Image Title

Search Results for hpe.com/info/compute:

Dana Lawson, GitHub | DockerCon 2021


 

>>Okay, welcome back to the Cube coverage of Dr Khan 2021. I'm John for your host. Had a great guest here. Dana Lawson. Vice president. Engineering and technology partnerships that get up dana. Welcome to the cube. You're leading the engineering team over at GIT hub. Been been around the block in the cloud enterprise area. Congratulations. Welcome to the cube. >>Well, thanks for having me. Don, I am super excited. Dr. 2021 Wow. I can't believe it's been that long. Right. >>Got the keynote coverage automation. The top trend here in the world. DevoPS DEP sec apps, developer productivity, modern errors here, a lot of action uh and dr conscious more attendance every year, containers setting up the cloud native. You know the tsunami of new ways that people are programming. New way teams are formed new way people are being super productive with the pandemic. We've seen developers really lead the charge in the virtual work environment. So a lot of action. So first tell us what's going on in the developer community right now, give us your take, >>I mean, my take on it is the developer teams are just working closer than ever before. You know, we see this across all industries, whether you're going through your own digital transformation and trying to streamline your workflow, um you know, we have this concept of devops now for about a decade and and we all were hopeful I was one of those early adopters that like, yes, this will change the world, as you can imagine, and like we're seeing it materialized and I feel like in this historic year, uh it's on steroids, we see teams working across the aisle doing things we've never experienced before with this concept of interconnected tools. And so we're seeing really the, I would say the practice of devops really going across every member of the team and not being just a practice that maybe one person on your team did. You know, this trend has been ongoing for a while. But with these new key technologies out there, it's really on fire in my opinion, >>outside of just the whole cloud native awesomeness that's happening. You see kubernetes enabling a lot of new things, the virtual work environment with the pandemic developers, just like just the way we've been working a long time. Finally, it just got standardized for the rest of the world, the world. Um they didn't really miss a beat and, and combined again with the cloud scale and we saw the earnings from all the big companies, the developers have been super productive this year. Do you see um that continuing and what, how is it going to change in your opinion as the pandemic kind of lifts a little bit and now the new normal gets back to real life. Certainly those benefits came out is what's your take on this engineering dynamic going on. >>I mean you said it they're like this is a common kind of workflow that people had pre pandemic, especially in the open source community where it's literally a bunch of random people around the world that don't obviously get to talk as as quickly and as uh you know, synchronously and so a saint communications gone up in what we've seen there is teams really tuning in their automation, right? So whereas you may have had it in your backlog to say, you know what, I should probably go automate that workflow now that we have been forced. Even even companies that haven't haven't thought about in the past to say, okay, how do I get code from A to B. Seamlessly? There's spending time on those workflows. and I think that we're seeing that naturally, you know, in the keynote where I mentioned some of the Research that we've done is we're seeing developers work more but we're seeing them work more on open source projects and the things that they want to work on not necessarily going and saying I'm going to go and spend 20 hours at work. But really it's that that continuation of like hey instead of automation being an afterthought we're gonna make it something that is at the forethought of what we're doing. And so what it's really done is just increase the time spent on writing great code and hopefully having a better up time. I am a I am a DEvops SRE sys admin, whatever you wanna call it at heart forever will be. Um and so you know, getting to have more time to spend on S. L. O. S. And really the, you know like I call it the safety guards, the rails of your system so that you can just really go in there and allow everybody to contribute. And that's what I think we're seeing and we're going to continue to see that as things just get easier as stuff happens out of the virtual box. >>I mean simple or easy. It's always a good strategy. I was just reporting for our team on the cube con and cloud native con. There's more cloud native con going on than cube con because kubernetes got kind of boring. Um, and enabled more cloud native development. And then the other trend that we've been reporting on is end user contribution to open sores. You're starting to see end users, not just the usual suspects like lift and whatnot. You're seeing like real enterprises like having teams contributing into open source in a big way. This is a kind of a new, interesting dynamic. What's your take on that? Is that a signal of simplicity? What does it mean? >>I'm going to tell you, I think that companies and big names that realized they were using open source and they have been all along, um, it's been around for a minute. Some of our most favorite libraries and frameworks have been open source from the beginning. You hear me talking about Java and Tomcat that's open source. And so it's really this understanding of the workflow. So I want to say that what we see now is there should be an investment because the world's team of open source developers are powering our technology and why shouldn't we as companies embrace and actually get back and spend that quality time because us innovating together on open source privately and publicly just makes everything better for everybody. And so I I think we're going to continue to see this trim. I'm excited about it. GIT hub has done some amazing work in this space by with get up sponsors because we want open source to continue to enable the innovation and having people participate. And now we're seeing it with businesses alike. And so I think we're going to see this practice continue on and really take a look not only of the technology they're using, but the open source practices like how do these maintainers and these open source teams shit reliable quality code that is changing the world. And how can we put those practices within our own development teams on what we're building for our customers? So you're just going to continue to see this. And I think also with that being said because the barrier of entry has has lowered some by the advancement. What we're seeing the rise of the citizen developer as well. So we're seeing you know people all within the company and some that are much more further along with their transformations participate in a way they never have before. Whether it's like you know the design part in the design thinking of it to like how do you curate and have a great experience for your customers. We're just seeing participation at all levels of development stack and that also is the stuff outside of the actual code being written because it's so interconnected and so I I don't know I'm excited. I'm excited to see what we're going to unlock by having people participate more so than ever and then having companies invest in that participation. >>I love your enthusiasm. I agree. I think it's a great time for open source because it has democratized, it is bringing in new people. The aperture of the personas coming in >>is not >>just computer science and engineering. This hybrid SRE rolls developing and then you've got creative. There's a creativity aspect coming back and I've been riffing on this for a few years but I'm kind of seeing this development, love to get your thoughts used to be like craftsmanship was involved in building software and then Agile came in ship fast and iterate. Um and now craft is coming back. You're starting to see creativity and the developer experience through collaboration tools and kind of this democratization. What's your thoughts on this? And no, I know you I know you think about this as an engineering leader. Um Craft agile bring them both together. Speed and quality is craft coming back. >>Craft is definitely coming back and I think it is because we we melt the mundane stuff, right? Like, you know, we're all hyper focused on like you want to be the bush out there, you gotta ship immediately agile, agile, agile. But what we know is like you can ship a bunch of stuff, nobody wants very fast, you can ship a bunch of stuff that hasn't been curated to really, you know, solve the problem now, you'll be fast but will be awesome. I think people demand more. And I really believe that because we've embraced some of these frameworks, workflows and tool sets, that we get a focus on the craft and that's what we're trying to do, right? Ultimately we want every person that builds to be an innovator and not just an innovator for innovation state, but because they're changing and affecting somebody's life, right? And so when we dig deep and focusing on the craft, and we still have these expertise, we're just gonna be applying that in a very intentional way versus okay, hurry up. Bill, Bill Bill, hurry up, hurry up. Bill Bill, Bill, go, go, go, because now it's connected. And so we're seeing the rise of that craft and what I think is going to in turn happen is we're all going to have a better experience, we're all going to reap the benefits of having that expertise. You know, there's a spirit sometimes when we talk about automation and devops and, you know, interconnected tool systems that maybe you're taking somebody's job that they were doing before the daily task. No way. All we're doing is saying like, cool, take the repeatable thing that you're doing over and over and over, and let's focus on that craft, lets you know if your security person and you want to get down and deep and understand where vulnerabilities are going to come from and things that people haven't even thought of. Cool, let's take away some of the other things that we know can be caught and solved without you paying attention in some aspects. I think we just need along the whole stack. So it's pretty exciting times. >>Yeah, I did it and we call that different, undifferentiated heavy lifting, you know, just get it out of the way since you brought that up. Let's take automation down that road of experience. What does it mean for the developer? Because this is really an opportunity. Right. So the phrase I've heard is if you do it more than a few times, just automated away. So when is the right time to automate where this automation play into the developer experience? When does it make it more productive? Where's the innovation angle you share your thoughts on when people look through the prism of automation productivity versus innovation? What's the what's the automation view there? >>I mean, you know it is it is a good like, you know, little metric could be done it five times and it's the same thing over and over and over. Your question is now like do you have to be doing that? I mean you should because you're doing it. So I think it's about finding and defining your own boundary for what you need, right? I mean it's hard to get out there and say every workflow like we can go and apply the stamp. We already tried that with agile frameworks for like everybody you're gonna do scrum, we're going to combine, you know what? It doesn't work. What we really need to do is have teams understand their workflows, right, understand and do some diagnosis and saying like we're in the system and I think that's powerful metrics and insights of going like where are we having a slowdown? Where are people spending their time if people are spending their time doing break fix or they're spending their time continuously trying to jam something into a certain pipeline, you have to ask yourself, is this something that we should be spending that time on? What if we had that time freed up? And so I do think you can go and put some good boundaries in there, whatever yours may be. I love I love some of those rule sets but really you know, deadlocks and automation starts with the process, right? We think about it and when I developed software always think about it through that design. Thinking lands of how will this work when I get to it. And so if we're focusing on the design aspect and the user experience, then we start looking at the pieces in between from that code to having people use it and say what do I need to do? And sometimes you know depending on your industry, you may have these other needs that not everybody has. So it's hard to say there's a one size fits all. But there is a good rule like if you've done the same repeatable thing over every every day, uh numerous days like you probably should just go spend the time to automate that. And I think it's the convincing point, right? Like if we go and and a lot of us are are nerds and engineers at heart and I love freaking math. So it's that like okay if we spend two hours building maybe a hub action for a doctor one time instead of somebody happened to repeat this process no matter what it is. Like you're giving that time back in that time is mental capacity, mental capacity that can be applied to something that's more important and hopefully the more important thing is the user experience. Um So yeah, I mean you know we all have those little systems out there. I say use them but take a step back. I think the bigger, the harder part is like yes, you will have to slow down for a minute, which is scary to go and build something repeatable so that you can speed back up. You know, >>it's awesome. Great, great inside love, love the energy a lot to ask you while you're here because this is something I've been thinking about. I'm hearing a lot of developers talking about, understand the workflow you mentioned that's a key thing. I love that. Getting in and understanding the customer experience working backwards, but that brings up the whole. How do you form the teams? How do you think about team formation? Because at cloud scale with cloud native, you can use building blocks, You have automation, you can easily compose and then build intellectual property around things. Use containers, make things easier. So as you start thinking about teams, is it better to have teams focus on, say workflows and then decoupled teams? Is there a strategy for general purpose teams or how do you look at the team formation from the developer perspective to make the experience great, high quality. Is there a state of the art in your opinion, given the compose ability and all the ease of use going on? I mean, what's the ideal way to think this through? What's your thoughts? >>Oh, you know, there's, I'm going to say there's not one team team to rule them all, there's not one team kind of foundation that's gonna be able to be applicable, it's all different, right? Like even within the same company, especially at scale, you may have these different compositions of your team and I think it comes down to like, what problems are you trying to solve within your workflow? What are you trying to accomplish? I think when we, when we step back and we think about our Ci cd pipelines and really code from idea into cloud that I believe in a unified system, because I don't want developers worrying about it and doing one offs, I'm like, you don't need to know that, and that's been an argument that's going on, you know, I'm a huge kubernetes fan and so it's been like, should, should, should the feature developers understand the entrance of kubernetes? I'm gonna say something controversial, I'm gonna say no, I'm gonna say they don't need to know, they need to know how to monitor alert and how to have smart rollbacks and have a system that does it for them. That's why we have Orchestration, that's why we have dr containers, that's why we have world class eight PM and monitoring systems in place because we've done that, we've done that hard work. So I would say no, they don't need to know that, so, but you still need these needs, right? Depending upon where you are in this transformation, right? Maybe you're still like, you know, integrating some of these cloud needed principles and toolsets and so you need some smes I do really love the SRE embedded model, not embedded, like on your, you know, like embedded, like a chip set, but embedded in the team, because that person really should be a mentor and should be a force multiplier. You don't want to fall in the trap and be like oh we have an SRE on the team. They're going to do all the devops stuff. No no no no they're going to go and help you think about your product through a customer lens right there. They're the experts going like whoa maybe we should have an S. L. A. Because this is a tier one feature lets go and make sure we build that automation so that we curate this feature with the highest level availability but then teach the team how to do that. So now you have this practice as a part right? Like you're honing your craft, you have this practice now. Does that mean they need to go learn everything about like the monitoring sweet and tools are used. No, but they should understand how to read the output of that. And so there's not one team size to rule them all. Unfortunately, I personally, I'll tell you what I'm a fan of is like I think that you should have flexibility. Like once again think about the points where you need to have the connective unified system, right? And then you have this opportunity for developers to have some agency and creative freedom because maybe you've been on a team that's been working on, I don't know, let's say your audit service. I think every every software has some component of audit uh, you know, in some ability because you want to know what he was using one well after they've done their tour of duty because most of the cool stuff, they've already fixed and made a feature set. Let them go roll into something else because then you have that connective tissue on the inner points of your system that are always the same, right? We want really repeatability. We want them just to focus on writing the code. And I think because of these advancements we are unlocking opportunity for developers to think broader, right? Like maybe you've been on the platform team and you want to go dip your toes into writing features well, 90 okay, maybe not 90 but also 80% of that, you know, every day repeatable task, like focus on that and get that shit out. But then you have the sme and you're really thinking holistically as a customer obsessed team of what you're building and why. So I love that. No one way. >>Yeah, I love the idea of the platform person just having more flex out because that brings a platform mindset to the other pieces, but also feature acceleration versus product strategy. Thinking through the arc of why you're building in the first place, Right? So and then the embedded SRE great point there, great call out there because everything's cloud scale now, you gotta have pen tests built in automation, >>who's gonna >>design that. So I think it's really interesting how you're putting that together and I think that's very relevant. Um and any um new things that you see happening now with with cloud Native, you mentioned cabernets, I think you know the story that we've been telling is kubernetes got boring and that's good. Right? So, >>meaning its meaning it's working >>and people like it, it's interoperability or frustration. It feels like a unifying connective tissue between under the hood and above at the application layer. So it's nice but the consequence of that is there's more cloud native going on, so that means more services are going to be connected and torn down. You mentioned observe ability and monitoring. That's important too. So as an engineering leader, that's not another department. Right? That's gonna be core to the developers. What's your thoughts on how to integrate observe ability now there's a zillion companies doing it now but is that you know >>there is a zillion. My thoughts are like heck yeah. Like conservative observe ability isn't at the end of the stack. Right, observe ability is apart just like qualities apart. Just like when we think about agile, let me just throw it this way right? Like when dr came right, we had it basically have this maybe this baby os encompassed on servers. So you can have multiple, multiple, multiple, multiple distributed. Right? I think of like let's let's say that like your team is that Docker container man, you want everything in their right? It is a part of the practice. You want your learning, you want your logging, you want it all wrapped up in this nice little bow and you want lots of them all working together harmoniously. The same thing can be said about our teams. We want them to be their own little micro operating system where they have all the resources available for them to go and do the thing that they are intending to do and not have to worry about that subset. But it also gives them that control. Right? So it's building in that layer of abstraction that's needed but also understanding why it's important. So it's a little bit of both. Right? We're not going to curate deep subject matter experts. You know, I'm, you know the Oh yes, I model and every aspect right? Like we're not going to turn a friend and engineer necessarily into a network engineer. But utilizing the tool sets, having a playbook where it is controlled, maintained in a part of your culture. All that's gonna do is allow you to move faster and it's allow you to see what's really running out there in the wild. And I see these trends happening. I think we're continuing to see the rise of cloud native technologies because applications now are really a set of a P. I. S. That go across the world and in and out. And so the way that we develop is slightly different. And so we need to think about, well, how is it orchestrated and deployed? Well, if you have a repeatable pattern once again, if we go back to that and think of our team and I promise nobody asked me to come up with this as like a little darker, a little docker container itself. You know, you're gonna write that image into what makes sense for you and have all the resources available and you're gonna rinse and repeat that over and over and over again. And so I mean, we're just seeing, seeing this continue this continuation of, you know, monitoring devops? S sorry, it's not a problem. It's a culture, right? It's not one person's job or a role. It's a part of how you build great software. It's just a practice. >>You mentioned abstraction layer used to be conventional wisdom that they were good. But there's trade offs whose performance tradeoffs or some overhead. Not anymore. It's good. You can basically build an abstraction layer and say, hey, I don't want to deal with networking anymore. It's gonna make it programmable. >>That's cool. No >>problem. So you start to see these new innovation patterns. Right. So what are you most excited about when you start to see these new kinds of things of being brought on that were limited years ago? Like you start an abstraction layers, you see the role of the SRE you're seeing um the democratization of new developers coming in that are bringing new perspectives. She's seeing all these new kinds of ways that's re factoring how people write code. But what are you seeing is the most exciting >>for me? Honestly, it's like the opportunity for anybody to really be a builder maker developer, right? You don't have to have a traditional CS degree if you do that's awesome, Like come and teach us awesome stuff that we probably should know. That's foundational. I don't have a CS degree. You know, we're moving on from these opportunities where it's self taught to where you actually 100% can go and learn and build and create. We're seeing the rise in these communities. I feel like these toolsets are really just lowering the barrier of entry for those people that don't have advantage to go to like a four year school and get a degree for people that are just like have a great idea what excites me is that next developer, You know, we talk about the 100 million developer sitting somewhere in the world, just going, I have a great idea and I'm gonna change the world and I don't know how to get started, but they do, they have it at their hands now. You know, if you can go onto a website, get a little bit dangerous with these tool sets, you can go and get your idea to the masses and what we're going to end up doing is like you said, democratizing tech, it's going to bring in new ways to think it's going to change how we interact with systems. We get we get our blinders on sometimes, especially, you know, I live in Portland on the West Coast, the US, we know that the world is vast, majorly huge, dynamic, awesome place. The things that work for me may not work for somebody on the other side of the world. The things that I do may not be relevant. But we're going to find that human connection. We're going to continue to say, well, wait a minute. How can we optimize for any human anywhere? How can we help take all these differences but doing them in a repeatable pattern. So like for me that's exciting is these toolsets that we've been working on for years, are now going to put put in people's hands that never thought they could. And that is exciting. And like to see to see the rise of just creativity is what really makes humans special because we build and make >>and the fact that it's more inclusive now becoming more inclusive on all aspects of inclusive whether it's individuals and coders types of code. So uh integration is the new normal right integrating in uh data control planes, all that goodness coming in because of the ease of use of developer experience. Super awesome. Um dana you're awesome. Great to have you on the cube and sharing your energy and insight. Great call outs on many topics. A lot of gems being dropped. Their thanks for coming on the cube. >>Well thanks for having me. It's been awesome and doctor comes been great. I can't wait to see the rest of the show. >>Dr khan 2021 Virtual real life coming back maybe in physical next year or hybrid for sure. Just the cube coverage of Dr khan 2021. I'm sean for your host. Thanks for watching

