Image Title

Search Results for Benoit:

Benoit Dageville, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Welcome back everyone, theCUBE's three days of wall to wall coverage of Snowflake Summit '22 is coming to an end, but Dave Vellante and I, Lisa Martin are so pleased to have our final guest as none other than the co-founder and president of products at Snowflake, Benoit Dageville. Benoit, thank you so much for joining us on the program. Welcome. >> Thank you. Thank you, thank you. >> So this is day four, 'cause you guys started on Monday. This is Thursday. The amount of people that are still here speaks volumes. We've had close to 10,000 people here. >> Yeah. >> Could you ever have imagined back in the day, 10 years ago that it would come to something like this in such a short period of time? >> Absolutely not. And I always say if I had imagined that I might not have started Snowflake, right. This is somehow scary. I mean and yeah, it's huge. And you can feel the excitement of everyone. It is like mind boggling and the fact that so many people are still there after four days is great. >> Your keynote on Tuesday was fantastic. Your energy was off the charts. It was standing room only. There were overflow rooms. Like we just mentioned, a lot of people are still here. Talk about the evolution of Snowflake, this week's announcements and what it means for the future of the data cloud. >> Yeah, so evolution, I mean, I will start with the evolution. It's true that that's what we have announced. This week is not where we started necessarily. So we started really very quickly with big data combined with data warehouse as one thing. We saw that the world was moving into fragmented siloing data and we thought with Thierry, we are going to combine big data and data warehouse in one system for the cloud with this elasticity and this service simplicity. So simplicity, amazing elasticity, which is this multi workload architecture that I was explaining during the keynotes and really extreme simplicity with the service. Then we realized that there is one other attribute in the cloud, which is unique, which doesn't exist on-premise, which is collaboration. How you can connect different tenets of the platform together. And Google showed that with Google Docs. I always say to me, it was amazing that you could share document and have direct access to document that you didn't produce and you can collaborate on this document. So we wanted to do the same thing for data and this is where we created the data cloud and the marketplace where you can have all these data sets available and really the next evolution I would say is really about applications that are (indistinct) by that data, but are way simpler to use for all the tenets of the data cloud. And this is the way you can share expertise also, including, ML model, everyone talks about ML and the democratization of ML. How are you going to democratize ML? It's not by making necessary training super easy. Such that everyone can train their ML for themselves. It's by having very specialized application where data and ML is at the core, which are shared, through the marketplace and we shall leverage by many tenets of this marketplace that have no necessary knowledge about building this ML models. So that's where, yeah. >> When you and Thierry started the company, I go back to the improbable rise of Kubernetes and there were other more sophisticated container management systems back then, but they chose to focus on simplicity. And you've told me before, that was our main tenet. We are not going to worry about all the complex database stuff. You knew how to do that, but you chose not to. So my question is, did you envision solving those complex problems over time yourselves or through an ecosystem? Was this by design or did you... As you started to get into it, say let's not even try to go there let's partner to go there. >> Yeah, I mean, it's both. It's a combination of both. Snowflake, the simplicity of the platform is really important because if our partners are struggling to put their solution and build solution on top of Snowflake they will not build it. So it's very important that number one, our platform is really easy to use from day one. And that really has to be built inside the platform. You cannot build simplicity on top. You cannot have a complex solution and all of a sudden realize that, oh, this is complex. I need to build another layer on top of it to make it simpler, that will not work. So it had to be built from day one, but you're right. What is going to be Snowflake? I always say in 10 years from now, we just turn 10 years old or we are going to turn 10 years old in few months. Actually a few months, yes. >> Right. >> So for the next 10 years I really believe that most of Snowflake will not be built by Snowflake. And that's the power of the partners and these applications. When you are going to say I'm using Snowflake, actually, probably you are not going to use directly code developed by Snowflake. That code will leverage our platform, but you will use a solution that has been built on top of Snowflake. And this is the way we are going to decouple, the effort of Snowflake and multiply it. >> It's an interesting balance, isn't it? When I think of what you did with Apache Iceberg, if I use Iceberg and I'm not going to get as much functionality, but I may want that openness, but I'm going to get more functionality inside of the data cloud. And I don't know, but if you know the answer to what's going to happen. >> No, that's a super good question. So to explain what we did with Apache Iceberg, and the fact that now it's a native format for us. So everything that you can do with our internal formats, you can do it with Apache Iceberg, including security, defining masking, data masking all the governors that we have, fine grain security aspects, the replications you can define you can use (indistinct) on top of... >> But there's a but, right? But if I do that with native Snowflake tools, I'm going to get an even greater advantage, am I not? >> Yes. So that's what I'm saying. So that's why we embraced Iceberg, because I think we can bring all the benefit of Snowflake to people who have decided to use Iceberg, I mean open formats. Iceberg is a table format. So and why it was important because people had massive investments in open source in Hadoop. And we had a lot of companies saying, we love Snowflake. We want to be a Snowflake customer, but we cannot really migrate all our data. I mean, it will be really costly. And we have a lot of tools that need access, direct access. So this is why we created Iceberg because we can really... I mean, we really think that we can bring the benefit of Snowflake to this data. >> Gives customers optionality. Okay. I use this term super cloud. You don't use the term, but that's okay. And I get a lot of heat for it. But to me, what you're doing is quite a bit different than multicloud because you're creating that abstraction layer. You're bringing value above it. My question to you is, the most of the heat I get is, oh, that's just SaaS. Are you just SaaS? >> No. I mean, no, absolutely not. I mean, you're right we are a super cloud. I mean it's a much better word than saying we are multicloud. Multicloud is often viewed as oh, I have my system and now I can run this system in the different cloud providers. Snowflake is different. We have one single platform for the world, which happens to have some regions are AWS region, some regions are Azure, some regions are GCP, Google and we merge them together. We have this Snowgrid technology that connects all our regions together so that we have really one platform for the world. And that's very important because when you talk about connections of data and expertise applications you want to have global reach, right. It doesn't exist. We are not siloed by region of the world, right? You have a lot of companies which are multinational that have presence everywhere. And you want to have this global reach. The world is not a independent set of regions and countries, right. And that's the realization. So we had to create this global platform for our customers. >> And now you have people building clouds on top of your data cloud, well that to me is the next signal. In your keynote, you talked about seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace, governance, which ones are the most important? >> All of them. It's like when you have kids, you don't want to pick and say, this one is my preferred one, so they are really important. All of them, as I said without data, there is no Snowflake, right? So all data is so important that we can reach every data, wherever it is. And Iceberg is a part of that, but all workload is really important because you don't want to put your data in one platform, if you cannot run all your workloads and workloads are much broader than just data warehousing, there is data engineering, data science, ML engineering, (indistinct) all these workloads applications. So that's critical. Programmable is where we are moving, right. We want to be the place where data applications are built. And we think we have a lot of advantages because data application needs to use many workloads at once, right? It's not that that application will do only data warehousing, they need to store their states, they need to use this new workload that we define, which is Unistore. They need to do data engineering because they need to get data, right. They have to save this data. So they need to combine many workload and if they have to stitch this workload, because the platform was not designed as one single product where everything is consistent and works together, that you have to stitch, it's complicated for this application to make it work. So Snowflake is we believe an ideal platform to run these data applications. So all workloads, programmable, obviously, so that you can program. And programmable has two aspects, which is big part of our announcement. Is both data programmability, which is running Python against petabyte, terabytes of data at scale and doing it scale out. So that's what we call data programmability. So both Java, Python and (indistinct), but also running applications like UI. And we had this acquisition of Streamlit. Streamlit now has been fully integrated in Snowflake. We announced that such that not only you can have this data programmability, but you can expose your data through this nice UIs, interactive UI to business users potentially. So it goes all the way there. Global is super important. As we say, we want to be one platform for the world. And of course, as I said, the last pillar, which is somehow critical for us, because we are cloud, we need to have governance. We need to have security of our data. And why it took us so long to do Python is not because it's out to run Python, right? Everyone can run Python it's because we had to secure it. And I talk about it creating this amazing sandboxing technology, such that when you include third party libraries and third party codes, you are guaranteed that this third party code will not reach to infiltrate your data, right. We control the environment that Snowflake provides. >> Can you share us some of the feedback from the customer? You probably had many customer conversations over the last four days. >> Look at that smile. (interviewer laughing) (Lisa laughing) >> Actually not because I was so busy everywhere. Unfortunately, I didn't speak to many customers. Saying that, I had everyone stopping me and talking about what they heard and yeah, there is a huge excitement about all of this. >> What's been the feedback around the theme of the event? The world of data collaboration. Data collaboration is so critical as every company these days must be a data company to compete, to win. What's been from just some of the feedback that you've had customers really embracing data collaboration, what Snowflake is enabling. >> Yeah. I mean, almost every company which is using Snowflake, is collaborating with data. You have heard, the number of stable edges that we have, and there is a real need for that because your data alone... You cannot make sense of your data if it is just alone. It needs to be connected with other data. You haven't not generated. So all data, when you say the first pillar of Snowflake is all data is not only about your data, but is about all the data that's created around you. That puts perspective on your own data. And that's critical and it's so painful to get. I mean, even your data is difficult to have access to your data, but imagine data that you didn't produce. And so yes, so the data collaboration is critical, and then now we expanded it to application and expertise, sharing models, for example, That's going to have a huge impact. >> All data includes now transaction data, right? >> Yes. >> That's a big part of the announcements that you guys made. >> Yeah. So and that's the motivation for that was really, if we want to run application, full application, we announced native applications, which are fully executed and run inside the (indistinct) data cloud, right. They need all the services that application need and in particular managing their states. And so we created Unistore, which is a new workload, which allows you to combine transactional data, which are generated by this application. And at the same time being able to do analytics directly on this data. So we call it Hybrid Table because it has this hybrid aspect. You can do both transactional access to this data and at the same time analytic here without having data pipeline and moving data and transforming it from the transactional system to the analytical system, right. Snowflake is one system. Again, in the spirit of simplifying everything, this is the Snowflake (indistinct). >> I can ask the same question I ask at first, (indistinct) when was the aha moment that you and Thierry had that said, this is not just a better data warehouse, it's actually more than that. You probably didn't call it a data cloud until later on, but did you know that from the beginning or was that something you kind of stumbled into? >> No. So as I said, we founded Snowflake in 2012 and Thierry and I, we locked in my apartment and we were doing the blueprint of Snowflake and trying to find what is the revolution with the cloud for this data warehouse system and analytical system, both big data and data warehouse. And the aha moment was but of course cloud, okay. What is cloud? It's elasticity, it's service and later collaboration. So in the elasticity aspect, when you ask database people, what is elasticity, they will tell you, oh, you have a cluster of nodes. Like if it is Oracle, it would be a (indistinct) cluster. And the elasticities that you can add one node, two node to this cluster without having too much impact on the existing workload, because you need to shuffle data, right. It's hard and doing it online, right, that's elasticity. If you can do that, you are elastic. We thought that that was not very interesting to do that. What is interesting with elasticity is to plug new workloads. You can plug a workload like that and that workload is running without having any impact on other workloads, which are running on the platform. So elasticity for us was having dedicated computer resources to workloads. And these computer resources could start and be part as soon as the workload starts and will shut down when the workload finishes and they will be sized exactly for the demand of that workload. And we thought the aha moment was, okay if we can do that, now we can run a workload with, let's say 10X more computer resources than what you would have used or 100X more. Okay, let's say 100X more because we paralyzed things. Now this workload can run 100X faster, right? That's assuming we do a good job in the scale, which is our IP. And if we can do that, now the computer resources that you have used, you have used them for 100 times less. So you have used 100 times more resources because you have more nodes, but because you go fast, you use them for less time, right? So if you multiply the two it's constant. So you can run and accelerate workload dramatically 10X, 100X for the same price. Even if we are not better in efficiency than competition, just having that was the magic, right? >> You know how Google founders originally had trouble raising money because who needs another search engine? Did you get from original, like when you started going to raise money, Amazon's got a database, so who needs another cloud database? Did you get that early on or was it just obvious Speiser and companies as well. >> Speiser is a little bit on the crazy side and ambitious and so Speiser is Speiser. And of course he had no doubt, but even him was saying Benoit, Thierry, Hadoop, right. Everyone is saying Hadoop is going to be the revolution. And you guys are betting actually against Hadoop because we told Speiser, Hadoop is a bad system, it's going to fail, but at the time everyone was so bullish about Hadoop, everyone was implementing Hadoop that it didn't look like it was going to fail and we were probably wrong. So there was a lot of skepticism about not leveraging Hadoop and not being an Hadoop. Okay, something being on top of Hadoop. That was number one. There was no cloud warehouse at the time we started. Redshift was not started. It was the pioneer somewhere when Snowflake was founded. So creating a data warehouse in the cloud sounded crazy to people. How am I going to move my data over there? And security and what about security, the cloud is not secure. So that was another... >> So you guys predated that Parexel move by... >> Yes. >> Okay, so that's interesting. And I thought when Redshift... I mean, Amazon announced Redshift, I was sure that Mike Speiser will come and say, guys it's too sad, but they beat you guys and they build something and actually it was the reverse. Mike Speiser was super excited and so it was interesting to me. >> Wow, that's amazing. 'Cause John Furrier and I, we were early with theCUBE. when theCUBE started it was like the beginning of Hadoop. And so we brought theCUBE to, I think it was the second Hadoop World and we was rubbing nickels together at the time. And I was so excited bring compute to storage and it made so much sense. But I remember and I won't say who it was, but an early Hadoop committer told me this is going to fail. And I'm like, what? And he started going age basis crap and all this stuff. And I was sad because I was so excited, but it turned out that you had the same (indistinct). >> Because of complexity. Okay, Hadoop failed for two reasons. One is because they decided that, oh, a lot of this database thing, you don't need transaction, you don't need SQL, you don't necessarily, you don't need to go fast. It'll be batch, normal real time interaction with data, no one needs that. >> Cheap storage. >> So a lot of compromise on the very important technology. And at the same time, extreme complexity and complexity for me was, where I was I knew that it was going to fail big time and we bet Snowflake on the failure of Hadoop indeed. >> And there was no cloud early on in Hadoop. >> And there was no cloud too. >> And that was what killed it. That was like... >> You're right. And the model that Hadoop had for data didn't work on block storage. Block storage is not as efficient as HGFS. So that was also another figure. >> Do you ever sit back and think about... So you think about how much money has poured in to separating compute from storage and cloud databases and you started it all. (interviewer laughing) >> Yeah. No, this is... >> Pretty amazing. >> Yeah. >> Right, so that's good. That means that you're onto a good idea, but a lot of people get confused that again, they think that you're a cloud data warehouse and you're not, I mean, you're much more than that. >> Yeah, I hate that. I have to say, because from day one we were not a cloud data warehouse. As I said, it was all about combining the big data, massive amount of unstructured data, petabytes stored as files. Okay, that's very important, store as files where it's very easy to drop data in the system without... Very low cost to combine with data warehouse, full multi statement transaction when people will tell you today, oh, now we are a data warehouse. They don't have multi statement transaction, right. So we had from day one multi statement transaction really efficient SQL. You could run your dashboard. So combining these two worlds was I think the crazy thing, that's the crazy innovation that Snowflake did initially. >> Yeah. >> And I know it's really easy to build data warehouse somewhere, because if you don't think about big data, petabytes, extremely structured data, you remove a lot of complexity. >> This is why Lisa, when you get excited about technology, but you always have to have a, somebody who really deeply understands technology to stink test it, all right so awesome. Thank you for sharing that story. >> Yeah. >> Fantastic. So over 5,900 customers now. I saw over 500 in the Forbes G2K, over almost 10,000 people here this year. If we think back to 2019, there was about what? Less than 2000 people. >> Yeah. >> What do you think is going to happen next year? >> I don't know. I don't like to think about next year. I mean, I always say, Snowflake is so exciting to me because it is like a TV show, right. Where you wait the next season and we have one season every year. So I'm really excited to know what is going to happen next year. And I don't want to project what I think will happen, but all these movements to the Snowflake being the platform for data application. I want to see what people are going to build on our platform. I mean, that's the excitement. >> Season 11 coming up. >> Yes. Season 11. Yes. >> No binge watching here. Benoit, it's been a pleasure to have you on the program. >> Thank you. >> Congratulations on incredible success, the momentum, the energy is contagious. We love it. (Benoit laughing) >> Thank you so much. >> Thank you. >> Bye bye. >> For Benoit Dageville and Dave Vellante, I'm Lisa Martin. You're watching theCUBE's coverage of Snowflake Summit '22. Dave and I will be right back with a wrap. (upbeat music)

Published Date : Jun 16 2022

SUMMARY :

is coming to an end, Thank you, thank you. you guys started on Monday. And you can feel the future of the data cloud. and the marketplace where you So my question is, did you envision And that really has to be And that's the power of the and I'm not going to get So everything that you can the benefit of Snowflake to this data. My question to you is, the And that's the realization. And now you have people building clouds And of course, as I said, the last pillar, the feedback from the customer? Look at that smile. I was so busy everywhere. the feedback that you've had but imagine data that you didn't produce. announcements that you guys made. So and that's the motivation I can ask the same question And the elasticities that you can add like when you started at the time we started. So you guys predated and so it was interesting to me. And I was so excited you don't need to go fast. And at the same time, extreme complexity And there was no And that was what killed it. And the model that Hadoop had for data and you started it all. No, this is... but a lot of people get I have to say, because from day one because if you don't think about big data, This is why Lisa, when you I saw over 500 in the Forbes G2K, I mean, that's the excitement. Yes. to have you on the program. the momentum, the energy is contagious. Dave and I will be right back with a wrap.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

Mike SpeiserPERSON

0.99+

10XQUANTITY

0.99+

100XQUANTITY

0.99+

100 timesQUANTITY

0.99+

AmazonORGANIZATION

0.99+

Mike SpeiserPERSON

0.99+

2012DATE

0.99+

Benoit DagevillePERSON

0.99+

DavePERSON

0.99+

BenoitPERSON

0.99+

MondayDATE

0.99+

ThierryPERSON

0.99+

ThursdayDATE

0.99+

2019DATE

0.99+

TuesdayDATE

0.99+

SnowflakeTITLE

0.99+

GoogleORGANIZATION

0.99+

next yearDATE

0.99+

two aspectsQUANTITY

0.99+

LisaPERSON

0.99+

PythonTITLE

0.99+

This weekDATE

0.99+

one seasonQUANTITY

0.99+

two reasonsQUANTITY

0.99+

OneQUANTITY

0.99+

HadoopPERSON

0.99+

twoQUANTITY

0.99+

bothQUANTITY

0.99+

Snowflake Summit '22EVENT

0.99+

this weekDATE

0.99+

one platformQUANTITY

0.99+

StreamlitTITLE

0.99+

SpeiserORGANIZATION

0.99+

JavaTITLE

0.99+

one platformQUANTITY

0.99+

10 yearsQUANTITY

0.99+

one systemQUANTITY

0.98+

one nodeQUANTITY

0.98+

Less than 2000 peopleQUANTITY

0.98+

SnowflakeEVENT

0.98+

AWSORGANIZATION

0.98+

two nodeQUANTITY

0.98+

this yearDATE

0.98+

secondQUANTITY

0.98+

todayDATE

0.98+

John FurrierPERSON

0.98+

HadoopTITLE

0.97+

over 5,900 customersQUANTITY

0.97+

10 years agoDATE

0.97+

one single productQUANTITY

0.97+

first pillarQUANTITY

0.97+

Google DocsTITLE

0.97+

SnowflakeORGANIZATION

0.97+

MulticloudTITLE

0.97+

over 500QUANTITY

0.97+

ParexelORGANIZATION

0.96+

Benoit Dageville, Snowflake | AWS re:Invent 2021


 

(upbeat music) >> Hi, everyone, welcome back to theCUBE's coverage of AWS re:Invent 2021. We're wrapping up four days of coverage, two sets. Two remote sets, one in Boston, one in Palo Alto. And really, it's a pleasure to introduce Benoit Dageville. He's the Press Co-founder of Snowflake and President of Products. Benoit, thanks for taking some time out and coming to theCUBE. >> Yeah, thank you for having me, Dave. >> You know, it's really a pleasure. We've been watching Snowflake since, maybe not 2012, but mid last decade you hit our radar. We said, "Wow, this company is going to go places." And yeah, we made that call correctly. But it's been a pleasure to sort of follow you. We've talked a little bit remotely. I kind of want to go back to some of the fundamentals. First of all, I wanted mention your earnings last night. If you guys didn't see it, again, triple digit growth, $1.8 billion RPO, cashflow actually looking pretty good. So, pretty amazing. Oh, and 173% NRR, you know, wow. And Mike Scarpelli is kind of bummed that you did so well. And I know why, right? Because it's going to be at some point, and he dials it down for the expectations and Wall Street says, "Oh, he's sandbagging." And then at some point you're actually going to meet expectations and people are going to go, "Oh, they met expectations." But anyway, he's a smart guy, he know what he's doing. (Benoit laughing) I loved it, it was so funny listening to him last night. But anyway, I want to go back to, when I talked to practitioners about data warehousing pre-cloud, they would say sound bites like, it's like a snake swallowing a basketball, they would tell me. And the other thing they said, "We just chased the chips. Every time a new Intel chip comes out, we have to bring in new servers, and we're struggling." The cloud changed all that. Your vision and Terry's vision changed all that. Maybe go back to the fundamentals of what you saw. >> Yeah, we really wanted to address what we call the data challenges. And if you remember at that time, data challenge was first of the volume of data, machine-generated data. So it was way more than just structured data, right? Machine-generated data is weblogs, and it's at petabyte scale. And there was no good solution for that type of data. Big data was not a great solution, Hadoop was really bad. And there was no good solution for that. So we thought we should do something for big data. The other aspect was concurrency, right? Everyone wants to use these data analytic platform in an enterprise, right? And you have more and more workload running against the same data, and the systems that were built were not scaling for these workloads. So you had to silo data, right? That's the only way big enterprise could deal with that, is to create many different silos, Oracle, Teradata, data mass, you would hear data mass. All of it was to afloat, right, this data? And then there was the, what do we call, data sharing. How to get access to data which is not born inside the enterprise, right? So with Terry, we wanted to solve all these challenges and we thought the only way to solve it was the cloud. And the cloud has really two free aspects. One is the elasticity, for all of a sudden, you can run every workload that you want concurrently, in parallel, on different computer resources, and you can run them against the same data. So this is kind of the data lake model, if you want. At the same time, you can, in the cloud, create a service. So you can remove complexity from users and make it really easy for new workloads to be added to the system, because you can manage, you can create a managed service, where all the sudden our customers, they don't need to manage infrastructure, they don't need to patch, they don't need to tune. Everything is done by Snowflake, the service, and they can just load in and run their query. And the third aspect is really collaboration. Is how to connect data sets together. And that's almost a new product for Snowflake, this data sharing. So we really at Snowflake was all about combining big data and data warehouse in one system in the cloud, and have only one single system where you can put all your data and all your workload. >> So you weren't necessarily trying to solve the data warehouse problem, you were trying to solve a data problem. And then it just so happened data warehouse was a logical entry point for you. >> It's really not that. Yes, we wanted to solve the data problem. And for us big data was a really important problem to solve. So from day one, Snowflake was all about machine generated data, petabyte scale, but we wanted to do it right. And for us, right was not compromising on data warehouse principle, which is a CDT of transaction, which is really fast response time, and which is also simplicity. So as I said, we wanted to solve kind of all the problems at the time of volume of data, concurrency, and these sharing aspects. >> This was 2012. You knew at that time that Hadoop wasn't going to be the answer. >> No, I mean, we were really, I mean, everyone knew that. Everyone knew Hadoop was really bad. You know, complex to manage, really slow. It had good aspects, right? This was the only system that could manage petabyte scale data sets. That's the only thing- >> Cheaply. >> Yeah, and cheaply which was good. And we wanted really to do that, plus have all the good attributes of data warehouse system. And at the same time, we wanted to build a system where if you are data warehouse customer, if you are coming from Teradata, you can migrate to Snowflake and you will get to a system which is faster than what you had on-premise, right. That's why it's pretty cool. So we wanted to do big data without compromising on data warehouse. >> So several years ago we looked at the hyperscalers and said, "Wow, last year they spent $100 billion in CapEx." And so, we started to think about this abstraction layer. And then we saw what you guys announced with the data cloud. We call it super clouds. And we see that as exactly what you're building. So that's clearly not just a data warehouse or database, it's technology that really hides the underlying complexity of all those clouds, and it allows you to have federated governance and data sharing, all those things. Can you talk about sort of how you think about that architecture? >> So for me, what I say is that really Snowflake is the worldwide web of data. And we are indeed a super cloud, or we are super-posed to the infrastructure cloud, which is our friends at Amazon, and of course, Azure, I mean, Microsoft and Google. And as any cloud, we have regions, Snowflake regions all over the world, and located on different cloud providers. At the same time, our platform is global in the sense that every region interconnects with all the other regions, this is our snow grid and data mesh, if you want. So that as an organization you can have your presence on several Snowflake region. It doesn't matter which cloud provider, so you can mix AWS with Azure. You can use our cloud like that. And indeed you can, this is a cloud where you can store your data, that's the thing that really matters, and data is structured, but it's machine structure, as I say, machine generated, petabyte scale, but there's also unstructured, right? We have added support for images, text, videos, where you can process this data in our system, and that's the workload spout. And workload, what is very important is that you can run this workload, any number of workloads. So the number of workloads is effectively unlimited with Snowflake because each workload can have its dedicated set of compute resources all operating on the same data set. And the type of workloads is also very important. It's not only about dashboards and data warehouse, it's data engineering, it's data science, it's building application. We have many of our customers who are building full-scale cloud applications on top of Snowflake. >> Yeah so the other thing, if you're not familiar with Snowflake, I don't know, maybe your head has been in the sand for a while, but separating compute and storage, I don't know if you were the first, but you were certainly the first to popularize it. And that allowed you to solve that chasing the chips problem and the swallowing the basketball, right? Because you have virtually infinite resources now at your disposal. >> Yeah, this is really the concurrency challenge that I was mentioning. Everyone wants to access the data. And of course, if everyone runs on the same set of compute resources, you have a bottleneck. So Snowflake was really about this multi-workload. We call it Multi-Cluster Shared Data Architecture. But it's not difficult to run multiple cluster if you don't have consistency of data. So how to do that while maintaining transactional property of data as CDT, right? You cannot modify data from different clusters. And when you commit, every other cluster will immediately see the change, right, as if everyone was running on the same cluster. So that was the challenge that we solve when we started Snowflake. >> Used the term data mesh. What is data mesh to Snowflake? Is it a concept, is it fabric? >> No, it's a very interesting point. As much as we like to centralize data, this becomes a bottleneck, right? When you are a large organization with different independent units, everyone wants to manage their own data and they have domain-specific expertise about that data. So having it centralized in IT is not practical. At the same time, you really want to be able to connect these different data sets together and join different data together, right? So that's the data mesh architecture. Each data set is managed independently by business owners, and then there is a contract which is exposed to others, and you can combine. And Snowflake architectures with data sharing, right. Data sharing that can happen within an organization, or across organization, allows you to connect any data with any other data on our platform. >> Yeah, so when I first heard that term, you guys using the term data mesh, I got very excited because it was kind of the data mesh is, my view, anyway, is going to be the fundamental architecture of this decade and beyond. And the principles, if I understand it correctly, you're applying the principles of Jim Octagon's data mesh within Snowflake. So decentralized data doesn't have to be physically in one place. Logically it's in the data cloud. >> It's logically decentralized, right? It's independently managed, and the reason, right, is the data that you need to use is not produced by your, even if in your company you want to centralize the data and having only one organization, let's say IT managing that, let's say, pretend. Yet you need to connect with other datasets, which is managed by other organizations. So by nature, the data that you use cannot be centralized, right? So now that you have this principle, if you have a platform where you can store all the data, wherever it is, and you can connect these data very seamlessly, then we can use that platform for your enterprise, right? To have different business units independently manage their data sets, connects these together so that as a company you have a 360 view of your customers, for example. But you can expand that outside of your enterprise and connect with data sets, which are from your vertical, for example, financial data set that you don't have in your company, or any public data set. >> And the other key principles, I think, that you've touched on really is the line of business now. Increasingly they're building data products that are creating value, and then also there's a self-service component. Assuming there's the fourth principle, governance. You got to have federated governance. And it seems like you've kind of ticked the boxes, more than tick the boxes, but engineered a solution to solve for those. >> No, it's very true. So Snowflake was really built to be really simple to use. And you're right. Our vision was, it would be more than IT, right? Who is going to use Snowflake is going now to be business unit, because you do not have to manage infrastructure. You do not have to patch. You do not have to do these things that business cannot do. You just have to load your data and run your queries, and run your applications. So now business can directly use Snowflake and create value from that. And yes, you're right, then connect that data with other data sets and to get maximum insights. >> Can you please talk about some of the things you do with AWS here at the event. I'm interested in what you're doing with your machine learning initiatives that you've recently announced, the AI piece. >> Yes, so one key aspects is data is not only about SQL, right? We started with SQL, but we expanded our platform to what we call data programmability, which is really about running program at scale across a large volume of data. And this was made popular with a programming model which was introduced by Pendal, DataFrames. Later taken by Spark, and now we have DataFrames in Snowflake, Where we are different than other systems, is that these DataFrame programs, which are in Python, or Java, or Scala, you program with data. These DataFrames are compiled to our single execution platforms. So we have one single execution platform, which is a data flow execution platform, which can run both SQL very efficiently, as I said, data warehouse speed, and also these very complex programs running Python and Java against this data. And this is a single platform. You don't need to use two different systems. >> Now so, you kind of really attack the traditional analytics base. People said, "Wow, Snowflake's really easy." Now you're injecting AI and machine intelligence. I see Databricks coming at it from the other angle. They started with machine learning, now they're sort of going after the analytics. Does there need to be a semantic layer to connect, 'cause it's the same raw data. Does there need to be a semantic layer to connect those two worlds? >> Yes, and that's what we are doing in our platform. And that's very novel to Snowflake. As I said, you interact with data in different program. You pick your program. You are a SQL programmer, use SQL. You are a Python programmer, use DataFrames with Python. It doesn't really matter. And then the semantic layer is our compiler and our processing engine, is going to translate both your program and my program in Python, your program in SQL, to the same execution platform and to the same programming language that Snowflake internally, we don't expose our programming language, but it's a data flow programming language that our execution platform executes. So at the end, we might execute exactly the same program, potentially. And that's very important because we spent all our IP and all our time, engineering time to optimize this platform, to make it the fastest platform. And we want to use that platform for any type of workloads, whether it's data programs or SQL. >> Now, you and Terry were at Oracle, so you know a lot about bench marketing. As Larry would stand up and say, "We killed the competition." You guys are probably behind it, right. So you know all about that. >> We are very behind it. >> So you know a lot about that. I've had some experience, I'm not a technologist, but I'm an observer and analyst. You have to take benchmarking with a very big grain of salt. So you guys have generally stayed away from that. Databricks came out and they came up with all these benchmarks. So you had to respond, because otherwise it's out there. Now you reran the benchmarks, you took out the materialized views and all the expensive stuff that they included in your cost, your price performance, but then you wrote, I thought, a very cogent blog. Maybe you could talk about sort of why you did that and your general philosophy around bench marketing. >> Yeah, from day one, with Terry we say never again we will participate in this really stupid benchmark war, because it's really not in the interest of customers. And we have been really at the frontline of that war with Terry, both of us, really doing special tricks, right? And optimizing this query to death, this query that no one runs apart from the synthetic benchmark. We optimize them to death to have the best number when we were at Oracle. And we decided that this is really not helping customers in the end. So we said, with Snowflake, we'll not do that. And actually, we are not the only one not to do that. If you look at who has published TPC-DS, you will see no one, none of the big vendors. It's not because they cannot run TPC-DS, Oracle can run it, I know that. And all the other big data warehouse vendor can, but it's something of a little bit of past. And TPC was really important at some point, and is not really relevant now. So we are not going to compete. And that's what we said is basically now our blog. We are not interesting in participating in this war. We want to invest our engineering effort and our IP in solving real world issues and performance issues that we have. And we want to improve our engine for these real world customers. And the nice thing with Snowflake, because it's a service, we see exactly all the queries that our customers are executing. So we know where we are struggling as a system, and that's where we want to invest and we want to improve. And if you look at many announcements that we made, it's all about under-the-cover improving Snowflake and getting the benefit of this improvement to our customer. So that was the message of that blog. And yes, the message was okay. Mr. Databricks, it's nice, and it's perfect that, I mean, everyone makes a decision, right? We made the decision not to participate. Databricks made another decision, which is very fine, and that's fine that they publish their number on their system. Where it is not fine is that they published number using Snowflake and misrepresenting our performance. And that's what we wanted also to correct. >> Yeah, well, thank you for going into that. I know it's, look, leaders don't necessarily have to get involved in that mudslide. (crosstalk) Enough said about that, so that's cool. I want to ask you, I interviewed Frank last spring, right after the lockdown, he was kind enough to come on virtually, and I asked him about on-prem. And he was, you know Frank, he doesn't mix words, He said, "We're not getting into a halfway house. That's not going to happen." And of course, you really can't do what you do on-prem. You can't separate compute, some have tried, but it's not the same. But at the same time that you see like Andreessen comes out with this blog that says a huge portion of your cost of goods sold is going to be the cloud, so you're going to have to repatriate. Help me square that circle. Is it cloud forever? Is it will you never say never? What can you share of that? >> I will never say never, it's not my style. I always say you can always change your mind, and maybe different factors can change your mind. What was true at some point might not be true at a later point. But as of now, I don't see any reason for us to go on-premise. As you mentioned at the beginning, right, Snowflake is growing like crazy. The world is moving to the cloud. I think maybe it goes both ways, but I would say 90% or 99% of the world is moving to the cloud. Maybe 1% is coming back for some very specific reasons. I don't think that the world is going to move back on-premise. So in the end we might miss a small percentage of the workload that will stay on-premise and that's okay. >> And as well, if you dig into some of the financial statements you'll see, read the notes where you've renegotiated, right? We're talking big numbers. Hundreds and hundreds of millions of dollars of cost reduction, actually more, over a 10 year period. Billions of your cloud bills. So the cloud suppliers, they don't want to lose you as a customer, right? You're one of their biggest customer. So it's awesome. Last question is kind of, your work now is to really drive the data cloud, get adoption up, build that supercloud, we call it. Maybe you could talk a little bit about how you see the future. >> The future is really broadened, the scope of Snowflake, and really, I would say the marketplace, and data sharing, and services, which are directly built natively on Snowflake and are shared through our platform, and can operate, it can mix data on provider-side with data on consumer-side, and creating this collaboration within the Snowflake data cloud, I think is really the future. And we are really only scratching the surface of that. And you can see the enthusiasm of Snowflake data cloud and vertical industry We have nuanced the final show data cloud. Industry, complete vertical industry, latching on that concept and collaborating via Snowflake, which was not possible before. And I think you talked about machine learning, for example. Machine learning, collaboration through machine learning, the ones who are building this advanced model might not be the same as the one who are consuming this model, right? It might be this collaboration between expertise and consumer of that expertise. So we are really at the beginning of this interconnected world. And to me the world wide web of data that we are creating is really going to be amazing. And it's all about connecting. >> And I'm glad you mentioned the ecosystem. I didn't give enough attention to that. Because as a cloud provider, which essentially you are, you've got to have a strong ecosystem. That's a hallmark of cloud. And then the other, vertical, that we didn't touch on, is media and entertainment. A lot of direct-to-consumer. I think healthcare is going to be a huge vertical for you guys. All right we got to go, Terry. Thanks so much for coming on "theCUBE." I really appreciate you. >> Thanks, Dave. >> And thank you for watching. This a wrap from AWS re:Invent 2021. "theCUBE," the leader in global tech coverage. We'll see you next time. (upbeat music)

Published Date : Dec 3 2021

SUMMARY :

and coming to theCUBE. and he dials it down for the expectations At the same time, you can, in So you weren't So as I said, we wanted to You knew at that time that Hadoop That's the only thing- And at the same time, we And then we saw what you guys is that you can run this And that allowed you to solve that And when you commit, every other cluster What is data mesh to Snowflake? At the same time, you really And the principles, if I is the data that you need to And the other key principles, I think, and to get maximum insights. some of the things you do and now we have DataFrames in Snowflake, 'cause it's the same raw data. and to the same programming language So you know all about that. and all the expensive stuff And the nice thing with But at the same time that you see So in the end we might And as well, if you dig into And I think you talked about And I'm glad you And thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
FrankPERSON

0.99+

Mike ScarpelliPERSON

0.99+

Benoit DagevillePERSON

0.99+

LarryPERSON

0.99+

TerryPERSON

0.99+

BostonLOCATION

0.99+

$1.8 billionQUANTITY

0.99+

AWSORGANIZATION

0.99+

BenoitPERSON

0.99+

Palo AltoLOCATION

0.99+

OracleORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

90%QUANTITY

0.99+

$100 billionQUANTITY

0.99+

AmazonORGANIZATION

0.99+

DavePERSON

0.99+

last yearDATE

0.99+

GoogleORGANIZATION

0.99+

99%QUANTITY

0.99+

2012DATE

0.99+

TeradataORGANIZATION

0.99+

SQLTITLE

0.99+

two setsQUANTITY

0.99+

SnowflakeTITLE

0.99+

oneQUANTITY

0.99+

AndreessenPERSON

0.99+

Two remote setsQUANTITY

0.99+

one systemQUANTITY

0.99+

OneQUANTITY

0.99+

bothQUANTITY

0.99+

firstQUANTITY

0.99+

HundredsQUANTITY

0.99+

1%QUANTITY

0.99+

third aspectQUANTITY

0.99+

ScalaTITLE

0.99+

SnowflakeORGANIZATION

0.99+

PythonTITLE

0.99+

IntelORGANIZATION

0.99+

DatabricksPERSON

0.99+

two free aspectsQUANTITY

0.99+

mid last decadeDATE

0.99+

JavaTITLE

0.99+

Jim OctagonPERSON

0.99+

both waysQUANTITY

0.99+

fourth principleQUANTITY

0.98+

two worldsQUANTITY

0.98+

last nightDATE

0.98+

173%QUANTITY

0.98+

360 viewQUANTITY

0.98+

several years agoDATE

0.98+

each workloadQUANTITY

0.97+

last springDATE

0.97+

CapExORGANIZATION

0.97+

Wall StreetORGANIZATION

0.97+

one organizationQUANTITY

0.95+

single platformQUANTITY

0.95+

four daysQUANTITY

0.95+

FirstQUANTITY

0.95+

SnowflakeEVENT

0.94+

AzureORGANIZATION

0.94+

Benoit & Christian Live


 

>>Okay, We're now going into the technical deep dive. We're gonna geek out here a little bit. Ben Wa Dodgeville is here. He's co founder of Snowflake and president of products. And also joining us is Christian Kleinerman. Who's the senior vice president of products. Gentlemen, welcome. Good to see you. >>Yeah, you that >>get this year, they Thanks for having us. >>Very welcome. So it been well, we've heard a lot this morning about the data cloud, and it's becoming my view anyway, the linchpin of your strategy. I'm interested in what technical decisions you made early on. That that led you to this point and even enabled the data cloud. >>Yes. So? So I would say that that a crowd was built in tow in three phases. Really? The initial phase, as you call it, was it was really about 20 minutes. One regions Teoh, Data Cloud and and that region. What was important is to make that region infinity, infinity scalable, right. And that's our architectural, which we call the beauty cross to share the architectural er so that you can plug in as many were clues in that region as a Z without any limits. The limit is really the underlying prop Provide the, you know, resource is which you know, Cal provide the region as a really no limits. So So that z you know, region architecture, I think, was really the building block of the snowflake. That a cloud. But it really didn't stop there. The second aspect Waas Well, it was really data sharing. How you know munity internets within the region, how to share data between 10 and off that region between different customers on that was also enabled by architectures Because we discover, you know, compute and storage so compute You know clusters can access any storage within the region. Eso that's based off the data cloud and then really faced three Which is critical is the expansion the global expansion how we made you know, our cloud domestic layers so that we could talk You know the snowflake vision on different clouds on DNA Now we are running in three cloud on top of three cloud providers. We started with the ws and US West. We moved to assure and then uh, Google g c p On how this this crowd region way started with one crowd region as I said in the W S U S West, and then we create we created, you know, many you know, different regions. We have 22 regions today, all over the world and all over the different in the cloud providers. And what's more important is that these regions are not isolated. You know, Snowflake is one single, you know, system for the world where we created this global data mesh which connects every region such that not only there's no flex system as a whole can can be aware of for these regions, But customers can replicate data across regions on and, you know, share. There are, you know, across the planet if need be. So So this is one single, you know, really? I call it the World Wide Web. Off data that, that's, you know, is this vision of the data cloud. And it really started with this building block, which is a cloud region. >>Thank you for that. Ben White Christian. You and I have talked about this. I mean, that notion of a stripping away the complexity and that's kind of what the data cloud does. But if you think about data architectures, historically they really had no domain knowledge. They've really been focused on the technology toe ingest and analyze and prepare And then, you know, push data out to the business and you're really flipping that model, allowing the sort of domain leaders to be first class citizens if you will, uh, because they're the ones that creating data value, and they're worrying less about infrastructure. But I wonder, do you feel like customers air ready for that change? >>I I love the observation. They've that, uh, so much energy goes in in in enterprises, in organizations today, just dealing with infrastructure and dealing with pipes and plumbing and things like that and something that was insightful from from Ben Juan and and our founders from from Day one WAAS. This is a managed service. We want our customers to focus on the data, getting the insights, getting the decisions in time, not just managing pipes and plumbing and patches and upgrades, and and the the other piece that it's it's it's an interesting reality is that there is this belief that the cloud is simplifying this, and all of a sudden there's no problem but actually understanding each of the public cloud providers is a large undertaking, right? Each of them have 100 plus services, uh, sending upgrades and updates on a constant basis. And that just distracts from the time that it takes to go and say, Here's my data. Here's my data model. Here's how it make better decisions. So at the heart of everything we do is we wanna abstract the infrastructure. We don't wanna abstract the nuance of each of the cloud providers. And as you said, have companies focus on This is the domain expertise or the knowledge for my industry. Are all companies ready for it? I think it's a It's a mixed bag. We we talk to customers on a regular basis every way, every week, every day, and some of them are full on. They've sort of burned the bridges and, like I'm going to the cloud, I'm going to embrace a new model. Some others. You can see the complete like, uh, shock and all expressions like What do you mean? I don't have all these knobs. 2 to 3 can turn. Uh, but I think the future is very clear on how do we get companies to be more competitive through data? >>Well, Ben Ben. Well, it's interesting that Christian mentioned to manage service and that used to be in a hosting. Guys run around the lab lab coats and plugging things in. And of course, you're looking at this differently. It's high degrees of automation. But, you know, one of those areas is workload management. And I wonder how you think about workload management and how that changes with the data cloud. >>Yeah, this is a great question. Actually, Workload management used to be a nightmare. You know, traditional systems on it was a nightmare for the B s and they had to spend most a lot of their time, you know, just managing workloads. And why is that is because all these workloads are running on the single, you know, system and a single cluster The compete for resources. So managing workload that always explain it as explain Tetris, right? You had the first to know when to run. This work will make sure that too big workers are not overlapping. You know, maybe it really is pushed at night, you know, And And you have this 90 window which is not, you know, efficient. Of course, for you a TL because you have delays because of that. But but you have no choice, right? You have a speaks and more for resource is and you have to get the best out of this speaks resource is. And and for sure you don't want to eat here with her to impact your dash boarding workload or your reports, you know, impact and with data science and and And this became a true nine man because because everyone wants to be that a driven meaning that all the entire company wants to run new workers on on this system. And these systems are completely overwhelmed. So so, well below management was, and I may have before Snowflake and Snowflake made it really >>easy. The >>reason is it's no flag. We leverage the crowds who dedicates, you know, compute resources to each work. It's in the snowflake terminology. It's called a warehouse virtual warehouse, and each workload can run in its own virtual warehouse, and each virtual warehouse has its own dedicated competition resources. It's on, you know, I opened with and you can really control how much resources which workload gas by sizing this warehouses. You know, I just think the compute resources that they can use When the workload, you know, starts to execute automatically. The warehouse, the compute resources are turned off, but turned on by snowflake is for resuming a warehouse and you can dynamically resized this warehouse. It can be done by the system automatically. You know if if the conference see of the workload increases or it can be done manually by the administrator or, you know, just suggesting, you know, uh, compute power. You know, for each workload and and the best off that model is not only it gives you a very fine grain. Control on resource is that this work can get Not only workloads are not competing and not impacting it in any other workload. But because of that model, you can hand as many workload as you want. And that's really critical because, as I said, you know, everyone in the organization wants to use data to make decisions, So you have more and more work roads running. And then the Patriots game, you know, would have been impossible in in a in a centralized one single computer, cross the system On the flip side. Oh, is that you have to have a zone administrator off the system. You have to to justify that. The workload is worth running for your organization, right? It's so easy in literally in seconds, you can stand up a new warehouse and and start to run your your crazy on that new compute cluster. And of course, you have to justify if the cost of that because there is a cost, right, snowflake charges by seconds off compute So that cost, you know, is it's justified and you have toe. You know, it's so easy now to hire new workflow than you do new things with snowflake that that that you have to to see, you know, and and look at the trade off the cost off course and managing costs. >>So, Christian been while I use the term nightmare, I'm thinking about previous days of workload management. I mean, I talked to a lot of customers that are trying to reduce the elapsed time of going from data insights, and their nightmare is they've got this complicated data lifecycle. Andi, I'm wondering how you guys think about that. That notion of compressing elapsed time toe data value from raw data to insights. >>Yeah, so? So we we obsess or we we think a lot about this time to insight from the moment that an event happens toe the point that it shows up in a dashboard or a report or some decision or action happens based on it. There are three parts that we think on. How do we reduce that life cycle? The first one which ties to our previous conversation is related toe. Where is their muscle memory on processes or ways of doing things that don't actually make us much sense? My favorite example is you say you ask any any organization. Do you run pipelines and ingestion and transformation at two and three in the morning? And the answer is, Oh yeah, we do that. And if you go in and say, Why do you do that? The answer is typically, well, that's when the resource is are available Back to Ben Wallace. Tetris, right? That's that's when it was possible. But then you ask, Would you really want to run it two and three in the morning? If if you could do it sooner, we could do it. Mawr in time, riel time with when the event happened. So first part of it is back to removing the constraints of the infrastructures. How about running transformations and their ingestion when the business best needs it? When it's the lowest time to inside the lowest latency, not one of technology lets you do it. So that's the the the easy one out the door. The second one is instead of just fully optimizing a process, where can you remove steps of the process? This is where all of our data sharing and the snowflake data marketplace come into place. How about if you need to go in and just data from a SAS application vendor or maybe from a commercial data provider and imagine the dream off? You wouldn't have to be running constant iterations and FTP s and cracking C S V files and things like that. What if it's always available in your environment, always up to date, And that, in our mind, is a lot more revolutionary, which is not? Let's take away a process of ingesting and copying data and optimize it. How about not copying in the first place? So that's back to number two on, then back to number three is is what we do day in and day out on making sure our platform delivers the best performance. Make it faster. The combination of those three things has led many of our customers, and and And you'll see it through many of the customer testimonials today that they get insights and decisions and actions way faster, in part by removing steps, in part by doing away with all habits and in part because we deliver exceptional performance. >>Thank you, Christian. Now, Ben Wa is you know, we're big proponents of this idea of the main driven design and data architecture. Er, you know, for example, customers building entire applications and what I like all data products or data services on their data platform. I wonder if you could talk about the types of applications and services that you're seeing >>built >>on top of snowflake. >>Yeah, and And I have to say that this is a critical aspect of snowflake is to create this platform and and really help application to be built on top of this platform. And the more application we have, the better the platform will be. It is like, you know, the the analogies with your iPhone. If your iPhone that no applications, you know it would be useless. It's it's an empty platforms. So So we are really encouraging. You know, applications to be belong to the top of snowflake and from there one actually many applications and many off our customers are building applications on snowflake. We estimated that's about 30% are running already applications on top off our platform. And the reason is is off course because it's it's so easy to get compute resources. There is no limit in scale in our viability, their ability. So all these characteristics are critical for for an application on DWI deliver that you know from day One Now we have improved, you know, our increased the scope off the platform by adding, you know, Java in competition and Snow Park, which which was announced today. That's also you know, it is an enabler. Eso in terms off type of application. It's really, you know, all over and and what I like actually needs to be surprised, right? I don't know what well being on top of snowflake and how it will be the world, but with that are sharing. Also, we are opening the door to a new type of applications which are deliver of the other marketplace. Uh, where, You know, one can get this application died inside the platform, right? The platform is distributing this application, and today there was a presentation on a Christian T notes about, >>you >>know, 20 finds, which, you know, is this machine learning, you know, which is providing toe. You know, any users off snowflake off the application and and machine learning, you know, to find, you know, and apply model on on your data and enrich your data. So data enrichment, I think, will be a huge aspect of snowflake and data enrichment with machine learning would be a big, you know, use case for these applications. Also, how to get there are, you know, inside the platform. You know, a lot of applications led him to do that. Eso machine learning. Uh, that engineering enrichments away. These are application that we run on the platform. >>Great. Hey, we just got a minute or so left in. Earlier today, we ran a video. We saw that you guys announced the startup competition, >>which >>is awesome. Ben, while you're a judge in this competition, what can you tell us about this >>Yeah, >>e you know, for me, we are still a startup. I didn't you know yet, you know, realize that we're not anymore. Startup. I really, you know, you really feel about you know, l things, you know, a new startups, you know, on that. That's very important for Snowflake. We have. We were started yesterday, and we want to have new startups. So So the ends, the idea of this program, the other aspect off that program is also toe help, you know, started to build on top of snowflake and to enrich. You know, this this pain, you know, rich ecosystem that snowflake is or the data cloud off that a cloud is And we want to, you know, add and boost. You know that that excitement for the platform, so So the ants, you know, it's a win win. It's a win, you know, for for new startups. And it's a win, ofcourse for us. Because it will make the platform even better. >>Yeah, And startups, or where innovation happens. So registrations open. I've heard, uh, several, uh, startups have have signed up. You goto snowflake dot com slash startup challenge, and you can learn mawr. That's exciting program. An initiative. So thank you for doing that on behalf of of startups out there and thanks. Ben Wa and Christian. Yeah, I really appreciate you guys coming on Great conversation. >>Thanks for David. >>You're welcome. And when we talk, Thio go to market >>pros. They >>always tell us that one of the key tenets is to stay close to the customer. Well, we want to find out how data helps us. To do that in our next segment. Brings in to chief revenue officers to give us their perspective on how data is helping their customers transform. Business is digitally. Let's watch.

