Image Title

Search Results for Snowflake:

Phil Kippen, Snowflake, Dave Whittington, AT&T & Roddy Tranum, AT&T | | MWC Barcelona 2023


 

(gentle music) >> Narrator: "TheCUBE's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Hello everybody, welcome back to day four of "theCUBE's" coverage of MWC '23. We're here live at the Fira in Barcelona. Wall-to-wall coverage, John Furrier is in our Palo Alto studio, banging out all the news. Really, the whole week we've been talking about the disaggregation of the telco network, the new opportunities in telco. We're really excited to have AT&T and Snowflake here. Dave Whittington is the AVP, at the Chief Data Office at AT&T. Roddy Tranum is the Assistant Vice President, for Channel Performance Data and Tools at AT&T. And Phil Kippen, the Global Head Of Industry-Telecom at Snowflake, Snowflake's new telecom business. Snowflake just announced earnings last night. Typical Scarpelli, they beat earnings, very conservative guidance, stocks down today, but we like Snowflake long term, they're on that path to 10 billion. Guys, welcome to "theCUBE." Thanks so much >> Phil: Thank you. >> for coming on. >> Dave and Roddy: Thanks Dave. >> Dave, let's start with you. The data culture inside of telco, We've had this, we've been talking all week about this monolithic system. Super reliable. You guys did a great job during the pandemic. Everything shifting to landlines. We didn't even notice, you guys didn't miss a beat. Saved us. But the data culture's changing inside telco. Explain that. >> Well, absolutely. So, first of all IoT and edge processing is bringing forth new and exciting opportunities all the time. So, we're bridging the world between a lot of the OSS stuff that we can do with edge processing. But bringing that back, and now we're talking about working, and I would say traditionally, we talk data warehouse. Data warehouse and big data are now becoming a single mesh, all right? And the use cases and the way you can use those, especially I'm taking that edge data and bringing it back over, now I'm running AI and ML models on it, and I'm pushing back to the edge, and I'm combining that with my relational data. So that mesh there is making all the difference. We're getting new use cases that we can do with that. And it's just, and the volume of data is immense. >> Now, I love ChatGPT, but I'm hoping your data models are more accurate than ChatGPT. I never know. Sometimes it's really good, sometimes it's really bad. But enterprise, you got to be clean with your AI, don't you? >> Not only you have to be clean, you have to monitor it for bias and be ethical about it. We're really good about that. First of all with AT&T, our brand is Platinum. We take care of that. So, we may not be as cutting-edge risk takers as others, but when we go to market with an AI or an ML or a product, it's solid. >> Well hey, as telcos go, you guys are leaning into the Cloud. So I mean, that's a good starting point. Roddy, explain your role. You got an interesting title, Channel Performance Data and Tools, what's that all about? >> So literally anything with our consumer, retail, concenters' channels, all of our channels, from a data perspective and metrics perspective, what it takes to run reps, agents, all the way to leadership levels, scorecards, how you rank in the business, how you're driving the business, from sales, service, customer experience, all that data infrastructure with our great partners on the CDO side, as well as Snowflake, that comes from my team. >> And that's traditionally been done in a, I don't mean the pejorative, but we're talking about legacy, monolithic, sort of data warehouse technologies. >> Absolutely. >> We have a love-hate relationship with them. It's what we had. It's what we used, right? And now that's evolving. And you guys are leaning into the Cloud. >> Dramatic evolution. And what Snowflake's enabled for us is impeccable. We've talked about having, people have dreamed of one data warehouse for the longest time and everything in one system. Really, this is the only way that becomes a reality. The more you get in Snowflake, we can have golden source data, and instead of duplicating that 50 times across AT&T, it's in one place, we just share it, everybody leverages it, and now it's not duplicated, and the process efficiency is just incredible. >> But it really hinges on that separation of storage and compute. And we talk about the monolithic warehouse, and one of the nightmares I've lived with, is having a monolithic warehouse. And let's just go with some of my primary, traditional customers, sales, marketing and finance. They are leveraging BSS OSS data all the time. For me to coordinate a deployment, I have to make sure that each one of these units can take an outage, if it's going to be a long deployment. With the separation of storage, compute, they own their own compute cluster. So I can move faster for these people. 'Cause if finance, I can implement his code without impacting finance or marketing. This brings in CI/CD to more reality. It brings us faster to market with more features. So if he wants to implement a new comp plan for the field reps, or we're reacting to the marketplace, where one of our competitors has done something, we can do that in days, versus waiting weeks or months. >> And we've reported on this a lot. This is the brilliance of Snowflake's founders, that whole separation >> Yep. >> from compute and data. I like Dave, that you're starting with sort of the business flexibility, 'cause there's a cost element of this too. You can dial down, you can turn off compute, and then of course the whole world said, "Hey, that's a good idea." And a VC started throwing money at Amazon, but Redshift said, "Oh, we can do that too, sort of, can't turn off the compute." But I want to ask you Phil, so, >> Sure. >> it looks from my vantage point, like you're taking your Data Cloud message which was originally separate compute from storage simplification, now data sharing, automated governance, security, ultimately the marketplace. >> Phil: Right. >> Taking that same model, break down the silos into telecom, right? It's that same, >> Mm-hmm. >> sorry to use the term playbook, Frank Slootman tells me he doesn't use playbooks, but he's not a pattern matcher, but he's a situational CEO, he says. But the situation in telco calls for that type of strategy. So explain what you guys are doing in telco. >> I think there's, so, what we're launching, we launched last week, and it really was three components, right? So we had our platform as you mentioned, >> Dave: Mm-hmm. >> and that platform is being utilized by a number of different companies today. We also are adding, for telecom very specifically, we're adding capabilities in marketplace, so that service providers can not only use some of the data and apps that are in marketplace, but as well service providers can go and sell applications or sell data that they had built. And then as well, we're adding our ecosystem, it's telecom-specific. So, we're bringing partners in, technology partners, and consulting and services partners, that are very much focused on telecoms and what they do internally, but also helping them monetize new services. >> Okay, so it's not just sort of generic Snowflake into telco? You have specific value there. >> We're purposing the platform specifically for- >> Are you a telco guy? >> I am. You are, okay. >> Total telco guy absolutely. >> So there you go. You see that Snowflake is actually an interesting organizational structure, 'cause you're going after verticals, which is kind of rare for a company of your sort of inventory, I'll say, >> Absolutely. >> I don't mean that as a negative. (Dave laughs) So Dave, take us through the data journey at AT&T. It's a long history. You don't have to go back to the 1800s, but- (Dave laughs) >> Thank you for pointing out, we're a 149-year-old company. So, Jesse James was one of the original customers, (Dave laughs) and we have no longer got his data. So, I'll go back. I've been 17 years singular AT&T, and I've watched it through the whole journey of, where the monolithics were growing, when the consolidation of small, wireless carriers, and we went through that boom. And then we've gone through mergers and acquisitions. But, Hadoop came out, and it was going to solve all world hunger. And we had all the aspects of, we're going to monetize and do AI and ML, and some of the things we learned with Hadoop was, we had this monolithic warehouse, we had this file-based-structured Hadoop, but we really didn't know how to bring this all together. And we were bringing items over to the relational, and we were taking the relational and bringing it over to the warehouse, and trying to, and it was a struggle. Let's just go there. And I don't think we were the only company to struggle with that, but we learned a lot. And so now as tech is finally emerging, with the cloud, companies like Snowflake, and others that can handle that, where we can create, we were discussing earlier, but it becomes more of a conducive mesh that's interoperable. So now we're able to simplify that environment. And the cloud is a big thing on that. 'Cause you could not do this on-prem with on-prem technologies. It would be just too cost prohibitive, and too heavy of lifting, going back and forth, and managing the data. The simplicity the cloud brings with a smaller set of tools, and I'll say in the data space specifically, really allows us, maybe not a single instance of data for all use cases, but a greatly reduced ecosystem. And when you simplify your ecosystem, you simplify speed to market and data management. >> So I'm going to ask you, I know it's kind of internal organizational plumbing, but it'll inform my next question. So, Dave, you're with the Chief Data Office, and Roddy, you're kind of, you all serve in the business, but you're really serving the, you're closer to those guys, they're banging on your door for- >> Absolutely. I try to keep the 130,000 users who may or may not have issues sometimes with our data and metrics, away from Dave. And he just gets a call from me. >> And he only calls when he has a problem. He's never wished me happy birthday. (Dave and Phil laugh) >> So the reason I asked that is because, you describe Dave, some of the Hadoop days, and again love-hate with that, but we had hyper-specialized roles. We still do. You've got data engineers, data scientists, data analysts, and you've got this sort of this pipeline, and it had to be this sequential pipeline. I know Snowflake and others have come to simplify that. My question to you is, how is that those roles, how are those roles changing? How is data getting closer to the business? Everybody talks about democratizing business. Are you doing that? What's a real use example? >> From our perspective, those roles, a lot of those roles on my team for years, because we're all about efficiency, >> Dave: Mm-hmm. >> we cut across those areas, and always have cut across those areas. So now we're into a space where things have been simplified, data processes and copying, we've gone from 40 data processes down to five steps now. We've gone from five steps to one step. We've gone from days, now take hours, hours to minutes, minutes to seconds. Literally we're seeing that time in and time out with Snowflake. So these resources that have spent all their time on data engineering and moving data around, are now freed up more on what they have skills for and always have, the data analytics area of the business, and driving the business forward, and new metrics and new analysis. That's some of the great operational value that we've seen here. As this simplification happens, it frees up brain power. >> So, you're pumping data from the OSS, the BSS, the OKRs everywhere >> Everywhere. >> into Snowflake? >> Scheduling systems, you name it. If you can think of what drives our retail and centers and online, all that data, scheduling system, chat data, call center data, call detail data, all of that enters into this common infrastructure to manage the business on a day in and day out basis. >> How are the roles and the skill sets changing? 'Cause you're doing a lot less ETL, you're doing a lot less moving of data around. There were guys that were probably really good at that. I used to joke in the, when I was in the storage world, like if your job is bandaging lungs, you need to look for a new job, right? So, and they did and people move on. So, are you able to sort of redeploy those assets, and those people, those human resources? >> These folks are highly skilled. And we were talking about earlier, SQL hasn't gone away. Relational databases are not going away. And that's one thing that's made this migration excellent, they're just transitioning their skills. Experts in legacy systems are now rapidly becoming experts on the Snowflake side. And it has not been that hard a transition. There are certainly nuances, things that don't operate as well in the cloud environment that we have to learn and optimize. But we're making that transition. >> Dave: So just, >> Please. >> within the Chief Data Office we have a couple of missions, and Roddy is a great partner and an example of how it works. We try to bring the data for democratization, so that we have one interface, now hopefully know we just have a logical connection back to these Snowflake instances that we connect. But we're providing that governance and cleansing, and if there's a business rule at the enterprise level, we provide it. But the goal at CDO is to make sure that business units like Roddy or marketing or finance, that they can come to a platform that's reliable, robust, and self-service. I don't want to be in his way. So I feel like I'm providing a sub-level of platform, that he can come to and anybody can come to, and utilize, that they're not having to go back and undo what's in Salesforce, or ServiceNow, or in our billers. So, I'm sort of that layer. And then making sure that that ecosystem is robust enough for him to use. >> And that self-service infrastructure is predominantly through the Azure Cloud, correct? >> Dave: Absolutely. >> And you work on other clouds, but it's predominantly through Azure? >> We're predominantly in Azure, yeah. >> Dave: That's the first-party citizen? >> Yeah. >> Okay, I like to think in terms sometimes of data products, and I know you've mentioned upfront, you're Gold standard or Platinum standard, you're very careful about personal information. >> Dave: Yeah. >> So you're not trying to sell, I'm an AT&T customer, you're not trying to sell my data, and make money off of my data. So the value prop and the business case for Snowflake is it's simpler. You do things faster, you're in the cloud, lower cost, et cetera. But I presume you're also in the business, AT&T, of making offers and creating packages for customers. I look at those as data products, 'cause it's not a, I mean, yeah, there's a physical phone, but there's data products behind it. So- >> It ultimately is, but not everybody always sees it that way. Data reporting often can be an afterthought. And we're making it more on the forefront now. >> Yeah, so I like to think in terms of data products, I mean even if the financial services business, it's a data business. So, if we can think about that sort of metaphor, do you see yourselves as data product builders? Do you have that, do you think about building products in that regard? >> Within the Chief Data Office, we have a data product team, >> Mm-hmm. >> and by the way, I wouldn't be disingenuous if I said, oh, we're very mature in this, but no, it's where we're going, and it's somewhat of a journey, but I've got a peer, and their whole job is to go from, especially as we migrate from cloud, if Roddy or some other group was using tables three, four and five and joining them together, it's like, "Well look, this is an offer for data product, so let's combine these and put it up in the cloud, and here's the offer data set product, or here's the opportunity data product," and it's a journey. We're on the way, but we have dedicated staff and time to do this. >> I think one of the hardest parts about that is the organizational aspects of it. Like who owns the data now, right? It used to be owned by the techies, and increasingly the business lines want to have access, you're providing self-service. So there's a discussion about, "Okay, what is a data product? Who's responsible for that data product? Is it in my P&L or your P&L? Somebody's got to sign up for that number." So, it sounds like those discussions are taking place. >> They are. And, we feel like we're more the, and CDO at least, we feel more, we're like the guardians, and the shepherds, but not the owners. I mean, we have a role in it all, but he owns his metrics. >> Yeah, and even from our perspective, we see ourselves as an enabler of making whatever AT&T wants to make happen in terms of the key products and officers' trade-in offers, trade-in programs, all that requires this data infrastructure, and managing reps and agents, and what they do from a channel performance perspective. We still ourselves see ourselves as key enablers of that. And we've got to be flexible, and respond quickly to the business. >> I always had empathy for the data engineer, and he or she had to service all these different lines of business with no business context. >> Yeah. >> Like the business knows good data from bad data, and then they just pound that poor individual, and they're like, "Okay, I'm doing my best. It's just ones and zeros to me." So, it sounds like that's, you're on that path. >> Yeah absolutely, and I think, we do have refined, getting more and more refined owners of, since Snowflake enables these golden source data, everybody sees me and my organization, channel performance data, go to Roddy's team, we have a great team, and we go to Dave in terms of making it all happen from a data infrastructure perspective. So we, do have a lot more refined, "This is where you go for the golden source, this is where it is, this is who owns it. If you want to launch this product and services, and you want to manage reps with it, that's the place you-" >> It's a strong story. So Chief Data Office doesn't own the data per se, but it's your responsibility to provide the self-service infrastructure, and make sure it's governed properly, and in as automated way as possible. >> Well, yeah, absolutely. And let me tell you more, everybody talks about single version of the truth, one instance of the data, but there's context to that, that we are taking, trying to take advantage of that as we do data products is, what's the use case here? So we may have an entity of Roddy as a prospective customer, and we may have a entity of Roddy as a customer, high-value customer over here, which may have a different set of mix of data and all, but as a data product, we can then create those for those specific use cases. Still point to the same data, but build it in different constructs. One for marketing, one for sales, one for finance. By the way, that's where your data engineers are struggling. >> Yeah, yeah, of course. So how do I serve all these folks, and really have the context-common story in telco, >> Absolutely. >> or are these guys ahead of the curve a little bit? Or where would you put them? >> I think they're definitely moving a lot faster than the industry is generally. I think the enabling technologies, like for instance, having that single copy of data that everybody sees, a single pane of glass, right, that's definitely something that everybody wants to get to. Not many people are there. I think, what AT&T's doing, is most definitely a little bit further ahead than the industry generally. And I think the successes that are coming out of that, and the learning experiences are starting to generate momentum within AT&T. So I think, it's not just about the product, and having a product now that gives you a single copy of data. It's about the experiences, right? And now, how the teams are getting trained, domains like network engineering for instance. They typically haven't been a part of data discussions, because they've got a lot of data, but they're focused on the infrastructure. >> Mm. >> So, by going ahead and deploying this platform, for platform's purpose, right, and the business value, that's one thing, but also to start bringing, getting that experience, and bringing new experience in to help other groups that traditionally hadn't been data-centric, that's also a huge step ahead, right? So you need to enable those groups. >> A big complaint of course we hear at MWC from carriers is, "The over-the-top guys are killing us. They're riding on our networks, et cetera, et cetera. They have all the data, they have all the client relationships." Do you see your client relationships changing as a result of sort of your data culture evolving? >> Yes, I'm not sure I can- >> It's a loaded question, I know. >> Yeah, and then I, so, we want to start embedding as much into our network on the proprietary value that we have, so we can start getting into that OTT play, us as any other carrier, we have distinct advantages of what we can do at the edge, and we just need to start exploiting those. But you know, 'cause whether it's location or whatnot, so we got to eat into that. Historically, the network is where we make our money in, and we stack the services on top of it. It used to be *69. >> Dave: Yeah. >> If anybody remembers that. >> Dave: Yeah, of course. (Dave laughs) >> But you know, it was stacked on top of our network. Then we stack another product on top of it. It'll be in the edge where we start providing distinct values to other partners as we- >> I mean, it's a great business that you're in. I mean, if they're really good at connectivity. >> Dave: Yeah. >> And so, it sounds like it's still to be determined >> Dave: Yeah. >> where you can go with this. You have to be super careful with private and for personal information. >> Dave: Yep. >> Yeah, but the opportunities are enormous. >> There's a lot. >> Yeah, particularly at the edge, looking at, private networks are just an amazing opportunity. Factories and name it, hospital, remote hospitals, remote locations. I mean- >> Dave: Connected cars. >> Connected cars are really interesting, right? I mean, if you start communicating car to car, and actually drive that, (Dave laughs) I mean that's, now we're getting to visit Xen Fault Tolerance people. This is it. >> Dave: That's not, let's hold the traffic. >> Doesn't scare me as much as we actually learn. (all laugh) >> So how's the show been for you guys? >> Dave: Awesome. >> What're your big takeaways from- >> Tremendous experience. I mean, someone who doesn't go outside the United States much, I'm a homebody. The whole experience, the whole trip, city, Mobile World Congress, the technologies that are out here, it's been a blast. >> Anything, top two things you learned, advice you'd give to others, your colleagues out in general? >> In general, we talked a lot about technologies today, and we talked a lot about data, but I'm going to tell you what, the accelerator that you cannot change, is the relationship that we have. So when the tech and the business can work together toward a common goal, and it's a partnership, you get things done. So, I don't know how many CDOs or CIOs or CEOs are out there, but this connection is what accelerates and makes it work. >> And that is our audience Dave. I mean, it's all about that alignment. So guys, I really appreciate you coming in and sharing your story in "theCUBE." Great stuff. >> Thank you. >> Thanks a lot. >> All right, thanks everybody. Thank you for watching. I'll be right back with Dave Nicholson. Day four SiliconANGLE's coverage of MWC '23. You're watching "theCUBE." (gentle music)

Published Date : Mar 2 2023

SUMMARY :

that drive human progress. And Phil Kippen, the Global But the data culture's of the OSS stuff that we But enterprise, you got to be So, we may not be as cutting-edge Channel Performance Data and all the way to leadership I don't mean the pejorative, And you guys are leaning into the Cloud. and the process efficiency and one of the nightmares I've lived with, This is the brilliance of the business flexibility, like you're taking your Data Cloud message But the situation in telco and that platform is being utilized You have specific value there. I am. So there you go. I don't mean that as a negative. and some of the things we and Roddy, you're kind of, And he just gets a call from me. (Dave and Phil laugh) and it had to be this sequential pipeline. and always have, the data all of that enters into How are the roles and in the cloud environment that But the goal at CDO is to and I know you've mentioned upfront, So the value prop and the on the forefront now. I mean even if the and by the way, I wouldn't and increasingly the business and the shepherds, but not the owners. and respond quickly to the business. and he or she had to service Like the business knows and we go to Dave in terms doesn't own the data per se, and we may have a entity and really have the and having a product now that gives you and the business value, that's one thing, They have all the data, on the proprietary value that we have, Dave: Yeah, of course. It'll be in the edge business that you're in. You have to be super careful Yeah, but the particularly at the edge, and actually drive that, let's hold the traffic. much as we actually learn. the whole trip, city, is the relationship that we have. and sharing your story in "theCUBE." Thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Dave WhittingtonPERSON

0.99+

Frank SlootmanPERSON

0.99+

RoddyPERSON

0.99+

AmazonORGANIZATION

0.99+

PhilPERSON

0.99+

Phil KippenPERSON

0.99+

AT&TORGANIZATION

0.99+

Jesse JamesPERSON

0.99+

AT&T.ORGANIZATION

0.99+

five stepsQUANTITY

0.99+

Dave NicholsonPERSON

0.99+

John FurrierPERSON

0.99+

50 timesQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

Roddy TranumPERSON

0.99+

10 billionQUANTITY

0.99+

one stepQUANTITY

0.99+

17 yearsQUANTITY

0.99+

130,000 usersQUANTITY

0.99+

United StatesLOCATION

0.99+

1800sDATE

0.99+

last weekDATE

0.99+

BarcelonaLOCATION

0.99+

Palo AltoLOCATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

last nightDATE

0.99+

MWC '23EVENT

0.98+

telcoORGANIZATION

0.98+

one systemQUANTITY

0.98+

oneQUANTITY

0.98+

40 data processesQUANTITY

0.98+

todayDATE

0.98+

one placeQUANTITY

0.97+

P&LORGANIZATION

0.97+

telcosORGANIZATION

0.97+

CDOORGANIZATION

0.97+

149-year-oldQUANTITY

0.97+

fiveQUANTITY

0.97+

singleQUANTITY

0.96+

three componentsQUANTITY

0.96+

OneQUANTITY

0.96+

Itamar Ankorion, Qlik & Peter MacDonald, Snowflake | AWS re:Invent 2022


 

(upbeat music) >> Hello, welcome back to theCUBE's AWS RE:Invent 2022 Coverage. I'm John Furrier, host of theCUBE. Got a great lineup here, Itamar Ankorion SVP Technology Alliance at Qlik and Peter McDonald, vice President, cloud partnerships and business development Snowflake. We're going to talk about bringing SAP data to life, for joint Snowflake, Qlik and AWS Solution. Gentlemen, thanks for coming on theCUBE Really appreciate it. >> Thank you. >> Thank you, great meeting you John. >> Just to get started, introduce yourselves to the audience, then going to jump into what you guys are doing together, unique relationship here, really compelling solution in cloud. Big story about applications and scale this year. Let's introduce yourselves. Peter, we'll start with you. >> Great. I'm Peter MacDonald. I am vice president of Cloud Partners and business development here at Snowflake. On the Cloud Partner side, that means I manage AWS relationship along with Microsoft and Google Cloud. What we do together in terms of complimentary products, GTM, co-selling, things like that. Importantly, working with other third parties like Qlik for joint solutions. On business development, it's negotiating custom commercial partnerships, large companies like Salesforce and Dell, smaller companies at most for our venture portfolio. >> Thanks Peter and hi John. It's great to be back here. So I'm Itamar Ankorion and I'm the senior vice president responsible for technology alliances here at Qlik. With that, own strategic alliances, including our key partners in the cloud, including Snowflake and AWS. I've been in the data and analytics enterprise software market for 20 plus years, and my main focus is product management, marketing, alliances, and business development. I joined Qlik about three and a half years ago through the acquisition of Attunity, which is now the foundation for Qlik data integration. So again, we focus in my team on creating joint solution alignment with our key partners to provide more value to our customers. >> Great to have both you guys, senior executives in the industry on theCUBE here, talking about data, obviously bringing SAP data to life is the theme of this segment, but this reinvent, it's all about the data, big data end-to-end story, a lot about data being intrinsic as the CEO says on stage around in the organizations in all aspects. Take a minute to explain what you guys are doing as from a company standpoint. Snowflake and Qlik and the solutions, why here at AWS? Peter, we'll start with you at Snowflake, what you guys do as a company, your mission, your focus. >> That was great, John. Yeah, so here at Snowflake, we focus on the data platform and until recently, data platforms required expensive on-prem hardware appliances. And despite all that expense, customers had capacity constraints, inexpensive maintenance, and had limited functionality that all impeded these organizations from reaching their goals. Snowflake is a cloud native SaaS platform, and we've become so successful because we've addressed these pain points and have other new special features. For example, securely sharing data across both the organization and the value chain without copying the data, support for new data types such as JSON and structured data, and also advance in database data governance. Snowflake integrates with complimentary AWS services and other partner products. So we can enable holistic solutions that include, for example, here, both Qlik and AWS SageMaker, and comprehend and bring those to joint customers. Our customers want to convert data into insights along with advanced analytics platforms in AI. That is how they make holistic data-driven solutions that will give them competitive advantage. With Snowflake, our approach is to focus on customer solutions that leverage data from existing systems such as SAP, wherever they are in the cloud or on-premise. And to do this, we leverage partners like Qlik native US to help customers transform their businesses. We provide customers with a premier data analytics platform as a result. Itamar, why don't you talk about Qlik a little bit and then we can dive into the specific SAP solution here and some trends >> Sounds great, Peter. So Qlik provides modern data integration and analytics software used by over 38,000 customers worldwide. Our focus is to help our customers turn data into value and help them close the gap between data all the way through insight and action. We offer click data integration and click data analytics. Click data integration helps to automate the data pipelines to deliver data to where they want to use them in real-time and make the data ready for analytics and then Qlik data analytics is a robust platform for analytics and business intelligence has been a leader in the Gartner Magic Quadrant for over 11 years now in the market. And both of these come together into what we call Qlik Cloud, which is our SaaS based platform. So providing a more seamless way to consume all these services and accelerate time to value with customer solutions. In terms of partnerships, both Snowflake and AWS are very strategic to us here at Qlik, so we have very comprehensive investment to ensure strong joint value proposition to we can bring to our mutual customers, everything from aligning our roadmaps through optimizing and validating integrations, collaborating on best practices, packaging joint solutions like the one we'll talk about today. And with that investment, we are an elite level, top level partner with Snowflake. We fly that our technology is Snowflake-ready across the entire product set and we have hundreds of joint customers together and with AWS we've also partnered for a long time. We're here to reinvent. We've been here with the first reinvent since the inaugural one, so it kind of gives you an idea for how long we've been working with AWS. We provide very comprehensive integration with AWS data analytics services, and we have several competencies ranging from data analytics to migration and modernization. So that's our focus and again, we're excited about working with Snowflake and AWS to bring solutions together to market. >> Well, I'm looking forward to unpacking the solutions specifically, and congratulations on the continued success of both your companies. We've been following them obviously for a very long time and seeing the platform evolve beyond just SaaS and a lot more going on in cloud these days, kind of next generation emerging. You know, we're seeing a lot of macro trends that are going to be powering some of the things we're going to get into real quickly. But before we get into the solution, what are some of those power dynamics in the industry that you're seeing in trends specifically that are impacting your customers that are taking us down this road of getting more out of the data and specifically the SAP, but in general trends and dynamics. What are you hearing from your customers? Why do they care? Why are they going down this road? Peter, we'll start with you. >> Yeah, I'll go ahead and start. Thanks. Yeah, I'd say we continue to see customers being, being very eager to transform their businesses and they know they need to leverage technology and data to do so. They're also increasingly depending upon the cloud to bring that agility, that elasticity, new functionality necessary to react in real-time to every evolving customer needs. You look at what's happened over the last three years, and boy, the macro environment customers, it's all changing so fast. With our partnerships with AWS and Qlik, we've been able to bring to market innovative solutions like the one we're announcing today that spans all three companies. It provides a holistic solution and an integrated solution for our customer. >> Itamar let's get into it, you've been with theCUBE, you've seen the journey, you have your own journey, many, many years, you've seen the waves. What's going on now? I mean, what's the big wave? What's the dynamic powering this trend? >> Yeah, in a nutshell I'll call it, it's all about time. You know, it's time to value and it's about real-time data. I'll kind of talk about that a bit. So, I mean, you hear a lot about the data being the new oil, but it's definitely, we see more and more customers seeing data as their critical enabler for innovation and digital transformation. They look for ways to monetize data. They look as the data as the way in which they can innovate and bring different value to the customers. So we see customers want to use more data so to get more value from data. We definitely see them wanting to do it faster, right, than before. And we definitely see them looking for agility and automation as ways to accelerate time to value, and also reduce overall costs. I did mention real-time data, so we definitely see more and more customers, they want to be able to act and make decisions based on fresh data. So yesterday's data is just not good enough. >> John: Yeah. >> It's got to be down to the hour, down to the minutes and sometimes even lower than that. And then I think we're also seeing customers look to their core business systems where they have a lot of value, like the SAP, like mainframe and thinking, okay, our core data is there, how can we get more value from this data? So that's key things we see all the time with customers. >> Yeah, we did a big editorial segment this year on, we called data as code. Data as code is kind of a riff on infrastructure as code and you start to see data becoming proliferating into all aspects, fresh data. It's not just where you store it, it's how you share it, it's how you turn it into an application intrinsically involved in all aspects. This is the big theme this year and that's driving all the conversations here at RE:Invent. And I'm guaranteeing you, it's going to happen for another five and 10 years. It's not stopping. So I got to get into the solution, you guys mentioned SAP and you've announced the solution by Qlik, Snowflake and AWS for your customers using SAP. Can you share more about this solution? What's unique about it? Why is it important and why now? Peter, Itamar, we'll start with you first. >> Let me jump in, this is really, I'll jump because I'm excited. We're very excited about this solution and it's also a solution by the way and again, we've seen proven customer success with it. So to your point, it's ready to scale, it's starting, I think we're going to see a lot of companies doing this over the next few years. But before we jump to the solution, let me maybe take a few minutes just to clarify the need, why we're seeing, why we're seeing customers jump to do this. So customers that use SAP, they use it to manage the core of their business. So think order processing, management, finance, inventory, supply chain, and so much more. So if you're running SAP in your company, that data creates a great opportunity for you to drive innovation and modernization. So what we see customers want to do, they want to do more with their data and more means they want to take SAP with non-SAP data and use it together to drive new insights. They want to use real-time data to drive real-time analytics, which they couldn't do to date. They want to bring together descriptive with predictive analytics. So adding machine learning in AI to drive more value from the data. And naturally they want to do it faster. So find ways to iterate faster on their solutions, have freedom with the data and agility. And I think this is really where cloud data platforms like Snowflake and AWS, you know, bring that value to be able to drive that. Now to do that you need to unlock the SAP data, which is a lot of also where Qlik comes in because typical challenges these customers run into is the complexity, inherent in SAP data. Tens of thousands of tables, proprietary formats, complex data models, licensing restrictions, and more than, you have performance issues, they usually run into how do we handle the throughput, the volumes while maintaining lower latency and impact. Where do we find knowledge to really understand how to get all this done? So these are the things we've looked at when we came together to create a solution and make it unique. So when you think about its uniqueness, because we put together a lot, and I'll go through three, four key things that come together to make this unique. First is about data delivery. How do you have the SAP data delivery? So how do you get it from ECC, from HANA from S/4HANA, how do you deliver the data and the metadata and how that integration well into Snowflake. And what we've done is we've focused a lot on optimizing that process and the continuous ingestion, so the real-time ingestion of the data in a way that works really well with the Snowflake system, data cloud. Second thing is we looked at SAP data transformation, so once the data arrives at Snowflake, how do we turn it into being analytics ready? So that's where data transformation and data worth automation come in. And these are all elements of this solution. So creating derivative datasets, creating data marts, and all of that is done by again, creating an optimized integration that pushes down SQL based transformations, so they can be processed inside Snowflake, leveraging its powerful engine. And then the third element is bringing together data visualization analytics that can also take all the data now that in organizing inside Snowflake, bring other data in, bring machine learning from SageMaker, and then you go to create a seamless integration to bring analytic applications to life. So these are all things we put together in the solution. And maybe the last point is we actually took the next step with this and we created something we refer to as solution accelerators, which we're really, really keen about. Think about this as prepackaged templates for common business analytic needs like order to cash, finance, inventory. And we can either dig into that a little more later, but this gets the next level of value to the customers all built into this joint solution. >> Yeah, I want to get to the accelerators, but real quick, Peter, your reaction to the solution, what's unique about it? And obviously Snowflake, we've been seeing the progression data applications, more developers developing on top of Snowflake, data as code kind of implies developer ecosystem. This is kind of interesting. I mean, you got partnering with Qlik and AWS, it's kind of a developer-like thinking real solution. What's unique about this SAP solution that's, that's different than what customers can get anywhere else or not? >> Yeah, well listen, I think first of all, you have to start with the idea of the solution. This are three companies coming together to build a holistic solution that is all about, you know, creating a great opportunity to turn SAP data into value this is Itamar was talking about, that's really what we're talking about here and there's a lot of technology underneath it. I'll talk more about the Snowflake technology, what's involved here, and then cover some of the AWS pieces as well. But you know, we're focusing on getting that value out and accelerating time to value for our joint customers. As Itamar was saying, you know, there's a lot of complexity with the SAP data and a lot of value there. How can we manage that in a prepackaged way, bringing together best of breed solutions with proven capabilities and bringing this to market quickly for our joint customers. You know, Snowflake and AWS have been strong partners for a number of years now, and that's not only on how Snowflake runs on top of AWS, but also how we integrate with their complementary analytics and then all products. And so, you know, we want to be able to leverage those in addition to what Qlik is bringing in terms of the data transformations, bringing data out of SAP in the visualization as well. All very critical. And then we want to bring in the predictive analytics, AWS brings and what Sage brings. We'll talk about that a little bit later on. Some of the technologies that we're leveraging are some of our latest cutting edge technologies that really make things easier for both our partners and our customers. For example, Qlik leverages Snowflakes recently released Snowpark for Python functionality to push down those data transformations from clicking the Snowflake that Itamar's mentioning. And while we also leverage Snowpark for integrations with Amazon SageMaker, but there's a lot of great new technology that just makes this easy and compelling for customers. >> I think that's the big word, easy button here for what may look like a complex kind of integration, kind of turnkey, really, really compelling example of the modern era we're living in, as we always say in theCUBE. You mentioned accelerators, SAP accelerators. Can you give an example of how that works with the technology from the third party providers to deliver this business value Itamar, 'cause that was an interesting comment. What's the example? Give an example of this acceleration. >> Yes, certainly. I think this is something that really makes this truly, truly unique in the industry and again, a great opportunity for customers. So we kind talked earlier about there's a lot of things that need to be done with SP data to turn it to value. And these accelerator, as the name suggests, are designed to do just that, to kind of jumpstart the process and reduce the time and the risk involved in such project. So again, these are pre-packaged templates. We basically took a lot of knowledge, and a lot of configurations, best practices about to get things done and we put 'em together. So think about all the steps, it includes things like data extraction, so already knowing which tables, all the relevant tables that you need to get data from in the contexts of the solution you're looking for, say like order to cash, we'll get back to that one. How do you continuously deliver that data into Snowflake in an in efficient manner, handling things like data type mappings, metadata naming conventions and transformations. The data models you build all the way to data mart definitions and all the transformations that the data needs to go through moving through steps until it's fully analytics ready. And then on top of that, even adding a library of comprehensive analytic dashboards and integrations through machine learning and AI and put all of that in a way that's in pre-integrated and tested to work with Snowflake and AWS. So this is where again, you get this entire recipe that's ready. So take for example, I think I mentioned order to cash. So again, all these things I just talked about, I mean, for those who are not familiar, I mean order to cash is a critical business process for every organization. So especially if you're in retail, manufacturing, enterprise, it's a big... This is where, you know, starting with booking a sales order, following by fulfilling the order, billing the customer, then managing the accounts receivable when the customer actually pays, right? So this all process, you got sales order fulfillment and the billing impacts customer satisfaction, you got receivable payments, you know, the impact's working capital, cash liquidity. So again, as a result this order to cash process is a lifeblood for many businesses and it's critical to optimize and understand. So the solution accelerator we created specifically for order to cash takes care of understanding all these aspects and the data that needs to come with it. So everything we outline before to make the data available in Snowflake in a way that's really useful for downstream analytics, along with dashboards that are already common for that, for that use case. So again, this enables customers to gain real-time visibility into their sales orders, fulfillment, accounts receivable performance. That's what the Excel's are all about. And very similarly, we have another one for example, for finance analytics, right? So this will optimize financial data reporting, helps customers get insights into P&L, financial risk of stability or inventory analytics that helps with, you know, improve planning and inventory management, utilization, increased efficiencies, you know, so in supply chain. So again, these accelerators really help customers get a jumpstart and move faster with their solutions. >> Peter, this is the easy button we just talked about, getting things going, you know, get the ball rolling, get some acceleration. Big part of this are the three companies coming together doing this. >> Yeah, and to build on what Itamar just said that the SAP data obviously has tremendous value. Those sales orders, distribution data, financial data, bringing that into Snowflake makes it easily accessible, but also it enables it to be combined with other data too, is one of the things that Snowflake does so well. So you can get a full view of the end-to-end process and the business overall. You know, for example, I'll just take one, you know, one example that, that may not come to mind right away, but you know, looking at the impact of weather conditions on supply chain logistics is relevant and material and have interest to our customers. How do you bring those different data sets together in an easy way, bringing the data out of SAP, bringing maybe other data out of other systems through Qlik or through Snowflake, directly bringing data in from our data marketplace and bring that all together to make it work. You know, fundamentally organizational silos and the data fragmentation exist otherwise make it really difficult to drive modern analytics projects. And that in turn limits the value that our customers are getting from SAP data and these other data sets. We want to enable that and unleash. >> Yeah, time for value. This is great stuff. Itamar final question, you know, what are customers using this? What do you have? I'm sure you have customers examples already using the solution. Can you share kind of what these examples look like in the use cases and the value? >> Oh yeah, absolutely. Thank you. Happy to. We have customers across different, different sectors. You see manufacturing, retail, energy, oil and gas, CPG. So again, customers in those segments, typically sectors typically have SAP. So we have customers in all of them. A great example is like Siemens Energy. Siemens Energy is a global provider of gas par services. You know, over what, 28 billion, 30 billion in revenue. 90,000 employees. They operate globally in over 90 countries. So they've used SAP HANA as a core system, so it's running on premises, multiple locations around the world. And what they were looking for is a way to bring all these data together so they can innovate with it. And the thing is, Peter mentioned earlier, not just the SAP data, but also bring other data from other systems to bring it together for more value. That includes finance data, these logistics data, these customer CRM data. So they bring data from over 20 different SAP systems. Okay, with Qlik data integration, feeding that into Snowflake in under 20 minutes, 24/7, 365, you know, days a year. Okay, they get data from over 20,000 tables, you know, over million, hundreds of millions of records daily going in. So it is a great example of the type of scale, scalability, agility and speed that they can get to drive these kind of innovation. So that's a great example with Siemens. You know, another one comes to mind is a global manufacturer. Very similar scenario, but you know, they're using it for real-time executive reporting. So it's more like feasibility to the production data as well as for financial analytics. So think, think, think about everything from audit to texts to innovate financial intelligence because all the data's coming from SAP. >> It's a great time to be in the data business again. It keeps getting better and better. There's more data coming. It's not stopping, you know, it's growing so fast, it keeps coming. Every year, it's the same story, Peter. It's like, doesn't stop coming. As we wrap up here, let's just get customers some information on how to get started. I mean, obviously you're starting to see the accelerators, it's a great program there. What a great partnership between the two companies and AWS. How can customers get started to learn about the solution and take advantage of it, getting more out of their SAP data, Peter? >> Yeah, I think the first place to go to is talk to Snowflake, talk to AWS, talk to our account executives that are assigned to your account. Reach out to them and they will be able to educate you on the solution. We have packages up very nicely and can be deployed very, very quickly. >> Well gentlemen, thank you so much for coming on. Appreciate the conversation. Great overview of the partnership between, you know, Snowflake and Qlik and AWS on a joint solution. You know, getting more out of the SAP data. It's really kind of a key, key solution, bringing SAP data to life. Thanks for coming on theCUBE. Appreciate it. >> Thank you. >> Thank you John. >> Okay, this is theCUBE coverage here at RE:Invent 2022. I'm John Furrier, your host of theCUBE. Thanks for watching. (upbeat music)

Published Date : Dec 1 2022

SUMMARY :

bringing SAP data to life, great meeting you John. then going to jump into what On the Cloud Partner side, and I'm the senior vice and the solutions, and the value chain and accelerate time to value that are going to be powering and data to do so. What's the dynamic powering this trend? You know, it's time to value all the time with customers. and that's driving all the and it's also a solution by the way I mean, you got partnering and bringing this to market of the modern era we're living in, that the data needs to go through getting things going, you know, Yeah, and to build in the use cases and the value? agility and speed that they can get It's a great time to be to educate you on the solution. key solution, bringing SAP data to life. Okay, this is theCUBE

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JohnPERSON

0.99+

AWSORGANIZATION

0.99+

PeterPERSON

0.99+

DellORGANIZATION

0.99+

John FurrierPERSON

0.99+

SiemensORGANIZATION

0.99+

Peter MacDonaldPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Peter McDonaldPERSON

0.99+

QlikORGANIZATION

0.99+

28 billionQUANTITY

0.99+

two companiesQUANTITY

0.99+

TensQUANTITY

0.99+

three companiesQUANTITY

0.99+

Siemens EnergyORGANIZATION

0.99+

20 plus yearsQUANTITY

0.99+

yesterdayDATE

0.99+

SnowflakeORGANIZATION

0.99+

Itamar AnkorionPERSON

0.99+

third elementQUANTITY

0.99+

FirstQUANTITY

0.99+

threeQUANTITY

0.99+

ItamarPERSON

0.99+

over 20,000 tablesQUANTITY

0.99+

bothQUANTITY

0.99+

90,000 employeesQUANTITY

0.99+

firstQUANTITY

0.99+

SalesforceORGANIZATION

0.99+

Cloud PartnersORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

over 38,000 customersQUANTITY

0.99+

under 20 minutesQUANTITY

0.99+

10 yearsQUANTITY

0.99+

fiveQUANTITY

0.99+

ExcelTITLE

0.99+

oneQUANTITY

0.99+

over 11 yearsQUANTITY

0.98+

SnowparkTITLE

0.98+

Second thingQUANTITY

0.98+

Breaking Analysis: Snowflake caught in the storm clouds


 

>> From the CUBE Studios in Palo Alto in Boston, bringing you data driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> A better than expected earnings report in late August got people excited about Snowflake again, but the negative sentiment in the market is weighed heavily on virtually all growth tech stocks and Snowflake is no exception. As we've stressed many times the company's management is on a long term mission to dramatically simplify the way organizations use data. Snowflake is tapping into a multi hundred billion dollar total available market and continues to grow at a rapid pace. In our view, Snowflake is embarking on its third major wave of innovation data apps, while its first and second waves are still bearing significant fruit. Now for short term traders focused on the next 90 or 180 days, that probably doesn't matter. But those taking a longer view are asking, "Should we still be optimistic about the future of this high flyer or is it just another over hyped tech play?" Hello and welcome to this week's Wiki Bond Cube Insights powered by ETR. Snowflake's Quarter just ended. And in this breaking analysis we take a look at the most recent survey data from ETR to see what clues and nuggets we can extract to predict the near term future in the long term outlook for Snowflake which is going to announce its earnings at the end of this month. Okay, so you know the story. If you've been investor in Snowflake this year, it's been painful. We said at IPO, "If you really want to own this stock on day one, just hold your nose and buy it." But like most IPOs we said there will be likely a better entry point in the future, and not surprisingly that's been the case. Snowflake IPOed a price of 120, which you couldn't touch on day one unless you got into a friends and family Delio. And if you did, you're still up 5% or so. So congratulations. But at one point last year you were up well over 200%. That's been the nature of this volatile stock, and I certainly can't help you with the timing of the market. But longer term Snowflake is targeting 10 billion in revenue for fiscal year 2028. A big number. Is it achievable? Is it big enough? Tell you what, let's come back to that. Now shorter term, our expert trader and breaking analysis contributor Chip Simonton said he got out of the stock a while ago after having taken a shot at what turned out to be a bear market rally. He pointed out that the stock had been bouncing around the 150 level for the last few months and broke that to the downside last Friday. So he'd expect 150 is where the stock is going to find resistance on the way back up, but there's no sign of support right now. He said maybe at 120, which was the July low and of course the IPO price that we just talked about. Now, perhaps earnings will be a catalyst, when Snowflake announces on November 30th, but until the mentality toward growth tech changes, nothing's likely to change dramatically according to Simonton. So now that we have that out of the way, let's take a look at the spending data for Snowflake in the ETR survey. Here's a chart that shows the time series breakdown of snowflake's net score going back to the October, 2021 survey. Now at that time, Snowflake's net score stood at a robust 77%. And remember, net score is a measure of spending velocity. It's a proprietary network, and ETR derives it from a quarterly survey of IT buyers and asks the respondents, "Are you adopting the platform new? Are you spending 6% or more? Is you're spending flat? Is you're spending down 6% or worse? Or are you leaving the platform decommissioning?" You subtract the percent of customers that are spending less or churning from those that are spending more and adopting or adopting and you get a net score. And that's expressed as a percentage of customers responding. In this chart we show Snowflake's in out of the total survey which ranges... The total survey ranges between 1,200 and 1,400 each quarter. And the very last column... Oh sorry, very last row, we show the number of Snowflake respondents that are coming in the survey from the Fortune 500 and the Global 2000. Those are two very important Snowflake constituencies. Now what this data tells us is that Snowflake exited 2021 with very strong momentum in a net score of 82%, which is off the charts and it was actually accelerating from the previous survey. Now by April that sentiment had flipped and Snowflake came down to earth with a 68% net score. Still highly elevated relative to its peers, but meaningfully down. Why was that? Because we saw a drop in new ads and an increase in flat spend. Then into the July and most recent October surveys, you saw a significant drop in the percentage of customers that were spending more. Now, notably, the percentage of customers who are contemplating adding the platform is actually staying pretty strong, but it is off a bit this past survey. And combined with a slight uptick in planned churn, net score is now down to 60%. That uptick from 0% and 1% and then 3%, it's still small, but that net score at 60% is still 20 percentage points higher than our highly elevated benchmark of 40% as you recall from listening to earlier breaking analysis. That 40% range is we consider a milestone. Anything above that is actually quite strong. But again, Snowflake is down and coming back to churn, while 3% churn is very low, in previous quarters we've seen Snowflake 0% or 1% decommissions. Now the last thing to note in this chart is the meaningful uptick in survey respondents that are citing, they're using the Snowflake platform. That's up to 212 in the survey. So look, it's hard to imagine that Snowflake doesn't feel the softening in the market like everyone else. Snowflake is guiding for around 60% growth in product revenue against the tough compare from a year ago with a 2% operating margin. So like every company, the reaction of the street is going to come down to how accurate or conservative the guide is from their CFO. Now, earlier this year, Snowflake acquired a company called Streamlit for around $800 million. Streamlit is an open source Python library and it makes it easier to build data apps with machine learning, obviously a huge trend. And like Snowflake, generally its focus is on simplifying the complex, in this case making data science easier to integrate into data apps that business people can use. So we were excited this summer in the July ETR survey to see that they added some nice data and pick on Streamlit, which we're showing here in comparison to Snowflake's core business on the left hand side. That's the data warehousing, the Streamlit pieces on the right hand side. And we show again net score over time from the previous survey for Snowflake's core database and data warehouse offering again on the left as compared to a Streamlit on the right. Snowflake's core product had 194 responses in the October, 22 survey, Streamlit had an end of 73, which is up from 52 in the July survey. So significant uptick of people responding that they're doing business in adopting Streamlit. That was pretty impressive to us. And it's hard to see, but the net scores stayed pretty constant for Streamlit at 51%. It was 52% I think in the previous quarter, well over that magic 40% mark. But when you blend it with Snowflake, it does sort of bring things down a little bit. Now there are two key points here. One is that the acquisition seems to have gained exposure right out of the gate as evidenced by the large number of responses. And two, the spending momentum. Again while it's lower than Snowflake overall, and when you blend it with Snowflake it does pull it down, it's very healthy and steady. Now let's do a little pure comparison with some of our favorite names in this space. This chart shows net score or spending velocity in the Y-axis, an overlap or presence, pervasiveness if you will, in the data set on the X-axis. That red dotted line again is that 40% highly elevated net score that we like to talk about. And that table inserted informs us as to how the companies are plotted, where the dots set up, the net score, the ins. And we're comparing a number of database players, although just a caution, Oracle includes all of Oracle including its apps. But we just put it in there for reference because it is the leader in database. Right off the bat, Snowflake jumps out with a net score of 64%. The 60% from the earlier chart, again included Streamlit. So you can see its core database, data warehouse business actually is higher than the total company average that we showed you before 'cause the Streamlit is blended in. So when you separate it out, Streamlit is right on top of data bricks. Isn't that ironic? Only Snowflake and Databricks in this selection of names are above the 40% level. You see Mongo and Couchbase, they know they're solid and Teradata cloud actually showing pretty well compared to some of the earlier survey results. Now let's isolate on the database data platform sector and see how that shapes up. And for this analysis, same XY dimensions, we've added the big giants, AWS and Microsoft and Google. And notice that those three plus Snowflake are just at or above the 40% line. Snowflake continues to lead by a significant margin in spending momentum and it keeps creeping to the right. That's that end that we talked about earlier. Now here's an interesting tidbit. Snowflake is often asked, and I've asked them myself many times, "How are you faring relative to AWS, Microsoft and Google, these big whales with Redshift and Synapse and Big Query?" And Snowflake has been telling folks that 80% of its business comes from AWS. And when Microsoft heard that, they said, "Whoa, wait a minute, Snowflake, let's partner up." 'Cause Microsoft is smart, and they understand that the market is enormous. And if they could do better with Snowflake, one, they may steal some business from AWS. And two, even if Snowflake is winning against some of the Microsoft database products, if it wins on Azure, Microsoft is going to sell more compute and more storage, more AI tools, more other stuff to these customers. Now AWS is really aggressive from a partnering standpoint with Snowflake. They're openly negotiating, not openly, but they're negotiating better prices. They're realizing that when it comes to data, the cheaper that you make the offering, the more people are going to consume. At scale economies and operating leverage are really powerful things at volume that kick in. Now Microsoft, they're coming along, they obviously get it, but Google is seemingly resistant to that type of go to market partnership. Rather than lean into Snowflake as a great partner Google's field force is kind of fighting fashion. Google itself at Cloud next heavily messaged what they call the open data cloud, which is a direct rip off of Snowflake. So what can we say about Google? They continue to be kind of behind the curve when it comes to go to market. Now just a brief aside on the competitive posture. I've seen Slootman, Frank Slootman, CEO of Snowflake in action with his prior companies and how he depositioned the competition. At Data Domain, he eviscerated a company called Avamar with their, what he called their expensive and slow post process architecture. I think he actually called it garbage, if I recall at one conference I heard him speak at. And that sort of destroyed BMC when he was at ServiceNow, kind of positioning them as the equivalent of the department of motor vehicles. And so it's interesting to hear how Snowflake openly talks about the data platforms of AWS, Microsoft, Google, and data bricks. I'll give you this sort of short bumper sticker. Redshift is just an on-prem database that AWS morphed to the cloud, which by the way is kind of true. They actually did a brilliant job of it, but it's basically a fact. Microsoft Excel, a collection of legacy databases, which also kind of morphed to run in the cloud. And even Big Query, which is considered cloud native by many if not most, is being positioned by Snowflake as originally an on-prem database to support Google's ad business, maybe. And data bricks is for those people smart enough to get it to Berkeley that love complexity. And now Snowflake doesn't, they don't mention Berkeley as far as I know. That's my addition. But you get the point. And the interesting thing about Databricks and Snowflake is a while ago in the cube I said that there was a new workload type emerging around data where you have AWS cloud, Snowflake obviously for the cloud database and Databricks data for the data science and EML, you bring those things together and there's this new workload emerging that's going to be very powerful in the future. And it's interesting to see now the aspirations of all three of these platforms are colliding. That's quite a dynamic, especially when you see both Snowflake and Databricks putting venture money and getting their hooks into the loyalties of the same companies like DBT labs and Calibra. Anyway, Snowflake's posture is that we are the pioneer in cloud native data warehouse, data sharing and now data apps. And our platform is designed for business people that want simplicity. The other guys, yes, they're formidable, but we Snowflake have an architectural lead and of course we run in multiple clouds. So it's pretty strong positioning or depositioning, you have to admit. Now I'm not sure I agree with the big query knockoffs completely. I think that's a bit of a stretch, but snowflake, as we see in the ETR survey data is winning. So in thinking about the longer term future, let's talk about what's different with Snowflake, where it's headed and what the opportunities are for the company. Snowflake put itself on the map by focusing on simplifying data analytics. What's interesting about that is the company's founders are as you probably know from Oracle. And rather than focusing on transactional data, which is Oracle's sweet spot, the stuff they worked on when they were at Oracle, the founder said, "We're going to go somewhere else. We're going to attack the data warehousing problem and the data analytics problem." And they completely re-imagined the database and how it could be applied to solve those challenges and reimagine what was possible if you had virtually unlimited compute and storage capacity. And of course Snowflake became famous for separating the compute from storage and being able to completely shut down compute so you didn't have to pay for it when you're not using it. And the ability to have multiple clusters hit the same data without making endless copies and a consumption/cloud pricing model. And then of course everyone on the planet realized, "Wow, that's a pretty good idea." Every venture capitalist in Silicon Valley has been funding companies to copy that move. And that today has pretty much become mainstream in table stakes. But I would argue that Snowflake not only had the lead, but when you look at how others are approaching this problem, it's not necessarily as clean and as elegant. Some of the startups, the early startups I think get it and maybe had an advantage of starting later, which can be a disadvantage too. But AWS is a good example of what I'm saying here. Is its version of separating compute from storage was an afterthought and it's good, it's... Given what they had it was actually quite clever and customers like it, but it's more of a, "Okay, we're going to tier to storage to lower cost, we're going to sort of dial down the compute not completely, we're not going to shut it off, we're going to minimize the compute required." It's really not true as separation is like for instance Snowflake has. But having said that, we're talking about competitors with lots of resources and cohort offerings. And so I don't want to make this necessarily all about the product, but all things being equal architecture matters, okay? So that's the cloud S-curve, the first one we're showing. Snowflake's still on that S-curve, and in and of itself it's got legs, but it's not what's going to power the company to 10 billion. The next S-curve we denote is the multi-cloud in the middle. And now while 80% of Snowflake's revenue is AWS, Microsoft is ramping up and Google, well, we'll see. But the interesting part of that curve is data sharing, and this idea of data clean rooms. I mean it really should be called the data sharing curve, but I have my reasons for calling it multi-cloud. And this is all about network effects and data gravity, and you're seeing this play out today, especially in industries like financial services and healthcare and government that are highly regulated verticals where folks are super paranoid about compliance. There not going to share data if they're going to get sued for it, if they're going to be in the front page of the Wall Street Journal for some kind of privacy breach. And what Snowflake has done is said, "Put all the data in our cloud." Now, of course now that triggers a lot of people because it's a walled garden, okay? It is. That's the trade off. It's not the Wild West, it's not Windows, it's Mac, it's more controlled. But the idea is that as different parts of the organization or even partners begin to share data that they need, it's got to be governed, it's got to be secure, it's got to be compliant, it's got to be trusted. So Snowflake introduced the idea of, they call these things stable edges. I think that's the term that they use. And they track a metric around stable edges. And so a stable edge, or think of it as a persistent edge is an ongoing relationship between two parties that last for some period of time, more than a month. It's not just a one shot deal, one a done type of, "Oh guys shared it for a day, done." It sent you an FTP, it's done. No, it's got to have trajectory over time. Four weeks or six weeks or some period of time that's meaningful. And that metric is growing. Now I think sort of a different metric that they track. I think around 20% of Snowflake customers are actively sharing data today and then they track the number of those edge relationships that exist. So that's something that's unique. Because again, most data sharing is all about making copies of data. That's great for storage companies, it's bad for auditors, and it's bad for compliance officers. And that trend is just starting out, that middle S-curve, it's going to kind of hit the base of that steep part of the S-curve and it's going to have legs through this decade we think. And then finally the third wave that we show here is what we call super cloud. That's why I called it multi-cloud before, so it could invoke super cloud. The idea that you've built a PAS layer that is purpose built for a specific objective, and in this case it's building data apps that are cloud native, shareable and governed. And is a long-term trend that's going to take some time to develop. I mean, application development platforms can take five to 10 years to mature and gain significant adoption, but this one's unique. This is a critical play for Snowflake. If it's going to compete with the big cloud players, it has to have an app development framework like Snowpark. It has to accommodate new data types like transactional data. That's why it announced this thing called UniStore last June, Snowflake a summit. And the pattern that's forming here is Snowflake is building layer upon layer with its architecture at the core. It's not currently anyway, it's not going out and saying, "All right, we're going to buy a company that's got to another billion dollars in revenue and that's how we're going to get to 10 billion." So it's not buying its way into new markets through revenue. It's actually buying smaller companies that can complement Snowflake and that it can turn into revenue for growth that fit in to the data cloud. Now as to the 10 billion by fiscal year 28, is that achievable? That's the question. Yeah, I think so. Would the momentum resources go to market product and management prowess that Snowflake has? Yes, it's definitely achievable. And one could argue to $10 billion is too conservative. Indeed, Snowflake CFO, Mike Scarpelli will fully admit his forecaster built on existing offerings. He's not including revenue as I understand it from all the new stuff that's in the pipeline because he doesn't know what it's going to look like. He doesn't know what the adoption is going to look like. He doesn't have data on that adoption, not just yet anyway. And now of course things can change quite dramatically. It's possible that is forecast for existing businesses don't materialize or competition picks them off or a company like Databricks actually is able in the longer term replicate the functionality of Snowflake with open source technologies, which would be a very competitive source of innovation. But in our view, there's plenty of room for growth, the market is enormous and the real key is, can and will Snowflake deliver on the promises of simplifying data? Of course we've heard this before from data warehouse, the data mars and data legs and master data management and ETLs and data movers and data copiers and Hadoop and a raft of technologies that have not lived up to expectations. And we've also, by the way, seen some tremendous successes in the software business with the likes of ServiceNow and Salesforce. So will Snowflake be the next great software name and hit that 10 billion magic mark? I think so. Let's reconnect in 2028 and see. Okay, we'll leave it there today. I want to thank Chip Simonton for his input to today's episode. Thanks to Alex Myerson who's on production and manages the podcast. Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hove is our Editor in Chief over at Silicon Angle. He does some great editing for us. Check it out for all the news. Remember all these episodes are available as podcasts. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. Or you can email me to get in touch David.vallante@siliconangle.com. DM me @dvellante or comment on our LinkedIn post. And please do check out etr.ai, they've got the best survey data in the enterprise tech business. This is Dave Vellante for the CUBE Insights, powered by ETR. Thanks for watching, thanks for listening and we'll see you next time on breaking analysis. (upbeat music)

