, in January 17th, we had our Supercloud 2 event. And Supercloud is basically, it's really multi, what multi-cloud should have been, I, I like to say. So it's this creating a common experience across clouds. And you guys were talking about, you know, there's different governance, there's different security, there's different pricing. So, and, and one of the takeaways from this event in talking to customers and practitioners and technologists is, you can't go it alone. So I wonder if you could talk about your partnership strategy, what do partners bring to the table, and what is, what is DXC's, you know, unique value? >> I'd be happy to lead with that if you'd like. >> Great. >> I, you know, we've got a vast partner ecosystem at DXC, given the size and, and the history of the company. I could use several examples. One of the larger partners in my particular space is Dell Technology, right? They're a great, you know, partner for us across many different areas of the business. It's not just a storage and compute play anymore. They're, they're on the edge. They're, you know, they're, they've got intelligence in their networking devices now. And they've really brought, you know, a lot of value to us as a partner. And, you know, there, there's somebody, you could look at Dell technology as somebody that might, you know, have a victim, you know, effect because of all the hyperscale activity and all the cloud activity. But they've really taken an outstanding attitude with this and say, "Listen, not all things are destined for cloud, or not all things would operate better in a cloud environment." And they like to be part of those discussions to see how they can, you know, how we can bring a multi-cloud environment, you know, both private and public, you know, to clients. And let's look at the applications and the infrastructure and, and what's, you know, what's the best optimal running environment, you know, for us to be able to bring, you know, the greatest value to the business with speed, with security, with, you know. And, you know, the things that they want to keep closest to the business are often things that you want to kind of, you know, keep on your premise or keep in your own data center. So they're, they're an ideal model of somebody that's resourced us well, partners with us well in the market. And, and we continue to grow that relationship day in and day out with those guys. And we really appreciate, you know, their support of our strategy, and, and we like to also compliment their strategy and work, you know, work together hand in hand in front of our clients. >> Yeah, you know, Jim, Matt Baker, who's the head of strategic planning at Dell talks about, "It's not a zero sum game." And I think, you know, you're right, Jay. I think initially people felt like, "Oh wow, it's, it is a zero sum game." But it's clearly not, and this idea of of, whether you call it supercloud or ubercloud or multicloud, clearly Dell is headed in in that direction. And I, you know, look at some of their future projects. There's their narrative. I'm curious from a technology standpoint, Jim, what your role is. Is it to make it all work? Is it to, you know, end to end? I wonder if you could help, you know, us understand that. >> Help us figure this out, Jim, here. (group laughing) >> Glad to expand on that. One of my key roles is developing our product roadmap for DXC offerings. And we do that roadmap in conjunction with our partners where we can leverage the innovation that our partners bring to the table. And we often utilize engineering resources from our partners to help us jointly build those offerings that adapt to changes in the market and also adapt to many of our customers changing needs over time. So my primary role is to look at the market, talk to our customers, and work with our partners to develop a product roadmap for delivering DXC products and services to our clients so that they can get the return on investment on their technology journeys. >> You know, we've been working with these two firms for a while now. Even predates, you know, the, the name DXC and that, that transformation. I'm curious as to what's, how you would respond to, "What's unique?" You know, you hear a lot about partnerships. You guys got a lot of competition. Dell has a lot of competition. What's specifically unique about this combination? >> I think, go ahead, Jim. >> I would say our unique approach, we call it cloud right. And that, that approach is making the right investments, at the right time, and on the right platforms. And our partners play a, play a key role in that. So we, we encourage our customers to not necessarily have a cloud first approach, but a cloud right approach where they place the workloads in the environment that is best suited from a technology perspective, a business perspective, and even a security and governance perspective. And, and the right approach might include mainframe. It might include an on-premises infrastructure. It could include private cloud, public cloud, and SaaS components all integrated together to deliver that value. >> Yeah, Jay, please. >> If you were... >> That is a complicated situation for a lot of customers. Chime in here. (Jay chuckles) >> And now, if you were speaking specifically to Dell here, like they, they also walk the talk, right? They invest in DXC as a partnership. They put people on the ground that their only purpose in life is to help DXC succeed with Dell in, you know, arm in arm in front of clients. And it's not, you know, it's not a winner take all thing at all. It's really a true partnership. They, they, they've brought solution resources. We have an account CTO. We've got executive sponsorship. We do regular QBR meetings. We have regular executive touchpoint meetings. It's really important that you keep a high level of intimacy with the client, with the partners, you know, and, and the, and the GSI community. And I, I've been with several GSIs, and, and this is an exceptional example of true partnership and commitment to success with Dell technology. I'm really extremely impressed on, on the engagement level that we've had there and, you know, continue to show a lot of support, you know, both for them. You know, there's other OEM partners, of course, in the market. There's always going to be other technology solutions for certain clients, but this has been a particularly strong element for us in our partnership and in our go-to-market strategy. >> Well, I think too, just my observation, is a lot of it's about trust. You guys have both earned the trust, the kind of, over the, over the years taking your arrows, you know, of over decades. And, and you know, that just doesn't happen overnight. So guys, I appreciate it. Thanks for your time. It's all about getting cloud right, isn't it? >> That's right. (chuckles) (Dave chuckles) >> Thank you Dave. Appreciate it very much. >> Dave, thank you. >> Jay, Jim, great to have you on. Keep it right there for more action on theCube. Be right back. (upbeat guitar music) (keyboard clicks) Welcome back to the program. My name is Dave Vellante, and in this session we're going to explore one of the more interesting topics of the day. IoT for smart factories and with me are Todd Edmunds, the Global CTO of Smart Manufacturing Edge and Digital Twins at Dell Technologies. That is such a cool title. (Todd chuckles) I want to be you. And Dr. Aditi Banerjee who's the Vice President, General Manager for Aerospace Defense and Manufacturing at DXC Technology. Another really cool title. Folks, welcome to the program. Thanks for coming on. >> Thank you. >> Thanks, Dave. Great to be here. >> Nice to be here. So, Todd, let's start with you. We hear a lot about Industry 4.0, smart factories, IIoT. Can you briefly explain like what is Industry 4.0 all about, and why is it important for the manufacturing industry? >> Yeah, sure, Dave. You know, it's been around for quite a while. And it's got, it's gone by multiple different names, as you said, Industry 4.0, smart manufacturing, industrial IoT, smart factory, but it all really means the same thing. Its really applying technology to get more out of the factories and the facilities that you have to do your manufacturing. So being much more efficient, implementing really good sustainability initiatives. And so we really look at that by saying, "Okay, what are we going to do with technology to really accelerate what we've been doing for a long, long time?" So it's really not, it's not new. It's been around for a long time. What's new is that manufacturers are looking at this not as a one-off, two-off, individual use case point of view. But instead they're saying, "We really need to look at this holistically, thinking about a strategic investment in how we do this, not to just enable one or two use cases, but enable many, many use cases across the spectrum." I mean, there's tons of them out there. There's predictive maintenance, and there's OEE, overall equipment effectiveness, and there's computer vision. And all of these things are starting to percolate down to the factory floor. But it needs to be done in a little bit different way. And, and, and really, to really get those outcomes that they're looking for in smart factory, or Industry 4.0, or however you want to call it, and truly transform. Not just throw an Industry 4.0 use case out there, but to do the digital transformation that's really necessary and to be able to stay relevant for the future. You know, I heard it once said that you have three options. Either you digitally transform and stay relevant for the future, or you don't and fade into history like 52% of the companies that used to be on the Fortune 500 since 2000, right? And so really that's a key thing, and we're seeing that really, really being adopted by manufacturers all across the globe. >> Yeah so, Aditi, that's like digital transformation is almost synonymous with business transformation. So is there anything you'd add to what Todd just said? >> Absolutely. Though, I would really add that what really drives Industry 4.0 is the business transformation, what we are able to deliver in terms of improving the manufacturing KPIs and the KPIs for customer satisfaction, right? For example, improving the downtime, you know, or decreasing the maintenance cycle of the equipments, or improving the quality of products, right? So I think these are a lot of business outcomes that our customers are looking at while using Industry 4.0 and the technologies of Industry 4.0 to deliver these outcomes. >> So Aditi, I wonder if I could stay with you. And maybe this is a bit esoteric. But when I first started researching IoT and, and, and Industrial IoT 4.0, et cetera, I felt, you know, while there could be some disruptions in the ecosystem, I kind of came to the conclusion that large manufacturing firms, aerospace defense companies, the firms building out critical infrastructure, actually had kind of an incumbent advantage in a great opportunity. Of course, then I saw on TV, somebody now they're building homes with 3D printers. Its like, blows your mind. So that's pretty disruptive, but, so, but they got to continue. The incumbents have to continue to invest in the future. They're well capitalized. They're pretty good businesses, very good businesses. But there's a lot of