Published Date : Nov 20 2020

SUMMARY :

Okay, We're now going into the technical deep dive. That that led you to this point and even enabled the data cloud. and then we create we created, you know, many you know, different regions. and prepare And then, you know, push data out to the business and you're really flipping that model, And as you said, have companies focus on This is the domain expertise But, you know, You know, maybe it really is pushed at night, you know, And And you have this 90 The done manually by the administrator or, you know, just suggesting, you know, I'm wondering how you guys think about that. And if you go in and say, Why do you do that? Er, you know, for example, customers building entire It is like, you know, the the analogies with your iPhone. the application and and machine learning, you know, to find, We saw that you guys announced the startup competition, is awesome. so So the ants, you know, it's a win win. I really appreciate you guys coming on Great conversation. And when we talk, Thio go to market Brings in to chief revenue

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Christian KleinermanPERSON

0.99+

Ben WallacePERSON

0.99+

Ben WhitePERSON

0.99+

Ben WaPERSON

0.99+

three partsQUANTITY

0.99+

Ben BenPERSON

0.99+

EachQUANTITY

0.99+

BenPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

Ben Wa DodgevillePERSON

0.99+

SnowflakeORGANIZATION

0.99+

ChristianPERSON

0.99+

BenoitPERSON

0.99+

todayDATE

0.99+

ThioPERSON

0.99+

yesterdayDATE

0.99+

first partQUANTITY

0.99+

firstQUANTITY

0.99+

eachQUANTITY

0.99+

three thingsQUANTITY

0.99+

22 regionsQUANTITY

0.98+

second aspectQUANTITY

0.98+

JavaTITLE

0.98+

about 20 minutesQUANTITY

0.98+

first oneQUANTITY

0.98+

10QUANTITY

0.98+

each workQUANTITY

0.98+

about 30%QUANTITY

0.97+

Ben JuanPERSON

0.97+

second oneQUANTITY

0.97+

nine manQUANTITY

0.97+

oneQUANTITY

0.97+

90 windowQUANTITY

0.97+

singleQUANTITY

0.97+

each virtual warehouseQUANTITY

0.96+

twoQUANTITY

0.96+

each workloadQUANTITY

0.96+

DWIORGANIZATION

0.95+

100 plus serviQUANTITY

0.94+

20 findsQUANTITY

0.94+

one singleQUANTITY

0.91+

3QUANTITY

0.91+

threeDATE

0.91+

three phasesQUANTITY

0.91+

this morningDATE

0.91+

GoogleORGANIZATION

0.89+

threeQUANTITY

0.89+

TetrisTITLE

0.89+

Snow ParkTITLE

0.88+

US WestLOCATION

0.87+

Christian TPERSON

0.87+

PatriotsORGANIZATION

0.87+

this yearDATE

0.86+

single clusterQUANTITY

0.84+

day OneQUANTITY

0.82+

twoDATE

0.8+

SASORGANIZATION

0.79+

one single computerQUANTITY

0.78+

SnowflakeTITLE

0.78+

one crowd regionQUANTITY

0.76+

three cloud providersQUANTITY

0.76+

W S U S WestLOCATION

0.74+

One regionsQUANTITY

0.73+

ChristianORGANIZATION

0.73+

Day oneQUANTITY

0.71+

Earlier todayDATE

0.68+

wsORGANIZATION

0.61+

number threeQUANTITY

0.58+

g c pTITLE

0.57+

2QUANTITY

0.53+

SnowflakeEVENT

0.45+

TetrisORGANIZATION

0.35+

Benoit Dageville and Florian Douetteau V1


 

>> Hello everyone, welcome back to theCUBE'S wall to wall coverage of the Snowflake Data Cloud Summit. My name is Dave Vellante and with me are two world-class technologists, visionaries, and entrepreneurs. Benoit Dageville is the, he co-founded Snowflake. And he's now the president of the Product division and Florian Douetteau is the co-founder and CEO of Dataiku. Gentlemen, welcome to theCUBE, two first timers, love it. >> Great time to be here. >> Now Florian, you and Benoit, you have a number of customers in common. And I've said many times on theCUBE that, the first era of cloud was really about infrastructure, making it more agile taking out costs. And the next generation of innovation is really coming from the application of machine intelligence to data with the cloud, is really the scale platform. So is that premise relevant to you, do you buy that? And why do you think Snowflake and Dataiku make a good match for customers? >> I think that because it's our values that align. When it gets all about actually today, and knowing complexity per customer, so you close the gap or we need to commoditize the access to data, the access to technology, it's not only about data, data is important, but it's also about the impacts of data. How can you make the best out of data as fast as possible, as easily as possible within an organization? And another value is about just the openness of the platform, building a future together. I think a platform that is not just about the platform but also for the ecosystem of partners around it, bringing the little bit of accessibility and flexibility, you need for the 10 years of that. >> Yes, so that's key, but it's not just data. It's turning data into insights. Now Benoit, you came out of the world of very powerful, but highly complex databases. And we all know that, you and the Snowflake team, you get very high marks for really radically simplifying customers' lives. But can you talk specifically about the types of challenges that your customers are using Snowflake to solve? >> Yeah, so really the challenge before Snowflake, I would say, was really to put all the data, in one place and run all the computes, all the workloads that you wanted to run, against that data. And of course, existing legacy platforms were not able to support that level of concurrency, many workload. We talk about machine learning, data science, data engineering, data warehouse, big data workloads, all running in one place, didn't make sense at all. And therefore, what customers did, is to create silos, silos of data everywhere, with different systems having a subset of the data. And of course now you cannot analyze this data in one place. So Snowflake, we really solved that problem by creating a single architecture where you can put all the data in the cloud. So it's a really cloud native. We really thought about how to solve that problem, how to create leverage cloud and the elasticity of cloud to really put all the data in one place. But at the same time, not run all workload at the same place. So each workload that runs in Snowflake at least dedicate compute resources to run. And that makes it very agile, right. Florian talked about data scientist having to run analysis. So they need a lot of compute resources, but only for few hours and with Snowflake, they can run these new workload, add this workload to the system, get the compute resources that they need to run this workload. And then when it's over, they can shut down their system. It will automatically shut down. Therefore they would not pay for the resources that they don't choose. So it's a very agile system, where you can do these analysis when you need, and you have all the power to run all these workload at the same time. >> Well, it's profound what you guys built. To me, I mean, because everybody's trying to copy it now. It's like, I remember the notion of bringing compute to the data in the Hadoop days. And I think that, as I say, everybody is sort of following your suit now or trying to. Florian, I got to say, the first data scientist I ever interviewed on theCUBE was the amazing Hilary Mason, right after she started at Bitly. And she made data science sounds so compelling, but data science is hard. So same question for you. What do you see is the biggest challenges for customers that they're facing with data science? >> The biggest challenge from my perspective is that once you solve the issue of the data silo with Snowflake, you don't want to bring another silo, which would be a silo of skills. And essentially, thanks to that talent gap between the talent and labor of the markets, or how it is to actually find, recruit and train data scientists and what needs to be done. And so you need actually to simplify the access to technology such as every organization can make it, whatever the talents by bridging that gap. And to get there, there is a need of actually breaking up the silos. I think a collaborative approach, where technologies and business work together and actually all put some of their ends into those data projects together. >> Yeah, it makes sense. So Florian, Let's stay with you for a minute, if I can. Your observation spaces, is pretty, pretty global. And so, you have a unique perspective on how companies around the world might be using data and data science. Are you seeing any trends, maybe differences between regions or maybe within different industries? What are you seeing? >> Yep. Yeah, definitely, I do see trends that are not geographic that much, but much more in terms of maturity of certain industries and certain sectors, which are that certain industries invested a lot in terms of data, data access, ability to store data as well as few years and know each level of maturity where they can invest more and get to the next steps. And it's really reliant to reach out to certain details, certain organization, actually to have built this longterm data strategy a few years ago, and no stocks ripping off the benefits. >> You know, a decade ago, Florian, Hal Varian famously said that the sexy job in the next 10 years will be statisticians. And then everybody sort of changed that to data scientists. And then everybody, all the statisticians became data scientists and they got a raise. But data science requires more than just statistics acumen. What skills do you see is critical for the next generation of data science? >> Yeah, it's a good question because I think the first generation of data scientists became better scientists because they could learn some Python quickly and be flexible. And I think that skills of the next generation of data scientists will definitely be different. It will be first about being able to speak the language of the business, meaning all you translate data insight, predictive modeling, all of this into actionable insights or business impact. And it will be about who you collaborate with the rest of the business. It's not just how fast you can build something, how fast you can do a notebook in Python or do quantity models of some sorts. It's about how you actually build this bridge with the business. And obviously those things are important, but we also must be cognizant of the fact that technology will evolve in the future. There will be new tools in technologies, and they will still need to get this level of flexibility and get to understand quickly what are the next tools, they need to use or new languages or whatever to get there. >> Thank you for that. Benoit, let's come back to you. This year has been tumultuous to say the least for everyone, but it's a good time to be in tech, ironically. And if you're in cloud, it's even better. But you look at Snowflake and Dataiku, you guys had done well, despite the economic uncertainty and the challenges of the pandemic. As you look back on 2020, what are you thinking? What are you telling people as we head into next year? >> Yeah, I think it's very interesting, right. We, this crisis has told us that the world really can change from one day to the next. And this has dramatic and profound aspects. For example, companies all of a sudden, saw their revenue line dropping and they had to do less with data. And some of the companies was the reverse, right? All of a sudden, they were online like Instacart, for example, and their business completely change from one day to the other. So this agility of adjusting the resources that you have to do the task, a need that can change, using solution like Snowflake, really helps that. And we saw both in our customers. Some customers from one day to the next, were growing like big time, because they benefited from COVID and their business benefited, but also, as you know, had to drop and what is nice with cloud, it allows to adjust compute resources to your business needs and really address it in-house. The other aspect is understanding what is happening, right? You need to analyze. So we saw all our customers basically wanted to understand, what is it going to be the impact on my business? How can I adapt? How can I adjust? And for that, they needed to analyze data. And of course, a lot of data, which are not necessarily data about their business, but also data from the outside. For example, COVID data. Where is the state, what is the impact, geographic impact on COVID all the time. And access to this data is critical. So this is the promise of the data cloud, right? Having one single place where you can put all the data of the world. So, our customers all of a sudden, started to consume the COVID data from our data marketplace. And we have the unit already thousands of customers looking at this data, analyzing this data to make good decisions. So this agility and this adapting from one hour to the next is really critical and that goes with data, with cloud, more interesting resources and that's doesn't exist on premise. So, indeed I think the lesson learned is, we are living in a world which is changing all the time, and we have to understand it. We have to adjust and that's why cloud, some way is great. >> Excellent, thank you. You know, in theCUBE, we like to talk about disruption, of course, who doesn't. And also, I mean, you look at AI and the impact that it's beginning to have and kind of pre-COVID, you look at some of the industries that were getting disrupted by, everybody talks about digital transformation and you had on the one end of the spectrum, industries like publishing, which are highly disrupted or taxis, and you can say, "Okay well, that's Bits versus Adam, the old Negroponte thing." But then the flip side of this, it says, "Look at financial services that hadn't been dramatically disrupted, certainly healthcare, which is right for disruption, defense." So the more the number of industries that really hadn't leaned into digital transformation, if it ain't broke, don't fix it. Not on my watch. There was this complacency. And then of course COVID broke everything. So Florian, I wonder if you could comment, what industry or industries do you think are going to be most impacted by data science and what I call machine intelligence or AI in the coming years and decades? >> Honestly, I think it's all of them, or at least most of them. Because for some industries, the impact is very visible because we are talking about brand new products, drones, flying cars, or whatever is that are very visible for us. But for others, we are talking about spectrum changes in the way you operate as an organization. Even if financial industry itself doesn't seem to be so impacted when you look at it from the consumer side or the outside. In fact internally, it's probably impacted just because of the way you use data to develop for flexibility you need, is there kind of a cost gain you can get by leveraging the latest technologies, is just enormous. And so it will, actually comes from the industry, that also. And overall, I think that 2020 is a year where, from the perspective of AI and analytics, we understood this idea of maturity and resilience. Maturity, meaning that when you've got a crisis, you actually need data and AI more than before, you need to actually call the people from data in the room to take better decisions and look forward and not backward. And I think that's a very important learning from 2020 that will tell things about 2021. And resilience, it's like, yeah, data analytics today is a function consuming every industries, and is so important that it's something that needs to work. So the infrastructure needs to work, the infrastructure needs to be super resilient. So probably not on trend and not fully on trend, at some point and the kind of residence where you need to be able to plan for literally anything. like no hypothesis in terms of behaviors can be taken for granted. And that's something that is new and which is just signaling that we are just getting into a next step for all data analytics. >> I wonder Benoit, if you have anything to add to that, I mean, I often wonder, you know, when are machines going to be able to make better diagnoses than doctors, some people say already. Will the financial services, traditional banks lose control of payment systems? You know, what's going to happen to big retail stores? I mean, may be bring us home with maybe some of your final thoughts. >> Yeah, I would say, I don't see that as a negative, right? The human being will always be involved very closely, but then the machine and the data can really help, see correlation in the data that would be impossible for human being alone to discover. So, I think it's going to be a compliment, not a replacement and everything that has made us faster, doesn't mean that we have less work to do. It means that we can do more. And we have so much to do. That I would not be worried about the effect of being more efficient and better at our work. And indeed, I fundamentally think that, data, processing of images and doing AI on these images and discovering patterns and potentially flagging disease, way earlier than it was possible, it is going to have a huge impact in health care. And as Florian was saying, every industry is going to be impacted by that technology. So, yeah, I'm very optimistic. >> Great, Guys, I wish we had more time. We got to leave it there but so thanks so much for coming on theCUBE. It was really a pleasure having you. >> [Benoit & Florian] Thank you. >> You're welcome but keep it right there, everybody. We'll back with our next guest, right after this short break. You're watching theCUBE.

Published Date : Oct 21 2020

SUMMARY :

And he's now the president And the next generation of the access to data, the And we all know that, you all the workloads that you the notion of bringing the access to technology such as And so, you have a unique And it's really reliant to reach out Hal Varian famously said that the sexy job And it will be about who you collaborate and the challenges of the pandemic. adjusting the resources that you have end of the spectrum, of the way you use data to I mean, I often wonder, you know, So, I think it's going to be a compliment, We got to leave it there right after this short break.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

FlorianPERSON

0.99+

BenoitPERSON

0.99+

Florian DouetteauPERSON

0.99+

Benoit DagevillePERSON

0.99+

2020DATE

0.99+

10 yearsQUANTITY

0.99+

DataikuORGANIZATION

0.99+

Hilary MasonPERSON

0.99+

PythonTITLE

0.99+

Hal VarianPERSON

0.99+

next yearDATE

0.99+

SnowflakeORGANIZATION

0.99+

one placeQUANTITY

0.99+

bothQUANTITY

0.99+

one hourQUANTITY

0.99+

BitlyORGANIZATION

0.99+

Snowflake Data Cloud SummitEVENT

0.99+

a decade agoDATE

0.98+

one dayQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

firstQUANTITY

0.98+

each levelQUANTITY

0.98+

SnowflakeTITLE

0.98+

2021DATE

0.97+

todayDATE

0.97+

first generationQUANTITY

0.97+

pandemicEVENT

0.97+

few years agoDATE

0.93+

thousands of customersQUANTITY

0.93+

single architectureQUANTITY

0.92+

first eraQUANTITY

0.88+

NegropontePERSON

0.87+

first data scientistQUANTITY

0.87+

InstacartORGANIZATION

0.87+

This yearDATE

0.86+

one single placeQUANTITY

0.86+

twoQUANTITY

0.83+

two world-QUANTITY

0.78+

each workloadQUANTITY

0.78+

oneQUANTITY

0.76+

AdamPERSON

0.74+

next 10 yearsDATE

0.69+

first timersQUANTITY

0.52+

COVIDOTHER

0.51+

COVIDORGANIZATION

0.43+

COVIDEVENT

0.37+

decadesDATE

0.29+

Joel Marchildon, Accenture & Benoit Long, Gov. of Canada | AWS Public Sector Partner Awards 2020


 

>> Narrator: From around the globe, it's theCUBE with digital coverage of AWS Public Sector Partner Awards brought to you by Amazon Web Services. Hello everyone, welcome back to theCUBE's Coverage of "AWS Public Sector Partner Awards Program". I'm John Furrier your host of theCUBE here in Palo Alto, California doing the remote interviews, during this pandemic we have our remote crews and getting all the stories and celebrating the award winners and here to feature the most Innovative Connect Deployment. We have Accenture of Canada and the Department of Employment and Social Development of Canada known as ESDC. Guys, congratulations Joel Marchildon, Accenture Canada, managing director and Benoit Long, ESDC of Canada chief transformation officer. Gentlemen, thanks for coming on, and congratulations on the award. >> Thank you. >> Thank you and nice to be here >> So obviously, during this pandemic, a lot of disruption and a lot of business still needs to go on including government services. But the citizens and people need to still do their thing you got a business got to run, and you got to get things going. But the disruptions caused a little bit of how the user experiences are. So this Connect has been interesting. Its been a featured part of what we've been hearing at the Public Sector Summit with Teresa Carlson. You guys, this is a key product. Tell us about the award. What is the solution that is starving and deserving of the award? >> Maybe I'll go first and then pass it over to Benoit. But I think the solution is Amazon Connect based Virtual Contact Center that was stood up fairly quickly, over the course of about four days and really in support of benefit that the Government of Canada was was releasing as part of its economic response to the pandemic. And in the end, its a fully functioning featured contact center solution. Includes an IVR. And, we stood it up for about 1500 to 2000 agents. So that's the the crux of the solution. And maybe Benoit can give a bit of insight as to how it came about so quickly. >> Yeah, we're happy to actually, we were obviously like every other government facing enormous pressures at that time to deliver benefits directly to people who were in true need. The jobs are being lost, our current systems were in trouble because of their age and their archaic nature. And so the challenge was quickly how do we actually support a lot of people really fast. And so it came through immediately that after our initial payments were made under what was called the Canada emergency response benefit that we had to support clients directly and so people turn to the transformation team of all teams. If you wish during a firestorm, to say, well, what could you do? And how could you help. And so we had an established relationship with a number of our system integrators, including Accenture. And we were able to run a competition very rapidly, and Accenture won. And then we deployed in, as Joel said, in a matter of four days, what for us was an exceptional and high quality solution to a significant client problem. And I say that because I think you can imagine how people feel in a pandemic of all things, but with the uncertainty that comes with loss of income, loss of jobs, the question of being able to deal with somebody a real; a human being, as well as to be able to efficiently answer a very simple but straightforward questions rapidly and with high quality, was pretty fundamental for us. So the the people in the groups that we're talking through here we're speaking to millions of people, who were literally being asked to accept the payment rapidly and to be able to connect with us quickly. And without this solution, which was exceptionally well done and of high quality personally as a technology solution, it would not have been possible to even answer any of these queries quickly. >> And well, that's a great point. One of the things that you see with the pandemic, its a disaster in the quote disaster kind of readiness thing. Unforeseen, right. So like other things, you can kind of plan for things, hypothetical, you got scenarios. But this is truly a case where every day counts, every minute counts, because humans are involved. There's no ROI calculation. Its not like, well, what's the payback of our system? The old kind of way to think. This is real results, fast. This is what cloud is all about. This is the promise of cloud, can I stand up something quick, and you did it with a partner, okay. This is like not, like normal. Its like, its like unheard of, right. Four days, with critical infrastructure, critical services that were unforeseen. Take us through what was going on in the war room. As you guys knew this was here. Take us through through what happened. >> So I think I can start. As you can imagine the set of executives that were overseeing the payment process was an exceptional, it was like a bunker, frankly, for about two weeks. We had to suspend the normal operations of the vast majority of our programming. We had to launch brand new payments and benefits systems and programs that nobody has seen before the level of simplicity was maximized in order to deliver the funds quickly. So you can imagine its a Warpath if you wish, because the campaign is really around timing. Timing is fundamental. People are literally losing their jobs, there is no support, there is no funding money for them to be able to buy groceries. So, and the trust that people have in the government is pretty much at risk right there. And there is straightforward but extraordinarily powerful magic moment, if you wish. If you can deliver a solution, then you make a difference for a long time. And so the speed is unheard of on all fronts. When it came to the call center capability and the ability for us to support in a service context, the clients that were desperate to reach us, and we're talking hundreds of thousands of calls a day. We're not talking a few thousand here, ultimately, at some point we were literally getting in overtaken by volumes, call centers, because we had our regular ones still operating. Over a million calls were coming in the day. With the capacity to answer 10s of thousands and so the reality is that the Call Centers that we put up here, very quickly became capable of answering more calls than our regular call centers. And that speaks to the the speed of delivery, the quality of the solution, of course, but the scalability of it. And I have to say maybe unheard of, it may be difficult to replicate the conditions to lead to this are rare. But I have to say that my bosses and most of the government is probably now wondering why we can't do this more often. Why can't we operate with that kind of speed and agility. So I think what you've got is a client in our case, under extreme circumstances, now realizing the new normal will never be the same. That these types of solutions and technology and their scalability, their agility, their speed of deployment, is frankly something we want we want all the time. Now we'd like to be able to do them during normal timeline conditions, but even those will be a fraction of what it used to take. It would have taken us a while I can actually tell you because I was the lead technologist to deploy at scale for the government, Canada, all the call center capabilities under a single software as a service platform. It took us two years to design it two years to procure it, and five years to install it. That's the last experience we have of call center, enterprise scale capabilities. And in this case we went from years, to literally days. >> Well, it takes a crisis sometimes to kind of wire up the simplicity solution that you say, why didn't we do this before? The waterfall meetings getting everyone arguing kind of gets in the way and the old software model, I want to come back to the transformation Benoit a minute, Because I think that's going to be a great success story and some learnings and I want to get your thoughts on that. But I want to go to Joel, because Joel, we've talked to many Accenture executives over the years and most recently, this past 24 months. And the message we've been hearing is, "We're going to be faster. We're not going to be seen as that, a consulting firm, taking our times trying to get a pound of flesh from the client." This is an example of my opinion of a partner working with a problem statement that kind of matches the cloud speed. So you guys have been doing this is not new to Accenture. So take us through how you guys reacted, because one, you got to sync up and get the cadence of what Benoit was trying to do sync up and execute take us through what happened on your side. >> Yeah, I mean, so its an unprecedented way of operating for us as well, frankly. And, we've had to look at, to get this specific solution out the door and respond to an RFP and the commercial requirements that go with that we had to get pretty agile ourselves internally on, how we go through approvals, etc, to make sure that we were there to support Benoit and his team and I think that we saw this as a broader opportunity to really respond to it. To help Canada in a time of need. So I think we had to streamline a lot of our internal processes and make quick decisions that normally even for our organization would have taken, could have taken weeks, right, and we were down to hours and a lot of instances. So it forces us to react and act differently as well. But I mean to Benoit's point I think this is really going to hopefully change the way... It illustrates the art of the possible and hopefully will change how quickly we can look at problems and we reduce deployment timeframes from years to months and months to weeks, etc. For solutions like this. And I think the AWS platform specifically in this case, Benoit touched on a lot of things beat the market scalability, but just as the benefit itself has to be simplified to do this quickly. I think one of the one of the benefits of the solution itself is, its simple to use technologically. I mean, we trained, as I said, I think 1600 agents on how to use the platform over the course of a weekend. And they're not normal agents. These were people who were furloughed from other jobs potentially within the government. So they're not necessarily contact center agents, by training, but they became contact center agents over the course of 48 hours. And I think, from that perspective, that was important as well to have something that people could use to answer those calls that we know that we knew were going to come. >> Benoit this is the transformation dream scenario in the sense of capabilities. I know its under circumstances of the pandemic and you guys did solve a big problem really fast and saved lives and then help people get on with their day. But transformation is about having people closest to the problem, execute. And also the people equation people process technology, as they say, is kind of playing out in real time. This is kind of the playbook. Amazon came in and said, "Hey, you want to stand something up?" You wired it together the solution quickly, you have close to it. Looking back now its almost like, hey, why aren't we doing this before, as you said, and then you had to bring people in, who weren't trained and stood them up and they were delivering the service. This is the playbook to share your thoughts on this because this is what you're you're thinking about all the time, and it actually is playing out in real time. >> Well, I would definitely endorse the idea that its a playbook. Its I would say its an ideal and dream playbook to bid like showing up on a basketball court with all the best players in the entire league playing together magically. It is exactly that. So a lot of things had to happen quickly but also correctly, because you can't pull all these things properly together without that. So I would say the partnership with the private sector here was fundamental. And I have to applaud the work that Accenture did particularly I think, as Canadians we were very proud of the fact that we needed to respond quickly. Everyone was in this our neighbors, we knew people who were without support and Accenture's team, I mean, all the way up and down across the organization was fundamental in and delivering this but also literally putting themselves into these roles and to make sure that we would be able to respond and quickly do so. I think the playbook around the readiness for change, I was shocked into existence. I mean, I won't talk about quantum physics, but clearly some higher level of energy was thrown in quickly, mobilize everybody all at once. Nobody was said he is sitting around saying, I wonder if we have changed management covered off, this was changed readiness at its best. And so I think for me from a learning perspective, apart from just the technology side, which is pretty fundamental, if you don't have ready enough technology to deploy quickly, then the best pay your plans in the world won't work. The reality is that to mobilize an organization going forward into that level of spontaneous driving change, exception, acceptance, and adoption, is really what I would aim for. And so our challenge now will be continuing that kind of progression going forward. And we now found the way and we certainly use the way to work with the private sector in an innovative capacity and innovative ways with brand new solutions that are truly agile and scalable, to be able to pull all of the organization all at once very rapidly and I have to admit that it is going to shift permanently our planning, we had 10 year plans for our big transformations, because some of our programs are the most important in the country in many ways. We support people about 8 million Canadians a month, depending on the benefits payments that we deliver. And they're the most marginal needing and requires our support from seniors, to the unemployed, to job seekers and whatnot. So if you think about that group itself, and to be able to support them clearly with the systems that we have its just unsustainable. But the new technologies are clearly going to show us a way that we had never forecast, and I have to say I had to throw up my 10 year plan. And now I'm working my way down from 10 to nine to eight year plans going forward. And so its exciting and nerve wracking sometimes, but then, obviously as a change leader, our goal is to get there as quickly as possible. So the benefits of all these solutions can make a difference in people's lives. >> What's interesting is that you can shorten that timetable, but also frees you up to be focused on what's contemporary and what's needed at the time to leverage the people and the resources you have. And take advantage of that versus having something that you're sitting on that's needs to be refreshed, you can always be on that bleeding edge. And this just brings up the DevOps kind of mindset, agility, the lean startup, the lean company, this is a team effort between Amazon Accenture and ESDC. Its, pass, shoot, score really fast. So this is the new reality. Any commentary from you guys on this, new pass, shoot, score combination because you got speed, you got agility, you're leaner, which makes you more flexible for being contemporary in solving problems? What's your thoughts? >> Yeah. So my perspective on that is most definitely right. I think what we were able to show in what's coming out of a lot of different responses to the pandemic by government is, perfection isn't the most important thing out of the gate, getting something out there that's going to reassure citizens, that's going to allow them to answer their questions or access benefits quickly, is what's becoming more important, obviously, security and privacy, those things are of the utmost importance as well. But its ability to get stuff out there, quickly, test it, change it, test it again, and just always be iterating on the solution. Like I can say what we put out on April 6, within four days, is the backbone of what's out there still today. But we've added an integrated workforce management solution from NICE, and we added some other ISVs to do outbound dialing from Acquia and things like that. So the solution has grown from that MVP. And I think that's one other thing that's going to be a big takeaway. If you're not going to do anything till you got the final end product out there, then its going to be late. So let's go quickly and let's adapt from there. >> Benoit, talk about that dynamic because that's about building blocks, on foundational things and then services. Its the cloud model. >> Yeah, I mean, before the pandemic, I had lunch with Mark Schwartz, which I believe you are quite familiar with. And, I spent an hour and a half with him. We were talking and he was so exciting and energized by what the technologies could do. And I was listening to him and I used to be the chief technology officer for the Government of Canada, right. And so I've seen a lot of stuff and I said, Well, that's really exciting. And I'm sure its possible in some other places, and maybe in some other countries where they didn't have infrastructure and legacy. I guess if I see him again soon. I'll have to apologize for not believing him enough. I think the building blocks of Agile the building blocks sprints and MVPs. I mean, they're enough fundamental to the way we're going to solve our biggest Harriers and scariest problems technologically. And then from a business perspective, service candidate itself has 18,000 employees involved in multiple channels, where the work has always been very lethargic, very difficult. Arduous you make change over years, not months, not days, for sure. And so I think that new method is not only a different way of working, its a completely revamped way of assembling solutions. And I think that the concept of engineering is probably going to be closer to what we're going to do. And I have to borrow the Lego metaphor, but the building blocks are going to be assembled. We know in working, I'm saying this in front of Joel, he doesn't know that yet. (all laughing) (indistinct) partners. We're going to be assembling MVP maps of an entire long program and its going to be iterative, it is going to be designed built, it will be agile as much as we can implement it. But more importantly, as much as we can govern it because the government is... We may have changed a lot, but the government is not necessarily caught on to most of these approaches. But the reality is that, that's where we're heading. And I will say, I'll close perhaps on this answer. The biggest reason for doing that apart from we've proved it is the fact that the appetite inside the organization for that level of mobilization, speed and solutioning, and being engaged rapidly, you just can't take that away from an organization once they've tasted that. If you let them down, well, they'll remember and frankly, they do remember now because they want more of this. And its going to be hard. But its a better hard, better challenge, than the one of having to do things over a decade, then to go fast and to kind of iterate quickly through the challenges and the issues and then move on very much to the next one as rapidly as possible. I think the the other comment I would add is most of this was driven by a client need. And that's not inconsequential because it mobilized everybody to a common focus. If it had been just about, well, we need to get people on side and solutions in place just to make our lives better as providers. Yeah, would it work perhaps, but it would have been different than the mobilization that comes when the client is put in the middle. The client is the focus, and then we drive everyone to that solution. >> Shared success and success is contagious. And when you ride the new wave, you're oh, we need a new board, right? So once you get it, it then spreads like wildfire. This is what we've been seeing. And it also translates down to the citizens because again, being contemporary, none of this just look could feel its success and performance. So as people in business start to adopt cloud. It becomes a nice synergy. This is a key! Joe, take us home here on the Accenture. The award winner, you guys did a great job. Final thoughts. >> Yeah, I mean, I think final thoughts would be happy to have had the opportunity to help. And it was a it was a complete team effort and continues to be. Its not a bunch of eccentric technologists in the background doing this. The commitment from everyone to get this in place and to continue to improve it from Benoit team and from other folks across the government has been paramount to the success. So its been a fantastic if world win like experience and look forward to continuing to build on it. And it has been well said, I think one thing that's done is its created demand for speed on some of these larger transformations. So I looking forward to continuing to innovate with with Benoit team. >> Well, congratulations for the most innovative Connect Deployment. And because you guys from Canada, I have to use the Hockey-Reference. You get multiple people working together in a cohesive manner. Its pass, shoot, score every time and its contagious. (Benoit laughs) Gentlemen, thank you very much for your time and congratulations for winning the election. Take care! >> Thanks. >> Take care. >> Okay, this is theCUBE's Coverage "AWS Public Sector Partner Awards" show. I'm John Furrier, host of theCUBE. Thanks for watching. (upbeat music)

Published Date : Aug 6 2020

SUMMARY :

and here to feature the most and a lot of business still needs to go on And in the end, and to be able to connect with us quickly. One of the things that and most of the government and get the cadence of what and the commercial This is the playbook to and to be able to support them the resources you have. is the backbone of what's Its the cloud model. than the one of having to down to the citizens and from other folks across the government I have to use the Hockey-Reference. host of theCUBE.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Joel MarchildonPERSON

0.99+

JoelPERSON

0.99+

John FurrierPERSON

0.99+

Benoit LongPERSON

0.99+

AccentureORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Mark SchwartzPERSON

0.99+

10QUANTITY

0.99+

April 6DATE

0.99+

NICEORGANIZATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

BenoitPERSON

0.99+

Teresa CarlsonPERSON

0.99+

ESDCORGANIZATION

0.99+

10 yearQUANTITY

0.99+

five yearsQUANTITY

0.99+

JoePERSON

0.99+

two yearsQUANTITY

0.99+

an hour and a halfQUANTITY

0.99+

CanadaLOCATION

0.99+

18,000 employeesQUANTITY

0.99+

1600 agentsQUANTITY

0.99+

AcquiaORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

eight yearQUANTITY

0.99+

Four daysQUANTITY

0.99+

Accenture of CanadaORGANIZATION

0.99+

AWSORGANIZATION

0.99+

Accenture CanadaORGANIZATION

0.99+

nineQUANTITY

0.99+

48 hoursQUANTITY

0.99+

Department of Employment and Social Development of CanadaORGANIZATION

0.99+

LegoORGANIZATION

0.99+

Government of CanadaORGANIZATION

0.99+

10s of thousandsQUANTITY

0.99+

Over a million callsQUANTITY

0.98+

OneQUANTITY

0.98+

Amazon AccentureORGANIZATION

0.98+

about 8 millionQUANTITY

0.98+

four daysQUANTITY

0.97+

BenoitORGANIZATION

0.97+

Public Sector SummitEVENT

0.96+

about two weeksQUANTITY

0.96+

over a decadeQUANTITY

0.96+

pandemicEVENT

0.96+

about four daysQUANTITY

0.95+

oneQUANTITY

0.95+

about 1500QUANTITY

0.95+

hundreds of thousands of calls a dayQUANTITY

0.95+

2000 agentsQUANTITY

0.95+

todayDATE

0.94+

AWS Public Sector Partner AwardsEVENT

0.94+

one thingQUANTITY

0.93+

firstQUANTITY

0.92+

AgileTITLE

0.92+

single softwareQUANTITY

0.91+

AWS Public Sector Partner Awards 2020EVENT

0.89+

AWS Public Sector Partner AwardsEVENT

0.89+

past 24 monthsDATE

0.83+

a monthQUANTITY

0.77+

millions of peopleQUANTITY

0.75+

Joel Marchildon and Benoit Long V2


 

>>from the Cube Studios in Palo Alto and Boston connecting with thought leaders all around the world. This is a cube conversation. >>Welcome back to the Cube's coverage of AWS Public Sector Partner Awards program. I'm John Furrow, your host of the Cube here in Palo Alto, California In the remote interviews during this pandemic, we have our remote crews and getting all the stories and celebrating the award winners. And here to feature the most innovative connect deployment. We have a center of Canada and the Department of Employment and Social Development of Canada, known as E S D. C guys. Congratulations, Joel. More Children Censure Canada Managing director and Ben while long sdc of Canada Chief Transformation officer. Gentlemen, thanks for coming on. And congratulations on the award. >>Thank you. >>Thank you. >>So, Ashley, during this pandemic, a lot of disruption and a lot of business still needs to go on, including government services. But the citizens and people need to still do their thing. Business got to run, and you got to get things going. But the disruptions caused a little bit of how the user experiences are. So this connect has been interesting. It's been a featured part of where you've been hearing at the Public Sector summit with Theresa Carlson. You guys, this is a key product. Tell us about the award. What is the solution? That disturbing of deserving reward? >>Maybe I'll get I'll go first and then pass it over to Benoit. But I think the solution is Amazon Connect based Virtual Contact Center that we stood up fairly quickly over the course of about four days and really in support of of benefit that the government of Canada was was releasing as part of its economic response to the pandemic. And in the end that, you know, it's a fully functioning featured contact center solution includes an I V r. And, uh, you know, we stood it up for about 1500 to 2000 agents so that that's the crux of the solution. And maybe Benoit can give a bit of insight as to to how it came about so quickly. >>Yeah, happy to actually wear obviously, like every other government, facing enormous pressures at that time to deliver benefits directly to people who were in true need, the jobs are being lost. Our current systems were in trouble because of their age and barricade cake nature. And so the challenge is was quickly how to actually support a lot of people really fast. And so it came through immediately that after our initial payments were made under what was called Canada Emergency Response Benefit, then we have to support our clients directly. And so people turn to the transformation team of all teams. If you wish during a fire firestorm to say, Well, what could you do and how could you help? And so we had an established relationship with a number of other system integrators, including Accenture, and we were able to run a competition very rapidly. Accenture one. And then we deployed. And as you all said, in a matter of four days, what for us was a new, exceptional on high quality solution to a significant client problem. And I say that because I think you can imagine how people feel in the endemic of all of all things. But with the uncertainty that comes with the loss of income, loss of jobs, the question of being able to deal with somebody really a human being, as well as to be able to be efficiently answer a very simple but straightforward questions rapidly and with high quality, with pretty fundamental for us. So the people in the groups that were talking through here are talking, speaking to millions of people who were literally being asked to to accept the pavement rapidly and to be able to connect with us quickly. And without this solution, which was exceptionally well done and deployed and of high quality personally, just a technology, uh, solution. I would not have been possible to even answer any of these queries quickly. >>And while that's a great 0.1 of the things that you see with the pandemic it's a disaster in the quote disaster kind of readiness thing. Unforeseen, right? So, like other things, you can kind of plan for things that hypothetical. You've got scenarios, but this >>is >>truly a case where every day counts. Every minute counts because humans are involved is no our ROI calculation. It's not like it's not like, Well, what's the payback of our system? The old kind of way to think this is really results fast. This is what cloud is all about. This is the promise of cloud. Can I stand up something quick and you did it with a partner. Okay, this is, like, not, like, normal again. It's like it's, you know, it's like, unheard of, right? Four days with critical infrastructure, critical services that were unforeseen. Take us through what was going on in the war room, as you guys knew this was here. Take us through the through what happened. Yeah, >>So I think I can start a Z. You can imagine the set of executives that we're seeing a payment process. Uh, was an exceptional. It was like a bunker. Frankly, for about two weeks, we had to suspend the normal operations off the vast majority of our programming. We had to launch brand new payments and benefits systems and programs that nobody had seen before. The level of simplicity was maximized to delivered the funds quickly. So you could imagine it's a warpath if you wish, because the campaign is really around. A timing. Timing is fundamental. People are are literally losing their jobs. There is no support. There's no funding money for them to be able to buy groceries. So on the trust that people have in the government, Ai's pretty much at risk right there and then in a very straightforward but extraordinarily powerful magic moment. If you wish. If you can deliver a solution, then you make a difference for a long time. And so the speed unheard off on old friends when he came to the call center capability and the ability for us to support and service context the clients that were desperate to reach us on. We're talking hundreds of thousands of calls, right? We're not talking a few 1000 year. Ultimately, at some point we were literally getting in our over over, taken by volumes, call centers. But we had a regular one still operating over a 1,000,000 calls for coming in today with the capacity to answer, um, you know, tens of thousands. And so the reality is that the counselor that we put up here very quickly became capable of answering more calls than our regular costumes. And that speaks to the speed of delivery, the quality of the solution, of course, but the scalability of it and I have to say, maybe unheard of, it may be difficult to replicate. The conditions to lead to this are rare, but I have to say that my bosses and most of the government is probably now wondering why we can't do this more often, like we can't operate with that kind of speed and agility. So I think what you've got is a client in our case, under extreme circumstances. Now, realizing the new normal will never be the same, that these types of solutions and technology. And then there's scalability. There's agility there, the speed of deployment. It's frankly, something we want. We want all the time. Now we'd like to be able to do it under your whole timeline conditions. But even those will be a fraction of what it used to take. It would have taken us well, actually, I can actually tell you because I was the lead, Ah, technologists to deploy at scale for the government. Canada all the call center capabilities under a single software as a service platform. It took us two years to design it two years to procure it and five years to install it. That's the last experience. We have a call center enterprise scale capabilities, and in this case, we went from years to literally days. >>Well, you know, it takes a crisis sometimes to kind of wire up the simplicity solution that you say. Why didn't we do this before? You know, the waterfall meetings, Getting everyone arguing gets kind of gets in the way of the old the old software model. I want to come back to the transformation been wanna minute, cause I think that's gonna be a great success story and some learnings, and I want to get your thoughts on that. But I want to go to Joel because Joel, we've talked to many Accenture executives over the years and most recently this past 24 months. And the message we've been hearing is we're going to be faster. We're not going to be seen as that. You know, a consulting firm taking our times. Try and get a pound of flesh from the client. This is an example. In my opinion of a partner working with a problem statement that kind of matches the cloud speed. So you guys have been doing this. This is not new to a censure. So take us through how you guys reacted because one you got to sync up and get the cadence of what, Ben? What I was trying to do sync up and execute. Take us through what happened on your side. >>Yeah, I mean, so it's It's Ah, it's an unprecedented way of operating for us as well, frankly, and, um and, uh and, you know, we've had to look at to get this specific solution at the door and respond to an RFP and the commercial requirements that go with that way. Had Teoh get pretty agile ourselves internally on on how we go through approvals, etcetera, to make sure that that we were there to support Ben Wan is team. And I think you know that we saw this is a broader opportunity to really respond to it, to help Canada in a time of need. So So I think we, you know, we had to streamline a lot of our internal processes that make quick decisions that normally even for our organization, would have taken, um, could it could have taken weeks, right? And we were down to hours in a lot of instances. So it helps. It forces us to react and act differently as well. But I mean, to Benoit's point, I think this is really going to to hopefully change the way it illustrates the art of the possible and hopefully will change How, How quick We can look at problems and and we reduced deployment timeframes from from years to months and months to weeks, etcetera for solutions like this. Um, and I think that the AWS platform specifically in this case but what touched on a lot of things to beat the market scale ability But just as the benefit itself was, you know has to be simplified to do this quickly. I think one of the one of the benefits of the solution itself is it's simple to use technologically. I mean, we know least retrained. As I said, I think 1600 agents on how to use the platform over the course of a weekend on and and were able, and they're not normal agents. These were people who are firm from other jobs, potentially within the government. So they're not necessarily contact center agents by training. But they became contact center agents over the course of 48 hours, and I think from that perspective, you know, that was important as well have something that people could could use. The answer those calls that we know that when you were gonna come so >>Ben what this is. This is the transformation dream scenario in the sense of capabilities. I know it's under circumstances of the pandemic, and you guys didn't solve a big, big problem really fast and saved lives and help people get on with their day. But transformations about having people closest to the problem execute and the the also the people equation people process technology, as they say, is kind of playing out in real time. This >>is >>the this is kind of the playbook, you know? Amazon came in said, Hey, you want to stand something up? You wired it together. The solution quickly. You're close to it. Looking back now, it's almost like, Hey, why aren't we doing this before? As you said and then you had to bring people in who weren't trained and stood them up and they were delivering the service. This >>is >>the playbook to share your thoughts on this, because this is what you're you're thinking about all the time and it actually playing out in real time. >>Well, I would definitely endorsed the idea that it's a playbook. It's I would say it's an ideal and dream playbook timidly showing up on the basketball court with all the best players in the entire league playing together magically, it is exactly that. So a lot of things have to happen quickly, but also, um, correctly because you know, you can't pull these things properly together without that. So I would say the partnership with the private sector here was fundamental, and I have to applaud the work that Accenture did particularly, I think, as Canadians, we're very proud of the fact that we needed to respond quickly. Everyone was in this, our neighbors, we knew people who were without support and Accenture's team, I mean, all the way up and down across the organization was fundamental and delivering this, but also literally putting themselves into, uh, these roles and to make sure that we would be able to respond quickly to do so. I think the playbook around the readiness for change I was shocked into existence every night. I won't talk about quantum physics, but clearly some some high level of energy was thrown in very quickly, mobilized everybody all at once. Nobody was said. He's sitting around saying, I wonder if we have change management covered off, you know this was changed readiness at its best. And so I think for me from a learning perspective, apart from just the technology side, which is pretty fundamental if you don't have ready enough technology to deploy quickly than the best paid plans in the world won't work. The reality is that to mobilize an organization going for it into that level of of spontaneous driving, change, exception, acceptance and adoption is really what I would aim for. And so our challenge now we'll be continuing that kind of progression going forward, and we now found the way. We certainly use the way to work with private sector in an innovative capacity in the new, innovative ways with brand new solutions that are truly agile and and and scalable to be able to pull all of the organization. All that one's very rapidly, and I have to admit that it is going to shift permanently our planning. We had 10 year plans for our big transformation, so some of our programs are the most important in the country. In many ways. We support people about eight million Canadians a month and on the benefits payments that we deliver, and they're the most marginal needed meeting and and requires our support from senior study, unemployed jobseekers and whatnot. So if you think about that group itself and to be able to support them clearly with the systems that we have is just unsustainable. But the new technologies are clearly going to show us the way that we had never for forecast. And I have to say I had to throw up, like in your plan. And now I'm working my way down from 10 denying date your plants going forward. And so it's exciting and nerve wracking sometimes, but then obviously has a change leader. Our goal is to get there as quickly as possible, so the benefit of all of these solutions could make a difference in people's lives. >>What's interesting is that you can shorten that timetable but also frees you up to be focused on what's contemporary and what's needed at the time. So leverage the people on the resource is You have and take advantage of that versus having something that you're sitting on that need to be refreshed. You can always be on that bleeding edge, and this brings up the Dev ops kind of mindset agility. The lean startup glean company. You know this is a team effort between Amazon and center and SDC. It's pass, shoot, score really fast. So this isn't the new, the new reality. Any commentary from you guys on this, you know, new pass shoot score combination. Because you got speed, you got agility. You're leaner, which makes you more flexible for being contemporary and solving problems. What's your thoughts? >>So my perspective on that is most definitely right. I think what we what we were able to show and what's. You know, what's coming out of a lot of different responses to the pandemic by government is, um, you know, perfection isn't the most important thing out of the gate. Getting something out there that's going to reassure citizens that's gonna allow them to answer their questions or access benefits quickly is what's becoming more important. Obviously, security and privacy. Those things are of the utmost importance as well. But it's ability to get stuff out there, quickly, test it, change it, tested again and and just always be iterating on the solutions. Like I can say what we put out on April 6th within four days is the backbone of what's out there still today. But we've added, you know, we added an integrated workforce management solution from Nice, and we added some other eyes views to do outbound dialing from acquisition, things like that. So the solution has grown from that M v p. And I think that's one other thing that that's going to be a big takeaways if you're not gonna do anything. So you got the final and product out there, then it's going to be here, right? So let's go quickly and let's adapt from there. >>Then we'll talk about that dynamic cause that's about building blocks, fund foundational things and then services. It's the cloud model. >>Yeah, I mean, before the pandemic, I had lunch with Mark Schwarz, which I believe you're quite familiar with, and, you know, I spent an hour and 1/2 with it. We were talking, and he was so exciting and and energized by what the technologies could do. And I was listening to him, and I used to be the chief technology officer for the government can right? And so I've seen a lot of stuff and I said, Well, that's really exciting, and I'm sure it's possible in some other places. And maybe it's some other countries where you know they didn't have infrastructure and legacy. I guess if I see him again soon, I'll have to. I apologize for not believing him enough, I think the building blocks of edge of the building, blocks of sprints and MVP's I mean they're not fundamental to the way we're gonna. So our biggest, various and scariest problems, technologically and then from a business perspective, Service candidate itself has 18,000 employees involved in multiple channels where the work has always been very lethargic, very difficult, arduous. You make change over years, not months, not days for sure. And so I think that that new method is not only a different way of working, it's a completely re HVAC way of assembly solutions, and I think the concept of engineering is probably going to be closer to what we're going to do on. And I have to borrow the Lego metaphor, but the building blocks are gonna be assembled. We now and working. I'm saying this in front of goal. He doesn't know that you should practice partners. We're gonna be assembling MPP maps of an entire long program, and it's gonna be iterative. It is gonna be designed, built. It will be agile as much as we can implement it. But more importantly, and punches weaken govern. It is, you know, the government is we may have changed. A lot of the government is not necessarily can count on to Most of these things approaches, But the reality is that that's where we're heading. And I will say, Oh, close. Perhaps on this on this answer. The biggest reason for doing that apart from we've proved it is the fact that the appetite inside the organization for that level of globalization, speed solution ing and being engaged rapidly you just can't take that away from an organization. Must be a piece of that. Uh, if you let them down, well, they'll remember. And frankly, they do remember now, cause they want more and it's gonna be hard. But it's a better heart. Ah, a better challenge that the one of having to do things over a decade, then to go fast and to kind of iterating quickly through the challenges and the issues and then move on very much to the next one as rapidly as possible. I think the other company, I would add is most of this was driven by a client need, and that's not inconsequential because it mobilized everybody to comment focused. If you have been just about, well, you know, we need to get people on side and solutions in place just to make our lives better, it providers. Yeah, it would have worked, perhaps, but it would have been different than the mobilisation It comes when the client is put in the middle, the client is the focus, and then we drive. Everyone's with that solution, >>you know, shared success and success is contagious. And when you ride the new way to oh, we need a new board, right? So once you get it, it then spreads like wildfire. This is what we've been seeing. And it also translates down to the citizens because again, being contemporary, none of us just looked could feel it's success in performance. So, as you know, people in business start to adopt cloud. It becomes a nice, nice, nice synergy. This is key. I'll take a year on a center. Um, the award winner. You guys did a great job. Final thoughts. >>Yeah. I mean, I think final thoughts would be happy to have the opportunity that help. And it was a It was a complete team effort and continues to be, um, it's not. It's not a bunch of Accenture technologists in the background in this, you know the commitment from everyone to get this in place. And can you continue to improvement from Benoit's team and from other folks across the government has been, uh, has been paramount to the success. So, um um, it's been a fantastic if world win like experience and, uh, look forward to continuing to build on it. And it has been said, I think one thing this is done is it's created demand for speed on some of these larger transformations. So I'm looking forward to continuing to innovate with with Ben wanting. >>Well, congratulations. The most innovative connect deployment. And because you guys from Canada, I have to use the hockey reference. You get multiple people working together in a cohesive manner. It's pass, shoot, score every time. And you know it's contagious. Thank you very much for your time. And congratulations for winning the >>West. Thanks. Thank you. Okay, this is the >>Cube's coverage of AWS Public Sector Partner Award show. I'm John Furrier, host of the Cube. Thanks for watching. Yeah, Yeah, yeah, yeah.