Published Date : Nov 10 2022

SUMMARY :

insights from the Cube and ETR. And the ability to have multiple

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Mike ScarpelliPERSON

0.99+

Dave VellantePERSON

0.99+

OracleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

November 30thDATE

0.99+

Ken SchiffmanPERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Chip SimontonPERSON

0.99+

October, 2021DATE

0.99+

Rob HovePERSON

0.99+

Cheryl KnightPERSON

0.99+

Frank SlootmanPERSON

0.99+

Four weeksQUANTITY

0.99+

JulyDATE

0.99+

six weeksQUANTITY

0.99+

10 billionQUANTITY

0.99+

fiveQUANTITY

0.99+

Palo AltoLOCATION

0.99+

SlootmanPERSON

0.99+

BMCORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

6%QUANTITY

0.99+

80%QUANTITY

0.99+

last yearDATE

0.99+

OctoberDATE

0.99+

Silicon ValleyLOCATION

0.99+

40%QUANTITY

0.99+

1,400QUANTITY

0.99+

$10 billionQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

AprilDATE

0.99+

3%QUANTITY

0.99+

77%QUANTITY

0.99+

64%QUANTITY

0.99+

60%QUANTITY

0.99+

194 responsesQUANTITY

0.99+

Kristin MartinPERSON

0.99+

two partiesQUANTITY

0.99+

51%QUANTITY

0.99+

2%QUANTITY

0.99+

Silicon AngleORGANIZATION

0.99+

fiscal year 28DATE

0.99+

billion dollarsQUANTITY

0.99+

0%QUANTITY

0.99+

AvamarORGANIZATION

0.99+

52%QUANTITY

0.99+

BerkeleyLOCATION

0.99+

2028DATE

0.99+

MongoORGANIZATION

0.99+

Data DomainORGANIZATION

0.99+

1%QUANTITY

0.99+

late AugustDATE

0.99+

twoQUANTITY

0.99+

threeQUANTITY

0.99+

fiscal year 2028DATE

0.99+

Breaking Analysis Further defining Supercloud W/ tech leaders VMware, Snowflake, Databricks & others


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante at our inaugural super cloud 22 event we further refined the concept of a super cloud iterating on the definition the salient attributes and some examples of what is and what is not a super cloud welcome to this week's wikibon cube insights powered by etr you know snowflake has always been what we feel is one of the strongest examples of a super cloud and in this breaking analysis from our studios in palo alto we unpack our interview with benoit de javille co-founder and president of products at snowflake and we test our super cloud definition on the company's data cloud platform and we're really looking forward to your feedback first let's examine how we defl find super cloudant very importantly one of the goals of super cloud 22 was to get the community's input on the definition and iterate on previous work super cloud is an emerging computing architecture that comprises a set of services which are abstracted from the underlying primitives of hyperscale clouds we're talking about services such as compute storage networking security and other native tooling like machine learning and developer tools to create a global system that spans more than one cloud super cloud as shown on this slide has five essential properties x number of deployment models and y number of service models we're looking for community input on x and y and on the first point as well so please weigh in and contribute now we've identified these five essential elements of a super cloud let's talk about these first the super cloud has to run its services on more than one cloud leveraging the cloud native tools offered by each of the cloud providers the builder of the super cloud platform is responsible for optimizing the underlying primitives of each cloud and optimizing for the specific needs be it cost or performance or latency or governance data sharing security etc but those primitives must be abstracted such that a common experience is delivered across the clouds for both users and developers the super cloud has a metadata intelligence layer that can maximize efficiency for the specific purpose of the super cloud i.e the purpose that the super cloud is intended for and it does so in a federated model and it includes what we call a super pass this is a prerequisite that is a purpose-built component and enables ecosystem partners to customize and monetize incremental services while at the same time ensuring that the common experiences exist across clouds now in terms of deployment models we'd really like to get more feedback on this piece but here's where we are so far based on the feedback we got at super cloud 22. we see three deployment models the first is one where a control plane may run on one cloud but supports data plane interactions with more than one other cloud the second model instantiates the super cloud services on each individual cloud and within regions and can support interactions across more than one cloud with a unified interface connecting those instantiations those instances to create a common experience and the third model superimposes its services as a layer or in the case of snowflake they call it a mesh on top of the cloud on top of the cloud providers region or regions with a single global instantiation a single global instantiation of those services which spans multiple cloud providers this is our understanding from a comfort the conversation with benoit dejaville as to how snowflake approaches its solutions and for now we're going to park the service models we need to more time to flesh that out and we'll propose something shortly for you to comment on now we peppered benoit dejaville at super cloud 22 to test how the snowflake data cloud aligns to our concepts and our definition let me also say that snowflake doesn't use the term data cloud they really want to respect and they want to denigrate the importance of their hyperscale partners nor do we but we do think the hyperscalers today anyway are building or not building what we call super clouds but they are but but people who bar are building super clouds are building on top of hyperscale clouds that is a prerequisite so here are the questions that we tested with snowflake first question how does snowflake architect its data cloud and what is its deployment model listen to deja ville talk about how snowflake has architected a single system play the clip there are several ways to do this you know uh super cloud as as you name them the way we we we picked is is to create you know one single system and that's very important right the the the um [Music] there are several ways right you can instantiate you know your solution uh in every region of a cloud and and you know potentially that region could be a ws that region could be gcp so you are indeed a multi-cloud solution but snowflake we did it differently we are really creating cloud regions which are superposed on top of the cloud provider you know region infrastructure region so we are building our regions but but where where it's very different is that each region of snowflake is not one in instantiation of our service our service is global by nature we can move data from one region to the other when you land in snowflake you land into one region but but you can grow from there and you can you know exist in multiple clouds at the same time and that's very important right it's not one single i mean different instantiation of a system is one single instantiation which covers many cloud regions and many cloud providers snowflake chose the most advanced level of our three deployment models dodgeville talked about too presumably so it could maintain maximum control and ensure that common experience like the iphone model next we probed about the technical enablers of the data cloud listen to deja ville talk about snow grid he uses the term mesh and then this can get confusing with the jamaicani's data mesh concept but listen to benoit's explanation well as i said you know first we start by building you know snowflake regions we have today furry region that spawn you know the world so it's a worldwide worldwide system with many regions but all these regions are connected together they are you know meshed together with our technology we name it snow grid and that makes it hard because you know regions you know azure region can talk to a ws region or gcp regions and and as a as a user of our cloud you you don't see really these regional differences that you know regions are in different you know potentially clown when you use snowflake you can exist your your presence as an organization can be in several regions several clouds if you want geographic and and and both geographic and cloud provider so i can share data irrespective of the the cloud and i'm in the snowflake data cloud is that correct i can do that today exactly and and that's very critical right what we wanted is to remove data silos and and when you instantiate a system in one single region and that system is locked in that region you cannot communicate with other parts of the world you are locking the data in one region right and we didn't want to do that we wanted you know data to be distributed the way customer wants it to be distributed across the world and potentially sharing data at world scale now maybe there are many ways to skin the other cat meaning perhaps if a platform does instantiate in multiple places there are ways to share data but this is how snowflake chose to approach the problem next question how do you deal with latency in this big global system this is really important to us because while snowflake has some really smart people working as engineers and and the like we don't think they've solved for the speed of light problem the best people working on it as we often joke listen to benoit deja ville's comments on this topic so yes and no the the way we do it it's very expensive to do that because generally if you want to join you know data which is in which are in different regions and different cloud it's going to be very expensive because you need to move you know data every time you join it so the way we do it is that you replicate the subset of data that you want to access from one region from other regions so you can create this data mesh but data is replicated to make it very cheap and very performant too and is the snow grid does that have the metadata intelligence yes to actually can you describe that a little bit yeah snow grid is both uh a way to to exchange you know metadata about so each region of snowflake knows about all the other regions of snowflake every time we create a new region diary you know the metadata is distributed over our data cloud not only you know region knows all the regions but knows you know every organization that exists in our clouds where this organization is where data can be replicated by this organization and then of course it's it's also used as a way to uh uh exchange data right so you can exchange you know beta by scale of data size and we just had i was just receiving an email from one of our customers who moved more than four petabytes of data cross-region cross you know cloud providers in you know few days and you know it's a lot of data so it takes you know some time to move but they were able to do that online completely online and and switch over you know to the diff to the other region which is failover is very important also so yes and no probably means typically no he says yes and no probably means no so it sounds like snowflake is selectively pulling small amounts of data and replicating it where necessary but you also heard him talk about the metadata layer which is one of the essential aspects of super cloud okay next we dug into security it's one of the most important issues and we think one of the hardest parts related to deploying super cloud so we've talked about how the cloud has become the first line of defense for the cso but now with multi-cloud you have multiple first lines of defense and that means multiple shared responsibility models and multiple tool sets from different cloud providers and an expanded threat surface so listen to benoit's explanation here please play the clip this is a great question uh security has always been the most important aspect of snowflake since day one right this is the question that every customer of ours has you know how you can you guarantee the security of my data and so we secure data really tightly in region we have several layers of security it starts by by encrypting it every data at rest and that's very important a lot of customers are not doing that right you hear these attacks for example on on cloud you know where someone left you know their buckets uh uh open and then you know you can access the data because it's a non-encrypted uh so we are encrypting everything at rest we are encrypting everything in transit so a region is very secure now you know you never from one region you never access data from another region in snowflake that's why also we replicate data now the replication of that data across region or the metadata for that matter is is really highly secure so snow grits ensure that everything is encrypted everything is you know we have multiple you know encryption keys and it's you know stored in hardware you know secure modules so we we we built you know snow grids such that it's secure and it allows very secure movement of data so when we heard this explanation we immediately went to the lowest common denominator question meaning when you think about how aws for instance deals with data in motion or data and rest it might be different from how another cloud provider deals with it so how does aws uh uh uh differences for example in the aws maturity model for various you know cloud capabilities you know let's say they've got a faster nitro or graviton does it do do you have to how does snowflake deal with that do they have to slow everything else down like imagine a caravan cruising you know across the desert so you know every truck can keep up let's listen it's a great question i mean of course our software is abstracting you know all the cloud providers you know infrastructure so that when you run in one region let's say aws or azure it doesn't make any difference as far as the applications are concerned and and this abstraction of course is a lot of work i mean really really a lot of work because it needs to be secure it needs to be performance and you know every cloud and it has you know to expose apis which are uniform and and you know cloud providers even though they have potentially the same concept let's say blob storage apis are completely different the way you know these systems are secure it's completely different the errors that you can get and and the retry you know mechanism is very different from one cloud to the other performance is also different we discovered that when we were starting to port our software and and and you know we had to completely rethink how to leverage blob storage in that cloud versus that cloud because just of performance too so we had you know for example to you know stripe data so all this work is work that's you know you don't need as an application because our vision really is that applications which are running in our data cloud can you know be abstracted of all this difference and and we provide all the services all the workload that this application need whether it's transactional access to data analytical access to data you know managing you know logs managing you know metrics all of these is abstracted too such that they are not you know tied to one you know particular service of one cloud and and distributing this application across you know many regions many cloud is very seamless so from that answer we know that snowflake takes care of everything but we really don't understand the performance implications in you know in that specific case but we feel pretty certain that the promises that snowflake makes around governance and security within their data sharing construct construct will be kept now another criterion that we've proposed for super cloud is a super pass layer to create a common developer experience and an enabler for ecosystem partners to monetize please play the clip let's listen we build it you know a custom build because because as you said you know what exists in one cloud might not exist in another cloud provider right so so we have to build you know on this all these this components that modern application mode and that application need and and and and that you know goes to machine learning as i say transactional uh analytical system and the entire thing so such that they can run in isolation basically and the objective is the developer experience will be identical across those clouds yes right the developers doesn't need to worry about cloud provider and actually our system we have we didn't talk about it but the marketplace that we have which allows actually to deliver we're getting there yeah okay now we're not going to go deep into ecosystem today we've talked about snowflakes strengths in this regard but snowflake they pretty much ticked all the boxes on our super cloud attributes and definition we asked benoit dejaville to confirm that this is all shipping and available today and he also gave us a glimpse of the future play the clip and we are still developing it you know the transactional you know unistore as we call it was announced in last summit so so they are still you know working properly but but but that's the vision right and and and that's important because we talk about the infrastructure right you mentioned a lot about storage and compute but it's not only that right when you think about application they need to use the transactional database they need to use an analytical system they need to use you know machine learning so you need to provide also all these services which are consistent across all the cloud providers so you can hear deja ville talking about expanding beyond taking advantage of the core infrastructure storage and networking et cetera and bringing intelligence to the data through machine learning and ai so of course there's more to come and there better be at this company's valuation despite the recent sharp pullback in a tightening fed environment okay so i know it's cliche but everyone's comparing snowflakes and data bricks databricks has been pretty vocal about its open source posture compared to snowflakes and it just so happens that we had aligotsy on at super cloud 22 as well he wasn't in studio he had to do remote because i guess he's presenting at an investor conference this week so we had to bring him in remotely now i didn't get to do this interview john furrier did but i listened to it and captured this clip about how data bricks sees super cloud and the importance of open source take a listen to goatzee yeah i mean let me start by saying we just we're big fans of open source we think that open source is a force in software that's going to continue for you know decades hundreds of years and it's going to slowly replace all proprietary code in its way we saw that you know it could do that with the most advanced technology windows you know proprietary operating system very complicated got replaced with linux so open source can pretty much do anything and what we're seeing with the data lake house is that slowly the open source community is building a replacement for the proprietary data warehouse you know data lake machine learning real-time stack in open source and we're excited to be part of it for us delta lake is a very important project that really helps you standardize how you lay out your data in the cloud and with it comes a really important protocol called delta sharing that enables you in an open way actually for the first time ever share large data sets between organizations but it uses an open protocol so the great thing about that is you don't need to be a database customer you don't even like databricks you just need to use this open source project and you can now securely share data sets between organizations across clouds and it actually does so really efficiently just one copy of the data so you don't have to copy it if you're within the same cloud so the implication of ellie gotzi's comments is that databricks with delta sharing as john implied is playing a long game now i don't know if enough about the databricks architecture to comment in detail i got to do more research there so i reached out to my two analyst friends tony bear and sanji mohan to see what they thought because they cover these companies pretty closely here's what tony bear said quote i've viewed the divergent lake house strategies of data bricks and snowflake in the context of their roots prior to delta lake databrick's prime focus was the compute not the storage layer and more specifically they were a compute engine not a database snowflake approached from the opposite end of the pool as they originally fit the mold of the classic database company rather than a specific compute engine per se the lake house pushes both companies outside of their original comfort zones data bricks to storage snowflake to compute engine so it makes perfect sense for databricks to embrace the open source narrative at the storage layer and for snowflake to continue its walled garden approach but in the long run their strategies are already overlapping databricks is not a 100 open source company its practitioner experience has always been proprietary and now so is its sql query engine likewise snowflake has had to open up with the support of iceberg for open data lake format the question really becomes how serious snowflake will be in making iceberg a first-class citizen in its environment that is not necessarily officially branding a lake house but effectively is and likewise can databricks deliver the service levels associated with walled gardens through a more brute force approach that relies heavily on the query engine at the end of the day those are the key requirements that will matter to data bricks and snowflake customers end quote that was some deep thought by by tony thank you for that sanjay mohan added the following quote open source is a slippery slope people buy mobile phones based on open source android but it's not fully open similarly databricks delta lake was not originally fully open source and even today its photon execution engine is not we are always going to live in a hybrid world snowflake and databricks will support whatever model works best for them and their customers the big question is do customers care as deeply about which vendor has a higher degree of openness as we technology people do i believe customers evaluation criteria is far more nuanced than just to decipher each vendor's open source claims end quote okay so i had to ask dodgeville about their so-called wall garden approach and what their strategy is with apache iceberg here's what he said iceberg is is very important so just to to give some context iceberg is an open you know table format right which was you know first you know developed by netflix and netflix you know put it open source in the apache community so we embrace that's that open source standard because because it's widely used by by many um many you know companies and also many companies have you know really invested a lot of effort in building you know big data hadoop solution or data like solution and they want to use snowflake and they couldn't really use snowflake because all their data were in open you know formats so we are embracing icebergs to help these companies move through the cloud but why we have been relentless with direct access to data direct access to data is a little bit of a problem for us and and the reason is when you direct access to data now you have direct access to storage now you have to understand for example the specificity of one cloud versus the other so as soon as you start to have direct access to data you lose your you know your cloud diagnostic layer you don't access data with api when you have direct access to data it's very hard to secure data because you need to grant access direct access to tools which are not you know protected and you see a lot of you know hacking of of data you know because of that so so that was not you know direct access to data is not serving well our customers and that's why we have been relented to do that because it's it's cr it's it's not cloud diagnostic it's it's you you have to code that you have to you you you need a lot of intelligence while apis access so we want open apis that's that's i guess the way we embrace you know openness is is by open api versus you know you access directly data here's my take snowflake is hedging its bets because enough people care about open source that they have to have some open data format options and it's good optics and you heard benoit deja ville talk about the risks of directly accessing the data and the complexities it brings now is that maybe a little fud against databricks maybe but same can be said for ollie's comments maybe flooding the proprietaryness of snowflake but as both analysts pointed out open is a spectrum hey i remember unix used to equal open systems okay let's end with some etr spending data and why not compare snowflake and data bricks spending profiles this is an xy graph with net score or spending momentum on the y-axis and pervasiveness or overlap in the data set on the x-axis this is data from the january survey when snowflake was holding above 80 percent net score off the charts databricks was also very strong in the upper 60s now let's fast forward to this next chart and show you the july etr survey data and you can see snowflake has come back down to earth now remember anything above 40 net score is highly elevated so both companies are doing well but snowflake is well off its highs and data bricks has come down somewhat as well databricks is inching to the right snowflake rocketed to the right post its ipo and as we know databricks wasn't able to get to ipo during the covet bubble ali gotzi is at the morgan stanley ceo conference this week they got plenty of cash to withstand a long-term recession i'm told and they've started the message that they're a billion dollars in annualized revenue i'm not sure exactly what that means i've seen some numbers on their gross margins i'm not sure what that means i've seen some numbers on their net retention revenue or net revenue retention again i'll reserve judgment until we see an s1 but it's clear both of these companies have momentum and they're out competing in the market well as always be the ultimate arbiter different philosophies perhaps is it like democrats and republicans well it could be but they're both going after a solving data problem both companies are trying to help customers get more value out of their data and both companies are highly valued so they have to perform for their investors to paraphrase ralph nader the similarities may be greater than the differences okay that's it for today thanks to the team from palo alto for this awesome super cloud studio build alex myerson and ken shiffman are on production in the palo alto studios today kristin martin and sheryl knight get the word out to our community rob hoff is our editor-in-chief over at siliconangle thanks to all please check out etr.ai for all the survey data remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcasts i publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante at siliconangle.com or dm me at devellante or comment on my linkedin posts and please as i say etr has got some of the best survey data in the business we track it every quarter and really excited to be partners with them this is dave vellante for the cube insights powered by etr thanks for watching and we'll see you next time on breaking analysis [Music] you

Published Date : Aug 14 2022

SUMMARY :

and and the retry you know mechanism is

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
netflixORGANIZATION

0.99+

john furrierPERSON

0.99+

palo altoORGANIZATION

0.99+

tony bearPERSON

0.99+

bostonLOCATION

0.99+

sanji mohanPERSON

0.99+

ken shiffmanPERSON

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

ellie gotziPERSON

0.99+

VMwareORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

more than four petabytesQUANTITY

0.99+

first pointQUANTITY

0.99+

kristin martinPERSON

0.99+

both companiesQUANTITY

0.99+

first questionQUANTITY

0.99+

rob hoffPERSON

0.99+

more than oneQUANTITY

0.99+

second modelQUANTITY

0.98+

alex myersonPERSON

0.98+

third modelQUANTITY

0.98+

one regionQUANTITY

0.98+

one copyQUANTITY

0.98+

one regionQUANTITY

0.98+

five essential elementsQUANTITY

0.98+

androidTITLE

0.98+

100QUANTITY

0.98+

first lineQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

sherylPERSON

0.98+

more than one cloudQUANTITY

0.98+

firstQUANTITY

0.98+

iphoneCOMMERCIAL_ITEM

0.98+

super cloud 22EVENT

0.98+

each cloudQUANTITY

0.98+

eachQUANTITY

0.97+

sanjay mohanPERSON

0.97+

johnPERSON

0.97+

republicansORGANIZATION

0.97+

this weekDATE

0.97+

hundreds of yearsQUANTITY

0.97+

siliconangleORGANIZATION

0.97+

each weekQUANTITY

0.97+

data lake houseORGANIZATION

0.97+

one single regionQUANTITY

0.97+

januaryDATE

0.97+

dave vellantePERSON

0.96+

each regionQUANTITY

0.96+

oneQUANTITY

0.96+

dave vellantePERSON

0.96+

tonyPERSON

0.96+

above 80 percentQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

data lakeORGANIZATION

0.95+

five essential propertiesQUANTITY

0.95+

democratsORGANIZATION

0.95+

first timeQUANTITY

0.95+

julyDATE

0.94+

linuxTITLE

0.94+

etrORGANIZATION

0.94+

devellanteORGANIZATION

0.93+

dodgevilleORGANIZATION

0.93+

each vendorQUANTITY

0.93+

super cloud 22ORGANIZATION

0.93+

delta lakeORGANIZATION

0.92+

three deployment modelsQUANTITY

0.92+

first linesQUANTITY

0.92+

dejavilleLOCATION

0.92+

day oneQUANTITY

0.92+

Mitesh Shah, Alation & Ash Naseer, Warner Bros Discovery | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit '22 live from Caesar's Forum in Las Vegas. I'm Lisa Martin, my cohost Dave Vellante, we've been here the last day and a half unpacking a lot of news, a lot of announcements, talking with customers and partners, and we have another great session coming for you next. We've got a customer and a partner talking tech and data mash. Please welcome Mitesh Shah, VP in market strategy at Elation. >> Great to be here. >> and Ash Naseer great, to have you, senior director of data engineering at Warner Brothers Discovery. Welcome guys. >> Thank you for having me. >> It's great to be back in person and to be able to really get to see and feel and touch this technology, isn't it? >> Yeah, it is. I mean two years or so. Yeah. Great to feel the energy in the conference center. >> Yeah. >> Snowflake was virtual, I think for two years and now it's great to kind of see the excitement firsthand. So it's wonderful. >> Th excitement, but also the boom and the number of customers and partners and people attending. They were saying the first, or the summit in 2019 had about 1900 attendees. And this is around 10,000. So a huge jump in a short time period. Talk a little bit about the Elation-Snowflake partnership and probably some of the acceleration that you guys have been experiencing as a Snowflake partner. >> Yeah. As a snowflake partner. I mean, Snowflake is an investor of us in Elation early last year, and we've been a partner for, for longer than that. And good news. We have been awarded Snowflake partner of the year for data governance, just earlier this week. And that's in fact, our second year in a row for winning that award. So, great news on that front as well. >> Repeat, congratulations. >> Repeat. Absolutely. And we're going to hope to make it a three-peat as well. And we've also been awarded industry competency badges in five different industries, those being financial services, healthcare, retail technology, and Median Telcom. >> Excellent. Okay. Going to right get into it. Data mesh. You guys actually have a data mesh and you've presented at the conference. So, take us back to the beginning. Why did you decide that you needed to implement something like data mesh? What was the impetus? >> Yeah. So when people think of Warner brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of HBO, you think of TNT, you think of CNN, we have 30 plus brands in our portfolio and each have their own needs. So the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against as an example, HBO, if Game of Thrones is going on. >> So, okay. So the, the impetus was to serve those lines of business better. Actually, given that you've got these different brands, it was probably easier than most companies. Cause if you're, let's say you're a big financial services company, and now you have to decide who owns what. CNN owns its own data products, HBO. Now, do they decide within those different brands, how to distribute even further? Or is it really, how deep have you gone in that decentralization? >> That's a great question. It's a very close partnership, because there are a number of data sets, which are used by all the brands, right? You think about people browsing websites, right? You know, CNN has a website, Warner brothers has a website. So for us to ingest that data for each of the brands to ingest that data separately, that means five different ways of doing things and you know, a big environment, right? So that is where our team comes into play. We ingest a lot of the common data sets, but like I said, any unique data sets, data sets regarding theatrical as an example, you know, Warner brothers does it themselves, you know, for streaming, HBO Max, does it themselves. So we kind of operate in partnership. >> So do you have a centralized data team and also decentralized data teams, right? >> That's right. >> So I love this conversation because that was heresy 10 years ago, five years ago, even, cause that's inefficient. But you've, I presume you've found that it's actually more productive in terms of the business output, explain that dynamic. >> You know, you bring up such a good point. So I, you know, I consider myself as one of the dinosaurs who started like 20 plus years ago in this industry. And back then, we were all taught to think of the data warehouse as like a monolithic thing. And the reason for that is the technology wasn't there. The technology didn't catch up. Now, 20 years later, the technology is way ahead, right? But like, our mindset's still the same because we think of data warehouses and data platforms still as a monolithic thing. But if you really sort of remove that sort of mental barrier, if you will, and if you start thinking about, well, how do I sort of, you know, federate everything and make sure that you let folks who are building, or are closest to the customer or are building their products, let them own that data and have a partnership. The results have been amazing. And if we were only sort of doing it as a centralized team, we would not be able to do a 10th of what we do today. So it's that massive scale in, in our company as well. >> And I should have clarified, when we talk about data mesh are we talking about the implementing in practice, the octagon sort of framework, or is this sort of your own sort of terminology? >> Well, so the interesting part is four years ago, we didn't have- >> It didn't exist. >> Yeah. It didn't exist. And, and so we, our principle was very simple, right? When we started out, we said, we want to make sure that our brands are able to operate independently with some oversight and guidance from our technology teams, right? That's what we set out to do. We did that with Snowflake by design because Snowflake allows us to, you know, separate those, those brands into different accounts. So that was done by design. And then the, the magic, I think, is the Snowflake data sharing where, which allows us to sort of bring data in here once, and then share it with whoever needs it. So think about HBO Max. On HBO Max, You not only have HBO Max content, but content from CNN, from Cartoon Network, from Warner Brothers, right? All the movies, right? So to see how The Batman movie did in theaters and then on streaming, you don't need, you know, Warner brothers doesn't need to ingest the same streaming data. HBO Max does it. HBO Max shares it with Warner brothers, you know, store once, share many times, and everyone works at their own pace. >> So they're building data products. Those data products are discoverable APIs, I presume, or I guess maybe just, I guess the Snowflake cloud, but very importantly, they're governed. And that's correct, where Elation comes in? >> That's precisely where Elation comes in, is where sort of this central flexible foundation for data governance. You know, you mentioned data mesh. I think what's interesting is that it's really an answer to the bottlenecks created by centralized IT, right? There's this notion of decentralizing that the data engineers and making the data domain owners, the people that know the data the best, have them be in control of publishing the data to the data consumers. There are other popular concepts actually happening right now, as we speak, around modern data stack. Around data fabric that are also in many ways underpinned by this notion of decentralization, right? These are concepts that are underpinned by decentralization and as the pendulum swings, sort of between decentralization and centralization, as we go back and forth in the world of IT and data, there are certain constants that need to be centralized over time. And one of those I believe is very much a centralized platform for data governance. And that's certainly, I think where we come in. Would love to hear more about how you use Elation. >> Yeah. So, I mean, elation helps us sort of, as you guys say, sort of, map, the treasure map of the data, right? So for consumers to find where their data is, that's where Elation helps us. It helps us with the data cataloging, you know, storing all the metadata and, you know, users can go in, they can sort of find, you know, the data that they need and they can also find how others are using data. So it's, there's a little bit of a crowdsourcing aspect that Elation helps us to do whereby you know, you can see, okay, my peer in the other group, well, that's how they use this piece of data. So I'm not going to spend hours trying to figure this out. You're going to use the query that they use. So yeah. >> So you have a master catalog, I presume. And then each of the brands has their own sub catalogs, is that correct? >> Well, for the most part, we have that master catalog and then the brands sort of use it, you know, separately themselves. The key here is all that catalog, that catalog isn't maintained by a centralized group as well, right? It's again, maintained by the individual teams and not only in the individual teams, but the folks that are responsible for the data, right? So I talked about the concept of crowdsourcing, whoever sort of puts the data in, has to make sure that they update the catalog and make sure that the definitions are there and everything sort of in line. >> So HBO, CNN, and each have their own, sort of access to their catalog, but they feed into the master catalog. Is that the right way to think about it? >> Yeah. >> Okay. And they have their own virtual data warehouses, right? They have ownership over that? They can spin 'em up, spin 'em down as they see fit? Right? And they're governed. >> They're governed. And what's interesting is it's not just governed, right? Governance is a, is a big word. It's a bit nebulous, but what's really being enabled here is this notion of self-service as well, right? There's two big sort of rockets that need to happen at the same time in any given organization. There's this notion that you want to put trustworthy data in the hands of data consumers, while at the same time mitigating risk. And that's precisely what Elation does. >> So I want to clarify this for the audience. So there's four principles of database. This came after you guys did it. And I wonder how it aligns. Domain ownership, give data, as you were saying to the, to the domain owners who have context, data as product, you guys are building data products, and that creates two problems. How do you give people self-service infrastructure and how do you automate governance? So the first two, great. But then it creates these other problems. Does that align with your philosophy? Where's alignment? What's different? >> Yeah. Data products is exactly where we're going. And that sort of, that domain based design, that's really key as well. In our business, you think about who the customer is, as an example, right? Depending on who you ask, it's going to be, the answer might be different, you know, to the movie business, it's probably going to be the person who watches a movie in a theater. To the streaming business, to HBO Max, it's the streamer, right? To others, someone watching live CNN on their TV, right? There's yet another group. Think about all the franchising we do. So you see Batman action figures and T-shirts, and Warner brothers branded stuff in stores, that's yet another business unit. But at the end of the day, it's not a different person, it's you and me, right? We do all these things. So the domain concept, make sure that you ingest data and you bring data relevant to the context, however, not sort of making it so stringent where it cannot integrate, and then you integrate it at a higher level to create that 360. >> And it's discoverable. So the point is, I don't have to go tap Ash on the shoulder, say, how do I get this data? Is it governed? Do I have access to it? Give me the rules of it. Just, I go grab it, right? And the system computationally automates whether or not I have access to it. And it's, as you say, self-service. >> In this case, exactly right. It enables people to just search for data and know that when they find the data, whether it's trustworthy or not, through trust flags, and the like, it's doing both of those things at the same time. >> How is it an enabler of solving some of the big challenges that the media and entertainment industry is going through? We've seen so much change the last couple of years. The rising consumer expectations aren't going to go back down. They're only going to come up. We want you to serve us up content that's relevant, that's personalized, that makes sense. I'd love to understand from your perspective, Mitesh, from an industry challenges perspective, how does this technology help customers like Warner Brothers Discovery, meet business customers, where they are and reduce the volume on those challenges? >> It's a great question. And as I mentioned earlier, we had five industry competency badges that were awarded to us by Snowflake. And one of those four, Median Telcom. And the reason for that is we're helping media companies understand their audiences better, and ultimately serve up better experiences for their audiences. But we've got Ash right here that can tell us how that's happening in practice. >> Yeah, tell us. >> So I'll share a story. I always like to tell stories, right? Once once upon a time before we had Elation in place, it was like, who you knew was how you got access to the data. So if I knew you and I knew you had access to a certain kind of data and your access to the right kind of data was based on the network you had at the company- >> I had to trust you. >> Yeah. >> I might not want to give up my data. >> That's it. And so that's where Elation sort of helps us democratize it, but, you know, puts the governance and controls, right? There are certain sensitive things as well, such as viewership, such as subscriber accounts, which are very important. So making sure that the right people have access to it, that's the other problem that Elation helps us solve. >> That's precisely part of our integration with Snowflake in particular, being able to define and manage policies within Elation. Saying, you know, certain people should have access to certain rows, doing column level masking. And having those policies actually enforced at the Snowflake data layer is precisely part of our value product. >> And that's automated. >> And all that's automated. Exactly. >> Right. So I don't have to think about it. I don't have to go through the tap on their shoulder. What has been the impact, Ash, on data quality as you've pushed it down into the domains? >> That's a great question. So it has definitely improved, but data quality is a very interesting subject, because back to my example of, you know, when we started doing things, we, you know, the centralized IT team always said, well, it has to be like this, Right? And if it doesn't fit in this, then it's bad quality. Well, sometimes context changes. Businesses change, right? You have to be able to react to it quickly. So making sure that a lot of that quality is managed at the decentralized level, at the place where you have that business context, that ensures you have the most up to date quality. We're talking about media industry changing so quickly. I mean, would we have thought three years ago that people would watch a lot of these major movies on streaming services? But here's the reality, right? You have to react and, you know, having it at that level just helps you react faster. >> So data, if I play that back, data quality is not a static framework. It's flexible based on the business context and the business owners can make those adjustments, cause they own the data. >> That's it. That's exactly it. >> That's awesome. Wow. That's amazing progress that you guys have made. >> In quality, if I could just add, it also just changes depending on where you are in your data pipeline stage, right? Data, quality data observability, this is a very fast evolving space at the moment, and if I look to my left right now, I bet you I can probably see a half-dozen quality observability vendors right now. And so given that and given the fact that Elation still is sort of a central hub to find trustworthy data, we've actually announced an open data quality initiative, allowing for best-of-breed data quality vendors to integrate with the platform. So whoever they are, whatever tool folks want to use, they can use that particular tool of choice. >> And this all runs in the cloud, or is it a hybrid sort of? >> Everything is in the cloud. We're all in the cloud. And you know, again, helps us go faster. >> Let me ask you a question. I could go on forever in this topic. One of the concepts that was put forth is whether it's a Snowflake data warehouse or a data bricks, data lake, or an Oracle data warehouse, they should all be inclusive. They should just be a node on the mesh. Like, wow, that sounds good. But I haven't seen it yet. Right? I'm guessing that Snowflake and Elation enable all the self-serve, all this automated governance, and that including those other items, it's got to be a one-off at this point in time. Do you ever see you expanding that scope or is it better off to just kind of leave it into the, the Snowflake data cloud? >> It's a good question. You know, I feel like where we're at today, especially in terms of sort of technology giving us so many options, I don't think there's a one size fits all. Right? Even though we are very heavily invested in Snowflake and we use Snowflake consistently across the organization, but you could, theoretically, could have an architecture that blends those two, right? Have different types of data platforms like a teradata or an Oracle and sort of bring it all together today. We have the technology, you know, that and all sorts of things that can make sure that you query on different databases. So I don't think the technology is the problem, I think it's the organizational mindset. I think that that's what gets in the way. >> Oh, interesting. So I was going to ask you, will hybrid tables help you solve that problem? And, maybe not, what you're saying, it's the organization that owns the Oracle database saying, Hey, we have our system. It processes, it works, you know, go away. >> Yeah. Well, you know, hybrid tables I think, is a great sort of next step in Snowflake's evolution. I think it's, in my opinion, I, think it's a game changer, but yeah. I mean, they can still exist. You could do hybrid tables right on Snowflake, or you could, you know, you could kind of coexist as well. >> Yeah. But, do you have a thought on this? >> Yeah, I do. I mean, we're always going to live in a time where you've got data distributed in throughout the organization and around the globe. And that could be even if you're all in on Snowflake, you could have data in Snowflake here, you could have data in Snowflake in EMEA and Europe somewhere. It could be anywhere. By the same token you might be using. Every organization is using on-premises systems. They have data, they naturally have data everywhere. And so, you know, this one solution to this is really centralizing, as I mentioned, not just governance, but also metadata about all of the data in your organization so that you can enable people to search and find and discover trustworthy data no matter where it is in your organization. >> Yeah. That's a great point. I mean, if you have the data about the data, then you can, you can treat these independent nodes. That's just that. Right? And maybe there's some advantages of putting it all in the Snowflake cloud, but to your point, organizationally, that's just not feasible. The whole, unfortunately, sorry, Snowflake, all the world's data is not going to go into Snowflake, but they play a key role in accelerating, what I'm hearing, your vision of data mesh. >> Yeah, absolutely. I think going forward in the future, we have to start thinking about data platforms as just one place where you sort of dump all the data. That's where the mesh concept comes in. It is going to be a mesh. It's going to be distributed and organizations have to be okay with that. And they have to embrace the tools. I mean, you know, Facebook developed a tool called Presto many years ago that that helps them solve exactly the same problem. So I think the technology is there. I think the organizational mindset needs to evolve. >> Yeah. Definitely. >> Culture. Culture is one of the hardest things to change. >> Exactly. >> Guys, this was a masterclass in data mesh, I think. Thank you so much for coming on talking. >> We appreciate it. Thank you so much. >> Of course. What Elation is doing with Snowflake and with Warner Brothers Discovery, Keep that content coming. I got a lot of stuff I got to catch up on watching. >> Sounds good. Thank you for having us. >> Thanks guys. >> Thanks, you guys. >> For Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Snowflake Summit '22. We'll be back after a short break. (upbeat music)

Published Date : Jun 30 2022

SUMMARY :

session coming for you next. and Ash Naseer great, to have you, in the conference center. and now it's great to kind of see the acceleration that you guys have of the year for data And we've also been awarded Why did you decide that you So the idea of a data mesh Or is it really, how deep have you gone the brands to ingest that data separately, terms of the business and make sure that you let allows us to, you know, separate those, guess the Snowflake cloud, of decentralizing that the data engineers the data cataloging, you know, storing all So you have a master that are responsible for the data, right? Is that the right way to think about it? And they're governed. that need to happen at the So the first two, great. the answer might be different, you know, So the point is, It enables people to just search that the media and entertainment And the reason for that is So if I knew you and I knew that the right people have access to it, Saying, you know, certain And all that's automated. I don't have to go through You have to react and, you know, It's flexible based on the That's exactly it. that you guys have made. and given the fact that Elation still And you know, again, helps us go faster. a node on the mesh. We have the technology, you that owns the Oracle database saying, you know, you could have a thought on this? And so, you know, this one solution I mean, if you have the I mean, you know, the hardest things to change. Thank you so much for coming on talking. Thank you so much. of stuff I got to catch up on watching. Thank you for having us. from Snowflake Summit '22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

CNNORGANIZATION

0.99+

HBOORGANIZATION

0.99+

Mitesh ShahPERSON

0.99+

Ash NaseerPERSON

0.99+

EuropeLOCATION

0.99+

FacebookORGANIZATION

0.99+

MiteshPERSON

0.99+

ElationORGANIZATION

0.99+

TNTORGANIZATION

0.99+

Warner brothersORGANIZATION

0.99+

EMEALOCATION

0.99+

second yearQUANTITY

0.99+

OracleORGANIZATION

0.99+

2019DATE

0.99+

two yearsQUANTITY

0.99+

oneQUANTITY

0.99+

Cartoon NetworkORGANIZATION

0.99+

Game of ThronesTITLE

0.99+

two problemsQUANTITY

0.99+

twoQUANTITY

0.99+

Warner BrothersORGANIZATION

0.99+

10thQUANTITY

0.99+

firstQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

Snowflake Summit '22EVENT

0.99+

Warner brothersORGANIZATION

0.99+

eachQUANTITY

0.99+

fourQUANTITY

0.99+

Las VegasLOCATION

0.99+

Median TelcomORGANIZATION

0.99+

20 years laterDATE

0.98+

bothQUANTITY

0.98+

five different industriesQUANTITY

0.98+

10 years agoDATE

0.98+

30 plus brandsQUANTITY

0.98+

AlationPERSON

0.98+

four years agoDATE

0.98+

todayDATE

0.98+

20 plus years agoDATE

0.97+

Warner Brothers DiscoveryORGANIZATION

0.97+

OneQUANTITY

0.97+

five years agoDATE

0.97+

Snowflake Summit 2022EVENT

0.97+

three years agoDATE

0.97+

five different waysQUANTITY

0.96+

earlier this weekDATE

0.96+

SnowflakeTITLE

0.96+

MaxTITLE

0.96+

early last yearDATE

0.95+

about 1900 attendeesQUANTITY

0.95+

SnowflakeEVENT

0.94+

AshPERSON

0.94+

three-peatQUANTITY

0.94+

around 10,000QUANTITY

0.93+

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

theCUBE Insights | Snowflake Summit 2022


 

(upbeat music) >> Hey everyone, welcome back to theCUBE's three day coverage of Snowflake Summit 22. Lisa Martin here with Dave Vellante. We have been here as I said for three days. Dave, we have had an amazing three days. The energy, the momentum, the number of people still here speaks volumes for- >> Yeah, I was just saying, you look back, theCUBE, when it started, early days was a big part of the Hadoop ecosystem. You know Cloudera kind of got it started, the whole big data movement, it was awesome energy, and that whole ecosystem has been, I think, just hoovered into the Snowflake ecosystem. They've taken over as the data company, the data cloud, I mean, that was Cloudera, it could have been Cloudera, and now they didn't, they missed it, it was a variety of factors, but Snowflake has nailed it. And now it's theirs to lose. Benoit talked about that on our previous segment, how he knew that technically Hadoop was too complex, and was going to fail, and they didn't know it was going to do this. They were going to turn their company into what we see here. But the event itself, Lisa, is almost 10,000 people, the right people, people are doing business, we've had a number of people tell us that they're booking deals. That's why people come to face-to-face shows, right? That's the criticism of virtual. It takes too long to close business. Salespeople want to be belly-to-belly. And this is a belly-to belly-show. >> It absolutely is. When you and I were trying to get into the keynote on Tuesday, we finally got in standing room only, multiple overflow rooms, and we're even hearing that, so this is day four of the summit for them, there are still queues to get into breakout sessions. The momentum, but the appetite for this flywheel, and what they're creating, but also they're involving this massively growing ecosystem in its evolution. It's that synergy was really very much heard, and echoed throughout pretty much all of our segments the last couple days. >> Yeah, it was amazing actually. So we like to go, we want to be in the front row in the keynotes, we're taking notes, we always do that. Sometimes we listen remotely, but when you listen remotely, you miss some things. When you're there, you can see the executives, you can feel their energy, you can chit chat to them on the side, be seen, whatever. And it was crazy, we couldn't get in. So we had to do our thing, and sneak our way in, and "Hey, we're media." "Oh yeah, come on in." And then no, they were taking us to a breakout room. We had to sneak in a side door, got like the last two seats, and wow, I'm glad we were in there because it gave us a better sense. When you're in the remote watching rooms you just can't get a sense of the energy. That's why I like to be there, I know you do too. And then to your point about ecosystem. So we've said many times that what Snowflake is developing is what we call supercloud. It's not just a SaaS, it's not just a cloud database, it's a new layer that they're creating. And so what are the attributes of that layer? Well, it hides the underlying complexity of the underlying primitives of the cloud. We've said that ad nauseam, and it adds new value on top. Well, what's that value that they're adding? Well, they're adding value of being able to share data, collaborate, have data that's governed, and secure, globally. And now the other hallmark of a cloud company is ecosystem. And so they're building that ecosystem much more rapidly than we saw at ServiceNow, which is Slootman's previous company. And the key to me is they've launched an application development platform, essentially a super PaaS, so that you can develop applications on top of the data cloud. And we're hearing tons about monetization. Duh, you could actually make money with data. You can package data into data products, and data services, or feed data products and services, and actually sell that in a cloud, in a supercloud. That's exactly what's happening here. So that's critical. I think my one question mark if I had to lay one out, is the other hallmark of a cloud is startup, startups come into that cloud. And I think we're seeing that, maybe not at the pace that AWS did, it's a little different. Snowflake are, they're whale hunters. They're after big companies. But it looks to me like they're relying on the ecosystem to be the startup innovators. That's the important thing about cloud, cloud brings scale. It definitely brings lower cost 'cause you're eliminating all this undifferentiated labor, but it also brings innovation through startups. So unlike AWS, who sold the startups directly, and startups built businesses on AWS, and by paying AWS, it's a little bit indirect, but it's actually happening where startups in the ecosystem are building products on the data cloud, and that ultimately is going to drive value for customers, and money for Snowflake, and ultimately AWS, and Google, and Azure. The other thing I would say is the criticism or concern that the cost of goods sold for cloud are going to be so high that it's going to force people to come back on-prem. I think it's a step in the wrong direction. I think cloud, and the cloud operating model is here to stay. I think it's going to be very difficult to replicate that on-prem. I don't think you can do cloud without cloud, and we'll see what the edge brings. >> Curious what your thoughts are. We were just at Dell technologies world a month or so ago when the big announcement, the Snowflake partnership there, cloud native companies recognizing, ah, there's still a lot of data that lives on-prem. Given that, and everything that we've heard the last couple of days, what are your thoughts around that and their partnerships there? >> So Dell is, I think finally, now maybe they weren't publicly talking like this, but certainly their marketing was defensive. But in the last year or so, Dell has really embraced cloud, not just the cloud operating model, Dell has said, "Look, we can build value on top of all these hyperscalers." And we saw some examples at Dell Tech World of them stepping their toe into supercloud. Project Alpine is an example, and there are others. And then of course the Snowflake deal, where Snowflake and Dell got together, I asked Frank Slootman how that deal came about. And 'cause I said, "Did the customer get you into a headlock?" 'Cause I presume that was the case. Customer said, "You got to do this or we're not going to do business with you." He said, "Well, no, not really. Michael and I had a chat, and that's how it started." Which was my other scenario, and that's exactly what happened I guess. The point being that those worlds are coming together. And so what it means for Dell is as they embrace cloud, as they develop supercloud capabilities, they're going to do a lot of business. Dell for sure knows how to sell, they know how to execute. What I would be doing if I were Dell, is I would be trying to substantially replicate what's happening in the cloud on-prem with on-prem data. So what happens with that Snowflake deal is, it's read-only data, you read the data into the cloud, the compute is in the cloud. And I should've asked Terry this, I mean Benoit. Can there be an architecture on-prem? We've seen at Vertica has one, it's called Vertica Eon where you separate compute from storage. It doesn't have unlimited elasticity, but you can grow, compute, and storage independently, and have a lot more. With Dell doing APEX on demand, it's cloudlike, they could begin to develop a little mini data cloud, or a big data cloud within on-prem that connects to the public cloud. So what Snowflake is missing, a big part of their TAM that they're missing is the on-prem. The Dell and Pure deals are forays into that, but this on-prem is massive, and Dell is the on-prem poster child. So I think again what it means for them is they've got to continue to embrace it, they got to do more in software, more in data management, they got to push on APEX. And I'd say the same thing for HPE. I think they're both well behind this in terms of ecosystems. I mean they're not even close. But they have to start, and they got to start somewhere, and they've got resources to make it happen. >> You said in your breaking analysis that you published just a few days ago before the event that Snowflake plans to create a de facto standard in data platforms. What we heard from our guests on this program, your mainstage session with Frank Slootman. Still think that? >> I do. I think it more than I believed it coming in. And the reason I called it that is because I am a super fan of Zhamak Dehghani and her data mesh. And what her vision is, it's kind of the Immaculate Conception, where she wants everything to be open, open standards, and those don't exist today. And I think she perfectly realizes the practicality of de facto standards are going to get to market, and add value sooner than open standards. Now open standards over time, and I'll come back to that, may occur, but that's clear to me what Snowflake is creating, is the de facto standard for data platforms, the data cloud, the supercloud. And what's most impressive, or I think really important, is they're layering applications now on top of that. The metric to me, and I don't know if we can even count this, but VMware used to use it. For every dollar spent on VMware license, $15 was spent in the ecosystem. It started at 1 to 1.5, 1 to 2, 1 to 10, 1 to 15, I think it went up to 1 to 30 at the max. I don't know how they counted that, but it's countable. Reasonable people can make estimates like that. And I think as the ecosystem grows, what Snowflake's doing is it's in many respects modeling the cloud, what the cloud has. Cloud has ecosystems, we talked about startups, and the cloud also has optionality. And optionality means open source. So what you saw with Apache Iceberg is we're going to extend to open technologies. What you saw with Hybrid tables is we're going to extend a new workloads like transactions. The other thing about Snowflake that's really impressive is you're seeing the vertical focus. Financial services, healthcare, retail, media and entertainment. It's very rare for a company in this tenure, they're only 10 years old, to really start going vertical with their go-to-market, and building expertise around that. I think what's going to happen is the GSIs are going to come in, they love to eat at the trough, the trough here is maybe not big enough for them yet, but it will be. And they're going to start to align with the GSIs, and they're going to do really well within those industries, connecting people, collaborating with data. But I think it's a killer strategy, but they're executing on it. >> Right, and we heard a lot of great customer stories from all of those four verticals that you talked about, and then some, that that direction and that pivot from a customer perspective, from a sales and marketing perspective is all aligned. And that was kind of one of the themes as well that Frank talked about in his keynote is mission alignment, mission alignment with customers, but also with the ecosystem. And I feel that I heard that with every customer conversation, with every partner conversation, and Snowflake conversation that we had over the last I think 36 segments, Dave. >> Yeah, I mean, yeah, it's the power of many versus the resources of one. And even though Snowflake tell you they have $5 billion in cash, and assets on the balance sheet, and that's fine, that's nothing compared to what an ecosystem has. And Amazon's part of that ecosystem. Azure is part of that ecosystem. Google is part of that ecosystem. Those companies have huge resources, and Snowflake it seems has figured out how to tap those resources, and build value on top of it. To me they're doing a better job than a lot of the cloud databases out there. They don't necessarily have a better database, in fact, I could argue that their database is less functional. And I would argue that actually in many cases. Their database is less functional if you just want a database. But if you want a data cloud, and an ecosystem, and develop applications on top of that, and to be able to monetize, that's unique, and that is a moat that they're building that is highly differentiable, and being able to do that relatively easily. I mean, I think they overstate the simplicity with which that is being done. We talked to some customers who said, he didn't say same wine, new bottle. I did ask him that, about Hadoop complexity. And he said, "No, it's not that bad." But you still got to put this stuff together. And I think in the early parts of a market that are immature, people get really excited because it's so much easier than what was previous. So my other question is, okay, what's somebody working on now, that's looking at what Snowflake's doing and saying, I can improve on that. And what's going to be really interesting to see is, can they improve on it in a way, and can they raise enough capital such that they can disrupt, or is Snowflake going to keep staying paranoid, 'cause they got good leaders, and keep executing? And then I think the other wild card is edge. Snowflake doesn't really have an edge strategy right now. I think they will develop one. >> Through the ecosystem? >> And I don't think they're missing the boat, and they'll do it through the ecosystem, exactly. I don't think they're missing the boat, I think they're just like, "Well, we don't know what to do today." It's all distributed data, and it's ephemeral, and nobody's storing the data. You know anything that comes back to the cloud, we get. But new architectures are emerging on the edge that are going to bring new economics. There's new silicon, you see what's happening with Apple, and the M1, the M1 Ultra, and the new systems that they've just developed. What Tesla is doing with custom silicon, and amazing things, and programmability of the arm model. So it's early days, but semiconductors are the mainspring of innovation in this industry. Without chips, you got nothing. And when you get innovations in silicon, it drives innovations in software, because developers go, "Wow, I can do that now?" I can do things in parallel, I can do things faster, I can do things more simply, and programmable at scale. So that's happening. And that's going to bring a new set of economics that the premise is that will eventually bleed into the data center. It will, it always does. And I guess the other thing is every 15 years or so, the world gets disrupted, the tech world. We're about 15, 16 years in now to the cloud. So at this point, everybody's like, "Wow this is insurmountable, this is all we'll ever see. Everything that's ever been invented, this is the model of the future." We know that's not the case. I don't know how it's going to get disrupted, but I think edge is going to be part of that. It could be public policy. Governments could come in and take big tech on, seems like Sharekhan wants to do that. So that's what makes this industry so fun. >> Never a dull moment, Dave. This has been a great three days hosting this show with you. We've uncovered a lot. Your breaking analysis was great to get me prepared for the show. If you haven't seen it, check it out on siliconangle.com. Thanks, Dave, I appreciate all of your insights. >> Thank you, Lisa, It's been a pleasure working with you. >> Always good to work with you. >> Awesome, great job. >> Likewise. Great job to the team. >> Yes, thank you to our awesome production team. They've kept us going for three days. >> Yes, and the team back, Kristin, and Cheryl, and everybody back at the office. >> Exactly, it takes a village. For Dave Vellante, I am Lisa Martin. We are wrappin' up three days of wall-to-wall coverage at Snowflake Summit 22 from Vegas. Thanks for watching guys, we'll see you soon. (upbeat music)