complexities involved in kind of connecting the old house to the new addition that's being built, if you will, or this transformation that we're talking about. So my question is, How are your customers preparing for this new era? What are the key challenges that they're facing and the, the blockers, if you will? >> Yeah, I mean the customers are looking at Industry 4.0 for greenfield factories, right? That is where the investments are going directly into building the factories with the new technologies, with the new connectivities, right, for the machines. For example, industrial IoT, having the right type of data platforms to drive computational analytics and outcomes, as well as looking at edge versus cloud type of technologies, right? Those are all getting built in the greenfield factories. However, for the install-based factories, right, that is where our customers are looking at, "How do I modernize these factories? How do I connect the existing machine?" And that is where some of the challenges come in on, you know, the legacy system connectivity that they need to think about. Also, they need to start thinking about cybersecurity and operation technology security, right, because now you are connecting the factories to each other, right? So cybersecurity becomes top of mind, right? So there is definitely investment that is involved. Clients are creating roadmaps for digitizing and modernizing these factories and investments in a very strategic way, right? So perhaps they start with the innovation program, and then they look at the business case, and they scale it up, right? >> Todd, I'm glad Aditi brought up security. Because if you think about the operations technology, you know, folks, historically, they air gapped, you know, the systems. That's how they created security. That's changed. The business came in and said, "Hey, we got to, we got to connect. We got to make it intelligent." So that's, that's got to be a big challenge as well. >> It, it, it absolutely is Dave. And, and you know, you can no longer just segment that because really, to get all of those efficiencies that we talk about, that IoT and Industrial IoT and Industry 4.0 promise, you have to get data out of the factory. But then you got to put data back in the factory. So no longer is it just firewalling everything is really the answer. So you really have to have a comprehensive approach to security, but you also have to have a comprehensive approach to the cloud and what that means. And does it mean a continuum of cloud all the way down to the edge, right down to the factory? It absolutely does because no one approach has the answer to everything. The more you go to the cloud, the broader the attack surface is. So what we're seeing is a lot of our customers approaching this from a, kind of that, that hybrid, you know, "write once, run anywhere" on the factory floor down to the edge. And one of the things we're seeing, too, is to help distinguish between what is the edge, and that, and, and bridge that gap between, like Dave, you talked about IT and OT. And also help that, what Aditi talked about, is the greenfield plants versus the brownfield plants that they call it, that are the legacy ones and modernizing those. Is, it's great to kind of start to delineate. What does that mean? Where's the edge? Where's the IT and the OT? We see that from a couple of different ways. We start to think about really two edges in a manufacturing floor. We talk about an industrial edge that sits, or some people call it a far edge or a thin edge, sits way down on that plan. It consists of industrial hardened devices that do that connectivity. The hard stuff about, "How do I connect to this obsolete legacy protocol and what do I do with it?" And create that next generation of data that has context. And then we see another edge evolving above that, which is much more of a data and analytics and enterprise grade application layer that sits down in the factory itself that helps figure out where we're going to run this. Does it connect to the cloud? Do we run applications on-prem? Because a lot of times that on-prem application is, is, needs to be done because that's the only way that its going to, it's going to work because of security requirements, because of latency requirements, performance, and a lot of times cost. It's really helpful to build that multiple edge strategy because then you kind of, you consolidate all of those resources, applications, infrastructure, hardware, into a centralized location. Makes it much, much easier to really deploy and manage that security. But it also makes it easier to deploy new applications, new use cases, and become the foundation for DXC's expertise and applications that they deliver to our customers as well. >> Todd, how complex are these projects? I mean, I feel like it's kind of the, the digital equivalent of building the Hoover Dam. I mean, it, it, it's, (chuckles) it, it, so. Yeah, how long does a typical project take? I know it varies, but what, you know, what are the critical success factors in terms of delivering business value quickly? >> Yeah, that's a great question in that, in that we're, you know, like I said at the beginning, we, this is not new. Smart factory and Industry 4.0 is not new. It's been, it's, people have been trying to implement the holy grail of smart factory for a long time. And what we're seeing is a switch, a little bit of a switch, or quite a bit of a switch, to where the enterprise and the IT folks are having a much bigger say and have a lot to offer to be able to help that complexity. So instead of deploying a computer here, and a gateway there, and a server there, I mean, you go walk into any manufacturing plant and you can see servers sitting underneath someone's desk or a, or a PC in a closet somewhere running a critical production application. So we're seeing the enterprise have a much bigger say at the table, much louder voice at the table to say, "We've been doing this at enterprise all the time. We, we know how to really consolidate, bring hyper-converged applications, hyper-converged infrastructure, to really accelerate these kind of applications, really accelerate the outcomes that are needed to really drive that smart factory, and start to bring that same capabilities down into the, on the factory floor." That way, if you do it once to make it easier to implement, you can repeat that. You can scale that. You can manage it much easily. And you can then bring that all together because you have the security in one centralized location. So we're seeing manufacturers, yeah, that first use case may be fairly difficult to implement and we got to go down in and see exactly what their problems are. But when the infrastructure is done the correct way, when that, think about how you're going to run that and how are you going to optimize the engineering. Well, let's take that, what you've done in that one factory, and then set. Let's that, make that across all the factories, including the factory that we're in, but across the globe. That makes it much, much easier. You really do the hard work once and then repeat, almost like a cookie cutter. >> Got it. Thank you. Aditi, what about the skillsets available to apply these, to these projects? You got to have knowledge of digital, AI, data, integration. Is there a talent shortage to get all this stuff done? >> Yeah, I mean definitely, a lot. Different types of skillsets are needed from a traditional manufacturing skillset, right? Of course, the basic knowledge of manufacturing is, is important. But the, the digital skillset sets like, you know, IoT, having a skillset in different protocols for connecting the machines, right, that experience that comes with it, data and analytics, security, augmented virtual reality programming. You know, again, looking at robotics and the digital twin. So you know, it's a lot more connectivity software, data driven skillsets that are needed to smart factory to life at scale. And, you know, lots of firms are, you know, recruiting these types of skill, resources with these skillsets to, you know, accelerate their smart factory implementation, as well as consulting firms like DXC Technology and others. We, we, we recruit. We, we train our talent to, to provide these services. >> Got it. Aditi, I wonder if we could stay on you. Let's talk about the partnership between DXC and Dell. What are you doing specifically to simplify the move to Industry 4.0 for customers? What solutions are you offering? How are you working together, Dell and DXC, to, to bring these to market? >> Yeah, Dell and DXC have a very strong partnership. You know, and we work very closely together to, to create solutions, to create strategies, and how we, we are going to jointly help our clients, right? So areas that we have worked closely together is edge compute, right, how that impacts the smart factory. So we have worked pretty closely in that area. We're also looked at vision technologies, you know. How do we use that at the edge to improve the quality of products, right? So we have several areas that we collaborate in. And our approach is that we, we want to bring solutions to our client, and as well as help them scale those solutions with the right infrastructure, the right talent, and the right level of security. So we bring a comprehensive solution to our clients. >> So, Todd, last question, kind of similar but different. You know, why Dell DXC? Pitch me. What's different about this partnership? You know, where do you, are you confident that, you know, you're going to be, deliver the best value to, to customers? >> Absolutely. Great question. You know, there's no shortage of bespoke solutions that are out there. There's hundreds of people that can come in and do individual use cases and do these things. And just, and, and, and that's, that's where it ends. What Dell and DXC Technology together bring to the table is, we do the optimization, the optimization of the engineering of those previously bespoke solutions upfront, together, right? The power of our scalables, enterprise-grade, structured, you know, industry standard infrastructure, as well as our expertise in delivering package solutions that really accelerate with DXC's expertise and reputation as a global, trusted, trusted advisor. Be able to really scale and repeat those solutions that DXC is so really, really good at. And, and Dell's infrastructure, and our, what, 30,000 people across the globe that are really, really good at that, at that scalable infrastructure, to be able to repeat. And then it really lessens the risk that our customers have and really accelerates those solutions. So it's again, not just one individual solutions, it's all of the solutions that not just drive use cases, but drive outcomes with those solutions. >> Yeah, the, you're right, the partnership has gone, I mean, I first encountered it back in, I think it was 2010, May of 2010, we had you, you guys both on theCube. I think you were talking about converged infrastructure. And I had a customer on, and it was, actually a manufacturing customer, was quite interesting. And back then it was, "How do we kind of replicate what's coming in the cloud?" And, and you guys have obviously taken it into the digital world. Really want to thank you for your time today. Great