Published Date : Jul 30 2020

SUMMARY :

from the Cube Studios in Palo Alto and Boston connecting with thought leaders all around the world. And here to feature the most innovative connect deployment. But the citizens and people need to still do their thing. And in the end that, you know, it's a fully functioning featured contact center And I say that because I think you can imagine how people feel in the endemic And while that's a great 0.1 of the things that you see with the pandemic it's a disaster in the quote Can I stand up something quick and you did it with a partner. And that speaks to the speed of delivery, So take us through how you guys reacted because one you got to sync And I think you know that we saw this is a broader opportunity to really respond to it, I know it's under circumstances of the pandemic, and you guys didn't solve a big, the this is kind of the playbook, you know? the playbook to share your thoughts on this, because this is what you're you're thinking about all the time and And I have to say I had What's interesting is that you can shorten that timetable but also frees you up to be focused And I think that's one other thing that that's going to be a big takeaways if you're not gonna do anything. It's the cloud model. A lot of the government is not necessarily can count on to Most of these things approaches, And when you ride the new way in the background in this, you know the commitment from everyone to get this in And because you guys from Canada, I have to use the hockey reference. this is the I'm John Furrier, host of the Cube.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

JoelPERSON

0.99+

Theresa CarlsonPERSON

0.99+

John FurrierPERSON

0.99+

AccentureORGANIZATION

0.99+

John FurrowPERSON

0.99+

Mark SchwarzPERSON

0.99+

April 6thDATE

0.99+

two yearsQUANTITY

0.99+

BostonLOCATION

0.99+

five yearsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

BenoitPERSON

0.99+

10 yearQUANTITY

0.99+

AWSORGANIZATION

0.99+

18,000 employeesQUANTITY

0.99+

CanadaLOCATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

1600 agentsQUANTITY

0.99+

AshleyPERSON

0.99+

BenPERSON

0.99+

Four daysQUANTITY

0.99+

48 hoursQUANTITY

0.99+

todayDATE

0.99+

LegoORGANIZATION

0.99+

Joel MarchildonPERSON

0.99+

Ben WanPERSON

0.99+

SDCORGANIZATION

0.99+

four daysQUANTITY

0.98+

an hourQUANTITY

0.98+

hundreds of thousands of callsQUANTITY

0.97+

tens of thousandsQUANTITY

0.97+

about eight millionQUANTITY

0.97+

Cube StudiosORGANIZATION

0.97+

about four daysQUANTITY

0.97+

a yearQUANTITY

0.96+

Department of Employment and Social Development of CanadaORGANIZATION

0.96+

about two weeksQUANTITY

0.96+

oneQUANTITY

0.96+

firstQUANTITY

0.94+

pandemicEVENT

0.94+

about 1500QUANTITY

0.94+

CubeORGANIZATION

0.94+

2000 agentsQUANTITY

0.93+

1000 yearQUANTITY

0.93+

single softwareQUANTITY

0.93+

millions of peopleQUANTITY

0.92+

0.1QUANTITY

0.92+

10QUANTITY

0.92+

NiceORGANIZATION

0.91+

over a decadeQUANTITY

0.91+

one thingQUANTITY

0.9+

1,000,000 callsQUANTITY

0.9+

E S D. CORGANIZATION

0.9+

past 24 monthsDATE

0.87+

CubePERSON

0.86+

Benoit Long V2PERSON

0.83+

Response BenefitOTHER

0.79+

Public SectorEVENT

0.72+

government of CanadaORGANIZATION

0.71+

a monthQUANTITY

0.67+

Amazon ConnectORGANIZATION

0.64+

thingQUANTITY

0.63+

CanadiansPERSON

0.61+

Public Sector Partner AwardsTITLE

0.6+

AWS Public Sector Partner AwardTITLE

0.6+

Chief TransformationPERSON

0.58+

BenoitLOCATION

0.56+

CanadaORGANIZATION

0.53+

Censure CanadaORGANIZATION

0.53+

1/2QUANTITY

0.5+

Joel Marchildon and Benoit Long V1


 

>>from the Cube Studios in Palo Alto and Boston connecting with thought leaders all around the world. This is a cube conversation. >>Welcome back to the Cube's coverage of AWS Public Sector Partner Awards program. I'm John Furrow, your host of the Cube here in Palo Alto, California In the remote interviews during this pandemic, we have our remote crews and getting all the stories and celebrating the award winners. And here to feature the most innovative connect deployment. We have a center of Canada and the Department of Employment and Social Development of Canada, known as E S D. C guys. Congratulations, Joel. More Children Censure Canada Managing director and Ben while long sdc of Canada Chief Transformation officer. Gentlemen, thanks for coming on. And congratulations on the award. >>Thank you. >>Thank you. >>So, Ashley, during this pandemic, a lot of disruption and a lot of business still needs to go on, including government services. But the citizens and people need to still do their thing. Business got to run, and you got to get things going. But the disruptions caused a little bit of how the user experiences are. So this connect has been interesting. It's been a featured part of what we've been hearing at the public sector summit with Theresa Carlson. You guys, this is a key product. Tell us about the award. What is the solution? That disturbing of deserving reward? >>Maybe I'll get I'll go first and then pass it over to Benoit. But I think the solution is Amazon. Connect a spiritual contact center that we stood up fairly quickly over the course of about four days and really in support of of benefit that the government of Canada was was releasing as part of its economic response to the pandemic. And in the end that, you know, it's a fully functioning featured contact center solution includes an ai VR and, uh, you know, we stood it up for 1500 to 2000 agents so that that's the crux of the solution. And maybe Benoit can give a bit of insight as to to how it came about so quickly. >>Yeah, I'd be happy to actually wear obviously, like every other government, facing enormous pressures at that time to deliver benefits directly to people who were in true need, the jobs are being lost. Our current systems were in trouble because of their age in the arcade cake Nature. And so the challenge is was quickly how to actually support a lot of people really fast. And so it came through immediately that after our initial payments were made under what was called Canada Emergency Response Benefit, then we have to support our clients directly. And so people turn to the transformation team of all teams. If you wish during a fire firestorm to say, Well, what could you do and how could you help? And so we had an established relationship with a number of other system integrators, including Accenture, and we were able to run a competition very rapidly. Accenture one. And then we deployed in, as you all said, in a matter of four days, what for us was a new, exceptional on high quality solution to a significant client problem. And I say that because I think you can imagine how people feel in that endemic of all of all things. But with the uncertainty that comes with the loss of income, loss of jobs, the question of being able to deal with somebody really a human being, as well as to be able to be efficiently answer a very simple but straightforward questions rapidly and with high quality, with pretty fundamental for us. So the people in the groups that were talking through here are talking, speaking to millions of people who were literally being asked to to accept the pavement rapidly and to be able to connect with us quickly. And without this solution, which was exceptionally well done and deployed and of high quality personally, just a technology, uh, solution. I would not have been possible to even answer any of these queries quickly. >>And while that's a great 0.1 of the things that you see with the pandemic it's a disaster in the quote disaster kind of readiness thing. Unforeseen, right? So, like other things, you can kind of plan for things that hypothetical. You've got scenarios, but this >>is >>truly a case where every day counts. Every minute counts because humans are involved is no our ROI calculation. It's not like it's not like, Well, what's the payback of our system? The old kind of way to think this is really results fast. This is what cloud is all about. This is the promise of cloud. Can I stand up something quick and you did it with a partner. Okay, this is, like, not, like, normal again. It's like it's, you know, it's like, unheard of right? Four days with critical infrastructure, critical services that were unforeseen. Take us through what was going on in the war room, as you guys knew this was here. Take us through the through what happened. Yeah, >>So I think I can start a Z. You can imagine the set of executives that we're seeing a payment process. Uh, was an exceptional. It was like a bunker. Frankly, for about two weeks, we had to suspend the normal operations off the vast majority of our programming. We had to launch brand new payments and benefits systems and programs that nobody had seen before. The level of simplicity was maximized to delivered the funds quickly. So you could imagine it's a warpath if you wish, because the campaign is really around. A timing. Timing is fundamental. People are are literally losing their jobs. There is no support. There's no funding money for them to be able to buy groceries. So on the trust that people have in the government, Ai's pretty much at risk right there and then, in a very straightforward but extraordinarily powerful magic moment. If you wish. If you can deliver a solution, then you make a difference for a long time. And so the speed unheard off on old friends when he came to the call center capability and the ability for us to support and service context the clients that were desperate to reach us on. We're talking hundreds of thousands of calls, right? We're not talking a few 1000 year. Ultimately, at some point we were literally getting in our over over, taken by volumes, call centers, but we had a regular one still operating over a 1,000,000 calls for coming in today. Uh, with the capacity to answer, um, you know, tens of thousands. And so the reality is that the counselor that we put up here very quickly became capable of answering more calls than our regular costumes. And that speaks to the speed of delivery, the quality of the solution, of course, but the scalability of it and I have to say, maybe unheard of, it may be difficult to replicate. The conditions to lead to this are rare, but I have to say that my bosses and most of the government is probably now wondering why we can't do this more often like we can't operate with that kind of speed and agility. So I think what you've got is a client in our case, under extreme circumstances. Now, realizing the new normal will never be the same, that these types of solutions and technology. And then there's scalability. There's agility there, the speed of deployment. It's frankly, something we want. We want all the time. Now we'd like to be able to do it under your whole timeline conditions. But even those will be a fraction of what it used to take. It would have taken us well, actually, I can actually tell you because I was the lead. Ah, technologist, to deploy at scale for the government, Canada, all the call center capabilities under a single software as a service platform. It took us two years to design it. Two years to procure it and five years to install it. That's the last experience. We have a call center enterprise scale capabilities, and in this case, we went from years to literally days. >>Well, you know, it takes a crisis sometimes to kind of wire up the simplicity solution that you say. Why didn't we do this before? You know the waterfall meetings, Getting everyone arguing gets kind of gets in the way of the old, the old software model. I want to come back to the transformation been wanna minute, cause I think that's going to be a great success story and some learnings, and I want to get your thoughts on that. But I want to go to Joel because Joel we've talked to many Accenture executives over the years and most recently this past 24 months, And the message we've been hearing is we're going to be faster. We're not going to be seen as that. You know, a consulting firm taking our times. Try and get a pound of flesh from the client. This is an example, in my opinion of a partner working with the problem statement that kind of matches the cloud speed. So you guys have been doing this. This is not new to a censure. So take us through how you guys reacted because one you got to sync up and get the cadence of what? Ben? What I was trying to do, sync up and execute. Take us through what happened on your side. >>Yeah. I mean, so it's It's Ah, It's an unprecedented way of operating for us as well, frankly, and, um and, uh and, you know, we've had to look at to get this specific solution at the door and respond to an RFP and the commercial requirements that go with that way. Had Teoh get pretty agile ourselves internally on on how we go through approvals, etcetera, to make sure that that we were there to support Ben Wan is team. And I think you know that we saw this is a broader opportunity to really respond to it, to help Canada in a time of need. So So I think we, you know, we had to streamline a lot of our internal processes and make quick decisions that normally, even for our organization, would have taken, um, could it could have taken weeks, right? And we were down to hours in a lot of instances. So it helps. It forces us to react and act differently as well. But I mean, to Benoit's point, I think this is really going to to hopefully change the way it illustrates the art of the possible and hopefully will change how, How quickly we can look at problems and and we reduce deployment timeframes from from years to months and months to weeks, etcetera for solutions like this. Um, and I think that the AWS platform specifically in this case but what touched on a lot of things to beat the market scale ability But just as the benefit itself was, you know has to be simplified to do this quickly. I think one of the one of the benefits of the solution itself is it's simple to use technologically. I mean, we know least retrained. As I said, I think 1600 agents on how to use the platform over the course of a weekend on and and were able, and they're not normal agents. These were people who are firm from other jobs, potentially within the government. So they're not necessarily contact center agents by training. But they became contact center agents over the course of 48 hours that I think from that perspective, you know, that was important as well have something that people could could use. The answer those calls that you know that when you're gonna come So, >>Ben, what this is This is the transformation dream scenario in the sense of capabilities. I know it's under circumstances of the pandemic, and you guys didn't solve a big, big problem really fast and saved lives and help people get on with their day. But transformations about having people closest to the problem execute and the the also the people equation. People process technology, as they say, is kind of playing out in real time. This >>is >>the this is kind of the playbook, you know, Amazon came in said, Hey, you want to stand something up? You wired it together. The solution quickly. You're close to it. Looking back now, it's almost like, Hey, why aren't we doing this before? As you said and then you had to bring people in who weren't trained and stood them up and they were delivering the service. This >>is >>the playbook to share your thoughts on this, because this is what you're you're thinking about all the time and it actually playing out in real time. >>Well, I would definitely endorsed the idea that it's a playbook. It's I would say it's an ideal and dream playbook to build like showing up on the basketball court with all the best players in the entire league playing together magically, it is exactly that. So a lot of things have to happen quickly, but also correctly because you know you can't pull these things properly together without that. So I would say the partnership with the private sector here was fundamental. And I have to applaud the work that Accenture did particularly, I think, as Canadians, we're very proud of the fact that we needed to respond quickly. Everyone was in this, our neighbors, we knew people who were without support and Accenture's team, I mean all the way up and down across the organization was fundamental in and delivering this, but also literally putting themselves into, uh, these roles and to make sure that we would be able to respond quickly, do so. I think the playbook around the readiness for change. I was shocked into existence every night. I won't talk about quantum physics, but clearly some some high level of energy was thrown in very quickly, mobilized everybody all at once. Nobody was said. He's sitting around saying, I wonder if we have change management covered off, you know this was changed readiness at its best. And so I think for me from a learning perspective, apart from just the technology side, which is pretty fundamental if you don't have ready enough technology to deploy quickly than the best plans in the world won't work. The reality is that to mobilize an organization going forward into that level of of spontaneous driving, change, exception, acceptance and adoption is really what I would ain't for. And so our challenge Now we'll be continuing that kind of progression going forward, and we now found a way. And we certainly use the way to work with private sector in an innovative capacity and in innovative ways with brand new solutions that are truly agile and and scalable to be able to pull all of the organization. All that one's very rapidly, and I have to admit that it is going to shift permanently our planning. We had 10 year plans for our big transformation, so some of our programs are the most important in the country. In many ways. We support people about eight million Canadians a month and on the benefits payments that we deliver, and they're the most marginal needed meeting and and requires our support from senior studio, unemployed jobseekers and whatnot. So if you think about that group itself and to be able to support them clearly with their systems that we have is just unsustainable. But the new technologies are clearly going to show us the way that we had never for forecast. And I have to say I had to throw up, like in your plan. And now I'm working my way down from 10 denying date your plants going forward. And so it's exciting and nerve wracking sometimes. But then, obviously, as a change leader, our goal is to get there as quickly as possible, so the benefit of all of these solutions could make a difference in people's lives. >>What's interesting is that you can shorten that timetable but also frees you up to be focused on what's contemporary and what's needed at the time. So leverage the people on the resource is You have and take advantage of that versus having something that you're sitting on that need to be refreshed. You can always be on that bleeding edge, and this brings up the Dev ops kind of mindset agility. The lean startup glean company. You know this is a team effort between Amazon and center and SDC. It's pass, shoot, score really fast. So this isn't the new, the new reality. Any commentary from you guys on this, you know, new pass shoot score combination. Because you got speed, you got agility. You're leaner, which makes you more flexible for being contemporary and solving problems. What's your thoughts? >>Yeah, So my perspective on that is most definitely right. I think what we what we were able to show and what's. You know, what's coming out of a lot of different responses to the pandemic by government is, um, you know, perfection isn't the most important thing out of the gate. Getting something out there that's going to reassure citizens that's going to allow them to answer their questions or access benefits quickly is what's becoming more important. Obviously, security and privacy. Those things are of the utmost importance as well. But it's ability to get stuff in there, quickly, test it, change it tested again and just always be iterating on the solutions. Like I can say what we put out on April 6th within four days is the backbone of what's out there still today. But we've added, you know, we added an integrated workforce management solution from Nice, and we added some other eyes views to do outbound dialing from acquisition, things like that. So the solution has grown from that M v p. And I think that's one other thing that that's going to be a big takeaways if you're not gonna do anything. So you got the final and product out there, then it's going to be here, right? So let's go quickly and let's adapt from there. >>Then we'll talk about that dynamic cause that's about building blocks, fund foundational things and then services. It's the cloud model. >>Yeah, I mean, before the pandemic, I had lunch with Mark Schwarz, which I believe you're quite familiar with, and, you know, I spent an hour and 1/2 with it. We were talking, and he was so exciting and and energized by what the technologies could do. And I was listening to him, and I used to be the chief technology officer for the government. Can't right. And so I've seen a lot of stuff and I said, Well, that's really exciting, and I'm sure it's possible in some other places. And maybe it's some other countries where you know they didn't have infrastructure and legacy. I guess if I see him again soon, I'll have to. I apologize for not believing him enough, I think the building blocks of agile, the building blocks of sprints and MVP's I mean, they're not fundamental to the way we're going to solve our biggest various and scariest problems technologically and then from a business perspective. Service candidate itself has 18,000 employees involved in multiple channels, where the work has always been very lethargic, very difficult, arduous. You make change over years, not months, not days for sure. And so I think that that new method is not only a different way of working, it's a completely revamped way of assembly solutions, and I think the concept of engineering is probably going to be closer to what we're going to do. Um, and I have to borrow the Lego metaphor, but the building blocks are gonna be assembled. We now and working. I'm saying this in front of goal. He doesn't know that you should practice partners. We're gonna be assembling MPP maps of an entire long program, and it's gonna be iterative. It is gonna be designed, built. It will be agile as much as we can implement it. But more importantly, and punches weaken govern. It is, you know, the government is we may have changed. A lot of the government is not necessarily can count on to Most of these things approaches. But the reality is that that's where we're headed. And I will say, Oh, close. Perhaps on this on this answer. The biggest reason for doing that apart from we've proved it is the fact that the appetite inside the organization for that level of globalization, speed solution ing and being engaged rapidly you just can't take that away from an organization. Must be a piece of that. Uh, if you let them down, well, they don't remember. And frankly, they do remember now, cause they want more and it's gonna be hard. But it's a better heart. Ah, a better challenge that the one of having to do things over a decade, then to go fast and to kind of iterating quickly through the challenges and the issues and then move on very much to the next one as rapidly as possible. I think The other company, I would add, is most of this was driven by a client need, and that's not inconsequential because it mobilized everybody to comment focused. It could have been just about well, you know, we need to get people on side and solutions in place just to make our lives better. It is his providers. Yeah, it would have worked, perhaps, but it would have been different than the mobilisation It comes when the client is put in the middle. The client is the focus. And then we drive. Everyone's with that, >>you know, shared success and and successes contagious. And when you ride the new way to oh, we need a new board, right? So once you get it, it then spreads like wildfire. This is what we've been seeing. And it also translates down to the citizens because again, being contemporary numbers just look and feel. It's success in performance. So, as you know, people in business start to adopt cloud. It becomes a nice, nice, nice synergy. This is key. I'll take a year on a center. Um, the award winner. You guys did a great job. Final thoughts. >>Yeah. I mean, I think final thoughts would be happy to have the opportunity that help. And it was a It was a complete team effort and continues to be, um, it's not. It's not a bunch of Accenture technologists in the background in this, you know the commitment from everyone to get this in place. And can you continue to improvement from Benoit's team and from other folks across the government has been has been paramount to the success. So, um um, it's been a fantastic world win like experience and, uh, look forward to continuing to build on it. And it has been said, I think one thing this is done is it's created demand for speed on some of these larger transformations. So I'm looking forward to continuing to innovate with with Ben wanting. >>Well, congratulations. The most innovative connect deployment. And because you guys from Canada, I have to use the hockey reference. You get multiple people working together in a cohesive manner. It's pass, shoot, score every time. And you know it's contagious. Thank you very much for your time. And congratulations for winning the West. Thanks. Okay, this is the Cube's coverage of AWS Public Sector Partner Award show. I'm John Furrier, host of the Cube. Thanks for watching. Yeah, Yeah, >>yeah, yeah, yeah

Published Date : Jul 23 2020

SUMMARY :

from the Cube Studios in Palo Alto and Boston connecting with thought leaders all around the world. And here to feature the most innovative connect deployment. But the citizens and people need to still do their thing. And in the end that, you know, it's a fully functioning featured contact center And I say that because I think you can imagine how people feel in that endemic And while that's a great 0.1 of the things that you see with the pandemic it's a disaster in the quote Can I stand up something quick and you did it with a partner. And that speaks to the speed of delivery, So take us through how you guys reacted because one you got to sync And I think you know that we saw this is a broader opportunity to really respond to it, I know it's under circumstances of the pandemic, and you guys didn't solve a big, the this is kind of the playbook, you know, Amazon came in said, Hey, you want to stand something the playbook to share your thoughts on this, because this is what you're you're thinking about all the time and And I have to applaud the work that Accenture did What's interesting is that you can shorten that timetable but also frees you up to be focused But we've added, you know, we added an integrated It's the cloud model. a better challenge that the one of having to do things over a decade, And when you ride the new way in the background in this, you know the commitment from everyone to get this in And because you guys from Canada, I have to use the hockey reference.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

AccentureORGANIZATION

0.99+

Theresa CarlsonPERSON

0.99+

John FurrierPERSON

0.99+

JoelPERSON

0.99+

John FurrowPERSON

0.99+

Joel MarchildonPERSON

0.99+

Mark SchwarzPERSON

0.99+

April 6thDATE

0.99+

two yearsQUANTITY

0.99+

five yearsQUANTITY

0.99+

BostonLOCATION

0.99+

BenoitPERSON

0.99+

18,000 employeesQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Two yearsQUANTITY

0.99+

48 hoursQUANTITY

0.99+

10 yearQUANTITY

0.99+

CanadaLOCATION

0.99+

AWSORGANIZATION

0.99+

Four daysQUANTITY

0.99+

1600 agentsQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

AshleyPERSON

0.99+

todayDATE

0.99+

BenPERSON

0.99+

LegoORGANIZATION

0.99+

1500QUANTITY

0.99+

Ben WanPERSON

0.99+

four daysQUANTITY

0.99+

SDCORGANIZATION

0.98+

hundreds of thousands of callsQUANTITY

0.98+

an hourQUANTITY

0.98+

pandemicEVENT

0.97+

about eight millionQUANTITY

0.97+

Cube StudiosORGANIZATION

0.97+

oneQUANTITY

0.97+

Department of Employment and Social Development of CanadaORGANIZATION

0.96+

a yearQUANTITY

0.96+

about two weeksQUANTITY

0.96+

about four daysQUANTITY

0.96+

1000 yearQUANTITY

0.95+

firstQUANTITY

0.94+

NiceORGANIZATION

0.94+

0.1QUANTITY

0.94+

CubeORGANIZATION

0.94+

2000 agentsQUANTITY

0.93+

single softwareQUANTITY

0.93+

one thingQUANTITY

0.92+

over a decadeQUANTITY

0.9+

E S D. CORGANIZATION

0.9+

tens of thousandsQUANTITY

0.9+

past 24 monthsDATE

0.87+

agileTITLE

0.85+

millions of peopleQUANTITY

0.84+

1,000,000 callsQUANTITY

0.8+

government of CanadaORGANIZATION

0.79+

Benoit Long V1PERSON

0.78+

Canada EmergencyTITLE

0.74+

AWS Public Sector Partner AwardTITLE

0.72+

Response BenefitOTHER

0.72+

10 denyingQUANTITY

0.69+

a monthQUANTITY

0.65+

CubePERSON

0.63+

CanadiansPERSON

0.6+

Public Sector Partner AwardsTITLE

0.6+

Chief TransformationPERSON

0.58+

BenoitLOCATION

0.57+

1/2QUANTITY

0.56+

CanadaORGANIZATION

0.54+

Jesse Cugliotta & Nicholas Taylor | The Future of Cloud & Data in Healthcare


 

(upbeat music) >> Welcome back to Supercloud 2. This is Dave Vellante. We're here exploring the intersection of data and analytics in the future of cloud and data. In this segment, we're going to look deeper into the life sciences business with Jesse Cugliotta, who leads the Healthcare and Life Sciences industry practice at Snowflake. And Nicholas Nick Taylor, who's the executive director of Informatics at Ionis Pharmaceuticals. Gentlemen, thanks for coming in theCUBE and participating in the program. Really appreciate it. >> Thank you for having us- >> Thanks for having me. >> You're very welcome, okay, we're go really try to look at data sharing as a use case and try to understand what's happening in the healthcare industry generally and specifically, how Nick thinks about sharing data in a governed fashion whether tapping the capabilities of multiple clouds is advantageous long term or presents more challenges than the effort is worth. And to start, Jesse, you lead this industry practice for Snowflake and it's a challenging and vibrant area. It's one that's hyper-focused on data privacy. So the first question is, you know there was a time when healthcare and other regulated industries wouldn't go near the cloud. What are you seeing today in the industry around cloud adoption and specifically multi-cloud adoption? >> Yeah, for years I've heard that healthcare and life sciences has been cloud diverse, but in spite of all of that if you look at a lot of aspects of this industry today, they've been running in the cloud for over 10 years now. Particularly when you look at CRM technologies or HR or HCM, even clinical technologies like EDC or ETMF. And it's interesting that you mentioned multi-cloud as well because this has always been an underlying reality especially within life sciences. This industry grows through acquisition where companies are looking to boost their future development pipeline either by buying up smaller biotechs, they may have like a late or a mid-stage promising candidate. And what typically happens is the larger pharma could then use their commercial muscle and their regulatory experience to move it to approvals and into the market. And I think the last few decades of cheap capital certainly accelerated that trend over the last couple of years. But this typically means that these new combined institutions may have technologies that are running on multiple clouds or multiple cloud strategies in various different regions to your point. And what we've often found is that they're not planning to standardize everything onto a single cloud provider. They're often looking for technologies that embrace this multi-cloud approach and work seamlessly across them. And I think this is a big reason why we, here at Snowflake, we've seen such strong momentum and growth across this industry because healthcare and life science has actually been one of our fastest growing sectors over the last couple of years. And a big part of that is in fact that we run on not only all three major cloud providers, but individual accounts within each and any one of them, they had the ability to communicate and interoperate with one another, like a globally interconnected database. >> Great, thank you for that setup. And so Nick, tell us more about your role and Ionis Pharma please. >> Sure. So I've been at Ionis for around five years now. You know, when when I joined it was, the IT department was pretty small. There wasn't a lot of warehousing, there wasn't a lot of kind of big data there. We saw an opportunity with Snowflake pretty early on as a provider that would be a lot of benefit for us, you know, 'cause we're small, wanted something that was fairly hands off. You know, I remember the days where you had to get a lot of DBAs in to fine tune your databases, make sure everything was running really, really well. The notion that there's, you know, no indexes to tune, right? There's very few knobs and dials, you can turn on Snowflake. That was appealing that, you know, it just kind of worked. So we found a use case to bring the platform in. We basically used it as a logging replacement as a Splunk kind of replacement with a platform called Elysium Analytics as a way to just get it in the door and give us the opportunity to solve a real world use case, but also to help us start to experiment using Snowflake as a platform. It took us a while to A, get the funding to bring it in, but B, build the momentum behind it. But, you know, as we experimented we added more data in there, we ran a few more experiments, we piloted in few more applications, we really saw the power of the platform and now, we are becoming a commercial organization. And with that comes a lot of major datasets. And so, you know, we really see Snowflake as being a very important part of our ecology going forward to help us build out our infrastructure. >> Okay, and you are running, your group runs on Azure, it's kind of mono cloud, single cloud, but others within Ionis are using other clouds, but you're not currently, you know, collaborating in terms of data sharing. And I wonder if you could talk about how your data needs have evolved over the past decade. I know you came from another highly regulated industry in financial services. So what's changed? You sort of touched on this before, you had these, you know, very specialized individuals who were, you know, DBAs, and, you know, could tune databases and the like, so that's evolved, but how has generally your needs evolved? Just kind of make an observation over the last, you know, five or seven years. What have you seen? >> Well, we, I wasn't in a group that did a lot of warehousing. It was more like online trade capture, but, you know, it was very much on-prem. You know, being in the cloud is very much a dirty word back then. I know that's changed since I've left. But in, you know, we had major, major teams of everyone who could do everything, right. As I mentioned in the pharma organization, there's a lot fewer of us. So the data needs there are very different, right? It's, we have a lot of SaaS applications. One of the difficulties with bringing a lot of SaaS applications on board is obviously data integration. So making sure the data is the same between them. But one of the big problems is joining the data across those SaaS applications. So one of the benefits, one of the things that we use Snowflake for is to basically take data out of these SaaS applications and load them into a warehouse so we can do those joins. So we use technologies like Boomi, we use technologies like Fivetran, like DBT to bring this data all into one place and start to kind of join that basically, allow us to do, run experiments, do analysis, basically take better, find better use for our data that was siloed in the past. You mentioned- >> Yeah. And just to add on to Nick's point there. >> Go ahead. >> That's actually something very common that we're seeing across the industry is because a lot of these SaaS applications that you mentioned, Nick, they're with from vendors that are trying to build their own ecosystem in walled garden. And by definition, many of them do not want to integrate with one another. So from a, you know, from a data platform vendor's perspective, we see this as a huge opportunity to help organizations like Ionis and others kind of deal with the challenges that Nick is speaking about because if the individual platform vendors are never going to make that part of their strategy, we see it as a great way to add additional value to these customers. >> Well, this data sharing thing is interesting. There's a lot of walled gardens out there. Oracle is a walled garden, AWS in many ways is a walled garden. You know, Microsoft has its walled garden. You could argue Snowflake is a walled garden. But the, what we're seeing and the whole reason behind the notion of super-cloud is we're creating an abstraction layer where you actually, in this case for this use case, can share data in a governed manner. Let's forget about the cross-cloud for a moment. I'll come back to that, but I wonder, Nick, if you could talk about how you are sharing data, again, Snowflake sort of, it's, I look at Snowflake like the app store, Apple, we're going to control everything, we're going to guarantee with data clean rooms and governance and the standards that we've created within that platform, we're going to make sure that it's safe for you to share data in this highly regulated industry. Are you doing that today? And take us through, you know, the considerations that you have in that regard. >> So it's kind of early days for us in Snowflake in general, but certainly in data sharing, we have a couple of examples. So data marketplace, you know, that's a great invention. It's, I've been a small IT shop again, right? The fact that we are able to just bring down terabyte size datasets straight into our Snowflake and run analytics directly on that is huge, right? The fact that we don't have to FTP these massive files around run jobs that may break, being able to just have that on tap is huge for us. We've recently been talking to one of our CRO feeds- CRO organizations about getting their data feeds in. Historically, this clinical trial data that comes in on an FTP file, we have to process it, take it through the platforms, put it into the warehouse. But one of the CROs that we talked to recently when we were reinvestigate in what data opportunities they have, they were a Snowflake customer and we are, I think, the first production customer they have, have taken that feed. So they're basically exposing their tables of data that historically came in these FTP files directly into our Snowflake instance now. We haven't taken advantage of that. It only actually flipped the switch about three or four weeks ago. But that's pretty big for us again, right? We don't have to worry about maintaining those jobs that take those files in. We don't have to worry about the jobs that take those and shove them on the warehouse. We now have a feed that's directly there that we can use a tool like DBT to push through directly into our model. And then the third avenue that's came up, actually fairly recently as well was genetics data. So genetics data that's highly, highly regulated. We had to be very careful with that. And we had a conversation with Snowflake about the data white rooms practice, and we see that as a pretty interesting opportunity. We are having one organization run genetic analysis being able to send us those genetic datasets, but then there's another organization that's actually has the in quotes "metadata" around that, so age, ethnicity, location, et cetera. And being able to join those two datasets through some kind of mechanism would be really beneficial to the organization. Being able to build a data white room so we can put that genetic data in a secure place, anonymize it, and then share the amalgamated data back out in a way that's able to be joined to the anonymized metadata, that could be pretty huge for us as well. >> Okay, so this is interesting. So you talk about FTP, which was the common way to share data. And so you basically, it's so, I got it now you take it and do whatever you want with it. Now we're talking, Jesse, about sharing the same copy of live data. How common is that use case in your industry? >> It's become very common over the last couple of years. And I think a big part of it is having the right technology to do it effectively. You know, as Nick mentioned, historically, this was done by people sending files around. And the challenge with that approach, of course, while there are multiple challenges, one, every time you send a file around your, by definition creating a copy of the data because you have to pull it out of your system of record, put it into a file, put it on some server where somebody else picks it up. And by definition at that point you've lost governance. So this creates challenges in general hesitation to doing so. It's not that it hasn't happened, but the other challenge with it is that the data's no longer real time. You know, you're working with a copy of data that was as fresh as at the time at that when that was actually extracted. And that creates limitations in terms of how effective this can be. What we're starting to see now with some of our customers is live sharing of information. And there's two aspects of that that are important. One is that you're not actually physically creating the copy and sending it to someone else, you're actually exposing it from where it exists and allowing another consumer to interact with it from their own account that could be in another region, some are running in another cloud. So this concept of super-cloud or cross-cloud could becoming realized here. But the other important aspect of it is that when that other- when that other entity is querying your data, they're seeing it in a real time state. And this is particularly important when you think about use cases like supply chain planning, where you're leveraging data across various different enterprises. If I'm a manufacturer or if I'm a contract manufacturer and I can see the actual inventory positions of my clients, of my distributors, of the levels of consumption at the pharmacy or the hospital that gives me a lot of indication as to how my demand profile is changing over time versus working with a static picture that may have been from three weeks ago. And this has become incredibly important as supply chains are becoming more constrained and the ability to plan accurately has never been more important. >> Yeah. So the race is on to solve these problems. So it start, we started with, hey, okay, cloud, Dave, we're going to simplify database, we're going to put it in the cloud, give virtually infinite resources, separate compute from storage. Okay, check, we got that. Now we've moved into sort of data clean rooms and governance and you've got an ecosystem that's forming around this to make it safer to share data. And then, you know, nirvana, at least near term nirvana is we're going to build data applications and we're going to be able to share live data and then you start to get into monetization. Do you see, Nick, in the near future where I know you've got relationships with, for instance, big pharma like AstraZeneca, do you see a situation where you start sharing data with them? Is that in the near term? Is that more long term? What are the considerations in that regard? >> I mean, it's something we've been thinking about. We haven't actually addressed that yet. Yeah, I could see situations where, you know, some of these big relationships where we do need to share a lot of data, it would be very nice to be able to just flick a switch and share our data assets across to those organizations. But, you know, that's a ways off for us now. We're mainly looking at bringing data in at the moment. >> One of the things that we've seen in financial services in particular, and Jesse, I'd love to get your thoughts on this, is companies like Goldman or Capital One or Nasdaq taking their stack, their software, their tooling actually putting it on the cloud and facing it to their customers and selling that as a new monetization vector as part of their digital or business transformation. Are you seeing that Jesse at all in healthcare or is it happening today or do you see a day when that happens or is healthier or just too scary to do that? >> No, we're seeing the early stages of this as well. And I think it's for some of the reasons we talked about earlier. You know, it's a much more secure way to work with a colleague if you don't have to copy your data and potentially expose it. And some of the reasons that people have historically copied that data is that they needed to leverage some sort of algorithm or application that a third party was providing. So maybe someone was predicting the ideal location and run a clinical trial for this particular rare disease category where there are only so many patients around the world that may actually be candidates for this disease. So you have to pick the ideal location. Well, sending the dataset to do so, you know, would involve a fairly complicated process similar to what Nick was mentioning earlier. If the company who was providing the logic or the algorithm to determine that location could bring that algorithm to you and you run it against your own data, that's a much more ideal and a much safer and more secure way for this industry to actually start to work with some of these partners and vendors. And that's one of the things that we're looking to enable going into this year is that, you know, the whole concept should be bring the logic to your data versus your data to the logic and the underlying sharing mechanisms that we've spoken about are actually what are powering that today. >> And so thank you for that, Jesse. >> Yes, Dave. >> And so Nick- Go ahead please. >> Yeah, if I could add, yeah, if I could add to that, that's something certainly we've been thinking about. In fact, we'd started talking to Snowflake about that a couple of years ago. We saw the power there again of the platform to be able to say, well, could we, we were thinking in more of a data share, but could we share our data out to say an AI/ML vendor, have them do the analytics and then share the data, the results back to us. Now, you know, there's more powerful mechanisms to do that within the Snowflake ecosystem now, but you know, we probably wouldn't need to have onsite AI/ML people, right? Some of that stuff's very sophisticated, expensive resources, hard to find, you know, it's much better for us to find a company that would be able to build those analytics, maintain those analytics for us. And you know, we saw an opportunity to do that a couple years ago and we're kind of excited about the opportunity there that we can just basically do it with a no op, right? We share the data route, we have the analytics done, we get the result back and it's just fairly seamless. >> I mean, I could have a whole another Cube session on this, guys, but I mean, I just did a a session with Andy Thurai, a Constellation research about how difficult it's been for organization to get ROI because they don't have the expertise in house so they want to either outsource it or rely on vendor R&D companies to inject that AI and machine intelligence directly into applications. My follow-up question to you Nick is, when you think about, 'cause Jesse was talking about, you know, let the data basically stay where it is and you know bring the compute to that data. If that data lives on different clouds, and maybe it's not your group, but maybe it's other parts of Ionis or maybe it's your partners like AstraZeneca, or you know, the AI/ML partners and they're potentially on other clouds or that data is on other clouds. Do you see that, again, coming back to super-cloud, do you see it as an advantage to be able to have a consistent experience across those clouds? Or is that just kind of get in the way and make things more complex? What's your take on that, Nick? >> Well, from the vendors, so from the client side, it's kind of seamless with Snowflake for us. So we know for a fact that one of the datasets we have at the moment, Compile, which is a, the large multi terabyte dataset I was talking about. They're on AWS on the East Coast and we are on Azure on the West Coast. And they had to do a few tweaks in the background to make sure the data was pushed over from, but from my point of view, the data just exists, right? So for me, I think it's hugely beneficial that Snowflake supports this kind of infrastructure, right? We don't have to jump through hoops to like, okay, well, we'll download it here and then re-upload it here. They already have the mechanism in the background to do these multi-cloud shares. So it's not important for us internally at the moment. I could see potentially at some point where we start linking across different groups in the organization that do have maybe Amazon or Google Cloud, but certainly within our providers. We know for a fact that they're on different services at the moment and it just works. >> Yeah, and we learned from Benoit Dageville, who came into the studio on August 9th with first Supercloud in 2022 that Snowflake uses a single global instance across regions and across clouds, yeah, whether or not you can query across you know, big regions, it just depends, right? It depends on latency. You might have to make a copy or maybe do some tweaks in the background. But guys, we got to jump, I really appreciate your time. Really thoughtful discussion on the future of data and cloud, specifically within healthcare and pharma. Thank you for your time. >> Thanks- >> Thanks for having us. >> All right, this is Dave Vellante for theCUBE team and my co-host, John Furrier. Keep it right there for more action at Supercloud 2. (upbeat music)

Published Date : Jan 3 2023

SUMMARY :

and analytics in the So the first question is, you know And it's interesting that you Great, thank you for that setup. get the funding to bring it in, over the last, you know, So one of the benefits, one of the things And just to add on to Nick's point there. that you mentioned, Nick, and the standards that we've So data marketplace, you know, And so you basically, it's so, And the challenge with Is that in the near term? bringing data in at the moment. One of the things that we've seen that algorithm to you and you And so Nick- the results back to us. Or is that just kind of get in the way in the background to do on the future of data and cloud, All right, this is Dave Vellante

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jesse CugliottaPERSON

0.99+

Dave VellantePERSON

0.99+

GoldmanORGANIZATION

0.99+

AstraZenecaORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

John FurrierPERSON

0.99+

Capital OneORGANIZATION

0.99+

JessePERSON

0.99+

Andy ThuraiPERSON

0.99+

AWSORGANIZATION

0.99+

August 9thDATE

0.99+

NickPERSON

0.99+

NasdaqORGANIZATION

0.99+

Nicholas Nick TaylorPERSON

0.99+

fiveQUANTITY

0.99+

AmazonORGANIZATION

0.99+

IonisORGANIZATION

0.99+

DavePERSON

0.99+

Ionis PharmaORGANIZATION

0.99+

Nicholas TaylorPERSON

0.99+

Ionis PharmaceuticalsORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

first questionQUANTITY

0.99+

Benoit DagevillePERSON

0.99+

AppleORGANIZATION

0.99+

seven yearsQUANTITY

0.99+

OracleORGANIZATION

0.99+

2022DATE

0.99+

todayDATE

0.99+

over 10 yearsQUANTITY

0.98+

SnowflakeTITLE

0.98+

oneQUANTITY

0.98+

OneQUANTITY

0.98+

two aspectsQUANTITY

0.98+

firstQUANTITY

0.98+

this yearDATE

0.97+

eachQUANTITY

0.97+

two datasetsQUANTITY

0.97+

West CoastLOCATION

0.97+

four weeks agoDATE

0.97+

around five yearsQUANTITY

0.97+

threeQUANTITY

0.95+

first productionQUANTITY

0.95+

East CoastLOCATION

0.95+

third avenueQUANTITY

0.95+

one organizationQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

couple years agoDATE

0.93+

single cloudQUANTITY

0.92+

single cloud providerQUANTITY

0.92+

hree weeks agoDATE

0.91+

one placeQUANTITY

0.88+

AzureTITLE

0.86+

last couple of yearsDATE

0.85+

David Flynn Supercloud Audio


 

>> From every ISV to solve the problems. You want there to be tools in place that you can use, either open source tools or whatever it is that help you build it. And slowly over time, that building will become easier and easier. So my question to you was, where do you see you playing? Do you see yourself playing to ISVs as a set of tools, which will make their life a lot easier and provide that work? >> Absolutely. >> If they don't have, so they don't have to do it. Or you're providing this for the end users? Or both? >> So it's a progression. If you go to the ISVs first, you're doomed to starved before you have time for that other option. >> Yeah. >> Right? So it's a question of phase, the phasing of it. And also if you go directly to end users, you can demonstrate the power of it and get the attention of the ISVs. I believe that the ISVs, especially those with the biggest footprints and the most, you know, coveted estates, they have already made massive investments at trying to solve decentralization of their software stack. And I believe that they have used it as a hook to try to move to a software as a service model and rope people into leasing their infrastructure. So if you look at the clouds that have been propped up by Autodesk or by Adobe, or you name the company, they are building proprietary makeshift solutions for decentralizing or hybrid clouding. Or maybe they're not even doing that at all and all they're is saying hey, if you want to get location agnosticness, then what you should just, is just move into our cloud. >> Right. >> And then they try to solve on the background how to decentralize it between different regions so they can have decent offerings in each region. But those who are more advanced have already made larger investments and will be more averse to, you know, throwing that stuff away, all of their makeshift machinery away, and using a platform that gives them high performance parallel, low level file system access, while at the same time having metadata-driven, you know, policy-based, intent-based orchestration to manage the diffusion of data across a decentralized infrastructure. They are not going to be as open because they've made such an investment and they're going to look at how do they monetize it. So what we have found with like the movie studios who are using us already, many of the app they're using, many of those software offerings, the ISVs have their own cloud that offers that software for the cloud. But what we got when I asked about this, 'cause I was dealt specifically into this question because I'm very interested to know how we're going to make that leap from end user upstream into the ISVs where I believe we need to, and they said, look, we cannot use these software ISV-specific SAS clouds for two reasons. Number one is we lose control of the data. We're giving it to them. That's security and other issues. And here you're talking about we're doing work for Disney, we're doing work for Netflix, and they're not going to let us put our data on those software clouds, on those SAS clouds. Secondly, in any reasonable pipeline, the data is shared by many different applications. We need to be agnostic as to the application. 'Cause the inputs to one application, you know, the output for one application provides the input to the next, and it's not necessarily from the same vendor. So they need to have a data platform that lets them, you know, go from one software stack, and you know, to run it on another. Because they might do the rendering with this and yet, they do the editing with that, and you know, et cetera, et cetera. So I think the further you go up the stack in the structured data and dedicated applications for specific functions in specific verticals, the further up the stack you go, the harder it is to justify a SAS offering where you're basically telling the end users you need to park all your data with us and then you can run your application in our cloud and get this. That ultimately is a dead end path versus having the data be open and available to many applications across this supercloud layer. >> Okay, so-- >> Is that making any sense? >> Yes, so if I could just ask a clarifying question. So, if I had to take Snowflake as an example, I think they're doing exactly what you're saying is a dead end, put everything into our proprietary system and then we'll figure out how to distribute it. >> Yeah. >> And and I think if you're familiar with Zhamak Dehghaniis' data mesh concept. Are you? >> A little bit, yeah. >> But in her model, Snowflake, a Snowflake warehouse is just a node on the mesh and that mesh is-- >> That's right. >> Ultimately the supercloud and you're an enabler of that is what I'm hearing. >> That's right. What they're doing up at the structured level and what they're talking about at the structured level we're doing at the underlying, unstructured level, which by the way has implications for how you implement those distributed database things. In other words, implementing a Snowflake on top of Hammerspace would have made building stuff like in the first place easier. It would allow you to easily shift and run the database engine anywhere. You still have to solve how to shard and distribute at the transaction layer above, so I'm not saying we're a substitute for what you need to do at the app layer. By the way, there is another example of that and that's Microsoft Office, right? It's one thing to share that, to have a file share where you can share all the docs. It's something else to have Word and PowerPoint, Excel know how to allow people to be simultaneously editing the same doc. That's always going to happen in the app layer. But not all applications need that level of, you know, in-app decentralization. You know, many of them, many workflows are pipelined, especially the ones that are very data intensive where you're doing drug discovery or you're doing rendering, or you're doing machine learning training. These things are human in the loop with large stages of processing across tens of thousands of cores. And I think that kind of data processing pipeline is what we're focusing on first. Not so much the Microsoft Office or the Snowflake, you know, parking a relational database because that takes a lot of application layer stuff and that's what they're good at. >> Right. >> But I think... >> Go ahead, sorry. >> Later entrance in these markets will find Hammerspace as a way to accelerate their work so they can focus more narrowly on just the stuff that's app-specific, higher level sharing in the app. >> Yes, Snowflake founders-- >> I think it might be worth mentioning also, just keep this confidential guys, but one of our customers is Blue Origin. And one of the things that we have found is kind of the point of what you're talking about with our customers. They're needing to build this and since it's not commercially available or they don't know where to look for it to be commercially available, they're all building themselves. So this layer is needed. And Blue is just one of the examples of quite a few we're now talking to. And like manufacturing, HPC, research where they're out trying to solve this problem with their own scripting tools and things like that. And I just, I don't know if there's anything you want to add, David, but you know, but there's definitely a demand here and customers are trying to figure out how to solve it beyond what Hammerspace is doing. Like the need is so great that they're just putting developers on trying to do it themselves. >> Well, and you know, Snowflake founders, they didn't have a Hammerspace to lean on. But, one of the things that's interesting about supercloud is we feel as though industry clouds will emerge, that as part of company's digital transformations, they will, you know, every company's a software company, they'll begin to build their own clouds and they will be able to use a Hammerspace to do that. >> A super pass layer. >> Yes. It's really, I don't know if David's speaking, I don't want to speak over him, but we can't hear you. May be going through a bad... >> Well, a regional, regional talks that make that possible. And so they're doing these render farms and editing farms, and it's a cloud-specific to the types of workflows in the median entertainment world. Or clouds specifically to workflows in the chip design world or in the drug and bio and life sciences exploration world. There are large organizations that are kind of a blend of end users, like the Broad, which has their own kind of cloud where they're asking collaborators to come in and work with them. So it starts to even blur who's an end user versus an ISV. >> Yes. >> Right? When you start talking about the massive data is the main gravity is to having lots of people participate. >> Yep, and that's where the value is. And that's where the value is. And this is a megatrend that we see. And so it's really important for us to get to the point of what is and what is not a supercloud and, you know, that's where we're trying to evolve. >> Let's talk about this for a second 'cause I want to, I want to challenge you on something and it's something that I got challenged on and it has led me to thinking differently than I did at first, which Molly can attest to. Okay? So, we have been looking for a way to talk about the concept of cloud of utility computing, run anything anywhere that isn't addressed in today's realization of cloud. 'Cause today's cloud is not run anything anywhere, it's quite the opposite. You park your data in AWS and that's where you run stuff. And you pretty much have to. Same with with Azure. They're using data gravity to keep you captive there, just like the old infrastructure guys did. But now it's even worse because it's coupled back with the software to some degree, as well. And you have to use their storage, networking, and compute. It's not, I mean it fell back to the mainframe era. Anyhow, so I love the concept of supercloud. By the way, I was going to suggest that a better term might be hyper cloud since hyper speaks to the multidimensionality of it and the ability to be in a, you know, be in a different dimension, a different plane of existence kind of thing like hyperspace. But super and hyper are somewhat synonyms. I mean, you have hyper cars and you have super cars and blah, blah, blah. I happen to like hyper maybe also because it ties into the whole Hammerspace notion of a hyper-dimensional, you know, reality, having your data centers connected by a wormhole that is Hammerspace. But regardless, what I got challenged on is calling it something different at all versus simply saying, this is what cloud has always meant to be. This is the true cloud, this is real cloud, this is cloud. And I think back to what happened, you'll remember, at Fusion IO we talked about IO memory and we did that because people had a conceptualization of what an SSD was. And an SSD back then was low capacity, low endurance, made to go military, aerospace where things needed to be rugged but was completely useless in the data center. And we needed people to imagine this thing as being able to displace entire SAND, with the kind of capacity density, performance density, endurance. And so we talked IO memory, we could have said enterprise SSD, and that's what the industry now refers to for that concept. What will people be saying five and 10 years from now? Will they simply say, well this is cloud as it was always meant to be where you are truly able to run anything anywhere and have not only the same APIs, but you're same data available with high performance access, all forms of access, block file and object everywhere. So yeah. And I wonder, and this is just me throwing it out there, I wonder if, well, there's trade offs, right? Giving it a new moniker, supercloud, versus simply talking about how cloud is always intended to be and what it was meant to be, you know, the real cloud or true cloud, there are trade-offs. By putting a name on it and branding it, that lets people talk about it and understand they're talking about something different. But it also is that an affront to people who thought that that's what they already had. >> What's different, what's new? Yes, and so we've given a lot of thought to this. >> Right, it's like you. >> And it's because we've been asked that why does the industry need a new term, and we've tried to address some of that. But some of the inside baseball that we haven't shared is, you remember the Web 2.0, back then? >> Yep. >> Web 2.0 was the same thing. And I remember Tim Burners Lee saying, "Why do we need Web 2.0? "This is what the Web was always supposed to be." But the truth is-- >> I know, that was another perfect-- >> But the truth is it wasn't, number one. Number two, everybody hated the Web 2.0 term. John Furrier was actually in the middle of it all. And then it created this groundswell. So one of the things we wrote about is that supercloud is an evocative term that catalyzes debate and conversation, which is what we like, of course. And maybe that's self-serving. But yeah, HyperCloud, Metacloud, super, meaning, it's funny because super came from Latin supra, above, it was never the superlative. But the superlative was a convenient byproduct that caused a lot of friction and flack, which again, in the media business is like a perfect storm brewing. >> The bad thing to have to, and I think you do need to shake people out of their, the complacency of the limitations that they're used to. And I'll tell you what, the fact that you even have the terms hybrid cloud, multi-cloud, private cloud, edge computing, those are all just referring to the different boundaries that isolate the silo that is the current limited cloud. >> Right. >> So if I heard correctly, what just, in terms of us defining what is and what isn't in supercloud, you would say traditional applications which have to run in a certain place, in a certain cloud can't run anywhere else, would be the stuff that you would not put in as being addressed by supercloud. And over time, you would want to be able to run the data where you want to and in any of those concepts. >> Or even modern apps, right? Or even modern apps that are siloed in SAS within an individual cloud, right? >> So yeah, I guess it's twofold. Number one, if you're going at the high application layers, there's lots of ways that you can give the appearance of anything running anywhere. The ISV, the SAS vendor can engineer stuff to have the ability to serve with low enough latency to different geographies, right? So if you go too high up the stack, it kind of loses its meaning because there's lots of different ways to make due and give the appearance of omni-presence of the service. Okay? As you come down more towards the platform layer, it gets harder and harder to mask the fact that supercloud is something entirely different than just a good regionally-distributed SAS service. So I don't think you, I don't think you can distinguish supercloud if you go too high up the stack because it's just SAS, it's just a good SAS service where the SAS vendor has done the hard work to give you low latency access from different geographic regions. >> Yeah, so this is one of the hardest things, David. >> Common among them. >> Yeah, this is really an important point. This is one of the things I've had the most trouble with is why is this not just SAS? >> So you dilute your message when you go up to the SAS layer. If you were to focus most of this around the super pass layer, the how can you host applications and run them anywhere and not host this, not run a service, not have a service available everywhere. So how can you take any application, even applications that are written, you know, in a traditional legacy data center fashion and be able to run them anywhere and have them have their binaries and their datasets and the runtime environment and the infrastructure to start them and stop them? You know, the jobs, the, what the Kubernetes, the job scheduler? What we're really talking about here, what I think we're really talking about here is building the operating system for a decentralized cloud. What is the operating system, the operating environment for a decentralized cloud? Where you can, and that the main two functions of an operating system or an operating environment are the process scheduler, the thing that's scheduling what is running where and when and so forth, and the file system, right? The thing that's supplying a common view and access to data. So when we talk about this, I think that the strongest argument for supercloud is made when you go down to the platform layer and talk of it, talk about it as an operating environment on which you can run all forms of applications. >> Would you exclude--? >> Not a specific application that's been engineered as a SAS. (audio distortion) >> He'll come back. >> Are you there? >> Yeah, yeah, you just cut out for a minute. >> I lost your last statement when you broke up. >> We heard you, you said that not the specific application. So would you exclude Snowflake from supercloud? >> Frankly, I would. I would. Because, well, and this is kind of hard to do because Snowflake doesn't like to, Frank doesn't like to talk about Snowflake as a SAS service. It has a negative connotation. >> But it is. >> I know, we all know it is. We all know it is and because it is, yes, I would exclude them. >> I think I actually have him on camera. >> There's nothing in common. >> I think I have him on camera or maybe Benoit as saying, "Well, we are a SAS." I think it's Slootman. I think I said to Slootman, "I know you don't like to say you're a SAS." And I think he said, "Well, we are a SAS." >> Because again, if you go to the top of the application stack, there's any number of ways you can give it location agnostic function or you know, regional, local stuff. It's like let's solve the location problem by having me be your one location. How can it be decentralized if you're centralizing on (audio distortion)? >> Well, it's more decentralized than if it's all in one cloud. So let me actually, so the spectrum. So again, in the spirit of what is and what isn't, I think it's safe to say Hammerspace is supercloud. I think there's no debate there, right? Certainly among this crowd. And I think we can all agree that Dell, Dell Storage is not supercloud. Where it gets fuzzy is this Snowflake example or even, how about a, how about a Cohesity that instantiates its stack in different cloud regions in different clouds, and synchronizes, however magic sauce it does that. Is that a supercloud? I mean, so I'm cautious about having too strict of a definition 'cause then only-- >> Fair enough, fair enough. >> But I could use your help and thoughts on that. >> So I think we're talking about two different spectrums here. One is the spectrum of platform to application-specific. As you go up the application stack and it becomes this specific thing. Or you go up to the more and more structured where it's serving a specific application function where it's more of a SAS thing. I think it's harder to call a SAS service a supercloud. And I would argue that the reason there, and what you're lacking in the definition is to talk about it as general purpose. Okay? Now, that said, a data warehouse is general purpose at the structured data level. So you could make the argument for why Snowflake is a supercloud by saying that it is a general purpose platform for doing lots of different things. It's just one at a higher level up at the structured data level. So one spectrum is the high level going from platform to, you know, unstructured data to structured data to very application-specific, right? Like a specific, you know, CAD/CAM mechanical design cloud, like an Autodesk would want to give you their cloud for running, you know, and sharing CAD/CAM designs, doing your CAD/CAM anywhere stuff. Well, the other spectrum is how well does the purported supercloud technology actually live up to allowing you to run anything anywhere with not just the same APIs but with the local presence of data with the exact same runtime environment everywhere, and to be able to correctly manage how to get that runtime environment anywhere. So a Cohesity has some means of running things in different places and some means of coordinating what's where and of serving diff, you know, things in different places. I would argue that it is a very poor approximation of what Hammerspace does in providing the exact same file system with local high performance access everywhere with metadata ability to control where the data is actually instantiated so that you don't have to wait for it to get orchestrated. But even then when you do have to wait for it, it happens automatically and so it's still only a matter of, well, how quick is it? And on the other end of the spectrum is you could look at NetApp with Flexcache and say, "Is that supercloud?" And I would argue, well kind of because it allows you to run things in different places because it's a cache. But you know, it really isn't because it presumes some central silo from which you're cacheing stuff. So, you know, is it or isn't it? Well, it's on a spectrum of exactly how fully is it decoupling a runtime environment from specific locality? And I think a cache doesn't, it stretches a specific silo and makes it have some semblance of similar access in other places. But there's still a very big difference to the central silo, right? You can't turn off that central silo, for example. >> So it comes down to how specific you make the definition. And this is where it gets kind of really interesting. It's like cloud. Does IBM have a cloud? >> Exactly. >> I would say yes. Does it have the kind of quality that you would expect from a hyper-scale cloud? No. Or see if you could say the same thing about-- >> But that's a problem with choosing a name. That's the problem with choosing a name supercloud versus talking about the concept of cloud and how true up you are to that concept. >> For sure. >> Right? Because without getting a name, you don't have to draw, yeah. >> I'd like to explore one particular or bring them together. You made a very interesting observation that from a enterprise point of view, they want to safeguard their store, their data, and they want to make sure that they can have that data running in their own workflows, as well as, as other service providers providing services to them for that data. So, and in in particular, if you go back to, you go back to Snowflake. If Snowflake could provide the ability for you to have your data where you wanted, you were in charge of that, would that make Snowflake a supercloud? >> I'll tell you, in my mind, they would be closer to my conceptualization of supercloud if you can instantiate Snowflake as software on your own infrastructure, and pump your own data to Snowflake that's instantiated on your own infrastructure. The fact that it has to be on their infrastructure or that it's on their, that it's on their account in the cloud, that you're giving them the data and they're, that fundamentally goes against it to me. If they, you know, they would be a pure, a pure plate if they were a software defined thing where you could instantiate Snowflake machinery on the infrastructure of your choice and then put your data into that machinery and get all the benefits of Snowflake. >> So did you see--? >> In other words, if they were not a SAS service, but offered all of the similar benefits of being, you know, if it were a service that you could run on your own infrastructure. >> So did you see what they announced, that--? >> I hope that's making sense. >> It does, did you see what they announced at Dell? They basically announced the ability to take non-native Snowflake data, read it in from an object store on-prem, like a Dell object store. They do the same thing with Pure, read it in, running it in the cloud, and then push it back out. And I was saying to Dell, look, that's fine. Okay, that's interesting. You're taking a materialized view or an extended table, whatever you're doing, wouldn't it be more interesting if you could actually run the query locally with your compute? That would be an extension that would actually get my attention and extend that. >> That is what I'm talking about. That's what I'm talking about. And that's why I'm saying I think Hammerspace is more progressive on that front because with our technology, anybody who can instantiate a service, can make a service. And so I, so MSPs can use Hammerspace as a way to build a super pass layer and host their clients on their infrastructure in a cloud-like fashion. And their clients can have their own private data centers and the MSP or the public clouds, and Hammerspace can be instantiated, get this, by different parties in these different pieces of infrastructure and yet linked together to make a common file system across all of it. >> But this is data mesh. If I were HPE and Dell it's exactly what I'd be doing. I'd be working with Hammerspace to create my own data. I'd work with Databricks, Snowflake, and any other-- >> Data mesh is a good way to put it. Data mesh is a good way to put it. And this is at the lowest level of, you know, the underlying file system that's mountable by the operating system, consumed as a real file system. You can't get lower level than that. That's why this is the foundation for all of the other apps and structured data systems because you need to have a data mesh that can at least mesh the binary blob. >> Okay. >> That hold the binaries and that hold the datasets that those applications are running. >> So David, in the third week of January, we're doing supercloud 2 and I'm trying to convince John Furrier to make it a data slash data mesh edition. I'm slowly getting him to the knothole. I would very much, I mean you're in the Bay Area, I'd very much like you to be one of the headlines. As Zhamak Dehghaniis going to speak, she's the creator of Data Mesh, >> Sure. >> I'd love to have you come into our studio as well, for the live session. If you can't make it, we can pre-record. But you're right there, so I'll get you the dates. >> We'd love to, yeah. No, you can count on it. No, definitely. And you know, we don't typically talk about what we do as Data Mesh. We've been, you know, using global data environment. But, you know, under the covers, that's what the thing is. And so yeah, I think we can frame the discussion like that to line up with other, you know, with the other discussions. >> Yeah, and Data Mesh, of course, is one of those evocative names, but she has come up with some very well defined principles around decentralized data, data as products, self-serve infrastructure, automated governance, and and so forth, which I think your vision plugs right into. And she's brilliant. You'll love meeting her. >> Well, you know, and I think.. Oh, go ahead. Go ahead, Peter. >> Just like to work one other interface which I think is important. How do you see yourself and the open source? You talked about having an operating system. Obviously, Linux is the operating system at one level. How are you imagining that you would interface with cost community as part of this development? >> Well, it's funny you ask 'cause my CTO is the kernel maintainer of the storage networking stack. So how the Linux operating system perceives and consumes networked data at the file system level, the network file system stack is his purview. He owns that, he wrote most of it over the last decade that he's been the maintainer, but he's the gatekeeper of what goes in. And we have leveraged his abilities to enhance Linux to be able to use this decentralized data, in particular with decoupling the control plane driven by metadata from the data access path and the many storage systems on which the data gets accessed. So this factoring, this splitting of control plane from data path, metadata from data, was absolutely necessary to create a data mesh like we're talking about. And to be able to build this supercloud concept. And the highways on which the data runs and the client which knows how to talk to it is all open source. And we have, we've driven the NFS 4.2 spec. The newest NFS spec came from my team. And it was specifically the enhancements needed to be able to build a spanning file system, a data mesh at a file system level. Now that said, our file system itself and our server, our file server, our data orchestration, our data management stuff, that's all closed source, proprietary Hammerspace tech. But the highways on which the mesh connects are actually all open source and the client that knows how to consume it. So we would, honestly, I would welcome competitors using those same highways. They would be at a major disadvantage because we kind of built them, but it would still be very validating and I think only increase the potential adoption rate by more than whatever they might take of the market. So it'd actually be good to split the market with somebody else to come in and share those now super highways for how to mesh data at the file system level, you know, in here. So yeah, hopefully that answered your question. Does that answer the question about how we embrace the open source? >> Right, and there was one other, just that my last one is how do you enable something to run in every environment? And if we take the edge, for example, as being, as an environment which is much very, very compute heavy, but having a lot less capability, how do you do a hold? >> Perfect question. Perfect question. What we do today is a software appliance. We are using a Linux RHEL 8, RHEL 8 equivalent or a CentOS 8, or it's, you know, they're all roughly equivalent. But we have bundled and a software appliance which can be instantiated on bare metal hardware on any type of VM system from VMware to all of the different hypervisors in the Linux world, to even Nutanix and such. So it can run in any virtualized environment and it can run on any cloud instance, server instance in the cloud. And we have it packaged and deployable from the marketplaces within the different clouds. So you can literally spin it up at the click of an API in the cloud on instances in the cloud. So with all of these together, you can basically instantiate a Hammerspace set of machinery that can offer up this file system mesh. like we've been using the terminology we've been using now, anywhere. So it's like being able to take and spin up Snowflake and then just be able to install and run some VMs anywhere you want and boom, now you have a Snowflake service. And by the way, it is so complete that some of our customers, I would argue many aren't even using public clouds at all, they're using this just to run their own data centers in a cloud-like fashion, you know, where they have a data service that can span it all. >> Yeah and to Molly's first point, we would consider that, you know, cloud. Let me put you on the spot. If you had to describe conceptually without a chalkboard what an architectural diagram would look like for supercloud, what would you say? >> I would say it's to have the same runtime environment within every data center and defining that runtime environment as what it takes to schedule the execution of applications, so job scheduling, runtime stuff, and here we're talking Kubernetes, Slurm, other things that do job scheduling. We're talking about having a common way to, you know, instantiate compute resources. So a global compute environment, having a common compute environment where you can instantiate things that need computing. Okay? So that's the first part. And then the second is the data platform where you can have file block and object volumes, and have them available with the same APIs in each of these distributed data centers and have the exact same data omnipresent with the ability to control where the data is from one moment to the next, local, where all the data is instantiate. So my definition would be a common runtime environment that's bifurcate-- >> Oh. (attendees chuckling) We just lost them at the money slide. >> That's part of the magic makes people listen. We keep someone on pin and needles waiting. (attendees chuckling) >> That's good. >> Are you back, David? >> I'm on the edge of my seat. Common runtime environment. It was like... >> And just wait, there's more. >> But see, I'm maybe hyper-focused on the lower level of what it takes to host and run applications. And that's the stuff to schedule what resources they need to run and to get them going and to get them connected through to their persistence, you know, and their data. And to have that data available in all forms and have it be the same data everywhere. On top of that, you could then instantiate applications of different types, including relational databases, and data warehouses and such. And then you could say, now I've got, you know, now I've got these more application-level or structured data-level things. I tend to focus less on that structured data level and the application level and am more focused on what it takes to host any of them generically on that super pass layer. And I'll admit, I'm maybe hyper-focused on the pass layer and I think it's valid to include, you know, higher levels up the stack like the structured data level. But as soon as you go all the way up to like, you know, a very specific SAS service, I don't know that you would call that supercloud. >> Well, and that's the question, is there value? And Marianna Tessel from Intuit said, you know, we looked at it, we did it, and it just, it was actually negative value for us because connecting to all these separate clouds was a real pain in the neck. Didn't bring us any additional-- >> Well that's 'cause they don't have this pass layer underneath it so they can't even shop around, which actually makes it hard to stand up your own SAS service. And ultimately they end up having to build their own infrastructure. Like, you know, I think there's been examples like Netflix moving away from the cloud to their own infrastructure. Basically, if you're going to rent it for more than a few months, it makes sense to build it yourself, if it's at any kind of scale. >> Yeah, for certain components of that cloud. But if the Goldman Sachs came to you, David, and said, "Hey, we want to collaborate and we want to build "out a cloud and essentially build our SAS system "and we want to do that with Hammerspace, "and we want to tap the physical infrastructure "of not only our data centers but all the clouds," then that essentially would be a SAS, would it not? And wouldn't that be a Super SAS or a supercloud? >> Well, you know, what they may be using to build their service is a supercloud, but their service at the end of the day is just a SAS service with global reach. Right? >> Yeah. >> You know, look at, oh shoot. What's the name of the company that does? It has a cloud for doing bookkeeping and accounting. I forget their name, net something. NetSuite. >> NetSuite. NetSuite, yeah, Oracle. >> Yeah. >> Yep. >> Oracle acquired them, right? Is NetSuite a supercloud or is it just a SAS service? You know? I think under the covers you might ask are they using supercloud under the covers so that they can run their SAS service anywhere and be able to shop the venue, get elasticity, get all the benefits of cloud in the, to the benefit of their service that they're offering? But you know, folks who consume the service, they don't care because to them they're just connecting to some endpoint somewhere and they don't have to care. So the further up the stack you go, the more location-agnostic it is inherently anyway. >> And I think it's, paths is really the critical layer. We thought about IAS Plus and we thought about SAS Minus, you know, Heroku and hence, that's why we kind of got caught up and included it. But SAS, I admit, is the hardest one to crack. And so maybe we exclude that as a deployment model. >> That's right, and maybe coming down a level to saying but you can have a structured data supercloud, so you could still include, say, Snowflake. Because what Snowflake is doing is more general purpose. So it's about how general purpose it is. Is it hosting lots of other applications or is it the end application? Right? >> Yeah. >> So I would argue general purpose nature forces you to go further towards platform down-stack. And you really need that general purpose or else there is no real distinguishing. So if you want defensible turf to say supercloud is something different, I think it's important to not try to wrap your arms around SAS in the general sense. >> Yeah, and we've kind of not really gone, leaned hard into SAS, we've just included it as a deployment model, which, given the constraints that you just described for structured data would apply if it's general purpose. So David, super helpful. >> Had it sign. Define the SAS as including the hybrid model hold SAS. >> Yep. >> Okay, so with your permission, I'm going to add you to the list of contributors to the definition. I'm going to add-- >> Absolutely. >> I'm going to add this in. I'll share with Molly. >> Absolutely. >> We'll get on the calendar for the date. >> If Molly can share some specific language that we've been putting in that kind of goes to stuff we've been talking about, so. >> Oh, great. >> I think we can, we can share some written kind of concrete recommendations around this stuff, around the general purpose, nature, the common data thing and yeah. >> Okay. >> Really look forward to it and would be glad to be part of this thing. You said it's in February? >> It's in January, I'll let Molly know. >> Oh, January. >> What the date is. >> Excellent. >> Yeah, third week of January. Third week of January on a Tuesday, whatever that is. So yeah, we would welcome you in. But like I said, if it doesn't work for your schedule, we can prerecord something. But it would be awesome to have you in studio. >> I'm sure with this much notice we'll be able to get something. Let's make sure we have the dates communicated to Molly and she'll get my admin to set it up outside so that we have it. >> I'll get those today to you, Molly. Thank you. >> By the way, I am so, so pleased with being able to work with you guys on this. I think the industry needs it very bad. They need something to break them out of the box of their own mental constraints of what the cloud is versus what it's supposed to be. And obviously, the more we get people to question their reality and what is real, what are we really capable of today that then the more business that we're going to get. So we're excited to lend the hand behind this notion of supercloud and a super pass layer in whatever way we can. >> Awesome. >> Can I ask you whether your platforms include ARM as well as X86? >> So we have not done an ARM port yet. It has been entertained and won't be much of a stretch. >> Yeah, it's just a matter of time. >> Actually, entertained doing it on behalf of NVIDIA, but it will absolutely happen because ARM in the data center I think is a foregone conclusion. Well, it's already there in some cases, but not quite at volume. So definitely will be the case. And I'll tell you where this gets really interesting, discussion for another time, is back to my old friend, the SSD, and having SSDs that have enough brains on them to be part of that fabric. Directly. >> Interesting. Interesting. >> Very interesting. >> Directly attached to ethernet and able to create a data mesh global file system, that's going to be really fascinating. Got to run now. >> All right, hey, thanks you guys. Thanks David, thanks Molly. Great to catch up. Bye-bye. >> Bye >> Talk to you soon.