Published Date : Jun 17 2022

SUMMARY :

The energy, the momentum, And now it's theirs to lose. The momentum, but the And the key to me is they've launched the last couple of days, and Dell is the on-prem poster child. that Snowflake plans to is the GSIs are going to come in, And I feel that I heard that and assets on the balance And I guess the other thing to get me prepared for the show. a pleasure working with you. Great job to the team. Yes, thank you to our Yes, and the team guys, we'll see you soon.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

MichaelPERSON

0.99+

KristinPERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

Dave VellantePERSON

0.99+

CherylPERSON

0.99+

AmazonORGANIZATION

0.99+

FrankPERSON

0.99+

TerryPERSON

0.99+

LisaPERSON

0.99+

AWSORGANIZATION

0.99+

Zhamak DehghaniPERSON

0.99+

DellORGANIZATION

0.99+

$15QUANTITY

0.99+

$5 billionQUANTITY

0.99+

VerticaORGANIZATION

0.99+

TuesdayDATE

0.99+

VegasLOCATION

0.99+

BenoitPERSON

0.99+

three daysQUANTITY

0.99+

GoogleORGANIZATION

0.99+

TeslaORGANIZATION

0.99+

Apache IcebergORGANIZATION

0.99+

three dayQUANTITY

0.99+

Snowflake Summit 22EVENT

0.99+

last yearDATE

0.99+

AppleORGANIZATION

0.99+

three daysQUANTITY

0.99+

1QUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

15QUANTITY

0.98+

36 segmentsQUANTITY

0.98+

30QUANTITY

0.98+

1.5QUANTITY

0.98+

M1 UltraCOMMERCIAL_ITEM

0.98+

10QUANTITY

0.98+

todayDATE

0.98+

theCUBEORGANIZATION

0.97+

siliconangle.comOTHER

0.97+

bothQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

2QUANTITY

0.96+

ClouderaORGANIZATION

0.96+

M1COMMERCIAL_ITEM

0.94+

Vertica EonORGANIZATION

0.94+

two seatsQUANTITY

0.94+

Dell Tech WorldORGANIZATION

0.92+

few days agoDATE

0.92+

one questionQUANTITY

0.91+

oneQUANTITY

0.91+

ServiceNowORGANIZATION

0.91+

upQUANTITY

0.9+

VMwareORGANIZATION

0.9+

10 years oldQUANTITY

0.89+

TAMORGANIZATION

0.87+

four verticalsQUANTITY

0.85+

almost 10,000 peopleQUANTITY

0.84+

a month or so agoDATE

0.83+

last couple of daysDATE

0.82+

Benoit Dageville, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Welcome back everyone, theCUBE's three days of wall to wall coverage of Snowflake Summit '22 is coming to an end, but Dave Vellante and I, Lisa Martin are so pleased to have our final guest as none other than the co-founder and president of products at Snowflake, Benoit Dageville. Benoit, thank you so much for joining us on the program. Welcome. >> Thank you. Thank you, thank you. >> So this is day four, 'cause you guys started on Monday. This is Thursday. The amount of people that are still here speaks volumes. We've had close to 10,000 people here. >> Yeah. >> Could you ever have imagined back in the day, 10 years ago that it would come to something like this in such a short period of time? >> Absolutely not. And I always say if I had imagined that I might not have started Snowflake, right. This is somehow scary. I mean and yeah, it's huge. And you can feel the excitement of everyone. It is like mind boggling and the fact that so many people are still there after four days is great. >> Your keynote on Tuesday was fantastic. Your energy was off the charts. It was standing room only. There were overflow rooms. Like we just mentioned, a lot of people are still here. Talk about the evolution of Snowflake, this week's announcements and what it means for the future of the data cloud. >> Yeah, so evolution, I mean, I will start with the evolution. It's true that that's what we have announced. This week is not where we started necessarily. So we started really very quickly with big data combined with data warehouse as one thing. We saw that the world was moving into fragmented siloing data and we thought with Thierry, we are going to combine big data and data warehouse in one system for the cloud with this elasticity and this service simplicity. So simplicity, amazing elasticity, which is this multi workload architecture that I was explaining during the keynotes and really extreme simplicity with the service. Then we realized that there is one other attribute in the cloud, which is unique, which doesn't exist on-premise, which is collaboration. How you can connect different tenets of the platform together. And Google showed that with Google Docs. I always say to me, it was amazing that you could share document and have direct access to document that you didn't produce and you can collaborate on this document. So we wanted to do the same thing for data and this is where we created the data cloud and the marketplace where you can have all these data sets available and really the next evolution I would say is really about applications that are (indistinct) by that data, but are way simpler to use for all the tenets of the data cloud. And this is the way you can share expertise also, including, ML model, everyone talks about ML and the democratization of ML. How are you going to democratize ML? It's not by making necessary training super easy. Such that everyone can train their ML for themselves. It's by having very specialized application where data and ML is at the core, which are shared, through the marketplace and we shall leverage by many tenets of this marketplace that have no necessary knowledge about building this ML models. So that's where, yeah. >> When you and Thierry started the company, I go back to the improbable rise of Kubernetes and there were other more sophisticated container management systems back then, but they chose to focus on simplicity. And you've told me before, that was our main tenet. We are not going to worry about all the complex database stuff. You knew how to do that, but you chose not to. So my question is, did you envision solving those complex problems over time yourselves or through an ecosystem? Was this by design or did you... As you started to get into it, say let's not even try to go there let's partner to go there. >> Yeah, I mean, it's both. It's a combination of both. Snowflake, the simplicity of the platform is really important because if our partners are struggling to put their solution and build solution on top of Snowflake they will not build it. So it's very important that number one, our platform is really easy to use from day one. And that really has to be built inside the platform. You cannot build simplicity on top. You cannot have a complex solution and all of a sudden realize that, oh, this is complex. I need to build another layer on top of it to make it simpler, that will not work. So it had to be built from day one, but you're right. What is going to be Snowflake? I always say in 10 years from now, we just turn 10 years old or we are going to turn 10 years old in few months. Actually a few months, yes. >> Right. >> So for the next 10 years I really believe that most of Snowflake will not be built by Snowflake. And that's the power of the partners and these applications. When you are going to say I'm using Snowflake, actually, probably you are not going to use directly code developed by Snowflake. That code will leverage our platform, but you will use a solution that has been built on top of Snowflake. And this is the way we are going to decouple, the effort of Snowflake and multiply it. >> It's an interesting balance, isn't it? When I think of what you did with Apache Iceberg, if I use Iceberg and I'm not going to get as much functionality, but I may want that openness, but I'm going to get more functionality inside of the data cloud. And I don't know, but if you know the answer to what's going to happen. >> No, that's a super good question. So to explain what we did with Apache Iceberg, and the fact that now it's a native format for us. So everything that you can do with our internal formats, you can do it with Apache Iceberg, including security, defining masking, data masking all the governors that we have, fine grain security aspects, the replications you can define you can use (indistinct) on top of... >> But there's a but, right? But if I do that with native Snowflake tools, I'm going to get an even greater advantage, am I not? >> Yes. So that's what I'm saying. So that's why we embraced Iceberg, because I think we can bring all the benefit of Snowflake to people who have decided to use Iceberg, I mean open formats. Iceberg is a table format. So and why it was important because people had massive investments in open source in Hadoop. And we had a lot of companies saying, we love Snowflake. We want to be a Snowflake customer, but we cannot really migrate all our data. I mean, it will be really costly. And we have a lot of tools that need access, direct access. So this is why we created Iceberg because we can really... I mean, we really think that we can bring the benefit of Snowflake to this data. >> Gives customers optionality. Okay. I use this term super cloud. You don't use the term, but that's okay. And I get a lot of heat for it. But to me, what you're doing is quite a bit different than multicloud because you're creating that abstraction layer. You're bringing value above it. My question to you is, the most of the heat I get is, oh, that's just SaaS. Are you just SaaS? >> No. I mean, no, absolutely not. I mean, you're right we are a super cloud. I mean it's a much better word than saying we are multicloud. Multicloud is often viewed as oh, I have my system and now I can run this system in the different cloud providers. Snowflake is different. We have one single platform for the world, which happens to have some regions are AWS region, some regions are Azure, some regions are GCP, Google and we merge them together. We have this Snowgrid technology that connects all our regions together so that we have really one platform for the world. And that's very important because when you talk about connections of data and expertise applications you want to have global reach, right. It doesn't exist. We are not siloed by region of the world, right? You have a lot of companies which are multinational that have presence everywhere. And you want to have this global reach. The world is not a independent set of regions and countries, right. And that's the realization. So we had to create this global platform for our customers. >> And now you have people building clouds on top of your data cloud, well that to me is the next signal. In your keynote, you talked about seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace, governance, which ones are the most important? >> All of them. It's like when you have kids, you don't want to pick and say, this one is my preferred one, so they are really important. All of them, as I said without data, there is no Snowflake, right? So all data is so important that we can reach every data, wherever it is. And Iceberg is a part of that, but all workload is really important because you don't want to put your data in one platform, if you cannot run all your workloads and workloads are much broader than just data warehousing, there is data engineering, data science, ML engineering, (indistinct) all these workloads applications. So that's critical. Programmable is where we are moving, right. We want to be the place where data applications are built. And we think we have a lot of advantages because data application needs to use many workloads at once, right? It's not that that application will do only data warehousing, they need to store their states, they need to use this new workload that we define, which is Unistore. They need to do data engineering because they need to get data, right. They have to save this data. So they need to combine many workload and if they have to stitch this workload, because the platform was not designed as one single product where everything is consistent and works together, that you have to stitch, it's complicated for this application to make it work. So Snowflake is we believe an ideal platform to run these data applications. So all workloads, programmable, obviously, so that you can program. And programmable has two aspects, which is big part of our announcement. Is both data programmability, which is running Python against petabyte, terabytes of data at scale and doing it scale out. So that's what we call data programmability. So both Java, Python and (indistinct), but also running applications like UI. And we had this acquisition of Streamlit. Streamlit now has been fully integrated in Snowflake. We announced that such that not only you can have this data programmability, but you can expose your data through this nice UIs, interactive UI to business users potentially. So it goes all the way there. Global is super important. As we say, we want to be one platform for the world. And of course, as I said, the last pillar, which is somehow critical for us, because we are cloud, we need to have governance. We need to have security of our data. And why it took us so long to do Python is not because it's out to run Python, right? Everyone can run Python it's because we had to secure it. And I talk about it creating this amazing sandboxing technology, such that when you include third party libraries and third party codes, you are guaranteed that this third party code will not reach to infiltrate your data, right. We control the environment that Snowflake provides. >> Can you share us some of the feedback from the customer? You probably had many customer conversations over the last four days. >> Look at that smile. (interviewer laughing) (Lisa laughing) >> Actually not because I was so busy everywhere. Unfortunately, I didn't speak to many customers. Saying that, I had everyone stopping me and talking about what they heard and yeah, there is a huge excitement about all of this. >> What's been the feedback around the theme of the event? The world of data collaboration. Data collaboration is so critical as every company these days must be a data company to compete, to win. What's been from just some of the feedback that you've had customers really embracing data collaboration, what Snowflake is enabling. >> Yeah. I mean, almost every company which is using Snowflake, is collaborating with data. You have heard, the number of stable edges that we have, and there is a real need for that because your data alone... You cannot make sense of your data if it is just alone. It needs to be connected with other data. You haven't not generated. So all data, when you say the first pillar of Snowflake is all data is not only about your data, but is about all the data that's created around you. That puts perspective on your own data. And that's critical and it's so painful to get. I mean, even your data is difficult to have access to your data, but imagine data that you didn't produce. And so yes, so the data collaboration is critical, and then now we expanded it to application and expertise, sharing models, for example, That's going to have a huge impact. >> All data includes now transaction data, right? >> Yes. >> That's a big part of the announcements that you guys made. >> Yeah. So and that's the motivation for that was really, if we want to run application, full application, we announced native applications, which are fully executed and run inside the (indistinct) data cloud, right. They need all the services that application need and in particular managing their states. And so we created Unistore, which is a new workload, which allows you to combine transactional data, which are generated by this application. And at the same time being able to do analytics directly on this data. So we call it Hybrid Table because it has this hybrid aspect. You can do both transactional access to this data and at the same time analytic here without having data pipeline and moving data and transforming it from the transactional system to the analytical system, right. Snowflake is one system. Again, in the spirit of simplifying everything, this is the Snowflake (indistinct). >> I can ask the same question I ask at first, (indistinct) when was the aha moment that you and Thierry had that said, this is not just a better data warehouse, it's actually more than that. You probably didn't call it a data cloud until later on, but did you know that from the beginning or was that something you kind of stumbled into? >> No. So as I said, we founded Snowflake in 2012 and Thierry and I, we locked in my apartment and we were doing the blueprint of Snowflake and trying to find what is the revolution with the cloud for this data warehouse system and analytical system, both big data and data warehouse. And the aha moment was but of course cloud, okay. What is cloud? It's elasticity, it's service and later collaboration. So in the elasticity aspect, when you ask database people, what is elasticity, they will tell you, oh, you have a cluster of nodes. Like if it is Oracle, it would be a (indistinct) cluster. And the elasticities that you can add one node, two node to this cluster without having too much impact on the existing workload, because you need to shuffle data, right. It's hard and doing it online, right, that's elasticity. If you can do that, you are elastic. We thought that that was not very interesting to do that. What is interesting with elasticity is to plug new workloads. You can plug a workload like that and that workload is running without having any impact on other workloads, which are running on the platform. So elasticity for us was having dedicated computer resources to workloads. And these computer resources could start and be part as soon as the workload starts and will shut down when the workload finishes and they will be sized exactly for the demand of that workload. And we thought the aha moment was, okay if we can do that, now we can run a workload with, let's say 10X more computer resources than what you would have used or 100X more. Okay, let's say 100X more because we paralyzed things. Now this workload can run 100X faster, right? That's assuming we do a good job in the scale, which is our IP. And if we can do that, now the computer resources that you have used, you have used them for 100 times less. So you have used 100 times more resources because you have more nodes, but because you go fast, you use them for less time, right? So if you multiply the two it's constant. So you can run and accelerate workload dramatically 10X, 100X for the same price. Even if we are not better in efficiency than competition, just having that was the magic, right? >> You know how Google founders originally had trouble raising money because who needs another search engine? Did you get from original, like when you started going to raise money, Amazon's got a database, so who needs another cloud database? Did you get that early on or was it just obvious Speiser and companies as well. >> Speiser is a little bit on the crazy side and ambitious and so Speiser is Speiser. And of course he had no doubt, but even him was saying Benoit, Thierry, Hadoop, right. Everyone is saying Hadoop is going to be the revolution. And you guys are betting actually against Hadoop because we told Speiser, Hadoop is a bad system, it's going to fail, but at the time everyone was so bullish about Hadoop, everyone was implementing Hadoop that it didn't look like it was going to fail and we were probably wrong. So there was a lot of skepticism about not leveraging Hadoop and not being an Hadoop. Okay, something being on top of Hadoop. That was number one. There was no cloud warehouse at the time we started. Redshift was not started. It was the pioneer somewhere when Snowflake was founded. So creating a data warehouse in the cloud sounded crazy to people. How am I going to move my data over there? And security and what about security, the cloud is not secure. So that was another... >> So you guys predated that Parexel move by... >> Yes. >> Okay, so that's interesting. And I thought when Redshift... I mean, Amazon announced Redshift, I was sure that Mike Speiser will come and say, guys it's too sad, but they beat you guys and they build something and actually it was the reverse. Mike Speiser was super excited and so it was interesting to me. >> Wow, that's amazing. 'Cause John Furrier and I, we were early with theCUBE. when theCUBE started it was like the beginning of Hadoop. And so we brought theCUBE to, I think it was the second Hadoop World and we was rubbing nickels together at the time. And I was so excited bring compute to storage and it made so much sense. But I remember and I won't say who it was, but an early Hadoop committer told me this is going to fail. And I'm like, what? And he started going age basis crap and all this stuff. And I was sad because I was so excited, but it turned out that you had the same (indistinct). >> Because of complexity. Okay, Hadoop failed for two reasons. One is because they decided that, oh, a lot of this database thing, you don't need transaction, you don't need SQL, you don't necessarily, you don't need to go fast. It'll be batch, normal real time interaction with data, no one needs that. >> Cheap storage. >> So a lot of compromise on the very important technology. And at the same time, extreme complexity and complexity for me was, where I was I knew that it was going to fail big time and we bet Snowflake on the failure of Hadoop indeed. >> And there was no cloud early on in Hadoop. >> And there was no cloud too. >> And that was what killed it. That was like... >> You're right. And the model that Hadoop had for data didn't work on block storage. Block storage is not as efficient as HGFS. So that was also another figure. >> Do you ever sit back and think about... So you think about how much money has poured in to separating compute from storage and cloud databases and you started it all. (interviewer laughing) >> Yeah. No, this is... >> Pretty amazing. >> Yeah. >> Right, so that's good. That means that you're onto a good idea, but a lot of people get confused that again, they think that you're a cloud data warehouse and you're not, I mean, you're much more than that. >> Yeah, I hate that. I have to say, because from day one we were not a cloud data warehouse. As I said, it was all about combining the big data, massive amount of unstructured data, petabytes stored as files. Okay, that's very important, store as files where it's very easy to drop data in the system without... Very low cost to combine with data warehouse, full multi statement transaction when people will tell you today, oh, now we are a data warehouse. They don't have multi statement transaction, right. So we had from day one multi statement transaction really efficient SQL. You could run your dashboard. So combining these two worlds was I think the crazy thing, that's the crazy innovation that Snowflake did initially. >> Yeah. >> And I know it's really easy to build data warehouse somewhere, because if you don't think about big data, petabytes, extremely structured data, you remove a lot of complexity. >> This is why Lisa, when you get excited about technology, but you always have to have a, somebody who really deeply understands technology to stink test it, all right so awesome. Thank you for sharing that story. >> Yeah. >> Fantastic. So over 5,900 customers now. I saw over 500 in the Forbes G2K, over almost 10,000 people here this year. If we think back to 2019, there was about what? Less than 2000 people. >> Yeah. >> What do you think is going to happen next year? >> I don't know. I don't like to think about next year. I mean, I always say, Snowflake is so exciting to me because it is like a TV show, right. Where you wait the next season and we have one season every year. So I'm really excited to know what is going to happen next year. And I don't want to project what I think will happen, but all these movements to the Snowflake being the platform for data application. I want to see what people are going to build on our platform. I mean, that's the excitement. >> Season 11 coming up. >> Yes. Season 11. Yes. >> No binge watching here. Benoit, it's been a pleasure to have you on the program. >> Thank you. >> Congratulations on incredible success, the momentum, the energy is contagious. We love it. (Benoit laughing) >> Thank you so much. >> Thank you. >> Bye bye. >> For Benoit Dageville and Dave Vellante, I'm Lisa Martin. You're watching theCUBE's coverage of Snowflake Summit '22. Dave and I will be right back with a wrap. (upbeat music)

Published Date : Jun 16 2022

SUMMARY :

is coming to an end, Thank you, thank you. you guys started on Monday. And you can feel the future of the data cloud. and the marketplace where you So my question is, did you envision And that really has to be And that's the power of the and I'm not going to get So everything that you can the benefit of Snowflake to this data. My question to you is, the And that's the realization. And now you have people building clouds And of course, as I said, the last pillar, the feedback from the customer? Look at that smile. I was so busy everywhere. the feedback that you've had but imagine data that you didn't produce. announcements that you guys made. So and that's the motivation I can ask the same question And the elasticities that you can add like when you started at the time we started. So you guys predated and so it was interesting to me. And I was so excited you don't need to go fast. And at the same time, extreme complexity And there was no And that was what killed it. And the model that Hadoop had for data and you started it all. No, this is... but a lot of people get I have to say, because from day one because if you don't think about big data, This is why Lisa, when you I saw over 500 in the Forbes G2K, I mean, that's the excitement. Yes. to have you on the program. the momentum, the energy is contagious. Dave and I will be right back with a wrap.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

Mike SpeiserPERSON

0.99+

10XQUANTITY

0.99+

100XQUANTITY

0.99+

100 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

Mike SpeiserPERSON

0.99+

2012DATE

0.99+

Benoit DagevillePERSON

0.99+

DavePERSON

0.99+

BenoitPERSON

0.99+

MondayDATE

0.99+

ThierryPERSON

0.99+

ThursdayDATE

0.99+

2019DATE

0.99+

TuesdayDATE

0.99+

SnowflakeTITLE

0.99+

GoogleORGANIZATION

0.99+

next yearDATE

0.99+

two aspectsQUANTITY

0.99+

LisaPERSON

0.99+

PythonTITLE

0.99+

This weekDATE

0.99+

one seasonQUANTITY

0.99+

two reasonsQUANTITY

0.99+

OneQUANTITY

0.99+

HadoopPERSON

0.99+

twoQUANTITY

0.99+

bothQUANTITY

0.99+

Snowflake Summit '22EVENT

0.99+

this weekDATE

0.99+

one platformQUANTITY

0.99+

StreamlitTITLE

0.99+

SpeiserORGANIZATION

0.99+

JavaTITLE

0.99+

one platformQUANTITY

0.99+

10 yearsQUANTITY

0.99+

one systemQUANTITY

0.98+

one nodeQUANTITY

0.98+

Less than 2000 peopleQUANTITY

0.98+

SnowflakeEVENT

0.98+

AWSORGANIZATION

0.98+

two nodeQUANTITY

0.98+

this yearDATE

0.98+

secondQUANTITY

0.98+

todayDATE

0.98+

John FurrierPERSON

0.98+

HadoopTITLE

0.97+

over 5,900 customersQUANTITY

0.97+

10 years agoDATE

0.97+

one single productQUANTITY

0.97+

first pillarQUANTITY

0.97+

Google DocsTITLE

0.97+

SnowflakeORGANIZATION

0.97+

MulticloudTITLE

0.97+

over 500QUANTITY

0.97+

ParexelORGANIZATION

0.96+

Harry Glaser, Modlbit, Damon Bryan, Hyperfinity & Stefan Williams, Snowflake | Snowflake Summit 2022


 

>>Thanks. Hey, everyone, welcome back to the cubes. Continuing coverage of snowflakes. Summit 22 live from Caesars Forum in Las Vegas. Lisa Martin here. I have three guests here with me. We're gonna be talking about Snowflake Ventures and the snowflakes start up Challenge. That's in its second year. I've got Harry Glaser with me. Co founder and CEO of Model Bit Start Up Challenge finalist Damon Bryan joins us as well. The CTO and co founder of Hyper Affinity. Also a startup Challenge Finalists. And Stephane Williams to my left here, VP of Corporate development and snowflake Ventures. Guys, great to have you all on this little mini panel this morning. >>Thank you. >>Thank you. >>Let's go ahead, Harry, and we'll start with you. Talk to the audience about model. But what do you guys do? And then we'll kind of unpack the snowflake. The Snowflakes challenge >>Model bit is the easiest way for data scientists to deploy machine learning models directly into Snowflake. We make use of the latest snowflake functionality called Snow Park for python that allows those models to run adjacent to the data so that machine learning models can be much more efficient and much more powerful than they were before. >>Awesome. Damon. Give us an overview of hyper affinity. >>Yes, so hyper affinity were Decision Intelligence platform. So we helped. Specifically retailers and brands make intelligent decisions through the use of their own customer, data their product data and put data science in a I into the heart of the decision makers across their business. >>Nice Step seven. Tell us about the startup challenge. We talked a little bit about it yesterday with CMO Denise Pearson, but I know it's in its second year. Give us the idea of the impetus for it, what it's all about and what these companies embody. >>Yeah, so we This is the second year that we've done it. Um, we it was really out of, um Well, it starts with snowflake Ventures when we started to invest in companies, and we quickly realised that there's there's a massive opportunity for companies to be building on top of the Lego blocks, uh, of snowflake. And so, um, open up the competition. Last year it was the inaugural competition overlay analytics one, Um, and since then, you've seen a number of different functionalities and features as part of snowflakes snow part. Being one of them native applications is a really exciting one going forward. Um, the companies can really use to accelerate their ability to kind of deliver best in class applications using best in class technology to deliver real customer outcomes and value. Um, so we've we've seen tremendous traction across the globe, 250 applicants across 50. I think 70 countries was mentioned today, so truly global in nature. And it's really exciting to see how some of the start ups are taking snowflake to to to new and interesting use cases and new personas and new industries. >>So you had 200 over 250 software companies applied for this. How did you did you narrow it down to three? >>We did. Yeah, >>you do that. >>So, behind the scenes, we had a sub judging panel, the ones you didn't see up on stage, which I was luckily part of. We had kind of very distinct evaluation criteria that we were evaluating every company across. Um and we kind of took in tranches, right? We we took the first big garden, and we kind of try to get that down to a top 50 and top 50. Then we really went into the details and we kind of across, um, myself in ventures with some of my venture partners. Um, some of the market teams, some of the product and engineering team, all kind of came together and evaluated all of these different companies to get to the top 10, which was our semifinalists and then the semi finalists, or had a chance to present in front of the group. So we get. We got to meet over Zoom along the way where they did a pitch, a five minute pitch followed by a Q and A in a similar former, I guess, to what we just went through the startup challenge live, um, to get to the top three. And then here we are today, just coming out of the competition with with With folks here on the table. >>Wow, Harry talked to us about How did you just still down what model bit is doing into five minutes over Zoom and then five minutes this morning in person? >>I think it was really fun to have that pressure test where, you know, we've only been doing this for a short time. In fact model. It's only been a company for four or five months now, and to have this process where we pitch and pitch again and pitch again and pitch again really helped us nail the one sentence value proposition, which we hadn't done previously. So in that way, very grateful to step on in the team for giving us that opportunity. >>That helps tremendously. I can imagine being a 4 to 5 months young start up and really trying to figure out I've worked with those young start ups before. Messaging is challenging the narrative. Who are we? What do we do? How are we changing or chasing the market? What are our customers saying we are? That's challenging. So this was a good opportunity for you, Damon. Would you say the same as well for hyper affinity? >>Yeah, definitely conquer. It's really helped us to shape our our value proposition early and how we speak about that. It's quite complicated stuff, data science when you're trying to get across what you do, especially in retail, that we work in. So part of what our platform does is to help them make sense of data science and Ai and implement that into commercial decisions. So you have to be really kind of snappy with how you position things. And it's really helped us to do that. We're a little bit further down the line than than these guys we've been going for three years. So we've had the benefit of working with a lot of retailers to this point to actually identify what their problems are and shape our product and our proposition towards. >>Are you primarily working with the retail industry? >>Yes, Retail and CPG? Our primary use case. We have seen any kind of consumer related industries. >>Got it. Massive changes right in retail and CPG the last couple of years, the rise of consumer expectations. It's not going to go back down, right? We're impatient. We want brands to know who we are. I want you to deliver relevant content to me that if I if I bought a tent, go back on your website, don't show me more tense. Show me things that go with that. We have this expectation. You >>just explain the whole business. But >>it's so challenging because the brothers brands have to respond to that. How do you what is the value for retailers working with hyper affinity and snowflake together. What's that powerhouse? >>Yeah, exactly. So you're exactly right. The retail landscape is changing massively. There's inflation everywhere. The pandemic really impacted what consumers really value out of shopping with retailers. And those decisions are even harder for retailers to make. So that's kind of what our platform does. It helps them to make those decisions quickly, get the power of data science or democratise it into the hands of those decision makers. Um, so our platform helps to do that. And Snowflake really underpins that. You know, the scalability of snowflake means that we can scale the data and the capability that platform in tangent with that and snowflake have been innovating a lot of things like Snow Park and then the new announcements, announcements, uni store and a native APP framework really helping us to make developments to our product as quick as snowflakes are doing it. So it's really beneficial. >>You get kind of that tailwind from snowflakes acceleration. It sounds like >>exactly that. Yeah. So as soon as we hear about new things were like, Can we use it? You know, and Snow Park in particular was music to our ears, and we actually part of private preview for that. So we've been using that while and again some of the new developments will be. I'm on the phone to my guys saying, Can we use this? Get it, get it implemented pretty quickly. So yeah, >>fantastic. Sounds like a great aligned partnership there, Harry. Talk to us a little bit about model bit and how it's enabling customers. Maybe you've got a favourite customer example at model bit plus snowflake, the power that delivers to the end user customer? >>Absolutely. I mean, as I said, it allows you to deploy the M L model directly into snowflake. But sometimes you need to use the exact same machine learning model in multiple endpoints simultaneously. For example, one of our customers uses model bit to train and deploy a lead scoring model. So you know when somebody comes into your website and they fill out the form like they want to talk to a sales person, is this gonna be a really good customer? Do we think or maybe not so great? Maybe they won't pay quite as much, and that lead scoring model actually runs on the website using model bit so that you can deploy display a custom experience to that customer we know right away. If this is an A, B, C or D lead, and therefore do we show them a salesperson contact form? Do we just put them in the marketing funnel? Based on that lead score simultaneously, the business needs to know in the back office the score of the lead so that they can do things like routed to the appropriate salesperson or update their sales forecasts for the end of the quarter. That same model also runs in the in the snowflake warehouse so that those back office systems can be powered directly off of snowflake. The fact that they're able to train and deploy one model into two production environment simultaneously and manage all that is something they can only do with bottled it. >>Lead scoring has been traditionally challenging for businesses in every industry, but it's so incredibly important, especially as consumers get pickier and pickier with. I don't want I don't want to be measured. I want to opt out. What sounds like what model but is enabling is especially alignment between sales and marketing within companies, which is That's also a big challenge at many companies face for >>us. It starts with the data scientist, right? The fact that sales and marketing may not be aligned might be an issue with the source of truth. And do we have a source of truth at this company? And so the idea that we can empower these data scientists who are creating this value in the company by giving them best in class tools and resources That's our dream. That's our mission. >>Talk to me a little bit, Harry. You said you're only 4 to 5 months old. What were the gaps in the market that you and your co founders saw and said, Guys, we've got to solve this. And Snowflake is the right partner to help us do it. >>Absolutely. We This is actually our second start up, and we started previously a data Analytics company that was somewhat successful, and it got caught up in this big wave of migration of cloud tools. So all of data tools moved and are moving from on premise tools to cloud based tools. This is really a migration. That snowflake catalyst Snowflake, of course, is the ultimate in cloud based data platforms, moving customers from on premise data warehouses to modern cloud based data clouds that dragged and pulled the rest of the industry along with it. Data Science is one of the last pieces of the data industry that really hasn't moved to the cloud yet. We were almost surprised when we got done with our last start up. We were thinking about what to do next. The data scientists were still using Jupiter notebooks locally on their laptops, and we thought, This is a big market opportunity and we're We're almost surprised it hasn't been captured yet, and we're going to get in there. >>The other thing. I think it's really interesting on your business that we haven't talked about is just the the flow of data, right? So that the data scientist is usually taking data out of a of a of a day like something like Smoke like a data platform and the security kind of breaks down because then it's one. It's two, it's three, it's five, it's 20. Its, you know, big companies just gets really big. And so I think the really interesting thing with what you guys are doing is enabling the data to stay where it's at, not copping out keeping that security, that that highly governed environment that big companies want but allowing the data science community to really unlock that value from the data, which is really, really >>cool. Wonderful for small startups like Model Bit. Because you talk to a big company, you want them to become a customer. You want them to use your data science technology. They want to see your fed ramp certification. They want to talk to your C. So we're two guys in Silicon Valley with a dream. But if we can tell them the data is staying in snowflake and you have that conversation with Snowflake all the time and you trust them were just built on top. That is an easy and very smooth way to have that conversation with the customer. >>Would you both say that there's credibility like you got street cred, especially being so so early in this stage? Harry, with the partnership with With Snowflake Damon, we'll start with you. >>Yeah, absolutely. We've been using Snowflake from day one. We leave from when we started our company, and it was a little bit of an unknown, I guess maybe 23 years ago, especially in retail. A lot of retailers using all the legacy kind of enterprise software, are really starting to adopt the cloud now with what they're doing and obviously snowflake really innovating in that area. So what we're finding is we use Snowflake to host our platform and our infrastructure. We're finding a lot of retailers doing that as well, which makes it great for when they wanted to use products like ours because of the whole data share thing. It just becomes really easy. And it really simplifies it'll and data transformation and data sharing. >>Stephane, talk about the startup challenge, the innovation that you guys have seen, and only the second year I can. I can just hear it from the two of you. And I know that the winner is back in India, but tremendous amount of of potential, like to me the last 2.5 days, the flywheel that is snowflake is getting faster and faster and more and more powerful. What are some of the things that excite you about working on the start up challenge and some of the vision going forward that it's driving. >>I think the incredible thing about Snowflake is that we really focus as a company on the data infrastructure and and we're hyper focused on enabling and incubating and encouraging partners to kind of stand on top of a best of breed platform, um, unlocked value across the different, either personas within I T organisations or industries like hypothermia is doing. And so it's it's it's really incredible to see kind of domain knowledge and subject matter expertise, able to kind of plug into best of breed underlying data infrastructure and really divide, drive, drive real meaningful outcomes for for for our customers in the community. Um, it's just been incredible to see. I mean, we just saw three today. Um, there was 250 incredible applications that past the initial. Like, do they check all the boxes and then actually, wow, they just take you to these completely different areas. You never thought that the technology would go and solve. And yet here we are talking about, you know, really interesting use cases that have partners are taking us to two >>150. Did that surprise you? And what was it last year. >>I think it was actually close to close to 2 to 40 to 50 as well, and I think it was above to 50 this year. I think that's the number that is in my head from last year, but I think it's actually above that. But the momentum is, Yeah, it's there and and again, we're gonna be back next year with the full competition, too. So >>awesome. Harry, what is what are some of the things that are next for model bed as it progresses through its early stages? >>You know, one thing I've learned and I think probably everyone at this table has internalised this lesson. Product market fit really is everything for a start up. And so for us, it's We're fortunate to have a set of early design partners who will become our customers, who we work with every day to build features, get their feedback, make sure they love the product, and the most exciting thing that happened to me here this week was one of our early design partner. Customers wanted us to completely rethink how we integrate with gets so that they can use their CI CD workflows their continuous integration that they have in their own get platform, which is advanced. They've built it over many years, and so can they back, all of model, but with their get. And it was it was one of those conversations. I know this is getting a little bit in the weeds, but it was one of those conversations that, as a founder, makes your head explode. If we can have a critical mass of those conversations and get to that product market fit, then the flywheel starts. Then the investment money comes. Then you're hiring a big team and you're off to the races. >>Awesome. Sounds like there's a lot of potential and momentum there. Damon. Last question for you is what's next for hyper affinity. Obviously you've got we talked about the street cred. >>Yeah, what's >>next for the business? >>Well, so yeah, we we've got a lot of exciting times coming up, so we're about to really fully launch our products. So we've been trading for three years with consultancy in retail analytics and data science and actually using our product before it was fully ready to launch. So we have the kind of main launch of our product and we actually starting to onboard some clients now as we speak. Um, I think the climate with regards to trying to find data, science, resources, you know, a problem across the globe. So it really helps companies like ours that allow, you know, allow retailers or whoever is to democratise the use of data science. And perhaps, you know, really help them in this current climate where they're struggling to get world class resource to enable them to do that >>right so critical stuff and take us home with your overall summary of snowflake summit. Fourth annual, nearly 10,000 people here. Huge increase from the last time we were all in person. What's your bumper sticker takeaway from Summit 22 the Startup Challenge? >>Uh, that's a big closing statement for me. It's been just the energy. It's been incredible energy, incredible excitement. I feel the the products that have been unveiled just unlock a tonne, more value and a tonne, more interesting things for companies like the model bit I profanity and all the other startups here. And to go and think about so there's there's just this incredible energy, incredible excitement, both internally, our product and engineering teams, the partners that we have spoke. I've spoken here with the event, the portfolio companies that we've invested in. And so there's there's there's just this. Yeah, incredible momentum and excitement around what we're able to do with data in today's world, powered by underlying platform, like snowflakes. >>Right? And we've heard that energy, I think, through l 30 plus guests we've had on the show since Tuesday and certainly from the two of you as well. Congratulations on being finalist. We wish you the best of luck. You have to come back next year and talk about some of the great things. More great >>things hopefully will be exhibited next year. >>Yeah, that's a good thing to look for. Guys really appreciate your time and your insights. Congratulations on another successful start up challenge. >>Thank you so much >>for Harry, Damon and Stefan. I'm Lisa Martin. You're watching the cubes. Continuing coverage of snowflakes. Summit 22 live from Vegas. Stick around. We'll be right back with a volonte and our final guest of the day. Mhm, mhm

Published Date : Jun 16 2022

SUMMARY :

Guys, great to have you all on this little mini panel this morning. But what do you guys do? Model bit is the easiest way for data scientists to deploy machine learning models directly into Snowflake. Give us an overview of hyper affinity. So we helped. Give us the idea of the impetus for it, what it's all about and what these companies And it's really exciting to see how some of the start ups are taking snowflake to So you had 200 over 250 software companies applied We did. So, behind the scenes, we had a sub judging panel, I think it was really fun to have that pressure test where, you know, I can imagine being a 4 to 5 months young start up of snappy with how you position things. Yes, Retail and CPG? I want you to deliver relevant content to me that just explain the whole business. it's so challenging because the brothers brands have to respond to that. You know, the scalability of snowflake means that we can scale the You get kind of that tailwind from snowflakes acceleration. I'm on the phone to my guys saying, Can we use this? bit plus snowflake, the power that delivers to the end user customer? the business needs to know in the back office the score of the lead so that they can do things like routed to the appropriate I want to opt out. And so the idea that And Snowflake is the right partner to help us do it. dragged and pulled the rest of the industry along with it. So that the data scientist is usually taking data out of a of a of a day like something But if we can tell them the data is staying in snowflake and you have that conversation with Snowflake all the time Would you both say that there's credibility like you got street cred, especially being so so are really starting to adopt the cloud now with what they're doing and obviously snowflake really innovating in that area. And I know that the winner is back in India, but tremendous amount of of and really divide, drive, drive real meaningful outcomes for for for our customers in the community. And what was it last year. But the momentum Harry, what is what are some of the things that are next for model bed as and the most exciting thing that happened to me here this week was one of our early design partner. Last question for you is what's next for hyper affinity. So it really helps companies like ours that allow, you know, allow retailers or whoever is to democratise Huge increase from the last time we were all in person. the partners that we have spoke. show since Tuesday and certainly from the two of you as well. Yeah, that's a good thing to look for. We'll be right back with a volonte and our final guest of the day.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Damon BryanPERSON

0.99+

Stephane WilliamsPERSON

0.99+

Lisa MartinPERSON

0.99+

Harry GlaserPERSON

0.99+

HarryPERSON

0.99+

IndiaLOCATION

0.99+

4QUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

five minutesQUANTITY

0.99+

fourQUANTITY

0.99+

ModlbitPERSON

0.99+

VegasLOCATION

0.99+

StephanePERSON

0.99+

next yearDATE

0.99+

three yearsQUANTITY

0.99+

five monthsQUANTITY

0.99+

Last yearDATE

0.99+

Hyper AffinityORGANIZATION

0.99+

last yearDATE

0.99+

twoQUANTITY

0.99+

two guysQUANTITY

0.99+

yesterdayDATE

0.99+

fiveQUANTITY

0.99+

Stefan WilliamsPERSON

0.99+

250 applicantsQUANTITY

0.99+

200QUANTITY

0.99+

20QUANTITY

0.99+

70 countriesQUANTITY

0.99+

Las VegasLOCATION

0.99+

Denise PearsonPERSON

0.99+

StefanPERSON

0.99+

five minuteQUANTITY

0.99+

threeQUANTITY

0.99+

second yearQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

this yearDATE

0.99+

todayDATE

0.99+

TuesdayDATE

0.99+

oneQUANTITY

0.99+

three guestsQUANTITY

0.98+

23 years agoDATE

0.98+

DamonPERSON

0.98+

50QUANTITY

0.98+

5 monthsQUANTITY

0.98+

Model BitORGANIZATION

0.98+

one modelQUANTITY

0.97+

40QUANTITY

0.97+

one sentenceQUANTITY

0.97+

Snow ParkTITLE

0.97+

Snowflake DamonORGANIZATION

0.97+

this weekDATE

0.96+

top threeQUANTITY

0.95+

two productionQUANTITY

0.95+

bothQUANTITY

0.94+

250 incredible applicationsQUANTITY

0.94+

Fourth annualQUANTITY

0.94+

SnowflakeEVENT

0.94+

top 50QUANTITY

0.92+

day oneQUANTITY

0.92+

VenturesORGANIZATION

0.91+

top 10QUANTITY

0.91+

aboveQUANTITY

0.9+

Jon Loyens, data.world | Snowflake Summit 2022


 

>>Good morning, everyone. Welcome back to the Cube's coverage of snowflake summit 22 live from Caesar's forum in Las Vegas. Lisa Martin, here with Dave Valante. This is day three of our coverage. We've had an amazing, amazing time. Great conversations talking with snowflake executives, partners, customers. We're gonna be digging into data mesh with data.world. Please welcome John loins, the chief product officer. Great to have you on the program, John, >>Thank you so much for, for having me here. I mean, the summit, like you said, has been incredible, so many great people, so such a good time, really, really nice to be back in person with folks. >>It is fabulous to be back in person. The fact that we're on day four for, for them. And this is the, the solution showcase is as packed as it is at 10 11 in the morning. Yeah. Is saying something >>Yeah. Usually >>Chopping at the bit to hear what they're doing and innovate. >>Absolutely. Usually those last days of conferences, everybody starts getting a little tired, but we're not seeing that at all here, especially >>In Vegas. This is impressive. Talk to the audience a little bit about data.world, what you guys do and talk about the snowflake relationship. >>Absolutely data.world is the only true cloud native enterprise data catalog. We've been an incredible snowflake partner and Snowflake's been an incredible partner to us really since 2018. When we became the first data catalog in the snowflake partner connect experience, you know, snowflake and the data cloud make it so possible. And it's changed so much in terms of being able to, you know, very easily transition data into the cloud to break down those silos and to have a platform that enables folks to be incredibly agile with data from an engineering and infrastructure standpoint, data out world is able to provide a layer of discovery and governance that matches that agility and the ability for a lot of different stakeholders to really participate in the process of data management and data governance. >>So data mesh basically Jamma, Dani lays out the first of all, the, the fault domains of existing data and big data initiatives. And she boils it down to the fact that it's just this monolithic architecture with hyper specialized teams that you have to go through and it just slows everything down and it doesn't scale. They don't have domain context. So she came up with four principles if I may, yep. Domain ownership. So push it out to the businesses. They have the context they should own the data. The second is data as product. We're certainly hearing a lot about that today this week. The third is that. So that makes it sounds good. Push out the, the data great, but it creates two problems. Self-serve infrastructure. Okay. But her premises infrastructure should be an operational detail. And then the fourth is computational governance. So you talked about data CA where do you fit in those four principles? >>You know, honestly, we are able to help teams realize the data mesh architecture. And we know that data mesh is really, it's, it's both a process in a culture change, but then when you want to enact a process in a culture change like this, you also need to select the appropriate tools to match the culture that you're trying to build the process in the architecture that you're trying to build. And the data world data catalog can really help along all four of those axes. When you start thinking first about, let's say like, let's take the first one, you know, data as a product, right? We even like very meta of us from metadata management platform at the end of the day. But very meta of us. When you talk about data as a product, we track adoption and usage of all your data assets within your organization and provide program teams and, you know, offices of the CDO with incredible evented analytics, very detailed that gives them the right audit trail that enables them to direct very scarce data engineering, data architecture resources, to make sure that their data assets are getting adopted and used properly. >>On the, on the domain driven side, we are entirely knowledge graph and open standards based enabling those different domains. We have, you know, incredible joint snowflake customers like Prologis. And we chatted a lot about this in our session here yesterday, where, because of our knowledge graph underpinnings, because of the flexibility of our metadata model, it enables those domains to actually model their assets uniquely from, from group to group, without having to, to relaunch or run different environments. Like you can do that all within one day catalog platform without having to have separate environments for each of those domains, federated governance. Again, the amount of like data exhaust that we create that really enables ambient governance and participatory governance as well. We call it agile data governance, really the adoption of agile and open principles applied to governance to make it more inclusive and transparent. And we provide that in a way that Confederate across those means and make it consistent. >>Okay. So you facilitate across that whole spectrum of, of principles. And so what in the, in the early examples of data mesh that I've studied and actually collaborated with, like with JPMC, who I don't think is who's not using your data catalog, but hello, fresh who may or may not be, but I mean, there, there are numbers and I wanna get to that. But what they've done is they've enabled the domains to spin up their own, whatever data lakes, data, warehouses, data hubs, at least in, in concept, most of 'em are data lakes on AWS, but still in concept, they wanna be inclusive and they've created a master data catalog. And then each domain has its sub catalogue, which feeds into the master and that's how they get consistency and governance and everything else is, is that the right way to think about it? And or do you have a different spin on that? >>Yeah, I, I, you know, I have a slightly different spin on it. I think organizationally it's the right way to think about it. And in absence of a catalog that can truly have multiple federated metadata models, multiple graphs in one platform, I, that is really kind of the, the, the only way to do it, right with data.world. You don't have to do that. You can have one platform, one environment, one instance of data.world that spans all of your domains, enable them to operate independently and then federate across. So >>You just answered my question as to why I should use data.world versus Amazon glue. >>Oh, absolutely. >>And that's a, that's awesome that you've done now. How have you done that? What, what's your secret >>Sauce? The, the secret sauce era is really an all credit to our CTO. One of my closest friends who was a true student of knowledge graph practices and principles, and really felt that the right way to manage metadata and knowledge about the data analytics ecosystem that companies were building was through federated linked data, right? So we use standards and we've built a, a, an open and extensible metadata model that we call costs that really takes the best parts of existing open standards in the semantics space. Things like schema.org, DCA, Dublin core brings them together and models out the most typical enterprise data assets providing you with an ontology that's ready to go. But because of the graph nature of what we do is instantly accessible without having to rebuild environments, without having to do a lot of management against it. It's, it's really quite something. And it's something all of our customers are, are very impressed with and, and, and, and, you know, are getting a lot of leverage out of, >>And, and we have a lot of time today, so we're not gonna shortchange this topic. So one last question, then I'll shut up and let you jump in. This is an open standard. It's not open source. >>No, it's an open built on open standards, built on open standards. We also fundamentally believe in extensibility and openness. We do not want to vertically like lock you into our platform. So everything that we have is API driven API available. Your metadata belongs to you. If you need to export your graph, you know, instantly available in open machine readable formats. That's really, we come from the open data community. That was a lot of the founding of data.world. We, we worked a lot in with the open data community and we, we fundamentally believe in that. And that's enabled a lot of our customers as well to truly take data.world and not have it be a data catalog application, but really an entire metadata management platform and extend it even further into their enterprise to, to really catalog all of their assets, but also to build incredible integrations to things like corporate search, you know, having data assets show up in corporate Wiki search, along with all the, the descriptive metadata that people need has been incredibly powerful and an incredible extension of our platform that I'm so happy to see our customers in. >>So leasing. So it's not exclusive to, to snowflake. It's not exclusive to AWS. You can bring it anywhere. Azure GCP, >>Anytime. Yeah. You know where we are, where we love snowflake, look, we're at the snowflake summit. And we've always had a great relationship with snowflake though, and really leaned in there because we really believe Snowflake's principles, particularly around cloud and being cloud native and the operating advantages that it affords companies that that's really aligned with what we do. And so snowflake was really the first of the cloud data catalogs that we ultimately or say the cloud data warehouses that we integrated with and to see them transition to building really out the data cloud has been awesome. >>Talk about how data world and snowflake enable companies like per lodges to be data companies. These days, every company has to be a data company, but they, they have to be able to do so quickly to be competitive and to, to really win. How do you help them if we like up level the conversation to really impacting the overall business? >>That's a great question, especially right now, everybody knows. And pro is a great example. They're a logistics and supply chain company at the end of the day. And we know how important logistics and supply chain is nowadays and for them and for a lot of our customers. I think one of the advantages of having a data catalog is the ability to build trust, transparency and inclusivity into their data analytics practice by adopting agile principles, by adopting a data mesh, you're able to extend your data analytics practice to a much broader set of stakeholders and to involve them in the process while the work is getting done. One of the greatest things about agile software development, when it became a thing in the early two thousands was how inclusive it was. And that inclusivity led to a much faster ROI on software projects. And we see the same thing happening in data analytics, people, you know, we have amazing data scientists and data analysts coming up with these insights that could be business changing that could make their company significantly more resilient, especially in the face of economic uncertainty. >>But if you have to sit there and argue with your business stakeholders about the validity of the data, about the, the techniques that were used to do the analysis, and it takes you three months to get people to trust what you've done, that opportunity's passed. So how do we shorten those cycles? How do we bring them closer? And that's, that's really a huge benefit that like Prologis has, has, has realized just tightening that cycle time, building trust, building inclusion, and making sure ultimately humans learn by doing, and if you can be inclusive, it, even, it even increases things like that. We all want to, to, to, to help cuz Lord knows the world needs it. Things like data literacy. Yeah. Right. >>So data.world can inform me as to where on the spectrum of data quality, my data set lives. So I can say, okay, this is usable, shareable, you know, exactly of gold standard versus fix this. Right. Okay. Yep. >>Yep. >>That's yeah. Okay. And you could do that with one data catalog, not a bunch of >>Yeah. And trust trust is really a multifaceted and multi multi-angle idea, right? It's not just necessarily data quality or data observability. And we have incredible partnerships in that space, like our partnership with, with Monte Carlo, where we can ingest all their like amazing observability information and display that in a really like a really consumable way in our data catalog. But it also includes things like the lineage who touch it, who is involved in the process of a, can I get a, a, a question answered quickly about this data? What's it been used for previously? And do I understand that it's so multifaceted that you have to be able to really model and present that in a way that's unique to any given organization, even unique within domains within a single organization. >>If you're not, that means to suggest you're a data quality. No, no supplier. Absolutely. But your partner with them and then that you become the, the master catalog. >>That's brilliant. I love it. Exactly. And you're >>You, you just raised your series C 15 million. >>We did. Yeah. So, you know, really lucky to have incredible investors like Goldman Sachs, who, who led our series C it really, I think, communicates the trust that they have in our vision and what we're doing and the impact that we can have on organization's ability to be agile and resilient around data analytics, >>Enabling customers to have that single source of truth is so critical. You talked about trust. That is absolutely. It's no joke. >>Absolutely. >>That is critical. And there's a tremendous amount of business impact, positive business impact that can come from that. What are some of the things that are next for data.world that we're gonna see? >>Oh, you know, I love this. We have such an incredibly innovative team. That's so dedicated to this space and the mission of what we're doing. We're out there trying to fundamentally change how people get data analytics work done together. One of the big reasons I founded the company is I, I really truly believe that data analytics needs to be a team sport. It needs to go from, you know, single player mode to team mode and everything that we've worked on in the last six years has leaned into that. Our architecture being cloud native, we do, we've done over a thousand releases a year that nobody has to manage. You don't have to worry about upgrading your environment. It's a lot of the same story that's made snowflake. So great. We are really excited to have announced in March on our own summit. And we're rolling this suite of features out over the course of the year, a new package of features that we call data.world Eureka, which is a suite of automations and, you know, knowledge driven functionality that really helps you leverage a knowledge graph to make decisions faster and to operationalize your data in, in the data ops way with significantly less effort, >>Big, big impact there. John, thank you so much for joining David, me unpacking what data world is doing. The data mesh, the opportunities that you're giving to customers and every industry. We appreciate your time and congratulations on the news and the funding. >>Ah, thank you. It's been a, a true pleasure. Thank you for having me on and, and I hope, I hope you guys enjoy the rest of, of the day and, and your other guests that you have. Thank you. >>We will. All right. For our guest and Dave ante, I'm Lisa Martin. You're watching the cubes third day of coverage of snowflake summit, 22 live from Vegas, Dave and I will be right back with our next guest. So stick around.