Published Date : May 27 2021

SUMMARY :

Been been around the block in the cloud enterprise I can't believe it's been that long. You know the tsunami of new ways that people are programming. You know, we see this across all industries, whether you're going through your own digital transformation just like just the way we've been working a long time. and I think that we're seeing that naturally, you know, in the keynote where I mentioned some of the Research not just the usual suspects like lift and whatnot. part in the design thinking of it to like how do you curate and have a great experience for your customers. I love your enthusiasm. And no, I know you I know you think about this as an engineering leader. been curated to really, you know, solve the problem now, you'll be fast but will be awesome. Where's the innovation angle you share your thoughts on when people look through the prism of automation And so I do think you can go and put some good boundaries in there, whatever yours may be. Great, great inside love, love the energy a lot to ask you while you're here because this No no no no they're going to go and help you think about your product through a customer lens right there. point there, great call out there because everything's cloud scale now, you gotta have pen tests built in Um and any um new things that you see happening now with companies doing it now but is that you know You know, I'm, you know the Oh You can basically build an abstraction layer and say, hey, I don't want to deal with networking anymore. That's cool. So you start to see these new innovation patterns. You don't have to have a traditional CS degree if you do that's Great to have you on the cube and sharing your energy I can't wait to see the rest of the show. Just the cube coverage of Dr khan 2021.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dana LawsonPERSON

0.99+

PortlandLOCATION

0.99+

20 hoursQUANTITY

0.99+

two hoursQUANTITY

0.99+

100%QUANTITY

0.99+

five timesQUANTITY

0.99+

80%QUANTITY

0.99+

JohnPERSON

0.99+

90QUANTITY

0.99+

DockerConEVENT

0.99+

GitHubORGANIZATION

0.99+

USLOCATION

0.99+

next yearDATE

0.98+

pandemicEVENT

0.98+

firstQUANTITY

0.98+

four yearQUANTITY

0.98+

bothQUANTITY

0.98+

agileTITLE

0.97+

one personQUANTITY

0.97+

one teamQUANTITY

0.97+

one timeQUANTITY

0.96+

this yearDATE

0.95+

JavaTITLE

0.94+

DonPERSON

0.94+

cube conCOMMERCIAL_ITEM

0.93+

a minuteQUANTITY

0.92+

West CoastLOCATION

0.91+

oneQUANTITY

0.91+

S. L. O. S.ORGANIZATION

0.9+

GIT hubORGANIZATION

0.88+

Dr.PERSON

0.88+

BillPERSON

0.86+

100 million developerQUANTITY

0.86+

yearsDATE

0.86+

AgileTITLE

0.81+

more than a few timesQUANTITY

0.81+

zillionQUANTITY

0.8+

2021PERSON

0.79+

danaPERSON

0.78+

a zillion companiesQUANTITY

0.77+

about a decadeQUANTITY

0.76+

cube conCOMMERCIAL_ITEM

0.73+

DrPERSON

0.71+

CubeCOMMERCIAL_ITEM

0.65+

KhanPERSON

0.65+

Dr khanPERSON

0.64+

CraftORGANIZATION

0.62+

SREORGANIZATION

0.59+

2021DATE

0.57+

S. L.ORGANIZATION

0.53+

VicePERSON

0.52+

TomcatORGANIZATION

0.5+

cloudCOMMERCIAL_ITEM

0.45+

GITORGANIZATION

0.36+

2021OTHER

0.28+

Edward Thomson, GitHub | Microsoft Ignite 2019


 