Published Date : Oct 5 2022

SUMMARY :

So my question to you was, they don't have to do it. to starved before you have I believe that the ISVs, especially those the end users you need to So, if I had to take And and I think Ultimately the supercloud or the Snowflake, you know, more narrowly on just the stuff of the point of what you're talking Well, and you know, Snowflake founders, I don't want to speak over So it starts to even blur who's the main gravity is to having and, you know, that's where to be in a, you know, a lot of thought to this. But some of the inside baseball But the truth is-- So one of the things we wrote the fact that you even have that you would not put in as to give you low latency access the hardest things, David. This is one of the things I've the how can you host applications Not a specific application Yeah, yeah, you just statement when you broke up. So would you exclude is kind of hard to do I know, we all know it is. I think I said to Slootman, of ways you can give it So again, in the spirit But I could use your to allowing you to run anything anywhere So it comes down to how quality that you would expect and how true up you are to that concept. you don't have to draw, yeah. the ability for you and get all the benefits of Snowflake. of being, you know, if it were a service They do the same thing and the MSP or the public clouds, to create my own data. for all of the other apps and that hold the datasets So David, in the third week of January, I'd love to have you come like that to line up with other, you know, Yeah, and Data Mesh, of course, is one Well, you know, and I think.. and the open source? and the client which knows how to talk and then just be able to we would consider that, you know, cloud. and have the exact same data We just lost them at the money slide. That's part of the I'm on the edge of my seat. And that's the stuff to schedule Well, and that's the Like, you know, I think But if the Goldman Sachs Well, you know, what they may be using What's the name of the company that does? NetSuite, yeah, Oracle. So the further up the stack you go, But SAS, I admit, is the to saying but you can have a So if you want defensible that you just described Define the SAS as including permission, I'm going to add you I'm going to add this in. We'll get on the calendar to stuff we've been talking about, so. nature, the common data thing and yeah. to it and would be glad to have you in studio. and she'll get my admin to set it up I'll get those today to you, Molly. And obviously, the more we get people So we have not done an ARM port yet. because ARM in the data center I think is Interesting. that's going to be really fascinating. All right, hey, thanks you guys.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

SlootmanPERSON

0.99+

NetflixORGANIZATION

0.99+

AdobeORGANIZATION

0.99+

MollyPERSON

0.99+

Marianna TesselPERSON

0.99+

DellORGANIZATION

0.99+

NVIDIAORGANIZATION

0.99+

FrankPERSON

0.99+

DisneyORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

IBMORGANIZATION

0.99+

JanuaryDATE

0.99+

John FurrierPERSON

0.99+

FebruaryDATE

0.99+

PeterPERSON

0.99+

Zhamak DehghaniisPERSON

0.99+

HammerspaceORGANIZATION

0.99+

WordTITLE

0.99+

AWSORGANIZATION

0.99+

RHEL 8TITLE

0.99+

OracleORGANIZATION

0.99+

BenoitPERSON

0.99+

ExcelTITLE

0.99+

secondQUANTITY

0.99+

AutodeskORGANIZATION

0.99+

CentOS 8TITLE

0.99+

David FlynnPERSON

0.99+

oneQUANTITY

0.99+

DatabricksORGANIZATION

0.99+

HPEORGANIZATION

0.99+

PowerPointTITLE

0.99+

first pointQUANTITY

0.99+

bothQUANTITY

0.99+

TuesdayDATE

0.99+

SnowflakeORGANIZATION

0.99+

first partQUANTITY

0.99+

todayDATE

0.99+

each regionQUANTITY

0.98+

LinuxTITLE

0.98+

OneQUANTITY

0.98+

IntuitORGANIZATION

0.98+

Tim Burners LeePERSON

0.98+

Zhamak Dehghaniis'PERSON

0.98+

Blue OriginORGANIZATION

0.98+

Bay AreaLOCATION

0.98+

two reasonsQUANTITY

0.98+

eachQUANTITY

0.98+

one applicationQUANTITY

0.98+

SnowflakeTITLE

0.98+

firstQUANTITY

0.98+

more than a few monthsQUANTITY

0.97+

SASORGANIZATION

0.97+

ARMORGANIZATION

0.97+

MicrosoftORGANIZATION

0.97+

David Linthicum, Deloitte US | Supercloud22


 

(bright music) >> "Supermetafragilisticexpialadotious." What's in a name? In an homage to the inimitable Charles Fitzgerald, we've chosen this title for today's session because of all the buzz surrounding "supercloud," a term that we introduced last year to signify a major architectural trend and shift that's occurring in the technology industry. Since that time, we've published numerous videos and articles on the topic, and on August 9th, kicked off "Supercloud22," an open industry event designed to advance the supercloud conversation, gathering input from more than 30 experienced technologists and business leaders in "The Cube" and broader technology community. We're talking about individuals like Benoit Dageville, Kit Colbert, Ali Ghodsi, Mohit Aron, David McJannet, and dozens of other experts. And today, we're pleased to welcome David Linthicum, who's a Chief Strategy Officer of Cloud Services at Deloitte Consulting. David is a technology visionary, a technical CTO. He's an author and a frequently sought after keynote speaker at high profile conferences like "VMware Explore" next week. David Linthicum, welcome back to "The Cube." Good to see you again. >> Oh, it's great to be here. Thanks for the invitation. Thanks for having me. >> Yeah, you're very welcome. Okay, so this topic of supercloud, what you call metacloud, has created a lot of interest. VMware calls it cross-cloud services, Snowflake calls it their data cloud, there's a lot of different names, but recently, you published a piece in "InfoWorld" where you said the following. "I really don't care what we call it, "and I really don't care if I put "my own buzzword into the mix. "However, this does not change the fact "that metacloud is perhaps the most important "architectural evolution occurring right now, "and we need to get this right out of the gate. "If we do that, who cares what it's named?" So very cool. And you also mentioned in a recent article that you don't like to put out new terms out in the wild without defining them. So what is a metacloud, or what we call supercloud? What's your definition? >> Yeah, and again, I don't care what people call it. The reality is it's the ability to have a layer of cross-cloud services. It sits above existing public cloud providers. So the idea here is that instead of building different security systems, different governance systems, different operational systems in each specific cloud provider, using whatever native features they provide, we're trying to do that in a cross-cloud way. So in other words, we're pushing out data integration, security, all these other things that we have to take care of as part of deploying a particular cloud provider. And in a multicloud scenario, we're building those in and between the clouds. And so we've been tracking this for about five years. We understood that multicloud is not necessarily about the particular public cloud providers, it's about things that you build in and between the clouds. >> Got it, okay. So I want to come back to that, to the definition, but I want to tie us to the so-called multicloud. You guys did a survey recently. We've said that multicloud was mostly a symptom of multi-vendor, Shadow Cloud, M&A, and only recently has become a strategic imperative. Now, Deloitte published a survey recently entitled "Closing the Cloud Strategy, Technology, Innovation Gap," and I'd like to explore that a little bit. And so in that survey, you showed data. What I liked about it is you went beyond what we all know, right? The old, "Our research shows that on average, "X number of clouds are used at an individual company." I mean, you had that too, but you really went deeper. You identified why companies are using multiple clouds, and you developed different categories of practitioners across 500 survey respondents. But the reasons were very clear for "why multicloud," as this becomes more strategic. Service choice scale, negotiating leverage, improved business resiliency, minimizing lock-in, interoperability of data, et cetera. So my question to you, David, is what's the problem supercloud or metacloud solves, and what's different from multicloud? >> That's a great question. The reality is that if we're... Well, supercloud or metacloud, whatever, is really something that exists above a multicloud, but I kind of view them as the same thing. It's an architectural pattern. We can name it anything. But the reality is that if we're moving to these multicloud environments, we're doing so to leverage best of breed things. In other words, best of breed technology to provide the innovators within the company to take the business to the next level, and we determine that in the survey. And so if we're looking at what a multicloud provides, it's the ability to provide different choices of different services or piece parts that allows us to build anything that we need to do. And so what we found in the survey and what we found in just practice in dealing with our clients is that ultimately, the value of cloud computing is going to be the innovation aspects. In other words, the ability to take the company to the next level from being more innovative and more disruptive in the marketplace that they're in. And the only way to do that, instead of basically leveraging the services of a particular walled garden of a single public cloud provider, is to cast a wider net and get out and leverage all kinds of services to make these happen. So if you think about that, that's basically how multicloud has evolved. In other words, it wasn't planned. They didn't say, "We're going to go do a multicloud." It was different developers and innovators in the company that went off and leveraged these cloud services, sometimes with the consent of IT leadership, sometimes not. And now we have these multitudes of different services that we're leveraging. And so many of these enterprises are going from 1000 to, say, 3000 services under management. That creates a complexity problem. We have a problem of heterogeneity, different platforms, different tools, different services, different AI technology, database technology, things like that. So the metacloud, or the supercloud, or whatever you want to call it, is the ability to deal with that complexity on the complexity's terms. And so instead of building all these various things that we have to do individually in each of the cloud providers, we're trying to do so within a cross-cloud service layer. We're trying to create this layer of technology, which removes us from dealing with the complexity of the underlying multicloud services and makes it manageable. Because right now, I think we're getting to a point of complexity we just can't operate it at the budgetary limits that we are right now. We can't keep the number of skills around, the number of operators around, to keep these things going. We're going to have to get creative in terms of how we manage these things, how we manage a multicloud. And that's where the supercloud, metacloud, whatever they want to call it, comes that. >> Yeah, and as John Furrier likes to say, in IT, we tend to solve complexity with more complexity, and that's not what we're talking about here. We're talking about simplifying, and you talked about the abstraction layer, and then it sounds like I'm inferring more. There's value that's added on top of that. And then you also said the hyperscalers are in a walled garden. So I've been asked, why aren't the hyperscalers superclouds? And I've said, essentially, they want to put your data into their cloud and keep it there. Now, that doesn't mean they won't eventually get into that. We've seen examples a little bit, Outposts, Anthos, Azure Arc, but the hyperscalers really aren't building superclouds or metaclouds, at least today, are they? >> No, they're not. And I always have the predictions for every major cloud conference that this is the conference that the hyperscaler is going to figure out some sort of a multicloud across-cloud strategy. In other words, building services that are able to operate across clouds. That really has never happened. It has happened in dribs and drabs, and you just mentioned a few examples of that, but the ability to own the space, to understand that we're not going to be the center of the universe in how people are going to leverage it, is going to be multiple things, including legacy systems and other cloud providers, and even industry clouds that are emerging these days, and SaaS providers, and all these things. So we're going to assist you in dealing with complexity, and we're going to provide the core services of being there. That hasn't happened yet. And they may be worried about conflicting their market, and the messaging is a bit different, even actively pushing back on the concept of multicloud, but the reality is the market's going to take them there. So in other words, if enough of their customers are asking for this and asking that they take the lead in building these cross-cloud technologies, even if they're participating in the stack and not being the stack, it's too compelling of a market that it's not going to drag a lot of the existing public cloud providers there. >> Well, it's going to be interesting to see how that plays out, David, because I never say never when it comes to a company like AWS, and we've seen how fast they move. And at the same time, they don't want to be commoditized. There's the layer underneath all this infrastructure, and they got this ecosystem that's adding all this tremendous value. But I want to ask you, what are the essential elements of supercloud, coming back to the definition, if you will, and what's different about metacloud, as you call it, from plain old SaaS or PaaS? What are the key elements there? >> Well, the key elements would be holistic management of all of the IT infrastructure. So even though it's sitting above a multicloud, I view metacloud, supercloud as the ability to also manage your existing legacy systems, your existing security stack, your existing network operations, basically everything that exists under the purview of IT. If you think about it, we're moving our infrastructure into the clouds, and we're probably going to hit a saturation point of about 70%. And really, if the supercloud, metacloud, which is going to be expensive to build for most of the enterprises, it needs to support these things holistically. So it needs to have all the services, that is going to be shareable across the different providers, and also existing legacy systems, and also edge computing, and IoT, and all these very diverse systems that we're building there right now. So if complexity is a core challenge to operate these things at scale and the ability to secure these things at scale, we have to have commonality in terms of security architecture and technology, commonality in terms of our directory services, commonality in terms of network operations, commonality in term of cloud operations, commonality in terms of FinOps. All these things should exist in some holistic cross-cloud layer that sits above all this complexity. And you pointed out something very profound. In other words, that is going to mean that we're hiding a lot of the existing cloud providers in terms of their interfaces and dashboards and things like that that we're dealing with today, their APIs. But the reality is that if we're able to manage these things at scale, the public cloud providers are going to benefit greatly from that. They're going to sell more services because people are going to find they're able to leverage them easier. And so in other words, if we're removing the complexity wall, which many in the industry are calling it right now, then suddenly we're moving from, say, the 25 to 30% migrated in the cloud, which most enterprises are today, to 50, 60, 70%. And we're able to do this at scale, and we're doing it at scale because we're providing some architectural optimization through the supercloud, metacloud layer. >> Okay, thanks for that. David, I just want to tap your CTO brain for a minute. At "Supercloud22," we came up with these three deployment models. Kit Colbert put forth the idea that one model would be your control planes running in one cloud, let's say AWS, but it interacts with and can manage and deploy on other clouds, the Kubernetes Cluster Management System. The second one, Mohit Aron from Cohesity laid out, where you instantiate the stack on different clouds and different cloud regions, and then you create a layer, a common interface across those. And then Snowflake was the third deployment model where it's a single global instance, it's one instantiation, and basically building out their own cloud across these regions. Help us parse through that. Do those seem like reasonable deployment models to you? Do you have any thoughts on that? >> Yeah, I mean, that's a distributed computing trick we've been doing, which is, in essence, an agent of the supercloud that's carrying out some of the cloud native functions on that particular cloud, but is, in essence, a slave to the metacloud, or the supercloud, whatever, that's able to run across the various cloud providers. In other words, when it wants to access a service, it may not go directly to that service. It goes directly to the control plane, and that control plane is responsible... Very much like Kubernetes and Docker works, that control plane is responsible for reaching out and leveraging those native services. I think that that's thinking that's a step in the right direction. I think these things unto themselves, at least initially, are going to be a very complex array of technology. Even though we're trying to remove complexity, the supercloud unto itself, in terms of the ability to build this thing that's able to operate at scale across-cloud, is going to be a collection of many different technologies that are interfacing with the public cloud providers in different ways. And so we can start putting these meta architectures together, and I certainly have written and spoke about this for years, but initially, this is going to be something that may escape the detail or the holistic nature of these meta architectures that people are floating around right now. >> Yeah, so I want to stay on this, because anytime I get a CTO brain, I like to... I'm not an engineer, but I've been around a long time, so I know a lot of buzzwords and have absorbed a lot over the years, but so you take those, the second two models, the Mohit instantiate on each cloud and each cloud region versus the Snowflake approach. I asked Benoit Dageville, "Does that mean if I'm in "an AWS east region and I want to do a query on Azure West, "I can do that without moving data?" And he said, "Yes and no." And the answer was really, "No, we actually take a subset of that data," so there's the latency problem. From those deployment model standpoints, what are the trade-offs that you see in terms of instantiating the stack on each individual cloud versus that single instance? Is there a benefit of the single instance for governance and security and simplicity, but a trade-off on latency, or am I overthinking this? >> Yeah, you hit it on the nose. The reality is that the trade-off is going to be latency and performance. If we get wiggy with the distributed nature, like the distributed data example you just provided, we have to basically separate the queries and communicate with the databases on each instance, and then reassemble the result set that goes back to the people who are recording it. And so we can do caching systems and things like that. But the reality is, if it's distributed system, we're going to have latency and bandwidth issues that are going to be limiting us. And also security issues, because if we're removing lots of information over the open internet, or even private circuits, that those are going to be attack vectors that hackers can leverage. You have to keep that in mind. We're trying to reduce those attack vectors. So it would be, in many instances, and I think we have to think about this, that we're going to keep the data in the same physical region for just that. So in other words, it's going to provide the best performance and also the most simplistic access to dealing with security. And so we're not, in essence, thinking about where the data's going, how it's moving across things, things like that. So the challenge is going to be is when you're dealing with a supercloud or metacloud is, when do you make those decisions? And I think, in many instances, even though we're leveraging multiple databases across multiple regions and multiple public cloud providers, and that's the idea of it, we're still going to localize the data for performance reasons. I mean, I just wrote a blog in "InfoWorld" a couple of months ago and talked about, people who are trying to distribute data across different public cloud providers for different reasons, distribute an application development system, things like that, you can do it. With enough time and money, you can do anything. I think the challenge is going to be operating that thing, and also providing a viable business return based on the application. And so why it may look like a good science experiment, and it's cool unto itself as an architect, the reality is the more pragmatic approach is going to be a leavitt in a single region on a single cloud. >> Very interesting. The other reason I like to talk to companies like Deloitte and experienced people like you is 'cause I can get... You're agnostic, right? I mean, you're technology agnostic, vendor agnostic. So I want to come back with another question, which is, how do you deal with what I call the lowest common denominator problem? What I mean by that is if one cloud has, let's say, a superior service... Let's take an example of Nitro and Graviton. AWS seems to be ahead on that, but let's say some other cloud isn't quite quite there yet, and you're building a supercloud or a metacloud. How do you rationalize that? Does it have to be like a caravan in the army where you slow down so all the slowest trucks can keep up, or are the ways to adjudicate that that are advantageous to hide that deficiency? >> Yeah, and that's a great thing about leveraging a supercloud or a metacloud is we're putting that management in a single layer. So as far as a user or even a developer on those systems, they shouldn't worry about the performance that may come back, because we're dealing with the... You hit the nail on the head with that one. The slowest component is the one that dictates performance. And so we have to have some sort of a performance management layer. We're also making dynamic decisions to move data, to move processing, from one server to the other to try to minimize the amount of latency that's coming from a single component. So the great thing about that is we're putting that volatility into a single domain, and it's making architectural decisions in terms of where something will run and where it's getting its data from, things are stored, things like that, based on the performance feedback that's coming back from the various cloud services that are under management. And so if you're running across clouds, it becomes even more interesting, because ultimately, you're going to make some architectural choices on the fly in terms of where that stuff runs based on the active dynamic performance that that public cloud provider is providing. So in other words, we may find that it automatically shut down a database service, say MySQL, on one cloud instance, and moved it to a MySQL instance on another public cloud provider because there was some sort of a performance issue that it couldn't work around. And by the way, it does so dynamically. Away from you making that decision, it's making that decision on your behalf. Again, this is a matter of abstraction, removing complexity, and dealing with complexity through abstraction and automation, and this is... That would be an example of fixing something with automation, self-healing. >> When you meet with some of the public cloud providers and they talk about on-prem private cloud, the general narrative from the hyperscalers is, "Well, that's not a cloud." Should on-prem be inclusive of supercloud, metacloud? >> Absolutely, I mean, and they're selling private cloud instances with the edge cloud that they're selling. The reality is that we're going to have to keep a certain amount of our infrastructure, including private clouds, on premise. It's something that's shrinking as a market share, and it's going to be tougher and tougher to justify as the public cloud providers become better and better at what they do, but we certainly have edge clouds now, and hyperscalers have examples of that where they run a instance of their public cloud infrastructure on premise on physical hardware and software. And the reality is, too, we have data centers and we have systems that just won't go away for another 20 or 30 years. They're just too sticky. They're uneconomically viable to move into the cloud. That's the core thing. It's not that we can't do it. The fact of the matter is we shouldn't do it, because there's not going to be an economic... There's not going to be an economic incentive of making that happen. So if we're going to create this meta layer or this infrastructure which is going to run across clouds, and everybody agrees on, that's what the supercloud is, we have to include the on-premise systems, including private clouds, including legacy systems. And by the way, include the rising number of IoT systems that are out there, and edge-based systems out there. So we're managing it using the same infrastructure into cloud services. So they have metadata systems and they have specialized services, and service finance and retail and things like doing risk analytics. So it gets them further down that path, but not necessarily giving them a SaaS application where they're forced into all of the business processes. We're giving you piece parts. So we'll give you 1000 different parts that are related to the finance industry. You can assemble anything you need, but the thing is, it's not going to be like building it from scratch. We're going to give you risk analytics, we're giving you the financial analytics, all these things that you can leverage within your applications how you want to leverage them. We'll maintain them. So in other words, you don't have to maintain 'em just like a cloud service. And suddenly, we can build applications in a couple of weeks that used to take a couple of months, in some cases, a couple of years. So that seems to be a large take of it moving forward. So get it up in the supercloud. Those become just other services that are under managed... That are under management on the supercloud, the metacloud. So we're able to take those services, abstract them, assemble them, use them in different applications. And the ability to manage where those services are originated versus where they're consumed is going to be managed by the supercloud layer, which, you're dealing with the governance, the service governance, the security systems, the directory systems, identity access management, things like that. They're going to get you further along down the pike, and that comes back as real value. If I'm able to build something in two weeks that used to take me two months, and I'm able to give my creators in the organization the ability to move faster, that's a real advantage. And suddenly, we are going to be valued by our digital footprint, our ability to do things in a creative and innovative way. And so organizations are able to move that fast, leveraging cloud computing for what it should be leveraged, as a true force multiplier for the business. They're going to win the game. They're going to get the most value. They're going to be around in 20 years, the others won't. >> David Linthicum, always love talking. You have a dangerous combination of business and technology expertise. Let's tease. "VMware Explore" next week, you're giving a keynote, if they're going to be there. Which day are you? >> Tuesday. Tuesday, 11 o'clock. >> All right, that's a big day. Tuesday, 11 o'clock. And David, please do stop by "The Cube." We're in Moscone West. Love to get you on and continue this conversation. I got 100 more questions for you. Really appreciate your time. >> I always love talking to people at "The Cube." Thank you very much. >> All right, and thanks for watching our ongoing coverage of "Supercloud22" on "The Cube," your leader in enterprise tech and emerging tech coverage. (bright music)

Published Date : Aug 24 2022

SUMMARY :

and articles on the Oh, it's great to be here. right out of the gate. The reality is it's the ability to have and I'd like to explore that a little bit. is the ability to deal but the hyperscalers but the ability to own the space, And at the same time, they and the ability to secure and then you create a layer, that may escape the detail and have absorbed a lot over the years, So the challenge is going to be in the army where you slow down And by the way, it does so dynamically. of the public cloud providers And the ability to manage if they're going to be there. Tuesday, 11 o'clock. Love to get you on and to people at "The Cube." and emerging tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

David LinthicumPERSON

0.99+

David McJannetPERSON

0.99+

DeloitteORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

August 9thDATE

0.99+

AWSORGANIZATION

0.99+

Benoit DagevillePERSON

0.99+

Kit ColbertPERSON

0.99+

25QUANTITY

0.99+

two monthsQUANTITY

0.99+

Charles FitzgeraldPERSON

0.99+

50QUANTITY

0.99+

next weekDATE

0.99+

M&AORGANIZATION

0.99+

Mohit AronPERSON

0.99+

John FurrierPERSON

0.99+

each cloudQUANTITY

0.99+

Tuesday, 11 o'clockDATE

0.99+

two weeksQUANTITY

0.99+

TuesdayDATE

0.99+

60QUANTITY

0.99+

todayDATE

0.99+

MySQLTITLE

0.99+

100 more questionsQUANTITY

0.99+

eachQUANTITY

0.99+

last yearDATE

0.99+

each instanceQUANTITY

0.99+

30 yearsQUANTITY

0.99+

20QUANTITY

0.99+

Moscone WestLOCATION

0.99+

3000 servicesQUANTITY

0.99+

one modelQUANTITY

0.99+

70%QUANTITY

0.99+

second oneQUANTITY

0.98+

1000QUANTITY

0.98+

30%QUANTITY

0.98+

500 survey respondentsQUANTITY

0.98+

1000 different partsQUANTITY

0.98+

VMwareORGANIZATION

0.98+

single componentQUANTITY

0.98+

single layerQUANTITY

0.97+

Deloitte ConsultingORGANIZATION

0.97+

oneQUANTITY

0.97+

NitroORGANIZATION

0.97+

about five yearsQUANTITY

0.97+

more than 30 experienced technologistsQUANTITY

0.97+

about 70%QUANTITY

0.97+

single instanceQUANTITY

0.97+

Shadow CloudORGANIZATION

0.96+

SnowflakeTITLE

0.96+

The CubeORGANIZATION

0.96+

third deploymentQUANTITY

0.96+

Deloitte USORGANIZATION

0.95+

Supercloud22ORGANIZATION

0.95+

20 yearsQUANTITY

0.95+

each cloud regionQUANTITY

0.95+

second two modelsQUANTITY

0.95+

Closing the Cloud Strategy, Technology, Innovation GapTITLE

0.94+

one cloudQUANTITY

0.94+

single cloudQUANTITY

0.94+

CohesityORGANIZATION

0.94+

one serverQUANTITY

0.94+

single domainQUANTITY

0.94+

each individual cloudQUANTITY

0.93+

supercloudORGANIZATION

0.93+

metacloudORGANIZATION

0.92+

multicloudORGANIZATION

0.92+

The CubeTITLE

0.92+

GravitonORGANIZATION

0.92+

VMware ExploreEVENT

0.91+

couple of months agoDATE

0.89+

single global instanceQUANTITY

0.88+

SnowflakeORGANIZATION

0.88+

cloudQUANTITY

0.88+

Breaking Analysis: What Black Hat '22 tells us about securing the Supercloud


 

>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR, This is "Breaking Analysis with Dave Vellante". >> Black Hat 22 was held in Las Vegas last week, the same time as theCUBE Supercloud event. Unlike AWS re:Inforce where words are carefully chosen to put a positive spin on security, Black Hat exposes all the warts of cyber and openly discusses its hard truths. It's a conference that's attended by technical experts who proudly share some of the vulnerabilities they've discovered, and, of course, by numerous vendors marketing their products and services. Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis", we summarize what we learned from discussions with several people who attended Black Hat and our analysis from reviewing dozens of keynotes, articles, sessions, and data from a recent Black Hat Attendees Survey conducted by Black Hat and Informa, and we'll end with the discussion of what it all means for the challenges around securing the supercloud. Now, I personally did not attend, but as I said at the top, we reviewed a lot of content from the event which is renowned for its hundreds of sessions, breakouts, and strong technical content that is, as they say, unvarnished. Chris Krebs, the former director of Us cybersecurity and infrastructure security agency, CISA, he gave the keynote, and he spoke about the increasing complexity of tech stacks and the ripple effects that that has on organizational risk. Risk was a big theme at the event. Where re:Inforce tends to emphasize, again, the positive state of cybersecurity, it could be said that Black Hat, as the name implies, focuses on the other end of the spectrum. Risk, as a major theme of the event at the show, got a lot of attention. Now, there was a lot of talk, as always, about the expanded threat service, you hear that at any event that's focused on cybersecurity, and tons of emphasis on supply chain risk as a relatively new threat that's come to the CISO's minds. Now, there was also plenty of discussion about hybrid work and how remote work has dramatically increased business risk. According to data from in Intel 471's Mark Arena, the previously mentioned Black Hat Attendee Survey showed that compromise credentials posed the number one source of risk followed by infrastructure vulnerabilities and supply chain risks, so a couple of surveys here that we're citing, and we'll come back to that in a moment. At an MIT cybersecurity conference earlier last decade, theCUBE had a hypothetical conversation with former Boston Globe war correspondent, Charles Sennott, about the future of war and the role of cyber. We had similar discussions with Dr. Robert Gates on theCUBE at a ServiceNow event in 2016. At Black Hat, these discussions went well beyond the theoretical with actual data from the war in Ukraine. It's clear that modern wars are and will be supported by cyber, but the takeaways are that they will be highly situational, targeted, and unpredictable because in combat scenarios, anything can happen. People aren't necessarily at their keyboards. Now, the role of AI was certainly discussed as it is at every conference, and particularly cyber conferences. You know, it was somewhat dissed as over hyped, not surprisingly, but while AI is not a panacea to cyber exposure, automation and machine intelligence can definitely augment, what appear to be and have been stressed out, security teams can do this by recommending actions and taking other helpful types of data and presenting it in a curated form that can streamline the job of the SecOps team. Now, most cyber defenses are still going to be based on tried and true monitoring and telemetry data and log analysis and curating known signatures and analyzing consolidated data, but increasingly, AI will help with the unknowns, i.e. zero-day threats and threat actor behaviors after infiltration. Now, finally, while much lip service was given to collaboration and public-private partnerships, especially after Stuxsnet was revealed early last decade, the real truth is that threat intelligence in the private sector is still evolving. In particular, the industry, mid decade, really tried to commercially exploit proprietary intelligence and, you know, do private things like private reporting and monetize that, but attitudes toward collaboration are trending in a positive direction was one of the sort of outcomes that we heard at Black Hat. Public-private partnerships are being both mandated by government, and there seems to be a willingness to work together to fight an increasingly capable adversary. These things are definitely on the rise. Now, without this type of collaboration, securing the supercloud is going to become much more challenging and confined to narrow solutions. and we're going to talk about that little later in the segment. Okay, let's look at some of the attendees survey data from Black Hat. Just under 200 really serious security pros took the survey, so not enough to slice and dice by hair color, eye color, height, weight, and favorite movie genre, but enough to extract high level takeaways. You know, these strongly agree or disagree survey responses can sometimes give vanilla outputs, but let's look for the ones where very few respondents strongly agree or disagree with a statement or those that overwhelmingly strongly agree or somewhat agree. So it's clear from this that the respondents believe the following, one, your credentials are out there and available to criminals. Very few people thought that that was, you know, unavoidable. Second, remote work is here to stay, and third, nobody was willing to really jinx their firms and say that they strongly disagree that they'll have to respond to a major cybersecurity incident within the next 12 months. Now, as we've reported extensively, COVID has permanently changed the cybersecurity landscape and the CISO's priorities and playbook. Check out this data that queries respondents on the pandemic's impact on cybersecurity, new requirements to secure remote workers, more cloud, more threats from remote systems and remote users, and a shift away from perimeter defenses that are no longer as effective, e.g. firewall appliances. Note, however, the fifth response that's down there highlighted in green. It shows a meaningful drop in the percentage of remote workers that are disregarding corporate security policy, still too many, but 10 percentage points down from 2021 survey. Now, as we've said many times, bad user behavior will trump good security technology virtually every time. Consistent with the commentary from Mark Arena's Intel 471 threat report, fishing for credentials is the number one concern cited in the Black Hat Attendees Survey. This is a people and process problem more than a technology issue. Yes, using multifactor authentication, changing passwords, you know, using unique passwords, using password managers, et cetera, they're all great things, but if it's too hard for users to implement these things, they won't do it, they'll remain exposed, and their organizations will remain exposed. Number two in the graphic, sophisticated attacks that could expose vulnerabilities in the security infrastructure, again, consistent with the Intel 471 data, and three, supply chain risks, again, consistent with Mark Arena's commentary. Ask most CISOs their number one problem, and they'll tell you, "It's a lack of talent." That'll be on the top of their list. So it's no surprise that 63% of survey respondents believe they don't have the security staff necessary to defend against cyber threats. This speaks to the rise of managed security service providers that we've talked about previously on "Breaking Analysis". We've seen estimates that less than 50% of organizations in the US have a SOC, and we see those firms as ripe for MSSP support as well as larger firms augmenting staff with managed service providers. Now, after re:Invent, we put forth this conceptual model that discussed how the cloud was becoming the first line of defense for CISOs, and DevOps was being asked to do more, things like securing the runtime, the containers, the platform, et cetera, and audit was kind of that last line of defense. So a couple things we picked up from Black Hat which are consistent with this shift and some that are somewhat new, first, is getting visibility across the expanded threat surface was a big theme at Black Hat. This makes it even harder to identify risk, of course, this being the expanded threat surface. It's one thing to know that there's a vulnerability somewhere. It's another thing to determine the severity of the risk, but understanding how easy or difficult it is to exploit that vulnerability and how to prioritize action around that. Vulnerability is increasingly complex for CISOs as the security landscape gets complexified. So what's happening is the SOC, if there even is one at the organization, is becoming federated. No longer can there be one ivory tower that's the magic god room of data and threat detection and analysis. Rather, the SOC is becoming distributed following the data, and as we just mentioned, the SOC is being augmented by the cloud provider and the managed service providers, the MSSPs. So there's a lot of critical security data that is decentralized and this will necessitate a new cyber data model where data can be synchronized and shared across a federation of SOCs, if you will, or mini SOCs or SOC capabilities that live in and/or embedded in an organization's ecosystem. Now, to this point about cloud being the first line of defense, let's turn to a story from ETR that came out of our colleague Eric Bradley's insight in a one-on-one he did with a senior IR person at a manufacturing firm. In a piece that ETR published called "Saved by Zscaler", check out this comment. Quote, "As the last layer, we are filtering all the outgoing internet traffic through Zscaler. And when an attacker is already on your network, and they're trying to communicate with the outside to exchange encryption keys, Zscaler is already blocking the traffic. It happened to us. It happened and we were saved by Zscaler." So that's pretty cool. So not only is the cloud the first line of defense, as we sort of depicted in that previous graphic, here's an example where it's also the last line of defense. Now, let's end on what this all means to securing the supercloud. At our Supercloud 22 event last week in our Palo Alto CUBE Studios, we had a session on this topic on supercloud, securing the supercloud. Security, in our view, is going to be one of the most important and difficult challenges for the idea of supercloud to become real. We reviewed in last week's "Breaking Analysis" a detailed discussion with Snowflake co-founder and president of products, Benoit Dageville, how his company approaches security in their data cloud, what we call a superdata cloud. Snowflake doesn't use the term supercloud. They use the term datacloud, but what if you don't have the focus, the engineering depth, and the bank roll that Snowflake has? Does that mean superclouds will only be developed by those companies with deep pockets and enormous resources? Well, that's certainly possible, but on the securing the supercloud panel, we had three technical experts, Gee Rittenhouse of Skyhigh Security, Piyush Sharrma who's the founder of Accurics who sold to Tenable, and Tony Kueh, who's the former Head of Product at VMware. Now, John Furrier asked each of them, "What is missing? What's it going to take to secure the supercloud? What has to happen?" Here's what they said. Play the clip. >> This is the final question. We have one minute left. I wish we had more time. This is a great panel. We'll bring you guys back for sure after the event. What one thing needs to happen to unify or get through the other side of this fragmentation and then the challenges for supercloud? Because remember, the enterprise equation is solve complexity with more complexity. Well, that's not what the market wants. They want simplicity. They want SaaS. They want ease of use. They want infrastructure risk code. What has to happen? What do you think, each of you? >> So I can start, and extending to the previous conversation, I think we need a consortium. We need a framework that defines that if you really want to operate on supercloud, these are the 10 things that you must follow. It doesn't matter whether you take AWS, Slash, or TCP or you have all, and you will have the on-prem also, which means that it has to follow a pattern, and that pattern is what is required for supercloud, in my opinion. Otherwise, security is going everywhere. They're like they have to fix everything, find everything, and so on and so forth. It's not going to be possible. So they need a framework. They need a consortium, and this consortium needs to be, I think, needs to led by the cloud providers because they're the ones who have these foundational infrastructure elements, and the security vendor should contribute on providing more severe detections or severe findings. So that's, in my opinion, should be the model. >> Great, well, thank you, Gee. >> Yeah, I would think it's more along the lines of a business model. We've seen in cloud that the scale matters, and once you're big, you get bigger. We haven't seen that coalesce around either a vendor, a business model, or whatnot to bring all of this and connect it all together yet. So that value proposition in the industry, I think, is missing, but there's elements of it already available. >> I think there needs to be a mindset. If you look, again, history repeating itself. The internet sort of came together around set of IETF, RSC standards. Everybody embraced and extended it, right? But still, there was, at least, a baseline, and I think at that time, the largest and most innovative vendors understood that they couldn't do it by themselves, right? And so I think what we need is a mindset where these big guys, like Google, let's take an example. They're not going to win at all, but they can have a substantial share. So how do they collaborate with the ecosystem around a set of standards so that they can bring their differentiation and then embrace everybody together. >> Okay, so Gee's point about a business model is, you know, business model being missing, it's broadly true, but perhaps Snowflake serves as a business model where they've just gone out and and done it, setting or trying to set a de facto standard by which data can be shared and monetized. They're certainly setting that standard and mandating that standard within the Snowflake ecosystem with its proprietary framework. You know, perhaps that is one answer, but Tony lays out a scenario where there's a collaboration mindset around a set of standards with an ecosystem. You know, intriguing is this idea of a consortium or a framework that Piyush was talking about, and that speaks to the collaboration or lack thereof that we spoke of earlier, and his and Tony's proposal that the cloud providers should lead with the security vendor ecosystem playing a supporting role is pretty compelling, but can you see AWS and Azure and Google in a kumbaya moment getting together to make that happen? It seems unlikely, but maybe a better partnership between the US government and big tech could be a starting point. Okay, that's it for today. I want to thank the many people who attended Black Hat, reported on it, wrote about it, gave talks, did videos, and some that spoke to me that had attended the event, Becky Bracken, who is the EIC at Dark Reading. They do a phenomenal job and the entire team at Dark Reading, the news desk there, Mark Arena, whom I mentioned, Garrett O'Hara, Nash Borges, Kelly Jackson, sorry, Kelly Jackson Higgins, Roya Gordon, Robert Lipovsky, Chris Krebs, and many others, thanks for the great, great commentary and the content that you put out there, and thanks to Alex Myerson, who's on production, and Alex manages the podcasts for us. Ken Schiffman is also in our Marlborough studio as well, outside of Boston. Kristen Martin and Cheryl Knight, they help get the word out on social media and in our newsletters, and Rob Hoff is our Editor-in-Chief at SiliconANGLE and does some great editing and helps with the titles of "Breaking Analysis" quite often. Remember these episodes, they're all available as podcasts, wherever you listen, just search for "Breaking Analysis Podcasts". I publish each on wikibon.com and siliconangle.com, and you could email me, get in touch with me at david.vellante@siliconangle.com or you can DM me @dvellante or comment on my LinkedIn posts, and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis". (upbeat music)

Published Date : Aug 21 2022

SUMMARY :

with Dave Vellante". and the ripple effects that This is the final question. and the security vendor should contribute that the scale matters, the largest and most innovative and the content that you put out there,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Cheryl KnightPERSON

0.99+

Alex MyersonPERSON

0.99+

Robert LipovskyPERSON

0.99+

Eric BradleyPERSON

0.99+

Chris KrebsPERSON

0.99+

Charles SennottPERSON

0.99+

Becky BrackenPERSON

0.99+

Rob HoffPERSON

0.99+

Dave VellantePERSON

0.99+

TonyPERSON

0.99+

Ken SchiffmanPERSON

0.99+

John FurrierPERSON

0.99+

Kelly JacksonPERSON

0.99+

Gee RittenhousePERSON

0.99+

Benoit DagevillePERSON

0.99+

Tony KuehPERSON

0.99+

Mark ArenaPERSON

0.99+

Piyush SharrmaPERSON

0.99+

Kristen MartinPERSON

0.99+

Roya GordonPERSON

0.99+

CISAORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

Garrett O'HaraPERSON

0.99+

AccuricsORGANIZATION

0.99+

BostonLOCATION

0.99+

USLOCATION

0.99+

2021DATE

0.99+

Skyhigh SecurityORGANIZATION

0.99+

Black HatORGANIZATION

0.99+

10 thingsQUANTITY

0.99+

TenableORGANIZATION

0.99+

AWSORGANIZATION

0.99+

david.vellante@siliconangle.comOTHER

0.99+

Nash BorgesPERSON

0.99+

last weekDATE

0.99+

IntelORGANIZATION

0.99+

Las VegasLOCATION

0.99+

Robert GatesPERSON

0.99+

one minuteQUANTITY

0.99+

63%QUANTITY

0.99+

less than 50%QUANTITY

0.99+

SecondQUANTITY

0.99+

SiliconANGLEORGANIZATION

0.99+

last weekDATE

0.99+

eachQUANTITY

0.99+

Kelly Jackson HigginsPERSON

0.99+

AlexPERSON

0.99+

2016DATE

0.99+

Black Hat 22EVENT

0.99+

VMwareORGANIZATION

0.99+

thirdQUANTITY

0.99+

threeQUANTITY

0.99+

Black HatEVENT

0.98+

three technical expertsQUANTITY

0.98+

first lineQUANTITY

0.98+

fifth responseQUANTITY

0.98+

supercloudORGANIZATION

0.98+

ETRORGANIZATION

0.98+

UkraineLOCATION

0.98+

Boston GlobeORGANIZATION

0.98+

Dr.PERSON

0.98+

one answerQUANTITY

0.97+

wikibon.comOTHER

0.97+

first lineQUANTITY

0.97+

this weekDATE

0.96+

firstQUANTITY

0.96+

MarlboroughLOCATION

0.96+

siliconangle.comOTHER

0.95+

Saved by ZscalerTITLE

0.95+

Palo Alto CUBE StudiosLOCATION

0.95+

hundreds of sessionsQUANTITY

0.95+

LinkedInORGANIZATION

0.94+

bothQUANTITY

0.94+

oneQUANTITY

0.94+

dozens of keynotesQUANTITY

0.93+

todayDATE

0.93+

Breaking Analysis Further defining Supercloud W/ tech leaders VMware, Snowflake, Databricks & others