Published Date : Jun 16 2022

SUMMARY :

Great to have you on the program, John, I mean, the summit, like you said, has been incredible, It is fabulous to be back in person. Usually those last days of conferences, everybody starts getting a little tired, but we're not seeing that at all here, what you guys do and talk about the snowflake relationship. And it's changed so much in terms of being able to, you know, very easily transition And she boils it down to the fact that it's just this monolithic architecture with hyper specialized teams about, let's say like, let's take the first one, you know, data as a product, We have, you know, incredible joint snowflake customers like Prologis. governance and everything else is, is that the right way to think about it? And in absence of a catalog that can truly have multiple federated How have you done that? of knowledge graph practices and principles, and really felt that the right way to manage then I'll shut up and let you jump in. an incredible extension of our platform that I'm so happy to see our customers in. It's not exclusive to AWS. first of the cloud data catalogs that we ultimately or say the cloud data warehouses but they, they have to be able to do so quickly to be competitive and to, thing happening in data analytics, people, you know, we have amazing data scientists and data the data, about the, the techniques that were used to do the analysis, and it takes you three So I can say, okay, this is usable, shareable, you know, That's yeah. that you have to be able to really model and present that in a way that's unique to any then that you become the, the master catalog. And you're that we can have on organization's ability to be agile and resilient Enabling customers to have that single source of truth is so critical. What are some of the things that are next for data.world that we're gonna see? It needs to go from, you know, single player mode to team mode and everything The data mesh, the opportunities that you're giving to customers and every industry. and I hope, I hope you guys enjoy the rest of, of the day and, and your other guests that you have. So stick around.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave ValantePERSON

0.99+

DavePERSON

0.99+

JohnPERSON

0.99+

Jon LoyensPERSON

0.99+

Monte CarloORGANIZATION

0.99+

John loinsPERSON

0.99+

AmazonORGANIZATION

0.99+

MarchDATE

0.99+

Las VegasLOCATION

0.99+

VegasLOCATION

0.99+

Goldman SachsORGANIZATION

0.99+

yesterdayDATE

0.99+

three monthsQUANTITY

0.99+

AWSORGANIZATION

0.99+

one platformQUANTITY

0.99+

one dayQUANTITY

0.99+

thirdQUANTITY

0.99+

two problemsQUANTITY

0.99+

fourthQUANTITY

0.99+

OneQUANTITY

0.99+

2018DATE

0.99+

15 millionQUANTITY

0.98+

DaniPERSON

0.98+

secondQUANTITY

0.98+

firstQUANTITY

0.98+

third dayQUANTITY

0.98+

first oneQUANTITY

0.98+

SnowflakeORGANIZATION

0.98+

DCAORGANIZATION

0.98+

one last questionQUANTITY

0.98+

data.world.ORGANIZATION

0.97+

PrologisORGANIZATION

0.97+

JPMCORGANIZATION

0.97+

each domainQUANTITY

0.97+

today this weekDATE

0.97+

JammaPERSON

0.97+

bothQUANTITY

0.97+

first data catalogQUANTITY

0.95+

Snowflake Summit 2022EVENT

0.95+

eachQUANTITY

0.94+

todayDATE

0.94+

singleQUANTITY

0.94+

data.worldORGANIZATION

0.93+

day threeQUANTITY

0.93+

oneQUANTITY

0.93+

one instanceQUANTITY

0.92+

over a thousand releases a yearQUANTITY

0.92+

day fourQUANTITY

0.91+

SnowflakeTITLE

0.91+

fourQUANTITY

0.91+

10 11 in the morningDATE

0.9+

22QUANTITY

0.9+

one environmentQUANTITY

0.9+

single organizationQUANTITY

0.88+

four principlesQUANTITY

0.86+

agileTITLE

0.85+

last six yearsDATE

0.84+

one data catalogQUANTITY

0.84+

EurekaORGANIZATION

0.83+

Azure GCPTITLE

0.82+

CaesarPERSON

0.82+

series COTHER

0.8+

CubeORGANIZATION

0.8+

data.worldOTHER

0.78+

LordPERSON

0.75+

thousandsQUANTITY

0.74+

single sourceQUANTITY

0.74+

DublinORGANIZATION

0.73+

snowflake summit 22EVENT

0.7+

WikiTITLE

0.68+

schema.orgORGANIZATION

0.67+

early twoDATE

0.63+

CDOTITLE

0.48+

Patrick Barch, Capital One Software | Snowflake Summit 2022


 

>>Good morning, everyone. Welcome back to the Cube's coverage of snowflake summit live from Caesar's forum in Las Vegas, Lisa Martin, with Dave Valante. Dave, we have had an action packed two days here, talking with loads of folks. There's been about 10,000 attendees here, the momentum, the excitement for snowflake, what they're building, what they're, what they've announced is huge. >>I'll tell you like this is a getaway day and there's still decent amount of buzz going on in the ecosystem here and the exhibit hall. And I was just saying, when you walk around Las Vegas, you'd never know the economy's about the tank with, you know, inflation is on the rise. I mean, Vegas is packed. >>It is packed it a lot of shows going on here. We are excited to welcome Patrick Barch, the senior director of product management at capital one software to the program. Patrick, it's great to have you. >>Thank you. It's great to be here. >>So we all know capital one. I love the commercials. I'm sure you have a, a large say in how fun and creative they are. Talk to us about capital one software. This is a new business software business. It >>Is. And so, you know, from our founding days in 1994, capital one has always recognized the power of data and technology to create differentiated experiences for our customers. But about 10 years ago, we declared that we were gonna reinvent the way that we build and use technology. One of the key steps in that journey was migrating from our owned and operated data centers to the public cloud. But in order to do that, we needed to build a number of products and platforms to help us operate at scale because the market just wasn't quite there yet. And so capital one software, which we announced last week, Woohoo is our first foray into bringing some of those cloud and data management products to market. >>Talk to us about you. Capital one is one of Snowflake's longest running and largest customers. How does snowflake help facilitate that >>A couple different ways? So first snowflake is a, it's a super powerful platform. They've changed the game when it comes to leveraging data. At scale in the cloud, we were an early investor. We were, we were one of their biggest customers. They've been a great partner along the way, helping us adopt the platform. But for us, when we adopted back in 2018 ish, we realized that with all of this power comes a lot of responsibility. And so we needed to make sure that we were putting good governance and good controls around our usage of snowflake from the start. And so, you know, we, we, we needed to build some, some tools to help us optimize our, our usage of snowflake. >>Okay. So you basically said we're going all in the cloud. You guys have made huge investments in, in AWS and obviously snowflake. And then now you're, you're sort of taking what you did internally and exposing it almost like, like Amazon did Amazon retail and then that's how AWS was born. Okay, awesome. What kind of results did you see internally in terms of the primary benefit? If I understand it is cost savings, but also better data management, right? Is that fair? >>So the, the totality of what we've built internally covers both cost savings, data management, data security, adherence to data privacy legislation. The product that we announced here at summit is really focused on cost optimization for snowflake, right? And so with these tools, we've been able to save about 27% on our projected snowflake costs. We've been able to save our teams about 50,000 hours of manual effort by reducing the number of change orders that they have to execute manually through automated infrastructure management. We've reduced our cost per query by about 43%. And so really what these enabled us to do is just get really efficient with how we use the system. You know, one, one of the challenges you might run into with snowflake is, is unexpected costs. And so by leveraging these tools, we've been able to make sure that our costs are predictable and consistent from month to month, which enables us to budget appropriately. >>And, and that's 50,000 hours person hours over what period of time >>Have to get back to you on the exact amounts? I mean, >>Years, months, several years. Weeks. Yeah. Yeah. Okay. So, but we're talking about tens and tens of millions of dollars, right? If you, I mean, just assume a hundred bucks an hour for, for a person just fully loaded. I mean, I'll just do that math. Okay. And 20% percent on snowflake cost. So here's, here's the question? Well, well, first of all, what's the vision, what's the like gimme a five year vision for, for the software group at capital one, >>We wanna bring capital one's data and cloud management expertise to the masses. Okay. We've spoken to a number of companies that are trying to follow in our footsteps. We've, we've heard again and again, that our challenges are their challenges. Our, the path that we walked is the path that they're trying to walk in. So we are super excited about bringing all of our expertise to the market. >>So start with cost savings, but the vision transcends cost savings, absolutely going into security, privacy, data management, >>Absolutely absolutely workflow. And the, the, you know, the industry's in a super interesting place now where it's very fragmented. There is a galaxy of tools out there. You, you look around here, there's hundreds and hundreds of different solutions, but they're point solutions. They're all going after an individual piece of the management puzzle. And what we found was that we needed to create these integrated experiences that were aligned to our team's jobs to be done, not necessarily in terms of, you know, a capability like cataloging or quality or entitlements, you know, in order to efficiently operate at scale, you need to string those things together in a way that lets your team get their job done. >>So my last question on this flow is, I dunno if you're familiar with you guys, maybe familiar with Sarah Wong and Martin CASAA published a piece that got, you know, pretty wide viewing and discussion. They are out out of Andreesen, a 16 Z that the cost of good sold for SaaS companies who are born in the cloud are gonna become so overwhelming that they're gonna repatriate and start managing themselves. And they use Dropbox as an example. Now Dropbox is storage. So it's very specific niche, you know, and I've talked to many, many companies like snowflake about this, and they're like, eh, that ain't happening anytime soon. How do you feel about that? Because if you look at SAS companies that are born in the cloud, their gross margins are, you know, they don't get to 90%, but they're healthy, you know, 75, you know, sometimes 78% even snowflakes, you know, end of decade forecast Scarelli has it. I think it's 78%. And the reason it's not higher is because of the cloud cost. You gotta pay the cloud bills, my belief and I've argued, this is that's okay. I can negotiate cloud bills. I can work with tools like yours over time to keep those down. And the cloud guys are gonna be competing with each other, but, but what do you make of that Patrick >>Cloud costs? Aren't gonna go down. Data is expanding at an exponential rate. The scale of data today is orders of magnitude versus what it was in on-prem systems. And so, you know, I don't think the cloud providers are too worried because data is exploding at such a, a crazy pace. And so it really becomes about using all of those resources as efficiently as possible. And, and in the cloud where compute is fully elastic, it scales infinitely instantly on demand. You know, it's all about getting it's, it's, it's all about making sure that if you're spending more, you're getting more business value. There's not wastage in the system. >>Same question, but different. Do you feel like strategically organizations generally in capital one specifically will, will, will optimize their time on optimizing or spend their, their effort optimizing the cloud costs? Or do you feel like long term you can actually be cheaper to manage yourself? In other words, our, our cloud benefits of not doing all that heavy lifting offset that potential, you know, cost equation. >>I mean, you saved just so much time and effort and headache, not having to manage physical infrastructure. And so like, you know, snowflake, you can write a sequel command to create a database. You can write a sequel command to create a data warehouse. Like the market will not give up that level of simplicity for managing infrastructure. And so I think at the end of the day, you're gonna, you're gonna see a focus on efficiency because what you really want your teams to be focused on your old, your old DBA and data engineering teams is focused on driving customer value, not in the weeds of infrastructure management. >>And that's why I think you guys, this is a great business that you're starting. And I think you, I, frankly, I think you're gonna get a lot of competition, which is a good thing that says you're in a great business and you guys are first >>Talk about the customer experience. You know, we are also as consumers demanding, we wanna be able to transact ASAP. We wanna make sure that, you know, on the swipe fraud detection happens, how does the Slingshot help facilitate and improve the customer experience if I'm transacting or I'm gonna sign up or I'm getting a mortgage. >>So with Slingshot, we enable your company, regardless of what you do at, at capital one, we're, we're a bank to build more personalized experiences for customers in a more cost effective way. And so Enno is our, our intelligent, personal banking assistant with snowflake. We're enable Enno to do way more than we were previously for less than we would've without some of these tools. >>And that's a huge competitive differentiator because we expect as consumers and of whatever it is. We want a personalized experience, right? That's relevant. That's gonna offer us products and services that might build upon what we've already done. >>It's it's kind of table stakes these days. Yes. And so with these tools and with snowflake, we were able to onboard our business teams were able to onboard over 400 new use cases over, over that same time period. And so really what it's enabled us to do is unlock the innovative power of our company and create more of these customer experiences. >>How does the customer visualize those, those cost savings? And, and, and do, do, do you have some tooling, maybe it's in the works to help them predict what kind of cost savings they have based on some modeling that >>You do. And absolutely. So we enable teams to enforce good governance around infrastructure management, up front by building rules and enabling their teams to create warehouses, create databases. And then once that infrastructure is up and running, we give them a whole bunch of dashboards that show transparency and to spend, we enable chargebacks to lines of business in today's consumption, driven business models. It's hard to reconcile at the end of the month, if you spent what you thought you spent and, and data costs have gone from CapEx to OPEX and, but not everybody is an expert. And so we look at usage data, we look at usage history and we come up with recommendations for how you can save money by, you know, tweaking this or tweaking that or better optimizing your, your compute. >>Should we expect you as you expand your opportunity to take your expertise and aim it at AWS more broadly, maybe Redshift more specifically, Google GCP, big query Azure, what, what should we expect there? >>You know, there's, there's a lot of opportunity to help companies optimize costs across other cloud providers as well. This, this concept of elastic compute, isn't just specific to snowflake. That's certainly one path that we could go down. You know, we have a lot of expertise in, in data management as well, and data privacy, data security. And so that's that, that's another path as well that, that we have expertise in. And so, you know, I think it's, it's an exciting time we're in, we're in an exciting place, but it's early days, >>Did you do a working backwards document? Can you share that with us? >>Fortunately >>Not five, five or 10 years down the road, you may decide to do that, right? >>Yeah. Let me, let me check with my PR person to see if I'm allowed to share here. That's >>I mean, I think this is gonna be a huge success and, and I think it it's, it's, it follows a lot of the things that we've learned from AWS. Yeah. And you guys have been all in there and, and, you know, it's funny, right? We laugh about working backwards, customer obsession, two pizza teams. I mean, it really has changed the sort of way that we think about developing software and, and managing infrastructures. I, I think you're gonna have a, a huge business and I, I wish you the best. >>I, I appreciate that. And the, the thing, a lot of that statement is, you know, internal teams are now starting to demand consumer great experiences for the tools that they use. Yeah, for sure. And so one of the things that we did was treat our internal associates. Like they were external customers, we applied design thinking, we applied product management, we built our experience in terms of what are you trying to accomplish? And what's getting in your way, because that's what people have come to expect with all of these consumer experiences, >>Collaboration. That's right. What last question for you? What would you say to peers in your, whatever, same industry, other industries that are really trying to figure out how to get their hands on data to become a data company, what would you advise them? Why should they choose >>Snowflake gives you so many building blocks out of the box to help you create a, a well-managed data ecosystem? You know, the simplicity with which you can create new infrastructure, define policies for that infrastructure onboard new users. I mean, it, it's one of the platforms in internally capital one that has the highest NPS score. And so, you know, if you're looking to adopt a, a data cloud platform, I mean, snowflake is certainly high up on the list of what you should be looking at. >>That's >>Awesome. How do you, do you consider this a SA, is it a consumption or how do you price for this? >>So we, we don't have published pricing at the moment, but it is, it is a SAS product. You know, what we can share is it'll, it'll be a, you know, small fraction of, of your, of your total credit spend with snowflake and, and >>You're thinking a subscription or, or haven't figured that out yet, >>It it'll likely be a, a consumption model based on, you know. Okay. >>So the, so, so say, you know, it's funny SAS, I get it. Software's a service, but it, but because it's consumption, I think it's like modern SAS. If I can say that, you know, it's cloud >>SAS and it, it, you know, it's more important to make sure right now, because we're so early that we're actually providing the right value to customers. We have a pretty generous trial program going on right now where you can try the, the, the software out for free to make sure it, it fits your needs. So, >>Okay. So you're in trial, right. I should have clarified that you're in trial now. And, and so, yeah, of course you haven't figured out exactly how you're gonna price it yet. But >>The, the, the official posture that we're taking is public preview. We've, we've been in private preview for the last six months. We've onboarded a, a couple of customers who are starting to use the product. And so the, the big announcement this week is we're officially in public preview, come on in. >>So you gotta get product market fit. That's right. Before you figure out your pricing and before you, then you, then you're gonna scale. Great. >>What's been the feedback so far >>Overwhelmingly positive. Somebody stopped by the booth and said, oh my God, that's so cool. We've heard a lot of, wow, we need this right now. You know, it's, I had pretty, pretty high expectations coming in, just based on the value that this is created for capital one, but I've, I've been blown away by, by what I've heard from the people who've stopped by our booth. >>Awesome. Patrick, thank you for joining Dave and me on the program, talking about what you're doing with capital one software seems like you're just in early innings, but so much potential to come. We wish you the best of luck with that. And you have to come back and tell us how it's going. Thanks so much. Thanks for having me, our pleasure for Dave ante. I'm Lisa Martin. You're watching the cube our day three coverage of snowflake summit 22 live from Las Vegas continues after a short break.

Published Date : Jun 16 2022

SUMMARY :

the momentum, the excitement for snowflake, what they're building, what they're, what they've announced is huge. And I was just saying, when you walk around Las Vegas, you'd never know the economy's about the the senior director of product management at capital one software to the program. It's great to be here. I'm sure you have a, a large say in how fun and Is. And so, you know, from our founding days in 1994, Talk to us about you. And so, you know, we, we, we needed to build some, of results did you see internally in terms of the primary benefit? You know, one, one of the challenges you might run into with snowflake is, So here's, here's the question? the path that we walked is the path that they're trying to walk in. And the, the, you know, the industry's in a super interesting place now where it's companies that are born in the cloud, their gross margins are, you know, they don't get to 90%, you know, I don't think the cloud providers are too worried because data is exploding at such that potential, you know, cost equation. And so like, you know, snowflake, you can write a sequel command to create a database. And that's why I think you guys, this is a great business that you're starting. We wanna make sure that, you know, on the swipe fraud detection happens, company, regardless of what you do at, at capital one, we're, we're a bank to build more And that's a huge competitive differentiator because we expect as consumers and of whatever it is. And so really what it's enabled us to do is unlock the innovative power of our company and create more of these customer we look at usage history and we come up with recommendations for how you can save money by, And so, you know, I think it's, it's an exciting time we're in, we're in an exciting That's And you guys have been all in there and, and, you know, it's funny, right? And the, the thing, a lot of that statement is, you know, internal teams are now starting data company, what would you advise them? And so, you know, if you're looking to adopt a, a data cloud platform, I mean, snowflake is certainly high up How do you, do you consider this a SA, is it a consumption or how do you price for You know, what we can share is it'll, it'll be a, you know, small fraction of, It it'll likely be a, a consumption model based on, you know. So the, so, so say, you know, it's funny SAS, SAS and it, it, you know, it's more important to make sure right now, because we're so early that we're actually providing the And, and so, yeah, of course you haven't figured out exactly And so the, the big announcement this week is we're officially So you gotta get product market fit. You know, it's, I had pretty, pretty high expectations coming in, just based on the value that this is created for And you have to come back and tell us how it's going.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

PatrickPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave ValantePERSON

0.99+

AmazonORGANIZATION

0.99+

1994DATE

0.99+

Patrick BarchPERSON

0.99+

fiveQUANTITY

0.99+

Las VegasLOCATION

0.99+

AWSORGANIZATION

0.99+

78%QUANTITY

0.99+

75QUANTITY

0.99+

Sarah WongPERSON

0.99+

last weekDATE

0.99+

hundredsQUANTITY

0.99+

90%QUANTITY

0.99+

five yearQUANTITY

0.99+

10 yearsQUANTITY

0.99+

two daysQUANTITY

0.99+

about 50,000 hoursQUANTITY

0.99+

todayDATE

0.99+

VegasLOCATION

0.99+

20% percentQUANTITY

0.99+

about 27%QUANTITY

0.98+

DropboxORGANIZATION

0.98+

capital oneORGANIZATION

0.98+

oneQUANTITY

0.98+

Snowflake Summit 2022EVENT

0.98+

SASORGANIZATION

0.98+

about 43%QUANTITY

0.98+

50,000 hoursQUANTITY

0.98+

WoohooORGANIZATION

0.98+

over 400 new use casesQUANTITY

0.98+

this weekDATE

0.97+

SlingshotORGANIZATION

0.97+

Capital One SoftwareORGANIZATION

0.97+

firstQUANTITY

0.96+

one pathQUANTITY

0.96+

about 10 years agoDATE

0.95+

about 10,000 attendeesQUANTITY

0.95+

bothQUANTITY

0.95+

OPEXORGANIZATION

0.95+

EnnoORGANIZATION

0.94+

capital one softwareORGANIZATION

0.93+

Martin CASAAPERSON

0.93+

first forayQUANTITY

0.92+

OneQUANTITY

0.92+

CaesarPERSON

0.92+

two pizza teamsQUANTITY

0.91+

2018 ishDATE

0.9+

Capital oneORGANIZATION

0.9+

GoogleORGANIZATION

0.9+

last six monthsDATE

0.89+

AzureTITLE

0.88+

snowflake summit 22EVENT

0.85+

ScarelliPERSON

0.83+

coupleQUANTITY

0.82+

tens and tens of millions of dollarsQUANTITY

0.81+

endDATE

0.78+

first snowflakeQUANTITY

0.78+

a hundred bucks an hourQUANTITY

0.76+

CapExORGANIZATION

0.74+

16 ZCOMMERCIAL_ITEM

0.69+

GCPTITLE

0.67+

SASTITLE

0.65+

CubeORGANIZATION

0.65+

AndreesenORGANIZATION

0.62+

RedshiftTITLE

0.57+

threeQUANTITY

0.54+

Shinji Kim, Select Star | Snowflake Summit 2022


 

(bright music) >> Welcome back to the Cube. Our continuing coverage of Snowflake Summit 22, day two, lots of content as I've said, coming at you the last couple of days. Dave and I, Dave Vellante, and Lisa Martin are here with you. We have an exciting guest here next to talk with us about data discovery. Please welcome Shinji Kim, the founder and CEO at Select Star. Welcome to the program. >> Thanks for having me. >> Dave: Great to see you. >> Excited to be here. >> Talk to us about Select Star. What do you guys do? And then we're going to uncrack data discovery. >> Yeah, why'd you start the company? (Shinji laughing) >> Sure. So, Select Star is, on fully automated data discovery platform, that helps any company to be able to find, understand and manage their data. I started this company because after I sold my last company, Concord Systems to Akamai, I started working with a lot of global enterprise companies that manages a lot of IOT devices like automakers or consumer electronics companies. And it became very clear to me that companies are not going to stop anytime soon about collecting more data, more often, and trying to utilize them as much as they can. And cloud providers, and all the new technologies like Snowflake has really helped them to achieve that goal. But the challenges that, I've started noticing, from a lot of these enterprises, is that they now have 100s or 1000s of data sets that they have to manage. And when you are trying to use that data it's almost impossible to find which specific field which specific data sets that you should use out of 1000s and 100s of 1000s of data sets you have. So, that's why I felt like this is the next problem and challenge that I would like to solve. Also because, I have a background of working as a software engineer, data scientist, product manager, in the stages of creating data, transforming data and also querying data and trying to make business decisions on data. Having a right context about the data, is so important, for me to use that data. So, for us, we are trying to solve that challenge around finding and understanding data, and we call that data discovery. >> Wow. That's music to my ears here because I can't tell you how many meetings I've been in, where somebody presents some data and I say, okay, what's the source of that data? What are the assumptions used to derive data? I have different data, you know, and then it becomes this waste of time. My data's better than your data, or everybody has an agenda. You cut through that. >> Yeah, so, data discovery, in a nutshell, we defining as finding, understanding, and managing your data. So, in Select Star, we will automatically bring out, all your, like the schema information. Where does data exist? We will also analyze the SQL query logs as well as activity logs that's generated by any applications and BI tools that are connected on top of your data warehouse, so that any time you're looking at a database any particular database table, column or dashboard, we will tell you, where did this data come from? Where did it originate from? How was this transformed? And which reporting table does this exist? Who's using this data the most inside the company? How are they using it? And which are the dashboards and reports that are built on top of this data set? So you don't have to go out and ask everybody else, "Hey, I'm looking for this type of data. "Has anybody worked with this?" This is actually something that I realize a lot of data analysts and data scientists waste their time on. So yeah, that's really the, what we call fully automated data context that we provide to our customers so that you can truly use all the data that you have in your data warehouse. >> And you do this by understanding the metadata? Or is it some kind of scanning? Or using math or code? >> It's both. So, first of all, we do connect and bring out all the metadata. So, that's all the information under information schema. And then, we also look at all the query history. So all your select SQL queries, all your create queries, create table queries, create view queries. And based on that, we will also match the metadata, where it exists inside those queries and logs. And based on that, we will generate first and foremost, what we would call column level data lineage. Data lineage is all about showing you the flow of data from where it was originated, how it was transformed, and where it exists now. And also, what we call popularity. Who's using what data? How are they using it? And in aggregate, you can also find out, which are the most important data sets in our company? Which are the data sets that can be deprecated because it was like a duplicate of other data sets and nobody's using it anymore? And we like put a, like a popularity score for every single data asset that you have in your company so you can see how that's being used. >> How do your customers take action on the information that you provide them? Do they ultimately automate it? Do they go through a process of sort of the human in the loop? >> Well, we do the automation for them. >> Yeah. >> And we do also provide them with a, really easy to use user interface so that they can add any semantic level data on top. So, that's like tags. Like whether you want to market as, this is a analyst approved table, or do not use table or if you want to put a PII classification of data you can do that on a column. And we will automatically either propagate those annotations throughout the platform. We will also automatically propagate any same matching documentation that you might want to use within the data warehouse. And we will also provide you with, more of a rich text documentation that you can also add on top as a business glossary or like a Wiki that business users can, get a better understanding of data concepts and models as well. >> How do they tag the data? Do they use another tool that does that or? >> No, they can tag it within Select Star. Any table or column has a little icon, tag icon, so you can click on it. Or, we can also give you a view of every database page will have all the tables in one place. You can add a keyword and bulk tag. >> So humans tag. >> Yeah. So humans tag. So in the beginning, humans tag, and then we will automate the propagation of that tag. So if you already tagged, let's say SSN field as a PII, then we will find all the other columns that may use the exact same data, and also tag the same, just as an example. >> Okay so you, once the human puts it in there then you automate the downstream. 'Cause humans sometimes aren't great at classifying and tagging and inconsistencies and I would think that you could use math to improve that. >> And we do have some plans to add more automated tagging system. For example, we are already, we don't necessarily tag them, but we give our customers filters on top of their search results to see, which are the data sets that nobody's using anymore? Which are the data sets that's being created very recently? And you can also filter by who created them or who are the owners. So these are some of the aspects of the data or even like when's the last time was this data updated? So these are the aspects of the operational metadata that we are starting to automate to put more automated annotation, I would say is more coming up towards the end of the year. But in terms of semantic level tagging, like is this data set around customers? Is this data set for marketing, sales, customer support? That is something that we are giving a really easy to use interface for the data team to be able to easily organize them. >> How are you helping organizations? We think of the all the privacy regulations and legislations. How is Select Star a facilitator of data privacy for your clients? Is it part of that play? >> So, I would say, one of the main use cases of data discovery, is data governance. So, starting this company and starting to work with a lot of fortune 500 companies, as well as I would say more like recently IPOed companies that have grown very fast in Silicon valley. Some of those customers have told us that they initially adopted Select Star because they needed a good data catalog and search platform for their data team. But as they are starting to use Select Star and starting to see all these insights about their own data warehouse, they are all kicking off their new data governance projects, because they get to see a really good lay of the land, of how the data is being accessed today. So, this is why we have a very easy to use and also programmatic API so that you can add tags, ownership, and set access control through a Select Star. We are actually just releasing a beta version of our, what we call policy based access control where you can use either role based and attribute based access control so that different roles of the users get to see different versions of a Select star when they log in. And this is just the beginning. Like PII is for example, any column that's already marked as PII. We will always strip out the value before it gets fully processed within Select Star. So even if anybody might stumble upon any sequel queries that other analysts have run, those values won't be available in Select Star at all. >> And you started the company right before the lockdown, right? That must have been crazy. >> Yes, March, 2020 is our, my incorporation of Select Star. It was a very interesting time to start the company. And in a way, I'm glad I did. We had a lot of focus time to really, go heads down, build out the product, and work closely with our customer. And today it's really awesome to get to, provide that support to more customers today. >> And so, what are you doing with Snowflake? >> So Snowflake has been a great partner for us. Lot of customers and Snowflake is really great for this. Basically building single source of truth of your data by connecting all your source of, databases, as well as like your ERP, CRM systems, ad systems, marketing systems, SaaS platform, you can connect them now all to Snowflake, that will all dump all the data inside. So that, allows data team to be able to actually join and crossmatch the customer data across so many different applications. And what we see from a lot of Snowflake customers, hence they end up with many different schemas and tens of thousands of tables. And for them now they are requiring or needing more of a better data discovery tool so that they can use and leverage Snowflake data that they have. So, in that regard so we are a snowflake data governance accelerator partner. And as part of that accelerator program, one of the things that we've integrated with Snowflake is, what we call Snowflake Tag Sync. So if you create any tags in Select Star, and you marked it as a PII, we will also replicate the same tag, to Snowflake. >> Yeah. Okay. >> And so everything is synced in there. And on top of that, a lot of our customers really like using our column level lineage, because we will show how all the data tables within Snowflake is connected to another. And actually last but not least, we actually just released this feature today, called the auto generated ER diagram. ER diagram stands for Entity Relationship Diagram. ERD is like a blueprint of your data model. When your engineers and data architects start creating tables in databases, this is a diagram that they will put together, to show how they are translating business logic into data models in the databases. And that includes, which are the fields for primary keys, foreign keys, and how are different like when you look at Star schema, how different tables are joined together. When all these tables gets migrated into Snowflake, a lot of them actually lose the, the relationships of primary keys and foreign keys. So, many analysts, what we found, is that they are starting to guess, how to join different tables, how to use different data sets together. But because we know how other analysts have actually joined and used the tables in the past, we can give them the guidance and really nice diagram that they can refer to. So that is the ERD diagram that we are releasing today. Available for all customers including our free customers, where you can select any tables, and we will show you the relationship that table has, that you can use right away in your sequel queries. >> And that will facilitate, that simplifies doing more complex joins, yes? Which is an Achilles heel of Snowflake. That's not really what they are about, but they have to rely on the ecosystem to help them do that, which has always been their strategy. The company founded in March 2020, amazing. And then relatively small still, yes? Or is it self-funded? I mean, you've raised a little bit of money, but what's your status? >> Yeah, we raised our seed funding when I first started the company. We've also raised another round of bridge round last year and we plan to raise our another venture round of funding soon. >> Great. Awesome. >> And we're going to be making those investments. What are some of the key parts of the business that you're going to use that funding for? >> There's a lot to build. (Shinji laughing) >> Dave: Yeah. Engineering. >> Obviously more automation features, but having, I would say right now, we have now built a really good foundation of data discovery and that includes fully automated data cataloging for metadata, column level lineage, and also building the usage model like popularity, who's using what, all that type of stuff. So, now we are starting to build really exciting features that leverages these fundamental aspects of data discovery, like auto propagation of tags. We also do auto propagation of documentation. So you write one column description once, and it will get replicated and changed everywhere throughout your data model. We have also other things that we have in store especially more for next year, are, package support for specific use cases like data governance, self-service analytics and cloud cost management. >> Nice, lots of work-- >> Dave: Impressive, I'm blown away. >> And you've accomplished this during a pandemic that's even more impressive. Thank you so much Shinji for coming on, talking to us about Select Star. What you're enabling organizations to do, really derive the context from that data taking a lot of manual work away. We appreciate your insights and your time and wish you the best of luck. >> Well, thanks so much for having me here. This has been great. >> Good. Thanks so much. For Dave Vellante, I'm Lisa Martin. You're watching the Cube's coverage of Snowflake Summit 22, day two. Stick around. Dave has an industry analyst panel common up next. You won't want to miss it. (soft music)

Published Date : Jun 16 2022

SUMMARY :

and Lisa Martin are here with you. What do you guys do? and 100s of 1000s of data sets you have. and then it becomes this waste of time. so that you can truly use that you have in your company And we will also provide you with, Or, we can also give you a and then we will automate and I would think that you for the data team to be able How are you helping organizations? so that you can add tags, ownership, And you started the company provide that support to so that they can use and leverage and we will show you the And that will facilitate, and we plan to raise our What are some of the key There's a lot to build. that we have in store and wish you the best of luck. for having me here. of Snowflake Summit 22, day two.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

Lisa MartinPERSON

0.99+

Dave VellantePERSON

0.99+

March, 2020DATE

0.99+

March 2020DATE

0.99+

100sQUANTITY

0.99+

Concord SystemsORGANIZATION

0.99+

ShinjiPERSON

0.99+

Select StarORGANIZATION

0.99+

Silicon valleyLOCATION

0.99+

1000sQUANTITY

0.99+

AkamaiORGANIZATION

0.99+

Shinji KimPERSON

0.99+

SnowflakeORGANIZATION

0.99+

last yearDATE

0.99+

next yearDATE

0.99+

Snowflake Summit 22EVENT

0.99+

todayDATE

0.99+

bothQUANTITY

0.98+

one columnQUANTITY

0.98+

tens of thousands of tablesQUANTITY

0.97+

firstQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

SQLTITLE

0.95+

snowflakeORGANIZATION

0.95+

day twoQUANTITY

0.95+

SnowflakeTITLE

0.95+

oneQUANTITY

0.94+

one placeQUANTITY

0.94+

single sourceQUANTITY

0.9+

SelectTITLE

0.82+

CubePERSON

0.77+

CubeORGANIZATION

0.75+

500 companiesQUANTITY

0.74+

endDATE

0.7+

SyncOTHER

0.69+

StarCOMMERCIAL_ITEM

0.66+

pandemicEVENT

0.64+

single data assetQUANTITY

0.63+

setsQUANTITY

0.58+

StarOTHER

0.35+

theCUBE Insights with Industry Analysts | Snowflake Summit 2022


 

>>Okay. Okay. We're back at Caesar's Forum. The Snowflake summit 2022. The cubes. Continuous coverage this day to wall to wall coverage. We're so excited to have the analyst panel here, some of my colleagues that we've done a number. You've probably seen some power panels that we've done. David McGregor is here. He's the senior vice president and research director at Ventana Research. To his left is Tony Blair, principal at DB Inside and my in the co host seat. Sanjeev Mohan Sanremo. Guys, thanks so much for coming on. I'm glad we can. Thank you. You're very welcome. I wasn't able to attend the analyst action because I've been doing this all all day, every day. But let me start with you, Dave. What have you seen? That's kind of interested you. Pluses, minuses. Concerns. >>Well, how about if I focus on what I think valuable to the customers of snowflakes and our research shows that the majority of organisations, the majority of people, do not have access to analytics. And so a couple of things they've announced I think address those are helped to address those issues very directly. So Snow Park and support for Python and other languages is a way for organisations to embed analytics into different business processes. And so I think that will be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most most people in the organisation or not, analysts, they're doing some line of business function. Their HR managers, their marketing people, their salespeople, their finance people right there, not sitting there mucking around in the data. They're doing a job and they need analytics in that job. So, >>Tony, I thank you. I've heard a lot of data mesh talk this week. It's kind of funny. Can't >>seem to get away from it. You >>can't see. It seems to be gathering momentum, but But what have you seen? That's been interesting. >>What I have noticed. Unfortunately, you know, because the rooms are too small, you just can't get into the data mesh sessions, so there's a lot of interest in it. Um, it's still very I don't think there's very much understanding of it, but I think the idea that you can put all the data in one place which, you know, to me, stuff like it seems to be kind of sort of in a way, it sounds like almost like the Enterprise Data warehouse, you know, Clouded Cloud Native Edition, you know, bring it all in one place again. Um, I think it's providing, sort of, You know, it's I think, for these folks that think this might be kind of like a a linchpin for that. I think there are several other things that actually that really have made a bigger impression on me. Actually, at this event, one is is basically is, um we watch their move with Eunice store. Um, and it's kind of interesting coming, you know, coming from mongo db last week. And I see it's like these two companies seem to be going converging towards the same place at different speeds. I think it's not like it's going to get there faster than Mongo for a number of different reasons, but I see like a number of common threads here. I mean, one is that Mongo was was was a company. It's always been towards developers. They need you know, start cultivating data, people, >>these guys going the other way. >>Exactly. Bingo. And the thing is that but they I think where they're converging is the idea of operational analytics and trying to serve all constituencies. The other thing, which which also in terms of serving, you know, multiple constituencies is how snowflake is laid out Snow Park and what I'm finding like. There's an interesting I economy. On one hand, you have this very ingrained integration of Anaconda, which I think is pretty ingenious. On the other hand, you speak, let's say, like, let's say the data robot folks and say, You know something our folks wanna work data signs us. We want to work in our environment and use snowflake in the background. So I see those kind of some interesting sort of cross cutting trends. >>So, Sandy, I mean, Frank Sullivan, we'll talk about there's definitely benefits into going into the walled garden. Yeah, I don't think we dispute that, but we see them making moves and adding more and more open source capabilities like Apache iceberg. Is that a Is that a move to sort of counteract the narrative that the data breaks is put out there. Is that customer driven? What's your take on that? >>Uh, primarily I think it is to contract this whole notion that once you move data into snowflake, it's a proprietary format. So I think that's how it started. But it's hugely beneficial to the customers to the users, because now, if you have large amounts of data in parquet files, you can leave it on s three. But then you using the the Apache iceberg table format. In a snowflake, you get all the benefits of snowflakes. Optimizer. So, for example, you get the, you know, the micro partitioning. You get the meta data. So, uh, in a single query, you can join. You can do select from a snowflake table union and select from iceberg table, and you can do store procedures, user defined functions. So I think they what they've done is extremely interesting. Uh, iceberg by itself still does not have multi table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache iceberg in a raw format, they don't have it. But snowflake does, >>right? There's hence the delta. And maybe that maybe that closes over time. I want to ask you as you look around this I mean the ecosystems pretty vibrant. I mean, it reminds me of, like reinvent in 2013, you know? But then I'm struck by the complexity of the last big data era and a dupe and all the different tools. And is this different, or is it the sort of same wine new new bottle? You guys have any thoughts on that? >>I think it's different and I'll tell you why. I think it's different because it's based around sequel. So if back to Tony's point, these vendors are coming at this from different angles, right? You've got data warehouse vendors and you've got data lake vendors and they're all going to meet in the middle. So in your case, you're taught operational analytical. But the same thing is true with Data Lake and Data Warehouse and Snowflake no longer wants to be known as the Data Warehouse. There a data cloud and our research again. I like to base everything off of that. >>I love what our >>research shows that organisation Two thirds of organisations have sequel skills and one third have big data skills, so >>you >>know they're going to meet in the middle. But it sure is a lot easier to bring along those people who know sequel already to that midpoint than it is to bring big data people to remember. >>Mrr Odula, one of the founders of Cloudera, said to me one time, John Kerry and the Cube, that, uh, sequel is the killer app for a Yeah, >>the difference at this, you know, with with snowflake, is that you don't have to worry about taming the zoo. Animals really have thought out the ease of use, you know? I mean, they thought about I mean, from the get go, they thought of too thin to polls. One is ease of use, and the other is scale. And they've had. And that's basically, you know, I think very much differentiates it. I mean, who do have the scale, but it didn't have the ease of use. But don't I >>still need? Like, if I have, you know, governance from this vendor or, you know, data prep from, you know, don't I still have to have expertise? That's sort of distributed in those those worlds, right? I mean, go ahead. Yeah. >>So the way I see it is snowflake is adding more and more capabilities right into the database. So, for example, they've they've gone ahead and added security and privacy so you can now create policies and do even set level masking, dynamic masking. But most organisations have more than snowflake. So what we are starting to see all around here is that there's a whole series of data catalogue companies, a bunch of companies that are doing dynamic data masking security and governance data observe ability, which is not a space snowflake has gone into. So there's a whole ecosystem of companies that that is mushrooming, although, you know so they're using the native capabilities of snowflake, but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other, like relational databases, you can run these cross platform capabilities in that layer. So so that way, you know, snowflakes done a great job of enabling that ecosystem about >>the stream lit acquisition. Did you see anything here that indicated there making strong progress there? Are you excited about that? You're sceptical. Go ahead. >>And I think it's like the last mile. Essentially. In other words, it's like, Okay, you have folks that are basically that are very, very comfortable with tableau. But you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency, um, to San James Point. I think part of it, this kind of plays into it is what makes this different from the ado Pere is the fact that this all these capabilities, you know, a lot of vendors are taking it very seriously to make put this native obviously snowflake acquired stream. Let's so we can expect that's extremely capabilities are going to be native. >>And the other thing, too, about the Hadoop ecosystem is Claudia had to help fund all those different projects and got really, really spread thin. I want to ask you guys about this super cloud we use. Super Cloud is this sort of metaphor for the next wave of cloud. You've got infrastructure aws, azure, Google. It's not multi cloud, but you've got that infrastructure you're building a layer on top of it that hides the underlying complexities of the primitives and the a p I s. And you're adding new value in this case, the data cloud or super data cloud. And now we're seeing now is that snowflake putting forth the notion that they're adding a super path layer. You can now build applications that you can monetise, which to me is kind of exciting. It makes makes this platform even less discretionary. We had a lot of talk on Wall Street about discretionary spending, and that's not discretionary. If you're monetising it, um, what do you guys think about that? Is this something that's that's real? Is it just a figment of my imagination, or do you see a different way of coming any thoughts on that? >>So, in effect, they're trying to become a data operating system, right? And I think that's wonderful. It's ambitious. I think they'll experience some success with that. As I said, applications are important. That's a great way to deliver information. You can monetise them, so you know there's there's a good economic model around it. I think they will still struggle, however, with bringing everything together onto one platform. That's always the challenge. Can you become the platform that's hard, hard to predict? You know, I think this is This is pretty exciting, right? A lot of energy, a lot of large ecosystem. There is a network effect already. Can they succeed in being the only place where data exists? You know, I think that's going to be a challenge. >>I mean, the fact is, I mean, this is a classic best of breed versus the umbrella play. The thing is, this is nothing new. I mean, this is like the you know, the old days with enterprise applications were basically oracle and ASAP vacuumed up all these. You know, all these applications in their in their ecosystem, whereas with snowflake is. And if you look at the cloud, folks, the hyper scale is still building out their own portfolios as well. Some are, You know, some hyper skills are more partner friendly than others. What? What Snowflake is saying is that we're going to give all of you folks who basically are competing against the hyper skills in various areas like data catalogue and pipelines and all that sort of wonderful stuff will make you basically, you know, all equal citizens. You know the burden is on you to basically we will leave. We will lay out the A P. I s Well, we'll allow you to basically, you know, integrate natively to us so you can provide as good experience. But the but the onus is on your back. >>Should the ecosystem be concerned, as they were back to reinvent 2014 that Amazon was going to nibble away at them or or is it different? >>I find what they're doing is different. Uh, for example, data sharing. They were the first ones out the door were data sharing at a large scale. And then everybody has jumped in and said, Oh, we also do data sharing. All the hyper scholars came in. But now what snowflake has done is they've taken it to the next level. Now they're saying it's not just data sharing. It's up sharing and not only up sharing. You can stream the thing you can build, test deploy, and then monetise it. Make it discoverable through, you know, through your marketplace >>you can monetise it. >>Yes. Yeah, so So I I think what they're doing is they are taking it a step further than what hyper scale as they are doing. And because it's like what they said is becoming like the data operating system You log in and you have all of these different functionalities you can do in machine learning. Now you can do data quality. You can do data preparation and you can do Monetisation. Who do you >>think is snowflakes? Biggest competitor? What do you guys think? It's a hard question, isn't it? Because you're like because we all get the we separate computer from storage. We have a cloud data and you go, Okay, that's nice, >>but there's, like, a crack. I think >>there's uniqueness. I >>mean, put it this way. In the old days, it would have been you know, how you know the prime household names. I think today is the hyper scholars and the idea what I mean again, this comes down to the best of breed versus by, you know, get it all from one source. So where is your comfort level? Um, so I think they're kind. They're their co op a Titian the hyper scale. >>Okay, so it's not data bricks, because why they're smaller. >>Well, there is some okay now within the best of breed area. Yes, there is competition. The obvious is data bricks coming in from the data engineering angle. You know, basically the snowflake coming from, you know, from the from the data analyst angle. I think what? Another potential competitor. And I think Snowflake, basically, you know, admitted as such potentially is mongo >>DB. Yeah, >>Exactly. So I mean, yes, there are two different levels of sort >>of a on a longer term collision course. >>Exactly. Exactly. >>Sort of service now and in salesforce >>thing that was that we actually get when I say that a lot of people just laughed. I was like, No, you're kidding. There's no way. I said Excuse me, >>But then you see Mongo last week. We're adding some analytics capabilities and always been developers, as you say, and >>they trashed sequel. But yet they finally have started to write their first real sequel. >>We have M c M Q. Well, now we have a sequel. So what >>were those numbers, >>Dave? Two thirds. One third. >>So the hyper scale is but the hyper scale urz are you going to trust your hyper scale is to do your cross cloud. I mean, maybe Google may be I mean, Microsoft, perhaps aws not there yet. Right? I mean, how important is cross cloud, multi cloud Super cloud Whatever you want to call it What is your data? >>Shows? Cloud is important if I remember correctly. Our research shows that three quarters of organisations are operating in the cloud and 52% are operating across more than one cloud. So, uh, two thirds of the organisations are in the cloud are doing multi cloud, so that's pretty significant. And now they may be operating across clouds for different reasons. Maybe one application runs in one cloud provider. Another application runs another cloud provider. But I do think organisations want that leverage over the hyper scholars right they want they want to be able to tell the hyper scale. I'm gonna move my workloads over here if you don't give us a better rate. Uh, >>I mean, I I think you know, from a database standpoint, I think you're right. I mean, they are competing against some really well funded and you look at big Query barely, you know, solid platform Red shift, for all its faults, has really done an amazing job of moving forward. But to David's point, you know those to me in any way. Those hyper skills aren't going to solve that cross cloud cloud problem, right? >>Right. No, I'm certainly >>not as quickly. No. >>Or with as much zeal, >>right? Yeah, right across cloud. But we're gonna operate better on our >>Exactly. Yes. >>Yes. Even when we talk about multi cloud, the many, many definitions, like, you know, you can mean anything. So the way snowflake does multi cloud and the way mongo db two are very different. So a snowflake says we run on all the hyper scalar, but you have to replicate your data. What Mongo DB is claiming is that one cluster can have notes in multiple different clouds. That is right, you know, quite something. >>Yeah, right. I mean, again, you hit that. We got to go. But, uh, last question, um, snowflake undervalued, overvalued or just about right >>in the stock market or in customers. Yeah. Yeah, well, but, you know, I'm not sure that's the right question. >>That's the question I'm asking. You know, >>I'll say the question is undervalued or overvalued for customers, right? That's really what matters. Um, there's a different audience. Who cares about the investor side? Some of those are watching, but But I believe I believe that the from the customer's perspective, it's probably valued about right, because >>the reason I I ask it, is because it has so hyped. You had $100 billion value. It's the past service now is value, which is crazy for this student Now. It's obviously come back quite a bit below its IPO price. So But you guys are at the financial analyst meeting. Scarpelli laid out 2029 projections signed up for $10 billion.25 percent free time for 20% operating profit. I mean, they better be worth more than they are today. If they do >>that. If I If I see the momentum here this week, I think they are undervalued. But before this week, I probably would have thought there at the right evaluation, >>I would say they're probably more at the right valuation employed because the IPO valuation is just such a false valuation. So hyped >>guys, I could go on for another 45 minutes. Thanks so much. David. Tony Sanjeev. Always great to have you on. We'll have you back for sure. Having us. All right. Thank you. Keep it right there. Were wrapping up Day two and the Cube. Snowflake. Summit 2022. Right back. Mm. Mhm.