conversation, and love to have you back. >> Thank you so much. >> Absolutely. >> It was a pleasure speaking with you. >> I agree. >> All right, keep it right there for more discussions that educate and inspire on theCube. (bright music) Welcome back to the program and we're going to dig into the number one topic on the minds of every technology organization. That's cybersecurity. You know, survey data from ETR, our data partner, shows that among CIOs and IT decision makers, cybersecurity continues to rank as the number one technology priority to be addressed in the coming year. That's ahead of even cloud migration and analytics. And with me to discuss this critical topic area are Jim Shook, who's the Global Director of Cybersecurity and Compliance Practice at Dell Technologies, and he's joined by Andrew Gonzalez, who focuses on Cloud and Infrastructure consulting at DXC Technology. Gents, welcome. Good to have you. >> Thanks Dave. Great to be here. >> Thank you. >> Jim, let's start with you. What are you seeing from the front lines in terms of the attack surface, and, and how are customers responding these days? >> It's always up and down and back and forth. The bad actors are smart. They adapt to everything that we do. So we're seeing more and more kind of living off the land. They're not necessarily deploying malware. Makes it harder to find what they're doing. And I think though, Dave, we've, we've adapted, and this whole notion of cyber resilience really helps our customers figure this out. And the idea there goes beyond cybersecurity, it's, "Let's protect as much as possible, so we keep the bad actors out as much as we can. But then, let's have the ability to adapt to and recover to the extent that the bad actors are successful." So we're recognizing that we can't be perfect a hundred percent of the time against a hundred percent of the bad actors. Let's keep out what we can, but then recognize and have that ability to recover when necessary. >> Yeah, thank you. So Andrew, you know, I like what Jim was saying about living off the land, of course, meaning using your own tooling against you, kind of hiding in plain sight, if you will. But, and, and as Jim is saying, you, you can't be perfect. But, so given that, what's your perspective on what good cybersecurity hygiene looks like? >> Yeah, so you have to understand what your crown jewel data looks like, what a good copy of a recoverable asset looks like. When you look at an attack, if it were to occur, right, how you get that copy of data back into production. And not only that, but what that golden image actually entails. So, whether it's networking, storage, some copy of a source code, intellectual property, maybe CMBD data, or an active directory, or DNS dump, right? Understanding what your data actually entails so that you can protect it and that you can build out your recovery plan for it. >> So, and where's that live? Where's that gold copy? You put on a yellow sticky? No, it's got to be, (chuckles) you got to be somewhere safe, right? So you have to think about that chain as well, right? >> Absolutely. Yeah. You, so, a lot of folks have not gone through the exercise of identifying what that golden copy looks like. Everyone has a DR scenario, everyone has a DR strategy, but actually identifying what that golden crown jewel data, let's call it, actually entails is one aspect of it. And then where to put it, how to protect it, how to make it immutable and isolated, that's the other portion of it. >> You know, if I go back to sort of earlier part of last decade, you know, cybersecurity was kind of a checkoff item. And as you got toward the middle part of the decade, and I'd say clearly by 2016, it, security became a boardroom issue. It was on the agenda, you know, every quarter at the board meetings. So compliance is no longer the driver, is, is my point. The driver is business risk, real loss of reputation or data, you know, it's, or money, et cetera. What are the business implications of not having your cyber house in order today? >> They're extreme, Dave. I mean the, you know, the bad actors are good at what they do. These losses by organizations, tens, hundreds of millions into the billions sometimes, plus the reputational damage that's difficult to, to really measure. There haven't been a lot of organizations that have actually been put out of business by an attack, at least not directly on, if they're larger organizations. But that's also on the table, too. So you can't just rely on, "Oh we need to do, you know, A, B and C because our regulators require it." You need to look at what the actual risk is to the business, and then come up with a strategy from there. >> You know, Jim, staying with you, one of the most common targets we hear of attackers is to go after the backup corpus. So how should customers think about protecting themselves from that tactic? >> Well, Dave, you hit on it before, right? Everybody's had the backup and DR strategies for a long time going back to requirements that we had in place for physical disaster or human error. And that's a great starting point for resilience capability. But that's all it is, is a starting point. Because the bad actors will, they also understand that you have those capabilities, and, and they've adapted to that. In every sophisticated attack that we see, the backup is a target. The bad actors want to take it out, or corrupt it, or do something else to that backup so that it's not available to you. That's not to say they're always successful, and it's still a good control to have in place because maybe it will survive. But you have to plan beyond that. So the capabilities that we talk about with resilience, let's harden that backup infrastructure. You've already got it in place. Let's use the capabilities that are there like immutability and other controls to make it more difficult for the bad actors to get to. But then as Andrew said, that gold copy, that critical systems, you need to protect that in something that's more secure, which commonly we, we might say a cyber vault. Although, there's a lot of different capabilities for cyber vaulting, some far better than others, and that's some of the things that we focus on. >> You know, it's interesting, but I've talked to a lot of CIOs about this, is prior to the pandemic, they, you know, had their, as you're pointing out, Jim, they had their DR strategy in place, but they felt like they weren't business resilient. And they realized that when we had the forced march to digital. So Andrew, are there solutions out there to help with this problem? Do you guys have an answer to this? >> Yeah, absolutely. So I'm glad you brought up resiliency. We, we take a position that to be cyber resilient, it includes operational resiliency. It includes understanding at the C level what the implication of an attack means, as we stated, and then, how to recover back into production. When you look at protecting that data, not only do you want to put it into what we call a vault, which is a Dell technology that is an offline immutable copy of your crown jewel data, but also how to recover it in real time. So DXC offers a, I don't want to call it a turnkey solution since we architect these specific to each client needs, right, when we look at what client data entails, their recovery point, objectives, recovery time objectives, what we call quality of the restoration. But when we architect these out, we look at not only how to protect the data, but how to alert and monitor for attacks in real time, how to understand what we should do when a breach is in progress, putting together with our security operations centers, a forensic and recovery plan and a runbook for the client, and then being able to cleanse and remediate so that we can get that data back into production. These are all services that DXC offers in conjunction with the Dell solution to protect, and recover, and keep bad actors out. And if we can't keep them out to ensure that we are back into production in short order. >> You know, this, this discussion we've been having about DR kind of versus resilience, and, and you were just talking about RPO and RTO. I mean, it used to be that a lot of firms wouldn't even test their recovery 'cause it was too risky. Or, you know, maybe they tested it on, you know, July 4th or something like that. But, but it, I'm inferring that's changed. I wonder if we could, you know, double click on recovery? How hard is it to, to, to test that recovery, and, and how quickly are you seeing organizations recover from attacks? >> So it depends, right, on the industry vertical, what kind of data. Again, a financial services client compared to a manufacturing client are going to be two separate conversations. We've seen it as quickly as being able to recover in six hours, in 12 hours. In some instances we have the grace period of a day to a couple of days. We do offer the ability to run scenarios once a quarter where we can stand up in our systems the production data that we are protecting to ensure that we have a good recoverable copy. But it depends on the client. >> I really like the emphasis here, Dave, that you're raising and that Andrew's talking about. It's not on the technology of how the data gets protected. It's focused on the recovery. That's all that we want to do. And so the solution with DXC really focuses on generating that recovery for customers. I think where people get a little bit twisted up on their testing capability is, you have to think about different scenarios. So there are scenarios where the attack might be small. It might be limited to a database or an application. It might be really broadly based like the NotPetya attacks from a few years ago. The regulatory environment, we call those attacks severe but plausible. So you can't necessarily test everything with the infrastructure, but you can test some things with the infrastructure. Others, you might sit around on a tabletop exercise or walk through what that looks like to really get that, that recovery kind of muscle, muscle memory so that people know what to do when those things occur. But the key to it, as Andrew said before, have to focus down, "What are those critical applications? What do we need, what's most important? What has to come back first?" And that really will go a long way towards having the right recovery points and recovery times from a cyber disaster. >> Yeah, makes sense. Understanding the value of that data is going to inform you how to, how to respond and how to prioritize. Andrew, one of the things that we hear a lot on theCube, especially lately, is around, you know, IOT, IIOT, Industry 4.0, the whole OT security piece of it. And the problem being that, you know, traditionally, operations technologies have been air gapped, often by design. But as businesses, increasingly they're driving initiatives like Industry 4.0, and they're connecting these OT systems to IT systems. They're, you know, driving efficiency, preventative maintenance, et cetera. So a lot of data flowing through the pipes, if you will. What are you seeing in terms of the threats to critical infrastructure and how should customers think about addressing these issues? >> Yeah, so bad actors, you know, can come in many forms. We've seen instances of social engineering. We've seen, you know, a