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante at our inaugural super cloud 22 event we further refined the concept of a super cloud iterating on the definition the salient attributes and some examples of what is and what is not a super cloud welcome to this week's wikibon cube insights powered by etr you know snowflake has always been what we feel is one of the strongest examples of a super cloud and in this breaking analysis from our studios in palo alto we unpack our interview with benoit de javille co-founder and president of products at snowflake and we test our super cloud definition on the company's data cloud platform and we're really looking forward to your feedback first let's examine how we defl find super cloudant very importantly one of the goals of super cloud 22 was to get the community's input on the definition and iterate on previous work super cloud is an emerging computing architecture that comprises a set of services which are abstracted from the underlying primitives of hyperscale clouds we're talking about services such as compute storage networking security and other native tooling like machine learning and developer tools to create a global system that spans more than one cloud super cloud as shown on this slide has five essential properties x number of deployment models and y number of service models we're looking for community input on x and y and on the first point as well so please weigh in and contribute now we've identified these five essential elements of a super cloud let's talk about these first the super cloud has to run its services on more than one cloud leveraging the cloud native tools offered by each of the cloud providers the builder of the super cloud platform is responsible for optimizing the underlying primitives of each cloud and optimizing for the specific needs be it cost or performance or latency or governance data sharing security etc but those primitives must be abstracted such that a common experience is delivered across the clouds for both users and developers the super cloud has a metadata intelligence layer that can maximize efficiency for the specific purpose of the super cloud i.e the purpose that the super cloud is intended for and it does so in a federated model and it includes what we call a super pass this is a prerequisite that is a purpose-built component and enables ecosystem partners to customize and monetize incremental services while at the same time ensuring that the common experiences exist across clouds now in terms of deployment models we'd really like to get more feedback on this piece but here's where we are so far based on the feedback we got at super cloud 22. we see three deployment models the first is one where a control plane may run on one cloud but supports data plane interactions with more than one other cloud the second model instantiates the super cloud services on each individual cloud and within regions and can support interactions across more than one cloud with a unified interface connecting those instantiations those instances to create a common experience and the third model superimposes its services as a layer or in the case of snowflake they call it a mesh on top of the cloud on top of the cloud providers region or regions with a single global instantiation a single global instantiation of those services which spans multiple cloud providers this is our understanding from a comfort the conversation with benoit dejaville as to how snowflake approaches its solutions and for now we're going to park the service models we need to more time to flesh that out and we'll propose something shortly for you to comment on now we peppered benoit dejaville at super cloud 22 to test how the snowflake data cloud aligns to our concepts and our definition let me also say that snowflake doesn't use the term data cloud they really want to respect and they want to denigrate the importance of their hyperscale partners nor do we but we do think the hyperscalers today anyway are building or not building what we call super clouds but they are but but people who bar are building super clouds are building on top of hyperscale clouds that is a prerequisite so here are the questions that we tested with snowflake first question how does snowflake architect its data cloud and what is its deployment model listen to deja ville talk about how snowflake has architected a single system play the clip there are several ways to do this you know uh super cloud as as you name them the way we we we picked is is to create you know one single system and that's very important right the the the um [Music] there are several ways right you can instantiate you know your solution uh in every region of a cloud and and you know potentially that region could be a ws that region could be gcp so you are indeed a multi-cloud solution but snowflake we did it differently we are really creating cloud regions which are superposed on top of the cloud provider you know region infrastructure region so we are building our regions but but where where it's very different is that each region of snowflake is not one in instantiation of our service our service is global by nature we can move data from one region to the other when you land in snowflake you land into one region but but you can grow from there and you can you know exist in multiple clouds at the same time and that's very important right it's not one single i mean different instantiation of a system is one single instantiation which covers many cloud regions and many cloud providers snowflake chose the most advanced level of our three deployment models dodgeville talked about too presumably so it could maintain maximum control and ensure that common experience like the iphone model next we probed about the technical enablers of the data cloud listen to deja ville talk about snow grid he uses the term mesh and then this can get confusing with the jamaicani's data mesh concept but listen to benoit's explanation well as i said you know first we start by building you know snowflake regions we have today furry region that spawn you know the world so it's a worldwide worldwide system with many regions but all these regions are connected together they are you know meshed together with our technology we name it snow grid and that makes it hard because you know regions you know azure region can talk to a ws region or gcp regions and and as a as a user of our cloud you you don't see really these regional differences that you know regions are in different you know potentially clown when you use snowflake you can exist your your presence as an organization can be in several regions several clouds if you want geographic and and and both geographic and cloud provider so i can share data irrespective of the the cloud and i'm in the snowflake data cloud is that correct i can do that today exactly and and that's very critical right what we wanted is to remove data silos and and when you instantiate a system in one single region and that system is locked in that region you cannot communicate with other parts of the world you are locking the data in one region right and we didn't want to do that we wanted you know data to be distributed the way customer wants it to be distributed across the world and potentially sharing data at world scale now maybe there are many ways to skin the other cat meaning perhaps if a platform does instantiate in multiple places there are ways to share data but this is how snowflake chose to approach the problem next question how do you deal with latency in this big global system this is really important to us because while snowflake has some really smart people working as engineers and and the like we don't think they've solved for the speed of light problem the best people working on it as we often joke listen to benoit deja ville's comments on this topic so yes and no the the way we do it it's very expensive to do that because generally if you want to join you know data which is in which are in different regions and different cloud it's going to be very expensive because you need to move you know data every time you join it so the way we do it is that you replicate the subset of data that you want to access from one region from other regions so you can create this data mesh but data is replicated to make it very cheap and very performant too and is the snow grid does that have the metadata intelligence yes to actually can you describe that a little bit yeah snow grid is both uh a way to to exchange you know metadata about so each region of snowflake knows about all the other regions of snowflake every time we create a new region diary you know the metadata is distributed over our data cloud not only you know region knows all the regions but knows you know every organization that exists in our clouds where this organization is where data can be replicated by this organization and then of course it's it's also used as a way to uh uh exchange data right so you can exchange you know beta by scale of data size and we just had i was just receiving an email from one of our customers who moved more than four petabytes of data cross-region cross you know cloud providers in you know few days and you know it's a lot of data so it takes you know some time to move but they were able to do that online completely online and and switch over you know to the diff to the other region which is failover is very important also so yes and no probably means typically no he says yes and no probably means no so it sounds like snowflake is selectively pulling small amounts of data and replicating it where necessary but you also heard him talk about the metadata layer which is one of the essential aspects of super cloud okay next we dug into security it's one of the most important issues and we think one of the hardest parts related to deploying super cloud so we've talked about how the cloud has become the first line of defense for the cso but now with multi-cloud you have multiple first lines of defense and that means multiple shared responsibility models and multiple tool sets from different cloud providers and an expanded threat surface so listen to benoit's explanation here please play the clip this is a great question uh security has always been the most important aspect of snowflake since day one right this is the question that every customer of ours has you know how you can you guarantee the security of my data and so we secure data really tightly in region we have several layers of security it starts by by encrypting it every data at rest and that's very important a lot of customers are not doing that right you hear these attacks for example on on cloud you know where someone left you know their buckets uh uh open and then you know you can access the data because it's a non-encrypted uh so we are encrypting everything at rest we are encrypting everything in transit so a region is very secure now you know you never from one region you never access data from another region in snowflake that's why also we replicate data now the replication of that data across region or the metadata for that matter is is really highly secure so snow grits ensure that everything is encrypted everything is you know we have multiple you know encryption keys and it's you know stored in hardware you know secure modules so we we we built you know snow grids such that it's secure and it allows very secure movement of data so when we heard this explanation we immediately went to the lowest common denominator question meaning when you think about how aws for instance deals with data in motion or data and rest it might be different from how another cloud provider deals with it so how does aws uh uh uh differences for example in the aws maturity model for various you know cloud capabilities you know let's say they've got a faster nitro or graviton does it do do you have to how does snowflake deal with that do they have to slow everything else down like imagine a caravan cruising you know across the desert so you know every truck can keep up let's listen it's a great question i mean of course our software is abstracting you know all the cloud providers you know infrastructure so that when you run in one region let's say aws or azure it doesn't make any difference as far as the applications are concerned and and this abstraction of course is a lot of work i mean really really a lot of work because it needs to be secure it needs to be performance and you know every cloud and it has you know to expose apis which are uniform and and you know cloud providers even though they have potentially the same concept let's say blob storage apis are completely different the way you know these systems are secure it's completely different the errors that you can get and and the retry you know mechanism is very different from one cloud to the other performance is also different we discovered that when we were starting to port our software and and and you know we had to completely rethink how to leverage blob storage in that cloud versus that cloud because just of performance too so we had you know for example to you know stripe data so all this work is work that's you know you don't need as an application because our vision really is that applications which are running in our data cloud can you know be abstracted of all this difference and and we provide all the services all the workload that this application need whether it's transactional access to data analytical access to data you know managing you know logs managing you know metrics all of these is abstracted too such that they are not you know tied to one you know particular service of one cloud and and distributing this application across you know many regions many cloud is very seamless so from that answer we know that snowflake takes care of everything but we really don't understand the performance implications in you know in that specific case but we feel pretty certain that the promises that snowflake makes around governance and security within their data sharing construct construct will be kept now another criterion that we've proposed for super cloud is a super pass layer to create a common developer experience and an enabler for ecosystem partners to monetize please play the clip let's listen we build it you know a custom build because because as you said you know what exists in one cloud might not exist in another cloud provider right so so we have to build you know on this all these this components that modern application mode and that application need and and and and that you know goes to machine learning as i say transactional uh analytical system and the entire thing so such that they can run in isolation basically and the objective is the developer experience will be identical across those clouds yes right the developers doesn't need to worry about cloud provider and actually our system we have we didn't talk about it but the marketplace that we have which allows actually to deliver we're getting there yeah okay now we're not going to go deep into ecosystem today we've talked about snowflakes strengths in this regard but snowflake they pretty much ticked all the boxes on our super cloud attributes and definition we asked benoit dejaville to confirm that this is all shipping and available today and he also gave us a glimpse of the future play the clip and we are still developing it you know the transactional you know unistore as we call it was announced in last summit so so they are still you know working properly but but but that's the vision right and and and that's important because we talk about the infrastructure right you mentioned a lot about storage and compute but it's not only that right when you think about application they need to use the transactional database they need to use an analytical system they need to use you know machine learning so you need to provide also all these services which are consistent across all the cloud providers so you can hear deja ville talking about expanding beyond taking advantage of the core infrastructure storage and networking et cetera and bringing intelligence to the data through machine learning and ai so of course there's more to come and there better be at this company's valuation despite the recent sharp pullback in a tightening fed environment okay so i know it's cliche but everyone's comparing snowflakes and data bricks databricks has been pretty vocal about its open source posture compared to snowflakes and it just so happens that we had aligotsy on at super cloud 22 as well he wasn't in studio he had to do remote because i guess he's presenting at an investor conference this week so we had to bring him in remotely now i didn't get to do this interview john furrier did but i listened to it and captured this clip about how data bricks sees super cloud and the importance of open source take a listen to goatzee yeah i mean let me start by saying we just we're big fans of open source we think that open source is a force in software that's going to continue for you know decades hundreds of years and it's going to slowly replace all proprietary code in its way we saw that you know it could do that with the most advanced technology windows you know proprietary operating system very complicated got replaced with linux so open source can pretty much do anything and what we're seeing with the data lake house is that slowly the open source community is building a replacement for the proprietary data warehouse you know data lake machine learning real-time stack in open source and we're excited to be part of it for us delta lake is a very important project that really helps you standardize how you lay out your data in the cloud and with it comes a really important protocol called delta sharing that enables you in an open way actually for the first time ever share large data sets between organizations but it uses an open protocol so the great thing about that is you don't need to be a database customer you don't even like databricks you just need to use this open source project and you can now securely share data sets between organizations across clouds and it actually does so really efficiently just one copy of the data so you don't have to copy it if you're within the same cloud so the implication of ellie gotzi's comments is that databricks with delta sharing as john implied is playing a long game now i don't know if enough about the databricks architecture to comment in detail i got to do more research there so i reached out to my two analyst friends tony bear and sanji mohan to see what they thought because they cover these companies pretty closely here's what tony bear said quote i've viewed the divergent lake house strategies of data bricks and snowflake in the context of their roots prior to delta lake databrick's prime focus was the compute not the storage layer and more specifically they were a compute engine not a database snowflake approached from the opposite end of the pool as they originally fit the mold of the classic database company rather than a specific compute engine per se the lake house pushes both companies outside of their original comfort zones data bricks to storage snowflake to compute engine so it makes perfect sense for databricks to embrace the open source narrative at the storage layer and for snowflake to continue its walled garden approach but in the long run their strategies are already overlapping databricks is not a 100 open source company its practitioner experience has always been proprietary and now so is its sql query engine likewise snowflake has had to open up with the support of iceberg for open data lake format the question really becomes how serious snowflake will be in making iceberg a first-class citizen in its environment that is not necessarily officially branding a lake house but effectively is and likewise can databricks deliver the service levels associated with walled gardens through a more brute force approach that relies heavily on the query engine at the end of the day those are the key requirements that will matter to data bricks and snowflake customers end quote that was some deep thought by by tony thank you for that sanjay mohan added the following quote open source is a slippery slope people buy mobile phones based on open source android but it's not fully open similarly databricks delta lake was not originally fully open source and even today its photon execution engine is not we are always going to live in a hybrid world snowflake and databricks will support whatever model works best for them and their customers the big question is do customers care as deeply about which vendor has a higher degree of openness as we technology people do i believe customers evaluation criteria is far more nuanced than just to decipher each vendor's open source claims end quote okay so i had to ask dodgeville about their so-called wall garden approach and what their strategy is with apache iceberg here's what he said iceberg is is very important so just to to give some context iceberg is an open you know table format right which was you know first you know developed by netflix and netflix you know put it open source in the apache community so we embrace that's that open source standard because because it's widely used by by many um many you know companies and also many companies have you know really invested a lot of effort in building you know big data hadoop solution or data like solution and they want to use snowflake and they couldn't really use snowflake because all their data were in open you know formats so we are embracing icebergs to help these companies move through the cloud but why we have been relentless with direct access to data direct access to data is a little bit of a problem for us and and the reason is when you direct access to data now you have direct access to storage now you have to understand for example the specificity of one cloud versus the other so as soon as you start to have direct access to data you lose your you know your cloud diagnostic layer you don't access data with api when you have direct access to data it's very hard to secure data because you need to grant access direct access to tools which are not you know protected and you see a lot of you know hacking of of data you know because of that so so that was not you know direct access to data is not serving well our customers and that's why we have been relented to do that because it's it's cr it's it's not cloud diagnostic it's it's you you have to code that you have to you you you need a lot of intelligence while apis access so we want open apis that's that's i guess the way we embrace you know openness is is by open api versus you know you access directly data here's my take snowflake is hedging its bets because enough people care about open source that they have to have some open data format options and it's good optics and you heard benoit deja ville talk about the risks of directly accessing the data and the complexities it brings now is that maybe a little fud against databricks maybe but same can be said for ollie's comments maybe flooding the proprietaryness of snowflake but as both analysts pointed out open is a spectrum hey i remember unix used to equal open systems okay let's end with some etr spending data and why not compare snowflake and data bricks spending profiles this is an xy graph with net score or spending momentum on the y-axis and pervasiveness or overlap in the data set on the x-axis this is data from the january survey when snowflake was holding above 80 percent net score off the charts databricks was also very strong in the upper 60s now let's fast forward to this next chart and show you the july etr survey data and you can see snowflake has come back down to earth now remember anything above 40 net score is highly elevated so both companies are doing well but snowflake is well off its highs and data bricks has come down somewhat as well databricks is inching to the right snowflake rocketed to the right post its ipo and as we know databricks wasn't able to get to ipo during the covet bubble ali gotzi is at the morgan stanley ceo conference this week they got plenty of cash to withstand a long-term recession i'm told and they've started the message that they're a billion dollars in annualized revenue i'm not sure exactly what that means i've seen some numbers on their gross margins i'm not sure what that means i've seen some numbers on their net retention revenue or net revenue retention again i'll reserve judgment until we see an s1 but it's clear both of these companies have momentum and they're out competing in the market well as always be the ultimate arbiter different philosophies perhaps is it like democrats and republicans well it could be but they're both going after a solving data problem both companies are trying to help customers get more value out of their data and both companies are highly valued so they have to perform for their investors to paraphrase ralph nader the similarities may be greater than the differences okay that's it for today thanks to the team from palo alto for this awesome super cloud studio build alex myerson and ken shiffman are on production in the palo alto studios today kristin martin and sheryl knight get the word out to our community rob hoff is our editor-in-chief over at siliconangle thanks to all please check out etr.ai for all the survey data remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcasts i publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante at siliconangle.com or dm me at devellante or comment on my linkedin posts and please as i say etr has got some of the best survey data in the business we track it every quarter and really excited to be partners with them this is dave vellante for the cube insights powered by etr thanks for watching and we'll see you next time on breaking analysis [Music] you

Published Date : Aug 14 2022

SUMMARY :

and and the retry you know mechanism is

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
netflixORGANIZATION

0.99+

john furrierPERSON

0.99+

palo altoORGANIZATION

0.99+

tony bearPERSON

0.99+

bostonLOCATION

0.99+

sanji mohanPERSON

0.99+

ken shiffmanPERSON

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

ellie gotziPERSON

0.99+

VMwareORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

more than four petabytesQUANTITY

0.99+

first pointQUANTITY

0.99+

kristin martinPERSON

0.99+

both companiesQUANTITY

0.99+

first questionQUANTITY

0.99+

rob hoffPERSON

0.99+

more than oneQUANTITY

0.99+

second modelQUANTITY

0.98+

alex myersonPERSON

0.98+

third modelQUANTITY

0.98+

one regionQUANTITY

0.98+

one copyQUANTITY

0.98+

one regionQUANTITY

0.98+

five essential elementsQUANTITY

0.98+

androidTITLE

0.98+

100QUANTITY

0.98+

first lineQUANTITY

0.98+

DatabricksORGANIZATION

0.98+

sherylPERSON

0.98+

more than one cloudQUANTITY

0.98+

firstQUANTITY

0.98+

iphoneCOMMERCIAL_ITEM

0.98+

super cloud 22EVENT

0.98+

each cloudQUANTITY

0.98+

eachQUANTITY

0.97+

sanjay mohanPERSON

0.97+

johnPERSON

0.97+

republicansORGANIZATION

0.97+

this weekDATE

0.97+

hundreds of yearsQUANTITY

0.97+

siliconangleORGANIZATION

0.97+

each weekQUANTITY

0.97+

data lake houseORGANIZATION

0.97+

one single regionQUANTITY

0.97+

januaryDATE

0.97+

dave vellantePERSON

0.96+

each regionQUANTITY

0.96+

oneQUANTITY

0.96+

dave vellantePERSON

0.96+

tonyPERSON

0.96+

above 80 percentQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

more than one cloudQUANTITY

0.95+

data lakeORGANIZATION

0.95+

five essential propertiesQUANTITY

0.95+

democratsORGANIZATION

0.95+

first timeQUANTITY

0.95+

julyDATE

0.94+

linuxTITLE

0.94+

etrORGANIZATION

0.94+

devellanteORGANIZATION

0.93+

dodgevilleORGANIZATION

0.93+

each vendorQUANTITY

0.93+

super cloud 22ORGANIZATION

0.93+

delta lakeORGANIZATION

0.92+

three deployment modelsQUANTITY

0.92+

first linesQUANTITY

0.92+

dejavilleLOCATION

0.92+

day oneQUANTITY

0.92+

Closing Remarks | Supercloud22


 

(gentle upbeat music) >> Welcome back everyone, to "theCUBE"'s live stage performance here in Palo Alto, California at "theCUBE" Studios. I'm John Furrier with Dave Vellante, kicking off our first inaugural Supercloud event. It's an editorial event, we wanted to bring together the best in the business, the smartest, the biggest, the up-and-coming startups, venture capitalists, everybody, to weigh in on this new Supercloud trend, this structural change in the cloud computing business. We're about to run the Ecosystem Speaks, which is a bunch of pre-recorded companies that wanted to get their voices on the record, so stay tuned for the rest of the day. We'll be replaying all that content and they're going to be having some really good commentary and hear what they have to say. I had a chance to interview and so did Dave. Dave, this is our closing segment where we kind of unpack everything or kind of digest and report. So much to kind of digest from the conversations today, a wide range of commentary from Supercloud operating system to developers who are in charge to maybe it's an ops problem or maybe Oracle's a Supercloud. I mean, that was debated. So so much discussion, lot to unpack. What was your favorite moments? >> Well, before I get to that, I think, I go back to something that happened at re:Invent last year. Nick Sturiale came up, Steve Mullaney from Aviatrix; we're going to hear from him shortly in the Ecosystem Speaks. Nick Sturiale's VC said "it's happening"! And what he was talking about is this ecosystem is exploding. They're building infrastructure or capabilities on top of the CapEx infrastructure. So, I think it is happening. I think we confirmed today that Supercloud is a thing. It's a very immature thing. And I think the other thing, John is that, it seems to me that the further you go up the stack, the weaker the business case gets for doing Supercloud. We heard from Marianna Tessel, it's like, "Eh, you know, we can- it was easier to just do it all on one cloud." This is a point that, Adrian Cockcroft just made on the panel and so I think that when you break out the pieces of the stack, I think very clearly the infrastructure layer, what we heard from Confluent and HashiCorp, and certainly VMware, there's a real problem there. There's a real need at the infrastructure layer and then even at the data layer, I think Benoit Dageville did a great job of- You know, I was peppering him with all my questions, which I basically was going through, the Supercloud definition and they ticked the box on pretty much every one of 'em as did, by the way Ali Ghodsi you know, the big difference there is the philosophy of Republicans and Democrats- got open versus closed, not to apply that to either one side, but you know what I mean! >> And the similarities are probably greater than differences. >> Berkely, I would probably put them on the- >> Yeah, we'll put them on the Democrat side we'll make Snowflake the Republicans. But so- but as we say there's a lot of similarities as well in terms of what their objectives are. So, I mean, I thought it was a great program and a really good start to, you know, an industry- You brought up the point about the industry consortium, asked Kit Colbert- >> Yep. >> If he thought that was something that was viable and what'd they say? That hyperscale should lead it? >> Yeah, they said hyperscale should lead it and there also should be an industry consortium to get the voices out there. And I think VMware is very humble in how they're putting out their white paper because I think they know that they can't do it all and that they do not have a great track record relative to cloud. And I think, but they have a great track record of loyal installed base ops people using VMware vSphere all the time. >> Yeah. >> So I think they need a catapult moment where they can catapult to the cloud native which they've been working on for years under Raghu and the team. So the question on VMware is in the light of Broadcom, okay, acquisition of VMware, this is an opportunity or it might not be an opportunity or it might be a spin-out or something, I just think VMware's got way too much engineering culture to be ignored, Dave. And I think- well, I'm going to watch this very closely because they can pull off some sort of rallying moment. I think they could. And then you hear the upstarts like Platform9, Rafay Systems and others they're all like, "Yes, we need to unify behind something. There needs to be some sort of standard". You know, we heard the argument of you know, more standards bodies type thing. So, it's interesting, maybe "theCUBE" could be that but we're going to certainly keep the conversation going. >> I thought one of the most memorable statements was Vittorio who said we- for VMware, we want our cake, we want to eat it too and we want to lose weight. So they have a lot of that aspirations there! (John laughs) >> And then I thought, Adrian Cockcroft said you know, the devs, they want to get married. They were marrying everybody, and then the ops team, they have to deal with the divorce. >> Yeah. >> And I thought that was poignant. It's like, they want consistency, they want standards, they got to be able to scale And Lori MacVittie, I'm not sure you agree with this, I'd have to think about it, but she was basically saying, all we've talked about is devs devs devs for the last 10 years, going forward we're going to be talking about ops. >> Yeah, and I think one of the things I learned from this day and looking back, and some kind of- I've been sauteing through all the interviews. If you zoom out, for me it was the epiphany of developers are still in charge. And I've said, you know, the developers are doing great, it's an ops security thing. Not sure I see that the way I was seeing before. I think what I learned was the refactoring pattern that's emerging, In Sik Rhee brought this up from Vertex Ventures with Marianna Tessel, it's a nuanced point but I think he's right on which is the pattern that's emerging is developers want ease-of-use tooling, they're driving the change and I think the developers in the devs ops ethos- it's never going to be separate. It's going to be DevOps. That means developers are driving operations and then security. So what I learned was it's not ops teams leveling up, it's devs redefining what ops is. >> Mm. And I think that to me is where Supercloud's going to be interesting- >> Forcing that. >> Yeah. >> Forcing the change because the structural change is open sources thriving, devs are still in charge and they still want more developers, Vittorio "we need more developers", right? So the developers are in charge and that's clear. Now, if that happens- if you believe that to be true the domino effect of that is going to be amazing because then everyone who gets on the wrong side of history, on the ops and security side, is going to be fighting a trend that may not be fight-able, you know, it might be inevitable. And so the winners are the ones that are refactoring their business like Snowflake. Snowflake is a data warehouse that had nothing to do with Amazon at first. It was the developers who said "I'm going to refactor data warehouse on AWS". That is a developer-driven refactorization and a business model. So I think that's the pattern I'm seeing is that this concept refactoring, patterns and the developer trajectory is critical. >> I thought there was another great comment. Maribel Lopez, her Lord of the Rings comment: "there will be no one ring to rule them all". Now at the same time, Kit Colbert, you know what we asked him straight out, "are you the- do you want to be the, the Supercloud OS?" and he basically said, "yeah, we do". Now, of course they're confined to their world, which is a pretty substantial world. I think, John, the reason why Maribel is so correct is security. I think security's a really hard problem to solve. You've got cloud as the first layer of defense and now you've got multiple clouds, multiple layers of defense, multiple shared responsibility models. You've got different tools for XDR, for identity, for governance, for privacy all within those different clouds. I mean, that really is a confusing picture. And I think the hardest- one of the hardest parts of Supercloud to solve. >> Yeah, and I thought the security founder Gee Rittenhouse, Piyush Sharrma from Accurics, which sold to Tenable, and Tony Kueh, former head of product at VMware. >> Right. >> Who's now an investor kind of looking for his next gig or what he is going to do next. He's obviously been extremely successful. They brought up the, the OS factor. Another point that they made I thought was interesting is that a lot of the things to do to solve the complexity is not doable. >> Yeah. >> It's too much work. So managed services might field the bit. So, and Chris Hoff mentioned on the Clouderati segment that the higher level services being a managed service and differentiating around the service could be the key competitive advantage for whoever does it. >> I think the other thing is Chris Hoff said "yeah, well, Web 3, metaverse, you know, DAO, Superclouds" you know, "Stupercloud" he called it and this bring up- It resonates because one of the criticisms that Charles Fitzgerald laid on us was, well, it doesn't help to throw out another term. I actually think it does help. And I think the reason it does help is because it's getting people to think. When you ask people about Supercloud, they automatically- it resonates with them. They play back what they think is the future of cloud. So Supercloud really talks to the future of cloud. There's a lot of aspects to it that need to be further defined, further thought out and we're getting to the point now where we- we can start- begin to say, okay that is Supercloud or that isn't Supercloud. >> I think that's really right on. I think Supercloud at the end of the day, for me from the simplest way to describe it is making sure that the developer experience is so good that the operations just happen. And Marianna Tessel said, she's investing in making their developer experience high velocity, very easy. So if you do that, you have to run on premise and on the cloud. So hybrid really is where Supercloud is going right now. It's not multi-cloud. Multi-cloud was- that was debunked on this session today. I thought that was clear. >> Yeah. Yeah, I mean I think- >> It's not about multi-cloud. It's about operationally seamless operations across environments, public cloud to on-premise, basically. >> I think we got consensus across the board that multi-cloud, you know, is a symptom Chuck Whitten's thing of multi-cloud by default versus multi- multi-cloud has not been a strategy, Kit Colbert said, up until the last couple of years. Yeah, because people said, "oh we got all these multiple clouds, what do we do with it?" and we got this mess that we have to solve. Whereas, I think Supercloud is something that is a strategy and then the other nuance that I keep bringing up is it's industries that are- as part of their digital transformation, are building clouds. Now, whether or not they become superclouds, I'm not convinced. I mean, what Goldman Sachs is doing, you know, with AWS, what Walmart's doing with Azure connecting their on-prem tools to those public clouds, you know, is that a supercloud? I mean, we're going to have to go back and really look at that definition. Or is it just kind of a SAS that spans on-prem and cloud. So, as I said, the further you go up the stack, the business case seems to wane a little bit but there's no question in my mind that from an infrastructure standpoint, to your point about operations, there's a real requirement for super- what we call Supercloud. >> Well, we're going to keep the conversation going, Dave. I want to put a shout out to our founding supporters of this initiative. Again, we put this together really fast kind of like a pilot series, an inaugural event. We want to have a face-to-face event as an industry event. Want to thank the founding supporters. These are the people who donated their time, their resource to contribute content, ideas and some cash, not everyone has committed some financial contribution but we want to recognize the names here. VMware, Intuit, Red Hat, Snowflake, Aisera, Alteryx, Confluent, Couchbase, Nutanix, Rafay Systems, Skyhigh Security, Aviatrix, Zscaler, Platform9, HashiCorp, F5 and all the media partners. Without their support, this wouldn't have happened. And there are more people that wanted to weigh in. There was more demand than we could pull off. We'll certainly continue the Supercloud conversation series here on "theCUBE" and we'll add more people in. And now, after this session, the Ecosystem Speaks session, we're going to run all the videos of the big name companies. We have the Nutanix CEOs weighing in, Aviatrix to name a few. >> Yeah. Let me, let me chime in, I mean you got Couchbase talking about Edge, Platform 9's going to be on, you know, everybody, you know Insig was poopoo-ing Oracle, but you know, Oracle and Azure, what they did, two technical guys, developers are coming on, we dig into what they did. Howie Xu from Zscaler, Paula Hansen is going to talk about going to market in the multi-cloud world. You mentioned Rajiv, the CEO of Nutanix, Ramesh is going to talk about multi-cloud infrastructure. So that's going to run now for, you know, quite some time here and some of the pre-record so super excited about that and I just want to thank the crew. I hope guys, I hope you have a list of credits there's too many of you to mention, but you know, awesome jobs really appreciate the work that you did in a very short amount of time. >> Well, I'm excited. I learned a lot and my takeaway was that Supercloud's a thing, there's a kind of sense that people want to talk about it and have real conversations, not BS or FUD. They want to have real substantive conversations and we're going to enable that on "theCUBE". Dave, final thoughts for you. >> Well, I mean, as I say, we put this together very quickly. It was really a phenomenal, you know, enlightening experience. I think it confirmed a lot of the concepts and the premises that we've put forth, that David Floyer helped evolve, that a lot of these analysts have helped evolve, that even Charles Fitzgerald with his antagonism helped to really sharpen our knives. So, you know, thank you Charles. And- >> I like his blog, by the I'm a reader- >> Yeah, absolutely. And it was great to be back in Palo Alto. It was my first time back since pre-COVID, so, you know, great job. >> All right. I want to thank all the crew and everyone. Thanks for watching this first, inaugural Supercloud event. We are definitely going to be doing more of these. So stay tuned, maybe face-to-face in person. I'm John Furrier with Dave Vellante now for the Ecosystem chiming in, and they're going to speak and share their thoughts here with "theCUBE" our first live stage performance event in our studio. Thanks for watching. (gentle upbeat music)

Published Date : Aug 9 2022

SUMMARY :

and they're going to be having as did, by the way Ali Ghodsi you know, And the similarities on the Democrat side And I think VMware is very humble So the question on VMware is and we want to lose weight. they have to deal with the divorce. And I thought that was poignant. Not sure I see that the Mm. And I think that to me is where And so the winners are the ones that are of the Rings comment: the security founder Gee Rittenhouse, a lot of the things to do So, and Chris Hoff mentioned on the is the future of cloud. is so good that the public cloud to on-premise, basically. So, as I said, the further and all the media partners. So that's going to run now for, you know, I learned a lot and my takeaway was and the premises that we've put forth, since pre-COVID, so, you know, great job. and they're going to speak

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TristanPERSON

0.99+

George GilbertPERSON

0.99+

JohnPERSON

0.99+

GeorgePERSON

0.99+

Steve MullaneyPERSON

0.99+

KatiePERSON

0.99+

David FloyerPERSON

0.99+

CharlesPERSON

0.99+

Mike DooleyPERSON

0.99+

Peter BurrisPERSON

0.99+

ChrisPERSON

0.99+

Tristan HandyPERSON

0.99+

BobPERSON

0.99+

Maribel LopezPERSON

0.99+

Dave VellantePERSON

0.99+

Mike WolfPERSON

0.99+

VMwareORGANIZATION

0.99+

MerimPERSON

0.99+

Adrian CockcroftPERSON

0.99+

AmazonORGANIZATION

0.99+

BrianPERSON

0.99+

Brian RossiPERSON

0.99+

Jeff FrickPERSON

0.99+

Chris WegmannPERSON

0.99+

Whole FoodsORGANIZATION

0.99+

EricPERSON

0.99+

Chris HoffPERSON

0.99+

Jamak DaganiPERSON

0.99+

Jerry ChenPERSON

0.99+

CaterpillarORGANIZATION

0.99+

John WallsPERSON

0.99+

Marianna TesselPERSON

0.99+

JoshPERSON

0.99+

EuropeLOCATION

0.99+

JeromePERSON

0.99+

GoogleORGANIZATION

0.99+

Lori MacVittiePERSON

0.99+

2007DATE

0.99+

SeattleLOCATION

0.99+

10QUANTITY

0.99+

fiveQUANTITY

0.99+

Ali GhodsiPERSON

0.99+

Peter McKeePERSON

0.99+

NutanixORGANIZATION

0.99+

Eric HerzogPERSON

0.99+

IndiaLOCATION

0.99+

MikePERSON

0.99+

WalmartORGANIZATION

0.99+

five yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Kit ColbertPERSON

0.99+

PeterPERSON

0.99+

DavePERSON

0.99+

Tanuja RanderyPERSON

0.99+

Super Data Cloud | Supercloud22


 

(electronic music) >> Welcome back to our studios in Palo Alto, California. My name is Dave Vellante, I'm here with John Furrier, who is taking a quick break. You know, in one of the early examples that we used of so called super cloud was Snowflake. We called it a super data cloud. We had, really, a lot of fun with that. And we've started to evolve our thinking. Years ago, we said that data was going to form in the cloud around industries and ecosystems. And Benoit Dogeville is a many time guest of theCube. He's the co-founder and president of products at Snowflake. Benoit, thanks for spending some time with us, at Supercloud 22, good to see you. >> Thank you, thank you, Dave. >> So, you know, like I said, we've had some fun with this meme. But it really is, we heard on the previous panel, everybody's using Snowflake as an example. Somebody how builds on top of hyper scale infrastructure. You're not building your own data centers. And, so, are you building a super data cloud? >> We don't call it exactly that way. We don't like the super word, it's a bit dismissive. >> That's our term. >> About our friends, cloud provider friends. But we call it a data cloud. And the vision, really, for the data cloud is, indeed, it's a cloud which overlays the hyper scaler cloud. But there is a big difference, right? There are several ways to do this super cloud, as you name them. The way we picked is to create one single system, and that's very important, right? There are several ways, right. You can instantiate your solution in every region of the cloud and, you know, potentially that region could be AWS, that region could be GCP. So, you are, indeed, a multi-cloud solution. But Snowflake, we did it differently. We are really creating cloud regions, which are superimposed on top of the cloud provider region, infrastructure region. So, we are building our regions. But where it's very different is that each region of Snowflake is not one instantiation of our service. Our service is global, by nature. We can move data from one region to the other. When you land in Snowflake, you land into one region. But you can grow from there and you can, you know, exist in multiple cloud at the same time. And that's very important, right? It's not different instantiation of a system, it's one single instantiation which covers many cloud regions and many cloud provider. >> So, we used Snowflake as an example. And we're trying to understand what the salient aspects are of your data cloud, what we call super cloud. In fact, you've used the word instantiate. Kit Colbert, just earlier today, laid out, he said, there's sort of three levels. You can run it on one cloud and communicate with the other cloud, you can instantiate on the clouds, or you can have the same service running 24/7 across clouds, that's the hardest example. >> Yeah. >> The most mature. You just described, essentially, doing that. How do you enable that? What are the technical enablers? >> Yeah, so, as I said, first we start by building, you know, Snowflake regions, we have today 30 regions that span the world, so it's a world wide system, with many regions. But all these regions are connected together. They are meshed together with our technology, we name it Snow Grid, and that makes it hard because, you know, Azure region can talk to a WS region, or GCP regions, and as a user for our cloud, you don't see, really, these regional differences, that regions are in different potentially cloud. When you use Snowflake, you can exist, your presence as an organization can be in several regions, several clouds, if you want, geographic, both geographic and cloud provider. >> So, I can share data irrespective of the cloud. And I'm in the Snowflake data cloud, is that correct? I can do that today? >> Exactly, and that's very critical, right? What we wanted is to remove data silos. And when you insociate a system in one single region, and that system is locked in that region, you cannot communicate with other parts of the world, you are locking data in one region. Right, and we didn't want to do that. We wanted data to be distributed the way customer wants it to be distributed across the world. And potentially sharing data at world scales. >> Does that mean if I'm in one region and I want to run a query, if I'm in AWS in one region, and I want to run a query on data that happens to be in an Azure cloud, I can actually execute that? >> So, yes and no. The way we do it is very expensive to do that. Because, generally, if you want to join data which are in different region and different cloud, it's going to be very expensive because you need to move data every time you join it. So, the way we do it is that you replicate the subset of data that you want to access from one region from other region. So, you can create this data mesh, but data is replicated to make it very cheap and very performing too. >> And is the Snow Grid, does that have the metadata intelligence to actually? >> Yes, yes. >> Can you describe that a little? >> Yeah, Snow Grid is both a way to exchange metadata. So, each region of Snowflake knows about all the other regions of Snowflake. Every time we create a new region, the metadata is distributed over our data cloud, not only region knows all the region, but knows every organization that exists in our cloud, where this organization is, where data can be replicated by this organization. And then, of course, it's also used as a way to exchange data, right? So, you can exchange data by scale of data size. And I was just receiving an email from one of our customers who moved more than four petabytes of data, cross region, cross cloud providers in, you know, few days. And it's a lot of data, so it takes some time to move. But they were able to do that online, completely online, and switch over to the other region, which is very important also. >> So, one of the hardest parts about super cloud that I'm still trying to struggling through is the security model. Because you've got the cloud as your sort of first line of defense. And now we've got multiple clouds, with multiple first lines of defense, I've got a shared responsibility model across those clouds, I've got different tools in each of those clouds. Do you take care of that? Where do you pick up from the cloud providers? Do you abstract that security layer? Do you bring in partners? It's a very complicated. >> No, this is a great question. Security has always been the most important aspect of Snowflake sense day one, right? This is the question that every customer of ours has. You know, how can you guarantee the security of my data? And, so, we secure data really tightly in region. We have several layers of security. It starts by creating every data at rest. And that's very important. A lot of customers are not doing that, right? You hear of these attacks, for example, on cloud, where someone left their buckets. And then, you know, you can access the data because it's a non-encrypted. So, we are encrypting everything at rest. We are encrypting everything in transit. So, a region is very secure. Now, you know, from one region, you never access data from another region in Snowflake. That's why, also, we replicate data. Now the replication of that data across region, or the metadata, for that matter, is really our least secure, so Snow Grid ensures that everything is encrypted, everything is, we have multiple encryption keys, and it's stored in hardware secure modules, so, we bit Snow Grid such that it's secure and it allows very secure movement of data. >> Okay, so, I know we kind of, getting into the technology here a lot today, but because super cloud is the future, we actually have to have an architectural foundation on which to build. So, you mentioned a bucket, like an S3 bucket. Okay, that's storage, but you also, for instance, taking advantage of new semi-conductor technology. Like Graviton, as an example, that drives efficiency. You guys talk about how you pass that on to your customers. Even if it means less revenue for you, so, awesome, we love that, you'll make it up in volume. And, so. >> Exactly. >> How do you deal with the lowest common denominator problem? I was talking to somebody the other day and this individual brought up what I thought was a really good point. What if we, let's say, AWS, have the best, silicon. And we can run the fastest and the least expensive, and the lowest power. But another cloud provider hasn't caught up yet. How do you deal with that delta? Do you just take the best of and try to respect that? >> No, it's a great question. I mean, of course, our software is extracting all the cloud providers infrastructure so that when you run in one region, let's say AWS, or Azure, it doesn't make any difference, as far as the applications are concerned. And this abstraction, of course, is a lot of work. I mean, really, a lot of work. Because it needs to be secure, it needs to be performance, and every cloud, and it has to expose APIs which are uniform. And, you know, cloud providers, even though they have potentially the same concept, let's say block storage, APIs are completely different. The way these systems are secure, it's completely different. There errors that you can get. And the retry mechanism is very different from one cloud to the other. The performance is also different. We discovered that when we starting to port our software. And we had to completely rethink how to leverage block storage in that cloud versus that cloud, because just off performance too. And, so, we had, for example, to stripe data. So, all this work is work that you don't need as an application because our vision, really, is that application, which are running in our data cloud, can be abstracted for this difference. And we provide all the services, all the workload that this application need. Whether it's transactional access to data, analytical access to data, managing logs, managing metrics, all of this is abstracted too, so that they are not tied to one particular service of one cloud. And distributing this application across many region, many cloud, is very seamless. >> So, Snowflake has built, your team has built a true abstraction layer across those clouds that's available today? It's actually shipping? >> Yes, and we are still developing it. You know, transactional, Unistore, as we call it, was announced last summit. So, they are still, you know, work in progress. >> You're not done yet. >> But that's the vision, right? And that's important, because we talk about the infrastructure, right. You mention a lot about storage and compute. But it's not only that, right. When you think about application, they need to use the transactional database. They need to use an analytical system. They need to use machine learning. So, you need to provide, also, all these services which are consistent across all the cloud providers. >> So, let's talk developers. Because, you know, you think Snowpark, you guys announced a big application development push at the Snowflake summit recently. And we have said that a criterion of super cloud is a super paz layer, people wince when I say that, but okay, we're just going to go with it. But the point is, it's a purpose built application development layer, specific to your particular agenda, that supports your vision. >> Yes. >> Have you essentially built a purpose built paz layer? Or do you just take them off the shelf, standard paz, and cobble it together? >> No, we build it a custom build. Because, as you said, what exist in one cloud might not exist in another cloud provider, right. So, we have to build in this, all these components that a multi-application need. And that goes to machine learning, as I said, transactional analytical system, and the entire thing. So that it can run in isolation physically. >> And the objective is the developer experience will be identical across those clouds? >> Yes, the developers doesn't need to worry about cloud provider. And, actually, our system will have, we didn't talk about it, but a marketplace that we have, which allows, actually, to deliver. >> We're getting there. >> Yeah, okay. (both laughing) I won't divert. >> No, no, let's go there, because the other aspect of super cloud that we've talked about is the ecosystem. You have to enable an ecosystem to add incremental value, it's not the power of many versus the capabilities of one. So, talk about the challenges of doing that. Not just the business challenges but, again, I'm interested in the technical and architectural challenges. >> Yeah, yeah, so, it's really about, I mean, the way we enable our ecosystem and our partners to create value on top of our data cloud, is via the marketplace. Where you can put shared data on the marketplace. Provide listing on this marketplace, which are data sets. But it goes way beyond data. It's all the way to application. So, you can think of it as the iPhone. A little bit more, all right. Your iPhone is great. Not so much because the hardware is great, or because of the iOS, but because of all the applications that you have. And all these applications are not necessarily developed by Apple, basically. So, we are, it's the same model with our marketplace. We foresee an environment where providers and partners are going to build these applications. We call it native application. And we are going to help them distribute these applications across cloud, everywhere in the world, potentially. And they don't need to worry about that. They don't need to worry about how these applications are going to be instantiated. We are going to help them to monetize these applications. So, that unlocks, you know, really, all the partner ecosystem that you have seen, you know, with something like the iPhone, right? It has created so many new companies that have developed these applications. >> Your detractors have criticized you for being a walled garden. I've actually used that term. I used terms like defacto standard, which are maybe less sensitive to you, but, nonetheless, we've seen defacto standards actually deliver value. I've talked to Frank Slootman about this, and he said, Dave, we deliver value, that's what we're all about. At the same time, he even said to me, and I want your thoughts on this, is, look, we have to embrace open source where it makes sense. You guys announced Apache Iceberg. So, what are your thoughts on that? Is that to enable a developer ecosystem? Why did you do Iceberg? >> Yeah, Iceberg is very important. So, just to give some context, Iceberg is an open table format. >> Right. >> Which was first developed by Netflix. And Netflix put it open source in the Apache community. So, we embraced that open source standard because it's widely used by many companies. And, also, many companies have really invested a lot of effort in building big data, Hadoop Solutions, or DataX Solution, and they want to use Snowflake. And they couldn't really use Snowflake, because all their data were in open format. So, we are embracing Iceberg to help these companies move through the cloud. But why we have been reluctant with direct access to data, direct access to data is a little bit of a problem for us. And the reason is when you direct access to data, now you have direct access to storage. Now you have to understand, for example, the specificity of one cloud versus the other. So, as soon as you start to have direct access to data, you lose your cloud data sync layer. You don't access data with API. When you have direct access to data, it's very hard to sync your data. Because you need to grant access, direct access to tools which are not protected. And you see a lot of hacking of data because of that. So, direct access to data is not serving well our customers, and that's why we have been reluctant to do that. Because it is not cloud diagnostic. You have to code that, you need a lot of intelligence, why APIs access, so we want open APIs. That's, I guess, the way we embrace openness, is by open API versus you access, directly, data. >> iPhone. >> Yeah, yeah, iPhone, APIs, you know. We define a set of APIs because APIs, you know, the implementation of the APIs can change, can improve. You can improve compression of data, for example. If you open direct access to data now, you cannot evolve. >> My point is, you made a promise, from governed, security, data sharing ecosystem. It works the same way, so that's the path that you've chosen. Benoit Dogeville, thank you so much for coming on theCube and participating in Supercloud 22, really appreciate that. >> Thank you, Dave. It was a great pleasure. >> All right, keep it right there, we'll be right back with our next segment, right after this short break. (electronic music)

Published Date : Aug 9 2022

SUMMARY :

You know, in one of the So, you know, like I said, We don't like the super and you can, you know, or you can have the same How do you enable that? we start by building, you know, And I'm in the Snowflake And when you insociate a So, the way we do it is that you replicate So, you can exchange data So, one of the hardest And then, you know, So, you mentioned a and the least expensive, so that when you run in one So, they are still, you know, So, you need to provide, Because, you know, you think Snowpark, And that goes to machine a marketplace that we have, I won't divert. So, talk about the of all the applications that you have. At the same time, he even said to me, So, just to give some context, You have to code that, you because APIs, you know, so that's the path that you've chosen. It was a great pleasure. with our next segment, right

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Frank SlootmanPERSON

0.99+

BenoitPERSON

0.99+

DavePERSON

0.99+

AppleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

NetflixORGANIZATION

0.99+

John FurrierPERSON

0.99+

Kit ColbertPERSON

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

Benoit DogevillePERSON

0.99+

one regionQUANTITY

0.99+

iOSTITLE

0.99+

30 regionsQUANTITY

0.99+

more than four petabytesQUANTITY

0.99+

SnowflakeEVENT

0.99+

first lineQUANTITY

0.99+

SnowparkORGANIZATION

0.99+

SnowflakeORGANIZATION

0.98+

todayDATE

0.98+

ApacheORGANIZATION

0.98+

bothQUANTITY

0.98+

eachQUANTITY

0.98+

oneQUANTITY

0.97+

UnistoreORGANIZATION

0.97+

Supercloud 22EVENT

0.97+

first linesQUANTITY

0.97+

DataX SolutionORGANIZATION

0.97+

each regionQUANTITY

0.96+

Snow GridTITLE

0.96+

one cloudQUANTITY

0.96+

one single regionQUANTITY

0.96+

firstQUANTITY

0.96+

one regionQUANTITY

0.96+

Hadoop SolutionsORGANIZATION

0.95+

WSORGANIZATION

0.94+

Supercloud 22ORGANIZATION

0.93+

three levelsQUANTITY

0.93+

SnowflakeTITLE

0.93+

one single systemQUANTITY

0.92+

IcebergTITLE

0.89+

one single instantiationQUANTITY

0.89+

theCubeORGANIZATION

0.86+

AzureORGANIZATION

0.85+

Years agoDATE

0.83+

earlier todayDATE

0.82+

one instantiationQUANTITY

0.82+

Super Data CloudORGANIZATION

0.81+

S3COMMERCIAL_ITEM

0.8+

one cloudQUANTITY

0.76+

deltaORGANIZATION

0.76+

AzureTITLE

0.75+

one of our customersQUANTITY

0.72+

day oneQUANTITY

0.72+

Supercloud22EVENT

0.66+

Breaking Analysis: What we hope to learn at Supercloud22


 