Published Date : Jun 16 2022

SUMMARY :

What have you seen? And I also think that the native applications as part of the I've heard a lot of data mesh talk this week. seem to get away from it. It seems to be gathering momentum, but But what have you seen? but I think the idea that you can put all the data in one place which, And the thing is that but they I think where they're converging is the idea of operational that the data breaks is put out there. So, for example, you get the, you know, the micro partitioning. I want to ask you as you look around this I mean the ecosystems pretty vibrant. I think it's different and I'll tell you why. But it sure is a lot easier to bring along those people who know sequel already the difference at this, you know, with with snowflake, is that you don't have to worry about taming the zoo. you know, data prep from, you know, don't I still have to have expertise? So so that way, you know, snowflakes done a great job of Did you see anything here that indicated there making strong is the fact that this all these capabilities, you know, a lot of vendors are taking it very seriously I want to ask you guys about this super cloud we Can you become the platform that's hard, hard to predict? I mean, this is like the you know, the old days with enterprise applications You can stream the thing you can build, test deploy, You can do data preparation and you can do We have a cloud data and you go, Okay, that's nice, I think I In the old days, it would have been you know, how you know the prime household names. You know, basically the snowflake coming from, you know, from the from the data analyst angle. Exactly. I was like, No, But then you see Mongo last week. But yet they finally have started to write their first real sequel. So what One third. So the hyper scale is but the hyper scale urz are you going to trust your hyper scale But I do think organisations want that leverage I mean, I I think you know, from a database standpoint, I think you're right. not as quickly. But we're gonna operate better on our Exactly. the hyper scalar, but you have to replicate your data. I mean, again, you hit that. but, you know, I'm not sure that's the right question. That's the question I'm asking. that the from the customer's perspective, it's probably valued about right, So But you guys are at the financial analyst meeting. But before this week, I probably would have thought there at the right evaluation, I would say they're probably more at the right valuation employed because the IPO valuation is just such Always great to have you on.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Frank SullivanPERSON

0.99+

TonyPERSON

0.99+

MicrosoftORGANIZATION

0.99+

DavePERSON

0.99+

Tony BlairPERSON

0.99+

Tony SanjeevPERSON

0.99+

AmazonORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

SandyPERSON

0.99+

David McGregorPERSON

0.99+

MongoORGANIZATION

0.99+

20%QUANTITY

0.99+

$100 billionQUANTITY

0.99+

Ventana ResearchORGANIZATION

0.99+

2013DATE

0.99+

last weekDATE

0.99+

52%QUANTITY

0.99+

Sanjeev Mohan SanremoPERSON

0.99+

more than one cloudQUANTITY

0.99+

2014DATE

0.99+

2029 projectionsQUANTITY

0.99+

two companiesQUANTITY

0.99+

45 minutesQUANTITY

0.99+

San James PointLOCATION

0.99+

$10 billion.25 percentQUANTITY

0.99+

one applicationQUANTITY

0.99+

OdulaPERSON

0.99+

John KerryPERSON

0.99+

PythonTITLE

0.99+

Summit 2022EVENT

0.99+

Data WarehouseORGANIZATION

0.99+

SnowflakeEVENT

0.98+

ScarpelliPERSON

0.98+

Data LakeORGANIZATION

0.98+

one platformQUANTITY

0.98+

this weekDATE

0.98+

todayDATE

0.98+

10 different tablesQUANTITY

0.98+

three quartersQUANTITY

0.98+

oneQUANTITY

0.97+

ApacheORGANIZATION

0.97+

Day twoQUANTITY

0.97+

DB InsideORGANIZATION

0.96+

one placeQUANTITY

0.96+

one sourceQUANTITY

0.96+

one thirdQUANTITY

0.96+

Snowflake Summit 2022EVENT

0.96+

One thirdQUANTITY

0.95+

two thirdsQUANTITY

0.95+

ClaudiaPERSON

0.94+

one timeQUANTITY

0.94+

one cloud providerQUANTITY

0.94+

Two thirdsQUANTITY

0.93+

theCUBEORGANIZATION

0.93+

data lakeORGANIZATION

0.92+

Snow ParkLOCATION

0.92+

ClouderaORGANIZATION

0.91+

two different levelsQUANTITY

0.91+

threeQUANTITY

0.91+

one clusterQUANTITY

0.89+

single queryQUANTITY

0.87+

awsORGANIZATION

0.84+

first onesQUANTITY

0.83+

Snowflake summit 2022EVENT

0.83+

azureORGANIZATION

0.82+

mongo dbORGANIZATION

0.82+

OneQUANTITY

0.81+

Eunice storeORGANIZATION

0.8+

wave ofEVENT

0.78+

cloudORGANIZATION

0.77+

first real sequelQUANTITY

0.77+

M c M Q.PERSON

0.76+

Red shiftORGANIZATION

0.74+

AnacondaORGANIZATION

0.73+

SnowflakeORGANIZATION

0.72+

ASAPORGANIZATION

0.71+

SnowORGANIZATION

0.68+

snowflakeTITLE

0.66+

ParkTITLE

0.64+

CubeCOMMERCIAL_ITEM

0.63+

ApacheTITLE

0.63+

MrrPERSON

0.63+

senior vice presidentPERSON

0.62+

Wall StreetORGANIZATION

0.6+

Mike Palmer, Sigma Computing | Snowflake Summit 2022


 

>>Welcome back to Vegas guys, Lisa Martin and Dave Lanta here wrapping up our coverage of day two of snowflake summit. We have given you a lot of content in the last couple of days. We've had a lot of great conversations with snowflake folks with their customers and with partners. And we have an alumni back with us. Please. Welcome back to the queue. Mike Palmer, CEO of Sigma computing. Mike. It's great to see you. >>Thanks for having me. And I guess again >>Exactly. >>It's fantastic me. >>So talk to the audience about Sigma before we get into the snowflake partnership and what you guys are doing from a technical perspective, give us that overview of the vision and some of the differentiators. >>Sure. You know, you've over the last 12 years, companies have benefited from enormous investments and improvements in technology in particular, starting with cloud technologies, obviously going through companies like snowflake, but in terms of the normal user, the one that makes the business decision in the marketing department and the finance team, you know, in the works in the back room of the supply chain, doing inventory very little has changed for those people. And the time had come where the data availability, the ability to organize it, the ability to secure it was all there, but the ability to access it for those people was not. And so what Sigma's all about is taking great technology, finding the skillset they have, which happens to be spreadsheets. There are billion license spreadsheet users in the world and connecting that skillset with all of the power of the cloud. >>And how do you work with snowflake? What are some of the, the what's the joint value proposition? >>How are they as an investor? That's what I wanna know. Ah, >>Quiet, which is the way we like them. No, I'm just kidding. Snowflake is, well, first of all, investment is great, but partnership is even better. Right. You know, and I think snowflake themselves are going through some evolution, but let's start with the basics of technology where this all starts because you know, all of the rest doesn't matter if the product is not great, we work directly on snowflake. And what that means is as an end user, when I, when I sit on that marketing team and I want to understand and, and connect, how did I get a, a customer where I had a pay to add? And they showed up on my website and from my website, they went to a trial. And from there, they touched a piece of syndicated contents. All of that data sits in snowflake and I, as a marketer, understand what it means to me. >>So for the first time, I want to be able to see that data in one place. And I want to understand conversion rates. I want to understand how I can impact those conversion rates. I can make predictions. What that user is doing is going to, to Sigma accessing live data in snowflake, they're able to ask ad hoc questions, questions that were never asked questions, that they don't exist in a filter that were never prepped by a data engineer. So they could truly do something creative and novel in a very independent sort of way. And the connection with Snowflake's live data, the performance, the security and governance that we inherit. These are all facilitators to really expand that access across the enterprise. So at, at a product level, we were built by a team of people, frankly, that also were the original investors in snowflake by two amazing engineers and founders, Rob will and Jason France, they understood how snowflake worked and that shows up in the product for our end customers. >>So, but if I may just to follow up on that, I mean, you could do that without snowflake, but what, it would be harder, more expensive. Describe what you'd have to go through to accomplish that outcome. >>And I think snowflake does a good job of enabling the ecosystem at large. Right. But you know, you always appreciate seeing early access to understand what the architecture's going to look like. You know, some of the things that I will, you know, leaning forward that we've heard here that we're very excited about is snowflake going to attack the TP market, right? The transactional market, one of the transactional database market. I, yeah. Right. You know, one of the things that we see coming, and, and one of the bigger things that we'll be talking about in Sigma is not just that you can do analytics out of snowflake. I think that's something that we do exceptionally well on an ad hoc basis, but we're gonna be the first that allow you to write into snowflake and to do that with good performance. And to do that reliably, we go away from OAP, which is the terminology for data warehousing. >>And we go toward transactional databases. And in that world, understanding snowflake and working collaboratively with them creates again, a much better experience for the end customer. So they, they allow us into those programs, even coming to these conferences, we talk to folks that run the industry teams, trying to up level that message and not just talk database and, and analytics, but talk about inventory management. How do we cut down the gap that exists between POS systems and inventory ordering, right? So that we get fewer stockouts, but also that we don't overorder. So that's another benefit, >>Strong business use cases. >>That's correct. >>And you're enabling those business users to have access to that data. I presume in near real time or near real time, so that they can make decisions that drive marketing forward or finance forward or legal >>Forward. Exactly. We had a customer panel yesterday. An example of that go puff is hopefully most of the viewers are familiar with, as a delivery company. This is a complicated business to run. It's run on the fringes. When we think about how to make money at it, which means that the decisions need to be accurate. They need to be real time. You can't have a batch upload for delivery when they're people are on the street, and then there's an issue. They need to understand the exact order at that time, not in 10 minutes, not from five minutes ago, right. Then they need to understand, do I have inventory in the warehouse when the order comes in? If they don't, what's a replacement product. We had a Mike came in from go puff and walked us through all of the complexity of that and how they're using Sigma to really just shorten those decision cycles and make them more accurate. You know, that's where the business actually benefits and, >>And actually create a viable business model. Cuz you think back to the early, think back to the.com days and you had pets.com, right? They couldn't make any money. Yeah. Without chewy. Okay. They appears to be a viable business model. Right? Part of that is just the efficiencies. And it's sort of a, I dunno if those are customers that they may or may not be, but they should be if they're not >>Chewy is, but okay. You know, and that's another example, but I'll even pivot to the various REI and other retailers. What do they care about cohorts? I'm trying to understand who's buying my product. What can I sell to them next? That, that idea of again, I'm sitting in a department, that's not data engineering, that's not BI now working collaboratively where they can get addend engineer, putting data sets together. They have a BI person that can help in the analytics process. But now it's in a spreadsheet where I understand it as a marketer. So I can think about new hierarchies. I wanna know it by customer, by region, by product type. I wanna see it by all of those things. I want to be able to do that on the fly because then it creates new questions that sort of flow. If you' ever worked in development, we use the word flow constantly, right? And as people that flow is when we have a question, we get an answer that generates a question. We have, we just keep doing that iteratively. That that is where Sigma really shines for them. >>What does a company have to do to really take advantage of, of this? I, if they're kind of starting from a company that's somewhat immature, what are the sort of expectations, maybe even outta scope expectations so they can move faster, accelerate analytics, a lot of the themes that we've heard today, >>What does an immature company is actually even a question in, in and of itself? You know, I think a lot of companies consider themselves to be immature simply because for various constraint reasons, they haven't leveraged the data in the way that they thought possible. Good, >>Good, good definition. Okay. So not, not, >>Not, I use this definition for digital transformation. It very simple. It is. Do you make better decisions, faster McKenzie calls this corporate metabolism, right? Can you speed up the metabolism of, of an enterprise and for me and for the Sigma customer base, there's really not much you have to do once. You've adopted snowflake because for the first time the barriers and the silos that existed in terms of accessing data are gone. So I think the biggest barrier that customers have is curiosity. Because once you have curiosity and you have access, you can start building artifacts and assets and asking questions. Our customers are up and running in the product in hours. And I mean that literally in hours, we are a user in snowflake, that's a direct live connection. They are able to explore tables, raw. They can do joins themselves if they want to. They can obviously work with their data engineering team to, to create data sets. If that's the preferred method. And once they're there and they've ever built a pivot table, they can be working in Sigma. So our customers are getting insights in the first one to two days, you referenced some, those of us are old enough to remember pest.com. Also old enough to remember shelfware that we would buy. We are very good at showing customers that within hours they're getting value from their investment in Sigma. And that, that just creates momentum, right? Oh, >>Tremendous momentum and >>Trust and trust and expansion opportunities for Sigma. Because when you're in one of those departments, someone else says, well, you know, why do you get access to that data? But I don't, how are you doing this? Yeah. So we're, you know, I think that there's a big movement here. People, I often compare data to communication. If you go back a hundred years, our communication was not limited. As it turns out by our desire to communicate, it was limited by the infrastructure. We had the typewriter, a letter and the us postal service and a telephone that was wired. And now we have walk around here. We, everything is, is enabled for us. And we send, you know, hundreds and thousands of messages a day and probably could do more. You will find that is true. And we're seeing it in our product is true of data. If you give people access, they have 10 times as many questions as they thought they had. And that's the change that we're gonna see in business over the next few years, >>Frank Salman's first book, what he was was CEO of snowflake was rise of the data cloud. And he talked about network effects. Basically what he described was Metcalf's law. Again, go back to the.com days, right? And he, Bob Metcalf used the phone system. You know, if there's two people in the phone system, it's not that valuable, right. >>You know, exactly, >>You know, grow it. And that's where the value is. And that's what we're seeing now applied to data. >>And even more than that, I think that's a great analogy. In fact, the direct comparison to what Sigma is doing actually goes one step beyond everything that I've been talking about, which is great at the individual level, but now the finance team and the marketing team can collaborate in the platform. They can see data lineage. In fact, one of our, our big emphasis points here is to eliminate the sweet products. You know, the ones where, you know, you think you're buying something, but you really have a spreadsheet product here and a document product there and a slide product over there. And they, you know, you can do all of that in Sigma. You can write a narrative. You can real time live, edit on numbers. You, you know, if you want to, you could put a picture in it. But you know, at Sigma we present everything out of our product. Every meeting is live data. Every question is answered on the spot. And that's when, you know, you know, to your point about met cap's law. Now everybody's involved in the decision making. They're doing it real time. Your meetings are more productive. You have fewer of them because they're no action items, right. We're answering our questions there and we're, and we're moving forward. >>You know, view were meeting sounds good. Productivity is, is weird now with the, the pandemic. But you know, if you go back to the nineties here am I'm, I'm dating myself again, but that's okay. You know, you, you didn't see much productivity going on when the PC boom started in the eighties, but the nineties, it kicked in and pre pandemic, you know, productivity in the us and Europe anyway has been going down. But I feel like Mike, listen to what you just described. I, how many meetings have we been in where people are arguing about them numbers, what are the assumptions on the numbers wasting so much time? And then nothing gets done and they, then they, they bolt cut that away and you drive in productivity. So I feel like we're on a Renaissance of productivity and a lot of that's gonna be driven by, by data. Yeah. And obviously communications the whole 5g thing. We'll see how that builds out. But data is really the main spring of, I think, a new, new Renaissance in productivity. >>Well, first of all, if you could find an enterprise where you ask the question, would you rather use your data better? And they say, no, like, you know, show me, tell me that I'll short their stock immediately. But I do agree. And I, unfortunately I have a career history in that meeting that you just described where someone doesn't like, what you're showing them. And their first reaction is to say, where'd you get that data? You know, I don't trust it. You know? So they just undermined your entire argument with an invalid way of doing so. Right. When you walk into a meeting with Sigma where'd, where'd you get that data? I was like, that's the live data right now? What question do you want answer >>Lineage, right. Yeah. And you know, it's a Sen's book about, you know, gotta move faster. I mean, this is an example of just cutting through making decisions faster because you're right. Mike and the P the P and L manager in a meeting can, can kill the entire conversation, you know, throw FUD at it. Yeah. You know, protect his or her agenda. >>True. But now to be fair to the person, who's tended to do that. Part of the reason they've done that is that they haven't had access to that data before the meeting and they're getting blindsided. Right. So going back to the collaboration point. Yes. Right. The fact we're coming to this discussion more informed in and of itself takes care of some of that problem. Yeah. >>For sure. And if, and if everybody then agrees, we can move on and now talk about the really important stuff. Yeah. That's good. It >>Seems to me that Sigma is an enabler of that curiosity that you mentioned that that's been lacking. People need to be able to hire for that, but you've got a platform that's going here. You go ask >>Away. That's right in the we're very good. You know, we love being a SaaS platform. There's a lot of telemetry. We can watch what we call our mouse to Dows, you know, which is our monthly average users to our daily average users. We can see what level of user they are, what type of artifacts they build. Are they, you know, someone that creates things from scratch, are they people that tend to increment them, which by the way, is helpful to our customers because we can then advise them, Hey, here's, what's really going on. You might wanna work with this team over here. They could probably be a little better of us using the data, but look at this team over here, you know, they've originated five workbooks in the last, you know, six days they're really on it. There's, there's, you know, that ability to even train for the curiosity that you're referring to is now there, >>Where are your customer conversations? Are they at the lines of business? Are they with the chief data officer? What does that look like these days? >>Great question. So stepping back a bit, what, what is Sigma here to do? And, and our first phase is really to replace spreadsheets, right? And so one of the interesting things about the company is that there isn't a department where a spreadsheet isn't used. So Sigma has an enormous Tam, but also isn't necessarily associated with any particular department or any particular vertical. So when we tend to have conversations, it really depends on, you know, either what kind of investment are you making? A lot of mid-market companies are making best technology investments. They're on a public cloud, they're buying snowflake and they wanna understand what's, what's built to really make this work best over the next number of years. And those are very short sales for us because we, we prove that, you know, in, in minutes to hours, if you're working at a large enterprise and you have three or four other tools, you're asking a different question. >>And often you're asking a question of what I call exploration. We have a product that has dashboards and they've been working for us and we don't wanna replace the dashboard. But when we have a question about the data in the dashboard, we're stuck, how do we get to the raw data? How do we get to the example that we can actually manage? You can't manage a dashboard. You can't manage a trend line, but if you get into the data behind the trend line, you can make decisions to change business process, to change quality, accuracy, to change speed of execution. That is what we're trying to enable. Those conversations happen between the it team who runs technology and the business teams who are responsible for the decisions. So we are, you know, we have a cross departmental sale, but across every department, >>One of the things we're not talking about at this event, which is kind of interesting, cause it's all we've been talking about is the macro supply chain challenges, Ukraine, blah, blah, blah, and the stock market. But, but how are you thinking about that? Macro? The impacts you're seeing, you know, a lot of private companies being, you know, recapped, et cetera, you guys obviously very well funded. Yeah. But how do you think about, I mean, I asked Frank a similar question. He's like, look, it's a marathon. We don't worry about it. We, you know, they made the public market, they get 5 billion in cash. Yeah. Yeah. How are you thinking about it? >>You know, first of all, what's the expression, right? You never, never waste a good, you know, in this case recession, no, we don't have one yet, but the impetus is there, right. People are worried. And when they're worried, they're thinking about their bottom lines, they're thinking about where they're going to get efficiency and their costs. They're already dealing with the supply chain issues of inventory. We all have it in our personal lives. If you've ordered anything in the last six months, you're used to getting it in, you know, days to weeks. And now you're getting in months, you know, we had customers like us foods as a good example, like they're constantly trying to align inventory. They have with transportation that gets that inventory to their end customers, right? And they do that with better data accuracy at the end point, working with us on what we are launching. >>And I mentioned earlier, having more people be able to update that data creates more data, accuracy creates better decisions. We align that then with them and better collaboration with the folks that then coordinate the trucks with Prologis and the panel yesterday, they're the only commercial public company that reports their, their valuations on a quarterly basis. They work with Sigma to trim the amount of time it takes their finance team to produce that data that creates investor confidence that holds up your stock price. So I mean the, the importance of data relative to all the stakeholders in enterprise cannot be overstated. Supply chain is a great example. And yes, it's a marathon because a lot of the technology that drives supply chain is old, but you don't have to rip out those systems to put your data into snowflake, to get better access through Sigma, to enable the people in your environment to make better decisions. And that's the good news. So for me, while I agree, there's a marathon. I think that most of the, I dunno if I could continue this metaphor, but I think we could run quite far down that marathon without an awful lot of energy by just making those couple of changes. >>Awesome. Mike, this has been fantastic. Last question. I, I can tell, I know a lot of growth for Sigma. I can feel it in your energy alone. What are some of the key priorities that you're gonna be focusing on for the rest of the year? >>Our number one priority, our number two priority and number three priority are always build the best product on the market, right? We, we want customers to increase usage. We want them to be delighted. You know, we want them to be RA. Like we have customers at our booth that walk up and it's like, you're building a great company. We love your product. I, if you want to show up happy at work, have customers come up proactively and tell you how your products changed their life. And that is, that is the absolute, most important thing because the real marathon here is that enablement over the long term, right? It is being a great provider to a bunch of great companies under that. We are growing, you know, we've been tripling the company for the fast few years, every year, that takes a lot of hiring. So I would've alongside product is building a great culture with bringing the best people to the company that I guess have my energy level. >>You know, if you could get paid in energy, we would've more than tripled it, you know, but that's always gonna be number two, where we're focused on the segment side, you know, is really the large enterprise customer. At this point, we are doing a great job in the mid-market. We have customer, we have hundreds of customers in our free trial on a constant basis. I think that without wanting to seem over confident or arrogant, I think our technology speaks for itself and the product experience for those users, making a great ROI case to a large enterprise takes effort. It's a different motion. We're, we're very committed to building that motion. We're very committed to building out the partner ecosystem that has been doing that for years. And that is now coming around to the, the snowflake and all of the ecosystem changes around snowflake because they've learned these customers for decades and now have a new opportunity to bring to them. How do we enable them? That is where you're gonna see Sigma going over the next couple of years. >>Wow, fantastic. Good stuff. And a lot of momentum, Mike, thank you so much for joining Dave and me talking about Sigma, the momentum, the flywheel of what you're doing with snowflake and what you're enabling customers to achieve the massive business outcomes. Really cool stuff. >>Thank you. And thank you for continuing to give us a platform to do this and glad to be back in conferences, doing it face to face. It's fantastic. >>It it's the best. Awesome. Mike, thank you for Mike Palmer and Dave ante. I'm Lisa Martin. You've been watching the cube hopefully all day. We've been here since eight o'clock this morning, Pacific time giving you wall the wall coverage of snowflake summit 22 signing off for today. Dave and I will see you right bright and early tomorrow morning. I will take care guys.

Published Date : Jun 16 2022

SUMMARY :

And we have an alumni back with us. And I guess again So talk to the audience about Sigma before we get into the snowflake partnership and what you guys are doing from a technical the one that makes the business decision in the marketing department and the finance team, you know, in the works in How are they as an investor? know, all of the rest doesn't matter if the product is not great, we work directly on And the connection So, but if I may just to follow up on that, I mean, you could do that without some of the things that I will, you know, leaning forward that we've heard here that we're very excited about is And we go toward transactional databases. And you're enabling those business users to have access to that data. do I have inventory in the warehouse when the order comes in? Part of that is just the efficiencies. You know, and that's another example, but I'll even pivot to the various REI You know, I think a lot of companies consider Good, good definition. of an enterprise and for me and for the Sigma customer base, there's really not much you And that's the change that we're gonna see in business over the next few years, You know, if there's two people in the phone system, it's not that valuable, right. And that's what we're seeing now applied to data. You know, the ones where, you know, you think you're buying something, Mike, listen to what you just described. And their first reaction is to say, where'd you get that data? you know, throw FUD at it. So going back to the collaboration point. And if, and if everybody then agrees, we can move on and now talk about the really important stuff. Seems to me that Sigma is an enabler of that curiosity that you mentioned that that's been lacking. We can watch what we call our mouse to Dows, you know, which is our monthly average users to our daily we prove that, you know, in, in minutes to hours, if you're working at a large enterprise and you have three or four other So we are, you know, we have a cross departmental sale, but across every department, you know, a lot of private companies being, you know, recapped, et cetera, you guys obviously very You never, never waste a good, you know, in this case recession, And I mentioned earlier, having more people be able to update that data creates more data, What are some of the key priorities that you're gonna be focusing on for the We are growing, you know, we've been tripling the company for the fast few years, You know, if you could get paid in energy, we would've more than tripled it, you know, but that's always gonna And a lot of momentum, Mike, thank you so much for joining Dave and me talking about Sigma, And thank you for continuing to give us a platform to do this and glad to be back in conferences, Dave and I will see you right bright and early tomorrow morning.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Dave LantaPERSON

0.99+

FrankPERSON

0.99+

MikePERSON

0.99+

Mike PalmerPERSON

0.99+

threeQUANTITY

0.99+

DavePERSON

0.99+

MetcalfPERSON

0.99+

10 timesQUANTITY

0.99+

Jason FrancePERSON

0.99+

Rob willPERSON

0.99+

5 billionQUANTITY

0.99+

Bob MetcalfPERSON

0.99+

Frank SalmanPERSON

0.99+

SigmaORGANIZATION

0.99+

two peopleQUANTITY

0.99+

hundredsQUANTITY

0.99+

yesterdayDATE

0.99+

PrologisORGANIZATION

0.99+

first bookQUANTITY

0.99+

first timeQUANTITY

0.99+

EuropeLOCATION

0.99+

two daysQUANTITY

0.99+

first phaseQUANTITY

0.99+

todayDATE

0.99+

VegasLOCATION

0.99+

five minutes agoDATE

0.99+

eightiesDATE

0.98+

six daysQUANTITY

0.98+

five workbooksQUANTITY

0.98+

one placeQUANTITY

0.98+

10 minutesQUANTITY

0.98+

oneQUANTITY

0.98+

eight o'clock this morningDATE

0.98+

first oneQUANTITY

0.98+

Snowflake Summit 2022EVENT

0.97+

SnowflakeORGANIZATION

0.97+

pets.comORGANIZATION

0.97+

billion license spreadsheetQUANTITY

0.96+

ninetiesDATE

0.96+

day twoQUANTITY

0.95+

OneQUANTITY

0.95+

four other toolsQUANTITY

0.94+

Sigma ComputingORGANIZATION

0.93+

two amazing engineersQUANTITY

0.92+

snowflake summit 22EVENT

0.92+

pandemicEVENT

0.9+

first reactionQUANTITY

0.89+

Sigma computingORGANIZATION

0.88+

UkraineLOCATION

0.86+

next couple of yearsDATE

0.85+

last six monthsDATE

0.85+

pest.comORGANIZATION

0.84+

early tomorrow morningDATE

0.82+

firstQUANTITY

0.82+

next few yearsDATE

0.77+

twoQUANTITY

0.76+

decadesQUANTITY

0.76+

Kuntal Vahalia, ThoughtSpot | Snowflake Summit 2022


 

(upbeat music) (upbeat music) (upbeat music) >> Welcome back to Las Vegas. Lisa Martin here, with Dave Vellante. We are covering day two of our coverage of Snowflake Summit '22. of Snowflake Summit '22. It's been a cannon of content coming your way, the last couple of days. We love talking with customers, with partners. We've got a partner on the program from ThoughtSpot. We're going to be diving into digital transformation with self-service analytics for the modern data stack. Please welcome Kuntal Vahalia, SVP of Channel and Alliances at ThoughtSpot. Welcome Kuntal. >> Thank you, Lisa. Dave, thank you for having us. >> Dave: Good to see you. >> Talk to the audience a little bit about ThoughtSpot. Give 'em an overview, and then de dive into the partnership with Snowflake. >> Yeah, absolutely. So ThoughtSpot is the, what we call live analytics, for the modern data stack, right? We want to be the experience layer for all the data that's getting modernized and moving into the cloud, right? And then specifically to Snowflake, we, of course, we have seen over the last two days here Snowflake has made tremendous innovations where they've accelerated a customer's journey into the cloud, especially the data cloud. Our job is to go really unlock that data, right? Generate that value, make it consumable at the at the experience level layer, right? So what we want to do here with Snowflake is here with Snowflake is make analytics self service for the end users, for the end users, on top of the Snowflake data cloud, right? And we want to empower everyone to create, consume, and operationalize data driven insights. We think if the end users can gender their own insights through live analytics, we could do have a completely different operating model for a business, right? And I think we can do that in accelerated fashion on, sitting on top of Snowflake data cloud. >> End users? Lines of business? >> It's line of business users, so we directly go to end users. That's one of our differentiation, not just IT, not just IT, but as end users as well, so we could be all things to all enterprise, to all enterprise, across our line of businesses. >> So what kind of impact are you seeing with your customers? You know, ones that are leaning into ThoughtSpot and Snowflake and sort of rethinking their data approach? >> Yeah. I mean the impact could be immense, right? As I said, this is not just about analytics. If we are successful in empowering end users, it completely changes the velocity of the business. We are now driving innovation at every node, at every layer in the organization. Not just IT, not just smaller segments in the organization, we are doing this anywhere, in any pocket, right? So I think the impact could be massive, if we do this right. And I think we are starting to see that, we have a lot of customers here actually, joint customers, Capital One, Canadian Tires, Walmart, they're all joint customers, where we have seen starting to see some of those impacts, where we have data getting modernized, the stack being ready, and then we're coming in at the top as the experience layer, which is driving that new digital operating model. >> Describe the maturity curve when you go, you mentioned some of the the the leaders, I mean, take a Walmart. I mean, they kind of invented the whole, you know, beer and diapers thing, right? So obviously a company with tremendous resources and and and advanced technology. Compare. Compare. So some of those leaders with sort of the other end of the spectrum, when you come into a company and you see, okay, here's, okay, here's, what does that spectrum look like? And and what's the upside for the, I don't want to call 'em laggards, but I'll call 'em laggards. >> Yeah, yeah, absolutely. I mean, this, this, I think we are still early on. I mean, as this is not just a exercise in getting the data ready, this is also an exercise in in change management, because now, as I said, we are going beyond IT. We are going to line of business users as well, so a lot of change management required, and we have seen companies that are actually putting this in front of the frontline workers, empowering frontline workers to consume analytics and to drive self-service via search and AI, and AI, they're on a different curve. They are actually being competitive in the market. That's an advantage for them, right? >> Right. >> So we are seeing a lot of companies, like Walmart, already ahead in that journey with us still early days, right? We got to go, land in one line of business, go from there to other line of business till we go enterprise wide. >> Can you, it sounds like you might be a facilitator of connecting heads of business with the IT and the tech folks at ThoughtSpot. >> Absolutely. I mean, that is the Holy Grail. How do we get IT And line of business work frictionless, where everyone has their roles defined, right? And still get to the outcome where innovation is happening now with IT on the data cloud and then go beyond IT into the broader business? So yeah, I think that's definitely one of the our goals and outcomes of what we do. >> So what are the roles there? So the business obviously wants to do more business. Okay. They put analytics in their hands and it helps them get there. What role does IT play? Making sure that those services are available? Are they a service provider? Is it more of a governance and compliance thing? >> Yeah, I mean, step number one is still to get the data ready and I think IT still owns the key to that kingdom, especially around governance, security, so I think IT still has to get the data stack ready, right? Step number two is for IT to really build a framework for how to consume analytics for how to consume analytics for the end users. Step number three then is, is the rule is, Hey, we don't need IT to now deliver dashboards or KPIs to the business every day that that's how traditional dashboards work. In our world, once IT does step number one and step number two the business can take over and they can now go operate the business on their own using live analytics. >> Creating self-serve >> Absolutely. Self-service analytics using service in AI. >> What have you seen, in terms of from the IT folks perspective, we talked about change management a minute ago, It's very challenging to do, but these days every company has to be a data company. >> Kuntal: Yeah. >> They don't have a choice. >> Yeah. >> What are you seeing from a change management perspective within the IT function across your customers and then be willing to let go in some cases? and then be willing to let go in some cases? >> Actually, >> Actually, what we have seen is, you know, think about the the technical debt that IT is owning over the last few years, it's just increasing, right? IT is looking for ways to A. cut cost, to A. cut cost, B. deliver more B. deliver more with probably the same amount of resources they have, so in some ways they welcome this new operating model, as long as they can keep the governance, they can keep the security, they can keep the framework around how business is run, as long as IT has a say in that, they're more than welcome to invite business, to really drive innovation at the edges through self-service analytics, so what we found is IT is a is a welcome partner, in this journey, especially when they have to get the data ready and modernize the data set for us. >> You guys announcing a partnership with Matillion this week, what? Tell us what that's all about. The one earlier. >> We did. So we did announce a partnership, so I think, as I said, step number one is getting the data ready, and I think we have heard from Frank and the rest of this team this week, even Snowflake is taking a best of breed approach on the data stack, right? So we want the computer So we want the computer and the storage to be ready, but for that, the data pipeline has to be ready, which is where Matillion comes in with the low code, no code approach, so we think between Matillion, Snowflake, and ThoughtSpot, we could be the accelerated best of breed approach for customers to realize value and and be live on the, on the modern data stack. >> Is that your, is that your stack? >> As we said, we, we meet the customers where they are, but we think this is accelerated path. >> What are the advantages of, you know, what are you optimizing on in that stack? in that stack? >> First with Matillion, we have, what we concept, we have this concept of Spot Apps, so this is ThoughtSpot's way to really capture the IP and the templates for customers to move fast, right? That's where we bake in a lot of the industry IP, a lot of functional IP around end sources, and and endpoints, so we have some of those spot apps built with Matillion, built with Matillion, so now customers able to ingest data into the so now customers able to ingest data into the into the cloud faster using Matillion, right? So that's, that's something we worked with, same thing with Snowflake, you know, we are now starting to go verticalize with Snowflake, So we are starting to build a lot of IP around financial services, healthcare and whatnot, which is where I think we are, again, accelerating customer's path on the modern data stack, all the way to the experience layer. >> A as a partner of Snowflake's, what does all the narrative around the data cloud, we've been talking about that for a while, a lot of conversation around the data cloud the last couple of days, where do partners fit into that overall narrative? >> Yeah, I think multiple places, right? First thing, First thing, First thing, every layer of the data cloud still needs innovation, still needs partners, and every partner adds a different set of value. Just like we add value at the, at the top layer, which is the experience layer, But I think, you know, we have channel partners we have a lot of SIs and GSIs here, and GSIs here, especially once we take a best of breed approach, to delivering customer outcomes, SIs are the neutral ground. They're the ones who are going to have the Matillion expertise, and the Snowflake expertise, and thoughts for expertise, all baked into one DNA practice, data analytics practice, so I think at every layer, partners have a role to play and every layer partners have role, have value to add. have value to add. >> What's the engagement process like for customers when you you're talking about the the the the three way partnership Matillion, Matillion, ThoughtSpot, and stuff like, how do customers get involved, what's your go to market look like? >> Right. I mean, obviously, I mean, we, we, we are humble, we know where we are. I mean, we, a little bit smaller than, than Snowflake Snowflake has a head start, so they've been about five years ahead of us, so we are largely targeting customers that are that are Snowflake ready, where there is some semblance of data cloud, where data seems to be organized and ready to go, right? so once we think the customer is at that point in the journey, we have very strong partnership across both, across entire organization, at a product level, at a field engagement level, and our field teams really understand the value the joint value between the two organizations, so we, we start to see Snowflake feel, and ThoughtSpot feel, starting to work together on key accounts, once we think the data is ready, and wherever we need to accelerate the data, that's where we bring in Matillion as well, to ingest more data into, into the data cloud, but that's largely been the engagement model between the three companies. >> How do you see the announcements that they made around applications affecting what you guys are doing and your ecosystem? >> Yeah, I mean, I think that's a validation. I think to us, I think to us, we always said step number one is to modernize the data, move into the cloud. That's step number one, but we still have to unlock the data. Like the data still needs to be consumed, And we always said, Hey, we are that app that could drive the consumption of data, but now with some of the announcement we have seen, I think the validation is there saying, "Hey, yes." There, even Snowflake is ready to move in a more accelerated fashion into the application world where they want to drive consumption, not just with the analytics layer, but with lot of other applications that's out there. >> Yeah. >> What are some of the things that you've heard this week, in the last couple of days, that really validate that really validate the the partnership with Snowflake, from your perspective? >> Yeah. I mean, I think the first thing is, is this concept of modern data stack, which is best of breed. I think we have been thinking about that for a long time, for the last year or so. We have seen this come through at this event here, right? We see Matillion, Snowflake, and then the SIs around it, all coming together, so I think to us, that's the biggest validation that the modern data stack is the right approach, especially best of breed, to drive the right customer outcomes, so to me, that's big. Second is this concept of really accelerating applications on top of the data cloud. I think that's, again a validation of what we've been trying to do over the last few years, which is, the data has modernized, let's now drive consumption and adoption of that data, so I think those are the two big take areas. >> So, so the modern data stack, to get to the modern data stack, you got to do some work. >> Yep. >> But so the, the play is to hold out the carrot, which you just kind of just did, 'cause once you get there, then you can really start to hit the steep part of the S-curve, right? >> That's right. >> What, what are the, what would you say are are the sort of prerequisites that customers need to think about to really jump on that modern data stack curve? >> Um, I think they they got to first have a vision around the outcomes, what outcomes we are driving. I think it's one thing to say, "Hey, we just going to move the data over from from legacy into the cloud." I mean, that's just, that's just migration, that doesn't drive the outcomes. To us, what makes sense is, let's start with the right outcomes around supply chain, around retail, around e-commerce, let's name it, right? I think, it starts there. From there on, let's figure out, what do we need? What's what, what technologies do we need in the stack to enable those outcomes, right? It could be ThoughtSpot at the top, it could be something else at the top, and same thing, it's Matillion, and Snowflake, right? But it really starts with what outcomes we going to drive in what industry and what KPIs are important for our customers. >> What's next for ThoughtSpot and Snowflake? I was just looking at the notes here. Over 250 plus joint customers, you mentioned some Disney+, Capital One, I've seen them around here. What's next for these two powerhouses? >> Well, I think we're just getting started, to be honest. I mean those 250 customers, first, we got to go drive success for them. I mean, we are a 10 year old company with a two year runway because we transferred our business transformed our business to cloud, less than two years ago, so this 250 joint logos are actually all happened in the last two years and that's driven us to be in the, probably in the top five adoption drivers for Snowflake, all in the last two years, So goal number one is to really, let's go drive customer success for these joint logos. Second, let's go expand them, right? Consumption is the key criteria, both for Snowflake, as well as ThoughtSpot. We are very well aligned, our pricing models aligned there, our incentives aligned there, We really want customers to go adopt and consume the stack, and then of course, really, we want to go verticalize ourselves, start speaking the language of the customers, and really just get bigger. I mean, we still got to build a machine around this. >> Lisa: Yep. >> Lisa, this is, this is all still early days for us. >> Early innings. A lot of, but a ton of potential. The, the field is ripe. >> The field is right open. I think in, and we will, I think we are, bottom of the third or bottom of the second, I think you still have a long game to play, right? >> Well good. Most people always use bottom the first. I'm glad to hear it's really bottom of the second or third. That's pretty good. >> Yeah, well, 250 logos are there. >> Lisa: Yeah. >> And it's further along 'cause of the, the I don't want to say it like this, but I'm going to say it anyway. The failure of the big data movement, it pushed us along quite, quite a ways, in terms of thinking, putting data at the core, the technology kind of failed us, you know and the, and the, you know and the, and the, the centralization of the architectures, the centralization of the architectures, it failed us, But then the cloud came along. >> That's right. >> We learned a lot and now, you know, technology's advanced I think people's thinking is advanced and they realize increasingly the importance of data >> And ecosystem is coming. I mean, I think you look around here, this is a secret sauce for the future. >> Dave: Yep. This is what's going to really get us moving faster over the next few innings because now the rest of the ecosystem is coming along. >> Yep. The momentum is here. That flywheel is moving. >> That's right. >> Definitely. Kuntal, thank you very much for joining David and me on the program talking about >> Kuntal: Lisa, Dave, thank you so much for your time. >> what ThoughtSpot's all about, what you're up to, a lot of momentum. We wish you the best of luck as you progress into those later innings. >> Thank you >> For Dave Vellante. I'm Lisa Martin. You're watching theCube. We are live in Las Vegas at Snowflake Summit '22. Dave and I are going to be right back with our next guest, so stick around. (mellow techno music) (mellow techno music) (mellow techno music) (mellow techno music)

Published Date : Jun 15 2022

SUMMARY :

for the modern data stack. Dave, thank you for having us. dive into the partnership with Snowflake. and moving into the cloud, right? so we directly go to end users. And I think we are starting to see that, end of the spectrum, in front of the frontline workers, We got to go, it sounds like you might be a facilitator I mean, that is the Holy Grail. So the business obviously the key to that kingdom, using service in AI. from the IT folks perspective, and modernize the data set for us. with Matillion this week, what? and the storage to be ready, we meet the customers where they are, and the templates for and the Snowflake expertise, that point in the journey, Like the data still needs to be consumed, that the modern data stack So, so the modern data stack, the stack to enable those outcomes, right? ThoughtSpot and Snowflake? all in the last two years, this is all still early days for us. The, the field is ripe. I think we are, bottom of the third bottom of the second or third. The failure of the big data movement, I mean, I think you look around here, because now the rest of the That flywheel is moving. and me on the program talking about thank you so much for your time. We wish you the best of luck Dave and I are going to be

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

WalmartORGANIZATION

0.99+

KuntalPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

FrankPERSON

0.99+

Kuntal VahaliaPERSON

0.99+

LisaPERSON

0.99+

KuntaPERSON

0.99+

Las VegasLOCATION

0.99+

Capital OneORGANIZATION

0.99+

FirstQUANTITY

0.99+

Canadian TiresORGANIZATION

0.99+

MatillionORGANIZATION

0.99+

three companiesQUANTITY

0.99+

SecondQUANTITY

0.99+

ThoughtSpotORGANIZATION

0.99+

two yearQUANTITY

0.99+

two organizationsQUANTITY

0.99+

250 customersQUANTITY

0.99+

last yearDATE

0.99+

SnowflakeORGANIZATION

0.99+

secondQUANTITY

0.99+

bothQUANTITY

0.99+

this weekDATE

0.99+

thirdQUANTITY

0.98+

250 logosQUANTITY

0.98+

first thingQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

Snowflake Summit '22EVENT

0.97+

day twoQUANTITY

0.97+

firstQUANTITY

0.97+

less than two years agoDATE

0.96+

oneQUANTITY

0.95+

10 year oldQUANTITY

0.95+

two big take areasQUANTITY

0.95+

one thingQUANTITY

0.95+

two powerhousesQUANTITY

0.94+

250 joint logosQUANTITY

0.94+

three wayQUANTITY

0.94+

Snowflake Summit '22.EVENT

0.94+

Rinesh Patel, Snowflake & Jack Berkowitz, ADP | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit 22 live from Caesars Forum in Las Vegas. I'm Lisa Martin with Dave Vellante. We've got a couple of guests joining us now. We're going to be talking about financial services. Rinesh Patel joins us, the Global Head of Financial Services for Snowflake, and Jack Berkowitz, Chief Data Officer at ADP. Guys, welcome to the program. >> Thanks, thanks for having us. >> Thanks for having us. >> Talk to us about what's going on in the financial services industry as a whole. Obviously, we've seen so much change in the last couple of years. What does the data experience look like for internal folks and of course, for those end user consumers and clients? >> So, one of the big things happening inside of the financial services industry is overcoming the COVID wait, right? A lot of banks, a lot of institutions like ours had a lot of stuff on-prem. And then the move to the Cloud allows us to have that flexibility to deal with it. And out of that is also all these new capabilities. So the machine learning revolution has really hit the services industry, right? And so it's affecting how our IT teams or our data teams are building applications. Also really affecting what the end consumers get out of them. And so there's all sorts of consumerization of the experience over the past couple of years much faster than we ever expected it to happen. >> Right, we have these expectations as consumers that bleed into our business lives that I can do transactions. It's going to be on the swipe in terms of checking authenticity, fraud detection, et cetera. And of course we don't want things to go back in terms of how brands are serving us. Talk about some of the things that you guys have put in place with Snowflake in the last couple of years, particularly at ADP. >> Yeah, so one of the big things that we've done, is, one of the things that we provide is compensation data. So we issue a thing called the National Employment Report that informs the world as to what's happening in the U.S. economy in terms of workers. And then we have compensation data on top of that. So the thing that we've been able to do with Snowflake is to lower the time that it takes us to process that and get that information out into the fingertips of people. And so people can use it to see what's changed in terms of with the worker changes, how much people are making. And they can get it very, very quickly. And we're able to do that with Snowflake now. Used to take us weeks, now it's in a matter of moments we can get that updated information out to people. >> Interesting. It helps with the talent war and- >> Helps in the talent war, helps people adjust, even where they're going to put supply chain in reaction to where people are migrating. We can have all of that inside of the Snowflake system and available almost instantaneously. >> You guys announced the Financial Data Cloud last year. What was that like? 'Cause I know we had Frank on early, he clearly was driving the verticalization of Snowflake if you will, which is kind of rare for a relatively new software company but what's that been like? Give us the update on where you're at and biggest vertical, right? >> Absolutely, it's been an exciting 12 months. We're a platform, but the journey and the vision is more. We're trying to bring together a fragmented ecosystem across financial services. The aim is really to bring together key customers, key data providers, key solution providers all across the different Clouds that exist to allow them to collaborate with data in a seamless way. To solve industry problems. To solve industry problems like ESG, to solve industry problems like quantitative research. And we're seeing a massive groundswell of customers coming to Snowflake, looking at the Financial Services Data Cloud now to actually solve business problems, business critical problems. That's really driving a lot of change in terms of how they operate, in terms of how they win customers, mitigate risk and so forth. >> Jack, I think, I feel like the only industry that's sometimes more complicated than security, is data. Maybe not, security's still maybe more fragmented- >> Well really the intersection of the two is a nightmare. >> And so as you look out on this ecosystem, how do you as the chief data officer, how do you and your organization, what process do you use to decide, okay, which of the, like a chef, which of these ingredients am I going to put together for my business. >> It's a great question, right? There's been explosion of companies. We kind of look at it in two ways. One is we want to make sure that the software and the data can interoperate because we don't want to be in the business of writing bridge code. So first thing is, is having the ecosystem so that the things are tested and can work together. The other area is, and it's important to us is understanding the risk profile of that company. We process about 20% of the U.S. payroll, another 25% of the taxes. And so there's a risk to us that we have an imperative to protect. So we're looking at those companies are they financed, what's their management team. What's the sales experience like, that's important to us. And so technology and the experience of the company coming together are super important to us. >> What's your purview as a chief data officer, I mean, a lot of CDOs that I know came out of the back office and it was a compliance or data quality. You come out of industry from a technology company. So you're sort of the modern... You're like the modern CDO. >> Thanks. Thanks. >> Dave: What's your role? >> I appreciate that. >> You know what I'm saying though? >> And for a while it was like, oh yeah, compliance. >> So I actually- >> And then all of a sudden, boom, big deal. >> Yeah, I really have two jobs. So I have that job with data governance but a lot of data security. But I also have a product development unit, a massive business in monetization of data or people analytics or these compensation benchmarks or helping people get mortgages. So providing that information, so that people can get their mortgage, or their bank loans, or all this other type of transactional data. *So it's both sides of that equation is my reading inside. >> You're responsible for building data products? >> That's right. >> Directly. >> That's right. I've got a massive team that builds data products. >> Okay. That's somewhat unique in your... >> I think it's where CDOs need to be. So we build data products. We build, and we assist as a hub to allow other business units to build analytics that help them either optimize their cost or increase their sales. And then we help with all that governance and communication, we don't want to divide it up. There's a continuum to it. >> And you're a peer of the CIO and the CISO? >> Yeah, exactly. They're my peers. I actually talk to them almost every day. So I've got the CIO as a peer. >> It's a team. >> I've got the security as a peer and we get things done together. >> Talk about the alignment with business. We've been talking a lot about alignment with the data folks, the business folks, the technical folks to identify the right solutions, to be able to govern data, to monetize it, to create data products. What does that... You mentioned a couple of your cohorts, but on the business side, who are some of those key folks? >> So we're like any other big, big organization. We have lots of different business units. So we work directly with either the operational team or the heads of those business units to divine analytic missions that they'll actually execute. And at the same time, we actually have a business unit that's all around data monetization. And so I work with them every single day. And so these business units will come together. I think the big thing for us is to define value and measure that value as we go. As long as we're measuring that value as we go, then we can continue to see improvements. And so, like I said, sometimes it's bottom line, sometimes it's top line, but we're involved. Data is actually a substrate of the company. It's not a side thing to the company. >> Yeah, you are. >> ADP. >> Yeah but if they say data first but you really are data first. >> Yeah. I mean, our CEO says- >> Data's your product. >> Data's our middle name. And it literally is. >> Well, so what do you do in the Snowflake financial services data Cloud? Are you monetizing? >> Yeah. >> What's the plan? >> Yeah, so we have clients. So part of our data monetization is actually providing aggregate and anonymized information that helps other clients make business decisions. So they'll take it into their analytics. So, supply chain optimization, where should we actually put the warehouses based on the population shifts? And so we're actually using the file distribution capabilities or the information distribution, no longer files, where we use Snowflake to actually be that data cloud for those clients. So the data just pops up for our other clients. >> I think the industry's existed a lot with the physical movement of data. When you physically move data, you also physically move the data management challenges. Where do you store it? How do you map it? How do you concord it? And ultimately data sharing is taking away that friction that exists. So it's easier to be able to make informed decisions with the data at hand across two counterparties. >> Yeah, and there's a benefit to us 'cause it lowers our friction. We can have a conversation and somebody can be... Obviously the contracts have to be signed, but once they get done, somebody's up and running on it within minutes. And where it used to be, as you were saying, the movement of data and loss of control, we never actually lose control of it. We know where it is. >> Or yeah, contracts signed, now you got to go through this long process of making sure everything's cool, or a lot of times it could slow down the sale. >> That's right. >> Let's see how that's going to... Let's do a little advanced work. Now you're working without a contract. Here, you can say, "Hey, we're in the Snowflake data cloud. It's governed, you're a part of the ecosystem." >> Yeah, and the ecosystem we announced, oh gee, I think it's probably almost a year and a half ago, a relationship with ICE, Intercontinental Exchange, where they're actually taking our information and their information and creating a new data product that they in turn sell. So you get this sort of combination. >> Absolutely. The ability to form partnerships and monetize data with your partners vastly increases as a consequence. >> Talk to us about the adoption of the financial services data cloud in the last what, maybe nine months or so, since it was announced? And also in terms of the its value proposition, how does the ADP use case articulate that? >> So, very much so. So in terms of momentum, we're a global organization, as you mentioned, we are verticalized. So we have increasingly more expertise and expertise experience now within financial services that allows us to really engage and accelerate our momentum with the top banks, with the biggest asset managers by AUM, insurance companies, sovereign wealth funds on Snowflake. And obviously those data providers and solution providers that we engage with. So the momentum's really there. We're really moving very, very fast in a great market because we've got great opportunity with the capabilities that we have. I mean, ADP is just one of many use cases that we're working with and collaborations that we're taking to market. So yeah, the opportunity to monetize data and help our partners monetize the data has vastly increased within this space. >> When you think about... Oh go ahead, please. >> Yeah I was just going to say, and from our perspective, as we were getting into this, Snowflake was with us on the journey. And that's been a big deal. >> So when you think about data privacy, governance, et cetera, and public policy, it seems like you have, obviously you got things going on in Europe, and you got California, you have other states, there's increasing in complexity. You guys probably love that. (Dave laughs) More data warehouses, but where are we at with that whole? >> It's a great question. Privacy is... We hold some of the most critical information about people because that's our job to help people get paid. And we respect that as sort of our prime agenda. Part of it deals with the technology. How do you monitor, how do you see, make sure that you comply with all these regulations, but a lot of it has to do with the basic ethics of why you're doing and what you're doing. So we have a data and AI ethics board that meets and reviews our use cases. Make sure not only are we doing things properly to the regulation, but are these the types of products, are these the types of opportunities that we as a company want to stand behind on behalf of the consumers? Our company's been around 75 years. We talk about ourselves as a national asset. We have a trust relationship. We want to ensure that that trust relationship is never violated. >> Are you in a position where you can influence public policy and create more standards or framework. >> We actually are, right. We issue something every month called the National Employment Report. It actually tells you what's happening in the U.S. economy. We also issue it in some overseas countries like France. Because of that, we work a lot with various groups. And we can help shape, either data policy, we're involved in understanding although we don't necessarily want to be out in the front, but we want to learn about what's happening with federal trade commission, EOC, because at the end of the day we serve people, I always joke ADP, it's my grandfather's ADP. Well, it was actually my grandfather's ADP. (Dave laughs) He was a small businessman, and he used a ADP all those years ago. So we want to be part of that conversation because we want to continue to earn that trust every day. >> Well, plus your observation space is pretty wide. >> And you've got context and perspective on that that you can bring. >> We move somewhere between two, two and a half trillion dollars a year through our systems. And so we understand what's happening in the economy. >> What are some of the, oh sorry. >> Can your National Employment Report combined with a little Snowflake magic tell us what the hell's going to happen with this economy? >> It's really interesting you say that. Yeah, we actually can. >> Okay. (panelists laugh) >> I think when you think about the amount of data that we are working with, the types of partners that we're working with, the opportunities are infinite. They really, really are. >> So it's either a magic eight ball or it's a crystal ball, but you have it. >> We think- >> We've just uncovered that here on theCUBE. >> We think we have great partners. We have great data. We have a set of industry problems out there that we're working, collaboration with the community to be able to solve. >> What are some of the upcoming use cases Rinesh, that excite you, that are coming up in financial services- >> Great question. >> That snowflake is just going to knock out of the park. >> So look, I think there's a set of here and now problems that the industry faces, ESG's a good one. If you think about ESG, it means many different things from business ethics, to diversity, to your carbon footprint and every asset manager has to make sure they have now some form of green strategy that reflects the values of their investors. And every bank is looking to put in place sustainable lending to help their corporate customers transition. That's a big data problem. And so we're very much at the center of helping those organizations support those informed investors and help those corporates transition to a more sustainable landscape. >> Let me give you an example on Snowflake, we launched capabilities about diversity benchmarks. The first time in the industry companies can understand for their industry, their size, their location what their diversity profile looks like and their org chart profile looks like to differentiate or at least to understand are they doing the right things inside the business. The ability for banks to understand that and everything else, it's a big deal. And that was built on Snowflake. >> I think it's massive, especially in the context of the question around regulation 'cause we're seeing more and more disclosure agreements come out where regulators are making sure that there's no greenwashing taking place. So when you have really strong sources of data that are standardized, that allow that investment process to ingest that data, it does allow for a better outcome for investors. >> Real data, I mean, that diversity example they don't have to rely on a survey. >> It's not a survey. >> Anecdotes. >> It's coming right out of the transactional systems and it's updated, whenever those paychecks are run, whether it's weekly, whether it's biweekly or monthly, all that information gets updated and it's available. >> So it sounds like ADP is a facilitator of a lot of companies ESG initiatives, at least in part? >> Well, we partner with companies all the time. We have over 900,000 clients and all of them are... We've never spoken to a client who's not concerned about their people. And that's just good business. And so, yeah we're involved in that and we'll see where it goes over time now. >> I think there's tremendous opportunity if you think about the data that the ADP have in terms of diversity, in terms of gender pay gap. Huge, huge opportunity to incorporate that, as I said into the ESG principles and criteria. >> Good, 'cause that definitely is what needs to be addressed. (Lisa laughs) Guys thank you so much for joining Dave and me on the program, talking about Snowflake ADP, what you're doing together, and the massive potential that you're helping unlock with the value of data. We appreciate your insights and your time. >> Thank you for having us. >> Dave: Thanks guys. >> Thank you so much. >> For our guests, and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, live in Las Vegas at Snowflake Summit 22. Dave and I will be right back with our next guest. (upbeat music)