USB stick dropped in a warehouse. That data that is flowing through the IoT device is as sensitive now as your core mainframe infrastructure data. So when you look at it from a protection standpoint, conceptually, it's not dissimilar from what we've been been talking about where you want to understand, again, what the most critical data is. Looking at IoT data and applications is no different than your core systems now, right? Depending on what your, your business is, right? So when, when we're looking at protecting these, yes, we want firewalls, yes, we want air gap solutions, yes, we want front end protection, but we're looking at it from a resiliency perspective. Putting that data, understanding what what data entails to put in the vault from an IoT perspective is just as critical as as it is for your core systems. >> Jim, anything you can add to this topic? >> Yeah, I think you hit on the, the key points there. Everything is interconnected. So even in the days where maybe people thought the OT systems weren't online, oftentimes the IT systems are talking to them, or controlling them, SCADA systems, or perhaps supporting them. Think back to the pipeline attack of last year. All the public testimony was that the OT systems didn't get attacked directly. But there was uncertainty around that, and the IT systems hadn't been secured. So that caused the OT systems to have to shut down. It certainly is a different recovery when you're shutting them down on your own versus being attacked, but the outcome was the same that the business couldn't operate. So you really have to take all of those into account. And I think that does go back to exactly what Andrew's saying, understanding your critical business services, and then the applications and data and other components that support those and drive those, and making sure those are protected. You understand them, you have the ability to recover them if necessary. >> So guys, I mean, you made the point. I mean, you're right. The adversary is highly capable. They're motivated 'cause the ROI is so, it's so lucrative. It's like this never ending battle that cybersecurity pros, you know, go through. It really is kind of frontline sort of technical heroes, if you will. And so, but sometimes it just feels daunting. Why are you optimistic about the future of, of cyber from the good guy's perspective? >> I think we're coming at the problem the right way, Dave. So that, that focus, I'm so pleased with the idea that we are planning that the systems aren't going to be hundred percent capable every single time, and let's figure that out, right? That's, that's real world stuff. So just as the bad actors continue to adapt and expand, so do we. And I think the differences there, the common criminals, it's getting harder and harder for them. The more sophisticated ones, they're tough to beat all the time. And of course, you've raised the question of some nation states and other activities. But there's a lot more information sharing. There's a lot more focus from the business side of the house and not just the IT side of the house that we need to figure these things out. >> Yeah, to, to add to that, I think furthering education for the client base is important. You, you brought up a point earlier. It used to be a boardroom conversation due to compliance reasons. Now, as we have been in the market for a while, we continue to mature the offerings. It's further education for not only the business itself, but for the IT systems and how they interconnect, and working together so that these systems can be protected and continue to be evolved and continue to be protected through multiple frameworks as opposed to seeing it as another check the box item that the board has to adhere to. >> All right, guys, we got to go. Thank you so much. Great conversation on a, on a really important topic. Keep up the good work. Appreciate it. >> Thanks Dan. >> Thank you. >> All right, and thank you for watching. Stay tuned for more excellent discussions around the partnership between Dell Technologies and DXC Technology. We're talking about solving real world problems, how this partnership has evolved over time, really meeting the changing enterprise landscape challenges. Keep it right there. (bright music) Okay, we hope you enjoyed the program and learned some things about cloud transformation and modernizing your business that will inspire you to action. Now if you want to learn more, go to the Dell DXC partner page shown here, or click on the URL in the description. Thanks for watching everybody and on behalf of our supporters, Dell and DXC, good luck. And as always, get in touch if we can be of any assistance. (bright music)
SUMMARY :
and help you achieve business outcomes. Thanks for having us. You really got to think about modernizing, in releasing of new things to the field. So Jay, my question to you is, and to drive, you know, the barriers to realizing value to deliver with the, you know, on the journey to the cloud. you know, unique value? I'd be happy to lead to kind of, you know, keep on your premise And I think, you know, you're right, Jay. Help us figure this out, Jim, here. that our partners bring to the table. Even predates, you know, the, the name DXC And, and the right approach Chime in here. the partners, you know, And, and you know, that just That's right. Thank you Dave. Jay, Jim, great to have you on. Great to be here. Nice to be here. that you have to do your manufacturing. add to what Todd just said? the downtime, you know, and the, the blockers, if you will? that they need to think about. they air gapped, you know, the systems. on the factory floor down to the edge. I know it varies, but what, you know, in that we're, you know, You got to have knowledge of So you know, it's a lot to simplify the move and the right level of security. that, you know, you're going to be, it's all of the solutions love to have you back. to be addressed in the coming year. What are you seeing from the front lines and have that ability to So Andrew, you know, I and that you can build out how to make it immutable and isolated, of last decade, you know, "Oh we need to do, you know, A, B and C to go after the backup corpus. for the bad actors to get to. they, you know, had their, and then being able to on, you know, July 4th We do offer the ability to But the key to it, as Andrew said before, to inform you how to, how to We've seen, you know, a USB So that caused the OT you know, go through. and not just the IT side of the house that the board has to adhere to. Thank you so much. that will inspire you to action.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim | PERSON | 0.99+ |
Andrew Gonzalez | PERSON | 0.99+ |
Andrew | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jim Shook | PERSON | 0.99+ |
James Miller | PERSON | 0.99+ |
Jay Dowling | PERSON | 0.99+ |
Todd Edmunds | PERSON | 0.99+ |
Jay | PERSON | 0.99+ |
Matt Baker | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Aditi Banerjee | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
six hours | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
DXC | ORGANIZATION | 0.99+ |
Todd | PERSON | 0.99+ |
January 17th | DATE | 0.99+ |
first session | QUANTITY | 0.99+ |
July 4th | DATE | 0.99+ |
12 hours | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
third session | QUANTITY | 0.99+ |
52% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
six experts | QUANTITY | 0.99+ |
DXC Technology | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
tens | QUANTITY | 0.99+ |
ubercloud | ORGANIZATION | 0.99+ |
Aditi | PERSON | 0.99+ |
first question | QUANTITY | 0.99+ |
May of 2010 | DATE | 0.99+ |
Driving Business Results with Cloud Transformation - Jim Shook and Andrew Gonzalez
>> Welcome back to the program, and we're going to dig into the number one topic on the minds of every technology organization. That's cybersecurity. Survey data from ETR, our data partner, shows that among CIOs and IT decision makers, cybersecurity continues to rank as the number one technology priority to be addressed in the coming year. That's ahead of even cloud migration and analytics. And with me, to discuss this critical topic area, are Jim Shook, who's the global director of cybersecurity and compliance practice at Dell Technologies, and he's joined by Andrew Gonzalez, who focuses on cloud and infrastructure consulting at DXC Technology. Gents, welcome, good to have you. >> Thanks, Dave. Great to be here. >> Thank you. >> Jim, let's start with you. What are you seeing from the front lines in terms of the attack surface and how are customers responding these days? >> It's always up and down and back and forth. The bad actors are smart, they adapt to everything that we do, so, we're seeing more and more kind of living off the land, they're not necessarily deploying malware, makes it harder to find what they're doing. And I think, though, Dave, we've adapted and this whole notion of cyber resilience really helps our customers figure this out. And the idea there goes beyond cybersecurity, it's let's protect as much as possible, so we keep the bad actors out as much as we can, but then let's have the ability to adapt to and recover to the extent that the bad actors are successful. So, we're recognizing that we can't be perfect 100% of the time against 100% of the bad actors. Let's keep out what we can, but then recognize and have that ability to recover when necessary. >> Yeah, thank you. So, Andrew, I like what Jim was saying about living off the land, of course, meaning using your own tooling against you, kind of hiding in plain sight, if you will. And as Jim was saying, you can't be perfect, but so, given that, what's your perspective on what good cybersecurity hygiene looks like? >> Yeah, so you have to understand what your crown-jewel data looks like, what a good copy of a recoverable asset looks like when you look at an attack, if it were to occur, right? How you get that copy of data back into production. And not only that, but what that golden image actually entails. So, whether it's networking, storage, some copy of a source code, intellectual property, maybe SIM2B data, or an Active Directory, or DNS dump, right? Understanding what your data actually entails, so that you can protect it, and that you can build out your recovery plan for it. >> So, and where's that live? Where's that gold copy? You put in a yellow sticky? You know, it's got to be somewhere safe, right? So, you have to think about that chain as well, right? >> Absolutely. Yeah. So, a lot of folks have not gone through the exercise of identifying what that golden copy looks like. Everyone has a DR scenario, everyone has a DR strategy, but actually identifying what that golden crown-jewel data, let's call it, actually entails is one aspect of it, and then where to put it, how to protect it, how to make it immutable and isolated, that's the other portion of it. >> If I go back to sort of earlier part of last decade, cybersecurity was kind of a check-off item, and then as you got toward the middle part of the decade, and I'd say clearly by 2016, security became a boardroom issue, it was on the agenda every quarter at the board meetings. So, compliance is no longer the driver is my point. The driver is business risk, real loss of reputation, or data, or