>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante. >> The term Supercloud is somewhat new, but the concepts behind it have been bubbling for years, early last decade when NIST put forth a definition of cloud computing it said services had to be accessible over a public network essentially cutting the on-prem crowd out of the cloud conversation. Now a guy named Chuck Hollis, who was a field CTO at EMC at the time and a prolific blogger objected to that criterion and laid out his vision for what he termed a private cloud. Now, in that post, he showed a workload running both on premises and in a public cloud sharing the underlying resources in an automated and seamless manner. What later became known more broadly as hybrid cloud that vision as we now know, really never materialized, and we were left with multi-cloud sets of largely incompatible and disconnected cloud services running in separate silos. The point is what Hollis laid out, IE the ability to abstract underlying infrastructure complexity and run workloads across multiple heterogeneous estates with an identical experience is what super cloud is all about. Hello and welcome to this week's Wikibon cube insights powered by ETR and this breaking analysis. We share what we hope to learn from super cloud 22 next week, next Tuesday at 9:00 AM Pacific. The community is gathering for Supercloud 22 an inclusive pilot symposium hosted by theCUBE and made possible by VMware and other founding partners. It's a one day single track event with more than 25 speakers digging into the architectural, the technical, structural and business aspects of Supercloud. This is a hybrid event with a live program in the morning running out of our Palo Alto studio and pre-recorded content in the afternoon featuring industry leaders, technologists, analysts and investors up and down the technology stack. Now, as I said up front the seeds of super cloud were sewn early last decade. After the very first reinvent we published our Amazon gorilla post, that scene in the upper right corner here. And we talked about how to differentiate from Amazon and form ecosystems around industries and data and how the cloud would change IT permanently. And then up in the upper left we put up a post on the old Wikibon Wiki. Yeah, it used to be a Wiki. Check out my hair by the way way no gray, that's how long ago this was. And we talked about in that post how to compete in the Amazon economy. And we showed a graph of how IT economics were changing. And cloud services had marginal economics that looked more like software than hardware at scale. And this would reset, we said opportunities for both technology sellers and buyers for the next 20 years. And this came into sharper focus in the ensuing years culminating in a milestone post by Greylock's Jerry Chen called Castles in the Cloud. It was an inspiration and catalyst for us using the term Supercloud in John Furrier's post prior to reinvent 2021. So we started to flesh out this idea of Supercloud where companies of all types build services on top of hyperscale infrastructure and across multiple clouds, going beyond multicloud 1.0, if you will, which was really a symptom, as we said, many times of multi-vendor at least that's what we argued. And despite its fuzzy definition, it resonated with people because they knew something was brewing, Keith Townsend the CTO advisor, even though he frankly, wasn't a big fan of the buzzy nature of the term Supercloud posted this awesome Blackboard on Twitter take a listen to how he framed it. Please play the clip. >> Is VMware the right company to make the super cloud work, term that Wikibon came up with to describe the taking of discreet services. So it says RDS from AWS, cloud compute engines from GCP and authentication from Azure to build SaaS applications or enterprise applications that connect back to your data center, is VMware's cross cloud vision 'cause it is just a vision today, the right approach. Or should you be looking towards companies like HashiCorp to provide this overall capability that we all agree, or maybe you don't that we need in an enterprise comment below your thoughts. >> So I really like that Keith has deep practitioner knowledge and lays out a couple of options. I especially like the examples he uses of cloud services. He recognizes the need for cross cloud services and he notes this capability is aspirational today. Remember this was eight or nine months ago and he brings HashiCorp into the conversation as they're one of the speakers at Supercloud 22 and he asks the community, what they think, the thing is we're trying to really test out this concept and people like Keith are instrumental as collaborators. Now I'm sure you're not surprised to hear that mot everyone is on board with the Supercloud meme, in particular Charles Fitzgerald has been a wonderful collaborator just by his hilarious criticisms of the concept. After a couple of super cloud posts, Charles put up his second rendition of "Supercloudifragilisticexpialidoucious". I mean, it's just beautiful, but to boot, he put up this picture of Baghdad Bob asking us to just stop, Bob's real name is Mohamed Said al-Sahaf. He was the minister of propaganda for Sadam Husein during the 2003 invasion of Iraq. And he made these outrageous claims of, you know US troops running in fear and putting down their arms and so forth. So anyway, Charles laid out several frankly very helpful critiques of Supercloud which has led us to really advance the definition and catalyze the community's thinking on the topic. Now, one of his issues and there are many is we said a prerequisite of super cloud was a super PaaS layer. Gartner's Lydia Leong chimed in saying there were many examples of successful PaaS vendors built on top of a hyperscaler some having the option to run in more than one cloud provider. But the key point we're trying to explore is the degree to which that PaaS layer is purpose built for a specific super cloud function. And not only runs in more than one cloud provider, Lydia but runs across multiple clouds simultaneously creating an identical developer experience irrespective of a state. Now, maybe that's what Lydia meant. It's hard to say from just a tweet and she's a sharp lady, so, and knows more about that market, that PaaS market, than I do. But to the former point at Supercloud 22, we have several examples. We're going to test. One is Oracle and Microsoft's recent announcement to run database services on OCI and Azure, making them appear as one rather than use an off the shelf platform. Oracle claims to have developed a capability for developers specifically built to ensure high performance low latency, and a common experience for developers across clouds. Another example we're going to test is Snowflake. I'll be interviewing Benoit Dageville co-founder of Snowflake to understand the degree to which Snowflake's recent announcement of an application development platform is perfect built, purpose built for the Snowflake data cloud. Is it just a plain old pass, big whoop as Lydia claims or is it something new and innovative, by the way we invited Charles Fitz to participate in Supercloud 22 and he decline saying in addition to a few other somewhat insulting things there's definitely interesting new stuff brewing that isn't traditional cloud or SaaS but branding at all super cloud doesn't help either. Well, indeed, we agree with part of that and we'll see if it helps advanced thinking and helps customers really plan for the future. And that's why Supercloud 22 has going to feature some of the best analysts in the business in The Great Supercloud Debate. In addition to Keith Townsend and Maribel Lopez of Lopez research and Sanjeev Mohan from former Gartner analyst and principal at SanjMo participated in this session. Now we don't want to mislead you. We don't want to imply that these analysts are hopping on the super cloud bandwagon but they're more than willing to go through the thought experiment and mental exercise. And, we had a great conversation that you don't want to miss. Maribel Lopez had what I thought was a really excellent way to think about this. She used TCP/IP as an historical example, listen to what she said. >> And Sanjeev Mohan has some excellent thoughts on the feasibility of an open versus de facto standard getting us to the vision of Supercloud, what's possible and what's likely now, again, I don't want to imply that these analysts are out banging the Supercloud drum. They're not necessarily doing that, but they do I think it's fair to say believe that something new is bubbling and whether it's called Supercloud or multicloud 2.0 or cross cloud services or whatever name you choose it's not multicloud of the 2010s and we chose Supercloud. So our goal here is to advance the discussion on what's next in cloud and Supercloud is meant to be a term to describe that future of cloud and specifically the cloud opportunities that can be built on top of hyperscale, compute, storage, networking machine learning, and other services at scale. And that is why we posted this piece on Answering the top 10 questions about Supercloud. Many of which were floated by Charles Fitzgerald and others in the community. Why does the industry need another term what's really new and different? And what is hype? What specific problems does Supercloud solve? What are the salient characteristics of Supercloud? What's different beyond multicloud? What is a super pass? Is it necessary to have a Supercloud? How will applications evolve on superclouds? What workloads will run? All these questions will be addressed in detail as a way to advance the discussion and help practitioners and business people understand what's real today. And what's possible with cloud in the near future. And one other question we'll address is who will build super clouds? And what new entrance we can expect. This is an ETR graphic that we showed in a previous episode of breaking analysis, and it lays out some of the companies we think are building super clouds or in a position to do so, by the way the Y axis shows net score or spending velocity and the X axis depicts presence in the ETR survey of more than 1200 respondents. But the key callouts to this slide in addition to some of the smaller firms that aren't yet showing up in the ETR data like Chaossearch and Starburst and Aviatrix and Clumio but the really interesting additions are industry players Walmart with Azure, Capital one and Goldman Sachs with AWS, Oracle, with Cerner. These we think are early examples, bubbling up of industry clouds that will eventually become super clouds. So we'll explore these and other trends to get the community's input on how this will all play out. These are the things we hope you'll take away from Supercloud 22. And we have an amazing lineup of experts to answer your question. Technologists like Kit Colbert, Adrian Cockcroft, Mariana Tessel, Chris Hoff, Will DeForest, Ali Ghodsi, Benoit Dageville, Muddu Sudhakar and many other tech athletes, investors like Jerry Chen and In Sik Rhee the analyst we featured earlier, Paula Hansen talking about go to market in a multi-cloud world Gee Rittenhouse talking about cloud security, David McJannet, Bhaskar Gorti of Platform9 and many, many more. And of course you, so please go to theCUBE.net and register for Supercloud 22, really lightweight reg. We're not doing this for lead gen. We're doing it for collaboration. If you sign in you can get the chat and ask questions in real time. So don't miss this inaugural event Supercloud 22 on August 9th at 9:00 AM Pacific. We'll see you there. Okay. That's it for today. Thanks for watching. Thank you to Alex Myerson who's on production and manages the podcast. Kristen Martin and Cheryl Knight. They help get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE. Does some really wonderful editing. Thank you to all. Remember these episodes are all available as podcasts wherever you listen, just search breaking analysis podcast. I publish each week on wikibon.com and Siliconangle.com. And you can email me at David.Vellantesiliconangle.com or DM me at Dvellante, comment on my LinkedIn post. Please do check out ETR.AI for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching. And we'll see you next week in Palo Alto at Supercloud 22 or next time on breaking analysis. (calm music)

Published Date : Aug 5 2022

SUMMARY :

This is breaking analysis and buyers for the next 20 years. Is VMware the right company is the degree to which that PaaS layer and specifically the cloud opportunities

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Alex MyersonPERSON

0.99+

Dave VellantePERSON

0.99+

David McJannetPERSON

0.99+

Cheryl KnightPERSON

0.99+

Paula HansenPERSON

0.99+

Jerry ChenPERSON

0.99+

Adrian CockcroftPERSON

0.99+

Maribel LopezPERSON

0.99+

Keith TownsendPERSON

0.99+

Kristen MartinPERSON

0.99+

Chuck HollisPERSON

0.99+

Charles FitzPERSON

0.99+

CharlesPERSON

0.99+

Chris HoffPERSON

0.99+

KeithPERSON

0.99+

Mariana TesselPERSON

0.99+

AWSORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

Ali GhodsiPERSON

0.99+

OracleORGANIZATION

0.99+

Charles FitzgeraldPERSON

0.99+

Mohamed Said al-SahafPERSON

0.99+

Kit ColbertPERSON

0.99+

WalmartORGANIZATION

0.99+

Rob HofPERSON

0.99+

ClumioORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

Gee RittenhousePERSON

0.99+

AviatrixORGANIZATION

0.99+

ChaossearchORGANIZATION

0.99+

Benoit DagevillePERSON

0.99+

AmazonORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

NISTORGANIZATION

0.99+

Lydia LeongPERSON

0.99+

Muddu SudhakarPERSON

0.99+

BobPERSON

0.99+

CernerORGANIZATION

0.99+

John FurrierPERSON

0.99+

Sanjeev MohanPERSON

0.99+

Capital oneORGANIZATION

0.99+

David.Vellantesiliconangle.comOTHER

0.99+

StarburstORGANIZATION

0.99+

EMCORGANIZATION

0.99+

2010sDATE

0.99+

Will DeForestPERSON

0.99+

more than 1200 respondentsQUANTITY

0.99+

one dayQUANTITY

0.99+

VMwareORGANIZATION

0.99+

GartnerORGANIZATION

0.99+

2021DATE

0.99+

next weekDATE

0.99+

Supercloud 22EVENT

0.99+

theCUBE.netOTHER

0.99+

Bhaskar GortiPERSON

0.99+

SupercloudORGANIZATION

0.98+

each weekQUANTITY

0.98+

eightDATE

0.98+

SanjMoORGANIZATION

0.98+

LydiaPERSON

0.98+

theCUBEORGANIZATION

0.98+

PaaSTITLE

0.98+

more than 25 speakersQUANTITY

0.98+

SnowflakeORGANIZATION

0.98+

Platform9ORGANIZATION

0.97+

firstQUANTITY

0.97+

oneQUANTITY

0.97+

todayDATE

0.97+

HollisPERSON

0.97+

Sadam HuseinPERSON

0.97+

second renditionQUANTITY

0.97+

BostonLOCATION

0.97+

SiliconANGLEORGANIZATION

0.96+

more than one cloud providerQUANTITY

0.96+

bothQUANTITY

0.95+

super cloud 22EVENT

0.95+

Supercloud22


 

(upbeat music) >> On August 9th at 9:00 am Pacific, we'll be broadcasting live from theCUBE Studios in Palo Alto, California. Supercloud22, an open industry event made possible by VMware. Supercloud22 will lay out the future of multi-cloud services in the 2020s. John Furrier and I will be hosting a star lineup, including Kit Colbert, VMware CTO, Benoit Dageville, co-founder of Snowflake, Marianna Tessel, CTO of Intuit, Ali Ghodsi, CEO of Databricks, Adrian Cockcroft, former CTO of Netflix, Jerry Chen of Greylock, Chris Hoff aka Beaker, Maribel Lopez, Keith Townsend, Sanjiv Mohan, and dozens of thought leaders. A full day track with 17 sessions. You won't want to miss Supercloud22. Go to thecube.net to mark your calendar and learn more about this free hybrid event. We'll see you there. (upbeat music)

Published Date : Jul 30 2022

SUMMARY :

and dozens of thought leaders.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TristanPERSON

0.99+

George GilbertPERSON

0.99+

JohnPERSON

0.99+

GeorgePERSON

0.99+

Steve MullaneyPERSON

0.99+

KatiePERSON

0.99+

David FloyerPERSON

0.99+

CharlesPERSON

0.99+

Mike DooleyPERSON

0.99+

Peter BurrisPERSON

0.99+

ChrisPERSON

0.99+

Tristan HandyPERSON

0.99+

BobPERSON

0.99+

Maribel LopezPERSON

0.99+

Dave VellantePERSON

0.99+

Mike WolfPERSON

0.99+

VMwareORGANIZATION

0.99+

MerimPERSON

0.99+

Adrian CockcroftPERSON

0.99+

AmazonORGANIZATION

0.99+

BrianPERSON

0.99+

Brian RossiPERSON

0.99+

Jeff FrickPERSON

0.99+

Chris WegmannPERSON

0.99+

Whole FoodsORGANIZATION

0.99+

EricPERSON

0.99+

Chris HoffPERSON

0.99+

Jamak DaganiPERSON

0.99+

Jerry ChenPERSON

0.99+

CaterpillarORGANIZATION

0.99+

John WallsPERSON

0.99+

Marianna TesselPERSON

0.99+

JoshPERSON

0.99+

EuropeLOCATION

0.99+

JeromePERSON

0.99+

GoogleORGANIZATION

0.99+

Lori MacVittiePERSON

0.99+

2007DATE

0.99+

SeattleLOCATION

0.99+

10QUANTITY

0.99+

fiveQUANTITY

0.99+

Ali GhodsiPERSON

0.99+

Peter McKeePERSON

0.99+

NutanixORGANIZATION

0.99+

Eric HerzogPERSON

0.99+

IndiaLOCATION

0.99+

MikePERSON

0.99+

WalmartORGANIZATION

0.99+

five yearsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Kit ColbertPERSON

0.99+

PeterPERSON

0.99+

DavePERSON

0.99+

Tanuja RanderyPERSON

0.99+

Ed Walsh, ChaosSearch | AWS re:Inforce 2022


 

(upbeat music) >> Welcome back to Boston, everybody. This is the birthplace of theCUBE. In 2010, May of 2010 at EMC World, right in this very venue, John Furrier called it the chowder and lobster post. I'm Dave Vellante. We're here at RE:INFORCE 2022, Ed Walsh, CEO of ChaosSearch. Doing a drive by Ed. Thanks so much for stopping in. You're going to help me wrap up in our final editorial segment. >> Looking forward to it. >> I really appreciate it. >> Thank you for including me. >> How about that? 2010. >> That's amazing. It was really in this-- >> Really in this building. Yeah, we had to sort of bury our way in, tunnel our way into the Blogger Lounge. We did four days. >> Weekends, yeah. >> It was epic. It was really epic. But I'm glad they're back in Boston. AWS was going to do June in Houston. >> Okay. >> Which would've been awful. >> Yeah, yeah. No, this is perfect. >> Yeah. Thank God they came back. You saw Boston in summer is great. I know it's been hot, And of course you and I are from this area. >> Yeah. >> So how you been? What's going on? I mean, it's a little crazy out there. The stock market's going crazy. >> Sure. >> Having the tech lash, what are you seeing? >> So it's an interesting time. So I ran a company in 2008. So we've been through this before. By the way, the world's not ending, we'll get through this. But it is an interesting conversation as an investor, but also even the customers. There's some hesitation but you have to basically have the right value prop, otherwise things are going to get sold. So we are seeing longer sales cycles. But it's nothing that you can't overcome. But it has to be something not nice to have, has to be a need to have. But I think we all get through it. And then there is some, on the VC side, it's now buckle down, let's figure out what to do which is always a challenge for startup plans. >> In pre 2000 you, maybe you weren't a CEO but you were definitely an executive. And so now it's different and a lot of younger people haven't seen this. You've got interest rates now rising. Okay, we've seen that before but it looks like you've got inflation, you got interest rates rising. >> Yep. >> The consumer spending patterns are changing. You had 6$, $7 gas at one point. So you have these weird crosscurrents, >> Yup. >> And people are thinking, "Okay post-September now, maybe because of the recession, the Fed won't have to keep raising interest rates and tightening. But I don't know what to root for. It's like half full, half empty. (Ed laughing) >> But we haven't been in an environment with high inflation. At least not in my career. >> Right. Right. >> I mean, I got into 92, like that was long gone, right?. >> Yeah. >> So it is a interesting regime change that we're going to have to deal with, but there's a lot of analogies between 2008 and now that you still have to work through too, right?. So, anyway, I don't think the world's ending. I do think you have to run a tight shop. So I think the grow all costs is gone. I do think discipline's back in which, for most of us, discipline never left, right?. So, to me that's the name of the game. >> What do you tell just generally, I mean you've been the CEO of a lot of private companies. And of course one of the things that you do to retain people and attract people is you give 'em stock and it's great and everybody's excited. >> Yeah. >> I'm sure they're excited cause you guys are a rocket ship. But so what's the message now that, Okay the market's down, valuations are down, the trees don't grow to the moon, we all know that. But what are you telling your people? What's their reaction? How do you keep 'em motivated? >> So like anything, you want over communicate during these times. So I actually over communicate, you get all these you know, the Sequoia decks, 2008 and the recent... >> (chuckles) Rest in peace good times, that one right? >> I literally share it. Why? It's like, Hey, this is what's going on in the real world. It's going to affect us. It has almost nothing to do with us specifically, but it will affect us. Now we can't not pay attention to it. It does change how you're going to raise money, so you got to make sure you have the right runway to be there. So it does change what you do, but I think you over communicate. So that's what I've been doing and I think it's more like a student of the game, so I try to share it, and I say some appreciate it others, I'm just saying, this is normal, we'll get through this and this is what happened in 2008 and trust me, once the market hits bottom, give it another month afterwards. Then everyone says, oh, the bottom's in and we're back to business. Valuations don't go immediately back up, but right now, no one knows where the bottom is and that's where kind of the world's ending type of things. >> Well, it's interesting because you talked about, I said rest in peace good times >> Yeah >> that was the Sequoia deck, and the message was tighten up. Okay, and I'm not saying you shouldn't tighten up now, but the difference is, there was this period of two years of easy money and even before that, it was pretty easy money. >> Yeah. >> And so companies are well capitalized, they have runway so it's like, okay, I was talking to Frank Slootman about this now of course there are public companies, like we're not taking the foot off the gas. We're inherently profitable, >> Yeah. >> we're growing like crazy, we're going for it. You know? So that's a little bit of a different dynamic. There's a lot of good runway out there, isn't there? >> But also you look at the different companies that were either born or were able to power through those environments are actually better off. You come out stronger in a more dominant position. So Frank, listen, if you see what Frank's done, it's been unbelievable to watch his career, right?. In fact, he was at Data Domain, I was Avamar so, but look at what he's done since, he's crushed it. Right? >> Yeah. >> So for him to say, Hey, I'm going to literally hit the gas and keep going. I think that's the right thing for Snowflake and a right thing for a lot of people. But for people in different roles, I literally say that you have to take it seriously. What you can't be is, well, Frank's in a different situation. What is it...? How many billion does he have in the bank? So it's... >> He's over a billion, you know, over a billion. Well, you're on your way Ed. >> No, no, no, it's good. (Dave chuckles) Okay, I want to ask you about this concept that we've sort of we coined this term called Supercloud. >> Sure. >> You could think of it as the next generation of multi-cloud. The basic premises that multi-cloud was largely a symptom of multi-vendor. Okay. I've done some M&A, I've got some Shadow IT, spinning up, you know, Shadow clouds, projects. But it really wasn't a strategy to have a continuum across clouds. And now we're starting to see ecosystems really build, you know, you've used the term before, standing on the shoulders of giants, you've used that a lot. >> Yep. >> And so we're seeing that. Jerry Chen wrote a seminal piece on Castles in The Cloud, so we coined this term SuperCloud to connote this abstraction layer that hides the underlying complexities and primitives of the individual clouds and then adds value on top of it and can adjudicate and manage, irrespective of physical location, Supercloud. >> Yeah. >> Okay. What do you think about that concept?. How does it maybe relate to some of the things that you're seeing in the industry? >> So, standing on shoulders of giants, right? So I always like to do hard tech either at big company, small companies. So we're probably your definition of a Supercloud. We had a big vision, how to literally solve the core challenge of analytics at scale. How are you going to do that? You're not going to build on your own. So literally we're leveraging the primitives, everything you can get out of the Amazon cloud, everything get out of Google cloud. In fact, we're even looking at what it can get out of this Snowflake cloud, and how do we abstract that out, add value to it? That's where all our patents are. But it becomes a simplified approach. The customers don't care. Well, they care where their data is. But they don't care how you got there, they just want to know the end result. So you simplify, but you gain the advantages. One thing's interesting is, in this particular company, ChaosSearch, people try to always say, at some point the sales cycle they say, no way, hold on, no way that can be fast no way, or whatever the different issue. And initially we used to try to explain our technology, and I would say 60% was explaining the public, cloud capabilities and then how we, harvest those I guess, make them better add value on top and what you're able to get is something you couldn't get from the public clouds themselves and then how we did that across public clouds and then extracted it. So if you think about that like, it's the Shoulders of giants. But what we now do, literally to avoid that conversation because it became a lengthy conversation. So, how do you have a platform for analytics that you can't possibly overwhelm for ingest. All your messy data, no pipelines. Well, you leverage things like S3 and EC2, and you do the different security things. You can go to environments say, you can't possibly overrun me, I could not say that. If I didn't literally build on the shoulders giants of all these public clouds. But the value. So if you're going to do hard tech as a startup, you're going to build, you're going to be the principles of Supercloud. Maybe they're not the same size of Supercloud just looking at Snowflake, but basically, you're going to leverage all that, you abstract it out and that's where you're able to have a lot of values at that. >> So let me ask you, so I don't know if there's a strict definition of Supercloud, We sort of put it out to the community and said, help us define it. So you got to span multiple clouds. It's not just running in each cloud. There's a metadata layer that kind of understands where you're pulling data from. Like you said you can pull data from Snowflake, it sounds like we're not running on Snowflake, correct? >> No, complimentary to them in their different customers. >> Yeah. Okay. >> They want to build on top of a data platform, data apps. >> Right. And of course they're going cross cloud. >> Right. >> Is there a PaaS layer in there? We've said there's probably a Super PaaS layer. You're probably not doing that, but you're allowing people to bring their own, bring your own PaaS sort of thing maybe. >> So we're a little bit different but basically we publish open APIs. We don't have a user interface. We say, keep the user interface. Again, we're solving the challenge of analytics at scale, we're not trying to retrain your analytics, either analysts or your DevOps or your SOV or your Secop team. They use the tools they already use. Elastic search APIs, SQL APIs. So really they program, they build applications on top of us, Equifax is a good example. Case said it coming out later on this week, after 18 months in production but, basically they're building, we provide the abstraction layer, the quote, I'm going to kill it, Jeff Tincher, who owns all of SREs worldwide, said to the effect of, Hey I'm able to rethink what I do for my data pipelines. But then he also talked about how, that he really doesn't have to worry about the data he puts in it. We deal with that. And he just has to, just query on the other side. That simplicity. We couldn't have done that without that. So anyway, what I like about the definition is, if you were going to do something harder in the world, why would you try to rebuild what Amazon, Google and Azure or Snowflake did? You're going to add things on top. We can still do intellectual property. We're still doing patents. So five grand patents all in this. But literally the abstraction layer is the simplification. The end users do not want to know that complexity, even though they ask the questions. >> And I think too, the other attribute is it's ecosystem enablement. Whereas I think, >> Absolutely >> in general, in the Multicloud 1.0 era, the ecosystem wasn't thinking about, okay, how do I build on top and abstract that. So maybe it is Multicloud 2.0, We chose to use Supercloud. So I'm wondering, we're at the security conference, >> RE: INFORCE is there a security Supercloud? Maybe Snyk has the developer Supercloud or maybe Okta has the identity Supercloud. I think CrowdStrike maybe not. Cause CrowdStrike competes with Microsoft. So maybe, because Microsoft, what's interesting, Merritt Bear was just saying, look, we don't show up in the spending data for security because we're not charging for most of our security. We're not trying to make a big business. So that's kind of interesting, but is there a potential for the security Supercloud? >> So, I think so. But also, I'll give you one thing I talked to, just today, at least three different conversations where everyone wants to log data. It's a little bit specific to us, but basically they want to do the security data lake. The idea of, and Snowflake talks about this too. But the idea of putting all the data in one repository and then how do you abstract out and get value from it? Maybe not the perfect, but it becomes simple to do but hard to get value out. So the different players are going to do that. That's what we do. We're able to, once you land it in your S3 or it doesn't matter, cloud of choice, simple storage, we allow you to get after that data, but we take the primitives and hide them from you. And all you do is query the data and we're spinning up stateless computer to go after it. So then if I look around the floor. There's going to be a bunch of these players. I don't think, why would someone in this floor try to recreate what Amazon or Google or Azure had. They're going to build on top of it. And now the key thing is, do you leave it in standard? And now we're open APIs. People are building on top of my open APIs or do you try to put 'em in a walled garden? And they're in, now your Supercloud. Our belief is, part of it is, it needs to be open access and let you go after it. >> Well. And build your applications on top of it openly. >> They come back to snowflake. That's what Snowflake's doing. And they're basically saying, Hey come into our proprietary environment. And the benefit is, and I think both can win. There's a big market. >> I agree. But I think the benefit of Snowflake's is, okay, we're going to have federated governance, we're going to have data sharing, you're going to have access to all the ecosystem players. >> Yep. >> And as everything's going to be controlled and you know what you're getting. The flip side of that is, Databricks is the other end >> Yeah. >> of that spectrum, which is no, no, you got to be open. >> Yeah. >> So what's going to happen, well what's happening clearly, is Snowflake's saying, okay we've got Snowpark. we're going to allow Python, we're going to have an Apache Iceberg. We're going to have open source tooling that you can access. By the way, it's not going to be as good as our waled garden where the flip side of that is you get Databricks coming at it from a data science and data engineering perspective. And there's a lot of gaps in between, aren't there? >> And I think they both win. Like for instance, so we didn't do Snowpark integration. But we work with people building data apps on top of Snowflake or data bricks. And what we do is, we can add value to that, or what we've done, again, using all the Supercloud stuff we're done. But we deal with the unstructured data, the four V's coming at you. You can't pipeline that to save. So we actually could be additive. As they're trying to do like a security data cloud inside of Snowflake or do the same thing in Databricks. That's where we can play. Now, we play with them at the application level that they get some data from them and some data for us. But I believe there's a partnership there that will do it inside their environment. To us they're just another large scaler environment that my customers want to get after data. And they want me to abstract it out and give value. >> So it's another repository to you. >> Yeah. >> Okay. So I think Snowflake recently added support for unstructured data. You chose not to do Snowpark because why? >> Well, so the way they're doing the unstructured data is not bad. It's JSON data. Basically, This is the dilemma. Everyone wants their application developers to be flexible, move fast, securely but just productivity. So you get, give 'em flexibility. The problem with that is analytics on the end want to be structured to be performant. And this is where Snowflake, they have to somehow get that raw data. And it's changing every day because you just let the developers do what they want now, in some structured base, but do what you need to do your business fast and securely. So it completely destroys. So they have large customers trying to do big integrations for this messy data. And it doesn't quite work, cause you literally just can't make the pipelines work. So that's where we're complimentary do it. So now, the particular integration wasn't, we need a little bit deeper integration to do that. So we're integrating, actually, at the data app layer. But we could, see us and I don't, listen. I think Snowflake's a good actor. They're trying to figure out what's best for the customers. And I think we just participate in that. >> Yeah. And I think they're trying to figure out >> Yeah. >> how to grow their ecosystem. Because they know they can't do it all, in fact, >> And we solve the key thing, they just can't do certain things. And we do that well. Yeah, I have SQL but that's where it ends. >> Yeah. >> I do the messy data and how to play with them. >> And when you talk to one of their founders, anyway, Benoit, he comes on the cube and he's like, we start with simple. >> Yeah. >> It reminds me of the guy's some Pure Storage, that guy Coz, he's always like, no, if it starts to get too complicated. So that's why they said all right, we're not going to start out trying to figure out how to do complex joins and workload management. And they turn that into a feature. So like you say, I think both can win. It's a big market. >> I think it's a good model. And I love to see Frank, you know, move. >> Yeah. I forgot So you AVMAR... >> In the day. >> You guys used to hate each other, right? >> No, no, no >> No. I mean, it's all good. >> But the thing is, look what he's done. Like I wouldn't bet against Frank. I think it's a good message. You can see clients trying to do it. Same thing with Databricks, same thing with BigQuery. We get a lot of same dynamic in BigQuery. It's good for a lot of things, but it's not everything you need to do. And there's ways for the ecosystem to play together. >> Well, what's interesting about BigQuery is, it is truly cloud native, as is Snowflake. You know, whereas Amazon Redshift was sort of Parexel, it's cobbled together now. It's great engineering, but BigQuery gets a lot of high marks. But again, there's limitations to everything. That's why companies like yours can exist. >> And that's why.. so back to the Supercloud. It allows me as a company to participate in that because I'm leveraging all the underlying pieces. Which we couldn't be doing what we're doing now, without leveraging the Supercloud concepts right, so... >> Ed, I really appreciate you coming by, help me wrap up today in RE:INFORCE. Always a pleasure seeing you, my friend. >> Thank you. >> All right. Okay, this is a wrap on day one. We'll be back tomorrow. I'll be solo. John Furrier had to fly out but we'll be following what he's doing. This is RE:INFORCE 2022. You're watching theCUBE. I'll see you tomorrow.

Published Date : Jul 26 2022

SUMMARY :

John Furrier called it the How about that? It was really in this-- Yeah, we had to sort of bury our way in, But I'm glad they're back in Boston. No, this is perfect. And of course you and So how you been? But it's nothing that you can't overcome. but you were definitely an executive. So you have these weird crosscurrents, because of the recession, But we haven't been in an environment Right. that was long gone, right?. I do think you have to run a tight shop. the things that you do But what are you telling your people? 2008 and the recent... So it does change what you do, and the message was tighten up. the foot off the gas. So that's a little bit But also you look at I literally say that you you know, over a billion. Okay, I want to ask you about this concept you know, you've used the term before, of the individual clouds and to some of the things So I always like to do hard tech So you got to span multiple clouds. No, complimentary to them of a data platform, data apps. And of course people to bring their own, the quote, I'm going to kill it, And I think too, the other attribute is in the Multicloud 1.0 era, for the security Supercloud? And now the key thing is, And build your applications And the benefit is, But I think the benefit of Snowflake's is, you know what you're getting. which is no, no, you got to be open. that you can access. You can't pipeline that to save. You chose not to do Snowpark but do what you need to do they're trying to figure out how to grow their ecosystem. And we solve the key thing, I do the messy data And when you talk to So like you say, And I love to see Frank, you know, move. So you AVMAR... it's all good. but it's not everything you need to do. there's limitations to everything. so back to the Supercloud. Ed, I really appreciate you coming by, I'll see you tomorrow.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jeff TincherPERSON

0.99+

Dave VellantePERSON

0.99+

BostonLOCATION

0.99+

2008DATE

0.99+

Jerry ChenPERSON

0.99+

MicrosoftORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Ed WalshPERSON

0.99+

FrankPERSON

0.99+

Frank SlootmanPERSON

0.99+

AWSORGANIZATION

0.99+

two yearsQUANTITY

0.99+

GoogleORGANIZATION

0.99+

John FurrierPERSON

0.99+

HoustonLOCATION

0.99+

2010DATE

0.99+

tomorrowDATE

0.99+

BenoitPERSON

0.99+

EdPERSON

0.99+

60%QUANTITY

0.99+

DavePERSON

0.99+

ChaosSearchORGANIZATION

0.99+

JuneDATE

0.99+

May of 2010DATE

0.99+

BigQueryTITLE

0.99+

Castles in The CloudTITLE

0.99+

SeptemberDATE

0.99+

Data DomainORGANIZATION

0.99+

SnowflakeORGANIZATION

0.99+

todayDATE

0.99+

$7QUANTITY

0.99+

each cloudQUANTITY

0.99+

bothQUANTITY

0.99+

over a billionQUANTITY

0.99+

Multicloud 2.0TITLE

0.99+

four daysQUANTITY

0.99+

M&AORGANIZATION

0.98+

one repositoryQUANTITY

0.98+

PythonTITLE

0.98+

DatabricksORGANIZATION

0.98+

Merritt BearPERSON

0.98+

SupercloudORGANIZATION

0.98+

AzureORGANIZATION

0.97+

SQLTITLE

0.97+

EC2TITLE

0.97+

oneQUANTITY

0.96+

FedORGANIZATION

0.96+

S3TITLE

0.96+

five grand patentsQUANTITY

0.96+

SnowparkORGANIZATION

0.96+

Multicloud 1.0TITLE

0.95+

billionQUANTITY

0.94+

AvamarORGANIZATION

0.93+

EMC WorldLOCATION

0.93+

SnowflakePERSON

0.93+

one pointQUANTITY

0.93+

SupercloudTITLE

0.93+

EquifaxORGANIZATION

0.92+

92QUANTITY

0.91+

Super PaaSTITLE

0.91+

SnowflakeTITLE

0.89+

Breaking Analysis: Snowflake Summit 2022...All About Apps & Monetization


 

>> From theCUBE studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Snowflake Summit 2022 underscored that the ecosystem excitement which was once forming around Hadoop is being reborn, escalated and coalescing around Snowflake's data cloud. What was once seen as a simpler cloud data warehouse and good marketing with the data cloud is evolving rapidly with new workloads of vertical industry focus, data applications, monetization, and more. The question is, will the promise of data be fulfilled this time around, or is it same wine, new bottle? Hello, and welcome to this week's Wikibon CUBE Insights powered by ETR. In this "Breaking Analysis," we'll talk about the event, the announcements that Snowflake made that are of greatest interest, the major themes of the show, what was hype and what was real, the competition, and some concerns that remain in many parts of the ecosystem and pockets of customers. First let's look at the overall event. It was held at Caesars Forum. Not my favorite venue, but I'll tell you it was packed. Fire Marshall Full, as we sometimes say. Nearly 10,000 people attended the event. Here's Snowflake's CMO Denise Persson on theCUBE describing how this event has evolved. >> Yeah, two, three years ago, we were about 1800 people at a Hilton in San Francisco. We had about 40 partners attending. This week we're close to 10,000 attendees here. Almost 10,000 people online as well, and over over 200 partners here on the show floor. >> Now, those numbers from 2019 remind me of the early days of Hadoop World, which was put on by Cloudera but then Cloudera handed off the event to O'Reilly as this article that we've inserted, if you bring back that slide would say. The headline it almost got it right. Hadoop World was a failure, but it didn't have to be. Snowflake has filled the void created by O'Reilly when it first killed Hadoop World, and killed the name and then killed Strata. Now, ironically, the momentum and excitement from Hadoop's early days, it probably could have stayed with Cloudera but the beginning of the end was when they gave the conference over to O'Reilly. We can't imagine Frank Slootman handing the keys to the kingdom to a third party. Serious business was done at this event. I'm talking substantive deals. Salespeople from a host sponsor and the ecosystems that support these events, they love physical. They really don't like virtual because physical belly to belly means relationship building, pipeline, and deals. And that was blatantly obvious at this show. And in fairness, all theCUBE events that we've done year but this one was more vibrant because of its attendance and the action in the ecosystem. Ecosystem is a hallmark of a cloud company, and that's what Snowflake is. We asked Frank Slootman on theCUBE, was this ecosystem evolution by design or did Snowflake just kind of stumble into it? Here's what he said. >> Well, when you are a data clouding, you have data, people want to do things with that data. They don't want just run data operations, populate dashboards, run reports. Pretty soon they want to build applications and after they build applications, they want build businesses on it. So it goes on and on and on. So it drives your development to enable more and more functionality on that data cloud. Didn't start out that way, you know, we were very, very much focused on data operations. Then it becomes application development and then it becomes, hey, we're developing whole businesses on this platform. So similar to what happened to Facebook in many ways. >> So it sounds like it was maybe a little bit of both. The Facebook analogy is interesting because Facebook is a walled garden, as is Snowflake, but when you come into that garden, you have assurances that things are going to work in a very specific way because a set of standards and protocols is being enforced by a steward, i.e. Snowflake. This means things run better inside of Snowflake than if you try to do all the integration yourself. Now, maybe over time, an open source version of that will come out but if you wait for that, you're going to be left behind. That said, Snowflake has made moves to make its platform more accommodating to open source tooling in many of its announcements this week. Now, I'm not going to do a deep dive on the announcements. Matt Sulkins from Monte Carlo wrote a decent summary of the keynotes and a number of analysts like Sanjeev Mohan, Tony Bear and others are posting some deeper analysis on these innovations, and so we'll point to those. I'll say a few things though. Unistore extends the type of data that can live in the Snowflake data cloud. It's enabled by a new feature called hybrid tables, a new table type in Snowflake. One of the big knocks against Snowflake was it couldn't handle and transaction data. Several database companies are creating this notion of a hybrid where both analytic and transactional workloads can live in the same data store. Oracle's doing this for example, with MySQL HeatWave and there are many others. We saw Mongo earlier this month add an analytics capability to its transaction system. Mongo also added sequel, which was kind of interesting. Here's what Constellation Research analyst Doug Henschen said about Snowflake's moves into transaction data. Play the clip. >> Well with Unistore, they're reaching out and trying to bring transactional data in. Hey, don't limit this to analytical information and there's other ways to do that like CDC and streaming but they're very closely tying that again to that marketplace, with the idea of bring your data over here and you can monetize it. Don't just leave it in that transactional database. So another reach to a broader play across a big community that they're building. >> And you're also seeing Snowflake expand its workload types in its unique way and through Snowpark and its stream lit acquisition, enabling Python so that native apps can be built in the data cloud and benefit from all that structure and the features that Snowflake is built in. Hence that Facebook analogy, or maybe the App Store, the Apple App Store as I propose as well. Python support also widens the aperture for machine intelligence workloads. We asked Snowflake senior VP of product, Christian Kleinerman which announcements he thought were the most impactful. And despite the who's your favorite child nature of the question, he did answer. Here's what he said. >> I think the native applications is the one that looks like, eh, I don't know about it on the surface but he has the biggest potential to change everything. That's create an entire ecosystem of solutions for within a company or across companies that I don't know that we know what's possible. >> Snowflake also announced support for Apache Iceberg, which is a new open table format standard that's emerging. So you're seeing Snowflake respond to these concerns about its lack of openness, and they're building optionality into their cloud. They also showed some cost op optimization tools both from Snowflake itself and from the ecosystem, notably Capital One which launched a software business on top of Snowflake focused on optimizing cost and eventually the rollout data management capabilities, and all kinds of features that Snowflake announced that the show around governance, cross cloud, what we call super cloud, a new security workload, and they reemphasize their ability to read non-native on-prem data into Snowflake through partnerships with Dell and Pure and a lot more. Let's hear from some of the analysts that came on theCUBE this week at Snowflake Summit to see what they said about the announcements and their takeaways from the event. This is Dave Menninger, Sanjeev Mohan, and Tony Bear, roll the clip. >> Our research shows that the majority of organizations, the majority of people do not have access to analytics. And so a couple of the things they've announced I think address those or help to address those issues very directly. So Snowpark and support for Python and other languages is a way for organizations to embed analytics into different business processes. And so I think that'll be really beneficial to try and get analytics into more people's hands. And I also think that the native applications as part of the marketplace is another way to get applications into people's hands rather than just analytical tools. Because most people in the organization are not analysts. They're doing some line of business function. They're HR managers, they're marketing people, they're sales people, they're finance people, right? They're not sitting there mucking around in the data, they're doing a job and they need analytics in that job. >> Primarily, I think it is to contract this whole notion that once you move data into Snowflake, it's a proprietary format. So I think that's how it started but it's usually beneficial to the customers, to the users because now if you have large amount of data in paket files you can leave it on S3, but then you using the Apache Iceberg table format in Snowflake, you get all the benefits of Snowflake's optimizer. So for example, you get the micro partitioning, you get the metadata. And in a single query, you can join, you can do select from a Snowflake table union and select from an iceberg table and you can do store procedure, user defined function. So I think what they've done is extremely interesting. Iceberg by itself still does not have multi-table transactional capabilities. So if I'm running a workload, I might be touching 10 different tables. So if I use Apache Iceberg in a raw format, they don't have it, but Snowflake does. So the way I see it is Snowflake is adding more and more capabilities right into the database. So for example, they've gone ahead and added security and privacy. So you can now create policies and do even cell level masking, dynamic masking, but most organizations have more than Snowflake. So what we are starting to see all around here is that there's a whole series of data catalog companies, a bunch of companies that are doing dynamic data masking, security and governance, data observability which is not a space Snowflake has gone into. So there's a whole ecosystem of companies that is mushrooming. Although, you know, so they're using the native capabilities of Snowflake but they are at a level higher. So if you have a data lake and a cloud data warehouse and you have other like relational databases, you can run these cross platform capabilities in that layer. So that way, you know, Snowflake's done a great job of enabling that ecosystem. >> I think it's like the last mile, essentially. In other words, it's like, okay, you have folks that are basically that are very comfortable with Tableau but you do have developers who don't want to have to shell out to a separate tool. And so this is where Snowflake is essentially working to address that constituency. To Sanjeev's point, and I think part of it, this kind of plays into it is what makes this different from the Hadoop era is the fact that all these capabilities, you know, a lot of vendors are taking it very seriously to put this native. Now, obviously Snowflake acquired Streamlit. So we can expect that the Streamlit capabilities are going to be native. >> I want to share a little bit about the higher level thinking at Snowflake, here's a chart from Frank Slootman's keynote. It's his version of the modern data stack, if you will. Now, Snowflake of course, was built on the public cloud. If there were no AWS, there would be no Snowflake. Now, they're all about bringing data and live data and expanding the types of data, including structured, we just heard about that, unstructured, geospatial, and the list is going to continue on and on. Eventually I think it's going to bleed into the edge if we can figure out what to do with that edge data. Executing on new workloads is a big deal. They started with data sharing and they recently added security and they've essentially created a PaaS layer. We call it a SuperPaaS layer, if you will, to attract application developers. Snowflake has a developer-focused event coming up in November and they've extended the marketplace with 1300 native apps listings. And at the top, that's the holy grail, monetization. We always talk about building data products and we saw a lot of that at this event, very, very impressive and unique. Now here's the thing. There's a lot of talk in the press, in the Wall Street and the broader community about consumption-based pricing and concerns over Snowflake's visibility and its forecast and how analytics may be discretionary. But if you're a company building apps in Snowflake and monetizing like Capital One intends to do, and you're now selling in the marketplace, that is not discretionary, unless of course your costs are greater than your revenue for that service, in which case is going to fail anyway. But the point is we're entering a new error where data apps and data products are beginning to be built and Snowflake is attempting to make the data cloud the defacto place as to where you're going to build them. In our view they're well ahead in that journey. Okay, let's talk about some of the bigger themes that we heard at the event. Bringing apps to the data instead of moving the data to the apps, this was a constant refrain and one that certainly makes sense from a physics point of view. But having a single source of data that is discoverable, sharable and governed with increasingly robust ecosystem options, it doesn't have to be moved. Sometimes it may have to be moved if you're going across regions, but that's unique and a differentiator for Snowflake in our view. I mean, I'm yet to see a data ecosystem that is as rich and growing as fast as the Snowflake ecosystem. Monetization, we talked about that, industry clouds, financial services, healthcare, retail, and media, all front and center at the event. My understanding is that Frank Slootman was a major force behind this shift, this development and go to market focus on verticals. It's really an attempt, and he talked about this in his keynote to align with the customer mission ultimately align with their objectives which not surprisingly, are increasingly monetizing with data as a differentiating ingredient. We heard a ton about data mesh, there were numerous presentations about the topic. And I'll say this, if you map the seven pillars Snowflake talks about, Benoit Dageville talked about this in his keynote, but if you map those into Zhamak Dehghani's data mesh framework and the four principles, they align better than most of the data mesh washing that I've seen. The seven pillars, all data, all workloads, global architecture, self-managed, programmable, marketplace and governance. Those are the seven pillars that he talked about in his keynote. All data, well, maybe with hybrid tables that becomes more of a reality. Global architecture means the data is globally distributed. It's not necessarily physically in one place. Self-managed is key. Self-service infrastructure is one of Zhamak's four principles. And then inherent governance. Zhamak talks about computational, what I'll call automated governance, built in. And with all the talk about monetization, that aligns with the second principle which is data as product. So while it's not a pure hit and to its credit, by the way, Snowflake doesn't use data mesh in its messaging anymore. But by the way, its customers do, several customers talked about it. Geico, JPMC, and a number of other customers and partners are using the term and using it pretty closely to the concepts put forth by Zhamak Dehghani. But back to the point, they essentially, Snowflake that is, is building a proprietary system that substantially addresses some, if not many of the goals of data mesh. Okay, back to the list, supercloud, that's our term. We saw lots of examples of clouds on top of clouds that are architected to spin multiple clouds, not just run on individual clouds as separate services. And this includes Snowflake's data cloud itself but a number of ecosystem partners that are headed in a very similar direction. Snowflake still talks about data sharing but now it uses the term collaboration in its high level messaging, which is I think smart. Data sharing is kind of a geeky term. And also this is an attempt by Snowflake to differentiate from everyone else that's saying, hey, we do data sharing too. And finally Snowflake doesn't say data marketplace anymore. It's now marketplace, accounting for its application market. Okay, let's take a quick look at the competitive landscape via this ETR X-Y graph. Vertical access remembers net score or spending momentum and the x-axis is penetration, pervasiveness in the data center. That's what ETR calls overlap. Snowflake continues to lead on the vertical axis. They guide it conservatively last quarter, remember, so I wouldn't be surprised if that lofty height, even though it's well down from its earlier levels but I wouldn't be surprised if it ticks down again a bit in the July survey, which will be in the field shortly. Databricks is a key competitor obviously at a strong spending momentum, as you can see. We didn't draw it here but we usually draw that 40% line or red line at 40%, anything above that is considered elevated. So you can see Databricks is quite elevated. But it doesn't have the market presence of Snowflake. It didn't get to IPO during the bubble and it doesn't have nearly as deep and capable go-to market machinery. Now, they're getting better and they're getting some attention in the market, nonetheless. But as a private company, you just naturally, more people are aware of Snowflake. Some analysts, Tony Bear in particular, believe Mongo and Snowflake are on a bit of a collision course long term. I actually can see his point. You know, I mean, they're both platforms, they're both about data. It's long ways off, but you can see them sort of in a similar path. They talk about kind of similar aspirations and visions even though they're quite in different markets today but they're definitely participating in similar tam. The cloud players are probably the biggest or definitely the biggest partners and probably the biggest competitors to Snowflake. And then there's always Oracle. Doesn't have the spending velocity of the others but it's got strong market presence. It owns a cloud and it knows a thing about data and it definitely is a go-to market machine. Okay, we're going to end on some of the things that we heard in the ecosystem. 'Cause look, we've heard before how particular technology, enterprise data warehouse, data hubs, MDM, data lakes, Hadoop, et cetera. We're going to solve all of our data problems and of course they didn't. And in fact, sometimes they create more problems that allow vendors to push more incremental technology to solve the problems that they created. Like tools and platforms to clean up the no schema on right nature of data lakes or data swamps. But here are some of the things that I heard firsthand from some customers and partners. First thing is, they said to me that they're having a hard time keeping up sometimes with the pace of Snowflake. It reminds me of AWS in 2014, 2015 timeframe. You remember that fire hose of announcements which causes increased complexity for customers and partners. I talked to several customers that said, well, yeah this is all well and good but I still need skilled people to understand all these tools that I'm integrated in the ecosystem, the catalogs, the machine learning observability. A number of customers said, I just can't use one governance tool, I need multiple governance tools and a lot of other technologies as well, and they're concerned that that's going to drive up their cost and their complexity. I heard other concerns from the ecosystem that it used to be sort of clear as to where they could add value you know, when Snowflake was just a better data warehouse. But to point number one, they're either concerned that they'll be left behind or they're concerned that they'll be subsumed. Look, I mean, just like we tell AWS customers and partners, you got to move fast, you got to keep innovating. If you don't, you're going to be left. Either if your customer you're going to be left behind your competitor, or if you're a partner, somebody else is going to get there or AWS is going to solve the problem for you. Okay, and there were a number of skeptical practitioners, really thoughtful and experienced data pros that suggested that they've seen this movie before. That's hence the same wine, new bottle. Well, this time around I certainly hope not given all the energy and investment that is going into this ecosystem. And the fact is Snowflake is unquestionably making it easier to put data to work. They built on AWS so you didn't have to worry about provisioning, compute and storage and networking and scaling. Snowflake is optimizing its platform to take advantage of things like Graviton so you don't have to, and they're doing some of their own optimization tools. The ecosystem is building optimization tools so that's all good. And firm belief is the less expensive it is, the more data will get brought into the data cloud. And they're building a data platform on which their ecosystem can build and run data applications, aka data products without having to worry about all the hard work that needs to get done to make data discoverable, shareable, and governed. And unlike the last 10 years, you don't have to be a keeper and integrate all the animals in the Hadoop zoo. Okay, that's it for today, thanks for watching. Thanks to my colleague, Stephanie Chan who helps research "Breaking Analysis" topics. Sometimes Alex Myerson is on production and manages the podcasts. Kristin Martin and Cheryl Knight help get the word out on social and in our newsletters, and Rob Hof is our editor in chief over at Silicon, and Hailey does some wonderful editing, thanks to all. Remember, all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com and you can email me at David.Vellante@siliconangle.com or DM me @DVellante. If you got something interesting, I'll respond. If you don't, I'm sorry I won't. Or comment on my LinkedIn post. Please check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time. (upbeat music)

Published Date : Jun 18 2022

SUMMARY :

bringing you data driven that the ecosystem excitement here on the show floor. and the action in the ecosystem. Didn't start out that way, you know, One of the big knocks against Snowflake the idea of bring your data of the question, he did answer. is the one that looks like, and from the ecosystem, And so a couple of the So that way, you know, from the Hadoop era is the fact the defacto place as to where

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

Frank SlootmanPERSON

0.99+

Doug HenschenPERSON

0.99+

Stephanie ChanPERSON

0.99+

Christian KleinermanPERSON

0.99+

AWSORGANIZATION

0.99+

Dave VellantePERSON

0.99+

Rob HofPERSON

0.99+

Benoit DagevillePERSON

0.99+

2014DATE

0.99+

Matt SulkinsPERSON

0.99+

JPMCORGANIZATION

0.99+

2019DATE

0.99+

Cheryl KnightPERSON

0.99+

Palo AltoLOCATION

0.99+

Denise PerssonPERSON

0.99+

Alex MyersonPERSON

0.99+

Tony BearPERSON

0.99+

Dave MenningerPERSON

0.99+

DellORGANIZATION

0.99+

JulyDATE

0.99+

GeicoORGANIZATION

0.99+

NovemberDATE

0.99+

SnowflakeTITLE

0.99+

40%QUANTITY

0.99+

OracleORGANIZATION

0.99+

App StoreTITLE

0.99+

Capital OneORGANIZATION

0.99+

second principleQUANTITY

0.99+

Sanjeev MohanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

1300 native appsQUANTITY

0.99+

Tony BearPERSON

0.99+

David.Vellante@siliconangle.comOTHER

0.99+

Kristin MartinPERSON

0.99+

MongoORGANIZATION

0.99+

DatabricksORGANIZATION

0.99+

Snowflake Summit 2022EVENT

0.99+

FirstQUANTITY

0.99+

twoDATE

0.99+

PythonTITLE

0.99+

10 different tablesQUANTITY

0.99+

FacebookORGANIZATION

0.99+

ETRORGANIZATION

0.99+

bothQUANTITY

0.99+

SnowflakeEVENT

0.98+

one placeQUANTITY

0.98+

each weekQUANTITY

0.98+

O'ReillyORGANIZATION

0.98+

This weekDATE

0.98+

Hadoop WorldEVENT

0.98+

this weekDATE

0.98+

PureORGANIZATION

0.98+

about 40 partnersQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

last quarterDATE

0.98+

OneQUANTITY

0.98+

S3TITLE

0.97+

HadoopLOCATION

0.97+

singleQUANTITY

0.97+

Caesars ForumLOCATION

0.97+

IcebergTITLE

0.97+

single sourceQUANTITY

0.97+

SiliconORGANIZATION

0.97+

Nearly 10,000 peopleQUANTITY

0.97+

Apache IcebergORGANIZATION

0.97+

theCUBE Insights | Snowflake Summit 2022


 