>>Lai from Orlando, Florida. It's the cube covering Microsoft ignite brought to you by Cohesity. >>Good afternoon, cube viewers. We are here at Microsoft ignite at the orange County convention center. I'm your host, Rebecca Knight. Along with my cohost Stu Miniman. We're joined by Edward Thompson. He is the product manager at get hub. Thank you so much for coming on the queue. So the get hub acquisition closed this time last year, uh, for our viewers who are maybe unfamiliar with get hub, explain what get hub is and then also tell us a little bit how it's going since the, >>yeah, I'd be happy to. So yeah, get hub is like the home for software development. If you're a, if you're a software developer, uh, you know, get hub rehost, you know, most of the open source repositories in the world. Um, you know, just to give you some stats. So at this time, last year, about the time the acquisition happened, um, we announced ad get hub universe, which is our annual developer conference, uh, that we had 30 million developers on GitHub and a hundred million repositories. So that's, that's a huge number of developers. I haven't seen the latest numbers. We'll announce the newest, uh, at get hub university this year, which is coming up next week. Uh, but the last number I saw was 40 million developers. So that's a growth of, you know, 10 million developers in just a year. Unbelievable. And that, that also means the 25% of our developers on get hub have joined within the last year. So that's just absolutely incredible. Um, and so yeah, I get hope. Is, is, is that, is that place for development? >>Yeah, it's really interesting when I look at some acquisitions that Microsoft has made back in 2016, they spent $26 billion for LinkedIn, which is most people's resume. And if you look last year it was seven and a half billion dollars for my friends in the software world. Get hub is their resume. That's right. Oh, when you talk about how you do things online, so you've got an interesting perspective on this because you've worked for Microsoft and get hub a couple of times. So give us a little bit about, you know, the relationship when you joined Microsoft 10 years ago, you know, open source developers, developers, developers weren't exactly on everyone's lips. So it gives a little bit of viewpoint through the various incarnations. >>So as you said, I joined Microsoft about 10 years ago. I came in through a little acquisition. Uh, we were just a very small software company, but we were building enterprise cross platform developer tools and we were about five engineers. And when you're building for, you know, Mac OS, Linux, Sonos, all these different platforms you use with so many people with so few rather, so few developers, you really need to take as much off the shelf as possible. You can't build all that yourself, you know. So if, if you needed a logging library, we would just go and use some open source products. We're not going to spend our time working on that when we could be building customer value in step. So when Microsoft acquired that company, they looked at, you know, they did their due diligence, they looked at the source code and they saw all this open source and they, I mean it was almost a deal breaker. >>They really lost their mind. Um, they were not geared up to deal with open source, to use open source, certainly not to contribute to open source. Uh, and so that's the Microsoft that I first saw. And, and to get from there to here is, is incredible. You know, over time. Um, we worked closely with some open source tools. We worked closely with get hub at Microsoft and that was really one of the early sort of unions between Microsoft and get hub was starting to work together on, on some open source software. And so we kind of started to know each other. We started to understand each other's companies and each other's cultures. And we started to, I don't know, I dare say like each other. Like I still count some of those early get hub employees that I met, uh, as some of my closest friends. Uh, and so at some point, uh, they became such close friends that I went to go work with them and get hub and then of course the Microsoft acquisition and so on. But I really think that that, you know, the, the transformation in Microsoft between, uh, the 10 years ago, Microsoft that really didn't get open source and today is, is just incredible. >>Well, let me just sit in that, in that culture and maybe culture clash a little bit the first time around because Microsoft developers have their own culture and their own uniform and their own way of interacting with each other. The, the, the hours that they work, which is very different from Microsoft, which is a pretty middle-aged Volvo driving kind of organization. So how, how does that work and, and what is, what has it been like the second time around the Microsoft as a middle aged Volvo driver? I think you can, you can >>wear a hoodie in and drive a Volvo. Um, no, I think it's been, I think it's been really great. The interesting thing about Microsoft is that it's not, you know, with so many people, it's not just like a homogenous big company. Um, we do have, you know, the developer tools division is a little bit different than offices, a little bit different than windows. And so they all have their own sort of unique cultures and, and now get hub slots in as its own unique culture. And we can, you know, we can talk to each other and we can understand each other, but we don't necessarily have to be all the same, you know, we can get hub team does kind of work some, some of us do work kind of weird hours. And, and I think that somehow that that works, especially with, you know, new tools coming to, um, coming to the marketplace, uh, you know, chat applications, we can be a lot less synchronous. We can be a lot more online and leave a message for each other. You know, we get out, we use get hub issues and pull requests to collaborate on almost everything, whether it's legal, uh, or, you know, our, our PR department. And it's not just developers. So we're trying to take these, these tools and, and sort of apply them to allow us to have the culture that we want at get hub. And I think Microsoft's doing the same thing as well. >>So speaking of new tools and you're, you're speaking here at ignite, you're about to announce the new repository with lots of new capabilities, enabling users to deploy at to any cloud. So tell us a little bit about, about the, this new tool. >>Yeah, so, uh, we announced, we call it get hub actions. We announced it last year at, at get hub universe. Our, uh, again, our, our annual developer conference. And our goal with GitHub actions was to allow people to take, you know, we've got 100 million repositories on get hub. We wanted our users to, to take those repositories and automate common tasks. Let me, let me give you a concrete example. Um, a lot of times somebody will open an issue on a, on a good hub repository, you know, uh, Hey, this doesn't work. I've got a bug report, you know, and they'll fill out an issue. And often either they didn't understand things or, um, the issue resolved itself, you know, who knows. We call that, uh, an issue that goes stale. And so you can build a workflow around that repository that will look for these stale issues and it will, uh, you know, just close them automatically. >>That gets rid of the mental tacks for somebody who, for a, for a developer who owns this repository to allow this, you know, this workload to just do it automatically. And so that's an example of a, a get hub actions workflow. Um, some people, uh, don't like swearing in their repository and you know, so if somebody were to open a bug report, you know, they might be angry. And so you could actually have a get hub workflow that looks for certain words and then replies and says, Hey, that's, here's our code of conduct. That's not the way we roll here. And actually a lot of people find that that feedback coming from a robot, uh, is a lot easier to take than a feedback coming from a human cause. They might want to meet with a person, can't argue with a robot. Well, not successfully. >>I think I have argued with the chat bot in my day. But anyway, >>yeah. So that's what we did a year ago and we opened it up into the beta program and we really quickly got feedback that, that people liked it and people were doing some really innovative things. But the one thing that people really wanted to automate was their bills. They wanted it to be able to build their code and deploy it. And we were just not set up for that. We, we, we didn't build, get hub actions as that platform in 2018 so we kind of had to pause our beta program. You know, I, they, they, they say that no, uh, no good plan survives first contact with the customer. So we had to, we had to hit pause on that. Uh, and we retooled. Um, we, we just sort of, I don't know, iterated on it, I guess. Uh, and we basically built a new platform that supported all of that repository automation capability that we had planned for in the first place. But also allowed for continuous integration build and deployments. So, um, we brought Macko S we brought Linux and windows runners, uh, that we host, uh, in our cloud, um, that people can use to build their software and then deploy it. And again, yeah, we want to be absolutely a tool agnostic. So any, any operating system, any, uh, language and cloud agnostic, we want to let anybody deploy anywhere, whether it's to a public cloud or on premises. >>Yeah. Uh, so, and with this, the second year we've done our program at this show and we really feel it's gone through a transformation. You know, this is a multi decade in a windows office. Uh, the business applications, uh, you know, cloud seeped in, developers are all over the place here. The day two keynote was all about app dev. Um, I'd love to get a little compare and contrast as to, you know, what you see here at Microsoft ignite versus, and I guess what I would call a pure dev show next week. Get hub universe happening in San Francisco. >>It's true. Get up universe is pretty much a pure dev show. Um, we, we have fewer booths, we have smaller booths. Uh, but, uh, and, and honestly, we have fewer sort of, um, I don't know, enterprise sorta. It, it pro crowd is what we used to call them. Um, but we do of course have a lot of dev ops. So, you know, we get up university has a lot of developers, but, uh, we're seeing a lot of dev ops, so there's a lot of meeting in the middle because, you know, I started out my career as assistant man actually. So I remember just, you know, doing everything manually. Um, but that's not the way we do things anymore. We automate all of our, uh, automate, uh, deployments. We automate all of our builds. You know, I don't want to sit there and type something into a console cause I'm going to get it wrong. Um, you know, I've accidentally deleted config files on production servers and that's, that's no good. So I think that they're, uh, get up universe is very different. A to ignite, it's much smaller, it's more intimate, but at the same time, there's a lot of, uh, overlap, especially around dev ops. >>Yeah. Uh, Satya Nadella yesterday in the keynote talked about the citizen developer as a big push for Microsoft. He said 61% of job openings for developers are outside the tech sector. Um, w what do you see in that space? Uh, the different developer roles these days? >>Uh, I think it's, it's absolutely fascinating. When I, uh, when I started my career, you know, you were, you were a developer and you, and you wrote code probably at a development company. Um, but now like everybody is automating tools, everybody's adopting machine learning. Um, when I look around at some of my friends in finance, uh, it's not about, it's not about anything but tech anymore. That's th they're, they're putting technology into absolutely everything that they do to succeed. Uh, and I think that, I think that it's amazing. Um, uh, like I said earlier, uh, 25% of developers on get hub have joined within the last year. So it's clear that it's just exploding. Um, everybody is doing, uh, software now. Yeah. >>There's something for the citizen developer on get hub though. Or is it too high level? I think >>I don't think it's too high level. I think that, uh, I think that that's a great challenge that we need to really step up to. Yeah. So Edward, >>the other big themes we heard here is talking about trust. So, you know, we talked about how Microsoft is different today than it wasn't in past, but I'm curious what good hub seen because you know, in social media when the acquisition first happened, it was, wait, I love GoodHub hub, I love all those people, but Hey, get lab. Hey, some of these other things I'm, you know, I'm fleeing for the woods. And every time I've seen an open source company get bought by a public company, there's always that online backlash. What are you seeing? How has the community reacted over the last year? >>I understand that skepticism. Uh, you know, I would be skeptical of any, uh, sort of change really. I, you know, the, the whole notion of who moved my cheese. But I think that the only way that we can, we can counter that is just to prove ourselves. And I think that we have, I think that Microsoft has allowed get hub to operate independently. And I think that, you know, I think a lot of people expect it to all of a sudden everything to change. And I don't think everything did change. I think that, uh, get hub now has more resources than it used to to be able to tackle bigger and more challenging problems. I think that get hub, uh, now can hire more and, and, and deploy to more places. And so I really just think that we're just going to keep doing exactly what we've been doing just better. So I think it's great. >>So universe happening next week teed up a little bit for us. What are some of the most exciting things that you're looking forward to? What kinds of conversations that will you be having? Presentations? >>So the big one for me is, is actions. I've, I, I've been just completely heads down working on, on get hub actions. So I'm really excited to be able to put that out there and, and you know, finally give it to everybody. Cause you know, we've been in beta now. Uh, like I said, we've been in beta for a year, which sounds like a ridiculous amount of time. Uh, but you know, it, it did involve a lot of retooling and rethinking and, and iteration with our, our beta testers. Um, and so the biggest thing for me is, is talking to people about actions and showing what they can do with actions. I'm super excited about that, but we've got a lot of other interesting stuff. You know, we've done a lot in the last year since our last universe. We've done a lot in the security space. Um, we've done, uh, we've both built tools and we've acquired some. Um, and so we'll be talking about those, uh, get hood package registry, which goes along really well with get hub actions. Uh, I'm super excited about that too. But yeah, I mean my, my calendar is, is, is just booked. Um, it's great. So many people like want to want to sit down and talk that I'm, I'm super excited about it. >>Excellent. Well great note to end on Edgar Thompson. Thank you so much for coming on the queue. We appreciate it. Thank you. I'm Rebecca Knight. First two minutes, stay tuned for more of the cubes live coverage from Microsoft ignite.