money, etc. What are the business implications of not having your cyber house in order today? >> They're extreme, Dave. I mean, the bad actors are good at what they do, these losses by organizations tens, hundreds of millions into the billions, sometimes, plus the reputational damage that's difficult to really measure. There haven't been a lot of organizations that have actually been put out of business by an attack, at least not directly, if they're larger organizations. But that's also on the table too. So, you can't just rely on, oh, we need to do A, B and C because our regulators require it. You need to look at what the actual risk is to the business, and then come up with the strategy from there. >> Jim, staying with you. One of the most common targets we hear of attackers is to go after the backup corpus. So, how should customers think about protecting themselves from that tactic? >> Well, Dave, you hit on it before, right? Everybody's had the backup and DR strategies for a long time going back to requirements that we had in place for physical disaster or human error. And that's a great starting point for a resilience capability. But that's all it is, is a starting point. Because the bad actors will, they also understand that you have those capabilities, and they've adapted to that. In every sophisticated attack that we see, the backup is a target, the bad actors want to take it out, or corrupt it, or do something else to that backup so that it's not available to you. That's not to say they're always successful, and it's still a good control to have in place because maybe it will survive. But you have to plan beyond that. So, the capabilities that we talk about with resilience, let's harden that backup infrastructure, you've already got it in place, let's use the capabilities that are there like immutability and other controls to make it more difficult for the bad actors to get to. But then, as Andrew said, that gold copy, that critical systems, you need to protect that in something that's more secure, which commonly we might say a cyber vault, or there's a lot of different capabilities for cyber vaulting, some far better than others. And that's some of the things that we focus on. >> You know, it's interesting, but I've talked to a lot of CIOs about this prior to the pandemic, they had their, as you're pointing out, Jim, they had their DR strategy in place, but they felt like they weren't business-resilient, and they realized that when we had the forced march to digital. So, Andrew, are there solutions out there to help with this problem? Do you guys have an answer to this? >> Yeah, absolutely. So, I'm glad you brought up resiliency. We take a position that to be cyber resilient, it includes operational resiliency, it includes understanding at the C level what the implication of an attack means, as we stated, and then how to recover back into production. When you look at protecting that data, not only do you want to put it into what we call a vault, which is a Dell technology that is an offline immutable copy of your crown-jewel data, but also how to recover it in real time. So, DXC offers a, I don't want to call it a turnkey solution, since we architect these specific to each client needs, right? When we look at what client data entails, their recovery point, objectives, recovery time objectives, what we call quality of the restoration, but, when we architect these out, we look at not only how to protect the data, but how to alert and monitor for attacks in realtime. How to understand what we should do when a breach is in progress. Putting together with our security operations centers a forensic and recovery plan and a runbook for the client. And then being able to cleanse and remediate, so that we can get that data back into production. These are all services that DXC offers in conjunction with the Dell solution to protect and recover and keep bad actors out. And if we can't keep 'em out, to ensure that we are back into production in short order. >> This discussion we've been having about DR kind of versus resilience, and you were just talking about RPO and RTO, I mean, it used to be that a lot of firms wouldn't even test their recovery, 'cause it was too risky, or maybe they tested it on July 4th or something like that, but I'm inferring that's changed. I wonder if we could double-click on recovery, how hard is it to test that recovery, and how quickly are you seeing organizations recover from attacks? >> So, it depends, right? On the industry vertical, what kind of data, again, financial services client compared to a manufacturing client are going to be two separate conversations. We've seen it as quickly as being able to recover in six hours, in 12 hours, in some instances we have the grace period of a day to a couple days, we do offer the ability to run scenarios once a quarter where we can stand up in our systems, the production data that we are protecting to ensure that we have a good recoverable copy. But it depends on the client. >> I really like the emphasis here, Dave, that you're raising and that Andrew's talking about, it's not on the technology of how the data gets protected, it's focused on the recovery. That's all that we want to do. And so, the solution with DXC really focuses on generating that recovery for customers. I think where people get a little bit twisted up on their testing capability is you have to think about different scenarios. So, there are scenarios where the attack might be small, it might be limited to a database or an application. It might be really broadly based, like the NotPetya attacks from a few years ago. In the regulatory environment we call those attacks severe but plausible. So, you can't necessarily test everything with the infrastructure, but you can test some things with the infrastructure, others, you might sit around on a tabletop exercise, or walk through what that looks like to really get that recovery kind of muscle memory, so that people know what to do when those things occur. But the key to it, as Andrew said before, have to focus down what are those critical applications. What do we need? What's most important? What has to come back first? And that really will go a long way towards having the right recovery points and recovery times from a cyber disaster. >> Yeah, makes sense. Understanding the value of that data is going to inform you how to respond and how to prioritize. Andrew, one of the things that we hear a lot on theCUBE, especially lately, is around IOT, IIOT, Industry 4.0, the whole OT security piece of it. And the problem being that, traditionally, operations technologies have been air gapped, often by design, but as businesses increasingly they're driving initiatives like Industry 4.0, and they're connecting these OT systems to IT systems. They're driving efficiency, preventative maintenance, etc. So, a lot of data flowing through the pipes, if you will. What are you seeing in terms of the threats to critical infrastructure, and how should customers think about addressing these issues? >> Yeah. So, bad actors can come in many forms, we've seen instances of social engineering, we've seen USB stick dropped in a warehouse. That data that is flowing through the IOT device is as sensitive now as your core mainframe infrastructure data. So, when you look at it from a protection standpoint, conceptually, it's not dissimilar from what we've been talking about, where you want to understand, again, what the most critical data is. Looking at IOT data and applications is no different than your core systems now, right? Depending on what your business is, right? So, when we're looking at protecting these, yes, we want firewalls, yes, we want air gap solutions, yes, we want front end protection, but we're looking at it from a resiliency perspective. Putting that data, understanding what data entails to put in the vault from an IOT perspective is just as critical as it is for your core systems. >> Jim, anything you can add to this topic? >> Yeah, I think you hit on the key points there. Everything is interconnected. So, even in the days where maybe people thought the OT systems weren't online, oftentimes the IT systems are talking to them, or controlling them SCADA systems, or perhaps supporting them. Think back to the pipeline attack of last year. All the public testimony was that the OT systems didn't get attacked directly, but there was uncertainty around that, and the IT systems hadn't been secured. So, that caused the OT systems to have to shut down. It certainly is a different recovery when you're shutting them down on your own versus being attacked, but the outcome was the same, that the business couldn't operate. So, you really have to take all of those into account, and I think that does go back to exactly what Andrew's saying, understanding your critical business services, and then the applications and data, and other components that support those and drive those, and making sure those are protected, you understand them, you have the ability to recover them if necessary. >> So guys, I mean, you made the point, I mean, you're right. The adversary is highly capable, they're motivated, 'cause the ROI is so lucrative. It's like this never-ending battle that cybersecurity pros go through, it really is kind of frontline sort of technical heroes, if you will. But sometimes it just feels daunting. Why are you optimistic about the future of cyber from the good guys' perspective? >> I think we're coming at the problem the right way, Dave, so that focus, I'm so pleased with the idea that we are planning that the systems aren't going to be 100% capable every single time and let's figure that out, right? That's real-world stuff. So, just as the bad actors continue to adapt and expand, so do we. And I think the differences there, the common criminals, it's getting harder and harder for them. The more sophisticated ones, they're tough to beat all the time, and, of course, you've raised the question of some nation states and other activities, but there's a lot more information sharing, there's a lot more focus from the business side of the house, and not just the IT side of the house that we need to figure these things out. >> Yeah. To add to that, I think furthering education for the client base is important. You brought up a point earlier, it used to be a boardroom conversation due to compliance reasons. Now, as we have been in the market for a while, we continue to mature the offerings, it's further education for not only the business itself, but for the IT systems and how they interconnect, and working together so that these systems can be protected, and continue to be evolved, and continue to be protected through multiple frameworks as opposed to seeing it as another check-the-box item that the board has to adhere to. >> All right, guys. We got to go. Thank you so much. Great conversation on a really important topic. Keep keep up the good work. Appreciate it. >> Thanks, Dave. >> Thank you. >> All right. And thank you for watching. Stay tuned for more excellent discussions around the partnership between Dell Technologies and DXC Technology. We're talking about solving real-world problems, how this partnership has evolved over time, really meeting the changing enterprise landscape challenges. Keep it right there.