(upbeat music) >> Hey everyone, welcome back to theCUBE's three day coverage of Snowflake Summit 22. Lisa Martin here with Dave Vellante. We have been here as I said for three days. Dave, we have had an amazing three days. The energy, the momentum, the number of people still here speaks volumes for- >> Yeah, I was just saying, you look back, theCUBE, when it started, early days was a big part of the Hadoop ecosystem. You know Cloudera kind of got it started, the whole big data movement, it was awesome energy, and that whole ecosystem has been, I think, just hoovered into the Snowflake ecosystem. They've taken over as the data company, the data cloud, I mean, that was Cloudera, it could have been Cloudera, and now they didn't, they missed it, it was a variety of factors, but Snowflake has nailed it. And now it's theirs to lose. Benoit talked about that on our previous segment, how he knew that technically Hadoop was too complex, and was going to fail, and they didn't know it was going to do this. They were going to turn their company into what we see here. But the event itself, Lisa, is almost 10,000 people, the right people, people are doing business, we've had a number of people tell us that they're booking deals. That's why people come to face-to-face shows, right? That's the criticism of virtual. It takes too long to close business. Salespeople want to be belly-to-belly. And this is a belly-to belly-show. >> It absolutely is. When you and I were trying to get into the keynote on Tuesday, we finally got in standing room only, multiple overflow rooms, and we're even hearing that, so this is day four of the summit for them, there are still queues to get into breakout sessions. The momentum, but the appetite for this flywheel, and what they're creating, but also they're involving this massively growing ecosystem in its evolution. It's that synergy was really very much heard, and echoed throughout pretty much all of our segments the last couple days. >> Yeah, it was amazing actually. So we like to go, we want to be in the front row in the keynotes, we're taking notes, we always do that. Sometimes we listen remotely, but when you listen remotely, you miss some things. When you're there, you can see the executives, you can feel their energy, you can chit chat to them on the side, be seen, whatever. And it was crazy, we couldn't get in. So we had to do our thing, and sneak our way in, and "Hey, we're media." "Oh yeah, come on in." And then no, they were taking us to a breakout room. We had to sneak in a side door, got like the last two seats, and wow, I'm glad we were in there because it gave us a better sense. When you're in the remote watching rooms you just can't get a sense of the energy. That's why I like to be there, I know you do too. And then to your point about ecosystem. So we've said many times that what Snowflake is developing is what we call supercloud. It's not just a SaaS, it's not just a cloud database, it's a new layer that they're creating. And so what are the attributes of that layer? Well, it hides the underlying complexity of the underlying primitives of the cloud. We've said that ad nauseam, and it adds new value on top. Well, what's that value that they're adding? Well, they're adding value of being able to share data, collaborate, have data that's governed, and secure, globally. And now the other hallmark of a cloud company is ecosystem. And so they're building that ecosystem much more rapidly than we saw at ServiceNow, which is Slootman's previous company. And the key to me is they've launched an application development platform, essentially a super PaaS, so that you can develop applications on top of the data cloud. And we're hearing tons about monetization. Duh, you could actually make money with data. You can package data into data products, and data services, or feed data products and services, and actually sell that in a cloud, in a supercloud. That's exactly what's happening here. So that's critical. I think my one question mark if I had to lay one out, is the other hallmark of a cloud is startup, startups come into that cloud. And I think we're seeing that, maybe not at the pace that AWS did, it's a little different. Snowflake are, they're whale hunters. They're after big companies. But it looks to me like they're relying on the ecosystem to be the startup innovators. That's the important thing about cloud, cloud brings scale. It definitely brings lower cost 'cause you're eliminating all this undifferentiated labor, but it also brings innovation through startups. So unlike AWS, who sold the startups directly, and startups built businesses on AWS, and by paying AWS, it's a little bit indirect, but it's actually happening where startups in the ecosystem are building products on the data cloud, and that ultimately is going to drive value for customers, and money for Snowflake, and ultimately AWS, and Google, and Azure. The other thing I would say is the criticism or concern that the cost of goods sold for cloud are going to be so high that it's going to force people to come back on-prem. I think it's a step in the wrong direction. I think cloud, and the cloud operating model is here to stay. I think it's going to be very difficult to replicate that on-prem. I don't think you can do cloud without cloud, and we'll see what the edge brings. >> Curious what your thoughts are. We were just at Dell technologies world a month or so ago when the big announcement, the Snowflake partnership there, cloud native companies recognizing, ah, there's still a lot of data that lives on-prem. Given that, and everything that we've heard the last couple of days, what are your thoughts around that and their partnerships there? >> So Dell is, I think finally, now maybe they weren't publicly talking like this, but certainly their marketing was defensive. But in the last year or so, Dell has really embraced cloud, not just the cloud operating model, Dell has said, "Look, we can build value on top of all these hyperscalers." And we saw some examples at Dell Tech World of them stepping their toe into supercloud. Project Alpine is an example, and there are others. And then of course the Snowflake deal, where Snowflake and Dell got together, I asked Frank Slootman how that deal came about. And 'cause I said, "Did the customer get you into a headlock?" 'Cause I presume that was the case. Customer said, "You got to do this or we're not going to do business with you." He said, "Well, no, not really. Michael and I had a chat, and that's how it started." Which was my other scenario, and that's exactly what happened I guess. The point being that those worlds are coming together. And so what it means for Dell is as they embrace cloud, as they develop supercloud capabilities, they're going to do a lot of business. Dell for sure knows how to sell, they know how to execute. What I would be doing if I were Dell, is I would be trying to substantially replicate what's happening in the cloud on-prem with on-prem data. So what happens with that Snowflake deal is, it's read-only data, you read the data into the cloud, the compute is in the cloud. And I should've asked Terry this, I mean Benoit. Can there be an architecture on-prem? We've seen at Vertica has one, it's called Vertica Eon where you separate compute from storage. It doesn't have unlimited elasticity, but you can grow, compute, and storage independently, and have a lot more. With Dell doing APEX on demand, it's cloudlike, they could begin to develop a little mini data cloud, or a big data cloud within on-prem that connects to the public cloud. So what Snowflake is missing, a big part of their TAM that they're missing is the on-prem. The Dell and Pure deals are forays into that, but this on-prem is massive, and Dell is the on-prem poster child. So I think again what it means for them is they've got to continue to embrace it, they got to do more in software, more in data management, they got to push on APEX. And I'd say the same thing for HPE. I think they're both well behind this in terms of ecosystems. I mean they're not even close. But they have to start, and they got to start somewhere, and they've got resources to make it happen. >> You said in your breaking analysis that you published just a few days ago before the event that Snowflake plans to create a de facto standard in data platforms. What we heard from our guests on this program, your mainstage session with Frank Slootman. Still think that? >> I do. I think it more than I believed it coming in. And the reason I called it that is because I am a super fan of Zhamak Dehghani and her data mesh. And what her vision is, it's kind of the Immaculate Conception, where she wants everything to be open, open standards, and those don't exist today. And I think she perfectly realizes the practicality of de facto standards are going to get to market, and add value sooner than open standards. Now open standards over time, and I'll come back to that, may occur, but that's clear to me what Snowflake is creating, is the de facto standard for data platforms, the data cloud, the supercloud. And what's most impressive, or I think really important, is they're layering applications now on top of that. The metric to me, and I don't know if we can even count this, but VMware used to use it. For every dollar spent on VMware license, $15 was spent in the ecosystem. It started at 1 to 1.5, 1 to 2, 1 to 10, 1 to 15, I think it went up to 1 to 30 at the max. I don't know how they counted that, but it's countable. Reasonable people can make estimates like that. And I think as the ecosystem grows, what Snowflake's doing is it's in many respects modeling the cloud, what the cloud has. Cloud has ecosystems, we talked about startups, and the cloud also has optionality. And optionality means open source. So what you saw with Apache Iceberg is we're going to extend to open technologies. What you saw with Hybrid tables is we're going to extend a new workloads like transactions. The other thing about Snowflake that's really impressive is you're seeing the vertical focus. Financial services, healthcare, retail, media and entertainment. It's very rare for a company in this tenure, they're only 10 years old, to really start going vertical with their go-to-market, and building expertise around that. I think what's going to happen is the GSIs are going to come in, they love to eat at the trough, the trough here is maybe not big enough for them yet, but it will be. And they're going to start to align with the GSIs, and they're going to do really well within those industries, connecting people, collaborating with data. But I think it's a killer strategy, but they're executing on it. >> Right, and we heard a lot of great customer stories from all of those four verticals that you talked about, and then some, that that direction and that pivot from a customer perspective, from a sales and marketing perspective is all aligned. And that was kind of one of the themes as well that Frank talked about in his keynote is mission alignment, mission alignment with customers, but also with the ecosystem. And I feel that I heard that with every customer conversation, with every partner conversation, and Snowflake conversation that we had over the last I think 36 segments, Dave. >> Yeah, I mean, yeah, it's the power of many versus the resources of one. And even though Snowflake tell you they have $5 billion in cash, and assets on the balance sheet, and that's fine, that's nothing compared to what an ecosystem has. And Amazon's part of that ecosystem. Azure is part of that ecosystem. Google is part of that ecosystem. Those companies have huge resources, and Snowflake it seems has figured out how to tap those resources, and build value on top of it. To me they're doing a better job than a lot of the cloud databases out there. They don't necessarily have a better database, in fact, I could argue that their database is less functional. And I would argue that actually in many cases. Their database is less functional if you just want a database. But if you want a data cloud, and an ecosystem, and develop applications on top of that, and to be able to monetize, that's unique, and that is a moat that they're building that is highly differentiable, and being able to do that relatively easily. I mean, I think they overstate the simplicity with which that is being done. We talked to some customers who said, he didn't say same wine, new bottle. I did ask him that, about Hadoop complexity. And he said, "No, it's not that bad." But you still got to put this stuff together. And I think in the early parts of a market that are immature, people get really excited because it's so much easier than what was previous. So my other question is, okay, what's somebody working on now, that's looking at what Snowflake's doing and saying, I can improve on that. And what's going to be really interesting to see is, can they improve on it in a way, and can they raise enough capital such that they can disrupt, or is Snowflake going to keep staying paranoid, 'cause they got good leaders, and keep executing? And then I think the other wild card is edge. Snowflake doesn't really have an edge strategy right now. I think they will develop one. >> Through the ecosystem? >> And I don't think they're missing the boat, and they'll do it through the ecosystem, exactly. I don't think they're missing the boat, I think they're just like, "Well, we don't know what to do today." It's all distributed data, and it's ephemeral, and nobody's storing the data. You know anything that comes back to the cloud, we get. But new architectures are emerging on the edge that are going to bring new economics. There's new silicon, you see what's happening with Apple, and the M1, the M1 Ultra, and the new systems that they've just developed. What Tesla is doing with custom silicon, and amazing things, and programmability of the arm model. So it's early days, but semiconductors are the mainspring of innovation in this industry. Without chips, you got nothing. And when you get innovations in silicon, it drives innovations in software, because developers go, "Wow, I can do that now?" I can do things in parallel, I can do things faster, I can do things more simply, and programmable at scale. So that's happening. And that's going to bring a new set of economics that the premise is that will eventually bleed into the data center. It will, it always does. And I guess the other thing is every 15 years or so, the world gets disrupted, the tech world. We're about 15, 16 years in now to the cloud. So at this point, everybody's like, "Wow this is insurmountable, this is all we'll ever see. Everything that's ever been invented, this is the model of the future." We know that's not the case. I don't know how it's going to get disrupted, but I think edge is going to be part of that. It could be public policy. Governments could come in and take big tech on, seems like Sharekhan wants to do that. So that's what makes this industry so fun. >> Never a dull moment, Dave. This has been a great three days hosting this show with you. We've uncovered a lot. Your breaking analysis was great to get me prepared for the show. If you haven't seen it, check it out on siliconangle.com. Thanks, Dave, I appreciate all of your insights. >> Thank you, Lisa, It's been a pleasure working with you. >> Always good to work with you. >> Awesome, great job. >> Likewise. Great job to the team. >> Yes, thank you to our awesome production team. They've kept us going for three days. >> Yes, and the team back, Kristin, and Cheryl, and everybody back at the office. >> Exactly, it takes a village. For Dave Vellante, I am Lisa Martin. We are wrappin' up three days of wall-to-wall coverage at Snowflake Summit 22 from Vegas. Thanks for watching guys, we'll see you soon. (upbeat music)

Published Date : Jun 17 2022

SUMMARY :

The energy, the momentum, And now it's theirs to lose. The momentum, but the And the key to me is they've launched the last couple of days, and Dell is the on-prem poster child. that Snowflake plans to is the GSIs are going to come in, And I feel that I heard that and assets on the balance And I guess the other thing to get me prepared for the show. a pleasure working with you. Great job to the team. Yes, thank you to our Yes, and the team guys, we'll see you soon.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Frank SlootmanPERSON

0.99+

MichaelPERSON

0.99+

KristinPERSON

0.99+

Lisa MartinPERSON

0.99+

DavePERSON

0.99+

Dave VellantePERSON

0.99+

CherylPERSON

0.99+

AmazonORGANIZATION

0.99+

FrankPERSON

0.99+

TerryPERSON

0.99+

LisaPERSON

0.99+

AWSORGANIZATION

0.99+

Zhamak DehghaniPERSON

0.99+

DellORGANIZATION

0.99+

$15QUANTITY

0.99+

$5 billionQUANTITY

0.99+

VerticaORGANIZATION

0.99+

TuesdayDATE

0.99+

VegasLOCATION

0.99+

BenoitPERSON

0.99+

three daysQUANTITY

0.99+

GoogleORGANIZATION

0.99+

TeslaORGANIZATION

0.99+

Apache IcebergORGANIZATION

0.99+

three dayQUANTITY

0.99+

Snowflake Summit 22EVENT

0.99+

last yearDATE

0.99+

AppleORGANIZATION

0.99+

three daysQUANTITY

0.99+

1QUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

15QUANTITY

0.98+

36 segmentsQUANTITY

0.98+

30QUANTITY

0.98+

1.5QUANTITY

0.98+

M1 UltraCOMMERCIAL_ITEM

0.98+

10QUANTITY

0.98+

todayDATE

0.98+

theCUBEORGANIZATION

0.97+

siliconangle.comOTHER

0.97+

bothQUANTITY

0.97+

Snowflake Summit 2022EVENT

0.97+

2QUANTITY

0.96+

ClouderaORGANIZATION

0.96+

M1COMMERCIAL_ITEM

0.94+

Vertica EonORGANIZATION

0.94+

two seatsQUANTITY

0.94+

Dell Tech WorldORGANIZATION

0.92+

few days agoDATE

0.92+

one questionQUANTITY

0.91+

oneQUANTITY

0.91+

ServiceNowORGANIZATION

0.91+

upQUANTITY

0.9+

VMwareORGANIZATION

0.9+

10 years oldQUANTITY

0.89+

TAMORGANIZATION

0.87+

four verticalsQUANTITY

0.85+

almost 10,000 peopleQUANTITY

0.84+

a month or so agoDATE

0.83+

last couple of daysDATE

0.82+

Loic Giraud, Novartis & Jesse Cugliotta, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Welcome back to Vegas, baby. Lisa Martin here with theCUBE. We are live at Caesar's Forum covering Snowflake Summit 22. This is day two of our wall to wall coverage on theCUBE you won't want to miss. We've got an exciting customer story to talk to you about next with Novartis and Snowflake. Please welcome two guests to theCUBE. Loïc Giraud, Global head digital delivery, Novartis. I hope I got the name right. >> Yes. Hi, thank you. >> I did my best. >> Absolutely. >> Lisa: (laughs) Jesse Cugliotta also joins us. Global Industry Lead, Healthcare and Life Sciences at Snowflake. Welcome with theCUBE, gentlemen. >> Thank you for having us. Good morning. >> So it was great to hear Novartis is a household word now, especially with what's gone on in the last two years. I had a chance to see the Keynote yesterday, heard Novartis mention in terms of a massive outcome that Snowflake is delivering that we're going to get to. But Loic talk to us about Novartis global 500 organization. You rank among the world's top companies investing in R&D, the massive portfolio and you're reaching nearly 800 million patients worldwide. That's huge, but there's been a lot of change in the healthcare and life sciences industry, especially recently. Talk to us about the industry landscape. What are you seeing? >> As you described, Novartis is one of the top life science company in the world. We are number three. We operate in 150 countries, and we have almost 120,000 employees. Our purpose is actually to reimagine medicine for the use of data science and technology and to extend people's life. And we really mean it. I think, as you mentioned, we treat eight or 9 million patient per year with our drugs. We expect to treat more than a billion patients in near time soon. Over the last few years, especially during COVID, our digital transformation help us to accelerate the drug discovery and then the commiseration of our drug to markets. As it was mentioned in the Keynote yesterday, we have actually been able to reduce our time to market. It used to take us up to 12 years and cost around 1.2 billion to discover and commercialize drug. And now we've actually use of technology like Snowflake, we have been able to reduce by two to three years, which ultimately is a benefit for our patients. >> Absolutely. Well, we're talking about life and death situations. Talk about... You mentioned Novartis wants to reimagine medicine. What does that look like? Where is data in that and how is Snowflake an enabler of reimagining medicine? >> So data is core for our asset, is a core of enterprise process. So if you look at our enterprise, we are using data from the research, for drug development, in manufacturing process, and how do we market and sell our product through HCPs and distribute it to reach our patients. If you build through our digital transformation we have created this integrated data ecosystem, where Snowflake is a core component. And through that ecosystem, we are able to identify compounds and cohorts, perform clinical trials, and engage HCPs and HGOs so that can prescribe drugs to serve our patient needs. >> Jesse, let's bring you into the conversation. Snowflake recently launched its healthcare and life sciences data cloud. I believe that was back in March. >> It was. >> Just a couple of months ago. Talk to us about the vertical focus. Talk to us about what this healthcare and life sciences data cloud is aiming to help customers like Novartis achieve. >> Well, as you mentioned there, Snowflake has made a real pivot to kind of focus on the various different industries that we serve in a new way. I think historically, we've been engaged in really, all of the industries across the major sectors where we participate today. But historically we've been often engaging with the office of IT. And there was a recognition as a company that we really need to be able to better speak the language of our customers in with our respective industries. So the entire organization has really made a pivot to start to build that capability internally. That's part of the team that I support here at Snowflake. And with respect to healthcare and life sciences, that means being able to solve some of the challenges that Loic was just speaking about. In particular, we're seeing the industry evolve in a number of ways. You bring up clinical research in the time that it takes to actually bring a drug to market. This is a big one that's really changed a lot over the last couple of years. Some of the reasons are obvious and other ones are somewhat opportunistic. When we looked at what it takes to get a drug to market, there's several stages of clinical research that have to be participated in, and this can often take years. What we saw in the last couple of years, is that all of a sudden, patients didn't want to physically participate in those anymore, because there was fear of potential infection and being in a healthcare facility. So the entire industry realized that it needed to change in terms of way that it would engage with patients in that context. And we're now seeing this concept of decentralized clinical research. And with that, becomes the need to potentially involve many different types of organizations beyond the traditional pharma, their research partners, but we're starting to see organizations like retail pharmacies, like big box retailers, who have either healthcare delivery or pharmaceutical arms actually get involved in the process. And of course, one of the core things that happens here is that everyone needs a better way to collaborate and share data amongst one another. So bringing this back to your original question, this concept of being able to do exactly that is core to the healthcare and the life sciences data cloud. To be able to collaborate and share data amongst those different types of organizations. >> Collaboration and data sharing. It seems to me to be a differentiator for Snowflake, in terms of being able to deliver secure, governed powerful analytics and data sharing to customers, partners to the ecosystem. You mentioned an example of the ecosystem there and how impactful to patients' lives, that collaboration and data sharing can be. >> That's absolutely right. It's something that if you think about all of the major challenges that the industry has had historically, whether it is high costs, whether it are health inequities, whether it is physicians practicing defensive medicine or repeat testing, what's core to each one of these things is kind of the inability to adequate collaborate and share data amongst all of the different players. So the industry has been waiting for the capability or some sort of solution to be able to do this, I think for a long, long time. And this is probably one of the most exciting parts of the conversations that we have with our customers, is when they realize that this is possible. And not only that it's possible within our platform, but that most of the organizations that they work with today are also Snowflake customers. So they realize that everyone's already here. It's just a matter of who else can we work with and how do we get started? >> Join the party. >> Exactly. >> Loic talk to us about Novartis's data journey. I know you guys have been, I believe using Snowflake since 2017 pre pandemic. But you had a largely on-premises infrastructure. Talk to us about the decision of Novartis to go to the cloud, do it securely and why you chose to partner with Snowflake. >> So when we started our journey in 2018, I think the ambition that our CEO, was to transform all enterprise processes for the use of digital tech. And at the core of this digital tech is data foundation. So we started with a large program called Formula One, which aim to integrate all our internal and external data asset into an integrated platform. And for that, I think we've built this multicloud and best upgrade platform, where Snowflake is a core component. And we've been able to integrate almost 1,000 data asset, internal and external for the platform to be able to accelerate the use of data to create insight for our users. In that transformation, we've realized that Snowflake could be a core component because of the scalability and the performance with large dataset. And moreover, when Snowflake started to actually open collaboration for their marketplace, we've been able to integrate new data set that are publicly available at the place that we could not do on ourself, on our own. So that is a core component of what we are trying to do. >> Yeah, and I think that's a great example of really what we're talking about here is that, he's mentioning that they're going out to our marketplace to be able to integrate data more easily with some of the vendors there. And that is kind of this concept of the healthcare and life sciences data cloud realized, where all of a sudden, acquiring and bringing data in and making it ready for analysis becomes much faster, much easier. We continually see more and more vendors coming to us saying, I get it now, I want in. Who else can I work with in this space? So I think that's a perfect example of how this starts to become real for folks. >> Well, it sounds like the marketplace has been an enabler, Loic, of the expansion of use cases. You've grown this beyond drug development. I read that you're developing new products and services for healthcare providers to personalize treatments for patients, which we all are demanding patients. We want that personalized care. But talk about the marketplace as a facilitator of those expanding use cases that Snowflake is powering. >> Yes. That's right. I mean we have currently almost 65 use cases in production and we are in advanced progress for over 200 use cases and they go across all our business sector. So if you look at drug development, we are monitoring our clinical trials using Snowflake. If you look at our omnichannel marketing, we are looking at personalization of information with our HCPs and HGOs using snowflake. If you look at our manufacturing process, we are looking at yet management, freight optimization, inventory, insight. So almost across all the industry sectors that we have, I think we are using the platforms to be able to deliver faster information to our users. >> And that's what we all want. Faster information. I think in the pandemic we learned that access to real time data in every industry wasn't a nice to have. That was a- >> Necessity. >> Absolute necessity. >> Yeah. >> And made the difference for companies that survived and thrived and those that didn't. That's something that we learned. But we also learned that the volume of data just continues to proliferate. Loic, you've been in the industry a couple of decades. What do you see? And you've got, obviously this great foundation now with Snowflake. You've got 65 use cases you said in production. What's the future of the data culture in healthcare and life sciences from your perspective? >> So my perspective. It is time now we give the access to our business technologies to be able to be self-sufficient using digital product. We need to consumerize digital technology so they can be self-sufficient. The amount of problems that we have to solve, and we can now solve with new technology has never been there. And I think where in the past, where in the next few years that you will see an accelerated generation of insight and an accelerated process of medicine by empowering the business technologies to use a technology that like Snowflake and over progress. >> What are your thoughts Loic, of some of the, obviously a lot of news coming out yesterday from Snowflake, we mentioned standing room only in the Keynote. This I believe is north of 10,000 attendees. People are ready to engage in person with Snowflake, but some of the news coming out, what is your perspective? You've been a partner of theirs for a while. What do you see from Snowflake in terms of the news, the volume of customers it's adding, all that good stuff? >> I must say I was blown away yesterday when Frank was talking about the ramp up of customers using Snowflake. But also, and I think in Benoit and Christian, and they talk about the innovation. When you look at native application or you look at hybrid tables, we saw a thing there. And the expansion of the marketplace by monetization application, that is something that is going to accelerate the expansion, not only on the company, but the integration and the utilization of customers. And to Jesse's point, I think that it is key that people collaborate using the platform. I think we want to collaborate with suppliers and providers and they want to collaborate with us. But we want to have a neutral environment where we can do that. And Snowflake can be that environment. >> And do it securely, right? Security is absolutely- >> Of course. I mean that's really table stake for this industry. And I think the point that you just made Loic, is very important, is that, the biggest question that we're often asked by our customers is who else is a customer within this industry that I can collaborate with? I think as Loic here will attest to, one of the challenges within life sciences in particular is that it is a highly regulated industry. It is a highly competitive industry, and folks are very sensitive about referenceability. So about things like logo usage. So to give some ideas here, people often have no idea that we're working with 28 of the top 50 global pharma today, working with seven of the top 12 global medical device companies today. The largest CROs, the largest distributors. So when I say that the party is here, they really are. And that's why we're so excited to have events like these, 'cause people can physically introduce themselves to one another and meet, and actually start to engage in some of these more collaborative discussions that they've been waiting for. >> Jesse, what's been some of the feedback that you've heard the last couple of days on the healthcare and life sciences data cloud? You've obviously finally gotten back to engaging with customers in person. But what are some of the things, feed on this street have said that you've thought, we made the absolute right decision on this pivot? >> Yeah, well I think some of it speaks to the the point I was just speaking about, is that they had no idea that so many of their peers were actually working with Snowflake already and that how mature their implementations have actually been. The other thing that folks are realizing is that, a lot of the technologies that serve this ecosystem, whether they're in the health tech space, whether they're clinical management or commercial engagement or supply chain planning technologies, those companies are also now pivoting to Snowflake, where they're either building a part or the entirety of their platform on top of ours. So it offers this great way to start to collaborate with the ecosystem through some of those capabilities that we spoke about. And that's driving new use cases in commercial, in supply chain, in pharmacovigilance, in clinical operations. >> Well, I think you just sum up beautifully why the theme of this conference is the world of data collaboration. >> Yes, absolutely. >> The potential there, that Snowflake is unleashing to the world is I think is what's captivating to me. That you just scratch on the surface about connecting and facilitating this collaboration and this data sharing in a secure way across industries. Loic, last question for you. Take us home with what is next for Novartis. You've done a tremendous amount of digitalization. 65 use cases in production with Snowflake. What's next for the company? >> See, I think that in next year's to come, open collaboration with the ecosystem, but also personalization. If you look at digital medicine and access to patient's informations, I think this is probably the next revolution that we are entering into. >> Excellent. And of course those demanding patients aren't going to want anything slower or less information. Guys, thank you for joining me on the program talking about the Novartis-Snowflake collaboration. The partnership, the outcomes that you're achieving and how this is really dramatically impacting the lives of hundreds of millions of people. We appreciate your time and your insights. >> Thank you for having us. This was fun. >> My pleasure. >> Thank you. >> For my guests, I'm Lisa Martin. You're watching theCUBE. This is live from Las Vegas, day two of our coverage of Snowflake Summit 22. I'll be right back with my next guest, so stick around. (upbeat music)

Published Date : Jun 15 2022

SUMMARY :

to talk to you about next Healthcare and Life Sciences at Snowflake. Thank you for having us. in the healthcare and of our drug to markets. Where is data in that and how do we market and sell our product I believe that was back in March. is aiming to help customers And of course, one of the of the ecosystem there is kind of the inability Talk to us about the decision of Novartis and the performance with large dataset. of how this starts to the expansion of use cases. So almost across all the we learned that access to real that the volume of data just and we can now solve with new technology in terms of the news, And the expansion of the marketplace and actually start to engage to engaging with customers in person. a lot of the technologies is the world of data collaboration. What's next for the company? and access to patient's informations, joining me on the program Thank you for having us. of Snowflake Summit 22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jesse CugliottaPERSON

0.99+

Lisa MartinPERSON

0.99+

JessePERSON

0.99+

MarchDATE

0.99+

FrankPERSON

0.99+

28QUANTITY

0.99+

NovartisORGANIZATION

0.99+

2018DATE

0.99+

twoQUANTITY

0.99+

Las VegasLOCATION

0.99+

eightQUANTITY

0.99+

Jesse CugliottaPERSON

0.99+

VegasLOCATION

0.99+

sevenQUANTITY

0.99+

Loïc GiraudPERSON

0.99+

Loic GiraudPERSON

0.99+

yesterdayDATE

0.99+

LisaPERSON

0.99+

three yearsQUANTITY

0.99+

more than a billion patientsQUANTITY

0.99+

two guestsQUANTITY

0.99+

oneQUANTITY

0.99+

65 use casesQUANTITY

0.99+

LoicPERSON

0.99+

next yearDATE

0.99+

SnowflakeORGANIZATION

0.99+

over 200 use casesQUANTITY

0.99+

150 countriesQUANTITY

0.98+

nearly 800 million patientsQUANTITY

0.98+

almost 65 use casesQUANTITY

0.97+

around 1.2 billionQUANTITY

0.97+

todayDATE

0.97+

couple of months agoDATE

0.96+

ChristianORGANIZATION

0.96+

hundreds of millionsQUANTITY

0.95+

Snowflake Summit 22EVENT

0.95+

Snowflake Summit 2022EVENT

0.95+

theCUBEORGANIZATION

0.95+

BenoitORGANIZATION

0.94+

SnowflakeTITLE

0.93+

almost 120,000 employeesQUANTITY

0.93+

up to 12 yearsQUANTITY

0.93+

last couple of yearsDATE

0.92+

pandemicEVENT

0.91+

LoicORGANIZATION

0.89+

top 12 global medical device companiesQUANTITY

0.89+

day twoQUANTITY

0.87+

almost 1,000 data assetQUANTITY

0.87+

snowflakeTITLE

0.87+

KeynoteEVENT

0.85+

last few yearsDATE

0.83+

north of 10,000 attendeesQUANTITY

0.82+

500 organizationQUANTITY

0.82+

SnowflakeEVENT

0.79+

top 50 global pharmaQUANTITY

0.79+

last two yearsDATE

0.79+

peopleQUANTITY

0.78+

Lisa Cramer, LiveRamp & Chris Child, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Good afternoon, everyone. Welcome back to theCUBE's live coverage of Snowflake Summit 22, the fourth annual Snowflake Summit. Lisa Martin here with Dave Vellante, We're live in Vegas, as I mentioned. We've got a couple of guests here with us. We're going to be unpacking some more great information that has come out of the show news today. Please welcome Chris Child back to theCUBE, Senior Director of Product Management at Snowflake, and Lisa Cramer is here, Head of Embedded Products at LiveRamp, guys welcome. >> Thank you. >> Hi. >> Tell us a little bit about LiveRamp, what you guys do, what your differentiators are and a little bit about the Snowflake partnership? >> Sure, well, LiveRamp makes it safe and easy to connect data. And we're powered by core identity resolution capabilities, which enable our clients to resolve their data, and connect it with other data sets. And so we've brought these identity infrastructure capabilities to Snowflake, and built into the Native Application Framework. We focused on two initial products around device resolution, which enables our clients to connect customer data from the digital ecosystem. This powers things like, measurement use cases, and understanding campaign effectiveness and ROI. And the second capability we built into the Native Application Framework is called transcoding. And this enables a translation layer between identifiers, so that parties can safely and effectively share data at a person-based view. >> Chris, talk to us about, Snowflake just announced a lot of news this morning, just announced, the new Snowflake Native Application Framework. You alluded to this, Lisa, talk to us about that. What does it mean for customers, what does it do? Give us all the backstory. >> Yeah, so we had seen a bunch of cases for our customers where they wanted to be able to take application logic, and have other people use it. So LiveRamp, as an example of that, they've built a bunch of complicated logic to help you figure out who is the same person in different systems. But the problem was always that, that application had to run outside of the Data Cloud. And that required you to take your data outside of Snowflake, entrust your data to a third party. And so every time that companies have to go, become a vendor, they have to go through a security review, and go through a long onerous process, to be able to be allowed to process the really sensitive data that these customers have. So with the Native Applications Framework, you can take your application code, all of the logic, and the data that's needed to build it together, and actually push that through secure data sharing into a customer's account, where it runs, and is able to access their data, join it with data from the provider, all without actually having to give that provider access to your core data assets themselves. >> Is it proper to think of the Native Application Framework as a PaaS layer within the Data Cloud? >> That's a great way to think about it. And so, this is where we've integrated with the marketplace as well. So providers like LiveRamp will be able to publish these applications. They'll run entirely on effectively a PaaS layer that's powered by Snowflake, and be able to deliver those to any region, any cloud, any place that Snowflake runs. >> So, we get a lot of grief for this term, but we've coined a term called "supercloud". Okay, and the supercloud is an abstraction layer that hovers above the hyperscale infrastructure. Companies like yours, build on top of that. So you don't have to worry about the underlying complexities. And we've said that, in order to make that a reality, you have to have a super PaaS. So is that essentially what you're doing? You're building your product on top of that? You're not worrying about, okay, now I'm going to go to Azure, I'm going to go to AWS, or I'm going to go to, wherever, is that a right way to think about it? >> That's exactly right. And I think, Snowflake has really helped us, kind of shift the paradigm in how we work with our customers, and enabled us to bring our capabilities to where their data lives, right? And enabled them to, kind of run the analytics, and run the identity resolution where their data sits. And so that's really exciting. And I think, specifically with the Native Application Framework, Snowflake delivered on the promise of minimizing data movement, right? The application is installed. You don't have to move your data at all. And so for us, that was a really compelling reason to build into it. And we love when our customers can maintain control of their data. >> So the difference between what you are doing as partners, and a SaaS, is that, you're not worrying about all the capabilities, there in the data, all the governance, and the security components. You're relying on the Data Cloud for that, is that right? Or is it a SaaS? >> Yeah, I think there's components, like certainly parts of our business still run in the SaaS model. But I think the ability to rely on some of the infrastructure that Snowflake provides, and honestly kind of the connectivity, and the verticalized solutions that Snowflake brings to bear with data providers, and technology providers, that matter most to that vertical, really enable us to kind of rely on some of that to ensure that we can serve our customers as they want us to. >> So you're extending your SaaS platform and bringing new capabilities, as opposed to building, or are you building new apps in the Data Cloud? This is, I'm sorry to be so pedantic, but I'm trying to understand from your perspective. >> Oh yeah, so we built new capabilities within the Data Cloud. It's based on our core identity infrastructure capabilities, but we wanted to build into the Native Application Framework, so that data doesn't have to move and we can serve our customers, and they can maintain control over their data in their environment. So we built new capabilities, but it's all based on our core identity infrastructure. >> So safe sharing reminds me of like when procurement says, do we have an MSA? Yes, okay, go. You know, it's just frictionless. Versus no, okay, send some paper, go back and forth and it just takes forever. >> That's one of the big goals that we see. And to your point on, is it a PaaS, is it a SaaS? We honestly think of it as something a little bit different, in a similar way to where, at Snowflake we saw a whole generation of SaaS business models, and as a utility, and a consumption-based model, we think of ourselves as different from a SaaS business model. We're now trying to enable application providers, like LiveRamp, to take the core technology in IP that they've built over many, many years, but deliver it in a completely new different way that wasn't possible. And so part of this is extending what they're doing, and making it a little easier to deploy, and not having to go through the MSA process in the same way. But also we do think that this will allow entirely new capabilities to be brought that wouldn't be possible, unless they could be deployed and run inside the Data Cloud. >> Is LiveRamp a consumption pricing model, or is it a subscription, or a combo? >> We are actually a subscription, but with some usage capabilities. >> It's an hybrid. >> Chris, talk a little bit about the framework that you guys have both discussed. How is it part of the overall Snowflake vision of delivering secure and governed, powerful analytics, and data sharing to customers, and ecosystem partners? >> So this, for us we view this as kind of the next evolution of Snowflake. So Snowflake was all built on helping people consolidate their data, bring all your data into one place and then run all of your different workloads on it. And what we've seen over the years is, there are still a lot of different use cases, where you need to take your data out of the Data Cloud, in order to do certain different things. So we made a bunch of announcements today around machine learning, so that you don't have to take your data out to train models. And native applications is built on the idea of don't bring your data to the applications you need. Whether they're machine learning models, whether they're identity resolution, whether they're really even just analytics. Instead, take the application logic and bring that into the Data Cloud, and run it right on your data where it is. And so the big benefit of that is, I don't need copies of my data that are getting out of sync, and getting out of date. I don't need to give a copy of my data to anyone else. I get to keep it, I get to govern it. I get to secure it. I know exactly what's going on. But now, we can open this up to workloads, not just ones that Snowflake's building, but workloads that partners like LiveRamp, or anyone else is building. All those workloads can then run in a single copy of your data, in a single secure environment. >> And when you say in one place, Chris, people can get confused by that, 'cause it's really not in one place. it's the global thing that Benoit stressed this morning >> And that right, and so these, once you write a native app once, so the native app that they've written is one piece of code, one application, that now can be deployed by customers in any region, or on any cloud that they're running on without any changes at all. So to your point on the PaaS, that's where it gets very PaaS-like, because they write once to the Snowflake APIs, and now it can run literally anywhere the Snowflake runs. >> But the premise that we've put forth in supercloud is that, this is a new era. It's not multicloud. And it's consistent with a digital business, right? You're building, you've got a digital business, and this is a new value layer of a digital business. If I've got capabilities, I want to bring them to the cloud. I want to bring them to, every company's a software company, software's eating the world, data's eating software. I mean, I could go on and on and on, but it's not like 10 years ago. This is a whole new life cycle that we're just starting. Is that valid? I mean do you feel that way about LiveRamp? >> Definitely, I mean, I think it's really exciting to see all of the data connectivity that is happening. At the same time, I think the challenges still remain, right? So there are still challenges around being able to resolve your data, and being able to connect your data to a person-based view in a privacy safe way, to be able to partner with others in a data collaboration model, right? And to be able to do all of that without sharing anything from a sensitive identifier standpoint, or not having a resolved data set. And so I think you're absolutely right. There's a lot of really cool, awesome innovation happening, but the customer challenges, kind of still exist. And so that's why it's exciting to build these applications that can now solve those problems, where that data is. >> It's the cloud benefit, the heavy lifting thing, for data? 'Cause you don't have to worry about all that. You can focus on campaign ROI, or whatever new innovation that you want to bring out. >> And think about it from the end customer's perspective. They now, can come into their single environment where they have all their data, they can say, I need to match the identity, and they can pull in LiveRamp with a few clicks, and then they can say, I'm ready to take some actions on this. And they can pull in action tools with just a few more clicks. And they haven't made current marketing stack that you see. There's 20 different tools and you're schlepping data back and forth between each of them, and LiveRamp's just one stop on your journey to get this data out to where I'm actually sending emails or targeting ads. Our vision is that, all that happens on one copy of the data, each of these different tools are grabbing the parts they need, again in a secure well-governed, well-controlled way, enriching in ways that they need, taking actions that they need, pulling in other data sets that they need. But the end consumer maintains control over the data, and over the process, the entire way through. >> So one copy data. So you sometimes might make a copy, right? But you'd make as many copies as you need to, but no more, kind of thing, to paraphrase Einstein, or is that right? >> There's literally one copy of the data. So one of the nice things with Snowflake, with data sharing, and with native applications, the data is stored once in one file on disc and S3, which eventually is a disc somewhere. >> Yeah, yeah, right. >> But what can happen is, I'm really just granting permission to these different applications, to read and write from that single copy of the data. So as soon as a new customer touches my website, that immediately shows up in my data. LiveRamp gets access to that instantly. They enrich it. Before I've even noticed that that new customer signed up, the data's already been enriched, the identity's been matched, and they're already put into a bucket about what campaign I should run against them. >> So the data stays where it is. You bring the ISO compute, but the application. And then you take the results, right? And then I can read them back? >> You bring the next application, right to that same copy of the data. So what'll happen is you'll have a view that LiveRamp is accessing and reading and making changes on, LiveRamp is exposing its own view, I have another application reading from the LiveRamp view, exposing its own view. And ultimately someone's taking an action based on that. But there's one copy of the data all the way through. That's the really powerful thing. >> Okay, so yeah, so you're not moving the data. So you're not dealing with latency problems, but I can, if I'm in Australia and I'm running on US West, it's not a problem? >> Yes, so there, if you do want to run across different clouds, we will copy the data in that case, we've found it's much faster. >> Okay, great, I thought I was losing my mind. >> No, but as long as you're staying within a single region, there will be no copies of the data. >> Yeah, okay, totally makes sense, great. >> One of the efficiency there in speed to be able to get the insights. That's what it's all about, being able to turn the volume up on the data from a value perspective. Thanks so much guys for joining us on the program today talking about what LiveRamp and Snowflake are doing together and breaking down the Snowflake Native Application Framework. We appreciate your insights and your time, And thanks for joining us. >> Thank you both. >> Thank you guys. >> Thank you. >> For our guests, and Dave Vellante, I'm Lisa Martin. You're watching theCUBE Live from Snowflake Summit 22 from Las Vegas. We'll be right back with our next guest. (upbeat music)

Published Date : Jun 14 2022

SUMMARY :

that has come out of the show news today. and built into the Native Chris, talk to us about, and is able to access their data, and be able to deliver those Okay, and the supercloud and run the identity resolution and the security components. and honestly kind of the connectivity, apps in the Data Cloud? so that data doesn't have to move and it just takes forever. and run inside the Data Cloud. but with some usage capabilities. and data sharing to customers, and bring that into the Data Cloud, it's the global thing that So to your point on the PaaS, But the premise that we've put forth And to be able to do all of It's the cloud benefit, and over the process, to paraphrase Einstein, So one of the nice things with Snowflake, from that single copy of the data. So the data stays where it is. right to that same copy of the data. and I'm running on US West, Yes, so there, if you do want to run I was losing my mind. No, but as long as you're One of the efficiency there in speed We'll be right back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

ChrisPERSON

0.99+

AustraliaLOCATION

0.99+

Chris ChildPERSON

0.99+

Lisa CramerPERSON

0.99+

VegasLOCATION

0.99+

Las VegasLOCATION

0.99+

LisaPERSON

0.99+

LiveRampORGANIZATION

0.99+

EinsteinPERSON

0.99+

Chris ChildPERSON

0.99+

BenoitPERSON

0.99+

one copyQUANTITY

0.99+

SnowflakeORGANIZATION

0.99+

AWSORGANIZATION

0.99+

20 different toolsQUANTITY

0.99+

Snowflake Summit 22EVENT

0.99+

eachQUANTITY

0.99+

one applicationQUANTITY

0.99+

one fileQUANTITY

0.99+

bothQUANTITY

0.98+

US WestLOCATION

0.98+

todayDATE

0.98+

Data CloudTITLE

0.98+

theCUBEORGANIZATION

0.97+

Snowflake SummitEVENT

0.97+

single copyQUANTITY

0.97+

second capabilityQUANTITY

0.97+

LiveRampTITLE

0.96+

Native Application FrameworkTITLE

0.96+

SnowflakeTITLE

0.95+

Snowflake Summit 2022EVENT

0.95+

PaaSTITLE

0.95+

one stopQUANTITY

0.95+

oneQUANTITY

0.94+

10 years agoDATE

0.93+

Native Application FrameworkTITLE

0.93+

this morningDATE

0.91+

one placeQUANTITY

0.9+

two initial productsQUANTITY

0.88+

onceQUANTITY

0.87+

single regionQUANTITY

0.86+

single environmentQUANTITY

0.82+

single secure environmentQUANTITY

0.79+

couple of guestsQUANTITY

0.73+

one piece of codeQUANTITY

0.73+

OneQUANTITY

0.71+

S3TITLE

0.7+

fourth annualQUANTITY

0.68+

Katie Laughlin, IQVIA & Prasanna Krishnan, Snowflake | Snowflake Summit 2022


 

(upbeat music) >> Hey everyone. Welcome back to the show floor in Las Vegas Snowflake Summit 22 with 7,000 plus folks here, Lisa Martin with Dave Vellante. Great to be back in person. We're excited to welcome a couple of guests that join us next. Persona Christian is here. The director of product for collaboration and Snowflake marketplace. Katie Laughlin joins us as well. The Global Head Offerings, Human Data Science Cloud at Customer IQVIA. Ladies, welcome to the program. >> Thank you. >> Thank you for having us. >> Dave: All right. Thanks for coming on. >> Katie, let's go ahead and start with you. Give the audience an overview of IQVIA. What you guys do, your mission, what you deliver? >> Yeah, sure. So, IQVIA is a healthcare focused data analytics and clinical research organization. We have 82,000 employees. We operate in a hundred countries and we have tens of thousands of data deliverables that we curate for our customers and deliver to them on a monthly basis. So, we're 100% healthcare focused, whether it's clinical research, helping our customers support their clinical trials, real world evidence, how are medicines operating in the market or commercial aspects. You know, how is your company performing overall in the market? >> How long have you been a customer of Snowflake's? >> A few years. Yeah. >> A few years, okay. Persona, tremendous growth going on right now. There's a rocket ship. You could even feel kind of like the whiplash from the keynote and all the announcements going on, but looking at the first quarter 23, fiscal 23 results, product revenue, 384 million, 85% growth tremendous momentum going on, big growth in customers. Talk to us about IQVIA, its partnership with Snowflake and the data driver award program. They, they just won. >> Yeah, absolutely. I'll start with a little bit about the Snowflake collaboration capabilities, which enable these thousands of customers to really collaborate on the data cloud to be able to break down silos between data and drive business decisions based on data and applications that live outside your own four walls as well. And this is where IQVIA, as a leader in healthcare data, bringing together data to enable healthcare organizations to be more data driven and to really drive insights. One, the data for good award, which we are really excited with for the partnership and really excited to have IQVIA be the winner of the award. >> And what does that mean? The data for good. We always love talking about that, Katie. >> Katie: Sure. What does that mean? How is that embodied at IQVIA? >> Can you say the last part? >> Yeah. How is that embodied at IQVIA? >> That's a great question. I think everyone that works at IQVIA believes in the mission, which is really to drive healthcare forward. We're really proud of a lot of the things that we do. So, with the advent of COVID, for example, we really had to pivot and help our customers. How do we keep executing on clinical trials? We supported a lot of the COVID trials that came forward and helped our customers understand how is this affecting patients in the real world? And how is it affecting your commercial operations? So, being in Vegas with tens of thousands of people around and almost nobody wearing masks, I think to myself, I'm part of the organization an organization that helped make that possible. >> So Frank Slootman today, Katie talked about compress. He talked about one pharmaceutical compressing from nine years to seven years, you guys have done a lot of obviously contract research over the years. So, what has that Snowflake journey been like? What's been the business impact of of working with that and the collaboration? >> Yeah. So my focus is really around our data as a service offering, which is where we're enabling our customers to ingest their data in modern ways. So if you imagine, you know, we've done everything from paper to big tapes of data for over 60 years of of our company being in business, now to VPN, SFTP, making multiple hops of data from one end to the other. I was just learning about one of our use cases where we're able to cut down processing time for our customers for two weeks. They data share some data with us. We do some additional processing on that. We serve it back to them and we're saving them two weeks of time to gain time to insights. >> Right. And Prasanna, collaboration transcends data sharing, right? It's almost like it's, that's, that's sort of the the first, the core of the concentric circle, right? >> Prasanna: Yeah. >> Talk about what else is embodied in collaboration. >> Yeah, that's a great question. So the first problem that we solved was getting access to data through our core sharing technology. And as you were talking about Katie, replacing FTPs and having to build APIs, which were cumbersome, and instead being able to access data on the data cloud without having to copy or move anything. That was the core sharing technology. But that solves the first problem, which is the access problem. The second problem is how do I discover what what's out there? How do I better understand it? How do I evaluate it? How do I try it and buy it? And those are all the problems that we're solving with the marketplace, which is now home to both data and applications that you can discover, try, and buy. >> Katie, talk to us about what IQVIA was doing before Snowflake? What was that life like before? How were you enabling customers to leverage data to make data driven decisions? >> Yeah, so we, as I said, we're a data and analytics company. So we provide some native analytics capabilities to our customers, but most customers, most of the large customers I would say, they're building their own data lakes. They have their own ecosystems. Some of them are adopting Snowflake and we really needed to partner with them on being able to get the data to them as quickly as possible. So like, I, I was just describing a minute ago we would have multiple hops where we deliver to a location, customer ingests it, customer does their QC. Then they process it and then it appears in their data warehouse. And now we're able to adopt their QC protocols within our own platform and deliver the data to them much more quickly. >> And what does that enable to your business from an outcomes perspective? If you look at overall Snowflake as an engine what is it enabling and empowering IQVIA to accomplish? >> So it helps us partner with our customers in modern ways. So I'm saying we've been in the data business for 60 years. So it's sometimes it's a legacy behemoth that you need to bring along to modern times. And I think for us, the shift has been night and day in terms of Snowflake's capabilities. >> So you will build data based apps in the Snowflake data cloud? Is that, is that where you're headed? >> Yes. So we have several applications that we built natively on Snowflake that we offer to our customers. >> And what will that bring you that you kind of couldn't do before? >> That we couldn't do before? I think the the ability to, we talk a lot about how you spend 80% of your time cooking the data, right? Getting it ready for insights and only 20% of your time being able to to bring those insights forward and Snowflake, it really helps us flip that ratio so that we don't have to worry so much about the scaling and the infrastructure and the data sourcing. We can focus more on driving those insights and innovations. >> So Prasanna, we talk a lot about, you have this application stack over here and it sends a database over here and then you have an analytics stack. It seems like you're enabling those worlds to come together. Is that, is that by design? Is that more organic? Can you talk about that? >> Yeah. I mean, that is essential to our our mission and our value prop is to bring it together. It's one product, it's seamless and lets you do more with your data. Benoit talked today in the opening keynote about running multiple workloads on your data and the way you do that is by having one product that allows you to to run your data, data queries but also build applications that can run against that data. >> Katie, can you share a little bit about the partnership? We'll say collaboration that IQVIA has with Snowflake in terms of your ability to influence the roadmap in the direction. We heard a lot of customer stories in the keynote and they talked a lot about Frank Slootman did, Benoit, Christian. We are listening to our customers. Do you feel that as a, a customer for the last few years? >> Yeah, absolutely. So we have a really broad partnership with Snowflake. We're a customer. We have OEM licensing where we're building applications on top of Snowflake. We're an SI partner where we're marrying our data healthcare expertise along with Snowflake technology expertise and helping customers build and utilize the data internally and as well as just, if nothing else, the Snowflake data share in order to deliver the data into their environment. >> Prasanna, what do you look for in a data driver winner? Like what stood out about IQVIA and others that aspire to that, what should they be focused on? >> Yeah, I mean, you know, we ultimately think that in every business you have business needs that you're trying to solve and business is inherently collaborative. You never solve problems with just what you have within your own four walls. And IQVIA is an example of someone that's really enabling outcomes for healthcare companies to be much faster through live access to data. Which is what we want to accomplish for the data cloud, help our company, help our customers solve business needs. >> Every company has to be a data company these days, right? There's no, you have no choice. We talked about, you know, software eating the world a few years. Now we're talking about data eating the world. For organizations, it's in any any vertical healthcare, life sciences, retail, finance. It's essential to not just have data, live data access to it, to be able to extract insights from it that you can act on. Talk about what you are doing at Snowflake as a differentiator? Is that goal of becoming the defacto standard data platform and what that enables partners like IQVIA to accomplish? >> Yeah. It starts with our fundamental architecture, which allows you to collaborate and access data without creating copies of it or sending around copies and built on top of that now, the ability to build applications and to monetize them really enables our customers to do more with their data and to monetize it and to be able to distribute it without having to deal with all the plumbing. >> That's nice. That saves you a lot of time. What do you think when you, Katie, if you talk to people that are your peers in either healthcare or other industries, what are like the top couple of recommendations that you would have for them? We have a data problem. It's all a data problem. How do we actually leverage value from this fast so we can be competitive? >> Yeah. So I think if I were to advise someone who is thinking about commercializing their data set, when if they haven't before, you know, you have to think about good data governance protocols, good data cataloging. Make sure you're, you know, conforming to all of the privacy rules that you need to and overseeing the management of that data, any changes in the data, you know, delivering that both to internal and external customers. But I think, just a quick plug for Snowflake, what I would say on a personal level is that their partner first mentality really is a pleasure, makes it a pleasure to work with them and makes it really easy for us to enable our services through, through Snowflake. >> Frank Slootman talked about mission alignment this morning, kind of a mission I thought of, of aligning on with the missions of their customers and partners. It sounds like that's what Katie's talking about from a cultural perspective. You've got that alignment here? >> Yes, absolutely. You know, we work with our partners to enable our customers to drive business value and solve the needs of their industry. >> What are some of the things that you are excited about? Fourth Annual Summit. We, I, I said 7,000 plus people we'll get numbers kind of later on. What are you excited about finally being back in person? >> Yes, of course. >> Being able to access this hugely growing population of customers and partners, what excites you about this Summit 22? >> What excites me most is the fact that we are now enabling our customers to do more, to build applications which has been a big theme at Summit, but also to be able to distribute and monetize this. So as Frank talked about this morning, helping customers drive value and more value from, from their data. >> Critical. Katie, last question for you. If we look at all the,it was a very technical keynote this morning. You talked about the great partnership, the synergies the alignment that IQVIA has with Snowflake. What are you excited about in terms of hearing and seeing and feeling and touching this week at Summit? >> Well, yesterday we won an award for Data Marketplace. Marketplace Partner of the year for healthcare and life sciences. That was really exciting for us. It was great recognition for us in terms of how we've been able to modernize on the cloud. But I'm really excited to see how much the Snowflake business has grown as well. Our General Manager for information management was telling me, he said, when I come to this conference a couple of years ago it was only a few thousand people and now it's really, it's really grown and really taken off. And it's really exciting to see how many of the different partnerships are interacting and and that we're able to take advantage of as well. >> Yeah, I think we heard earlier this morning that the first summit four years ago was a couple thousand people. Now here we are eight, eight to ten. We've also seen, Persona, I mentioned some of the product revenue numbers for fiscal 23 Q1. I also noticed that in the last four years, the number percentage of customers with a million plus ARR is grown over 1200%. Number of customers is growing, the high value customers are growing. It seems like you're on a rocket ship here with Snowflake. Would you agree? >> Yeah. We're excited with all the value that we're bringing to our customers and the growth we're seeing. >> Dave: Yeah. Way to amp it up. >> Yeah, absolutely. >> Excellent. Ladies, thank you so much for joining us talking about the partnership with IQVIA and Snowflake. Congratulations again. >> Katie: Thank you. >> Katie, on IQVIA winning the data driver award, Data for good >> Great to hear what you're doing together and how you're enabling organizations in the healthcare industry to maximize the value of data. We appreciate your insights. >> Thank you. >> Dave: Thank you guys. >> Thanks. >> For our guests, Dave Vellante, I'm Lisa Martin. You're watching the Cube's live coverage from Las Vegas of Snowflake Summit 22. Stick around, Dave and I will be right back with our next guest.