Published Date : Nov 5 2019

SUMMARY :

Microsoft ignite brought to you by Cohesity. Thank you so much for coming on the queue. So that's a growth of, you know, 10 million developers in just a year. So give us a little bit about, you know, the relationship when you joined Microsoft they looked at, you know, they did their due diligence, they looked at the source code and they saw all this open source But I really think that that, you know, I think you can, you can And we can, you know, we can talk to each other and we can understand each other, but we don't necessarily have to be So tell us a little bit about, about the, this new tool. actions was to allow people to take, you know, we've got 100 million repositories on get hub. swearing in their repository and you know, so if somebody were to open a bug report, I think I have argued with the chat bot in my day. So we had to, we had to hit pause on that. Uh, the business applications, uh, you know, cloud seeped in, developers are all over the place So I remember just, you know, doing everything manually. Um, w what do you see in that space? you know, you were, you were a developer and you, and you wrote code probably at a development company. I think I think that, uh, I think that that's a great challenge that we need to really is different today than it wasn't in past, but I'm curious what good hub seen because you know, And I think that, you know, I think a lot of people expect it to all of a sudden everything What kinds of conversations that will you be having? and you know, finally give it to everybody. Thank you so much for coming on the queue.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Rebecca KnightPERSON

0.99+

MicrosoftORGANIZATION

0.99+

2016DATE

0.99+

Edward ThompsonPERSON

0.99+

2018DATE

0.99+

Satya NadellaPERSON

0.99+

Stu MinimanPERSON

0.99+

San FranciscoLOCATION

0.99+

$26 billionQUANTITY

0.99+

VolvoORGANIZATION

0.99+

25%QUANTITY

0.99+

last yearDATE

0.99+

Orlando, FloridaLOCATION

0.99+

Edward ThomsonPERSON

0.99+

next weekDATE

0.99+

LinkedInORGANIZATION

0.99+

61%QUANTITY

0.99+

Edgar ThompsonPERSON

0.99+

seven and a half billion dollarsQUANTITY

0.99+

EdwardPERSON

0.99+

yesterdayDATE

0.99+

this yearDATE

0.99+

10 years agoDATE

0.99+

GitHubORGANIZATION

0.99+

40 million developersQUANTITY

0.99+

bothQUANTITY

0.98+

a year agoDATE

0.98+

30 million developersQUANTITY

0.98+

firstQUANTITY

0.98+

second timeQUANTITY

0.98+

LinuxTITLE

0.98+

Mac OSTITLE

0.98+

windowsTITLE

0.97+

10 million developersQUANTITY

0.97+

todayDATE

0.96+

First two minutesQUANTITY

0.96+

twoQUANTITY

0.96+

second yearQUANTITY

0.95+

first contactQUANTITY

0.94+

oneQUANTITY

0.94+

hub universityORGANIZATION

0.93+

a yearQUANTITY

0.93+

about 10 years agoDATE

0.92+

100 million repositoriesQUANTITY

0.92+

one thingQUANTITY

0.91+

SonosORGANIZATION

0.91+

hub universeORGANIZATION

0.9+

LaiPERSON

0.89+

GoodHub hubORGANIZATION

0.88+

hundred million repositoriesQUANTITY

0.88+

Microsoft igniteORGANIZATION

0.81+

orange County convention centerLOCATION

0.73+

five engineersQUANTITY

0.72+

getORGANIZATION

0.72+

Ignite 2019TITLE

0.55+

Jacob Groundwater, Github | Node Summit 2017


 

(click) >> Hey, welcome back everybody. Jeff Frick here with theCUBE. We're at Node Summit 2017 in San Francisco at the Mission Bay Convention Center. We've been coming here for years. A really active community, a lot of good mojo, about 800 developers here. About to the limits that the Mission Bay center can hold. Now we're excited to have our next guest. He just came off a panel. It's Jacob Groundwater. He's an engineering manager for Electron at Github. Jacob, welcome. >> Thank you, it's great to be here. >> So really interesting panel, Electron. I hadn't heard about Electron before, I was kind digging in a little bit while the panel was going on, but for the folks that aren't familiar, what is Electron? >> Yeah. Electron, there's a good chance that people who haven't even heard of it might already be using it. >> (chuckles) That's always a good thing. >> Yeah. Electron is a project that's started by Github and it's open source and you can use it to build desktop applications but with web technologies. We're leveraging the Google Chrome project to do a lot of that. And Node. And Node. Node.js is a big part of it as well. >> So build desktop apps using web technologies. >> Yep. >> And why would somebody want to do that? >> You know, I think at the root of that question, it's always the same answer which is just economics right now. Developers are in demand, software developers are in demand. The web is taking over and the web is becoming the most common skillset that people have. So you get a few benefits by using Electron. You get to distribute to three platforms automatically, you get Linux, Mac, and Windows. Sometimes it's like super easy. Sometimes you do a little bit of building to get that to happen, but it's, you know, you could cut your team size down by maybe two thirds if you do it that way. >> Wow, that's a pretty significant cut. Now you said one 1.0 released year, and how's the, how's the adoption? >> I actually can't even keep up with the number of applications that are being published on top of Electron. I'm often surprised, I'll go to a company and I'll say, oh I work on Electron at Github. And they'll be like, oh we're developing an Electron app, or we're working on an Electron app. So it, it's kind of unreal. Like I've never really been in this situation before where something that I'm working on is being used so much. I think it's out, it's out there, it's in production, it's running in millions of laptops and desktops. >> Yeah. That's great though, 'cause that's the whole promise of software, right? That's why people want to get into software. >> Yeah. >> 'Cause you can actually write something that people use and you can change the world. It could be distributed all over the world with millions of users before you even know it. >> There's this wonderful thought of like writing something once and then it running in millions of places potentially. I just love it. I love it. I think it's super cool. Yeah. So as it's grown what have been some of the main kind of concerns, issues, what are some of the things you're managing within that growth that's not pure technical? >> Yeah. That's a great question. One of the biggest things that I found interesting is when I got on our website and check the analytics, it's almost uniform across the globe. People are interested in it from everywhere. So there's challenges like, right now I had to set up a core meeting to talk about some of the like, updates to Electron and that had to be at midnight pacific time because we had to include the Prague time zone, Tokyo time zone, and Chennai in India. And we're trying to see if we can squeeze in someone from Australia. And just the global distributive nature of Electron, like people around the world are working on this and using it. >> Right. The other part you mentioned in the session, was the management of the community. And you made an interesting, you know, we go to a lot of conferences, everyone's got their code of conduct published these days which is kind of sad. It's good, but it's kind of sad that people don't have basic manners it seems like anymore. We've covered a lot of opensource communities. One that jumps to mind is OpenStack and watch that evolve over time and there's kind of community management issues that come up as these things grow. And you brought up, kind of an interesting paradigm, if you've got a great technical contributor who's just not a good person for, I don't know you didn't really define kind of the negative side but got some issues that may impact the cohesiveness of the community going forward, especially because community is so important in these projects. But if you got a great technical mind, I never really heard that particular challenge. >> I think it comes up a lot more than people realize. And it's something that I think about a lot. And one thing I want to focus on is, what we're really zeroing in on is bad behavior. >> Bad behavior. That was the word. >> And not a bad person. >> Right, right. >> One of the best ways to, to maybe get around that happening is to set an expectation early about what is acceptable behavior and alert people early when they're doing things that are going to cause harm to the community or cause harm to others. And also frame it in a way where they know, we're trying to keep other people safe, but we're also trying to keep those offenders, give them the space to change. If you choose not to change, that's a whole different story. So I think that by keeping the community strong, we encourage people around the globe to work on this project and we've already seen great returns by doing this far, so that's why I'm really focused on keeping it, keeping it a place where you know you can come and show up and do your work and do your best work. >> Right. Right. Well hopefully that's not taking too many of your cycles, you don't got too many of those, of those characters. >> Every hour I put in, I get like 10s and 20, like hours and hours back in return from the people who give back. So it's well worth it. It's the best use of my time. >> Alright good. So great growth over the year. As you look forward to next calendar year, kind of what are some of your priorities? What are some of the community's priorities? Where is Electron going? And if we touch base a year from now, what are we going to be talking about? >> Excellent question. So strengthening, formalizing some aspects of the community that we have so far, it's a little ad hoc, would be great. We want to look to having people outside of Github that feel more ownership over the project. For example, we have contributors who probably should be reviewing and committing code on their own, without necessarily needing to loop in someone from my team. So really turning this into a community project. In addition, we are focusing up on what might go into a version 2 release. And we're really focusing on security as a key feature in version two. >> Yeah, security's key and it's got to be baked in all the way to the bottom. >> Yeah. >> Alright Jacob, well it sounds like you've got your work cut out for you >> Thank you. and it should be an exciting year. >> Yeah, thanks very much. >> Alright. He's Jacob Groundwater. He's from the Electron project at Github. I'm Jeff Frick. You're watching theCUBE. We'll see you next time. Thanks for watching. (sharp music)

Published Date : Jul 28 2017

SUMMARY :

at the Mission Bay Convention Center. but for the folks that aren't familiar, there's a good chance that people and you can use it to build desktop applications and the web is becoming the most common skillset Now you said one 1.0 released year, So it, it's kind of unreal. 'cause that's the whole promise of software, right? and you can change the world. So as it's grown what have been some of the main One of the biggest things that I found interesting kind of the negative side And it's something that That was the word. One of the best ways to, you don't got too many of those, from the people who give back. So great growth over the year. that feel more ownership over the project. all the way to the bottom. and it should be an exciting year. He's from the Electron project at Github.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jeff FrickPERSON