SUMMARY :
in the coming year. in terms of the attack surface they adapt to everything that we do, about living off the land, of course, and that you can build out how to make it immutable and isolated, What are the business implications You need to look at what the One of the most common targets for the bad actors to get to. but I've talked to a and then how to recover how hard is it to test that recovery, But it depends on the client. But the key to it, as Andrew said before, data is going to inform you to put in the vault the ability to recover them from the good guys' perspective? and not just the IT side of the house that the board has to adhere to. We got to go. really meeting the changing
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Andrew Gonzalez | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Andrew | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jim Shook | PERSON | 0.99+ |
July 4th | DATE | 0.99+ |
100% | QUANTITY | 0.99+ |
six hours | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
2016 | DATE | 0.99+ |
DXC Technology | ORGANIZATION | 0.99+ |
12 hours | QUANTITY | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
DXC | ORGANIZATION | 0.99+ |
last decade | DATE | 0.98+ |
tens | QUANTITY | 0.98+ |
billions | QUANTITY | 0.97+ |
one | QUANTITY | 0.95+ |
hundreds of millions | QUANTITY | 0.95+ |
One | QUANTITY | 0.95+ |
one aspect | QUANTITY | 0.94+ |
each client | QUANTITY | 0.93+ |
a day | QUANTITY | 0.93+ |
two separate conversations | QUANTITY | 0.9+ |
first | QUANTITY | 0.89+ |
few years ago | DATE | 0.88+ |
SCADA | ORGANIZATION | 0.88+ |
today | DATE | 0.81+ |
couple days | QUANTITY | 0.77+ |
pandemic | EVENT | 0.74+ |
double- | QUANTITY | 0.74+ |
once a quarter | QUANTITY | 0.73+ |
coming year | DATE | 0.7+ |
single time | QUANTITY | 0.67+ |
theCUBE | ORGANIZATION | 0.61+ |
NotPetya | TITLE | 0.47+ |
4.0 | OTHER | 0.41+ |
Driving Business Results with Cloud Transformation - Jay Dowling & Jim Miller
>> Hello and welcome to what is sure to be an insightful conversation about getting business results with cloud Transformation. My name is Dave Vellante, and I'm here with James Miller, Chief Technologist for cloud and Infrastructure Services and Jay Dowling, America's Sales Lead for cloud and Infrastructure Services, both with DXC Technology. Gentlemen, thanks for your time today, welcome to The Cube. >> Great, thanks for having us. >> Thank you, Dave, appreciate it. >> So let's get right into it. You know, I've talked to a lot of practitioners who've said, look, if you really want to drop zeros, like a lot of zeroes to the bottom line, you can't just lift and shift. You really got to think about modernizing, the application portfolio, you got to think about your business model, and really think about transforming your business, particularly the operating model. So my first question, Jim, is what role does the cloud play in modernization? >> Well there are really 3 aspects that the cloud plays in modernization. You mentioned multiple zeroes. One is cost optimization. And that can be achieved through business operations, through environmental, social, in governance. Also being more efficient with your IT investments. But that's not the only aspect. There's also agility and innovation. And that can be achieved through automation and productivity, speed to market for new features and functions, improvements in the customer experience, and the capability to metabolize a great deal more data in your environment. Which, the end result is an improvement in releasing of new things to the field. And finally, there's resilience. And I'm not really talking about IT resilience, but more of business resilience. To be able to handle operational risk, improve your securities and controls, deal with some of the talent gap that's in the industry, and also protect your brand reputation. So modernization is really about balancing these 3 aspects. Cost optimization, agility and innovation, and resilience. >> So, thank you for that, so, Jay, I got to ask you, the current climate, ever body's sort of concerned, and there's not great visibility on the macro. So, Jim mentioned cost optimization, that seems to be one of the top areas that customers are focused on. The two I hear a lot are, consolidating redundant vendors, and optimizing cloud costs. So that's, you know, top of mine today. I think everybody really, you know, understands the innovation and agility piece. At least at a high level, maybe realizing it is different. >> Sure >> And then the business resilience piece is really interesting, because, you know, prior to the pandemic, people, you know, they had a DR strategy, but they realized, wow my business may not be that resilient. So, Jay, my question to you is, what are you hearing when you talk to customers, what's the priority today? >> You know, the priority is an often overused term of digital transformation. You know, people want to get ready for next generation environments, customer experience, making sure they're improving, you know, how they engage with their clients, and what their branding is. What we find is a lot of clients don't have the underlying infrastructure in place today to get to where they want to get to. So cloud becomes an important element of that, but, you know, with DXC's philosophy, not everything necessarily needs to go to cloud to be cost optimized, for instance. In many cases you can run applications, you know, in your own data center, or on Pram or, in other environments, in the hybrid environment or multi cloud environment, and still be very optimized from a cost/spend standpoint. And also put yourself in position for modernization and be able to bring the things to the business that the clients are, you know their clients are looking for like the CMO and the CFO etc. trying to use IT as a leverage to drive business and to drive business acceleration and to drive profitability, frankly. So there's a lot of dependency on infrastructure, but there's a lot of elements to it and we advocate for, you know, there's not a single answer to that. We like to evaluate clients, environments, and work with them to get them to an optimal target operating model so that they can really deliver on what the promises are for their departments. >> So, lets talk about some of the barriers to realizing value in the context of modernization. We talked about cost optimization, agility, and resilience. But there's a business angle and there's a technical angle here. We already talked about people, process, and technology. Technology oftentimes CIO's will tell us 'Well that's the easy part. We'll figure that out.' Whether it's true or not; but I agree. People and process is sometimes the tough one. So Jay, why don't you start. What do you see as the barriers particularly from a business standpoint? I think people need to let their guard down and be open to the ideas that are out there in the market from the standards that are being built by Best in Class models. And there's many people who that have got on cloud juries have been very successful with it. There's others that have set high expectations with their business leaders that haven't necessarily met the goals that they need to meet, or maybe haven't met them as quickly as they promised. So there's a change management aspect that you need to look at with the environments. There's a skillset environment that they need to be prepared for. Do they have the people to deliver with the tools and the skills and the models that they're putting themselves in place for in the future versus where they are now. There's just a lot of different elements. It's not just that this price is better or this can operate better than one environment over the other. I think we like to try and look at things holistically and make sure that we're being as much of a consultative advocate for the client for where they want to go, what their destiny is and based on what we've learned with other clients and we can bring those best practices forward because we've worked across such a broad spectrum of clients versus them being somewhat contained and sometimes can't see outside of their own challenges, if you would. So they need advocacy to help bring them to the next level. And we like to translate that through technology advances which Jim is really good at doing for us. >> Yeah Jim, is the big barrier a skills issue? You know, bench strength? Are their other considerations from your perspective? >> We've identified a number of factors that inhibit success of customers. One is thinking it's only a technology change; in moving to cloud. When it's much broader than that. There are changes in governance, changes in process that need to take place. The other is evaluating the other cloud providers on their current pricing structure and performance. And we see pricing and structure changing dramatically every few months between the various cloud providers. And you have to be flexible enough to determine which providers you want; and it may not be feasible to just have a single cloud provider in this world. The other thing is a big bang approach to transformation. I want to move everything and I want to move it all at once. That's not necessarily the best approach. A well thought out cloud journey and strategy, and timing your investments are really important to maximizing your business return on the journey to the cloud. And finally, not engaging stakeholders early and continuously. You have to manage expectations in moving to cloud on what business factors will get affected, how you will achieve your costs savings, and how you will achieve the business impact over the journey and reporting out on that with very strict metrics to all of the stakeholders. >> You mentioned multi-cloud just then. On January 17th we had our Super Cloud 2 event. And Super Cloud is basically what multi-cloud should have been I like to say. So it's creating a common experience across clouds. You guys were talking about you know, there's different governance, different securities, different pricing. So, and one of the takeaways from this event and talking to customers and practitioners and technologists is you can't go it alone. So I wonder if you'd talk about your partnership strategy? What do partners bring to the table? What is DXC's unique value? >> I'd be happy to lead with that if you'd like. >> Great >> We've got a vast partner ecosystem at DXC, given the size and the history of the company. I use several examples. One of the larger partners in my particular space is Dell Technology. They're a great partner for us across many different areas of the business. It's not just storage and compute play anymore. They're on the edge. They've got intelligence in their networking devices now. And they've really brought a lot of value to us as a partner. You can look at Dell Technology as somebody that might have a victim effect because of all of the hyper-scaling activity and all of the cloud activity but they've really taken an outstanding attitude with this and said listen not all things are destined for cloud or not all things would operate better in a cloud environment. And they like to be apart of those discussions to see how they can, how we can bring a multi-cloud environment, both private and public to clients and let's look at the applications and the infrastructure and what's the best optimal running environment for us to be able to bring the greatest value to the business with speed, with security and the the things that they want to keep close to the business are often things that you want to keep on your premise or keep in your own data centers. So they're an ideal model of somebody that's resourced this well, partnered in this well in the market and we continue to grow that relationship day in and day out with those guys. And we really appreciate their support of our strategy and we like to also compliment their strategy and work together hand in hand in front of our clients. >> Yeah you know Jim, Matt Baker who's the Head of Strategic Planning at Dell talks about it's not zero-sum game and I think you're right Jay. I think initially people felt like oh wow, it is a zero-sum game but it's clearly not. And this idea of whether you call it Super Cloud or Uber Cloud or Multi Cloud, clearly Dell is headed in that direction. Look at some of their future projects, their narrative. I'm curious from a technology standpoint Jim, what your role is. Is it to make it all work? Is it to end to end? Wondering if you could help us understand that. >> Help us figure it out Jim, here. >> Glad to expand on that. Well, one of my key roles is developing our product roadmap for DXC offerings. And we do that roadmap in conjunction with our partners where we can leverage the innovation that our partners bring to the table and we often utilize engineering resources from our partners to help us jointly build those offerings that adapt to changes in the market and also adapt to many of our customer's changing needs overtime. So my primary role is to look at the market, talk to our customers, and work with our partners to develop a product roadmap for delivering DXC products and services to our clients so that they can get the return on investment on their technology journeys. >> You know, we've been working with these two firms for a while now; pre-dates the name DXC and that transformation. I'm curious as to what's, how you would respond to what's unique. You know you hear a lot about partnerships, you guys got a lot of competition. Dell has a lot of competition. What's specifically unique about this combination? >> I think- go ahead Jim >> I would say our unique approach is, we call it cloud right. And that approach is making the right investments, at the right time, and on the right platforms. And our partners play a key role in that. So we encourage our customers to not necessarily have a cloud first approach, but a cloud right approach where they place the workloads in the environment that is best suited from a technology perspective, a business perspective, and even a security and governance perspective. And the right approach might include main frame, it might include and on-premises infrastructure it could include private cloud, public cloud and SAS components all integrated together to deliver that value. >> Yeah Jay please. Let me tell you, this is a complicated situation for a lot of customers. But, chime in here. >> Yeah if you're speaking specifically to Dell here like, they also walk the talk right. They invest in DXC as a partnership. They put people on the ground. Their only purpose in life is to help DXC succeed with Dell, arm in arm, in front of clients. And it's not a winner take all thing at all. It's really a true partnership. They've brought solution resources. We have an account CTO, we've got executive sponsorship. We do regular QVR meetings. We have regular executive touch-point meetings. It's really important that you keep high level of intimacy with the clients, with the partners in the GSI community. And I've been with several GSI's and this is an exceptional example of true partnership and commitment to success with Dell Technology. I'm really extremely impressed on the engagement level that we've had there, and continue to show a lot of support both for them. And there's other OEM partners of course in the market. There's always going to be other technology solutions for certain clients, but this has been a particularly strong element for us and our partnership and our go-to-market strategy. >> Well I think too, just my observation is a lot of it is about trust. You guys have both earned the trust over the years. Ticking your arrows over decades, and that just doesn't happen overnight. Guys I appreciate it. Thanks for your time. It's all about getting Cloud Right, isn't it? >> That's right. Thank you Dave. Appreciate it very much. >> Thank you >> Jay, great to have you on. Keep it right there for more action on The CUBE. We'll be right back.