Published Date : Jun 14 2022

SUMMARY :

Great to be back in person. Thanks for coming on. What you guys do, your in the market or commercial aspects. Yeah. and the data driver award program. of customers to really And what does that mean? is that embodied at IQVIA? of the things that we do. and the collaboration? of time to gain time to insights. the first, the core of the Talk about what else is and applications that you most of the large customers I would say, legacy behemoth that you that we built natively on Snowflake that and the data sourcing. and then you have an analytics stack. and the way you do that is in the direction. in order to deliver the what you have within your own four walls. from it that you can act on. the ability to build applications to people that are your of the privacy rules that you need to on with the missions of and solve the needs of their industry. What are some of the things that enabling our customers to do You talked about the great partnership, Marketplace Partner of the year that the first summit four the value that we're bringing talking about the partnership in the healthcare industry to from Las Vegas of Snowflake Summit 22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
KatiePERSON

0.99+

Frank SlootmanPERSON

0.99+

Katie LaughlinPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

FrankPERSON

0.99+

DavePERSON

0.99+

IQVIAORGANIZATION

0.99+

BenoitPERSON

0.99+

two weeksQUANTITY

0.99+

80%QUANTITY

0.99+

PrasannaPERSON

0.99+

100%QUANTITY

0.99+

VegasLOCATION

0.99+

Prasanna KrishnanPERSON

0.99+

SnowflakeORGANIZATION

0.99+

nine yearsQUANTITY

0.99+

60 yearsQUANTITY

0.99+

85%QUANTITY

0.99+

first problemQUANTITY

0.99+

eightQUANTITY

0.99+

Las VegasLOCATION

0.99+

second problemQUANTITY

0.99+

82,000 employeesQUANTITY

0.99+

one productQUANTITY

0.99+

384 millionQUANTITY

0.99+

fiscal 23 Q1DATE

0.99+

yesterdayDATE

0.99+

over 60 yearsQUANTITY

0.99+

todayDATE

0.99+

tenQUANTITY

0.99+

7,000 plus folksQUANTITY

0.99+

bothQUANTITY

0.99+

Snowflake Summit 22EVENT

0.99+

Summit 22EVENT

0.98+

four years agoDATE

0.98+

seven yearsQUANTITY

0.98+

OneQUANTITY

0.98+

over 1200%QUANTITY

0.98+

COVIDOTHER

0.98+

coupleQUANTITY

0.98+

oneQUANTITY

0.98+

ChristianPERSON

0.97+

a minute agoDATE

0.97+

Snowflake Summit 2022EVENT

0.97+

SnowflakeEVENT

0.97+

20%QUANTITY

0.97+

SnowflakeTITLE

0.97+

firstQUANTITY

0.97+

Breaking Analysis: Grading our 2021 Predictions


 

from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante predictions are all the rage at this time of year now on december 29th 2020 in collaboration with eric porter bradley of enterprise technology research etr we put forth our predictions for 2021 and the focus of our prognostications included tech spending remote work productivity apps cyber security ipos specs m a data architecture cloud hybrid cloud multi-cloud ai containers automation and semiconductors we covered a lot of ground now over the past several weeks we've been inundated with literally thousands of inbound emails pitching us on various predictions and trends in these and other areas here's my predictions folder and this is only a portion of the documents that i've received by email obviously printed them out killed a few trees sorry hello and welcome to this week's wikibon cube insights powered by etr in this breaking analysis we're going to review briefly each of our predictions for this past year 2021 and suggest a grade as to how we did we're going to do this as a little warm up for our 2022 predictions which we'll be doing in the next over the next couple of weeks now before we dig in i want to make an observation many of the predictions that we received they were observations of trends and sometimes not really predictions or you know or not surprising we got a lot of self-serving marketing statements you know predictions in our view they should be measurable so you can look back and say okay did they get it right now granted there are gray areas so that's why we'll use a grading system today now there are also many really well done and thought-provoking predictions and there's an example of one that we received that is strong it's from equinix cio milan waglay who said within the decade data centers will be powered by a hundred percent renewable energy okay so you know that's clear and we can measure that but anyway thanks to all the pr folks who sent along like i said literally thousands of predictions we tried to read them all but the volume over the past week or so was just so overwhelming and we'll try to scan them before we do our 2022 predictions but today we want to do that warm up by evaluating how we did in 2021 so let's get started our first prediction was that tech spending would increase by four percent this year coming off of what we had thought was a contraction in 2020 and depending on which data you look at you know best case maybe was flat we definitely correctly called the continuation into 2022 of the remote work trend and the positive impact it would have on pcs and the like but we underestimated the shape of that rebound that that spend back curve idc has tech spending wrote this year at five and a half percent so we feel like while we called the bounce back it was more pronounced than we had thought in fact you know we think that idc number is probably going to go up even higher and we'll address that in our 2022 predictions so so we'll give ourselves a b minus here okay next prediction was remote worker trends become fossilized settling in at an average of 34 percent by year end 2021. so on average 34 of the workers would be remote by the end of this year now you know we made the call but we missed delta no we missed omacrom we said 34 remote which would be 2x the historical norms now the etr data suggests it was 52 in september and it's probably going to be somewhere in the 40 to 45 range by by the end of this month into december and the thing is 75 of the workforce is probably still working either fully remote or in a hybrid model and hybrid work is probably going to be the dominant trend and we're going to have to revisit that framework or how we think about this whole structure and we'll do that again in our 2022 predictions so we'll give ourselves a c on that one we'll take some credit for the permanence of the trend but the percentage was well off the mark you know thanks to the variance as well as some cultural shifts that whole hybrid notion okay so hey not really a great start for eric and me but we rebound with the next one the productivity increases we said seen in 2020 will lead organizations to double down on the successes and certain productivity apps will benefit so to measure this we said let's take a look at the most recent quarterly earnings and gauge the revenue growth year on year as an indicator docusign was up 42 smartsheet who we also called up was up 46 in revenue twilio up 65 zoom growth was 35 down from 325 confirming our layup call the zoom growth would moderate it had nowhere to go but down and microsoft teams has never been more ubiquitous has never seen greater adoption with hundreds of companies having a hundred thousand or more users and thousands of companies with ten thousand users or more so we really feel like we nailed this one so we're gonna give us give ourselves an a plus okay so now on to cyber it's an area that we've been making calls in for a couple of years now and we're really pleased looking back here we said permanent shifts in cso strategies are going to lead to share shifts in network security now we said to give you more detail maybe that sounds like an easy one but we said specifically identity cloud security and endpoint security would continue to benefit and we specifically named crowdstrike octa zscaler and a few others that are targeting their growth rates now gartner has the security market growing at 11 percent octa and zscaler revenues last quarter grew at 62 percent year over year crowdstrike 63 illumia we also called out they raised 225 million dollars on a 2.75 billion valuation on the strength of its growth that was in september now akamai acquired guardiocor for 600 million dollars another company we called out that they would do it they did that as a ransomware protection play and they paid a huge revenue multiple for the company and it seems the guys listed on the last line are all talking about subscriptions sas arr remaining performance obligations or rpo so we feel very good about this look back we'll take an a on this one no it's not an a plus because we're too conservative on the growth of octa crowdstrike and zscaler topping at 50 they they blew that away by another 10 points or so 10 to 15. but look pretty good call nonetheless okay again the next one you might feel like is a layup but not really so we said the increased tech spend would drive even more ipos spax and m a according to spac analytics ipos were up 109 this year the spac attack continued up 109 percent in 2021 on top of a record 2020 and according to kpmg m a dollar volume was up 19 okay you might say uh that was easy call but there was much more underneath this prediction we called out uipass ipo which was a lock but also said automation anywhere would go public uipath did aa didn't we did correctly call the hashicorp ipo we said they'd either get go ipo or get acquired and cloud flare grew revenue 219 percent last quarter but akamai was not acquired so the degree of difficulty on the overall prediction wasn't high but the automation anywhere in akamai events we made those calls that didn't happen and those were you know obviously tougher calls so we think this still deserves a b grade all right as you know data is one of our favorite subjects and we've reported extensively in the successes and failures of so-called big data we said next in the next prediction that in the 2020s 75 percent of large organizations will re-architect their big data platforms and we said this would occur you know in earnest over the next four to five years now again you may say duh dave but you have to evaluate the prediction based on the underlying comments here the jury is still out on things like snowflakes data cloud but we absolutely believe that it's the right direction but then you have then you have data bricks coming in taking a different approach they're coming at the problem from a data science angle trying to take on traditional bi and then you get snowflake coming from the analytics space and moving into ai and data science and you know we asked at aws aws re invent we asked benoit dejaville on the cube if there needs to be a semantic layer to bring these two worlds together and he said yes and that's what he claims snowflake is building meanwhile you got the big whales like oracle they continue to invest in their capabilities to try to eliminate data movement and then there's aws taking a totally different approach to data where it gives customers maximum optionality of offerings and database and other services and you can't forget microsoft and google so many customers might not take the steps that we predicted because they're comfortable where they are specifically we're talking about here a shift toward domain ownership and data product thinking and the reorganization of hyper-specialized technical teams many of the principles put forth by data mesh and we've said this change is going to take a number of years to play out four to five years so we start noticing in 2021 that that's clearly been the case as we reported on parts of jpmorgan chase uh rethinking its data architecture hellofresh and many others so this is still an incomplete the professor we'll give ourselves an incomplete on this one but we think it's trending in the right direction okay the next one is always fun discussion that's the battle to define hybrid and multi-cloud we said that's going to escalate in 2021 and we'll create bifurcated cio strategies now here we go aws sees the world as bringing its apis and primitives and model to the edge and the data center to aws is just another edge node and the company says that in still believes in the fullness of time that all data will be in the cloud however that's defined and aws awareness would say all this talk about hybrid of connecting on-prem to a cloud they would flat out say adam silipsky told us this that's not cloud is what he said then on the other side of the table you have the likes of cisco dell hpe etc saying hold on cloud is an operating model it's not a place and aws might say yeah and aws along with its customers is defining that operating model and these other guys would say no actually you're not we are with our customers and this battle 100 percent escalated in 2021 with the launch of apex by dell hp e double down on green lake cisco's as the service models and then of course oracle which actually announced a true same same public to on-prem hybrid capability two years before aws announced outpost and of course oracle's executing on that strategy in earnest in 2021 and the other nuance here is a concept that we introduced called super cloud which refers to the notion that look something like for example multi-cloud is not about running within a respective cloud it's not about cloud compatibility rather it's about abstracting the complexity of the underlying cloud primitives and building value on top of those cloud services on top of the investments in capex that the hyperscalers have made now some people didn't like the term super cloud maybe uber cloud would be a better term we're going to continue to use it to describe this capability we think it has meaning and we're seeing new examples like goldman sachs's financial cloud running on top of aws so a super cloud is not as an application or a suite of applications running on a single cloud now if those applications span multiple clouds like like snowflake is trying to do okay that's a service that could span multiple clouds or in the case of goldman sachs it's a portfolio of data tools and software that's made accessible as a service that floats on top of a single or even multiple clouds regardless we feel that this was a correct call given the evidence and we'll give ourselves an a minus taking points off for the somewhat anecdotal and observational measurement system that we apply to look back at this prediction okay the next prediction was we made was cloud containers ai and ml automation uh are gonna power that those big four are gonna power 2021 spending here's a graphic we use to predict that it plots survey data for the various technologies within the etr taxonomy net score or spending momentum on the vertical axis and market share or presence in the data set it's a pervasive measurement on the horizontal axis the one that matters here is the vertical that dotted line of 40 percent anything above that is considered highly elevated and these four areas have held served this year based on recent etr survey data that we're not showing here we'll we'll bring that into our 2022 prediction so this prediction came in correctly for the most recent survey data and that's our measurement system on this one so we're going to take an a for this one too now on the penelope ultimate prediction here we came back to automation saying that the automation mandate accelerates in 2021 uipath and automation anywhere we said would go public but microsoft remains a threat to these pure play rpa vendors well we gave ourselves a b on this one doubling down on automation anywhere going public you know that was wrong but we definitely saw this year companies leaning hard into automation and microsoft despite the fact that it doesn't have as feature rich a product and offering as uipath and automation anywhere microsoft remains a very large presence you know we spoke to a lot of customers at the uipath forward four event in october in las vegas physical event and they confirmed you know this is true but at the same time so they're using power automate from microsoft but also using in this case uipath so they've kind of confirmed that yeah it's not the same we use that for some of our productivity we're an azure customer it's easy for us but they're still leaning heavily and investing heavily into uipath and i think the same can be said for automation anywhere but autom but power automate shows up as a big time leader in the magic gartner magic quadrant so it can't be ignored but clearly the two leaders in rpa have a sizable product advantage relative to the legacy software players now if you look at the comment on pega systems they cooled off a bit as measured by their stock price their revenue grew 13 percent last quarter on a year-on-year basis but perhaps we overestimated the tailwind effect and the company's momentum so we'll take a b on this prediction correct call on the automation trend and the big software vendors piling in ibm et cetera but the chance we took on automation anywhere again was a miss so we'll dig ourselves on that and our last prediction for 2021 was 5g rollouts push new edge iot workloads and necessitate new system architectures now much of this prediction you can see in the underlying bullets here really related to the observation that arm was dominating at the edge it would find its way into the mainstream enterprise workloads and we've been asking a lot of the mainstream you know companies the oems you know what do you what do you see with with arm in the enterprise and they say yeah we don't see it yet but very clearly this came into focus in 2021 is aws announced graviton 3 now and new inference and new training silicon these are different types of workloads that are emerging in the enterprise these are all based on arm microsoft google alibaba oracle and others are now shipping or readying arm-based systems for the enterprise when you look at new storage network and security appliances and other systems they're very offering and often including arm-based processors to assist with the offloads and look intel is definitely under product under pressure as we've predicted many times not just in our predictions post even pat gelsinger has admitted this is a turnaround it's going to take at least five years that's kind of new and recent data that he's made public so we're going to take an a minus on this one we're going to take off some points for the fact that you know 5g rollouts in edge are evolving and this is a longer term trend but the underlying points that we made on this slide are still pretty solid now if we use the following scale where a plus is a hundred out of a hundred a minus is a 90 a b is an 85 a b minus is an 80 and a c is a 75 out of 100 and we exclude that incomplete prediction on data architectures we average out to an 87.8 so that's a solid b plus and so the professor in us said hey little yellow sticky good effort as most of the predictions could be quantified and or you know we tried to object objectively score them there were some layups in there so yeah maybe we'll try to take more risks uh you know or not you know we we we'll see we like winning and so you know you always have to couch some of these things with some obvious ones but but really try to give some detail underneath that's maybe non-obvious um and we'll try to keep it down in the legs we did this year to one or two multi-year predictions so what's next well eric bradley and i were working on our 2022 predictions we're going to release those in the next couple of weeks so stay tuned for that you know what do you think how did we do you know we're grading ourselves here love to know you know for we're off base on base we're too hard on ourselves too easy give us your feedback don't forget these episodes are all available as podcasts wherever you listen all you do is search breaking analysis podcast check out etr's website at etr dot plus remember we also publish a full report every week on wikibon.com and siliconangle.com you can always get in touch with email david.velante at siliconangle.com you can dm me at divalante or comment on our linkedin posts this is dave vellante for the cube insights powered by etr have a great week everybody stay safe be well we'll see you next time [Music] you

Published Date : Dec 19 2021

SUMMARY :

and we said this would occur you know in

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
2021DATE

0.99+

2020DATE

0.99+

13 percentQUANTITY

0.99+

december 29th 2020DATE

0.99+

11 percentQUANTITY

0.99+

2.75 billionQUANTITY

0.99+

microsoftORGANIZATION

0.99+

62 percentQUANTITY

0.99+

2022DATE

0.99+

10 pointsQUANTITY

0.99+

600 million dollarsQUANTITY

0.99+

septemberDATE

0.99+

oneQUANTITY

0.99+

225 million dollarsQUANTITY

0.99+

109 percentQUANTITY

0.99+

100QUANTITY

0.99+

50QUANTITY

0.99+

10QUANTITY

0.99+

ten thousand usersQUANTITY

0.99+

75QUANTITY

0.99+

40 percentQUANTITY

0.99+

dave vellantePERSON

0.99+

219 percentQUANTITY

0.99+

fourQUANTITY

0.99+

75 percentQUANTITY

0.99+

34 percentQUANTITY

0.99+

87.8QUANTITY

0.99+

bostonLOCATION

0.99+

two leadersQUANTITY

0.99+

15QUANTITY

0.99+

100 percentQUANTITY

0.99+

last quarterDATE

0.99+

hundreds of companiesQUANTITY

0.99+

eric bradleyPERSON

0.99+

milan waglayPERSON

0.99+

46QUANTITY

0.99+

2020sDATE

0.99+

five yearsQUANTITY

0.99+

thousandsQUANTITY

0.99+

end of this yearDATE

0.99+

googleORGANIZATION

0.99+

awsORGANIZATION

0.99+

42QUANTITY

0.98+

35QUANTITY

0.98+

siliconangle.comOTHER

0.98+

40QUANTITY

0.98+

end of this monthDATE

0.98+

ciscoORGANIZATION

0.98+

four percentQUANTITY

0.98+

325QUANTITY

0.98+

80QUANTITY

0.98+

45QUANTITY

0.98+

this yearDATE

0.98+

todayDATE

0.98+

52QUANTITY

0.98+

decemberDATE

0.98+

zscalerORGANIZATION

0.98+

85QUANTITY

0.98+

guardiocorORGANIZATION

0.98+

109QUANTITY

0.97+

two worldsQUANTITY

0.97+

90QUANTITY

0.97+

alibabaORGANIZATION

0.97+

2xQUANTITY

0.97+

las vegasLOCATION

0.97+

gartnerORGANIZATION

0.97+

dell hpORGANIZATION

0.96+

uipathORGANIZATION

0.96+

five and a half percentQUANTITY

0.96+

Ajay Vohora and Duncan Turnbull | Io-Tahoe Data Quality: Active DQ


 

>> Announcer: From around the globe. It's the cube presenting active DQ, intelligent automation for data quality brought to you by Io Tahoe. (indistinct) >> Got it? all right if everybody is ready we'll opening on Dave in five, four, three. Now we're going to look at the role automation plays in mobilizing your data on snowflake. Let's welcome. And Duncan Turnbull who's partner sales engineer at snowflake, Ajay Vohora is back CEO of IO. Tahoe he's going to share his insight. Gentlemen. Welcome. >> Thank you, David good to be back. >> Yes it's great to have you back Ajay and it's really good to see Io Tahoe expanding the ecosystem so important now of course bringing snowflake in, it looks like you're really starting to build momentum. I mean, there's progress that we've seen every month month by month, over the past 12, 14 months. Your seed investors, they got to be happy. >> They are they're happy and they can see that we're running into a nice phase of expansion here new customers signing up, and now we're ready to go out and raise that next round of funding. Maybe think of us like Snowflake five years ago. So we're definitely on track with that. A lot of interest from investors and right now trying to focus in on those investors that can partner with us and understand AI data and an automation. >> Well, so personally, I mean you've managed a number of early stage VC funds. I think four of them. You've taken several comm software companies through many funding rounds and growth and all the way to exit. So you know how it works. You have to get product market fit, you got to make sure you get your KPIs, right. And you got to hire the right salespeople, but what's different this time around? >> Well, you know, the fundamentals that you mentioned those that never change. What I can see that's different that's shifted this time around is three things. One in that they used to be this kind of choice of do we go open source or do we go proprietary? Now that has turned into a nice hybrid model where we've really keyed into RedHat doing something similar with Centos. And the idea here is that there is a core capability of technology that underpins a platform, but it's the ability to then build an ecosystem around that made up of a community. And that community may include customers, technology partners, other tech vendors and enabling the platform adoption so that all of those folks in that community can build and contribute whilst still maintaining the core architecture and platform integrity at the core of it. And that's one thing that's changed. We're seeing a lot of that type of software company emerge into that model, which is different from five years ago. And then leveraging the Cloud, every Cloud, Snowflake Cloud being one of them here. In order to make use of what customers end customers in enterprise software are moving towards. Every CIO is now in some configuration of a hybrid. IT is state whether that is Cloud, multi-Cloud, on-prem. That's just the reality. The other piece is in dealing with the CIO, his legacy. So the past 15, 20 years I've purchased many different platforms, technologies, and some of those are still established and still (indistinct) How do you enable that CIO to make purchase whilst still preserving and in some cases building on and extending the legacy material technology. So they've invested their people's time and training and financial investment into. Yeah, of course solving a problem, customer pain point with technology that never goes out in a fashion >> That never changes. You have to focus like a laser on that. And of course, speaking of companies who are focused on solving problems, Duncan Turnbull from Snowflake. You guys have really done a great job and really brilliantly addressing pain points particularly around data warehousing, simplified that you're providing this new capability around data sharing really quite amazing. Duncan, Ajay talks about data quality and customer pain points in enterprise IT. Why is data quality been such a problem historically? >> So one of the biggest challenges that's really affected that in the past is that because to address everyone's needs for using data, they've evolved all these kinds of different places to store it, all these different silos or data marts or all this kind of pluralfiation of places where data lives and all of those end up with slightly different schedules for bringing data in and out, they end up with slightly different rules for transforming that data and formatting it and getting it ready and slightly different quality checks for making use of it. And this then becomes like a big problem in that these different teams are then going to have slightly different or even radically different ounces to the same kinds of questions, which makes it very hard for teams to work together on their different data problems that exist inside the business, depending on which of these silos they end up looking at. And what you can do. If you have a single kind of scalable system for putting all of your data, into it, you can kind of side step along this complexity and you can address the data quality issues in a single way. >> Now, of course, we're seeing this huge trend in the market towards robotic process automation, RPA that adoption is accelerating. You see in UI paths, IPO, 35 plus billion dollars, valuation, Snowflake like numbers, nice comms there for sure. Ajay you've coined the phrase data RPA what is that in simple terms? >> Yeah I mean, it was born out of seeing how in our ecosystem (indistinct) community developers and customers general business users for wanting to adopt and deploy Io Tahoe's technology. And we could see that. I mean, there's not marketing out here we're not trying to automate that piece but wherever there is a process that was tied into some form of a manual overhead with handovers. And so on, that process is something that we were able to automate with Io Tahoe's technology and the employment of AI and machine learning technologies specifically to those data processes, almost as a precursor to getting into marketing automation or financial information automation. That's really where we're seeing the momentum pick up especially in the last six months. And we've kept it really simple with snowflake. We've kind of stepped back and said, well, the resource that a Snowflake can leverage here is the metadata. So how could we turn Snowflake into that repository of being the data catalog? And by the way, if you're a CIO looking to purchase the data catalog tool, stop there's no need to. Working with Snowflake we've enabled that intelligence to be gathered automatically and to be put to use within snowflake. So reducing that manual effort and I'm putting that data to work. And that's where we've packaged this with our AI machine learning specific to those data tasks. And it made sense that's what's resonated with our customers. >> You know, what's interesting here just a quick aside, as you know I've been watching snowflake now for awhile and of course the competitors come out and maybe criticize, "Why they don't have this feature. They don't have that feature." And snowflake seems to have an answer. And the answer oftentimes is, well ecosystem, ecosystem is going to bring that because we have a platform that's so easy to work with. So I'm interested Duncan in what kind of collaborations you are enabling with high quality data. And of course, your data sharing capability. >> Yeah so I think the ability to work on datasets isn't just limited to inside the business itself or even between different business units you're kind of discussing maybe with those silos before. When looking at this idea of collaboration. We have these challenges where we want to be able to exploit data to the greatest degree possible, but we need to maintain the security, the safety, the privacy, and governance of that data. It could be quite valuable. It could be quite personal depending on the application involved. One of these novel applications that we see between organizations of data sharing is this idea of data clean rooms. And these data clean rooms are safe, collaborative spaces which allow multiple companies or even divisions inside a company where they have particular privacy requirements to bring two or more data sets together, for analysis. But without having to actually share the whole unprotected data set with each other. And this lets you to you know, when you do this inside of Snowflake you can collaborate using standard tool sets. You can use all of our SQL ecosystem. You can use all of the data science ecosystem that works with Snowflake. You can use all of the BI ecosystem that works with snowflake. But you can do that in a way that keeps the confidentiality that needs to be presented inside the data intact. And you can only really do these kinds of collaborations especially across organization but even inside large enterprises, when you have good reliable data to work with, otherwise your analysis just isn't going to really work properly. A good example of this is one of our large gaming customers. Who's an appetizer. They were able to build targeted ads to acquire customers and measure the campaign impact in revenue but they were able to keep their data safe and secure while doing that while working with advertising partners. The business impact of that was they're able to get a lift of 20 to 25% in campaign effectiveness through better targeting and actually pull through into that of a reduction in customer acquisition costs because they just didn't have to spend as much on the forms of media that weren't working for them. >> So, Ajay I wonder, I mean with the way public policy is shaping out, you know, obviously GDPR started it in the States, California consumer privacy Act, and people are sort of taking the best of those. And there's a lot of differentiation but what are you seeing just in terms of governments really driving this move to privacy. >> Government, public sector, we're seeing a huge wake up an activity and across (indistinct), part of it has been data privacy. The other part of it is being more joined up and more digital rather than paper or form based. We've all got, so there's a waiting in the line, holding a form, taking that form to the front of the line and handing it over a desk. Now government and public sector is really looking to transform their services into being online (indistinct) self service. And that whole shift is then driving the need to emulate a lot of what the commercial sector is doing to automate their processes and to unlock the data from silos to put through into those processes. And another thing that I can say about this is the need for data quality is as Duncan mentions underpins all of these processes government, pharmaceuticals, utilities, banking, insurance. The ability for a chief marketing officer to drive a a loyalty campaign, the ability for a CFO to reconcile accounts at the end of the month to do a quick accurate financial close. Also the ability of a customer operations to make sure that the customer has the right details about themselves in the right application that they can sell. So from all of that is underpinned by data and is effective or not based on the quality of that data. So whilst we're mobilizing data to the Snowflake Cloud the ability to then drive analytics, prediction, business processes of that Cloud succeeds or fails on the quality of that data. >> I mean it really is table stakes. If you don't trust the data you're not going to use the data. The problem is it always takes so long to get to the data quality. There's all these endless debates about it. So we've been doing a fair amount of work and thinking around this idea of decentralized data. Data by its very nature is decentralized but the fault domains of traditional big data is that everything is just monolithic. And the organizations monolithic that technology's monolithic, the roles are very, you know, hyper specialized. And so you're hearing a lot more these days about this notion of a data fabric or what Jimit Devani calls a data mesh and we've kind of been leaning into that and the ability to connect various data capabilities whether it's a data, warehouse or a data hub or a data lake, that those assets are discoverable, they're shareable through API APIs and they're governed on a federated basis. And you're using now bringing in a machine intelligence to improve data quality. You know, I wonder Duncan, if you could talk a little bit about Snowflake's approach to this topic >> Sure so I'd say that making use of all of your data is the key kind of driver behind these ideas of beta meshes or beta fabrics? And the idea is that you want to bring together not just your kind of strategic data but also your legacy data and everything that you have inside the enterprise. I think I'd also like to kind of expand upon what a lot of people view as all of the data. And I think that a lot of people kind of miss that there's this whole other world of data they could be having access to, which is things like data from their business partners, their customers, their suppliers, and even stuff that's, more in the public domain, whether that's, you know demographic data or geographic or all these kinds of other types of data sources. And what I'd say to some extent is that the data Cloud really facilitates the ability to share and gain access to this both kind of, between organizations, inside organizations. And you don't have to, make lots of copies of the data and kind of worry about the storage and this federated, idea of governance and all these things that it's quite complex to kind of manage. The snowflake approach really enables you to share data with your ecosystem or the world without any latency with full control over what's shared without having to introduce new complexities or having complex interactions with APIs or software integration. The simple approach that we provide allows a relentless focus on creating the right data product to meet the challenges facing your business today. >> So Ajay, the key here is Duncan's talking about it my mind and in my cake takeaway is to simplicity. If you can take the complexity out of the equation you're going to get more adoption. It really is that simple. >> Yeah, absolutely. I think that, that whole journey, maybe five, six years ago the adoption of data lakes was a stepping stone. However, the Achilles heel there was the complexity that it shifted towards consuming that data from a data lake where there were many, many sets of data to be able to cure rate and to consume. Whereas actually, the simplicity of being able to go to the data that you need to do your role, whether you're in tax compliance or in customer services is key. And listen for snowflake by Io Tahoe. One thing we know for sure is that our customers are super smart and they're very capable. They're data savvy and they'll want to use whichever tool and embrace whichever Cloud platform that is going to reduce the barriers to solving what's complex about that data, simplifying that and using good old fashioned SQL to access data and to build products from it to exploit that data. So simplicity is key to it to allow people to make use of that data and CIO is recognize that. >> So Duncan, the Cloud obviously brought in this notion of DevOps and new methodologies and things like agile that's brought in the notion of DataOps which is a very hot topic right now basically DevOps applies to data about how does Snowflake think about this? How do you facilitate that methodology? >> So I agree with you absolutely that DataOps takes these ideas of agile development or agile delivery and have the kind of DevOps world that we've seen just rise and rise. And it applies them to the data pipeline, which is somewhere where it kind of traditionally hasn't happened. And it's the same kinds of messages. As we see in the development world it's about delivering faster development having better repeatability and really getting towards that dream of the data-driven enterprise, where you can answer people's data questions they can make better business decisions. And we have some really great architectural advantages that allow us to do things like allow cloning of data sets without having to copy them, allows us to do things like time travel so we can see what the data looked like at some point in the past. And this lets you kind of set up both your own kind of little data playpen as a clone without really having to copy all of that data so it's quick and easy. And you can also, again with our separation of storage and compute, you can provision your own virtual warehouse for dev usage. So you're not interfering with anything to do with people's production usage of this data. So these ideas, the scalability, it just makes it easy to make changes, test them, see what the effect of those changes are. And we've actually seen this, that you were talking a lot about partner ecosystems earlier. The partner ecosystem has taken these ideas that are inside Snowflake and they've extended them. They've integrated them with DevOps and DataOps tooling. So things like version control and get an infrastructure automation and things like Terraform. And they've kind of built that out into more of a DataOps products that you can make use of. So we can see there's a huge impact of these ideas coming into the data world. We think we're really well-placed to take advantage to them. The partner ecosystem is doing a great job with doing that. And it really allows us to kind of change that operating model for data so that we don't have as much emphasis on like hierarchy and change windows and all these kinds of things that are maybe viewed as a lot as fashioned. And we kind of taken the shift from this batch stage of integration into streaming continuous data pipelines in the Cloud. And this kind of gets you away from like a once a week or once a month change window if you're really unlucky to pushing changes in a much more rapid fashion as the needs of the business change. >> I mean those hierarchical organizational structures when we apply those to begin to that it actually creates the silos. So if you're going to be a silo buster, which Ajay I look at you guys in silo busters, you've got to put data in the hands of the domain experts, the business people, they know what data they want, if they have to go through and beg and borrow for a new data sets cetera. And so that's where automation becomes so key. And frankly the technology should be an implementation detail not the dictating factor. I wonder if you could comment on this. >> Yeah, absolutely. I think making the technologies more accessible to the general business users or those specialists business teams that's the key to unlocking. So it is interesting to see is as people move from organization to organization where they've had those experiences operating in a hierarchical sense, I want to break free from that. And we've been exposed to automation. Continuous workflows change is continuous in IT. It's continuous in business. The market's continuously changing. So having that flow across the organization of work, using key components, such as GitHub and similar towards your drive process, Terraform to build in, code into the process and automation and with Io Tahoe, leveraging all the metadata from across those fragmented sources is good to see how those things are coming together. And watching people move from organization to organization say, "Hey okay, I've got a new start. I've got my first hundred days to impress my new manager. What kind of an impact can I bring to this?" And quite often we're seeing that as, let me take away the good learnings from how to do it or how not to do it from my previous role. And this is an opportunity for me to bring in automation. And I'll give you an example, David, recently started working with a client in financial services. Who's an asset manager, managing financial assets. They've grown over the course of the last 10 years through M&A and each of those acquisitions have bought with its technical debt, it's own set of data, that multiple CRM systems now multiple databases, multiple bespoke in-house created applications. And when the new CIO came in and had a look at those he thought well, yes I want to mobilize my data. Yes, I need to modernize my data state because my CEO is now looking at these crypto assets that are on the horizon and the new funds that are emerging that's around digital assets and crypto assets. But in order to get to that where absolutely data underpins that and is the core asset cleaning up that that legacy situation mobilizing the relevant data into the Snowflake Cloud platform is where we're giving time back. You know, that is now taking a few weeks whereas that transitioned to mobilize that data start with that new clean slate to build upon a new business as a digital crypto asset manager as well as the legacy, traditional financial assets, bonds, stocks, and fixed income assets, you name it is where we're starting to see a lot of innovation. >> Tons of innovation. I love the crypto examples, NFTs are exploding and let's face it. Traditional banks are getting disrupted. And so I also love this notion of data RPA. Especially because Ajay I've done a lot of work in the RPA space. And what I would observe is that the early days of RPA, I call it paving the cow path, taking existing processes and applying scripts, letting software robots do its thing. And that was good because it reduced mundane tasks, but really where it's evolved is a much broader automation agenda. People are discovering new ways to completely transform their processes. And I see a similar analogy for the data operating model. So I'm wonder what do you think about that and how a customer really gets started bringing this to their ecosystem, their data life cycles. >> Sure. Yeah. Step one is always the same. It's figuring out for the CIO, the chief data officer, what data do I have? And that's increasingly something that they want to automate, so we can help them there and do that automated data discovery whether that is documents in the file share backup archive in a relational data store in a mainframe really quickly hydrating that and bringing that intelligence the forefront of what do I have, and then it's the next step of, well, okay now I want to continually monitor and curate that intelligence with the platform that I've chosen let's say Snowflake. In order such that I can then build applications on top of that platform to serve my internal external customer needs. and the automation around classifying data, reconciliation across different fragmented data silos building that in those insights into Snowflake. As you say, a little later on where we're talking about data quality, active DQ, allowing us to reconcile data from different sources as well as look at the integrity of that data. So then go on to remediation. I want to harness and leverage techniques around traditional RPA but to get to that stage, I need to fix the data. So remediating publishing the data in Snowflake, allowing analysis to be formed, performed in Snowflake but those are the key steps that we see and just shrinking that timeline into weeks, giving the organization that time back means they're spending more time on their customer and solving their customer's problem which is where we want them to be. >> Well, I think this is the brilliance of Snowflake actually, you know, Duncan I've talked to Benoit Dageville about this and your other co-founders and it's really that focus on simplicity. So I mean, that's you picked a good company to join in my opinion. So I wonder Ajay, if you could talk about some of the industry sectors that again are going to gain the most from data RPA, I mean traditional RPA, if I can use that term, a lot of it was back office, a lot of financial, what are the practical applications where data RPA is going to impact businesses and the outcomes that we can expect. >> Yes, so our drive is really to make that business general user's experience of RPA simpler and using no code to do that where they've also chosen Snowflake to build their Cloud platform. They've got the combination then of using a relatively simple scripting techniques such as SQL without no code approach. And the answer to your question is whichever sector is looking to mobilize their data. It seems like a cop-out but to give you some specific examples, David now in banking, where our customers are looking to modernize their banking systems and enable better customer experience through applications and digital apps, that's where we're seeing a lot of traction in this approach to pay RPA to data. And health care where there's a huge amount of work to do to standardize data sets across providers, payers, patients and it's an ongoing process there. For retail helping to to build that immersive customer experience. So recommending next best actions. Providing an experience that is going to drive loyalty and retention, that's dependent on understanding what that customer's needs, intent are, being able to provide them with the content or the offer at that point in time or all data dependent utilities. There's another one great overlap there with Snowflake where helping utilities telecoms, energy, water providers to build services on that data. And this is where the ecosystem just continues to expand. If we're helping our customers turn their data into services for their ecosystem, that's exciting. Again, they were more so exciting than insurance which it always used to think back to, when insurance used to be very dull and mundane, actually that's where we're seeing a huge amounts of innovation to create new flexible products that are priced to the day to the situation and risk models being adaptive when the data changes on events or circumstances. So across all those sectors that they're all mobilizing their data, they're all moving in some way but for sure form to a multi-Cloud setup with their IT. And I think with Snowflake and with Io Tahoe being able to accelerate that and make that journey simple and less complex is why we've found such a good partner here. >> All right. Thanks for that. And thank you guys both. We got to leave it there really appreciate Duncan you coming on and Ajay best of luck with the fundraising. >> We'll keep you posted. Thanks, David. >> All right. Great. >> Okay. Now let's take a look at a short video. That's going to help you understand how to reduce the steps around your DataOps let's watch. (upbeat music)

Published Date : Apr 20 2021

SUMMARY :

brought to you by Io Tahoe. he's going to share his insight. and it's really good to see Io Tahoe and they can see that we're running and all the way to exit. but it's the ability to You have to focus like a laser on that. is that because to address in the market towards robotic and I'm putting that data to work. and of course the competitors come out that needs to be presented this move to privacy. the ability to then drive and the ability to connect facilitates the ability to share and in my cake takeaway is to simplicity. that is going to reduce the And it applies them to the data pipeline, And frankly the technology should be that's the key to unlocking. that the early days of RPA, and the automation and the outcomes that we can expect. And the answer to your question is We got to leave it there We'll keep you posted. All right. That's going to help you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Ajay VohoraPERSON

0.99+

Duncan TurnbullPERSON

0.99+

Duncan TurnbullPERSON

0.99+

fiveQUANTITY

0.99+

DuncanPERSON

0.99+

twoQUANTITY

0.99+

DavePERSON

0.99+

IOORGANIZATION

0.99+

Jimit DevaniPERSON

0.99+

AjayPERSON

0.99+

Io TahoeORGANIZATION

0.99+

20QUANTITY

0.99+

Io-TahoeORGANIZATION

0.99+

OneQUANTITY

0.99+

California consumer privacy ActTITLE

0.99+

TahoePERSON

0.99+

Benoit DagevillePERSON

0.99+

SnowflakeTITLE

0.99+

five years agoDATE

0.99+

SQLTITLE

0.99+

first hundred daysQUANTITY

0.98+

fourQUANTITY

0.98+

GDPRTITLE

0.98+

eachQUANTITY

0.98+

threeQUANTITY

0.98+

bothQUANTITY

0.98+

25%QUANTITY

0.97+

three thingsQUANTITY

0.97+

oneQUANTITY

0.97+

M&AORGANIZATION

0.97+

once a weekQUANTITY

0.97+

one thingQUANTITY

0.96+

SnowflakeORGANIZATION

0.95+

once a monthQUANTITY

0.95+

DevOpsTITLE

0.95+

snowflakeTITLE

0.94+

singleQUANTITY

0.93+

last six monthsDATE

0.92+

StatesTITLE

0.92+

six years agoDATE

0.91+

single wayQUANTITY

0.91+

Snowflake CloudTITLE

0.9+

DataOpsTITLE

0.9+

todayDATE

0.86+

12QUANTITY

0.85+

35 plus billion dollarsQUANTITY

0.84+

fiveDATE

0.84+

Step oneQUANTITY

0.83+

TonsQUANTITY

0.82+

RedHatORGANIZATION

0.81+

CentosORGANIZATION

0.8+

One thingQUANTITY

0.79+

14 monthsQUANTITY

0.79+

Democratizing AI and Advanced Analytics with Dataiku x Snowflake


 

>>My name is Dave Volonte, and with me are two world class technologists, visionaries and entrepreneurs. And Wa Dodgeville is the he co founded Snowflake, and he's now the president of the product division. And Florian Duetto is the co founder and CEO of Data Aiko. Gentlemen, welcome to the Cube to first timers. Love it. >>Great to be here >>now, Florian you and Ben Wa You have a number of customers in common. And I have said many times on the Cube that you know, the first era of cloud was really about infrastructure, making it more agile, taking out costs. And the next generation of innovation is really coming from the application of machine intelligence to data with the cloud is really the scale platform. So is that premise your relevant to you? Do you buy that? And and why do you think snowflake and data ICU make a good match for customers? >>I think that because it's our values that are aligned when it's all about actually today allowing complexity for customers. So you close the gap or the democratizing access to data access to technology. It's not only about data data is important, but it's also about the impact of data. Who can you make the best out of data as fast as possible as easily as possible within an organization. And another value is about just the openness of the platform building the future together? Uh, I think a platform that is not just about the platform but also full ecosystem of partners around it, bringing the level off accessibility and flexibility you need for the 10 years away. >>Yeah, so that's key. But it's not just data. It's turning data into insights. Have been why you came out of the world of very powerful but highly complex databases. And we know we all know that you and the snowflake team you get very high marks for really radically simplifying customers lives. But can you talk specifically about the types of challenges that your customers air using snowflake to solve? >>Yeah, so So the really the challenge, you know, be four. Snowflake. I would say waas really? To put all the data, you know, in one place and run all the computers, all the workloads that you wanted to run, You know, against that data and off course, you know, existing legacy platforms. We're not able to support. You know that level of concurrency, Many workload. You know, we we talk about machine learning that a science that are engendering, you know, that our house big data were closed or running in one place didn't make sense at all. And therefore, you know what customers did is to create silos, silos of data everywhere, you know, with different system having a subset of the data. And of course, now you cannot analyze this data in one place. So, snowflake, we really solve that problem by creating a single, you know, architectural where you can put all the data in the cloud. So it's a really cloud native we really thought about You know how to solve that problem, how to create, you know, leverage, Cloud and the lessee cc off cloud to really put all the die in one place, but at the same time not run all workload at the same place. So each workload that runs in Snowflake that is dedicated, You know, computer resource is to run, and that makes it very Ajai, right? You know, Floyd and talk about, you know, data scientists having to run analysis, so they need you know a lot of compute resources, but only for, you know, a few hours on. Do you know, with snowflake they can run these new work lord at this workload to the system, get the compute resources that they need to run this workload. And when it's over, they can shut down. You know that their system, it will be automatically shut down. Therefore, they would not pay for the resources that they don't use. So it's a very Ajai system where you can do this, analyzes when you need, and you have all the power to run all this workload at the same time. >>Well, it's profound what you guys built to me. I mean, of course, everybody's trying to copy it now. It was like, remember that bringing the notion of bringing compute to the data and the Hadoop days, and I think that that Asai say everybody is sort of following your suit now are trying to Florian I gotta say the first data scientist I ever interviewed on the Cube was amazing. Hilary Mason, right after she started a bit Lee. And, you know, she made data science that sounds so compelling. But data science is hard. So same same question for you. What do you see is the biggest challenges for customers that they're facing with data science. >>The biggest challenge, from my perspective, is that owns you solve the issue of the data. Seidel with snowflake, you don't want to bring another Seidel, which would be a side off skills. Essentially, there is to the talent gap between the talented label of the market, or are it is to actually find recruits trained data scientist on what needs to be done. And so you need actually to simplify the access to technologies such as every organization can make it, whatever the talent, by bridging that gap and to get there, there is a need of actually breaking up the silos. And in a collaborative approach where technologists and business work together and actually put some their hands into those data projects together, >>it makes sense for flooring. Let's stay with you for a minute. If I can your observation spaces, you know it's pretty, pretty global, and and so you have a unique perspective on how companies around the world might be using data and data science. Are you seeing any trends may be differences between regions or maybe within different industries. What are you seeing? >>Yes. Yeah, definitely. I do see trends that are not geographic that much, but much more in terms of maturity of certain industries and certain sectors, which are that certain industries invested a lot in terms of data, data access, ability to start data in the last few years and no age, a level of maturity where they can invest more and get to the next steps. And it's really rely on the ability of certain medial certain organization actually to have built this long term strategy a few years ago and no start raping up the benefits. >>You know, a decade ago, Florian Hal Varian, we, you know, famously said that the sexy job in the next 10 years will be statisticians. And then everybody sort of change that to data scientists and then everybody. All the statisticians became data scientists, and they got a raise. But data science requires more than just statistics acumen. What what skills >>do >>you see as critical for the next generation of data science? >>Yeah, it's a good question because I think the first generation of the patient is became the licenses because they could done some pipe and quickly on be flexible. And I think that the skills or the next generation of data sentences will definitely be different. It will be first about being able to speak the language of the business, meaning, oh, you translate data inside predictive modeling all of this into actionable insight or business impact. And it would be about you collaborate with the rest of the business. It's not just a farce. You can build something off fast. You can do a notebook in python or your credit models off themselves. It's about, oh, you actually build this bridge with the business. And obviously those things are important. But we also has become the center of the fact that technology will evolve in the future. There will be new tools and technologies, and they will still need to keep this level of flexibility and get to understand quickly, quickly. What are the next tools they need to use the new languages or whatever to get there. >>As you look back on 2020 what are you thinking? What are you telling people as we head into next year? >>Yeah, I I think it's Zaveri interesting, right? We did this crisis, as has told us that the world really can change from one day to the next. And this has, you know, dramatic, you know, and perform the, you know, aspect. For example, companies all the sudden, you know, So their revenue line, you know, dropping. And they had to do less meat data. Some of the companies was the reverse, right? All the sudden, you know, they were online, like in stock out, for example, and their business, you know, completely, you know, change, you know, from one day to the other. So this GT off, You know, I, you know, adjusting the resource is that you have tow the task a need that can change, you know, using solution like snowflakes, you know, really has that. And we saw, you know, both in in our customers some customers from one day to the to do the next where, you know, growing like big time because they benefited, you know, from from from from co vid and their business benefited, but also, as you know, had to drop. And what is nice with with with cloud, it allows to, you know, I just compute resources toe, you know, to your business needs, you know, and really adjusted, you know, in our, uh, the the other aspect is is understanding what is happening, right? You need to analyze the we saw all these all our customers basically wanted to understand. What is that going to be the impact on my business? How can I adapt? How can I adjust? And and for that, they needed to analyze data. And, of course, a lot of data which are not necessarily data about, you know, their business, but also data from the outside. You know, for example, coffee data, You know, where is the States? You know, what is the impact? You know, geographic impact from covitz, You know, all the time and access to this data is critical. So this is, you know, the promise off the data crowd, right? You know, having one single place where you can put all the data off the world. So our customers, all the Children you know, started to consume the cov data from our that our marketplace and and we had the literally thousands of customers looking at this data analyzing this data, uh, to make good decisions So this agility and and and this, you know, adapt adapting, you know, from from one hour to the next is really critical. And that goes, you know, with data with crowding adjusting, resource is on and that's, you know, doesn't exist on premise. So So So indeed, I think the lesson learned is is we are living in a world which machines changing all the time and we have for understanding We have to adjust and and And that's why cloud, you know, somewhere it's great. >>Excellent. Thank you. You know the kid we like to talk about disruption, of course. Who doesn't on And also, I mean, you look at a I and and the impact that is beginning to have and kind of pre co vid. You look at some of the industries that were getting disrupted by, you know, we talked about digital transformation and you had on the one end of the spectrum industries like publishing which are highly disrupted or taxis. And you could say Okay, well, that's, you know, bits versus Adam, the old Negroponte thing. But then the flip side of that look at financial services that hadn't been dramatically disrupted. Certainly healthcare, which is ripe for disruption Defense. So the number number of industries that really hadn't leaned into digital transformation If it ain't broke, don't fix it. Not on my watch. There was this complacency and then, >>of >>course, co vid broke everything. So, florian, I wonder if you could comment? You know what industry or industries do you think you're gonna be most impacted by data science and what I call machine intelligence or a I in the coming years and decades? >>Honestly, I think it's all of them artist, most of them because for some industries, the impact is very visible because we're talking about brand new products, drones like cars or whatever that are very visible for us. But for others, we are talking about sport from changes in the way you operate as an organization, even if financial industry itself doesn't seems to be so impacted when you look it from the consumer side or the outside. In fact, internally, it's probably impacted just because the way you use data on developer for flexibility, you need the kind off cost gay you can get by leveraging the latest technologies is just enormous, and so it will actually transform the industry that also and overall, I think that 2020 is only a where, from the perspective of a I and analytics, we understood this idea of maturity and resilience, maturity, meaning that when you've got a crisis, you actually need data and ai more than before. You need to actually call the people from data in the room to take better decisions and look for a while and not background. And I think that's a very important learning from 2020 that will tell things about 2021 and the resilience it's like, Yeah, Data Analytics today is a function consuming every industries and is so important that it's something that needs to work. So the infrastructure is to work in frustration in super resilient. So probably not on prime on a fully and prime at some point and the kind of residence where you need to be able to plan for literally anything like no hypothesis in terms of behaviors can be taken for granted. And that's something that is new and which is just signaling that we're just getting to the next step for the analytics. >>I wonder, Benoit, if you have anything to add to that. I mean, I often wonder, you know, winter machine's gonna be able to make better diagnoses than doctors. Some people say already, you know? Well, the financial services traditional banks lose control of payment systems. Uh, you know what's gonna happen to big retail stores? I mean, maybe bring us home with maybe some of your final thoughts. >>Yeah, I would say, you know, I I don't see that as a negative, right? The human being will always be involved very closely, but the machine and the data can really have, you know, see, Coalition, you know, in the data that that would be impossible for for for human being alone, you know, you know, to to discover so So I think it's going to be a compliment, not a replacement on. Do you know everything that has made us you know faster, you know, doesn't mean that that we have less work to do. It means that we can doom or and and we have so much, you know, to do, uh, that that I would not be worried about, You know, the effect off being more efficient and and and better at at our you know, work. And indeed, you know, I fundamentally think that that data, you know, processing off images and doing, you know, I ai on on on these images and discovering, you know, patterns and and potentially flagging, you know, disease, where all year that then it was possible is going toe have a huge impact in in health care, Onda and And as as as Ryan was saying, every you know, every industry is going to be impacted by by that technology. So So, yeah, I'm very optimistic. >>Great guys. I wish we had more time. I gotta leave it there. But so thanks so much for coming on. The Cube was really a pleasure having you.

Published Date : Nov 20 2020

SUMMARY :

And Wa Dodgeville is the he co founded And I have said many times on the Cube that you know, the first era of cloud was really about infrastructure, So you close the gap or the democratizing access to data And we know we all know that you and the snowflake team you get very high marks for Yeah, so So the really the challenge, you know, be four. And, you know, And so you need actually to simplify the access to you know it's pretty, pretty global, and and so you have a unique perspective on how companies the ability of certain medial certain organization actually to have built this long term strategy You know, a decade ago, Florian Hal Varian, we, you know, famously said that the sexy job in the next And it would be about you collaborate with the rest of the business. So our customers, all the Children you know, started to consume the cov you know, we talked about digital transformation and you had on the one end of the spectrum industries You know what industry or industries do you think you're gonna be most impacted by data the kind of residence where you need to be able to plan for literally I mean, I often wonder, you know, winter machine's gonna be able to make better diagnoses that data, you know, processing off images and doing, you know, I ai on I gotta leave it there.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VolontePERSON

0.99+

Florian DuettoPERSON

0.99+

Hilary MasonPERSON

0.99+

Florian Hal VarianPERSON

0.99+

FlorianPERSON

0.99+

BenoitPERSON

0.99+

RyanPERSON

0.99+

Ben WaPERSON

0.99+

Data AikoORGANIZATION

0.99+

2020DATE

0.99+

10 yearsQUANTITY

0.99+

LeePERSON

0.99+

Wa DodgevillePERSON

0.99+

next yearDATE

0.99+

pythonTITLE

0.99+

SnowflakeORGANIZATION

0.99+

firstQUANTITY

0.99+

one placeQUANTITY

0.99+

one hourQUANTITY

0.98+

a decade agoDATE

0.98+

FloydPERSON

0.98+

2021DATE

0.98+

one dayQUANTITY

0.98+

bothQUANTITY

0.97+

todayDATE

0.97+

first generationQUANTITY

0.96+

AdamPERSON

0.93+

OndaORGANIZATION

0.93+

one single placeQUANTITY

0.93+

florianPERSON

0.93+

each workloadQUANTITY

0.92+

oneQUANTITY

0.91+

fourQUANTITY

0.9+

few years agoDATE

0.88+

thousands of customersQUANTITY

0.88+

CubeCOMMERCIAL_ITEM

0.87+

first data scientistQUANTITY

0.84+

singleQUANTITY

0.83+

AsaiPERSON

0.82+

two worldQUANTITY

0.81+

first eraQUANTITY

0.74+

next 10 yearsDATE

0.74+

NegropontePERSON

0.73+

ZaveriORGANIZATION

0.72+

DataikuORGANIZATION

0.7+

CubeORGANIZATION

0.64+

AjaiORGANIZATION

0.58+

yearsDATE

0.57+

covitzPERSON

0.53+

decadesQUANTITY

0.52+

CubePERSON

0.45+

SnowflakeTITLE

0.45+

SeidelORGANIZATION

0.43+

snowflakeEVENT

0.35+

SeidelCOMMERCIAL_ITEM

0.34+