0.99+

JacobPERSON

0.99+

AustraliaLOCATION

0.99+

Jacob GroundwaterPERSON

0.99+

San FranciscoLOCATION

0.99+

IndiaLOCATION

0.99+

GithubORGANIZATION

0.99+

20QUANTITY

0.99+

ElectronORGANIZATION

0.99+

10sQUANTITY

0.99+

NodeTITLE

0.99+

ChennaiLOCATION

0.99+

Mission Bay Convention CenterLOCATION

0.99+

about 800 developersQUANTITY

0.98+

Node.jsTITLE

0.98+

next calendar yearDATE

0.97+

LinuxTITLE

0.97+

OneQUANTITY

0.96+

WindowsTITLE

0.95+

millions of usersQUANTITY

0.94+

Node Summit 2017EVENT

0.94+

three platformsQUANTITY

0.93+

two thirdsQUANTITY

0.93+

millions of placesQUANTITY

0.9+

ElectronTITLE

0.89+

Tokyo time zoneLOCATION

0.89+

Mission Bay centerLOCATION

0.87+

theCUBEORGANIZATION

0.86+

Prague time zoneLOCATION

0.85+

version 2OTHER

0.83+

one thingQUANTITY

0.78+

millions of laptopsQUANTITY

0.78+

oneQUANTITY

0.77+

version twoOTHER

0.75+

MacCOMMERCIAL_ITEM

0.75+

a yearQUANTITY

0.74+

midnightDATE

0.71+

OpenStackORGANIZATION

0.68+

Google ChromeTITLE

0.68+

1.0QUANTITY

0.36+

Closing Panel | Generative AI: Riding the Wave | AWS Startup Showcase S3 E1


 