Published Date : Jun 15 2022

SUMMARY :

the Global Head of Financial in the last couple of years. inside of the financial services industry And of course we don't is, one of the things that we It helps with the talent war and- inside of the Snowflake system You guys announced the We're a platform, but the like the only industry Well really the intersection of the two And so as you look so that the things are I mean, a lot of CDOs that I know Thanks. And for a while it was And then all of a sudden, So I have that job with data governance that builds data products. That's somewhat unique in your... And then we help with all that governance So I've got the CIO I've got the security as a peer Talk about the alignment with business. and measure that value as we go. but you really are data first. I mean, our CEO says- And it literally is. So the data just pops up So it's easier to be able Obviously the contracts have to be signed, could slow down the sale. in the Snowflake data cloud. Yeah, and the ecosystem we announced, and monetize data with your partners and help our partners monetize the data When you think about... as we were getting into this, are we at with that whole? behalf of the consumers? where you can influence public policy the day we serve people, Well, plus your observation that you can bring. happening in the economy. It's really interesting you say that. Okay. about the amount of data or it's a crystal ball, but you have it. that here on theCUBE. We think we have great partners. going to knock out of the park. that the industry faces, ESG's a good one. And that was built on Snowflake. of the question around regulation they don't have to rely on a survey. the transactional systems companies all the time. about the data that the ADP and the massive potential Dave and I will be right

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Brian GilmorePERSON

0.99+

David BrownPERSON

0.99+

Tim YoakumPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave VolantePERSON

0.99+

Dave VellantePERSON

0.99+

BrianPERSON

0.99+

DavePERSON

0.99+

Tim YokumPERSON

0.99+

StuPERSON

0.99+

Herain OberoiPERSON

0.99+

JohnPERSON

0.99+

Dave ValantePERSON

0.99+

Kamile TaoukPERSON

0.99+

John FourierPERSON

0.99+

Rinesh PatelPERSON

0.99+

Dave VellantePERSON

0.99+

Santana DasguptaPERSON

0.99+

EuropeLOCATION

0.99+

CanadaLOCATION

0.99+

BMWORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

ICEORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Jack BerkowitzPERSON

0.99+

AustraliaLOCATION

0.99+

NVIDIAORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

VenkatPERSON

0.99+

MichaelPERSON

0.99+

CamillePERSON

0.99+

Andy JassyPERSON

0.99+

IBMORGANIZATION

0.99+

Venkat KrishnamachariPERSON

0.99+

DellORGANIZATION

0.99+

Don TapscottPERSON

0.99+

thousandsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Intercontinental ExchangeORGANIZATION

0.99+

Children's Cancer InstituteORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

telcoORGANIZATION

0.99+

Sabrina YanPERSON

0.99+

TimPERSON

0.99+

SabrinaPERSON

0.99+

John FurrierPERSON

0.99+

GoogleORGANIZATION

0.99+

MontyCloudORGANIZATION

0.99+

AWSORGANIZATION

0.99+

LeoPERSON

0.99+

COVID-19OTHER

0.99+

Santa AnaLOCATION

0.99+

UKLOCATION

0.99+

TusharPERSON

0.99+

Las VegasLOCATION

0.99+

ValentePERSON

0.99+

JL ValentePERSON

0.99+

1,000QUANTITY

0.99+

Mitesh Shah, Alation & Ash Naseer, Warner Bros Discovery | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit '22 live from Caesar's Forum in Las Vegas. I'm Lisa Martin, my cohost Dave Vellante, we've been here the last day and a half unpacking a lot of news, a lot of announcements, talking with customers and partners, and we have another great session coming for you next. We've got a customer and a partner talking tech and data mash. Please welcome Mitesh Shah, VP in market strategy at Elation. >> Great to be here. >> and Ash Naseer great, to have you, senior director of data engineering at Warner Brothers Discovery. Welcome guys. >> Thank you for having me. >> It's great to be back in person and to be able to really get to see and feel and touch this technology, isn't it? >> Yeah, it is. I mean two years or so. Yeah. Great to feel the energy in the conference center. >> Yeah. >> Snowflake was virtual, I think for two years and now it's great to kind of see the excitement firsthand. So it's wonderful. >> Th excitement, but also the boom and the number of customers and partners and people attending. They were saying the first, or the summit in 2019 had about 1900 attendees. And this is around 10,000. So a huge jump in a short time period. Talk a little bit about the Elation-Snowflake partnership and probably some of the acceleration that you guys have been experiencing as a Snowflake partner. >> Yeah. As a snowflake partner. I mean, Snowflake is an investor of us in Elation early last year, and we've been a partner for, for longer than that. And good news. We have been awarded Snowflake partner of the year for data governance, just earlier this week. And that's in fact, our second year in a row for winning that award. So, great news on that front as well. >> Repeat, congratulations. >> Repeat. Absolutely. And we're going to hope to make it a three-peat as well. And we've also been awarded industry competency badges in five different industries, those being financial services, healthcare, retail technology, and Median Telcom. >> Excellent. Okay. Going to right get into it. Data mesh. You guys actually have a data mesh and you've presented at the conference. So, take us back to the beginning. Why did you decide that you needed to implement something like data mesh? What was the impetus? >> Yeah. So when people think of Warner brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of HBO, you think of TNT, you think of CNN, we have 30 plus brands in our portfolio and each have their own needs. So the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against as an example, HBO, if Game of Thrones is going on. >> So, okay. So the, the impetus was to serve those lines of business better. Actually, given that you've got these different brands, it was probably easier than most companies. Cause if you're, let's say you're a big financial services company, and now you have to decide who owns what. CNN owns its own data products, HBO. Now, do they decide within those different brands, how to distribute even further? Or is it really, how deep have you gone in that decentralization? >> That's a great question. It's a very close partnership, because there are a number of data sets, which are used by all the brands, right? You think about people browsing websites, right? You know, CNN has a website, Warner brothers has a website. So for us to ingest that data for each of the brands to ingest that data separately, that means five different ways of doing things and you know, a big environment, right? So that is where our team comes into play. We ingest a lot of the common data sets, but like I said, any unique data sets, data sets regarding theatrical as an example, you know, Warner brothers does it themselves, you know, for streaming, HBO Max, does it themselves. So we kind of operate in partnership. >> So do you have a centralized data team and also decentralized data teams, right? >> That's right. >> So I love this conversation because that was heresy 10 years ago, five years ago, even, cause that's inefficient. But you've, I presume you've found that it's actually more productive in terms of the business output, explain that dynamic. >> You know, you bring up such a good point. So I, you know, I consider myself as one of the dinosaurs who started like 20 plus years ago in this industry. And back then, we were all taught to think of the data warehouse as like a monolithic thing. And the reason for that is the technology wasn't there. The technology didn't catch up. Now, 20 years later, the technology is way ahead, right? But like, our mindset's still the same because we think of data warehouses and data platforms still as a monolithic thing. But if you really sort of remove that sort of mental barrier, if you will, and if you start thinking about, well, how do I sort of, you know, federate everything and make sure that you let folks who are building, or are closest to the customer or are building their products, let them own that data and have a partnership. The results have been amazing. And if we were only sort of doing it as a centralized team, we would not be able to do a 10th of what we do today. So it's that massive scale in, in our company as well. >> And I should have clarified, when we talk about data mesh are we talking about the implementing in practice, the octagon sort of framework, or is this sort of your own sort of terminology? >> Well, so the interesting part is four years ago, we didn't have- >> It didn't exist. >> Yeah. It didn't exist. And, and so we, our principle was very simple, right? When we started out, we said, we want to make sure that our brands are able to operate independently with some oversight and guidance from our technology teams, right? That's what we set out to do. We did that with Snowflake by design because Snowflake allows us to, you know, separate those, those brands into different accounts. So that was done by design. And then the, the magic, I think, is the Snowflake data sharing where, which allows us to sort of bring data in here once, and then share it with whoever needs it. So think about HBO Max. On HBO Max, You not only have HBO Max content, but content from CNN, from Cartoon Network, from Warner Brothers, right? All the movies, right? So to see how The Batman movie did in theaters and then on streaming, you don't need, you know, Warner brothers doesn't need to ingest the same streaming data. HBO Max does it. HBO Max shares it with Warner brothers, you know, store once, share many times, and everyone works at their own pace. >> So they're building data products. Those data products are discoverable APIs, I presume, or I guess maybe just, I guess the Snowflake cloud, but very importantly, they're governed. And that's correct, where Elation comes in? >> That's precisely where Elation comes in, is where sort of this central flexible foundation for data governance. You know, you mentioned data mesh. I think what's interesting is that it's really an answer to the bottlenecks created by centralized IT, right? There's this notion of decentralizing that the data engineers and making the data domain owners, the people that know the data the best, have them be in control of publishing the data to the data consumers. There are other popular concepts actually happening right now, as we speak, around modern data stack. Around data fabric that are also in many ways underpinned by this notion of decentralization, right? These are concepts that are underpinned by decentralization and as the pendulum swings, sort of between decentralization and centralization, as we go back and forth in the world of IT and data, there are certain constants that need to be centralized over time. And one of those I believe is very much a centralized platform for data governance. And that's certainly, I think where we come in. Would love to hear more about how you use Elation. >> Yeah. So, I mean, elation helps us sort of, as you guys say, sort of, map, the treasure map of the data, right? So for consumers to find where their data is, that's where Elation helps us. It helps us with the data cataloging, you know, storing all the metadata and, you know, users can go in, they can sort of find, you know, the data that they need and they can also find how others are using data. So it's, there's a little bit of a crowdsourcing aspect that Elation helps us to do whereby you know, you can see, okay, my peer in the other group, well, that's how they use this piece of data. So I'm not going to spend hours trying to figure this out. You're going to use the query that they use. So yeah. >> So you have a master catalog, I presume. And then each of the brands has their own sub catalogs, is that correct? >> Well, for the most part, we have that master catalog and then the brands sort of use it, you know, separately themselves. The key here is all that catalog, that catalog isn't maintained by a centralized group as well, right? It's again, maintained by the individual teams and not only in the individual teams, but the folks that are responsible for the data, right? So I talked about the concept of crowdsourcing, whoever sort of puts the data in, has to make sure that they update the catalog and make sure that the definitions are there and everything sort of in line. >> So HBO, CNN, and each have their own, sort of access to their catalog, but they feed into the master catalog. Is that the right way to think about it? >> Yeah. >> Okay. And they have their own virtual data warehouses, right? They have ownership over that? They can spin 'em up, spin 'em down as they see fit? Right? And they're governed. >> They're governed. And what's interesting is it's not just governed, right? Governance is a, is a big word. It's a bit nebulous, but what's really being enabled here is this notion of self-service as well, right? There's two big sort of rockets that need to happen at the same time in any given organization. There's this notion that you want to put trustworthy data in the hands of data consumers, while at the same time mitigating risk. And that's precisely what Elation does. >> So I want to clarify this for the audience. So there's four principles of database. This came after you guys did it. And I wonder how it aligns. Domain ownership, give data, as you were saying to the, to the domain owners who have context, data as product, you guys are building data products, and that creates two problems. How do you give people self-service infrastructure and how do you automate governance? So the first two, great. But then it creates these other problems. Does that align with your philosophy? Where's alignment? What's different? >> Yeah. Data products is exactly where we're going. And that sort of, that domain based design, that's really key as well. In our business, you think about who the customer is, as an example, right? Depending on who you ask, it's going to be, the answer might be different, you know, to the movie business, it's probably going to be the person who watches a movie in a theater. To the streaming business, to HBO Max, it's the streamer, right? To others, someone watching live CNN on their TV, right? There's yet another group. Think about all the franchising we do. So you see Batman action figures and T-shirts, and Warner brothers branded stuff in stores, that's yet another business unit. But at the end of the day, it's not a different person, it's you and me, right? We do all these things. So the domain concept, make sure that you ingest data and you bring data relevant to the context, however, not sort of making it so stringent where it cannot integrate, and then you integrate it at a higher level to create that 360. >> And it's discoverable. So the point is, I don't have to go tap Ash on the shoulder, say, how do I get this data? Is it governed? Do I have access to it? Give me the rules of it. Just, I go grab it, right? And the system computationally automates whether or not I have access to it. And it's, as you say, self-service. >> In this case, exactly right. It enables people to just search for data and know that when they find the data, whether it's trustworthy or not, through trust flags, and the like, it's doing both of those things at the same time. >> How is it an enabler of solving some of the big challenges that the media and entertainment industry is going through? We've seen so much change the last couple of years. The rising consumer expectations aren't going to go back down. They're only going to come up. We want you to serve us up content that's relevant, that's personalized, that makes sense. I'd love to understand from your perspective, Mitesh, from an industry challenges perspective, how does this technology help customers like Warner Brothers Discovery, meet business customers, where they are and reduce the volume on those challenges? >> It's a great question. And as I mentioned earlier, we had five industry competency badges that were awarded to us by Snowflake. And one of those four, Median Telcom. And the reason for that is we're helping media companies understand their audiences better, and ultimately serve up better experiences for their audiences. But we've got Ash right here that can tell us how that's happening in practice. >> Yeah, tell us. >> So I'll share a story. I always like to tell stories, right? Once once upon a time before we had Elation in place, it was like, who you knew was how you got access to the data. So if I knew you and I knew you had access to a certain kind of data and your access to the right kind of data was based on the network you had at the company- >> I had to trust you. >> Yeah. >> I might not want to give up my data. >> That's it. And so that's where Elation sort of helps us democratize it, but, you know, puts the governance and controls, right? There are certain sensitive things as well, such as viewership, such as subscriber accounts, which are very important. So making sure that the right people have access to it, that's the other problem that Elation helps us solve. >> That's precisely part of our integration with Snowflake in particular, being able to define and manage policies within Elation. Saying, you know, certain people should have access to certain rows, doing column level masking. And having those policies actually enforced at the Snowflake data layer is precisely part of our value product. >> And that's automated. >> And all that's automated. Exactly. >> Right. So I don't have to think about it. I don't have to go through the tap on their shoulder. What has been the impact, Ash, on data quality as you've pushed it down into the domains? >> That's a great question. So it has definitely improved, but data quality is a very interesting subject, because back to my example of, you know, when we started doing things, we, you know, the centralized IT team always said, well, it has to be like this, Right? And if it doesn't fit in this, then it's bad quality. Well, sometimes context changes. Businesses change, right? You have to be able to react to it quickly. So making sure that a lot of that quality is managed at the decentralized level, at the place where you have that business context, that ensures you have the most up to date quality. We're talking about media industry changing so quickly. I mean, would we have thought three years ago that people would watch a lot of these major movies on streaming services? But here's the reality, right? You have to react and, you know, having it at that level just helps you react faster. >> So data, if I play that back, data quality is not a static framework. It's flexible based on the business context and the business owners can make those adjustments, cause they own the data. >> That's it. That's exactly it. >> That's awesome. Wow. That's amazing progress that you guys have made. >> In quality, if I could just add, it also just changes depending on where you are in your data pipeline stage, right? Data, quality data observability, this is a very fast evolving space at the moment, and if I look to my left right now, I bet you I can probably see a half-dozen quality observability vendors right now. And so given that and given the fact that Elation still is sort of a central hub to find trustworthy data, we've actually announced an open data quality initiative, allowing for best-of-breed data quality vendors to integrate with the platform. So whoever they are, whatever tool folks want to use, they can use that particular tool of choice. >> And this all runs in the cloud, or is it a hybrid sort of? >> Everything is in the cloud. We're all in the cloud. And you know, again, helps us go faster. >> Let me ask you a question. I could go on forever in this topic. One of the concepts that was put forth is whether it's a Snowflake data warehouse or a data bricks, data lake, or an Oracle data warehouse, they should all be inclusive. They should just be a node on the mesh. Like, wow, that sounds good. But I haven't seen it yet. Right? I'm guessing that Snowflake and Elation enable all the self-serve, all this automated governance, and that including those other items, it's got to be a one-off at this point in time. Do you ever see you expanding that scope or is it better off to just kind of leave it into the, the Snowflake data cloud? >> It's a good question. You know, I feel like where we're at today, especially in terms of sort of technology giving us so many options, I don't think there's a one size fits all. Right? Even though we are very heavily invested in Snowflake and we use Snowflake consistently across the organization, but you could, theoretically, could have an architecture that blends those two, right? Have different types of data platforms like a teradata or an Oracle and sort of bring it all together today. We have the technology, you know, that and all sorts of things that can make sure that you query on different databases. So I don't think the technology is the problem, I think it's the organizational mindset. I think that that's what gets in the way. >> Oh, interesting. So I was going to ask you, will hybrid tables help you solve that problem? And, maybe not, what you're saying, it's the organization that owns the Oracle database saying, Hey, we have our system. It processes, it works, you know, go away. >> Yeah. Well, you know, hybrid tables I think, is a great sort of next step in Snowflake's evolution. I think it's, in my opinion, I, think it's a game changer, but yeah. I mean, they can still exist. You could do hybrid tables right on Snowflake, or you could, you know, you could kind of coexist as well. >> Yeah. But, do you have a thought on this? >> Yeah, I do. I mean, we're always going to live in a time where you've got data distributed in throughout the organization and around the globe. And that could be even if you're all in on Snowflake, you could have data in Snowflake here, you could have data in Snowflake in EMEA and Europe somewhere. It could be anywhere. By the same token you might be using. Every organization is using on-premises systems. They have data, they naturally have data everywhere. And so, you know, this one solution to this is really centralizing, as I mentioned, not just governance, but also metadata about all of the data in your organization so that you can enable people to search and find and discover trustworthy data no matter where it is in your organization. >> Yeah. That's a great point. I mean, if you have the data about the data, then you can, you can treat these independent nodes. That's just that. Right? And maybe there's some advantages of putting it all in the Snowflake cloud, but to your point, organizationally, that's just not feasible. The whole, unfortunately, sorry, Snowflake, all the world's data is not going to go into Snowflake, but they play a key role in accelerating, what I'm hearing, your vision of data mesh. >> Yeah, absolutely. I think going forward in the future, we have to start thinking about data platforms as just one place where you sort of dump all the data. That's where the mesh concept comes in. It is going to be a mesh. It's going to be distributed and organizations have to be okay with that. And they have to embrace the tools. I mean, you know, Facebook developed a tool called Presto many years ago that that helps them solve exactly the same problem. So I think the technology is there. I think the organizational mindset needs to evolve. >> Yeah. Definitely. >> Culture. Culture is one of the hardest things to change. >> Exactly. >> Guys, this was a masterclass in data mesh, I think. Thank you so much for coming on talking. >> We appreciate it. Thank you so much. >> Of course. What Elation is doing with Snowflake and with Warner Brothers Discovery, Keep that content coming. I got a lot of stuff I got to catch up on watching. >> Sounds good. Thank you for having us. >> Thanks guys. >> Thanks, you guys. >> For Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Snowflake Summit '22. We'll be back after a short break. (upbeat music)

Published Date : Jun 15 2022

SUMMARY :

session coming for you next. and Ash Naseer great, to have you, in the conference center. and now it's great to kind of see the acceleration that you guys have of the year for data And we've also been awarded Why did you decide that you So the idea of a data mesh Or is it really, how deep have you gone the brands to ingest that data separately, terms of the business and make sure that you let allows us to, you know, separate those, guess the Snowflake cloud, of decentralizing that the data engineers the data cataloging, you know, storing all So you have a master that are responsible for the data, right? Is that the right way to think about it? And they're governed. that need to happen at the So the first two, great. the answer might be different, you know, So the point is, It enables people to just search that the media and entertainment And the reason for that is So if I knew you and I knew that the right people have access to it, Saying, you know, certain And all that's automated. I don't have to go through You have to react and, you know, It's flexible based on the That's exactly it. that you guys have made. and given the fact that Elation still And you know, again, helps us go faster. a node on the mesh. We have the technology, you that owns the Oracle database saying, you know, you could have a thought on this? And so, you know, this one solution I mean, if you have the I mean, you know, the hardest things to change. Thank you so much for coming on talking. Thank you so much. of stuff I got to catch up on watching. Thank you for having us. from Snowflake Summit '22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

CNNORGANIZATION

0.99+

HBOORGANIZATION

0.99+

Mitesh ShahPERSON

0.99+

Ash NaseerPERSON

0.99+

EuropeLOCATION

0.99+

FacebookORGANIZATION

0.99+

MiteshPERSON

0.99+

ElationORGANIZATION

0.99+

TNTORGANIZATION

0.99+

Warner brothersORGANIZATION

0.99+

EMEALOCATION

0.99+

second yearQUANTITY

0.99+

OracleORGANIZATION

0.99+

2019DATE

0.99+

two yearsQUANTITY

0.99+

oneQUANTITY

0.99+

Cartoon NetworkORGANIZATION

0.99+

Game of ThronesTITLE

0.99+

two problemsQUANTITY

0.99+

twoQUANTITY

0.99+

Warner BrothersORGANIZATION

0.99+

10thQUANTITY

0.99+

firstQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

Snowflake Summit '22EVENT

0.99+

Warner brothersORGANIZATION

0.99+

eachQUANTITY

0.99+

fourQUANTITY

0.99+

Las VegasLOCATION

0.99+

Median TelcomORGANIZATION

0.99+

20 years laterDATE

0.98+

bothQUANTITY

0.98+

five different industriesQUANTITY

0.98+

10 years agoDATE

0.98+

30 plus brandsQUANTITY

0.98+

AlationPERSON

0.98+

four years agoDATE

0.98+

todayDATE

0.98+

20 plus years agoDATE

0.97+

Warner Brothers DiscoveryORGANIZATION

0.97+

OneQUANTITY

0.97+

five years agoDATE

0.97+

Snowflake Summit 2022EVENT

0.97+

three years agoDATE

0.97+

five different waysQUANTITY

0.96+

earlier this weekDATE

0.96+

SnowflakeTITLE

0.96+

MaxTITLE

0.96+

early last yearDATE

0.95+

about 1900 attendeesQUANTITY

0.95+

SnowflakeEVENT

0.94+

AshPERSON

0.94+

three-peatQUANTITY

0.94+

around 10,000QUANTITY

0.93+

Joe Nolte, Allegis Group & Torsten Grabs, Snowflake | Snowflake Summit 2022


 

>>Hey everyone. Welcome back to the cube. Lisa Martin, with Dave ante. We're here in Las Vegas with snowflake at the snowflake summit 22. This is the fourth annual there's close to 10,000 people here. Lots going on. Customers, partners, analysts, cross media, everyone talking about all of this news. We've got a couple of guests joining us. We're gonna unpack snow park. Torston grabs the director of product management at snowflake and Joe. No NTY AI and MDM architect at Allegis group. Guys. Welcome to the program. Thank >>You so much for having >>Us. Isn't it great to be back in person? It is. >>Oh, wonderful. Yes, it >>Is. Indeed. Joe, talk to us a little bit about Allegis group. What do you do? And then tell us a little bit about your role specifically. >>Well, Allegis group is a collection of OPCA operating companies that do staffing. We're one of the biggest staffing companies in north America. We have a presence in AMEA and in the APAC region. So we work to find people jobs, and we help get 'em staffed and we help companies find people and we help individuals find >>People incredibly important these days, excuse me, incredibly important. These days. It is >>Very, it very is right >>There. Tell me a little bit about your role. You are the AI and MDM architect. You wear a lot of hats. >>Okay. So I'm a architect and I support both of those verticals within the company. So I work, I have a set of engineers and data scientists that work with me on the AI side, and we build data science models and solutions that help support what the company wants to do, right? So we build it to make business business processes faster and more streamlined. And we really see snow park and Python helping us to accelerate that and accelerate that delivery. So we're very excited about it. >>Explain snow park for, for people. I mean, I look at it as this, this wonderful sandbox. You can bring your own developer tools in, but, but explain in your words what it >>Is. Yeah. So we got interested in, in snow park because increasingly the feedback was that everybody wants to interact with snowflake through SQL. There are other languages that they would prefer to use, including Java Scala and of course, Python. Right? So then this led down to the, our, our work into snow park where we're building an infrastructure that allows us to host other languages natively on the snowflake compute platform. And now here, what we're, what we just announced is snow park for Python in public preview. So now you have the ability to natively run Python code on snowflake and benefit from the thousands of packages and libraries that the open source community around Python has contributed over the years. And that's a huge benefit for data scientists. It is ML practitioners and data engineers, because those are the, the languages and packages that are popular with them. So yeah, we very much look forward to working with the likes of you and other data scientists and, and data engineers around the Python ecosystem. >>Yeah. And, and snow park helps reduce the architectural footprint and it makes the data pipelines a little easier and less complex. We have a, we had a pipeline and it works on DMV data. And we converted that entire pipeline from Python, running on a VM to directly running down on snowflake. Right. We were able to eliminate code because you don't have to worry about multi threading, right? Because we can just set the warehouse size through a task, no more multi threading, throw that code away. Don't need to do it anymore. Right. We get the same results, but the architecture to run that pipeline gets immensely easier because it's a store procedure that's already there. And implementing that calling to that store procedure is very easy. The architecture that we use today uses six different components just to be able to run that Python code on a VM within our ecosystem to make sure that it runs on time and is scheduled and all of that. Right. But with snowflake, with snowflake and snow park and snowflake Python, it's two components. It's the store procedure and our ETL tool calling it. >>Okay. So you've simplified that, that stack. Yes. And, and eliminated all the other stuff that you had to do that now Snowflake's doing, am I correct? That you're actually taking the application development stack and the analytics stack and bringing them together? Are they merging? >>I don't know. I think in a way I'm not real sure how I would answer that question to be quite honest. I think with stream lit, there's a little bit of application that's gonna be down there. So you could maybe start to say that I'd have to see how that carries out and what we do and what we produce to really give you an answer to that. But yeah, maybe in a >>Little bit. Well, the reason I asked you is because you talk, we always talk about injecting data into apps, injecting machine intelligence and ML and AI into apps, but there are two separate stacks today. Aren't they >>Certainly the two are getting closer >>To Python Python. It gets a little better. Explain that, >>Explain, explain how >>That I just like in the keynote, right? The other day was SRE. When she showed her sample application, you can start to see that cuz you can do some data pipelining and data building and then throw that into a training module within Python, right down inside a snowflake and have it sitting there. Then you can use something like stream lit to, to expose it to your users. Right? We were talking about that the other day, about how do you get an ML and AI, after you have it running in front of people, we have a model right now that is a Mo a predictive and prescriptive model of one of our top KPIs. Right. And right now we can show it to everybody in the company, but it's through a Jupyter notebook. How do I deliver it? How do I get it in the front of people? So they can use it well with what we saw was streamlet, right? It's a perfect match. And then we can compile it. It's right down there on snowflake. And it's completely easier time to delivery to production because since it's already part of snowflake, there's no architectural review, right. As long as the code passes code review, and it's not poorly written code and isn't using a library that's dangerous, right. It's a simple deployment to production. So because it's encapsulated inside of that snowflake environment, we have approval to just use it. However we see fit. >>It's very, so that code delivery, that code review has to occur irrespective of, you know, not always whatever you're running it on. Okay. So I get that. And, and, but you, it's a frictionless environment you're saying, right. What would you have had to do prior to snowflake that you don't have to do now? >>Well, one, it's a longer review process to allow me to push the solution into production, right. Because I have to explain to my InfoSec people, right? My other it's not >>Trusted. >>Well, well don't use that word. No. Right? It got, there are checks and balances in everything that we do, >>It has to be verified. And >>That's all, it's, it's part of the, the, what I like to call the good bureaucracy, right? Those processes are in place to help all of us stay protected. >>It's the checklist. Yeah. That you >>Gotta go to. >>That's all it is. It's like fly on a plane. You, >>But that checklist gets smaller. And sometimes it's just one box now with, with Python through snow park, running down on the snowflake platform. And that's, that's the real advantage because we can do things faster. Right? We can do things easier, right? We're doing some mathematical data science right now and we're doing it through SQL, but Python will open that up much easier and allow us to deliver faster and more accurate results and easier not to mention, we're gonna try to bolt on the hybrid tables to that afterwards. >>Oh, we had talk about that. So can you, and I don't, I don't need an exact metric, but when you say faster talking 10% faster, 20% faster, 50% path >>Faster, it really depends on the solution. >>Well, gimme a range of, of the worst case, best case. >>I, I really don't have that. I don't, I wish I did. I wish I had that for you, but I really don't have >>It. I mean, obviously it's meaningful. I mean, if >>It is meaningful, it >>Has a business impact. It'll >>Be FA I think what it will do is it will speed up our work inside of our iterations. So we can then, you know, look at the code sooner. Right. And evaluate it sooner, measure it sooner, measure it faster. >>So is it fair to say that as a result, you can do more. Yeah. That's to, >>We be able do more well, and it will enable more of our people because they're used to working in Python. >>Can you talk a little bit about, from an enablement perspective, let's go up the stack to the folks at Allegis who are on the front lines, helping people get jobs. What are some of the benefits that having snow park for Python under the hood, how does it facilitate them being able to get access to data, to deliver what they need to, to their clients? >>Well, I think what we would use snowflake for a Python for there is when we're building them tools to let them know whether or not a user or a piece of talent is already within our system. Right. Things like that. Right. That's how we would leverage that. But again, it's also new. We're still figuring out what solutions we would move to Python. We are, we have some targeted, like we're, I have developers that are waiting for this and they're, and they're in private preview. Now they're playing around with it. They're ready to start using it. They're ready to start doing some analytical work on it, to get some of our analytical work out of, out of GCP. Right. Because that's where it is right now. Right. But all the data's in snowflake and it just, but we need to move that down now and take the data outta the data wasn't in snowflake before. So there, so the dashboards are up in GCP, but now that we've moved all of that data down in, down in the snowflake, the team that did that, those analytical dashboards, they want to use Python because that's the way it's written right now. So it's an easier transformation, an easier migration off of GCP and get us into snow, doing everything in snowflake, which is what we want. >>So you're saying you're doing the visualization in GCP. Is that righting? >>It's just some dashboarding. That's all, >>Not even visualization. You won't even give for. You won't even give me that. Okay. Okay. But >>Cause it's not visualization. It's just some D boardings of numbers and percentages and things like that. It's no graphic >>And it doesn't make sense to run that in snowflake, in GCP, you could just move it into AWS or, or >>No, we, what we'll be able to do now is all that data before was in GCP and all that Python code was running in GCP. We've moved all that data outta GCP, and now it's in snowflake and now we're gonna work on taking those Python scripts that we thought we were gonna have to rewrite differently. Right. Because Python, wasn't available now that Python's available, we have an easier way of getting those dashboards back out to our people. >>Okay. But you're taking it outta GCP, putting it to snowflake where anywhere, >>Well, the, so we'll build the, we'll build those, those, those dashboards. And they'll actually be, they'll be displayed through Tableau, which is our enterprise >>Tool for that. Yeah. Sure. Okay. And then when you operationalize it it'll go. >>But the idea is it's an easier pathway for us to migrate our code, our existing code it's in Python, down into snowflake, have it run against snowflake. Right. And because all the data's there >>Because it's not a, not a going out and coming back in, it's all integrated. >>We want, we, we want our people working on the data in snowflake. We want, that's our data platform. That's where we want our analytics done. Right. We don't want, we don't want, 'em done in other places. We when get all that data down and we've, we've over our data cloud journey, we've worked really hard to move all of that data. We use out of existing systems on prem, and now we're attacking our, the data that's in GCP and making sure it's down. And it's not a lot of data. And we, we fixed it with one data. Pipeline exposes all that data down on, down in snowflake now. And we're just migrating our code down to work against the snowflake platform, which is what we want. >>Why are you excited about hybrid tables? What's what, what, what's the >>Potential hybrid tables I'm excited about? Because we, so some of the data science that we do inside of snowflake produces a set of results and there recommendations, well, we have to get those recommendations back to our people back into our, our talent management system. And there's just some delays. There's about an hour delay of delivering that data back to that team. Well, with hybrid tables, I can just write it to the hybrid table. And that hybrid table can be directly accessed from our talent management system, be for the recruiters and for the hiring managers, to be able to see those recommendations and near real time. And that that's the value. >>Yep. We learned that access to real time. Data it in recent years is no longer a nice to have. It's like a huge competitive differentiator for every industry, including yours guys. Thank you for joining David me on the program, talking about snow park for Python. What that announcement means, how Allegis is leveraging the technology. We look forward to hearing what comes when it's GA >>Yeah. We're looking forward to, to it. Nice >>Guys. Great. All right guys. Thank you for our guests and Dave ante. I'm Lisa Martin. You're watching the cubes coverage of snowflake summit 22 stick around. We'll be right back with our next guest.

Published Date : Jun 15 2022

SUMMARY :

This is the fourth annual there's close to Us. Isn't it great to be back in person? Yes, it Joe, talk to us a little bit about Allegis group. So we work to find people jobs, and we help get 'em staffed and we help companies find people and we help It is You are the AI and MDM architect. on the AI side, and we build data science models and solutions I mean, I look at it as this, this wonderful sandbox. and libraries that the open source community around Python has contributed over the years. And implementing that calling to that store procedure is very easy. And, and eliminated all the other stuff that you had to do that now Snowflake's doing, am I correct? we produce to really give you an answer to that. Well, the reason I asked you is because you talk, we always talk about injecting data into apps, It gets a little better. And it's completely easier time to delivery to production because since to snowflake that you don't have to do now? Because I have to explain to my InfoSec we do, It has to be verified. Those processes are in place to help all of us stay protected. It's the checklist. That's all it is. And that's, that's the real advantage because we can do things faster. I don't need an exact metric, but when you say faster talking 10% faster, I wish I had that for you, but I really don't have I mean, if Has a business impact. So we can then, you know, look at the code sooner. So is it fair to say that as a result, you can do more. We be able do more well, and it will enable more of our people because they're used to working What are some of the benefits that having snow park of that data down in, down in the snowflake, the team that did that, those analytical dashboards, So you're saying you're doing the visualization in GCP. It's just some dashboarding. You won't even give for. It's just some D boardings of numbers and percentages and things like that. gonna have to rewrite differently. And they'll actually be, they'll be displayed through Tableau, which is our enterprise And then when you operationalize it it'll go. And because all the data's there And it's not a lot of data. so some of the data science that we do inside of snowflake produces a set of results and We look forward to hearing what comes when it's GA Thank you for our guests and Dave ante.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Lisa MartinPERSON

0.99+

JoePERSON

0.99+

10%QUANTITY

0.99+

20%QUANTITY

0.99+

DavePERSON

0.99+

AllegisORGANIZATION

0.99+

Las VegasLOCATION

0.99+

Allegis GroupORGANIZATION

0.99+

Joe NoltePERSON

0.99+

50%QUANTITY

0.99+

north AmericaLOCATION

0.99+

PythonTITLE

0.99+

Java ScalaTITLE

0.99+

SQLTITLE

0.99+

bothQUANTITY

0.99+

one boxQUANTITY

0.99+

twoQUANTITY

0.99+

thousandsQUANTITY

0.99+

Snowflake Summit 2022EVENT

0.98+

AWSORGANIZATION

0.98+

TableauTITLE

0.98+

six different componentsQUANTITY

0.98+

two componentsQUANTITY

0.98+

Python PythonTITLE

0.98+

Torsten GrabsPERSON

0.97+

oneQUANTITY

0.96+

todayDATE

0.96+

TorstonPERSON

0.96+

Allegis groupORGANIZATION

0.96+

OPCAORGANIZATION

0.95+

one dataQUANTITY

0.95+

two separate stacksQUANTITY

0.94+

InfoSecORGANIZATION

0.91+

Dave antePERSON

0.9+

fourth annualQUANTITY

0.88+

JupyterORGANIZATION

0.88+

parkTITLE

0.85+

snowflake summit 22EVENT

0.84+

10,000 peopleQUANTITY

0.82+

SnowflakeORGANIZATION

0.78+

AMEALOCATION

0.77+

snow parkTITLE

0.76+

snowORGANIZATION

0.66+

couple of guestsQUANTITY

0.65+

NTYORGANIZATION

0.6+

SnowflakeEVENT

0.59+

MDMORGANIZATION

0.58+

APACORGANIZATION

0.58+

premORGANIZATION

0.52+

GALOCATION

0.5+

snowTITLE

0.46+

SRETITLE

0.46+

litORGANIZATION

0.43+

streamTITLE

0.41+

22QUANTITY

0.4+

Rik Tamm Daniels, Informatica & Peter Ku, Informatica | Snowflake Summit 2022


 

>>Hey everyone. Welcome back to the cube. Lisa Martin here with Dave ante, we're covering snowflake summit 22. This is Dave two of our wall to wall cube coverage of three days. We've been talking with a lot of customers partners, and we've got some more partners to talk with us. Next. Informatica two of our guests are back with us on the program. Rick TA Daniels joins us the G P global ecosystems and technology at Informatica and Peter COO vice president and chief strategist banking and financial services. Welcome guys. >>Thank you guys. Thanks for having us, Peter, >>Talk to us about what some of the trends are that you're seeing in the financial services space with respect to cloud and data and AI. >>Absolutely. You know, I'd say 10 years ago, the conversation around cloud was what is that? Right? How do we actually, or no way, because there was a lot of concerns about privacy and security and so forth. You know, now, as you see organizations modernizing their business capabilities, they're investing in cloud solutions for analytics applications, as well as data data being not only just a byproduct of transactions and interactions in financial services, it truly fuels business success. But we have a term here in Informatica where data really has no value unless it's fit for business. Use data has to be accessible in the systems and applications you use to run your business. It has to be clean. It has to be valid. It has to be transparent. People need to understand where it comes from, where it's going, how it's used and who's using it. It also has to be understood by the business. >>You can have all the data in the world and your business applications, but people don't know what they need it to use it for how they should use it. It has no value as well. And then lastly, it has to be protected when it matters most what we're seeing across financial services, that with the evolution of cloud now, really being the center of focus for many of the net new investments, data is scattered everywhere, not just in one cloud environment, but in multiple cloud environments, but they're still dealing with many of the on premise systems that have been running this industry for many, many years. So organizations need to have the ability to understand what they need to do with their data. More importantly, tie that to a measurable business outcome. So we're seeing the data conversation really at the board level, right? It's an asset of the business. It's no longer just owned by it. Data governance brings both business technology and data leaders together to really understand how do we use manage, govern and really leverage data for positive business outcomes. So we see that as an imperative that cuts across all sectors of financial services, both for large firms, as well as for the mid-market so >>Quick follow up. If I, may you say it's a board level. I totally agree. Is it also a line of business level? Are you seeing increasingly that line of businesses are leaning in owning the data, be building data products and the like >>Absolutely. Because at the end of the day business needs information in order to be successful. And data ownership now really belongs in the front office. Business executives understand that data again is not just a bunch of zeros and ones. These are critical elements for them make decisions and to run their business, whether it's to improve customer experience, whether it's to grow Wallace share, whether it's to comply with regulations, manage risks in today's environment. And of course being agile business knows that data's important. They have ownership of it and technology and data organizations help facilitate that solutions. And of course the investments to ensure that business can make the decisions and take the appropriate actions. >>A lot of asks and requirements on data. That's a big challenge for organizations. You mentioned. Well, one of the things that we've mentioned many times on this program recently is every company has to be a data company. There is no more, it's not an option anymore. If you wanna be successful, how does Informatica help customers navigate all of the requirements on data for them to be able to extract that business value and create new products and services in a timely fashion? >>So Informatica announced what we call the intelligent data management cloud platform. The platform has capabilities to help organizations access the data that they need, share it across to applications that run their business, be able to identify and deal with data, quality issues and requirements. Being able to provide that transparency, the lineage that people need across multiple environments. So we've been investing in this platform that really allows our customers to take advantage of these critical data management, data governance and data privacy requirements, all in one single solution. So we're no longer out there just selling piecemeal products. The platform is the offering that we provide across all industries. >>So how has that affected the way Informatica does business over the last several years? Snowflake is relatively new. You guys have been around a long time. How has your business evolved and specifically, how are you serving the snowflake yeah. Joint customers with >>Informatica? Yeah, I think then when I've been talking with folks here at the event, there are two big areas that keep coming up. So, so data governance, data governance, data governance, right? It's such a hot topic out there. And as Peter was mentioning, data governance is a critical enabler of access to data. In fact, there is an IDC study for last year that said that, you know, 80, 84% of executives, you know, no surprise, right? They wanna have data driven outcomes, data driven organizations, but only 30% of practitioners actually use data to make decisions. There's a huge gap there. And really that's where governance comes in and creating trust around data and not only creating trust, but delivering data to and users. So that's one big trend. The other one is departmental user adoption. We're seeing a, a huge push towards agility and rapid startup of new projects, new data driven transformations that are happening at the departmental level, you know, individual contributors, that sort of thing. So Informatica, we did a made announcement yesterday with snowflake of a whole host of innovations that are really targeting those two big trend areas. >>I wanna get into the announcements, but you know, the point about governance and, and users, business users being reluctant, it's kind of chicken and egg, isn't it. If, if I don't have the governance, I'm, I'm afraid to use it. But even if I do have it, there's the architecture of my, my, my company, my, my data organization, you know, may not facilitate that. And so I'm gonna change the architect, but then it's a wild west. So it has to be governed. Isn't that a challenge that company companies >>Absolutely, and, and governance is, is a lot more than just technology, right? It's of a people process problem. And there really is a community or an ecosystem inside every organization for governance. So it's really important that when you think about deploying governance and being successful, that every stakeholder have the ability to interact with this common framework, right. They get what they need out of it. It's tailored for how they wanna work. You've got your it folks, you got your chief data officer data stewards, you have your privacy folks and you have your business users. They're all different personas. So we really focus on creating a holistic, single pane of glass view with our cloud data governance and catalog offering that that really takes all the way from the raw technical data and actually delivers data in, in a shopping cart, like experience for actual enterprise users. Right? And, and so I think that's when data governance goes from historically data, governments was seen as an impediment. It was seen as a tax, I think, but now it's really an accelerator, an enabler and driving consumption of data, which in turn for our friends here at snowflake is exactly what they're looking for. >>Talk about the news. So data loader, what does that do? >>Well, it's all in the name. We say, no, the data loader it, it's a free utility that we announced here at, at snowflake summit that allows any user to sign up. It's completely free, no capacity limits. You just need an email address, three simple steps start rapidly loading data into snowflake. Right? So that first step is just get data in there. Start working with snowflake. Informatica is investing and making that easy for every single user out there. And especially those departmental users who wanna get started quickly. >>Yeah. So, I mean, that's a key part point of getting data into the snowflake data cloud, right? It's like any cloud, you gotta get data in. How does it work with, with customers? I mean, you guys are, are known, you have a long history of, you know, extract transform ETL. How does it work in the snowflake world? Is it, is it different? Is it, you remember the Hadoop days? It was, it was E LT, right? How are customers doing that today in this environment? >>Yeah, it's different. I mean, there, there are a lot of the, the same patterns are still in play. There's a lot more of a rapid data loading, right. Is a key theme. Just get it into snowflake and then work on the data, transform it inside of snowflake. So it's, it's a flavor of T right. But it's really pushing down to the snowflake data cloud as opposed to Hado with spark or something like that. Right. So that, that's definitely how customers are using it. And, you know, majority of our customers actually with snowflake are using our cloud technology, but we're also helping customers who are on premise customers, automate the migration from our on-premises technology to our cloud native platform as well. Yeah. >>And I'd say, you know, in addition to that, if you think about building a snowflake environment, Informatica helps with our data loader solution, but that's not enough. Then now you need to get value out of your data. So you can put raw data into the snowflake environment, but then you realize the data's not actually fit for business use, what do we need to do actually transform it to clean it, to govern it. And our customers that use Informatica with snowflake are managing the entire data management and data governance process so that they can allow the business to get value out of the snowflake investment. >>How quickly can you enable a business to get value from that data to be able to make business decisions that can transform right. Deliver competitive advantage? >>I think it really depends on an organization on a case by case basis. At the end of the day, you need to understand why are you doing this in the first place, right? What's the business outcome that you're trying to achieve next, identify what data elements do you actually need to capture, govern and manage in order to support the decisions and the actions that the business needs to take. If you don't have those things defined, that's where data governance comes into play. Then all you're doing is setting up a technical environment with a bunch of zeros in ones that no one knows what to do with. So we talk about data governance more holistically, say, you need to align it to your business outcomes, but ensure that you have people, processes, roles, and responsibilities, and the underlying technology to not just load data into snowflake, but to leverage it again for the business needs across the organization. >>Oh, good, please. >>I just wanted to add to that real quickly. Yeah. One of the things Informatica we're philosophically focused on is how do you accelerate the entire business of data management? So with our, our cloud platform, we have what's called our clear AI engine, right? So we use AI techniques, machine learning recommendations to accelerate with the, the knowledge of the metadata of what's gone on the organization. For example, that when we discover data assets figure out is this customer data, is it product data that dramatically shortens the time to find data assets deliver them? And so across our whole portfolio, we're taking things that were traditionally months to do. We're taking 'em down to weeks and days and even hours, right? So that's the whole goal is just accelerate that entire journey and life cycle through cloud native approaches and AI. Yeah, >>You kind of just answered my question. I think Rick, so you have this joint value statement together. We help customers. This is informatic and snowflake together. We help customers modernize their data. Architecture enable the most critical workloads, provide AI driven data governance and accelerate added value with advanced analytics. I mean, you definitely touched on some of those, but kind of unpack the rest of that. What do you mean by modernize? What is their data architecture? What is that? Let's start there. What does that look like? Modernizing a data. Yeah. >>So, so a lot with so many customers, right? They, they built data warehouses, core data and analytics systems on premises, right? They're using ETL technology using those, those either warehouse, appliances or databases. And what they're looking for is they wanna move to a cloud native model, right. And all the benefits of cloud in terms of TCO elasticity, instant scale up agility, all those benefits. So we're looking, we're looking to do with our, our modernization programs for our, for our current customer base that are on premises. We automate the process to get them to a fully cloud native, which means they can now do hybrid. They can do multi-cloud elastic processing. And it's all also in a consumption based model that we introduced about about a year and a half ago. So, so they're looking for all those elements of a cloud native platform and they're, but they're solving the same problems, right? We still have to connect data. We still have to transform data, prepare it, cleanse it, all those things exist, but in a, in a cloud native footprint, and that's what we're helping them get to. >>And the modern architecture these days, quite honestly, it's no longer about getting best breed tools and stitching them together and hoping that it will actually work. And Informatica is value proposition that our platform has all those capabilities as services. So our customers don't have to deal with the costs and the risks of trying to make everything work behind the scenes and what we've done with IDMC or intelligent data management cloud for financial services, retail, CPG, and healthcare and life sciences. In addition to our core capabilities and our clear AI machine learning engine, we also have industry accelerators, prebuilt data, quality rules for certain regulations in within banking. We've got master data management, customer models for healthcare insurance industry, all prebuilt. So these are accelerators that we've actually built over the years. And we're now making available to our customers who adopt informatic as intelligent data management cloud for their data management and governance needs. >>And then, and then the other part of this statement that that's interesting is provide AI driven data governance. You know, we are seeing a move toward, you know, decentralized data architectures and, and, and organizations. And we talk to snowflake about that. They go, yeah, we're globally distributed cloud. Okay, great. So that's decent place, but what we see a lot of customers doing to say, okay, we're gonna give lines of business responsibility for data. We're gonna argue about who owns what. And then once we settle that here's your own, here's your own data lake. Maybe they they'll try to cobble together a catalog or a super catalog. Right. And then they'll try to figure out, you know, some algorithms to, to determine data quality, you know, best, you know, okay. Don't use. Right, right. So that, so if I understand it, you automate all that. >>So what we're doing with AI machine learning is really helping the data professional, whether in the business, in technology or in between not only to get the job done faster, better, and cheaper, but actually do it intelligently. What do we mean by that? For example, our AI engine machine learning will look at data patterns and determine not only what's wrong with your data, but how should you fix it and recommend data quality rules to actually apply them and get those errors addressed. We also infer data relationships across a multi-cloud environment where those definitions were never there in the beginning. So we have the ability to scan the metadata and determine, Hey, this data set is actually related to that data set across multiple clouds. It makes the organization more productive, but more importantly, it increases the confidence level that these organizations have the right infrastructure in place in order to manage and govern their data for what they're trying to do from a business perspective. >>And I add that as well. I think you're talking a lot about data mesh architectures, right? That, that are really kind of popular right now. And I think those kind of, they live or die on, on data governance. Right? If you don't have data governance to share taxonomy, these things, it's very hard to, I think, scale those individual working groups. But if you have a platform where they, the data owners can publish out visibility to what their data means, how to use it, how to interpret it and get that insight, that context directly to the data consumers that's game changing. Right. And that's exactly what we're doing with our cloud data governance and catalog. >>Well, the data mesh, you talk about data mesh, there's four principles, right? It's like decentralized architecture data products. So if, once you figure out those two yep. You just created two more problems, which is the other two parts of the Princip four, two parts of the four principles, self service infrastructure, and computational governance. And that's like the hardest part of federated, federated, computational governance. That's the hardest part. That's the problem that you're solving. >>Yeah. Yeah, absolutely. I mean, think about the whole decentralization and self-service, well, I may be able to access my data in mesh architecture, but if I don't know what it means, how to use it for what purpose, when not to use it, you're creating more problems than what you originally expected to solve. So what we're doing is addressing the data management and the governance requirements, regardless of what the architecture is, whether it's a mesh architecture, a fabric architecture or a traditional data lake or a data store. >>Yeah. Mean, I say, I think data mesh is more of an organizational construct than it is. I, I'm not quite sure what data fabric is. I think Gartner confused the issue that data fabric was an old NetApp term. Yeah. You're probably working in NetApp at the time and it made sense in the NetApp context. And then I think Gartner didn't like the fact that Jamma Dani co-opted this cool term. So they created data fabric, but whatever. But my, my point being, I think when I talk to customers that are they're, they're trying to get more value outta data and they recognize that going through all these hyper specialized roles is time consuming and it's not working for them. And they're frustrated to your points and your joint statement. They want to accelerate that. And they're realizing, and the only way to do that is to distribute responsibility, get more people involved in the process. >>And, and that's, it kind of dovetails with some, the announcements we made on data governance for snowflake, right, is you're taking these, these operational controls of the snowflake layer that are typically managed by SQL and you, and that decentralized architecture data owner doesn't know how to set those patterns and things like that. Right. So we're saying, all right, we're, we're creating these deep integration so that again, we have a fit for persona type experience where they can publish data assets, they can set the rules and policies, and we're gonna push that down to snowflake. So when it actually comes to provisioning data and doing data sharing through snowflake, it's all a seamless experience for the end user and the data owner. Yeah. >>That's great. Beautiful, >>Seamless experience absolutely necessary these days for everybody above guys. Thanks so much for joining David me today, talking about Informatica what's new, what you're doing with snowflake and what you're enabling customers to do in terms of really extracting value from that data. We appreciate your insights. >>Thank you. Yep. >>Thank you for having us >>For our guests and Dave ante. I'm Lisa Martin. You're watching the cubes coverage of snowflake summit day two of the cubes coverage stick around Dave. And I will be right back with our next guest.