SUMMARY :
and I'm here with James Miller, You really got to think about and the capability to that seems to be one of the top areas So, Jay, my question to you is, bring the things to the business and be open to the ideas that on the journey to the cloud. and one of the takeaways I'd be happy to lead And they like to be apart Is it to end to end? and also adapt to many of as to what's, how you would And the right approach in here. and commitment to success earned the trust over Thank you Jay, great to have you
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jay Dowling | PERSON | 0.99+ |
Jay | PERSON | 0.99+ |
Matt Baker | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
James Miller | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
DXC | ORGANIZATION | 0.99+ |
January 17th | DATE | 0.99+ |
3 aspects | QUANTITY | 0.99+ |
Dell Technology | ORGANIZATION | 0.99+ |
Dell Technology | ORGANIZATION | 0.99+ |
DXC Technology | ORGANIZATION | 0.99+ |
first question | QUANTITY | 0.99+ |
two firms | QUANTITY | 0.99+ |
Jim Miller | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Super Cloud 2 | EVENT | 0.99+ |
both | QUANTITY | 0.98+ |
first approach | QUANTITY | 0.98+ |
The Cube | ORGANIZATION | 0.98+ |
GSI | ORGANIZATION | 0.93+ |
single cloud | QUANTITY | 0.92+ |
Super Cloud | EVENT | 0.91+ |
Pram | ORGANIZATION | 0.78+ |
single answer | QUANTITY | 0.77+ |
pandemic | EVENT | 0.71+ |
one environment | QUANTITY | 0.71+ |
America | LOCATION | 0.66+ |
zeroes | QUANTITY | 0.65+ |
takeaways | QUANTITY | 0.52+ |
CUBE | ORGANIZATION | 0.51+ |
Super | TITLE | 0.5+ |
Uber Cloud | ORGANIZATION | 0.5+ |
Multi Cloud | ORGANIZATION | 0.47+ |
Cloud | COMMERCIAL_ITEM | 0.44+ |
decades | QUANTITY | 0.36+ |
Veronica McCarthy | Special Program Series: Women of the Cloud
(sparkly music) >> Welcome to the Cube Special Program series "Women of the Cloud", brought to you by AWS. I'm your host, Lisa Martin. I'm very pleased to welcome Veronica McCarthy to the program, Senior Sales Manager ISB for Amazon Web Services. Veronica, great to have you on the program. Thanks for joining me today. >> Thanks for having me. >> Tell me a little bit about your current role. A little bit about yourself. >> Absolutely. Yeah, so I've been at Amazon just about four years now. I am really passionate about technology. I've been in the tech industry for about 20 plus years. Right now I'm a sales leader, so I lead a team of folks that help software companies build technology in the cloud or move technology to the cloud and help them scale and innovate in the cloud. >> Awesome, I love that. Talk a little bit about for, for those looking to grow their careers in tech, what are some of the tactical recommendations that you have that you think are really, really pertinent for others that are looking to climb that ladder? >> Yeah, it's so important to have that passion for technology 'cause that's what we do every day. It excites me to jump out of bed and learn what's new, what's coming, what we're building together and how early we are in cloud computing and in technology as a whole. So really get curious and even, you know feel free to get, get hands on. I remember early as a kid just building computers with my dad in his room. So get hands on. Today there's so many things available on the internet for free tiers. You can just play with software to get building websites, games, whatever interests you. And oh by the way, watch the Cube 'cause you're going to learn a lot and you're going to get immersed in technology, which is so important when you're learning to grow a career here because it comes across when you're interviewing, when you're talking with others, when you're networking, that you're really interested in the topic and you're really here to, to grow and and help build tech to be what it can be in the future. >> These are all great recommendations for really building that authenticity. I love your advice of really from an immersion perspective. You're right, there's so many opportunities for people of all ages to start playing around with tech and, and, but that your point of opening up your mind and being curious and embracing the different learning paths is also that curiosity. I always think creativity as well are just really important recommendations for others that are looking to grow their career in tech. >> I want to understand some of, based on some of, of those tactical recommendations. Talk to us about a success story that you've had where you've solved problems for customers relating to cloud computing based on some of your recommendations. >> Totally, just picking up on the curiosity theme that we were talking about, one of the things that I did when I was earlier in my career and I was looking after a customer, is I got curious about their business. How did they interact with their customers? And I worked backwards from that experience 'cause they were selling to consumers and I said what if they could do all these other things that could open up the consumer's eyes? So I came up with a zany idea of what if they did a partnership with Amazon and we flew their goods directly to the end consumer by a drone, you know, just crazy stuff. And I wrote something called a PRFAQ which at Amazon we use very often. It's a press release, frequently asked questions. This PRFAQ was, what could you do in the future with tech? What could, you know things what could we unlock with tech in your business? The C-suite of this company said, "You know what, that's really interesting. We're not going to do that crazy drone thing. But we like the thinking, we like the learning we like thinking about the future. How does cloud help us unlock that future?" So the long story short, they had a monolith OnPrem getting their, getting their technology from a OnPrem monolith to microservices in the cloud unlocks and opens up APIs for them to partner with other organizations to grow their customer base and in turn grow their revenue. This company in particular, pandemic hit, market change. They had to pivot or else they were going to go out of business. And because we had moved their technology from an OnPrem monolith to the cloud they were able to make that pivot and they survived the pandemic and are thriving. So it's a real life example of a success story of just getting curious, understanding the customer's business, coming back from that and then aligning for the future and getting a customer to, to get curious with you and build for the future, which worked out. And who could have predicted the pandemic, but it worked >> Right. But getting the the customer to be curious with you kind of leads me into talking about, you know, and, and the customer wanting to embrace and, and embrace cloud computing is really a transformative business model. Also takes cultural impact. Sounds like what you've been able to achieve with this particular success story. The customer had the appetite from a cultural transformation perspective but that's a hard thing to accomplish. Talk a little bit about that maybe from that customer's perspective and how they really were able to transform into a culture that embraces cloud computing. >> Absolutely. You're spot on . With all of these transformations, it's people process technology. Technology's the easy part, right? The cloud's there, we can, the architecture's there, we can build software. It's the people and the process that's hard. So as part of that transformation and part of that engagement, they actually hired me. So I left Amazon and I went and became the VP of technology for this company and I led 650 engineers globally through this transformation from an OnPrem model with microservices in the cloud. So they put faith in me because they knew this was the outcome we needed to get to but they needed the people in the process to change. So bringing the, the engineers on that journey of I know you've been building this way for a really long time and in this place, we're going to bring you into the future and we're all going to do it together. So it's a learning journey because we're all going to learn how to build microservices in the cloud and we're going to do it together and then it opens up their future as well as they continue to grow as engineers. So it's not easy to do, but it takes time. But we were able to do it in that case. >> But you bring up a great point, it's a learning journey. Yeah. And for organizations to have that appetite and that understanding and appreciation, that is as critical as the technology. You talk about, you know, people across technology. The technology is easy, it's really changing the frames of mind at the speed at which they need to change for organizations to be competitive so they can leverage cloud to really help unlock the competitive advantage as as that success story customer that you mentioned. >> Absolutely. Absolutely. And building on that innovation, right which innovation is just a, a flywheel of learning. So absolutely. >> It is. Let's shift gears a little bit, but speaking of people and processes, you know, what are some of the challenges that you see from a diversity perspective whether it's thought diversity in tech today? >> Yeah, great question. Tech is an opportunity for a level playing ground because tech is a platform with which you can build things. The important piece of building tech though is we need to make sure that many diversities are represented in the room. So when we're making tech decisions of how we're going to build, what our consumers are going to, how they're going to interact with our technology. Not everyone is one individual person. It's not a monolith out there, you know consuming our technology. So let's make sure we have that diversity in the decision making and building the tech as well as in the user use case and, and working backwards from our end users of our technology. I think one of the most, one of the easiest ways to start to approach, approach that diversity of thought and getting that diversity within your teams is looking at a gender diversity ratio. And, and we've seen historically, whilst we've seen gains in gender diversity and technology over the last few years, it's still not where it needs to be. There's a stat that I read recently in a McKinsey study that only one in four C-suite leaders are women today. And of all of all the entry level jobs from entry level to manager of all, like let's say you take a hundred men only 87 of those are women that are concurrently being promoted. Only 82 are women of color. So it's an opportunity for us to really level the playing field and think about how do we intentionally put people in the room when tech decisions are being made that can make change and build tech for who we, we know is out there to consume and, and are be a part of our tech community. >> Intention you mentioned. That is so critical for organizations really need to be looking at diversity, DEI from a, from an an intentional perspective. It can't just be ad hoc here and there. They really have to have a strategy behind it. And when