(mellow music) >> Hello everyone, welcome to theCUBE's coverage of AWS Startup Showcase. This is the closing panel session on AI machine learning, the top startups generating generative AI on AWS. It's a great panel. This is going to be the experts talking about riding the wave in generative AI. We got Ankur Mehrotra, who's the director and general manager of AI and machine learning at AWS, and Clem Delangue, co-founder and CEO of Hugging Face, and Ori Goshen, who's the co-founder and CEO of AI21 Labs. Ori from Tel Aviv dialing in, and rest coming in here on theCUBE. Appreciate you coming on for this closing session for the Startup Showcase. >> Thanks for having us. >> Thank you for having us. >> Thank you. >> I'm super excited to have you all on. Hugging Face was recently in the news with the AWS relationship, so congratulations. Open source, open science, really driving the machine learning. And we got the AI21 Labs access to the LLMs, generating huge scale live applications, commercial applications, coming to the market, all powered by AWS. So everyone, congratulations on all your success, and thank you for headlining this panel. Let's get right into it. AWS is powering this wave here. We're seeing a lot of push here from applications. Ankur, set the table for us on the AI machine learning. It's not new, it's been goin' on for a while. Past three years have been significant advancements, but there's been a lot of work done in AI machine learning. Now it's released to the public. Everybody's super excited and now says, "Oh, the future's here!" It's kind of been going on for a while and baking. Now it's kind of coming out. What's your view here? Let's get it started. >> Yes, thank you. So, yeah, as you may be aware, Amazon has been in investing in machine learning research and development since quite some time now. And we've used machine learning to innovate and improve user experiences across different Amazon products, whether it's Alexa or Amazon.com. But we've also brought in our expertise to extend what we are doing in the space and add more generative AI technology to our AWS products and services, starting with CodeWhisperer, which is an AWS service that we announced a few months ago, which is, you can think of it as a coding companion as a service, which uses generative AI models underneath. And so this is a service that customers who have no machine learning expertise can just use. And we also are talking to customers, and we see a lot of excitement about generative AI, and customers who want to build these models themselves, who have the talent and the expertise and resources. For them, AWS has a number of different options and capabilities they can leverage, such as our custom silicon, such as Trainium and Inferentia, as well as distributed machine learning capabilities that we offer as part of SageMaker, which is an end-to-end machine learning development service. At the same time, many of our customers tell us that they're interested in not training and building these generative AI models from scratch, given they can be expensive and can require specialized talent and skills to build. And so for those customers, we are also making it super easy to bring in existing generative AI models into their machine learning development environment within SageMaker for them to use. So we recently announced our partnership with Hugging Face, where we are making it super easy for customers to bring in those models into their SageMaker development environment for fine tuning and deployment. And then we are also partnering with other proprietary model providers such as AI21 and others, where we making these generative AI models available within SageMaker for our customers to use. So our approach here is to really provide customers options and choices and help them accelerate their generative AI journey. >> Ankur, thank you for setting the table there. Clem and Ori, I want to get your take, because the riding the waves, the theme of this session, and to me being in California, I imagine the big surf, the big waves, the big talent out there. This is like alpha geeks, alpha coders, developers are really leaning into this. You're seeing massive uptake from the smartest people. Whether they're young or around, they're coming in with their kind of surfboards, (chuckles) if you will. These early adopters, they've been on this for a while; Now the waves are hitting. This is a big wave, everyone sees it. What are some of those early adopter devs doing? What are some of the use cases you're seeing right out of the gate? And what does this mean for the folks that are going to come in and get on this wave? Can you guys share your perspective on this? Because you're seeing the best talent now leaning into this. >> Yeah, absolutely. I mean, from Hugging Face vantage points, it's not even a a wave, it's a tidal wave, or maybe even the tide itself. Because actually what we are seeing is that AI and machine learning is not something that you add to your products. It's very much a new paradigm to do all technology. It's this idea that we had in the past 15, 20 years, one way to build software and to build technology, which was writing a million lines of code, very rule-based, and then you get your product. Now what we are seeing is that every single product, every single feature, every single company is starting to adopt AI to build the next generation of technology. And that works both to make the existing use cases better, if you think of search, if you think of social network, if you think of SaaS, but also it's creating completely new capabilities that weren't possible with the previous paradigm. Now AI can generate text, it can generate image, it can describe your image, it can do so many new things that weren't possible before. >> It's going to really make the developers really productive, right? I mean, you're seeing the developer uptake strong, right? >> Yes, we have over 15,000 companies using Hugging Face now, and it keeps accelerating. I really think that maybe in like three, five years, there's not going to be any company not using AI. It's going to be really kind of the default to build all technology. >> Ori, weigh in on this. APIs, the cloud. Now I'm a developer, I want to have live applications, I want the commercial applications on this. What's your take? Weigh in here. >> Yeah, first, I absolutely agree. I mean, we're in the midst of a technology shift here. I think not a lot of people realize how big this is going to be. Just the number of possibilities is endless, and I think hard to imagine. And I don't think it's just the use cases. I think we can think of it as two separate categories. We'll see companies and products enhancing their offerings with these new AI capabilities, but we'll also see new companies that are AI first, that kind of reimagine certain experiences. They build something that wasn't possible before. And that's why I think it's actually extremely exciting times. And maybe more philosophically, I think now these large language models and large transformer based models are helping us people to express our thoughts and kind of making the bridge from our thinking to a creative digital asset in a speed we've never imagined before. I can write something down and get a piece of text, or an image, or a code. So I'll start by saying it's hard to imagine all the possibilities right now, but it's certainly big. And if I had to bet, I would say it's probably at least as big as the mobile revolution we've seen in the last 20 years. >> Yeah, this is the biggest. I mean, it's been compared to the Enlightenment Age. I saw the Wall Street Journal had a recent story on this. We've been saying that this is probably going to be bigger than all inflection points combined in the tech industry, given what transformation is coming. I guess I want to ask you guys, on the early adopters, we've been hearing on these interviews and throughout the industry that there's already a set of big companies, a set of companies out there that have a lot of data and they're already there, they're kind of tinkering. Kind of reminds me of the old hyper scaler days where they were building their own scale, and they're eatin' glass, spittin' nails out, you know, they're hardcore. Then you got everybody else kind of saying board level, "Hey team, how do I leverage this?" How do you see those two things coming together? You got the fast followers coming in behind the early adopters. What's it like for the second wave coming in? What are those conversations for those developers like? >> I mean, I think for me, the important switch for companies is to change their mindset from being kind of like a traditional software company to being an AI or machine learning company. And that means investing, hiring machine learning engineers, machine learning scientists, infrastructure in members who are working on how to put these models in production, team members who are able to optimize models, specialized models, customized models for the company's specific use cases. So it's really changing this mindset of how you build technology and optimize your company building around that. Things are moving so fast that I think now it's kind of like too late for low hanging fruits or small, small adjustments. I think it's important to realize that if you want to be good at that, and if you really want to surf this wave, you need massive investments. If there are like some surfers listening with this analogy of the wave, right, when there are waves, it's not enough just to stand and make a little bit of adjustments. You need to position yourself aggressively, paddle like crazy, and that's how you get into the waves. So that's what companies, in my opinion, need to do right now. >> Ori, what's your take on the generative models out there? We hear a lot about foundation models. What's your experience running end-to-end applications for large foundation models? Any insights you can share with the app developers out there who are looking to get in? >> Yeah, I think first of all, it's start create an economy, where it probably doesn't make sense for every company to create their own foundation models. You can basically start by using an existing foundation model, either open source or a proprietary one, and start deploying it for your needs. And then comes the second round when you are starting the optimization process. You bootstrap, whether it's a demo, or a small feature, or introducing new capability within your product, and then start collecting data. That data, and particularly the human feedback data, helps you to constantly improve the model, so you create this data flywheel. And I think we're now entering an era where customers have a lot of different choice of how they want to start their generative AI endeavor. And it's a good thing that there's a variety of choices. And the really amazing thing here is that every industry, any company you speak with, it could be something very traditional like industrial or financial, medical, really any company. I think peoples now start to imagine what are the possibilities, and seriously think what's their strategy for adopting this generative AI technology. And I think in that sense, the foundation model actually enabled this to become scalable. So the barrier to entry became lower; Now the adoption could actually accelerate. >> There's a lot of integration aspects here in this new wave that's a little bit different. Before it was like very monolithic, hardcore, very brittle. A lot more integration, you see a lot more data coming together. I have to ask you guys, as developers come in and grow, I mean, when I went to college and you were a software engineer, I mean, I got a degree in computer science, and software engineering, that's all you did was code, (chuckles) you coded. Now, isn't it like everyone's a machine learning engineer at this point? Because that will be ultimately the science. So, (chuckles) you got open source, you got open software, you got the communities. Swami called you guys the GitHub of machine learning, Hugging Face is the GitHub of machine learning, mainly because that's where people are going to code. So this is essentially, machine learning is computer science. What's your reaction to that? >> Yes, my co-founder Julien at Hugging Face have been having this thing for quite a while now, for over three years, which was saying that actually software engineering as we know it today is a subset of machine learning, instead of the other way around. People would call us crazy a few years ago when we're seeing that. But now we are realizing that you can actually code with machine learning. So machine learning is generating code. And we are starting to see that every software engineer can leverage machine learning through open models, through APIs, through different technology stack. So yeah, it's not crazy anymore to think that maybe in a few years, there's going to be more people doing AI and machine learning. However you call it, right? Maybe you'll still call them software engineers, maybe you'll call them machine learning engineers. But there might be more of these people in a couple of years than there is software engineers today. >> I bring this up as more tongue in cheek as well, because Ankur, infrastructure's co is what made Cloud great, right? That's kind of the DevOps movement. But here the shift is so massive, there will be a game-changing philosophy around coding. Machine learning as code, you're starting to see CodeWhisperer, you guys have had coding companions for a while on AWS. So this is a paradigm shift. How is the cloud playing into this for you guys? Because to me, I've been riffing on some interviews where it's like, okay, you got the cloud going next level. This is an example of that, where there is a DevOps-like moment happening with machine learning, whether you call it coding or whatever. It's writing code on its own. Can you guys comment on what this means on top of the cloud? What comes out of the scale? What comes out of the benefit here? >> Absolutely, so- >> Well first- >> Oh, go ahead. >> Yeah, so I think as far as scale is concerned, I think customers are really relying on cloud to make sure that the applications that they build can scale along with the needs of their business. But there's another aspect to it, which is that until a few years ago, John, what we saw was that machine learning was a data scientist heavy activity. They were data scientists who were taking the data and training models. And then as machine learning found its way more and more into production and actual usage, we saw the MLOps become a thing, and MLOps engineers become more involved into the process. And then we now are seeing, as machine learning is being used to solve more business critical problems, we're seeing even legal and compliance teams get involved. We are seeing business stakeholders more engaged. So, more and more machine learning is becoming an activity that's not just performed by data scientists, but is performed by a team and a group of people with different skills. And for them, we as AWS are focused on providing the best tools and services for these different personas to be able to do their job and really complete that end-to-end machine learning story. So that's where, whether it's tools related to MLOps or even for folks who cannot code or don't know any machine learning. For example, we launched SageMaker Canvas as a tool last year, which is a UI-based tool which data analysts and business analysts can use to build machine learning models. So overall, the spectrum in terms of persona and who can get involved in the machine learning process is expanding, and the cloud is playing a big role in that process. >> Ori, Clem, can you guys weigh in too? 