Published Date : Jun 15 2022

SUMMARY :

Welcome back to the cube. Thank you guys. Talk to us about what some of the trends are that you're seeing in the financial services Use data has to be accessible in the systems and applications you use to run your business. So organizations need to have the ability to understand what Are you seeing increasingly that line of businesses are leaning in owning the data, be building data And of course the investments to ensure that business can make the decisions and take the appropriate actions. all of the requirements on data for them to be able to extract that business value and create new share it across to applications that run their business, be able to identify and deal with data, So how has that affected the way Informatica does business over the last several years? happening at the departmental level, you know, individual contributors, that sort of thing. if I don't have the governance, I'm, I'm afraid to use it. So it's really important that So data loader, what does that do? We say, no, the data loader it, it's a free utility that we announced here at, I mean, you guys are, are known, you have a long history of, you know, But it's really pushing down to the snowflake data cloud as opposed to managing the entire data management and data governance process so that they can allow the business to get value How quickly can you enable a business to get value from that data to be able to make business At the end of the day, you need to understand why are customer data, is it product data that dramatically shortens the time to find data assets deliver them? I think Rick, so you have this joint value statement together. We automate the process to get them to a fully cloud native, So our customers don't have to deal with the costs and the risks of trying to make everything work behind And then they'll try to figure out, you know, some algorithms to, to determine data quality, So what we're doing with AI machine learning is really helping the data professional, And that's exactly what we're doing with our cloud data governance and catalog. Well, the data mesh, you talk about data mesh, there's four principles, right? how to use it for what purpose, when not to use it, you're creating more problems than what you originally expected And they're frustrated to your points and your joint statement. So when it actually comes to provisioning data and doing data sharing through snowflake, it's all a seamless experience for the end user and the data owner. That's great. We appreciate your insights. Thank you. And I will be right back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Lisa MartinPERSON

0.99+

RickPERSON

0.99+

PeterPERSON

0.99+

InformaticaORGANIZATION

0.99+

DavePERSON

0.99+

GartnerORGANIZATION

0.99+

three daysQUANTITY

0.99+

Rik Tamm DanielsPERSON

0.99+

two partsQUANTITY

0.99+

Peter KuPERSON

0.99+

twoQUANTITY

0.99+

last yearDATE

0.99+

30%QUANTITY

0.99+

bothQUANTITY

0.99+

yesterdayDATE

0.99+

NetAppTITLE

0.99+

Rick TA DanielsPERSON

0.99+

three simple stepsQUANTITY

0.99+

todayDATE

0.99+

first stepQUANTITY

0.98+

10 years agoDATE

0.98+

firstQUANTITY

0.98+

oneQUANTITY

0.98+

80, 84%QUANTITY

0.97+

IDMCORGANIZATION

0.97+

Snowflake Summit 2022EVENT

0.94+

about a year and a half agoDATE

0.94+

two more problemsQUANTITY

0.93+

Princip fourOTHER

0.93+

four principlesQUANTITY

0.91+

G PORGANIZATION

0.9+

two big areasQUANTITY

0.89+

single paneQUANTITY

0.89+

one single solutionQUANTITY

0.87+

day twoQUANTITY

0.87+

yearsDATE

0.85+

WallacePERSON

0.85+

OneQUANTITY

0.85+

one cloudQUANTITY

0.83+

IDCORGANIZATION

0.83+

two of our guestsQUANTITY

0.8+

two big trend areasQUANTITY

0.79+

Jamma DaniPERSON

0.79+

Dave antePERSON

0.77+

COOPERSON

0.77+

aboutDATE

0.75+

every single userQUANTITY

0.71+

zerosQUANTITY

0.69+

SQLTITLE

0.68+

lastDATE

0.67+

onceQUANTITY

0.58+

HadoTITLE

0.52+

vicePERSON

0.51+

onesQUANTITY

0.5+

summit 22LOCATION

0.44+

HadoopEVENT

0.37+

Denise Persson, Snowflake | Snowflake Summit 2022


 

>>Hello from the show floor in Las Vegas. This is the snowflake summit 22 at Caesar's forum. We've been live the last day and a half. Lisa Martin here with Dave ante covering a lot of ground. We're so excited to have the chief marketing officer at snowflake. Join us next, Denise Pearson. And welcome back to the cube. >>Thank you so much. So great to be here with you. So great to have you here at SEL meets as well. Thank >>You. That's unreal. Isn't it? Yeah. I mean, everybody's so excited to be face to face and you know, Lisa and I have been doing a few of these shows, but we, we hear the same thing over and over. It's like, oh, so good to be back, right? Yeah. >>Well, even in the keynote yesterday, when we got in, we saw a standing room only there were overflows. People are ready to hear from snowflake in person. And as we were, you were just talking with Frank, I think the 2019 show had less than 2000 people. And now here we are at close to 10,000, this step leap factor in terms of the audience and also the momentum of the company, the capabilities, lot of growth in that timeframe. Yeah, >>No. Yeah. Two, three years ago we were about 1800 people out to Hilton and San Francisco. We had about 40 partners attending this week were close to 10,000 at this year, almost 10,000 people online as well. And over over 200 partners here on the show floor, >>Right? 250 plus sessions, breakouts, keynotes, technical certifications, developer zone, a lot going on here. The buzz has been enormous from yesterday morning. It still is today. Talk about the theme of the event, the world of data collaboration. We've been talking a lot about data collaboration. Yeah. But from Snowflake's perspective, as Dave you've pointed out, that really seems like quite a differentiation of where snowflake is versus the guys in the root view mirror. Yeah. Number >>One of the very unique capabilities with snowflake is that the ability to share data with each other within your ecosystem. So you can both collaborate now on, on with your data, but also collaborate on building in a new business opportunities set together. So I think it's really a message that we, we, we fully fully own. It' really unique differentiator as well. So >>You used to talk about, you still talk about data sharing, but just kind of evolve the messaging to collaboration, explain why and, and how is that a wider scope and more appealing to the ecosystem in your >>Customers? I mean, data sharing is a terminology used for, for years and years, sounds from any data sharing it's about using, you know, FTP or, you know, APIs, those things. And we of course do it in a very, very different way where, where you do it without, you know, APIs so that you can share data with anyone in your ecosystem, without the data actually ever leaving, ever leaving your, your instance. So it's in a very different way. And also the fact that you can, again, you know, build applications together with other companies, you know, in your ecosystem. And it's a, it's a true collaboration around, you know, data in a way we've never seen before >>The other subtle change was data marketplace to marketplace. Why that change explain kind of what's behind that. >>Yeah. One of our big announcements here this week is around building native, you know, data apps and all snowflakes. Now you can both, you know, build the apps and you can distribute them and monetizing them in our marketplace. So in the past, you know, we only really had data sets within our marketplace within the data marketplace at that time. So you could now, you know, we can publish your data, you could monetize your data, but again, now moving forward, you will also be able to again, build apps and distribute them in the marketplace and also monetize them. And for Mon many startups, right? The, the big challenge is just a monetization piece as well. You build your product. You also need to find a way to, to both distribute and, and monetize it, an invoice for that product. And we solve all that for, for our customers. Now, >>A lot of customer growth, I saw Frank's slide yesterday over 5,900. I think you have 500 plus in the Forbes global 2000, a tremendous amount of growth in customers with a million plus ARR. Yes. >>Where >>Are the customers and the ecosystem in terms of that, that what you just described in the, going from the data marketplace to the marketplace are customers and, and the ecosystem influential in saying, Hey, snowflake, we need to go in this direction. >>Yeah. And also one key thing also with larger companies, they have their own marketplaces built, you know, snowflake as well. So you don't have to publish your, your, your data or app on our marketplace. The many of our larger companies, they're building those own marketplaces around themselves, you know, to distribute their data, you know, to their partners. So there are many ways you can, again, distribute and monetize their data. >>What are the marketing challenges? You, you started out kind of better data where simpler data warehouse, cloud data, warehouse, zero to snowflake was kind of the, the messaging and then the rise of the data cloud. And now it's all about applications. You're obviously building on top of that, but how, how have you, how do you think about that sort of messaging architecture going, you know, where you've come from and going forward? >>Yeah. Obviously the capabilities of the data cloud is kind of building and building it every day. And it's also a positioning that we can, you know, grow with as well. The big difference, you know, for us over the past two years is really that we are more and more really talking to the, to the business side, you know, of our, our customers that that's really where the demand is coming from. And we're truly, you know, with the data cloud, we're truly, you know, build bringing the business side and the it side together to solve these, you know, problems. And also, also together with all our partners as well. >>And I was just gonna ask you what, what's the partners role in the data cloud narrative? How do they help accomplish that? >>I would say, I mean, the data cloud is all about the partners it's, and also this event here, this event is not about, you know, snowflake it's about really our partners, you know, and our customers, you know, coming together, the data cloud is really it's. The foundation is of course, you know, the core capabilities, our platform, but then it's also all, all the data that is in there that other companies can access from our customers, but then all the applications and capabilities that are built, you know, by our partners and also our partners like the, you know, or the SI partners that are here, they are the ones, you know, doing the work, you know, with our customers, they are the ones that are, you know, migrating the data to, to snowflake and the data cloud and helping these companies build this new, you know, business model. So snowflake is a very, very partner first company. And the only thing I really care about this week here is that all this, you know, 200 partners here that they're gonna be tremendous successful if they're successful. That means that, you know, all our customers are successful as well. >>So how is your digital strategy evolving and how do you include the partners in that? >>Yeah, I mean, we learned so much over the past, you know, three, three years in regards to that. So, I mean, we all had to just accelerate our, the, the digital growth, you know, of our marketing capabilities and how to do that in a, with our, our partners. So with many of them, you know, we started developing this joint account based digital, you know, marketing program. Some, we just all had to adapt and innovate really fast, and we're gonna continue, of course, a lot of those motions as well. But at the same time, there's nothing like being out and meeting, you know, customers, you know, face to face. And what's also so important is the alignment we have with our local sales organization and our partners as well. So all these marketing programs that we develop in the fields, those are us again, opportunities cannot build those relationships as well. >>Can you talk about the sales marketing alignment at snowflake? I think it seems to be pretty strong, but we've talked a lot in the last day and a half about the retail data cloud healthcare life sciences, media finance. Talk to us about the marketing sales element, how marketing is facilitating, maybe from a campaign perspective, some of those big sales plays in the S yeah, >>Maybe both unique here. Our C Chris Dham, I think has been here early on the show. I mean, we work together for over six years now and we truly work as one, one team. We, we don't really even see the lines between sort of sales and marketings. We truly share exactly, you know, the same objectives every day. We share the same focus on, on putting our customers and our partners, you know, first, every day, his priorities, you know, are my priorities, you know, vice versa. And I think the biggest challenges we see often in some companies between sales and marketing, is that they're just shifting or it's different, you know, priorities. It's so important just to align the priorities and for us to making sure that our teams are all around the world now, or as aligned, you know, as Chris and I are as well, >>Couple other, yeah. Milestones or events come up, you're doing like, you're doing a worldwide tour and you got the dev conference in November, start with the worldwide tour. What's that all about? >>So we get little break near now, here for, for a couple of weeks. And then we're taking all the best of content here for, from, from summits and also all in our partners on a worldwide tour. We're starting in, in Asia, in August, and we're gonna target over 20 cities around the world. So, and again, I think this year, the challenge was many of our European customers and our customers in Asia. They couldn't make it. So we have smaller numbers, you know, coming from those regions. So it's more, more important than ever that we just come out to them, you know, instead, and bring this content in to them. >>Is that all face to face or at Lisa is all face to face. Is there a digital component as well? Yeah, >>It's actually gonna be all face to face and there will be some, some digital components as well. We're ending the tour in San Francisco. And that's also where we go doing all our winter announcements, you know, as well. And also our build our developer conference. That will be all virtual. The big, the global one will be all virtual at the same time, you know, from San Francisco. >>Okay. Am I confusing that with the November developer conference or >>The, that is, that is the conference, but it, that one will be virtual this year. Okay. >>So dev the build is all virtual. >>Yeah. Build be all virtual. And it's just, so we have that opportunity to reach as many people as we possibly can. >>And then is the, is this, is the intent to eventually bring them in to one place? >>Absolutely. I mean, I think the dev conference, the plan is to really take that around the world, you know, as well. We're seeing markets like Israel, for instance, there's a massive developer community that is, that is looking at snowflake right now. Markets like Indonesia, big developer segment as well. So I think it's not about, you know, having people come to us, it's about we, you know, coming out to them. So markets like Israel and Indonesia. And >>Will you also in future summits include a, a development component. You probably have something here. I just haven't seen it yet, but, but like the conference within the conference, or is it more, Hey, we want to cater to the t-shirt crowd, you know, separately, what do you, yeah, >>I think we cater to them separately. And I said again, that we it's really about taking our content, you know, out, out to them. And when we're talking about the developer audience, we're talking about hundreds and thousands of people and they can't physically, you know, come here. So our plan is really to come out and meet them where they are. How >>Did you make the decision to do this summit fourth annual in person? I'm sure the attendance figures are probably blowing your mind, but that's a, that's a big decision and that's a challenging decision to make. How did they go about doing that? >>I think, I think if there was one thing we've learned during the past three years, it's really about that. Adaptability is the new superpower, you know, of bus business. So of course we've had to adapt, you know, you know, every month. And of course, even two months ago, we were not sure, you know, how, how many people that will be able to come here today, but we're incredibly happy. Were they, were they, were they with the number of people that, you know, came here and yeah, we're already storing planning for next year. >>I mean, it definitely must have exceeded your expectations. Is that fair? Or >>We set expectations high. Yeah. Okay. But again, it's that unknown that we all had to deal with, you know, every day. And I think we're gonna continue to have to, to live with that. >>Yeah. Well, this is, yeah, this is one of the largest shows we've done. Yeah. SIM it's a reinvent, obviously different. That was last year, but this year, this is the biggest event I think we've been to, and we've been to some big brand events, so yeah. Yeah. Punching above the weight as usual. >>Yeah. And again, I wanna just give a big shout out to our whole, you know, partner ecosystem, you know, here, because again, this is very much of an ecosystem, you know, partner you in a conference and it's really all our 200 plus partners here making this conference, what it is. I mean, today >>It's remarkable to pace at which you've been able to grow the ecosystem, but why do you think that is? What's the secret there? >>I think we fully understand that we don't solve all the problems ourselves, you know, for, for our customers. It's really an ecosystem of, of products and services that solve those problems and customers. They are looking for vendors that partner well with others. They're looking for vendors that integrate well, you know, with each other. So we always have an outside in view on things and that's something we challenge ourselves every morning. We wake up, how do we put ourselves in the customer's shoes in terms of, of, of their needs and their problems and how to solve those? We don't solve them alone. We, we solve them with these 200 plus in apart. Make >>It sound so simple. >>Speaking of challenges, you have something called the startup challenge. That's in its second annual >>Yes. Tomorrow we're kicking off the, the final of the second annual startup challenge. We have three finalists here, three very different, you know, companies. And we had a couple hundred applications this year and we have everything from a company that makes AI and ML more accessible to a company, focus on, you know, retail, you know, analytics. It's gonna be very exciting tomorrow, big price for the winner. The winner is going to win a million dollar of investment from, from snowflake ventures. So >>Very exciting. It's a nice incentive. It is a nice incentive, >>Very nice incentive. And also all the exposure you will get as well. We will put a lot of our marketing support, you know, behind this companies as well. >>Excellent. >>And now the data driver awards program, we've had a couple of data drivers on the program in the last day >>And a half. Yes. We announced to know those winners as well, you know, early in the week. So a lot of recognition for both our customers, but also we're gonna see, you know, the next interesting companies here to watch tomorrow during the startup challenge, you >>Get a little bit of something for everybody here, right? I mean the, the, the, the partner awards, right? These other little side opportunities for ecosystem to get recognition, sometimes funding it's >>Yeah. Everyone wants to be recognized, you know, for the great work they're doing. So, yeah. Yeah. >>So what's next for marketing, obviously, a break and then you start the, the road show. >>So of course yesterday we made an number of very, very large in announcements. Many of those, you know, we've been working on for years here at snowflake, like Unior, you know, for instance has been probably three years, you know, in the making. So our goal now is to take all those announcements to every customer around the world, both through, you know, local events really starting this week, and then also the world tour this fall. And it's gonna be a big, big focus on the developer segments. Obviously what our most exciting announcements is, the native apps, you know, capabilities. And that finally, you know, we can bring the work, you know, to the data and not again, taking the data to the work. And as you know, our mission has really been around breaking down the data silos. Cause those have been the biggest, you know, challenges companies have faced. That's really, what's been standing in the way for customers to become you a data Rav, and now bringing the work to the data from a developer's standpoint is gonna break down even further, those silos. So, >>Yeah. And it's good physics. >>Yeah. It good physics. Yeah. >>Yeah. Tremendous opportunity. Congratulations on a great successful event. It's not even done yet, but obviously we've seen so much success. Great news coming out. We'll be excited to be hearing some of the outcomes of the road show and the developer conference coming up in the fall. We appreciate your insights, your time and for having the cube here at the summit. >>Thank you for being here. Thank you. Thanks for having >>Me, our pleasure for Denise Pearson and Dave Valante I'm Lisa Martin. You're watching the cubes coverage of snowflake summit 22 live from Las Vegas, Dave and I will be back after a short break.

Published Date : Jun 15 2022

SUMMARY :

This is the snowflake summit 22 at Caesar's forum. So great to have you here at SEL meets as well. I mean, everybody's so excited to be face to face and you know, Lisa and I have been doing you were just talking with Frank, I think the 2019 show had less than 2000 people. here on the show floor, Talk about the theme of the event, the world of data collaboration. So you can both collaborate And also the fact that you can, again, you know, build applications together with Why that change explain kind the past, you know, we only really had data sets within our marketplace within the I think you have 500 plus in the Forbes global 2000, Are the customers and the ecosystem in terms of that, that what you just described in the, around themselves, you know, to distribute their data, you know, to their partners. You, you started out kind of better data where simpler data warehouse, And it's also a positioning that we can, you know, grow with as well. you know, doing the work, you know, with our customers, they are the ones that are, you know, migrating the data to, So with many of them, you know, we started developing this joint account based Can you talk about the sales marketing alignment at snowflake? our partners, you know, first, every day, his priorities, you know, the dev conference in November, start with the worldwide tour. So we have smaller numbers, you know, coming from those regions. Is that all face to face or at Lisa is all face to face. you know, as well. The, that is, that is the conference, but it, that one will be virtual this year. And it's just, so we have that opportunity to reach as many people So I think it's not about, you know, having people come to us, or is it more, Hey, we want to cater to the t-shirt crowd, you know, separately, you know, out, out to them. Did you make the decision to do this summit fourth annual in person? Adaptability is the new superpower, you know, of bus business. I mean, it definitely must have exceeded your expectations. it's that unknown that we all had to deal with, you know, Punching above the weight as usual. you know, here, because again, this is very much of an ecosystem, you know, partner you in a conference and you know, for, for our customers. Speaking of challenges, you have something called the startup challenge. focus on, you know, retail, you know, analytics. It's a nice incentive. And also all the exposure you will get as well. gonna see, you know, the next interesting companies here to watch tomorrow Yeah. And that finally, you know, we can bring the work, Yeah. some of the outcomes of the road show and the developer conference coming up in the fall. Thank you for being here. Me, our pleasure for Denise Pearson and Dave Valante I'm Lisa Martin.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
FrankPERSON

0.99+

Lisa MartinPERSON

0.99+

ChrisPERSON

0.99+

Denise PearsonPERSON

0.99+

AsiaLOCATION

0.99+

LisaPERSON

0.99+

Dave ValantePERSON

0.99+

DavePERSON

0.99+

San FranciscoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Las VegasLOCATION

0.99+

NovemberDATE

0.99+

next yearDATE

0.99+

yesterday morningDATE

0.99+

last yearDATE

0.99+

200 partnersQUANTITY

0.99+

threeQUANTITY

0.99+

AugustDATE

0.99+

three yearsQUANTITY

0.99+

this yearDATE

0.99+

yesterdayDATE

0.99+

TomorrowDATE

0.99+

200 plus partnersQUANTITY

0.99+

this weekDATE

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

500 plusQUANTITY

0.99+

over six yearsQUANTITY

0.98+

tomorrowDATE

0.98+

this fallDATE

0.98+

two months agoDATE

0.98+

three years agoDATE

0.98+

200 plusQUANTITY

0.98+

IsraelLOCATION

0.98+

OneQUANTITY

0.98+

oneQUANTITY

0.98+

2019DATE

0.98+

HiltonLOCATION

0.98+

less than 2000 peopleQUANTITY

0.98+

second annualQUANTITY

0.98+

three finalistsQUANTITY

0.97+

UniorORGANIZATION

0.97+

hundredsQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

SnowflakeEVENT

0.96+

firstQUANTITY

0.96+

over 20 citiesQUANTITY

0.96+

TwoDATE

0.96+

about 40 partnersQUANTITY

0.96+

Chris DhamPERSON

0.95+

IndonesiaLOCATION

0.95+

almost 10,000 peopleQUANTITY

0.94+

about 1800 peopleQUANTITY

0.94+

one teamQUANTITY

0.93+

first companyQUANTITY

0.93+

250 plus sessionsQUANTITY

0.92+

over over 200 partnersQUANTITY

0.92+

thousandsQUANTITY

0.89+

fourth annualQUANTITY

0.87+

a million dollarQUANTITY

0.85+

one thingQUANTITY

0.84+

one placeQUANTITY

0.82+

one key thingQUANTITY

0.8+

past two yearsDATE

0.79+

a million plusQUANTITY

0.78+

Frank Slootman, Snowflake | Snowflake Summit 2022


 

>>Hi, everybody. Welcome back to Caesars in Las Vegas. My name is Dave ante. We're here with the chairman and CEO of snowflake, Frank Luman. Good to see you again, Frank. Thanks for coming on. Yeah, >>You, you as well, Dave. Good to be with you. >>No, it's, it's awesome to be, obviously everybody's excited to be back. You mentioned that in your, in your keynote, the most amazing thing to me is the progression of what we're seeing here in the ecosystem and of your data cloud. Um, you wrote a book, the rise of the data cloud, and it was very cogent. You talked about network effects, but now you've executed on that. I call it the super cloud. You have AWS, you know, I use that term, AWS. You're building on top of that. And now you have customers building on top of your cloud. So there's these layers of value that's unique in the industry. Was this by design >>Or, well, you know, when you, uh, are a data clouding, you have data, people wanna do things, you know, with that data, they don't want to just, you know, run data operations, populate dashboards, you know, run reports pretty soon. They want to build applications and after they build applications, they wanna build businesses on it. So it goes on and on and on. So it, it drives your development to enable more and more functionality on that data cloud. Didn't start out that way. You know, we were very, very much focused on data operations, then it becomes application development and then it becomes, Hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many, in many ways, you know, >>There was some confusion I think, and there still is in the community of, particularly on wall street, about your quarter, your con the consumption model I loved on the earnings call. One of the analysts asked Mike, you know, do you ever consider going to a subscription model? And Mike got cut him off, then let finish. No, that would really defeat the purpose. Um, and so there's also a narrative around, well, maybe snowflake, consumption's easier to dial down. Maybe it's more discretionary, but I, I, I would say this, that if you're building apps on top of snowflake and you're actually monetizing, which is a big theme here, now, your revenue is aligned, you know, with those cloud costs. And so unless you're selling it for more, you know, than it costs more than, than you're selling it for, you're gonna dial that up. And that is the future of, I see this ecosystem in your company. Is that, is that fair? You buy that. >>Yeah, it, it is fair. Obviously the public cloud runs on a consumption model. So, you know, you start looking all the layers of the stack, um, you know, snowflake, you know, we have to be a consumption model because we run on top of other people's, uh, consumption models. Otherwise you don't have alignment. I mean, we have conversations, uh, with people that build on snowflake, um, you know, they have trouble, you know, with their financial model because they're not running a consumption model. So it's like square pack around hole. So we all have to align ourselves. So that's when they pay a dollar, you know, a portion goes to, let's say, AWS portion goes to the snowflake of that dollar. And the portion goes to whatever the uplift is, application value, data value, whatever it is to that goes on top of that. So the whole dollar, you know, gets allocated depending on whose value at it. Um, we're talking about. >>Yeah, but you sell value. Um, so you're not a SaaS company. Uh, at least I don't look at you that that way I I've always felt like the SAS pricing model is flawed because it's not aligned with customers. Right. If you, if you get stuck with orphaned licenses too bad, you know, pay us. >>Yeah. We're, we're, we're obviously a SaaS model in the sense that it is software as a service, but it's not a SaaS model in the sense that we don't sell use rights. Right. And that's the big difference. I mean, when you buy, you know, so many users from, you know, Salesforce and ServiceNow or whoever you have just purchased the right, you know, for so many users to use that software for this period of time, and the revenue gets recognized, you know, radically, you know, one month at a time, the same amount. Now we're not that different because we still do a contract the exact same way as SA vendor does it, but we don't recognize the revenue radically. We recognize the revenue based on the consumption, but over the term of the contract, we recognize the entire amount. It just is not neatly organized in these monthly buckets. >>You know? So what happens if they underspend one quarter, they have to catch up by the end of the, the term, is that how it works or is that a negotiation or it's >>The, the, the spending is a totally, totally separate from the consumption itself, you know, because you know how they pay for the contract. Let's say they do a three year contract. Um, you know, they, they will probably pay for that, you know, on an annual basis, you know, that three year contract. Um, but it's how they recognize their expenses for snowflake and how we recognize the revenue is based on what they actually consume. But it's not like you're on demand where you can just decide to not use it. And then I don't have any cost, but over the three year period, you know, all of that, you know, uh, needs to get consumed or they expire. And that's the same way with Amazon. If I don't consume what I buy from Amazon, I still gotta pay for it. You know, so, >>Well, you're right. Well, I guess you could buy by the drink, but it's way, way more expensive and nobody really correct. Does that, so, yep. Okay. Phase one, better simpler, you know, cloud enterprise data warehouse, phase two, you introduced the, the data cloud and, and now we're seeing the rise of the data cloud. What, what does phase three look like >>Now? Phase, phase three is all about applications. Um, and we've just learned, uh, you know, from the beginning that people were trying to do this, but we weren't instrumental at all to do it. So people would ODBC, you know, JDBC drivers just uses as database, right? So the entire application would happen outside, you know, snowflake, we're just a database. You connect to the database, you know, you read or right data, you know, you do data, data manipulations. And then the application, uh, processing all happens outside of snowflake. Now there's issues with that because we start to exfil trade data, meaning that we started to take data out of snowflake and, and put it, uh, in other places. Now there's risk for that. There's operational risk, there's governance, exposure, security issues, you know, all this kind of stuff. And the other problem is, you know, data gets Reed. >>It proliferates. And then, you know, data science tests are like, well, I, I need that data to stay in one place. That's the whole idea behind the data cloud. You know, we have very big infrastructure clouds. We have very big application clouds and then data, you know, sort of became the victim there and became more proliferated and more segment. And it's ever been. So all we do is just send data to the work all day. And we said, no, we're gonna enable the work to get to the data. And the data that stays in more in place, we don't have latency issue. We don't have data quality issues. We don't have lineage issues. So, you know, people have responded very, very well to the data cloud idea, like, yeah, you know, as an enterprise or an institution, you know, I'm the epicenter of my own data cloud because it's not just my own data. >>It's also my ecosystem. It's the people that I have data networking relationships with, you know, for example, you know, take, you know, uh, an investment bank, you know, in, in, in, in New York city, they send data to fidelity. They send data to BlackRock. They send data to, you know, bank of New York, all the regulatory clearing houses, all on and on and on, you know, every night they're running thousands, tens of thousands, you know, of jobs pushing that data, you know, out there. It just, and they they're all on snowflake already. So it doesn't have to be this way. Right. So, >>Yes. So I, I asked the guys before, you know, last week, Hey, what, what would you ask Frank? Now? You might remember you came on, uh, our program during COVID and I was asking you how you're dealing with it, turn off the news. And it was, that was cool. And I asked you at the time, you know, were you ever, you go on Preem and you said, look, I'll never say never, but it defeats the purpose. And you said, we're not gonna do a halfway house. Actually, you were more declarative. We're not doing a halfway house, one foot in one foot out. And then the guy said, well, what about that Dell deal? And that pure deal that you just did. And I, I think I know the answer, but I want to hear from you did a customer come to you and say, get you in the headlock and say, you gotta do this. >>Or it did happen that way. Uh, it, uh, it started with a conversation, um, you know, via with, uh, with Michael Dell. Um, it was supposed to be just a friendly chat, you know, Hey, how's it going? And I mean, obviously Dell is the owner of data, the main, or our first company, you know? Um, but it's, it, wasn't easy for, for Dell and snowflake to have a conversation because they're the epitome of the on-premise company and we're the epitome of a cloud company. And it's like, how, what do we have in common here? Right. What can we talk about? But, you know, Michael's a very smart, uh, engaging guy, you know, always looking for, for opportunity. And of course they decided we're gonna hook up our CTOs, our product teams and, you know, explore, you know, somebody's, uh, ideas and, you know, yeah. We had some, you know, starts and restarts and all of that because it's just naturally, you know, uh, not an easy thing to conceive of, but, you know, in the end it was like, you know what? >>It makes a lot of sense. You know, we can virtualize, you know, Dell object storage, you know, as if it's, you know, an S three storage, you know, from Amazon and then, you know, snowflake in its analytical processing. We'll just reference that data because to us, it just looks like a file that's sitting on, on S3. And we have, we have such a thing it's called an external table, right. That's, that's how we basically, it projects, you know, a snowflake, uh, semantic and structural model, you know, on an external object. And we process against it exactly the same way as if it was an internal, uh, table. So we just extended that, um, you know, with, um, with our storage partners, like Dell and pure storage, um, for it to happen, you know, across a network to an on-prem place. So it's very elegant and it, it, um, it becomes an, an enterprise architecture rather than just a cloud architecture. And I'm, I just don't know what will come of it. And, but I've already talked to customers who have to have data on premises just can't go anywhere because they process against it, you know, where it originates, but there are analytical processes that wanna reference attributes of that data. Well, this is what we'll do that. >>Yeah. I'm, it is interesting. I'm gonna ask Dell if I were them, I'd be talking to you about, Hey, I'm gonna try to separate compute from storage on prem and maybe do some of the, the work there. I don't even know if it's technically feasible. It's, I'll ask OI. But, um, but, but, but to me, that's an example of your extending your ecosystem. Um, so you're talking now about applications and that's an example of increasing your Tam. I don't know if you ever get to the edge, you know, we'll see, we're not quite quite there yet, but, um, but as you've said before, there's no lack of market for you. >>Yeah. I mean, obviously snowflake it it's, it's Genesis was reinventing database management in, in a cloud computing environment, which is so different from a, a machine environment or a cluster environment. So that's why, you know, we're, we're, we're not a, a fit for a machine centric, uh, environment sort of defeats the purpose of, you know, how we were built. We, we are truly a native solution. Most products, uh, in the clouds are actually not cloud native. You know, they, they originated the machine environments and you still see that, you know, almost everything you see in the cloud by the way is not cloud native, our generation of applications. They only run the cloud. They can only run the cloud. They are cloud native. They don't know anything else, >>You know? Yeah, you're right. A lot of companies would just wrap something in wrap their stack in Kubernetes and throw it into the cloud and say, we're in the cloud too. And you basically get, you just shifted. It >>Didn't make sense. Oh. They throw it in the container and run it. Right. Yeah. >>So, okay. That's cool. But what does that get you that doesn't change your operational model? Um, so coming back to software development and what you're doing in, in that regard, it seems one of the things we said about Supercloud is in order to have a Supercloud, you gotta have an ecosystem, you gotta have optionality. Hence you're doing things like Apache iceberg, you know, you said today, well, we're not sure where it's gonna go, but we offering options. Uh, but, but my, my question is, um, as it pertains to software developments specifically, how do you, so one of the things we said, sorry, I've lost my train there. One of the things we said is you have to have a super PAs in order to have a super cloud ecosystem, PAs layer. That's essentially what you've introduced here. Is it not a platform for our application development? >>Yeah. I mean, what happens today? I mean, how do you enable a developer, you know, on snowflake, without the developer, you know, reading the, the files out of snowflake, you know, processing, you know, against that data, wherever they are, and then putting the results set, God knows where, right. And that's what happens today. It's the wild west it's completely UN uncovered, right? And that's the reason why lots of enterprises will not allow Python anything anywhere near, you know, their enterprise data. We just know that, uh, we also know it from streamlet, um, or the acquisition, um, large acquisition that we made this year because they said, look, you know, we're, we have a lot of demand, you know, uh, in the Python community, but that's the wild west. That's not the enterprise grade high trust, uh, you know, corporate environment. They are strictly segregated, uh, today. >>Now do some, do these, do these things sometimes dribble up in the enterprise? Yes, they do. And it's actually intolerable the risk that enterprises, you know, take, you know, with things being UN uncovered. I mean the whole snowflake strategy and promises that you're in snowflake, it is a, an absolute enterprise grade environment experience. And it's really hard to do. It takes enormous investment. Uh, but that is what you buy from us. Just having Python is not particularly hard. You know, we can do that in a week. This has taken us years to get it to this level, you know, of, of, you know, governance, security and, and, you know, having all the risks around exfiltration and so on, really understood and dealt with. That's also why these things run in private previews and public previews for so long because we have to squeeze out, you know, everything that may not have been, you know, understood or foreseen, you know, >>So there are trade offs of, of going into this snowflake cloud, you get all this great functionality. Some people might think it's a walled garden. How, how would you respond to that? >>Yeah. And it's true when you have a, you know, a snowflake object, like a snowflake, uh, table only snowflake, you know, runs that table. And, um, you know, that, that is, you know, it's very high function. It's very sort of analogous to what apple did, you know, they have very high functioning, but you do have to accept the fact that it's, that it's not, uh, you know, other, other things in apple cannot, you know, get that these objects. So this is the reason why we introduce an open file format, you know, like, like iceberg, uh, because what iceberg effectively does is it allows any tool, uh, you know, to access that particular object. We do it in such a way that a lot of the functionality of snowflake, you know, will address the iceberg format, which is great because it's, you're gonna get much more function out of our, you know, iceberg implementation than you would get from iceberg on its own. So we do it in a very high value addeds, uh, you know, manner, but other tools can still access the same object in a read to write, uh, manner. So it, it really sort of delivers the original, uh, promise of the data lake, which is just like, Hey, I have all these objects tools come and go. I can use what I want. Um, so you get, you get the best of both worlds for the most part. >>Have you reminds me a little bit of VMware? I mean, VMware's a software mainframe, it's just better than >>Doing >>It on your own. Yep. Um, one of the other hallmarks of a cloud company, and you guys clearly are a cloud company is startups and innovation. Um, now of course you see that in, in the, in the ecosystem, uh, and maybe that's the answer to my question, but you guys are kind of whale hunters, <laugh> your customers are, tend to be bigger. Uh, is the, is the innovation now the extension of that, the ecosystem is that by design. >>Oh, um, you know, we have a enormous, uh, ISV following and, um, we're gonna have a whole separate conference like this, by the way, just for, yeah. >>For developers. I hope you guys will up there too. Yeah. Um, you know, the, the reason that, that the ISV strategy is very important for, you know, for, for, for, for many reasons, but, you know, ISVs are the people that are really going to unlock a lot of the value and a lot of the promise of data, right? Because you, you can never do that on your own. And the problem has been that for ISVs, it is so expensive and so difficult to build a product that can be used because the entire enterprise platform infrastructure needs to be built by somebody, you know, I mean, are you really gonna run infrastructure, database, operations, security, compliance, scalability, economics. How do you do that as a software company where really you only have your, your domain expertise that you want to deliver on a platform. You don't wanna do all these things. >>First of all, you don't know how to do it, how to do it well. Um, so it is much easier, much faster when there is already platform to actually build done in the world of clout that just doesn't, you know, exist. And then beyond that, you know, okay, fine building. It is sort of step one. Now I gotta sell it. I gotta market it. So how do I do that? Well, in the snowflake community, you have already market <laugh>, there's thousands and thousands of customers that are also on self lake. Okay. So their, their ability to consume that service that you just built, you know, they can search it, they can try it, they can test it and decide whether they want to consume it. And then, you know, we can monetize it. So all they have to do is cash the check. So the net effecti of it is we drastically lowered the barriers to entry into the world, you know, of software, you know, two men or two women in a dog, and a handful of files can build something that then can be sold, sort of to, for software developers. >>I wrote a piece 2012 after the first reinvent. And I, you know, and I, and I put a big gorilla on the front page and I said, how do you compete with Amazon gorilla? And then one of my answers was you build data ecosystems and you verticalize, and that's, that's what you're doing >>Here. Yeah. There certain verticals that are farther along than others, uh, obviously, but for example, in financial, uh, which is our largest vertical, I mean, the, the data ecosystem is really developing hardcore now. And that's, that's because they so rely on those relationships between all the big financial institutions and entities, regulatory, you know, clearing houses, investment bankers, uh, retail banks, all this kind of stuff. Um, so they're like, it becomes a no brainer. The network affects kick in so strongly because they're like, well, this is really the only way to do it. I mean, if you and I work in different companies and we do, and we want to create a secure, compliant data network and connection between us, I mean, it would take forever to get our lawyers to agree that yeah, it's okay. <laugh> right now, it's like a matter of minutes to set it up. If we're both on snowflake, >>It's like procurement, do they, do you have an MSA yeah. Check? And it just sail right through versus back and forth and endless negotiations >>Today. Data networking is becoming core ecosystem in the world of computing. You know, >>I mean, you talked about the network effects in rise of the data cloud and correct. Again, you know, you, weren't the first to come up with that notion, but you are applying it here. Um, I wanna switch topics a little bit. I, when I read your press releases, I laugh every time. Cause this says no HQ, Bozeman. And so where, where do you, I think I know where you land on, on hybrid work and remote work, but what are your thoughts on that? You, you see Elon the other day said you can't work for us unless you come to the office. Where, where do you stand? >>Yeah. Well, the, well, the, the first aspect is, uh, we really wanted to, uh, separate from the idea of a headquarters location, because I feel it's very antiquated. You know, we have many different hubs. There's not one place in the world where all the important people are and where we make all the important positions, that whole way of thinking, uh, you know, it is obsolete. I mean, I am where I need to be. And it it's many different places. It's not like I, I sit in this incredible place, you know, and that's, you know, that's where I sit and everybody comes to me. No, we are constantly moving around and we have engineering hubs. You know, we have your regional, uh, you know, headquarters for, for sales. Obviously we have in Malaysia, we have in Europe, you know? And, um, so I wanted to get rid of this headquarters designation. >>And, you know, the, the, the other issue obviously is that, you know, we were obviously in California, but you know, California is, is no longer, uh, the dominant place of where we are resident. I mean, 40% of our engineering people are now in be Washington. You know, we have hundreds of people in Poland where people, you know, we are gonna have very stressed location in Toronto. Um, yeah. Obviously our customers are, are everywhere, right? So this idea that, you know, everything is happening in, in one state is just, um, you know, not, not correct. So we wanted to go to no headquarters. Of course the SCC doesn't let you do that. Um, because they want, they want you to have a street address where the government can send you a mail and then it becomes, the question is, well, what's an acceptable location. Well, it has to be a place where the CEO and the CFO have residency by hooker, by crook. >>That happened to be in Bozeman Montana because Mike and I are both, it was not by design. We just did that because we were, uh, required to, you know, you know, comply with government, uh, requirements, which of course we do, but that's why it, it says what it says now on, on the topic of, you know, where did we work? Um, we are super situational about it. It's not like, Hey, um, you know, everybody in the office or, or everybody is remote, we're not categorical about it. Depends on the function, depends on the location. Um, but everybody is tethered to an office. Okay. In words, everybody has a relationship with an office. There's, there's almost nobody, there are a few exceptions of people that are completely remote. Uh, but you know, if you get hired on with snowflake, you will always have an office affiliation and you can be called into the office by your manager. But for purpose, you know, a meeting, a training, an event, you don't get called in just to hang out. And like, the office is no longer your home away from home. Right. And we're now into hotel, right? So you don't have a fixed place, you know? So >>You talked in your keynote a lot about last question. I let you go customer alignment, obviously a big deal. I have been watching, you know, we go to a lot of events, you'll see a technology company tell a story, you know, about their widget or whatever it was their box. And then you'll see an outcome and you look at it and you shake your head and say, well, that the difference between this and that is the square root of zero, right. When you talk about customer alignment today, we're talking about monetizing data. Um, so that's a whole different conversation. Um, and I, I wonder if you could sort of close on how that's different. Um, I mean, at ServiceNow, you transformed it. You know, I get that, you know, data, the domain was okay, tape, blow it out, but this is a, feels like a whole new vector or wave of growth. >>Yeah. You know, monetizing, uh, data becomes sort of a, you know, a byproduct of having a data cloud you all of a sudden, you know, become aware of the fact that, Hey, Hey, I have data and be that data might actually be quite valuable to parties. And then C you know, it's really easy to then, you know, uh, sell that and, and monetize that. Cause if it was hard, forget it, you know, I don't have time for it. Right. But if it's relatively, if it's compliant, it's relatively effortless, it's pure profit. Um, I just want to reference one attribute, two attributes of what you have, by the way, you know, uh, hedge funds have been into this sort of thing, you know, for a long time, because they procure data from hundreds and hundreds of sources, right. Because they're, they are the original data scientists. >>Um, but the, the bigger thing with data is that a lot of, you know, digital transformation is, is, is finally becoming real. You know, for years it was arm waving and conceptual and abstract, but it's becoming real. I mean, how do we, how do we run a supply chain? You know, how do we run, you know, healthcare, um, all these things are become are, and how do we run cyber security? They're being redefined as data problems and data challenges. And they have data solutions. So that's right. Data strategies are insanely important because, you know, if, if the solution is through data, then you need to have, you know, a data strategy, you know, and in our world, that means you have a data cloud and you have all the enablement that allows you to do that. But, you know, hospitals, you know, are, are saying, you know, data science is gonna have a bigger impact on healthcare than life science, you know, in the coming, whatever, you know, 10, 20 years, how do you enable that? >>Right. I, I have conversations with, with, with hospital executives are like, I got generations of data, you know, clinical diagnostic, demographic, genomic. And then I, I am envisioning these predictive outcomes over here. I wanna be able to predict, you know, once somebody's gonna get what disease and you know, what I have to do about it, um, how do I do that? <laugh> right. The day you go from, uh, you know, I have a lot of data too. I have these outcomes and then do me a miracle in the middle, in the middle of somewhere. Well, that's where we come in. We're gonna organize ourselves and then unpack thats, you know, and then we, we work, we through training models, you know, we can start delivering some of these insights, but the, the promise is extraordinary. We can change whole industries like pharma and, and, and healthcare. Um, you know, 30 effects of data, the economics will change. And you know, the societal outcomes, you know, um, quality of life disease, longevity of life is quite extraordinary. Supply chain management. That's all around us right >>Now. Well, there's a lot of, you know, high growth companies that were kind of COVID companies, valuations shot up. And now they're trying to figure out what to do. You've been pretty clear because of what you just talked about, the opportunities enormous. You're not slowing down, you're amping it up, you know, pun intended. So Frank Luman, thanks so much for coming on the cube. Really appreciate your time. >>My pleasure. >>All right. And thank you for watching. Keep it right there for more coverage from the snowflake summit, 2022, you're watching the cube.

Published Date : Jun 15 2022

SUMMARY :

Good to see you again, Frank. You have AWS, you know, I use that term, AWS. you know, with that data, they don't want to just, you know, run data operations, populate dashboards, One of the analysts asked Mike, you know, do you ever consider going to a subscription model? with people that build on snowflake, um, you know, they have trouble, you know, with their financial model because bad, you know, pay us. you know, so many users from, you know, Salesforce and ServiceNow or whoever you have just purchased the they, they will probably pay for that, you know, on an annual basis, you know, that three year contract. Phase one, better simpler, you know, cloud enterprise data warehouse, You connect to the database, you know, you read or right data, you know, you do data, data manipulations. like, yeah, you know, as an enterprise or an institution, you know, I'm the epicenter of you know, for example, you know, take, you know, uh, an investment bank, you know, in, you know, were you ever, you go on Preem and you said, look, I'll never say never, but it defeats the purpose. just naturally, you know, uh, not an easy thing to conceive of, but, you know, You know, we can virtualize, you know, Dell object storage, you know, I don't know if you ever get to the edge, you know, we'll see, we're not quite quite there yet, So that's why, you know, we're, And you basically get, you just shifted. Oh. They throw it in the container and run it. you know, you said today, well, we're not sure where it's gonna go, but we offering options. you know, on snowflake, without the developer, you know, reading the, the files out of snowflake, And it's actually intolerable the risk that enterprises, you know, take, So there are trade offs of, of going into this snowflake cloud, you get all this great functionality. uh, you know, other, other things in apple cannot, you know, get that these objects. Um, now of course you see that Oh, um, you know, we have a enormous, uh, ISV following and, be built by somebody, you know, I mean, are you really gonna run infrastructure, you know, of software, you know, two men or two women in a dog, and a handful of files can build you know, and I, and I put a big gorilla on the front page and I said, how do you compete with Amazon gorilla? regulatory, you know, clearing houses, investment bankers, uh, retail banks, It's like procurement, do they, do you have an MSA yeah. Data networking is becoming core ecosystem in the world of computing. Again, you know, It's not like I, I sit in this incredible place, you know, and that's, And, you know, the, the, the other issue obviously is that, you know, we were obviously in California, We just did that because we were, uh, required to, you know, you know, I have been watching, you know, we go to a lot of events, you'll see a technology company tell And then C you know, you know, a data strategy, you know, and in our world, that means you have a data cloud and you have all the enablement that thats, you know, and then we, we work, we through training models, you know, you know, pun intended. And thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

CaliforniaLOCATION

0.99+

MikePERSON

0.99+

Frank LumanPERSON

0.99+

BlackRockORGANIZATION

0.99+

PolandLOCATION

0.99+

EuropeLOCATION

0.99+

AmazonORGANIZATION

0.99+

MalaysiaLOCATION

0.99+

FrankPERSON

0.99+

TorontoLOCATION

0.99+

DellORGANIZATION

0.99+

Frank SlootmanPERSON

0.99+

one footQUANTITY

0.99+

hundredsQUANTITY

0.99+

thousandsQUANTITY

0.99+

2012DATE

0.99+

MichaelPERSON

0.99+

WashingtonLOCATION

0.99+

AWSORGANIZATION

0.99+

40%QUANTITY

0.99+

one monthQUANTITY

0.99+

three yearQUANTITY

0.99+

Michael DellPERSON

0.99+

Bozeman MontanaLOCATION

0.99+

New YorkLOCATION

0.99+

last weekDATE

0.99+

FacebookORGANIZATION

0.99+

30 effectsQUANTITY

0.99+

bothQUANTITY

0.99+

OneQUANTITY

0.99+

two attributesQUANTITY

0.99+

SCCORGANIZATION

0.99+

two womenQUANTITY

0.99+

PythonTITLE

0.99+

one quarterQUANTITY

0.99+

one attributeQUANTITY

0.99+

zeroQUANTITY

0.98+

todayDATE

0.98+

20 yearsQUANTITY

0.98+

Las VegasLOCATION

0.98+

appleORGANIZATION

0.98+

TodayDATE

0.98+

10QUANTITY

0.98+

first aspectQUANTITY

0.98+

ServiceNowORGANIZATION

0.98+

two menQUANTITY

0.98+

KubernetesTITLE

0.97+

tens of thousandsQUANTITY

0.97+

ElonPERSON

0.97+

firstQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

both worldsQUANTITY

0.96+

FirstQUANTITY

0.96+

oneQUANTITY

0.96+

S threeCOMMERCIAL_ITEM

0.96+

one stateQUANTITY

0.95+

SupercloudORGANIZATION

0.95+

this yearDATE

0.95+

one placeQUANTITY

0.94+

first companyQUANTITY

0.93+

snowflakeORGANIZATION

0.9+

Dave antePERSON

0.87+

hundreds of peopleQUANTITY

0.87+

hundreds of sourcesQUANTITY

0.85+

2022DATE

0.85+

Rosemary Hua, Snowflake & Patrick Kelly, 84 51 | Snowflake Summit 2022


 

>>Hey everyone. Welcome back to the Cube's coverage of snowflake summit. 22 live from Las Vegas. We're at Caesar's forum, Lisa Martin, with Dave ante. We've been having some great conversations over the last day and a half. This guy just came from main stage interviewing the CEO, Franks Lubin himself, who joins us after our next guest here, we're gonna be talking customers and successes with snowflake Rosemary Hua joins us the global head of retail at snowflake and Patrick Kelly, the VP of product management at their customer 84 51. Welcome to the program guys. >>Thank you. It's nice to be here. So >>Patrick, 84 51. Talk to us about the business, give the audience an overview of what you guys are doing. And then we'll talk about how you're working with snowflake. >>Yeah, absolutely. Thank you both for, uh, the opportunity to be here. So 84 51 is a retail data science insights and media company. And really what that means is that we, we partner with our, uh, parent company Kroger, as well as consumer packaged goods or brands and brokers and agencies, really to understand shoppers and create relevant, personalized, and valuable experiences for shoppers in source and grocery stores. >>That relevance is key. We all expect that these days, I think the last couple of years as everyone's patience has been wearing. Yeah, very thin. I'm not, I'm not convinced it's gonna come back either, but we expect that brands are gonna interact with us and offer us the next best offer. That's actually relevant and personalized to us. How does AB 4 51 achieve that? >>Yeah, it's a great question. And you're right. That expectation is only growing. Um, and it takes data analytics, data science and all of these capabilities in order to deliver it on that promise, uh, you know, big, a big part of the relationship that retailers and brands have with consumers is about a value exchange. And it's, again, it's about that expectation that brands and retailers need to be able to meet the ever-changing needs of consumers. Uh, whether that be introducing new brands or offering the right price points or promotions or ensuring you meet them where they are, whether it be online, which has obviously been catalyzed by, um, the pandemic over the last two years or in store. So a deep understanding of, of the customer, which is founded in data and the appropriate analytics and science, and then the collaboration back with the retailers and, and the brands so that you can bring that experience to life. Again, that could be a price point on the, on the shelf, um, or it could be a personalized email or, um, website interaction that delivers the right experience for the co for the consumer. So they can see that value and really build loyalty >>In the right time in real time. That's >>One of the most Marrit I'm in real time. That's right. One goes, Mary, I love the concept of the, the actual platform of the retail data cloud. Yes. It's so unique for a technology company. Snowflake's a technology company, you see services companies do it all the time, but yeah, but to actually transform what was considered a data warehouse in the cloud to a platform for data, I call it super cloud. Yeah. Tell us how this came about, um, how you were able to actually develop this and where you are in that journey. >>Yeah, absolutely. It's been a big focus on data sharing. We saw that that's how our customers are interacting with each other is using our data sharing functionality to really bring that ecosystem to life. So that's retailers sharing with their consumer products companies selling through those retailers. And then of course the data service companies that are kind of helping both sides and that data sharing functionality is the kind of under fabric for the data cloud, where we bring in partners. We bring in customers and we bring in tech solutions to the table. Um, and customers can use the data cloud, not only with the powered by partners that we have, but also the data marketplace, getting that data in real time and making some business value out of that data. So that's really the big focus of snowflake is investing in industry to realize the business value >>And talk about ecosystem and how important that is, where, where you leave off and the ecosystem picks up and how that's evolving. >>Absolutely. And I'm sure you can join in on this, but, um, definitely that collaboration between retailers and CPGs, right? I mean, retailers have that rich first party customer data. They see all those transactions, they see when people are shopping and then the brands really need that first party data to figure out what their, how their customers are interacting with their brand. And so that collaborative nature that makes up the ecosystem. And of course, you've got the tech partners in the middle that are kind of providing enrich data assets as well. You guys at 84 51 are a huge part of that ecosystem being, you know, one of the key retailers in, in the United States. Um, have you been seeing that as well with your brands? Yeah, >>Absolutely. I mean data and data science has always been core to the identity of 84 51. Um, and historically a lot of the interaction that we have with brands were through report web based applications, right. And it's a really great seamless way to, to deliver insights to non-technical users. But as the entire market has really started to invest in data and data science and technology and capabilities, you know, we, we launched a collaborative cloud last year and it was really an opportunity for us to reimagine what that experience would look like and to ensure that we are meeting the evolving needs of the industry. And as Rosemary pointed out, you know, data sharing is, is table stakes, right? It's a capability that you don't wanna have to think about. You wanna be thinking about the strategic initiatives, the science that you're gonna create in order to drive action and personalize experiences. So what we've found at 84 51 is really investing in our collaborative cloud, um, and working with leading technology providers like snowflake to make that seamless has been, you know, the, the, the UN unlock to ensure that data and data science can be a competitive advantage for our clients and partners, not just, you know, the retailer in 84 51 >>Is the collaborative cloud built on snowflake. >>Yeah. So the collaborative cloud is really about, um, ensuring that data sharing through snowflake is done seamlessly. So we've really, we've invited our clients and partners to build their own science on 84 51 S first party data asset through Kroger. And our, our data is represents 60 million households, half of the United States, 2 billion transactions annually, the robustness of that data asset. And it's it's it's analysis ready is so impactful to the investment that brands can make in their own data science efforts, because brands wanna invest in data science, not to do data work, not to do cleaning and Muning and, and merging and, and standardizing. They wanna do analysis. That's gonna impact the strategies and ultimately the shopper's lives. So again, we're able to leverage the capabilities of snowflake to ensure data sharing is not part of our day to day conversation. Data sharing is something we can take for granted so that we can talk about the shopper and our strategies. >>So this is why I call it super cloud. So Jerry Chen wrote an article of castles in the cloud. And in there he said, he called it sub clouds. And I'm like, no, it's, uh, by the way, great article. Jerry's brilliant. But so you got AWS, you built on top of AWS. That's right. You got the snowflake data called you're building on top of that. And I was sitting at the table and my kid goes, this is super, I'm like, ah, super clouds. So I didn't really even coin it, but, and then I realized somebody else had use it before, but that is different. It's new, it's around data. It's around vertical industries. Yes. Um, I, I get a lot of heat for that term, but I feel like this look around this industry, everybody's doing that that's that is digital transformation. That's don't you see that with your customers? >>Absolutely. I mean, there's a lot of different industry trends where you can't use your own historical first party data to figure out what customers are doing. I mean, with COVID customers are behaving totally differently than they used to. And you can't use your historical data to predict out of stocks or how the customer's gonna be interacting with your brand anymore. And you need that third party macroeconomic data. You need that third party COVID data or foot traffic data to enrich what your businesses are doing. And so, yes, it, it is a super cloud. And I think the big differentiator is that we are cloud agnostic, meaning that, like you said, you can take the technology for granted. You don't have to worry about where the other person has their tech stack. It's all the same experience on the snowflake super cloud as he put it. So, >>So Patrick, talk about the, the, the impact that you have been able to have during COVID. I mean, everybody had supply chain issues, but, you know, if you took, if you took away the machine learning and the data science that you are initiating, would life have been harder? Do you have data on that? You know, the, the, what if we didn't have this capability during the >>Challenges? No, it's, it's a fantastic question. And I'll actually build on the example that Rosemary, um, offered around COVID and better understanding COVID. So, um, in the past, you know, when we talk about data sharing data collaboration, it's basically wasn't possible, right? What's your tech stack, what's mine. How do we share data? I don't wanna send you my data without go releasing governance. It was a non-starter and, you know, through technology like snowflake, as we launched the collaborative cloud, we actually had a pilot client start right at the beginning of 2020. Um, we, we had, you know, speced out it onto use cases that really impactful for their, for their organization. But of course, what happened is, uh, a pandemic hit us and it became the biggest question, CEO executive team, all the way down is what is happening, what is happening in our stores? >>How are shoppers behaving and what, what that client of ours came to realize is while we, we actually, we have access to the E 4 51 collaborative cloud. We can see half of America's behavior last week down to the basket transaction UPC level. Let's get going. So again, the conversation wasn't about, you know, what data sources, how do we scramble? How do we get it together? What technologies, how do we collaborate? It was immediately focused on building the analysis to better understand that. And, and the outcomes that drove actually were all the way from manufacturing impact to marketing, to merchandising, because that brand was able to figure out, Hey, our top selling products, they're, they're not on the shelves. What are shoppers doing? Are they going to a, another brand? Are they not buying it all together? Are they going to a different size? Are they staying within our product portfolio? Are they going to a competitor? And those insights drove everything again from what do we need to manufacture more to, how do we need to communicate and incent our, our, our shoppers, our, our loyal shoppers also what's happening to our non loyals. Are they looking for an, you know, an alternative that a need that we can serve that level of, of shopper and customer understanding going all the way up to a strategic initiatives is something that is enabled through the Supercloud >><laugh>. How do you facilitate privacy as we're seeing this proliferation of privacy legislation? Yeah. I think there's now 22 states that have individual, and California's changing to CPR a at the beginning of yes, January 23. How do you balance that need that ability to share data? Yeah. Equitably fast, quickly, but also balance consumer privacy requirements. >>I mean, I could take a stab first. I mean, at snowflake, right, there is no better place to share your data that in a governed way than with snowflake data sharing, because then you can see and understand how the other side is using your data. Whereas in traditional methods, using an API or using an FTP server, you wouldn't be able to actually see how the other side is using your data. But in addition to that, we have the clean room where you can actually join on that underlying PII data without exposing it, because you can share functions securely on, on both sides. So I think there is no better place to do it than here at snowflake. Um, and because we deeply understand those policies, I think we are kind of keeping up with the times trying to get in front of things so that our data sharing capabilities stay up to date. When you have to expunge records, identify records with CCPA and, and GDPR and, and all the rest that are coming. Um, and so, so, I mean, I think especially with 84 50 ones, um, you know, collaborative cloud also building on top of the clean room, um, in, in further road in the further roadmap, I think, uh, you're gonna see some of that privacy compliant, data sharing, coming to play as well. You >>Know, what's interesting, Patrick is we were just in that session with the Frank Q and a, and he was very candid about when he was talking about, uh, Apache, uh, I'm sorry. Apache iceberg. Yeah. Yes. And he, he basically flat out said, look, you know, you gotta put it into the snowflake data cloud. It's, it's better there, but people might, you know, want to put it outside, not get locked in, et cetera. But what I'm, I'm listening to you saying it's so much easier for you today that could evolve something open source. And, and how do you think about that in terms of placing your bets? >>Yeah, it, it's a great question and really to go back to privacy, um, as a total topic, I mean, you're right. It's extremely relevant topic. It's, it's, you know, very ever changing right now at 84 51. Privacy is, is first it's the foundation. Um, it it's table stakes and that's from a policy that's from a governance, it's from a technology capability standpoint. And it's part of our, our culture because, um, it, it, because it has to be, uh, and, and so when we, when we think about, you know, the products that we're gonna build, how we want to implement, it's, it's a requirement that we leverage technologies that enable us to secure the governance and ensure that we're privacy compliant. Um, the customer data asset that we have is, is, you know, is extremely valuable as we've talked about in this interview, it's also responsibility. And we take that very, very seriously. And so, you know, Dave, back to your question about, you know, decisions to go, you know, open source or leverage for technologies. So there's always a balance. You know, we, we love to push the, the bounds of innovation and, and we wanna be on the forefront of data, sharing data, science, collaboration for this industry. But at the same time, we balance that with making sure that our technology partners are the right ones, because we are not willing to compromise our governance and our fir and our, our privacy, uh, priorities. >>That's gonna be interesting to see how that evolves. And I, I loved that. Frank was so candid about it. I think the key for any cloud player, including a super cloud is you gotta have an ecosystem without an ecosystem. Forget it. And you see a lot of companies. I mean, we were at Dell tech world. They're kind of, they're at the beginnings of that, but the ecosystems, nothing like this, right. Which is amazing, nothing against, against Dell, they're just kind of getting started and you have to be open. You have to have optionality. Yep. You know, so I, I don't know if we'll see the day where they're including data, bricks, data lakes inside of the snowflake cloud. That will be amazing. <laugh> but you know, you never say never in the world of cloud, >>Do you stranger things, Rosemary and Patrick, thank you so much for joining us talking about what 84 51 is doing powered by snowflake and also the rise of the snowflake retail cloud and what that's doing. We'll have to have you back on to hear what's going on as I'm sure the adoption will continue to increase. Absolutely. Thank you so much to both for having us, our pleasure. You appreciate this for our guests. I'm Lisa Martin. He's Dave ante stick around Dave will be back with Frankman CEO of snowflake. Next. You won't wanna miss it.