I see companies, and there are a few that I've worked with that really caught my eye that have done a phenomenal job of that thought diversity, gender diversity, cultural diversity within their leadership even the people that they put on stage to talk to their events, they stand out incredibly well. We also know that there's, you probably have numbers on this, that organizations with women in the C-suite are far more profitable than organizations that don't have that. So the data, we want to talk nerdy tech, the data is there. It's demonstrating what the potentials are the capabilities, the, the opportunities. Yet we're still so far behind and we have so much road to cover. We know the direction we need to go in, we just got to be able to get the teams behind that to get there. >> Absolutely. And data's key. I read a study recently that said if you don't have at least 30% diversity in the room when you're making decisions, you are statistically not going to make the right decision, which is incredible. So the powers and the data. We know better decisions are made. Companies do better when there's diversity in the room of all types. >> Absolutely. And can you imagine the sky's the limit, if organizations are actually able to just start making headway on that percentage number and shifting it towards that diversity. What incredible opportunities and technologies and services and solutions that can be developed and delivered to meet the demanding consumers needs. So much potential there. It's, it's a, it's kind of like a crystal ball. If only we had one, we could actually see what we could actually be. >> Yeah, you're absolutely right. And I think thinking about some of the older reasons why maybe women didn't stay in the workforce longer or maybe didn't take a a career in tech, a lot of those were minimized during the pandemic. So we think about the work from home concept, right? Like that's so normal now it's, we're no longer grinding you know, I have to leave early for daycare pickup or whatever the challenges or the perceived challenges there were to women progressing in their careers. A lot of that can be managed now. So there was some good things that have come out of that pandemic time that, you know, it's much more acceptable to be home remote working. I think the balance isn't making sure that we continue our in-person innovation where we can. I find with customers today, bringing executive teams together in a room to have them brainstorm and innovate is still priceless, right? Like we still have to spend that time, we're humans, but as a woman in technology, I love the flexibility that we are now taking and adopting as a norm. And even, you know, some of my male peers that have kids at home, they love being around the kids at home and and it's a, it's a real positive impact I think that we've had amongst a lot of negative impacts by the pandemic as well. >> It is, they're definitely silver linings. That's one of them. I was talking with somebody in, in Italy this morning we were filming and you said, "I don't think my daughters are going to run in here." And I thought, you know what, even if they do that's part of totally the remote workforce, that's part of the hybrid workforce that we're all embracing. But you bring up a great point about the in-person innovation. You know, events are starting to come back, so exciting. There's just certain things about event from an innovation perspective you just can't replicate by video. So getting those executives in a room together. Talk about what you guys are doing there and, and some of the things that you think of over the next few years that will really help drive evolution and innovation of tech. >> Absolutely, yeah. I have a lot of clients that often will say, "Oh well we're we're a remote first company." So it's okay that we do our innovation session online. But then I remind them of when was the last happy hour you had online? Like do you remember the early days of the pandemic? And we all sat on, you know pick your web conferencing platform and we, you know drank wine and but there was only one person that you could hear in that. So when they're, everybody's going around and all the boxes are on the screen, it was difficult to have multiple conversations. If you walk into a happy hour in, in real life people all over the room are having multiple conversations and a lot of different things are happening in the room at the same time. It's the same thing with innovation. If we bring an executive team into the room, guess what? There's going to be a couple sidebar conversations going on as the big room progresses. And that's really healthy and that's a great way to get people that may not be the one, the star of the happy hour that wants to speak the whole time to also get their inputs and their feedback into the innovation process. So that's just an example of why it's so important. One of the things we do here at Amazon is we have so called a digital innovation workshop which is exactly as it sounds, right? Just get in a room with some whiteboards, with some thought leaders and really let's innovate for the future and it's a blank sheet of paper kind of start and out of it we come up with a business plan, a PRFAQ, like a press release I mentioned in my story earlier. That's the seeds of that. So it's really powerful and I'm so excited we're continuing to do those face to face 'cause it's so important. >> It's so important, you know, to have diversity present in the room when decisions are being made, whether it's decisions about technology or not. That thought diversity is, and as the data show that you mentioned, demonstrates how much more successful and profitable organizations can be. I'm going to ask you kind of switching gears again. Last question. If we look kind of down the road from an evolution perspective of of you're in cloud, of your role evolving. What are some of the things that you see down down the pike? >> Yeah, so great question. I am in a field sales organization today, so when the pandemic first hit, I thought, oh boy, that's the end of our career. I think we're not going to be going out and calling on customers face to face anymore. But it's actually been the opposite. I've seen more engagement from our customers. They, they really do want to spend time with us innovating. When we come into those conversations we come in with a curious mindset. So I think from a field sales perspective, it's it's not, you know, going away. And I think it's going to continue to build and it's a great career for women in particular to get into. Super flexible, the privilege of travel which is a nice vacation from home life sometimes. And the, the benefit of working from home as well. So a good balance there. So I think from a, my role specifically it's going to continue to evolve and continue to be a growth area. >> From previous roles I've had where I've worked in technology and, and software development, I think are we're still such at early stages in cloud computing and cloud technology that there is so much technology that we're continuing to build from an engineering standpoint. And I think back to my, you know, 20 year old self if I was in those shoes today and I would absolutely be doing a career in engineering. I think it's such an exciting space and as a person of, of of a, as a female I want to be at the forefront of the engineering team. So I encourage anyone if they're, you know of a diverse background, like you are the people that I want in engineering in the future because that's how you're going to build the future is build the tech, which is really cool. >> So absolutely. It's, it's very cool. I do have one more question for you. What's of your lens, what's next in cloud? What are some of the things that you think are coming down the horizon? >> Yeah, so great question. So I, I actually have a son who's special needs and I think about some of the accommodations that we have to make for him today. And I think about the tech that's coming in terms of personal tech on helping him communicate or helping him read or helping him write. And I'm excited for his future where I think a diagnosis like his, if I'd gotten it many years ago, I would be very fearful about his future. But I know that tech is going to support people like him. So I'm excited for what it's going to do for humanity. I'm excited for what it's going to help us unlock for people that may have been hindered in previous lives. My, my mom grew up with a disability and she had to keep her career relatively low level because she couldn't overcome that disability without tech. And now that she has tech, you know it would've changed the game for her. So I'm excited for my son and his future. That's what inspires me and, and I'm excited about. >> I love that. Well, with a mom like you, he's sure to succeed and fly flying colors. Veronica, it's been such a pleasure having you on the Cube. >> Thank you. >> Exciting special series of women in the cloud. We so appreciate your insights and your time. You'll have to come back. >> Thank you so much. I appreciate it. >> All right, Veronica McCarthy. I'm Lisa Martin. You're watching The Cube's special program series Women of the Cloud, brought to you by AWS. Thanks for watching. (sparkly music)
SUMMARY :
brought to you by AWS. about your current role. I've been in the tech industry that you have that you think in the topic and you're really here for really building that authenticity. Talk to us about a success and build for the the customer to be curious in the process to change. that is as critical as the technology. And building on that innovation, right that you see from a diversity perspective And of all of all the entry So the data, we want to talk So the powers and the data. and solutions that can be of that pandemic time that, you know, and, and some of the things that you think One of the things we do here at Amazon I'm going to ask you kind and continue to be a growth area. And I think back to my, What are some of the things that you think And now that she has tech, you know pleasure having you on the Cube. You'll have to come back. Thank you so much. Women of the Cloud, brought to you by AWS.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Veronica McCarthy | PERSON | 0.99+ |
Veronica | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Italy | LOCATION | 0.99+ |
20 year | QUANTITY | 0.99+ |
McKinsey | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
650 engineers | QUANTITY | 0.99+ |
Women of the Cloud | TITLE | 0.99+ |
today | DATE | 0.99+ |
87 | QUANTITY | 0.99+ |
pandemic | EVENT | 0.98+ |
Today | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
four | QUANTITY | 0.97+ |
PFA Q | TITLE | 0.97+ |
this morning | DATE | 0.97+ |
one more question | QUANTITY | 0.97+ |
about 20 plus years | QUANTITY | 0.97+ |
about 20 plus years | QUANTITY | 0.97+ |
about four years | QUANTITY | 0.96+ |
82 | QUANTITY | 0.95+ |
first company | QUANTITY | 0.95+ |
first hit | QUANTITY | 0.93+ |
first hit | QUANTITY | 0.92+ |
The Cubes | TITLE | 0.92+ |