'Cause this is just another abstraction layer of scale. What's it mean for you guys as you look forward to your customers and the use cases that you're enabling? >> Yes, I think what's important is that the AI companies and providers and the cloud kind of work together. That's how you make a seamless experience and you actually reduce the barrier to entry for this technology. So that's what we've been super happy to do with AWS for the past few years. We actually announced not too long ago that we are doubling down on our partnership with AWS. We're excited to have many, many customers on our shared product, the Hugging Face deep learning container on SageMaker. And we are working really closely with the Inferentia team and the Trainium team to release some more exciting stuff in the coming weeks and coming months. So I think when you have an ecosystem and a system where the AWS and the AI providers, AI startups can work hand in hand, it's to the benefit of the customers and the companies, because it makes it orders of magnitude easier for them to adopt this new paradigm to build technology AI. >> Ori, this is a scale on reasoning too. The data's out there and making sense out of it, making it reason, getting comprehension, having it make decisions is next, isn't it? And you need scale for that. >> Yes. Just a comment about the infrastructure side. So I think really the purpose is to streamline and make these technologies much more accessible. And I think we'll see, I predict that we'll see in the next few years more and more tooling that make this technology much more simple to consume. And I think it plays a very important role. There's so many aspects, like the monitoring the models and their kind of outputs they produce, and kind of containing and running them in a production environment. There's so much there to build on, the infrastructure side will play a very significant role. >> All right, that's awesome stuff. I'd love to change gears a little bit and get a little philosophy here around AI and how it's going to transform, if you guys don't mind. There's been a lot of conversations around, on theCUBE here as well as in some industry areas, where it's like, okay, all the heavy lifting is automated away with machine learning and AI, the complexity, there's some efficiencies, it's horizontal and scalable across all industries. Ankur, good point there. Everyone's going to use it for something. And a lot of stuff gets brought to the table with large language models and other things. But the key ingredient will be proprietary data or human input, or some sort of AI whisperer kind of role, or prompt engineering, people are saying. So with that being said, some are saying it's automating intelligence. And that creativity will be unleashed from this. If the heavy lifting goes away and AI can fill the void, that shifts the value to the intellect or the input. And so that means data's got to come together, interact, fuse, and understand each other. This is kind of new. I mean, old school AI was, okay, got a big model, I provisioned it long time, very expensive. Now it's all free flowing. Can you guys comment on where you see this going with this freeform, data flowing everywhere, heavy lifting, and then specialization? >> Yeah, I think- >> Go ahead. >> Yeah, I think, so what we are seeing with these large language models or generative models is that they're really good at creating stuff. But I think it's also important to recognize their limitations. They're not as good at reasoning and logic. And I think now we're seeing great enthusiasm, I think, which is justified. And the next phase would be how to make these systems more reliable. How to inject more reasoning capabilities into these models, or augment with other mechanisms that actually perform more reasoning so we can achieve more reliable results. And we can count on these models to perform for critical tasks, whether it's medical tasks, legal tasks. We really want to kind of offload a lot of the intelligence to these systems. And then we'll have to get back, we'll have to make sure these are reliable, we'll have to make sure we get some sort of explainability that we can understand the process behind the generated results that we received. So I think this is kind of the next phase of systems that are based on these generated models. >> Clem, what's your view on this? Obviously you're at open community, open source has been around, it's been a great track record, proven model. I'm assuming creativity's going to come out of the woodwork, and if we can automate open source contribution, and relationships, and onboarding more developers, there's going to be unleashing of creativity. >> Yes, it's been so exciting on the open source front. We all know Bert, Bloom, GPT-J, T5, Stable Diffusion, that work up. The previous or the current generation of open source models that are on Hugging Face. It has been accelerating in the past few months. So I'm super excited about ControlNet right now that is really having a lot of impact, which is kind of like a way to control the generation of images. Super excited about Flan UL2, which is like a new model that has been recently released and is open source. So yeah, it's really fun to see the ecosystem coming together. Open source has been the basis for traditional software, with like open source programming languages, of course, but also all the great open source that we've gotten over the years. So we're happy to see that the same thing is happening for machine learning and AI, and hopefully can help a lot of companies reduce a little bit the barrier to entry. So yeah, it's going to be exciting to see how it evolves in the next few years in that respect. >> I think the developer productivity angle that's been talked about a lot in the industry will be accelerated significantly. I think security will be enhanced by this. I think in general, applications are going to transform at a radical rate, accelerated, incredible rate. So I think it's not a big wave, it's the water, right? I mean, (chuckles) it's the new thing. My final question for you guys, if you don't mind, I'd love to get each of you to answer the question I'm going to ask you, which is, a lot of conversations around data. Data infrastructure's obviously involved in this. And the common thread that I'm hearing is that every company that looks at this is asking themselves, if we don't rebuild our company, start thinking about rebuilding our business model around AI, we might be dinosaurs, we might be extinct. And it reminds me that scene in Moneyball when, at the end, it's like, if we're not building the model around your model, every company will be out of business. What's your advice to companies out there that are having those kind of moments where it's like, okay, this is real, this is next gen, this is happening. I better start thinking and putting into motion plans to refactor my business, 'cause it's happening, business transformation is happening on the cloud. This kind of puts an exclamation point on, with the AI, as a next step function. Big increase in value. So it's an opportunity for leaders. Ankur, we'll start with you. What's your advice for folks out there thinking about this? Do they put their toe in the water? Do they jump right into the deep end? What's your advice? >> Yeah, John, so we talk to a lot of customers, and customers are excited about what's happening in the space, but they often ask us like, "Hey, where do we start?" So we always advise our customers to do a lot of proof of concepts, understand where they can drive the biggest ROI. And then also leverage existing tools and services to move fast and scale, and try and not reinvent the wheel where it doesn't need to be. That's basically our advice to customers. >> Get it. Ori, what's your advice to folks who are scratching their head going, "I better jump in here. "How do I get started?" What's your advice? >> So I actually think that need to think about it really economically. Both on the opportunity side and the challenges. So there's a lot of opportunities for many companies to actually gain revenue upside by building these new generative features and capabilities. On the other hand, of course, this would probably affect the cogs, and incorporating these capabilities could probably affect the cogs. So I think we really need to think carefully about both of these sides, and also understand clearly if this is a project or an F word towards cost reduction, then the ROI is pretty clear, or revenue amplifier, where there's, again, a lot of different opportunities. So I think once you think about this in a structured way, I think, and map the different initiatives, then it's probably a good way to start and a good way to start thinking about these endeavors. >> Awesome. Clem, what's your take on this? What's your advice, folks out there? >> Yes, all of these are very good advice already. Something that you said before, John, that I disagreed a little bit, a lot of people are talking about the data mode and proprietary data. Actually, when you look at some of the organizations that have been building the best models, they don't have specialized or unique access to data. So I'm not sure that's so important today. I think what's important for companies, and it's been the same for the previous generation of technology, is their ability to build better technology faster than others. And in this new paradigm, that means being able to build machine learning faster than others, and better. So that's how, in my opinion, you should approach this. And kind of like how can you evolve your company, your teams, your products, so that you are able in the long run to build machine learning better and faster than your competitors. And if you manage to put yourself in that situation, then that's when you'll be able to differentiate yourself to really kind of be impactful and get results. That's really hard to do. It's something really different, because machine learning and AI is a different paradigm than traditional software. So this is going to be challenging, but I think if you manage to nail that, then the future is going to be very interesting for your company. >> That's a great point. Thanks for calling that out. I think this all reminds me of the cloud days early on. If you went to the cloud early, you took advantage of it when the pandemic hit. If you weren't native in the cloud, you got hamstrung by that, you were flatfooted. So just get in there. (laughs) Get in the cloud, get into AI, you're going to be good. Thanks for for calling that. Final parting comments, what's your most exciting thing going on right now for you guys? Ori, Clem, what's the most exciting thing on your plate right now that you'd like to share with folks? >> I mean, for me it's just the diversity of use cases and really creative ways of companies leveraging this technology. Every day I speak with about two, three customers, and I'm continuously being surprised by the creative ideas. And the future is really exciting of what can be achieved here. And also I'm amazed by the pace that things move in this industry. It's just, there's not at dull moment. So, definitely exciting times. >> Clem, what are you most excited about right now? >> For me, it's all the new open source models that have been released in the past few weeks, and that they'll keep being released in the next few weeks. I'm also super excited about more and more companies getting into this capability of chaining different models and different APIs. I think that's a very, very interesting development, because it creates new capabilities, new possibilities, new functionalities that weren't possible before. You can plug an API with an open source embedding model, with like a no-geo transcription model. So that's also very exciting. This capability of having more interoperable machine learning will also, I think, open a lot of interesting things in the future. >> Clem, congratulations on your success at Hugging Face. Please pass that on to your team. Ori, congratulations on your success, and continue to, just day one. I mean, it's just the beginning. It's not even scratching the service. Ankur, I'll give you the last word. What are you excited for at AWS? More cloud goodness coming here with AI. Give you the final word. >> Yeah, so as both Clem and Ori said, I think the research in the space is moving really, really fast, so we are excited about that. But we are also excited to see the speed at which enterprises and other AWS customers are applying machine learning to solve real business problems, and the kind of results they're seeing. So when they come back to us and tell us the kind of improvement in their business metrics and overall customer experience that they're driving and they're seeing real business results, that's what keeps us going and inspires us to continue inventing on their behalf. >> Gentlemen, thank you so much for this awesome high impact panel. Ankur, Clem, Ori, congratulations on all your success. We'll see you around. Thanks for coming on. Generative AI, riding the wave, it's a tidal wave, it's the water, it's all happening. All great stuff. This is season three, episode one of AWS Startup Showcase closing panel. This is the AI ML episode, the top startups building generative AI on AWS. I'm John Furrier, your host. Thanks for watching. (mellow music)