Published Date : Jun 15 2022

SUMMARY :

the VP of product management at their customer 84 51. It's nice to be here. And then we'll talk about how you're working with snowflake. Thank you both for, uh, the opportunity to be here. That's actually relevant and personalized to us. with the retailers and, and the brands so that you can bring that experience to life. In the right time in real time. the cloud to a platform for data, I call it super cloud. So that's really the big focus of snowflake is investing in industry to realize the business value And talk about ecosystem and how important that is, where, where you leave off You guys at 84 51 are a huge part of that ecosystem being, you know, one of the key retailers in, Um, and historically a lot of the interaction that we have with brands were through report web based applications, And it's it's it's analysis ready is so impactful to the investment that That's don't you see that with your customers? And you can't use your historical data to predict I mean, everybody had supply chain issues, but, you know, if you took, It was a non-starter and, you know, through technology like snowflake, as we launched the collaborative cloud, So again, the conversation wasn't about, you know, what data sources, How do you balance that need that But in addition to that, we have the clean room where you can actually join And he, he basically flat out said, look, you know, you gotta put it into the snowflake data cloud. And so, you know, Dave, back to your question about, you know, decisions to go, And you see a lot of companies. We'll have to have you back on to hear what's going on as I'm sure the adoption

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
PatrickPERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

Rosemary HuaPERSON

0.99+

January 23DATE

0.99+

Jerry ChenPERSON

0.99+

Patrick KellyPERSON

0.99+

Franks LubinPERSON

0.99+

KrogerORGANIZATION

0.99+

MaryPERSON

0.99+

Las VegasLOCATION

0.99+

FrankPERSON

0.99+

RosemaryPERSON

0.99+

84 51OTHER

0.99+

JerryPERSON

0.99+

AWSORGANIZATION

0.99+

ApacheORGANIZATION

0.99+

last weekDATE

0.99+

last yearDATE

0.99+

SnowflakeORGANIZATION

0.99+

United StatesLOCATION

0.99+

both sidesQUANTITY

0.99+

22 statesQUANTITY

0.99+

DellORGANIZATION

0.99+

bothQUANTITY

0.99+

84 51ORGANIZATION

0.98+

GDPRTITLE

0.98+

todayDATE

0.97+

2 billion transactionsQUANTITY

0.97+

firstQUANTITY

0.96+

Snowflake Summit 2022EVENT

0.95+

AmericaLOCATION

0.94+

FrankmanPERSON

0.93+

oneQUANTITY

0.91+

MarritPERSON

0.89+

CubeORGANIZATION

0.88+

beginningDATE

0.86+

snowflakeORGANIZATION

0.85+

last two yearsDATE

0.84+

COVIDOTHER

0.84+

60 million householdsQUANTITY

0.79+

AB 4 51ORGANIZATION

0.77+

2020DATE

0.76+

OneQUANTITY

0.76+

CCPATITLE

0.72+

CaliforniaLOCATION

0.71+

CaesarORGANIZATION

0.71+

first partyQUANTITY

0.7+

last dayDATE

0.69+

E 4 51OTHER

0.68+

84ORGANIZATION

0.66+

Apache icebergORGANIZATION

0.65+

lastDATE

0.64+

84 50OTHER

0.63+

pandemicEVENT

0.63+

51OTHER

0.62+

annuallyQUANTITY

0.54+

COVIDTITLE

0.53+

COVIDORGANIZATION

0.53+

yearsDATE

0.52+

SupercloudORGANIZATION

0.52+

QORGANIZATION

0.51+

84 51 SLOCATION

0.49+

22QUANTITY

0.42+

COVIDEVENT

0.33+

Chris Degnan, Snowflake & Chris Grusz, Amazon Web Services | Snowflake Summit 2022


 

(upbeat techno music) >> Hey everyone, and welcome back to theCUBE's coverage of Snowflake Summit '22 live from Caesar's Forum in beautiful, warm, and sunny Las Vegas. I'm Lisa Martin. I got the Chris and Chris show, next. Bear with me. Chris Degnan joins us again. One of our alumni, the Chief Revenue Officer at Snowflake. Good to have you back, Chris. >> Thank you for having us. >> Lisa: Chris Grusz also joins us. Director of Business Development AWS Marketplace and Service Catalog at AWS. Chris and Chris, welcome. >> Thank you. >> Thank you. >> Thank you. Good to be back in person. >> Isn't it great. >> Chris G: It's so much better. >> Chris D: Yeah. >> Nothing like it. So let's talk. There's been so much momentum, Chris D, at Snowflake the last few years. I mean the momentum at this show since we launched yesterday, I know you guys launched the day before with partners, has been amazing. A lot of change, and it's like this for Snowflake. Talk to us about AWS working together with Snowflake and some of the benefits in it from your customer. And then Chris G, I'll go to you for the same question. >> Chris G: Yep. >> You know, first of all, it's awesome. Like, I just, you know, it's been three years since I've had a Snowflake Summit in person, and it's crazy to see the growth that we've seen. You know, I can't, our first cloud that we ever launched on top of was, was AWS, and AWS is our largest cloud, you know, in in terms of revenue today. And they've been, they just kind of know how to do it right. And they've been a wonderful partner all along. There's been challenges, and we've kind of leaned in together and figured out ways to work together, you know, and to solve those challenges. So, been a wonderful partnership. >> And talk about it, Chris G, from your perspective obviously from a coopetition perspective. >> Yep. >> AWS has databases, cloud data forms. >> Chris G: Yeah. >> Talk to us about it. What was the impetus for the partnership with Snowflake from AWS's standpoint? >> Yeah, well first and foremost, they're building on top of AWS. And so that, by default, makes them a great partner. And it's interesting, Chris and I have been working together for, gosh, seven years now? And the relationship's come a really long way. You know, when we first started off, we were trying to sort out how we were going to work together, when we were competing, and when we're working together. And, you know, you fast forward to today, and it's just such a good relationship. Because both companies work backwards from customers. And so that's, you know, kind of in both of our DNA. And so if the customer makes that selection, we're going to support them, even from an AWS perspective. When they're going with Snowflake, that's still a really good thing for AWS, 'cause there's a lot of associated services that Snowflake either integrates to, or we're integrating to them. And so, it's really kind of contributed to how we can really work together in a co-sell motion. >> Talk to us, talk about that. The joint GOTO market and the co-selling motion from Snowflake's perspective, how do customers get engaged? >> Well, I think, you know, typically we, where we are really good at co-selling together is we identify on premise systems. So whether it's, you know, some Legacy UDP system, some Legacy database solution, and they want to move to the cloud? You know, Amazon is all in on getting everyone to the cloud. And I think that's their approach they've taken with us is saying we're really good at accelerating that adoption and moving all these, you know, massive workloads into the cloud. And then to Chris's point, you know, we've integrated so nicely into things like SageMaker and other tool sets. And we, we even have exciting scenarios where they've allowed us to use, you know, some of their Amazon.com retail data sets that we actually use in data sharing via the partnership. So we continue to find unique ways to partner with our great friends at Amazon. >> Sounds like a very deep partnership. >> Chris D: Yeah. Absolutely. >> Chris G: Oh, absolutely, yeah. We're integrating into Snowflake, and they're integrating to AWS. And so it just provides a great combined experience for our customers. And again, that's kind of what we're both looking forward from both of our organizations. >> That customer centricity is, >> Yeah. >> is I think the center of the flywheel that is both that both of you, your companies have. Chris D, talk about the the industry's solutions, specific, industry-specific solutions that Snowflake and AWS have. I know we talked yesterday about the pivot from a sales perspective >> Chris D: Yes. >> That snowflake made in recent months. Talk to us about the industries that you are help, really targeting with AWS to help customers solve problems. >> Yeah. I think there's, you know, we're focused on a number of industries. I think, you know, some of the examples, like I said, I gave you the example of we're using data sharing to help the retail space. And I think it's a really good partnership. Because some of the, some companies view Amazon as a competitor in the retail space, and I think we kind of soften that blow. And we actually leverage some of the Amazon.com data sets. And this is where the partnership's been really strong. In the healthcare space, in the life sciences space, we have customers like Anthem, where we're really focused on helping actually Anthem solve real business problems. Not necessarily like technical problems. It's like, oh no, they want to get, you know, figure out how they can get the whole customer and take care of their whole customer, and get them using the Anthem platform more effectively. So there's a really great, wonderful partnership there. >> We've heard a lot in the last day and a half on theCUBE from a lot of retail customers and partners. There seems to be a lot of growth in that. So there's so much change in the retail market. I was just talking with Click and Snowflake about Urban Outfitters, as an example. And you think of how what these companies are doing together and obviously AWS and Snowflake, helping companies not just pivot during the pandemic, but really survive. I mean, in the beginning with, you know, retail that didn't have a digital presence, what were they going to do? And then the supply chain issues. So it really seems to be what Snowflake and its partner Ecosystem is doing, is helping companies now, obviously, thrive. But it was really kind of like a no-go sort of situation for a lot of industries. >> Yeah, and I think the neat part of, you know, both the combined, you know, Snowflake and AWS solution is in, a good example is DoorDash, you know. They had hyper growth, and they could not have handled, especially during COVID, as we all know. We all used DoorDash, right? We were just talking about it. Chipotle, like, you know, like (laughter) and I think they were able to really take advantage of our hyper elastic platforms, both on the Amazon side and the Snowflake side to scale their business and meet the high demand that they were seeing. And that's kind of some of the great examples of where we've enabled customer growth to really accelerate. >> Yeah. Yeah, right. And I'd add to that, you know, while we saw good growth for those types of companies, a lot of your traditional companies saw a ton of benefit as well. Like another good example, and it's been talked about here at the show, is Western Union, right? So they're a company that's been around for a long time. They do cross border payments and cross currency, you know, exchanges, and, you know, like a lot of companies that have been around for a while, they have data all over the place. And so they started to look at that, and that became an inhibitor to their growth. 'Cause they couldn't get a full view of what was actually going on. And so they did a lengthy evaluation, and they ended up going with Snowflake. And, it was great, 'cause it provided a lot of immediate benefits, so first of all, they were able to take all those disparate systems and pull that into Snowflake. So they finally had a single source of the truth, which was lacking before that. So that was one of the big benefits. The second benefit, and Chris has mentioned this a couple times, is the fact that they could use data sharing. And so now they could pull in third data. And now that they had a holistic view of their entire data set, they could pull in that third party data, and now they could get insights that they never could get before. And so that was another large benefit. And then the third part, and this is where the relationship between AWS and Snowflake is great, is they could then use Amazon SageMaker. So one of the decisions that Western Union made a long time ago is they use R for their data science platform, and SageMaker supports R. And so it really allowed them to dovetail the skill sets that they had around data science into SageMaker. They could now look across all of Snowflake. And so that was just a really good benefit. And so it drove the cost down for Western Union which was a big benefit, but the even bigger benefit is they were now able to start to package and promote different solutions to their customers. So they were effectively able to monetize all the data that they were now getting and the information they were getting out of Snowflake. And then of course, once it was in there, they could also use things like Tableau or ThoughtSpot, both of which available in AWS Marketplace. And it allowed them to get all kinds of visualization of data that they never got in the past. >> The monetization piece is, is interesting. It's so challenging for organizations, one, to get that single source view, to be able to have a customer 360, but to also then be able to monetize data. When you're in customer conversations, how do you help customers on that journey, start? Because the, their competitors are clearly right behind them, ready to take first place spot. How do you help customers go, all right this is what we're going to do to help you on this journey with AWS to monetize your data? >> I think, you know, it's everything from, you know, looking at removing the silos of data. So one of the challenges they've had is they have these Legacy systems, and a lot of times they don't want to just take the Legacy systems and throw them into the cloud. They want to say, we need a holistic view of our customer, 360 view of our customer data. And then they're saying, hey, how can we actually monetize that data? That's where we do everything from, you know, Snowflake has the data marketplace where we list it in the data marketplace. We help them monetize it there. And we use some of the data sets from Amazon to help them do that. We use the technologies like Chris said with SageMaker and other tool sets to help them realize the value of their data in a real, meaningful way. >> So this sounds like a very strategic and technical partnership. >> Yeah, well, >> On both sides. >> It's technical and it's GOTO market. So if you take a look at, you know, Snowflake where they've built over 20 integrations now to different AWS services. So if you're using S3 for object storage, you can use Snowflake on top of that. If you want to load up Snowflake with Glue which is our ETL tool, you can do that. If you want to use QuickSite to do your data visualization on top of Snowflake, you can do that. So they've built integration to all of our services. And then we've built integrations like SageMaker back into Snowflake, and so that supports all kinds of specific customer use cases. So if you think of people that are doing any kind of cloud data platform workload, stuff like data engineering, data warehousing, data lakes, it could be even data applications, cyber security, unistore type things, Snowflake does an excellent job of helping our customers get into those types of environments. And so that's why we support the relationship with a variety of, you know, credit programs. We have a lot of co-sell motions on top of these technical integrations because we want to make sure that we not only have the right technical platform, but we've got the right GOTO market motion. And that's super important. >> Yeah, and I would add to that is like, you know one of the things that customers do is they make these large commitments to Amazon. And one of the best things that Amazon did was allow those customers to draw down Snowflake via the AWS Marketplace. So it's been wonderful to his point around the GOTO market, that was a huge issue for us. And, and again, this is where Amazon was innovative on identifying the ways to help make the customer have a better experience >> Chris G: Yeah. >> Chris D: and put the customer first. And this has been, you know, wonderful partnership there. >> Yeah. It really has. It's been a great, it's been really good. >> Well, and the customers are here. Like we said, >> Yep. >> Yes. Yes they are. >> we're north of 10,000 folks total, and customers are just chomping at the bit. There's been so much growth in the last three years from the last time, I think I heard the 2019 Snowflake Summit had about 1500 people. And here we are at 10,000 plus now, and standing-room-only keynote, the very big queue to get in, people turned away, pushed back to an overflow area to be able to see that, and that was yesterday. I didn't even get a chance to see what it was like today, but I imagine it was probably the same. Talk about the, when you're in customer conversations, where do you bring, from a GTM perspective, Where do you bring Snowflake into the conversation? >> Yeah >> Obviously, there's Redshift there, what does that look like? I imagine it follows the customer's needs, challenges. >> Exactly. >> Compelling events. >> Yeah. We're always going to work backwards from the customer need, and so that is the starting point for kindling both organizations. And so we're going to, you know, look at what they need. And from an AWS perspective, you know, if they're going with Snowflake, that's a very good thing. Right? 'Cause one of the things that we want to support is a selection experience to our AWS customers and make sure that no matter what they're doing, they're getting a very good, supported experience. And so we're always going to work backwards from the customer. And then once they make that technology decision, then we're going to support them, as I mentioned, with a whole bunch of co-sell resources. We have technical resources in the field. We have credit programs and in, you know, and, of course, we're going to market in a variety of different verticals as well with Snowflake. If you take a look at all the industry clouds that Snowflake has spun up, financial services and healthcare, and media entertainment, you know, those are all very specific use cases that are very valuable to an AWS customer. And AWS is going more and more to market on a vertical approach, and so Snowflake really just fits right in with our overall strategy. >> Right. Sounds like very tight alignment there. That mission alignment that Frank talked about yesterday. I know he was talking about that with respect to customers, but it sounds like there's a mission alignment between AWS and Snowflake. >> Mission alignment, yeah. >> I live that every week. (laughter) >> Sorry if I brought up a pain point. >> Yeah. Little bit. No. >> Guys, what's, in terms of use cases, obviously we've been here for a couple days. I'm sure you've had tremendous feedback, >> Chris G: Yeah. >> from, from customers, from partners, from the ecosystem. What's next, what can we expect to hear next? Maybe give us a preview of re:Invent in the few months. >> Preview of re:Invent. Yeah. No, well, one of the things we really want to start doing is just, you know, making the use case of, of launching Snowflake on AWS a lot easier. So what can we do to streamline those types of experiences? 'Cause a lot of times we'll find that customers, once they buy a third party solution like Snowflake, they have to then go through a whole series of configuration steps, and what can we do to streamline that? And so we're going to continue to work on that front. One of the other places that we've been exploring with Snowflake is how we work with channel partners. And, you know, when we first launched Marketplace it was really more of an app store model that was ISVs on one side and channel partners on the other, and there wasn't really a good fit for channel partners. And so four years ago we retrofitted the platform and have opened it up to resellers like an SHI or SIs like Salam or Deloitte who are top, two top SIs for Snowflake. And now they can use Marketplace to resell those technologies and also sell their services on top of that. So Snowflake's got a big, you know, practice with Salam, as I mentioned. You know, Salam can now sell through Marketplace and they can actually sell that statement of work and put that on the AWS bill all by virtue of using Marketplace, that automation platform. >> Ease of use for customers, ease of use for partners as well. >> Yes. >> And that ease of use is it's no joke. It's, it's not just a marketing term. It's measurable and it's about time-to-value, time-to-market, getting customers ahead of their competition so that they can be successful. Guys, thanks for joining me on theCUBE today. Talking about AWS and >> Nice to be back. Nice to be back in person. >> Isn't it nice to be back. It's great to be actually sitting across from another human. >> Exactly. >> Thank you so much for your insights, what you shared about the partnership and where it's going. We appreciate it. >> Thank you. >> Cool. Thank you. >> Thank you. >> All right guys. For Chris and Chris, I'm Lisa Martin, here watching theCUBE live from Las Vegas. I'll be back with my next guest momentarily, so stick around. (Upbeat techno music)

Published Date : Jun 15 2022

SUMMARY :

One of our alumni, the Chief Chris and Chris, welcome. Good to be back in person. and some of the benefits and it's crazy to see the And talk about it, Chris AWS has databases, Talk to us about it. And so that's, you know, and the co-selling motion And then to Chris's point, you know, and they're integrating to AWS. of the flywheel that is both that you are help, really targeting I think, you know, some of the examples, So it really seems to be what Snowflake and the Snowflake side And so they started to look at that, this is what we're going to do to help you I think, you know, and technical partnership. at, you know, Snowflake And one of the best And this has been, you know, It's been a great, it's been really good. Well, and the customers in the last three years I imagine it follows the And so we're going to, you That mission alignment that I live that every week. obviously we've been partners, from the ecosystem. and put that on the AWS bill all by virtue Ease of use for so that they can be successful. Nice to be back in person. Isn't it nice to be back. Thank you so much for your For Chris and Chris,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
ChrisPERSON

0.99+

Lisa MartinPERSON

0.99+

AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Chris GruszPERSON

0.99+

FrankPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Chris DegnanPERSON

0.99+

Chris DPERSON

0.99+

Western UnionORGANIZATION

0.99+

SnowflakeTITLE

0.99+

Amazon.comORGANIZATION

0.99+

Chris GPERSON

0.99+

Las VegasLOCATION

0.99+

yesterdayDATE

0.99+

LisaPERSON

0.99+

seven yearsQUANTITY

0.99+

bothQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

ChipotleORGANIZATION

0.99+

GruszPERSON

0.99+

three yearsQUANTITY

0.99+

S3TITLE

0.99+

Chris GPERSON

0.99+

third partQUANTITY

0.99+

todayDATE

0.99+

both sidesQUANTITY

0.99+

EcosystemORGANIZATION

0.99+

QuickSiteTITLE

0.99+

both companiesQUANTITY

0.99+

twoQUANTITY

0.98+

both organizationsQUANTITY

0.98+

pandemicEVENT

0.98+

Juan Tello, Deloitte | Snowflake Summit 2022


 

>>Welcome back to Vegas. Lisa Martin here covering snowflake summit 22. We are live at Caesar's forum. A lot of guests here about 10,000 attendees, actually 10,000 plus a lot of folks here at the momentum and the buzz. I gotta tell you the last day and a half we've been covering this event is huge. It's probably some of the biggest we've seen in a long time. We're very pleased to welcome back. One of our cube alumni to the program, Ron Tayo principal and chief data officer at Deloitte one. It's great to have you joining us. >>Yeah, no, thank you. Super excited to be here with you today. >>Isn't it great to be back in person? Oh, >>I love it. I mean the, the energy, the, you know, connections that we're making definitely, definitely loving and loving the experience. >>Good experience, but the opportunity to connect with customers. Yes. I'm hearing a lot of conversations from snowflake folks from their partners like Deloitte from customers themselves. Like it's so great to be back in person. And they're really talking about some of the current challenges that are being faced by so many industries. >>That's right. Oh, that, that is, you know, I would say as a consultant, you know, it all comes down to that personal connection and that relationship. And so I am, I'm all for this and love, you know, being able to connect with our customers. >>Yeah. Talk to me about the Deloitte snowflake partnership. Obviously a ton of news announced from snowflake yesterday. Snowflake is a rocket ship. Talk to us about the partnership, what you guys do together, maybe some joint customer examples. >>Yeah. I mean, so snowflake is a strategic Alliance partner. We won the, you know, SI partner of the year award and for us, the, the shift and the opportunity to help our clients modernize and achieve a level of data maturity in their journey is, is strategically it's super important. And it's really about how do we help them leverage, you know, snowflake has underlying data platform to ultimately achieve, you know, broader goals around, you know, their business strategy. And our approach is always very much connected to overarching business strategies and sense of, is it a finance transformation, a supply chain transformation, a customer transformation, and what are the goals of those transformations and how do we ensure that data is a critical component to enabling that and with, you know, technologies and vendors and partners like snowflake, allowing us to even do that at a faster, better, cheaper pace only increases the overall business case and the value and the impact that it generates. >>And so we are super, super excited about our partnership with snowflake and we believe, you know, the journey is very, very bright. You know, we, this is the future, you know, often tell folks that, you know, data has and will continue to be more valuable than sort of the systems that own it and manage it. And I think we're starting to see that. I think the topic that I discussed today around data collaboration and data sharing is an example of how we're starting to see, you know, the importance and the value of data, you know, become way more important and more of the focus around the strategy for, for organizations >>As the chief data officer, what do data sharing and data collaboration mean to somebody in your position and what are some of the conversations you have with customer other CDOs at customer organizations? >>Yeah, so, so my role is, is sort of twofold. I, I am responsible for our internal data strategy. So when you think about Deloitte as a professional service organization, across four unique businesses, I am a customer of snowflake in our own data modernization journey, and we have our own strategy on how and what we share, not only internally across our businesses, but also externally across, you know, our partners. So, so I bring that perspective, but then I also am a client service professional and serve our clients in their own journey. So I often feel very privileged in, in the opportunity to be able to sort of not only share my own experience from a Deloitte perspective, but also in how we help our clients >>Talk about data maturation. You mentioned, you know, the volume of data just only continues to grow. We've seen so much growth in the last two years alone of data. We've seen all of us be so dependent on things like media and entertainment and retail, eCommerce, healthcare, and life sciences. What, how do you define data maturation and how does Deloitte and snowflake help companies create a pathway to get there? >>Yeah. Yeah. So I would say step one for us is all about the overarching business strategy. And when you sort of double click on the big, broad business strategy and what that means from a data strategy perspective, we have to develop business models where there is an economical construct to the value of data. And it's extremely important specifically when we talk about sharing and collaborating data, I would say the, the, the, the assumption or the, or, or, or, or the posture typically seems to be, it's a one way relationship, our strategy and what we're pushing, you know, again, not only internally within ourselves, but also with our clients, is it has to be a bidirectional relationship. And so you, you hear of, of the concepts of, you know, the, the, the data clean room where you have two partners coming together and agreeing with certain terms to share data bidirectionally. Like I do believe that is the future in how we need to do, you know, more data collaboration, more data sharing at a scale that we've not quite seen. Yes. Yet >>The security and privacy areas are increasingly critical. We've seen the threat landscape change so dramatically the last couple of years, it's not, will we get hit by a cyber talk? It's when yes. For every industry, right? The privacy legislation that just we've seen it with GDPR, CCPA is gonna become CPR in California, other states doing the same thing. How do you help customers kind of balance that line of being able to share data equitably between organizations between companies do so in a secure way, and in a way that ensures data privacy will be maintained. >>Yeah. Yeah. So first absolutely recognizing, evolving, recognize the evolving regulatory landscape. You mentioned, you know, California, there's actually now 22 states that have a, is it 22 now? Right? Yeah. 22 states that have a privacy act enacted. And our projection is in the next 12 to 18 months, all states will have one. And so absolutely a, a perceived challenge, but one that I think is, is addressable. And, and I think that gets to the spirit of the question for us. There's, there's four dimensions that an organization needs to work through when it comes to data sharing. The first one is back to the, the business goal and objective, like, is there truly a business need? And is there value in sharing data? And it needs to have a very solid business model. Okay. So, so that's the first step. The second step is what are the legal terms? >>What are the legal terms? What can you do? What can't you do? Do you have primary rights, secondary rights? The third dimension is around risk. What is the risk and exposure, not only from a data security perspective, but what is the risk if someone uses a data inappropriately, and then the fourth one is around ethics and the ethical use of data. And we see lots of examples where an organization has consent has rights to the data, but the way they used it might have not necessarily been, you know, among the kind of ethical framing. And so for us, those four dimensions is what guides us and our clients in developing a very robust data, sharing data collaboration framework that ensures it's connected to the overall business strategy, but it provides enough of the guardrails to minimize legal and ethical risk. So >>With that in mind, what do the customer conversations look like? Cause you gotta have a lot of players, the business folks, the data folks, every line of business needs data for its functions. Talk to us about how the customer conversations and projects have evolved as data is increasingly important to every line of business. >>Yes. I would say the biggest channel, or maybe the, the, the denominator at this point that we're seeing bring the, let's say diversity of needs to more common denominator has been AI. So every organization at this point is driving massive AI programs. And in order to really scale AI, you know, the, the algorithm cannot execute without data. Yeah. And so for us, at least in our experience with our customers, AI has almost been the, the, the mechanism to have these conversations across the different business stakeholders and do it in a way that, you know, you're not necessarily boiling the ocean, cuz I think that's the other element that makes this a bit hard is, well, what, what data do you want me to share and for what purpose? And when you start to bring it into sort of more individual swim lanes and, and, and our experience with our customers is AI has sort of been that mechanism to say, am I automating, you know, our factory floor? Am I bringing AI and how we engage and serve our customers? Right? Like it be, it be begins to sort of bring a little bit more of, of that repeatability at a, at an individual level. So that's been a, a really good strategy for us in our customers >>In terms of the customer's strategy and kind of looking forward, what are some of the things that excite you about the, the future of data collaboration, especially given all of the news that snowflake announced just yesterday? >>Yes. Yeah. I think for me, and this is both the little bit of the ambition, as well as the push, it's no longer a question of should it's it's how and for what? And so, so yes, I mean the, the, the snowflake data cloud is a network that allows us to integrate, you know, disparate and unique data assets that have never, you know, been possible before. Right. So we're in this network, it's now a matter of figuring out how to use that and for what purpose. And so I, I go back to, we, each individual organization needs to be figuring out the how, and for what not, when this is the future, we all need it. Yeah. And we just need to figure out how that fits in our individual businesses >>In terms of the, how that's such an interesting, I love how you bring that up. It's not, it's not when it's definitely how, because there's gonna be another competing business or several right there in the rear view mirror, ready to take your place. Yep. If you don't act quickly, how does Deloitte and snowflake help customers achieve the, how quickly enough to be able to really take advantage of data sharing and data collaboration so that they can be very competitive? >>Yeah. So there's two main, maybe even three driving forces in this. What we see is when there's a common purpose across director, indirect competitors and the need to share data. So I think the poster child of this was the pandemic, and we started to see organizations again, either competitively or non-com competitively share data in ways for a greater good, right. When there was a purpose, we believe when that element exists, the ability to share data is going to increase. We believe the next big sort of common purpose out there in the world is around ESG. And so that's gonna be a big driver for sharing data. So that's one element. The other one is the concept of developing integrated value chains. So when you think about any individual business and sort of where they are in that piece of the value chain, developing more integrated value across, let's say a manufacturer of goods with a distributor of those goods that ultimately get to an end customer. >>They're not sharing data in a meaningful way to really maximize their overall, you know, profitability. And so that's another really good, meaningful example that we're seeing is where there's value across, you know, a, what appears to be a siloed set of steps, and really looking at it more as an integrated value chain, the need to share data is the only way to unlock that. And so that's, that's the second one. The, the third one I would say is, is around the need to address the consumer across sort of the multiple personas that we all individually sit. Right? So I go into a bank and I'm, I'm a client. I walk into a retail store and I'm a customer. I walk into my physician's office and I'm a patient at the end of the day. I am still the same person. I am still one. And so that consumer element and the convergence of how we are engaging and serving that consumer is the third, big shift that is really going to bring data collaboration and sharing to the next level. >>Do you think snowflake is, is the right partner of the defacto for delight to do that with? >>Absolutely. I think, you know, the head start of the cloud, the data cloud platform and the network that it's already established with all the sort of data privacy and security constraints around it. Like that's a big, that's a big, you know, check right. That we don't have to worry about. It's there for sure. >>Awesome. Sounds like a great partnership, Juan. Thank you so much for joining me on the program. It's great to have you back on the cube in person sharing what Deloitte and snowflake are doing and how you're really helping to transform organizations across every industry. We appreciate >>Your insights. Yeah. No, thank you for having me here. My pleasure. Always a pleasure. Thank you. >>All right. For Juan. I am Lisa Martin. You're watching the cube live from snowflake summit 22 at Caesar's forum. You write back with our next guest.

Published Date : Jun 15 2022

SUMMARY :

It's great to have you joining us. Super excited to be here with you today. I mean the, the energy, the, you know, connections that we're making definitely, Good experience, but the opportunity to connect with customers. I'm all for this and love, you know, being able to connect with our customers. what you guys do together, maybe some joint customer examples. a critical component to enabling that and with, you know, technologies and vendors and partners is an example of how we're starting to see, you know, the importance and the value of data, you know, our partners. You mentioned, you know, the volume of data just only continues to grow. of the concepts of, you know, the, the, the data clean room where you have two partners coming together and change so dramatically the last couple of years, it's not, will we get hit by a is in the next 12 to 18 months, all states will have one. might have not necessarily been, you know, among the kind of ethical framing. Cause you gotta have a lot of players, And when you start to bring it into sort allows us to integrate, you know, disparate and unique data assets that In terms of the, how that's such an interesting, I love how you bring that up. So when you think about any individual business and sort of where meaningful example that we're seeing is where there's value across, you know, I think, you know, the head start of the cloud, the data cloud platform and It's great to have you back on the cube in person Always a pleasure. You write back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ron TayoPERSON

0.99+

Lisa MartinPERSON

0.99+

DeloitteORGANIZATION

0.99+

JuanPERSON

0.99+

Juan TelloPERSON

0.99+

CaliforniaLOCATION

0.99+

second stepQUANTITY

0.99+

VegasLOCATION

0.99+

two partnersQUANTITY

0.99+

22 statesQUANTITY

0.99+

third dimensionQUANTITY

0.99+

first stepQUANTITY

0.99+

10,000QUANTITY

0.99+

yesterdayDATE

0.99+

one elementQUANTITY

0.99+

firstQUANTITY

0.98+

Snowflake Summit 2022EVENT

0.98+

GDPRTITLE

0.98+

four dimensionsQUANTITY

0.98+

second oneQUANTITY

0.98+

OneQUANTITY

0.98+

fourth oneQUANTITY

0.98+

thirdQUANTITY

0.98+

todayDATE

0.98+

oneQUANTITY

0.97+

22QUANTITY

0.96+

third oneQUANTITY

0.96+

first oneQUANTITY

0.96+

bothQUANTITY

0.96+

about 10,000 attendeesQUANTITY

0.95+

last couple of yearsDATE

0.91+

one wayQUANTITY

0.91+

three driving forcesQUANTITY

0.9+

step oneQUANTITY

0.9+

18 monthsQUANTITY

0.9+

snowflake summit 22EVENT

0.88+

two mainQUANTITY

0.88+

pandemicEVENT

0.88+

last two yearsDATE

0.88+

12QUANTITY

0.86+

each individual organizationQUANTITY

0.84+

CaesarPERSON

0.83+

ESGTITLE

0.74+

last dayDATE

0.71+

fourQUANTITY

0.71+

snowflake summit 22EVENT

0.68+

doubleQUANTITY

0.63+

snowflakeORGANIZATION

0.62+

businessesQUANTITY

0.59+

CCPATITLE

0.56+

newsQUANTITY

0.52+

CPRTITLE

0.48+

Loic Giraud, Novartis & Jesse Cugliotta, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to Vegas, baby. Lisa Martin here with theCUBE. We are live at Caesar's Forum covering Snowflake Summit 22. This is day two of our wall to wall coverage on theCUBE you won't want to miss. We've got an exciting customer story to talk to you about next with Novartis and Snowflake. Please welcome two guests to theCUBE. Loïc Giraud, Global head digital delivery, Novartis. I hope I got the name right. >> Yes. Hi, thank you. >> I did my best. >> Absolutely. >> Lisa: (laughs) Jesse Cugliotta also joins us. Global Industry Lead, Healthcare and Life Sciences at Snowflake. Welcome with theCUBE, gentlemen. >> Thank you for having us. Good morning. >> So it was great to hear Novartis is a household word now, especially with what's gone on in the last two years. I had a chance to see the Keynote yesterday, heard Novartis mention in terms of a massive outcome that Snowflake is delivering that we're going to get to. But Loic talk to us about Novartis global 500 organization. You rank among the world's top companies investing in R&D, the massive portfolio and you're reaching nearly 800 million patients worldwide. That's huge, but there's been a lot of change in the healthcare and life sciences industry, especially recently. Talk to us about the industry landscape. What are you seeing? >> As you described, Novartis is one of the top life science company in the world. We are number three. We operate in 150 countries, and we have almost 120,000 employees. Our purpose is actually to reimagine medicine for the use of data science and technology and to extend people's life. And we really mean it. I think, as you mentioned, we treat eight or 9 million patient per year with our drugs. We expect to treat more than a billion patients in near time soon. Over the last few years, especially during COVID, our digital transformation help us to accelerate the drug discovery and then the commiseration of our drug to markets. As it was mentioned in the Keynote yesterday, we have actually been able to reduce our time to market. It used to take us up to 12 years and cost around 1.2 billion to discover and commercialize drug. And now we've actually use of technology like Snowflake, we have been able to reduce by two to three years, which ultimately is a benefit for our patients. >> Absolutely. Well, we're talking about life and death situations. Talk about... You mentioned Novartis wants to reimagine medicine. What does that look like? Where is data in that and how is Snowflake an enabler of reimagining medicine? >> So data is core for our asset, is a core of enterprise process. So if you look at our enterprise, we are using data from the research, for drug development, in manufacturing process, and how do we market and sell our product through HCPs and distribute it to reach our patients. If you build through our digital transformation we have created this integrated data ecosystem, where Snowflake is a core component. And through that ecosystem, we are able to identify compounds and cohorts, perform clinical trials, and engage HCPs and HGOs so that can prescribe drugs to serve our patient needs. >> Jesse, let's bring you into the conversation. Snowflake recently launched its healthcare and life sciences data cloud. I believe that was back in March. >> It was. >> Just a couple of months ago. Talk to us about the vertical focus. Talk to us about what this healthcare and life sciences data cloud is aiming to help customers like Novartis achieve. >> Well, as you mentioned there, Snowflake has made a real pivot to kind of focus on the various different industries that we serve in a new way. I think historically, we've been engaged in really, all of the industries across the major sectors where we participate today. But historically we've been often engaging with the office of IT. And there was a recognition as a company that we really need to be able to better speak the language of our customers in with our respective industries. So the entire organization has really made a pivot to start to build that capability internally. That's part of the team that I support here at Snowflake. And with respect to healthcare and life sciences, that means being able to solve some of the challenges that Loic was just speaking about. In particular, we're seeing the industry evolve in a number of ways. You bring up clinical research in the time that it takes to actually bring a drug to market. This is a big one that's really changed a lot over the last couple of years. Some of the reasons are obvious and other ones are somewhat opportunistic. When we looked at what it takes to get a drug to market, there's several stages of clinical research that have to be participated in, and this can often take years. What we saw in the last couple of years, is that all of a sudden, patients didn't want to physically participate in those anymore, because there was fear of potential infection and being in a healthcare facility. So the entire industry realized that it needed to change in terms of way that it would engage with patients in that context. And we're now seeing this concept of decentralized clinical research. And with that, becomes the need to potentially involve many different types of organizations beyond the traditional pharma, their research partners, but we're starting to see organizations like retail pharmacies, like big box retailers, who have either healthcare delivery or pharmaceutical arms actually get involved in the process. And of course, one of the core things that happens here is that everyone needs a better way to collaborate and share data amongst one another. So bringing this back to your original question, this concept of being able to do exactly that is core to the healthcare and the life sciences data cloud. To be able to collaborate and share data amongst those different types of organizations. >> Collaboration and data sharing. It seems to me to be a differentiator for Snowflake, in terms of being able to deliver secure, governed powerful analytics and data sharing to customers, partners to the ecosystem. You mentioned an example of the ecosystem there and how impactful to patients' lives, that collaboration and data sharing can be. >> That's absolutely right. It's something that if you think about all of the major challenges that the industry has had historically, whether it is high costs, whether it are health inequities, whether it is physicians practicing defensive medicine or repeat testing, what's core to each one of these things is kind of the inability to adequate collaborate and share data amongst all of the different players. So the industry has been waiting for the capability or some sort of solution to be able to do this, I think for a long, long time. And this is probably one of the most exciting parts of the conversations that we have with our customers, is when they realize that this is possible. And not only that it's possible within our platform, but that most of the organizations that they work with today are also Snowflake customers. So they realize that everyone's already here. It's just a matter of who else can we work with and how do we get started? >> Join the party. >> Exactly. >> Loic talk to us about Novartis's data journey. I know you guys have been, I believe using Snowflake since 2017 pre pandemic. But you had a largely on-premises infrastructure. Talk to us about the decision of Novartis to go to the cloud, do it securely and why you chose to partner with Snowflake. >> So when we started our journey in 2018, I think the ambition that our CEO, was to transform all enterprise processes for the use of digital tech. And at the core of this digital tech is data foundation. So we started with a large program called Formula One, which aim to integrate all our internal and external data asset into an integrated platform. And for that, I think we've built this multicloud and best upgrade platform, where Snowflake is a core component. And we've been able to integrate almost 1,000 data asset, internal and external for the platform to be able to accelerate the use of data to create insight for our users. In that transformation, we've realized that Snowflake could be a core component because of the scalability and the performance with large dataset. And moreover, when Snowflake started to actually open collaboration for their marketplace, we've been able to integrate new data set that are publicly available at the place that we could not do on ourself, on our own. So that is a core component of what we are trying to do. >> Yeah, and I think that's a great example of really what we're talking about here is that, he's mentioning that they're going out to our marketplace to be able to integrate data more easily with some of the vendors there. And that is kind of this concept of the healthcare and life sciences data cloud realized, where all of a sudden, acquiring and bringing data in and making it ready for analysis becomes much faster, much easier. We continually see more and more vendors coming to us saying, I get it now, I want in. Who else can I work with in this space? So I think that's a perfect example of how this starts to become real for folks. >> Well, it sounds like the marketplace has been an enabler, Loic, of the expansion of use cases. You've grown this beyond drug development. I read that you're developing new products and services for healthcare providers to personalize treatments for patients, which we all are demanding patients. We want that personalized care. But talk about the marketplace as a facilitator of those expanding use cases that Snowflake is powering. >> Yes. That's right. I mean we have currently almost 65 use cases in production and we are in advanced progress for over 200 use cases and they go across all our business sector. So if you look at drug development, we are monitoring our clinical trials using Snowflake. If you look at our omnichannel marketing, we are looking at personalization of information with our HCPs and HGOs using snowflake. If you look at our manufacturing process, we are looking at yet management, freight optimization, inventory, insight. So almost across all the industry sectors that we have, I think we are using the platforms to be able to deliver faster information to our users. >> And that's what we all want. Faster information. I think in the pandemic we learned that access to real time data in every industry wasn't a nice to have. That was a- >> Necessity. >> Absolute necessity. >> Yeah. >> And made the difference for companies that survived and thrived and those that didn't. That's something that we learned. But we also learned that the volume of data just continues to proliferate. Loic, you've been in the industry a couple of decades. What do you see? And you've got, obviously this great foundation now with Snowflake. You've got 65 use cases you said in production. What's the future of the data culture in healthcare and life sciences from your perspective? >> So my perspective. It is time now we give the access to our business technologies to be able to be self-sufficient using digital product. We need to consumerize digital technology so they can be self-sufficient. The amount of problems that we have to solve, and we can now solve with new technology has never been there. And I think where in the past, where in the next few years that you will see an accelerated generation of insight and an accelerated process of medicine by empowering the business technologies to use a technology that like Snowflake and over progress. >> What are your thoughts Loic, of some of the, obviously a lot of news coming out yesterday from Snowflake, we mentioned standing room only in the Keynote. This I believe is north of 10,000 attendees. People are ready to engage in person with Snowflake, but some of the news coming out, what is your perspective? You've been a partner of theirs for a while. What do you see from Snowflake in terms of the news, the volume of customers it's adding, all that good stuff? >> I must say I was blown away yesterday when Frank was talking about the ramp up of customers using Snowflake. But also, and I think in Benoit and Christian, and they talk about the innovation. When you look at native application or you look at hybrid tables, we saw a thing there. And the expansion of the marketplace by monetization application, that is something that is going to accelerate the expansion, not only on the company, but the integration and the utilization of customers. And to Jesse's point, I think that it is key that people collaborate using the platform. I think we want to collaborate with suppliers and providers and they want to collaborate with us. But we want to have a neutral environment where we can do that. And Snowflake can be that environment. >> And do it securely, right? Security is absolutely- >> Of course. I mean that's really table stake for this industry. And I think the point that you just made Loic, is very important, is that, the biggest question that we're often asked by our customers is who else is a customer within this industry that I can collaborate with? I think as Loic here will attest to, one of the challenges within life sciences in particular is that it is a highly regulated industry. It is a highly competitive industry, and folks are very sensitive about referenceability. So about things like logo usage. So to give some ideas here, people often have no idea that we're working with 28 of the top 50 global pharma today, working with seven of the top 12 global medical device companies today. The largest CROs, the largest distributors. So when I say that the party is here, they really are. And that's why we're so excited to have events like these, 'cause people can physically introduce themselves to one another and meet, and actually start to engage in some of these more collaborative discussions that they've been waiting for. >> Jesse, what's been some of the feedback that you've heard the last couple of days on the healthcare and life sciences data cloud? You've obviously finally gotten back to engaging with customers in person. But what are some of the things, feed on this street have said that you've thought, we made the absolute right decision on this pivot? >> Yeah, well I think some of it speaks to the the point I was just speaking about, is that they had no idea that so many of their peers were actually working with Snowflake already and that how mature their implementations have actually been. The other thing that folks are realizing is that, a lot of the technologies that serve this ecosystem, whether they're in the health tech space, whether they're clinical management or commercial engagement or supply chain planning technologies, those companies are also now pivoting to Snowflake, where they're either building a part or the entirety of their platform on top of ours. So it offers this great way to start to collaborate with the ecosystem through some of those capabilities that we spoke about. And that's driving new use cases in commercial, in supply chain, in pharmacovigilance, in clinical operations. >> Well, I think you just sum up beautifully why the theme of this conference is the world of data collaboration. >> Yes, absolutely. >> The potential there, that Snowflake is unleashing to the world is I think is what's captivating to me. That you just scratch on the surface about connecting and facilitating this collaboration and this data sharing in a secure way across industries. Loic, last question for you. Take us home with what is next for Novartis. You've done a tremendous amount of digitalization. 65 use cases in production with Snowflake. What's next for the company? >> See, I think that in next year's to come, open collaboration with the ecosystem, but also personalization. If you look at digital medicine and access to patient's informations, I think this is probably the next revolution that we are entering into. >> Excellent. And of course those demanding patients aren't going to want anything slower or less information. Guys, thank you for joining me on the program talking about the Novartis-Snowflake collaboration. The partnership, the outcomes that you're achieving and how this is really dramatically impacting the lives of hundreds of millions of people. We appreciate your time and your insights. >> Thank you for having us. This was fun. >> My pleasure. >> Thank you. >> For my guests, I'm Lisa Martin. You're watching theCUBE. This is live from Las Vegas, day two of our coverage of Snowflake Summit 22. I'll be right back with my next guest, so stick around. (upbeat music)

Published Date : Jun 15 2022

SUMMARY :

to talk to you about next Healthcare and Life Sciences at Snowflake. Thank you for having us. in the healthcare and of our drug to markets. Where is data in that and how do we market and sell our product I believe that was back in March. is aiming to help customers And of course, one of the of the ecosystem there is kind of the inability Talk to us about the decision of Novartis and the performance with large dataset. of how this starts to the expansion of use cases. So almost across all the we learned that access to real that the volume of data just and we can now solve with new technology in terms of the news, And the expansion of the marketplace and actually start to engage to engaging with customers in person. a lot of the technologies is the world of data collaboration. What's next for the company? and access to patient's informations, joining me on the program Thank you for having us. of Snowflake Summit 22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jesse CugliottaPERSON

0.99+

Lisa MartinPERSON

0.99+

JessePERSON

0.99+

MarchDATE

0.99+

FrankPERSON

0.99+

28QUANTITY

0.99+

NovartisORGANIZATION

0.99+

2018DATE

0.99+

twoQUANTITY

0.99+

Las VegasLOCATION

0.99+

eightQUANTITY

0.99+

Jesse CugliottaPERSON

0.99+

VegasLOCATION

0.99+

sevenQUANTITY

0.99+

Loïc GiraudPERSON

0.99+

Loic GiraudPERSON

0.99+

yesterdayDATE

0.99+

LisaPERSON

0.99+

three yearsQUANTITY

0.99+

more than a billion patientsQUANTITY

0.99+

two guestsQUANTITY

0.99+

oneQUANTITY

0.99+

65 use casesQUANTITY

0.99+

LoicPERSON

0.99+

next yearDATE

0.99+

SnowflakeORGANIZATION

0.99+

over 200 use casesQUANTITY

0.99+

150 countriesQUANTITY

0.98+

nearly 800 million patientsQUANTITY

0.98+

almost 65 use casesQUANTITY

0.97+

around 1.2 billionQUANTITY

0.97+

todayDATE

0.97+

couple of months agoDATE

0.96+

ChristianORGANIZATION

0.96+

hundreds of millionsQUANTITY

0.95+

Snowflake Summit 22EVENT

0.95+

Snowflake Summit 2022EVENT

0.95+

theCUBEORGANIZATION

0.95+

BenoitORGANIZATION

0.94+

SnowflakeTITLE

0.93+

almost 120,000 employeesQUANTITY

0.93+

up to 12 yearsQUANTITY

0.93+

last couple of yearsDATE

0.92+

pandemicEVENT

0.91+

LoicORGANIZATION

0.89+

top 12 global medical device companiesQUANTITY

0.89+

day twoQUANTITY

0.87+

almost 1,000 data assetQUANTITY

0.87+

snowflakeTITLE

0.87+

KeynoteEVENT

0.85+

last few yearsDATE

0.83+

north of 10,000 attendeesQUANTITY

0.82+

500 organizationQUANTITY

0.82+

SnowflakeEVENT

0.79+

top 50 global pharmaQUANTITY

0.79+

last two yearsDATE

0.79+

peopleQUANTITY

0.78+