Published Date : Mar 9 2023

SUMMARY :

This is the closing panel I'm super excited to have you all on. is to really provide and to me being in California, and then you get your product. kind of the default APIs, the cloud. and kind of making the I saw the Wall Street Journal I think it's important to realize that the app developers out there So the barrier to entry became lower; I have to ask you guys, instead of the other way around. That's kind of the DevOps movement. and the cloud is playing a and the use cases that you're enabling? the barrier to entry And you need scale for that. in the next few years and AI can fill the void, a lot of the intelligence and if we can automate reduce a little bit the barrier to entry. I'd love to get each of you drive the biggest ROI. to folks who are scratching So I think once you think Clem, what's your take on this? and it's been the same of the cloud days early on. And also I'm amazed by the pace in the past few weeks, Please pass that on to your team. and the kind of results they're seeing. This is the AI ML episode,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ankur MehrotraPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

ClemPERSON

0.99+

Ori GoshenPERSON

0.99+

John FurrierPERSON

0.99+

CaliforniaLOCATION

0.99+

OriPERSON

0.99+

Clem DelanguePERSON

0.99+

Hugging FaceORGANIZATION

0.99+

JulienPERSON

0.99+

AnkurPERSON

0.99+

AmazonORGANIZATION

0.99+

Tel AvivLOCATION

0.99+

threeQUANTITY

0.99+

AnkurORGANIZATION

0.99+

second roundQUANTITY

0.99+

AI21 LabsORGANIZATION

0.99+

two separate categoriesQUANTITY

0.99+

Amazon.comORGANIZATION

0.99+

last yearDATE

0.99+

two thingsQUANTITY

0.99+

firstQUANTITY

0.98+

over 15,000 companiesQUANTITY

0.98+

BothQUANTITY

0.98+

five yearsQUANTITY

0.98+

bothQUANTITY

0.98+

over three yearsQUANTITY

0.98+

three customersQUANTITY

0.98+

eachQUANTITY

0.98+

TrainiumORGANIZATION

0.98+

todayDATE

0.98+

AlexaTITLE

0.98+

Stable DiffusionORGANIZATION

0.97+

SwamiPERSON

0.97+

InferentiaORGANIZATION

0.96+

GPT-JORGANIZATION

0.96+

SageMakerTITLE

0.96+

AI21 LabsORGANIZATION

0.95+

Riding the WaveTITLE

0.95+

ControlNetORGANIZATION

0.94+

one wayQUANTITY

0.94+

a million linesQUANTITY

0.93+

Startup ShowcaseEVENT

0.92+

few months agoDATE

0.92+

second waveEVENT

0.91+

theCUBEORGANIZATION

0.91+

few years agoDATE

0.91+

CodeWhispererTITLE

0.9+

AI21ORGANIZATION

0.89+

Steven Hillion & Jeff Fletcher, Astronomer | AWS Startup Showcase S3E1


 

(upbeat music) >> Welcome everyone to theCUBE's presentation of the AWS Startup Showcase AI/ML Top Startups Building Foundation Model Infrastructure. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem to talk about data and analytics. I'm your host, Lisa Martin and today we're excited to be joined by two guests from Astronomer. Steven Hillion joins us, it's Chief Data Officer and Jeff Fletcher, it's director of ML. They're here to talk about machine learning and data orchestration. Guys, thank you so much for joining us today. >> Thank you. >> It's great to be here. >> Before we get into machine learning let's give the audience an overview of Astronomer. Talk about what that is, Steven. Talk about what you mean by data orchestration. >> Yeah, let's start with Astronomer. We're the Airflow company basically. The commercial developer behind the open-source project, Apache Airflow. I don't know if you've heard of Airflow. It's sort of de-facto standard these days for orchestrating data pipelines, data engineering pipelines, and as we'll talk about later, machine learning pipelines. It's really is the de-facto standard. I think we're up to about 12 million downloads a month. That's actually as a open-source project. I think at this point it's more popular by some measures than Slack. Airflow was created by Airbnb some years ago to manage all of their data pipelines and manage all of their workflows and now it powers the data ecosystem for organizations as diverse as Electronic Arts, Conde Nast is one of our big customers, a big user of Airflow. And also not to mention the biggest banks on Wall Street use Airflow and Astronomer to power the flow of data throughout their organizations. >> Talk about that a little bit more, Steven, in terms of the business impact. You mentioned some great customer names there. What is the business impact or outcomes that a data orchestration strategy enables businesses to achieve? >> Yeah, I mean, at the heart of it is quite simply, scheduling and managing data pipelines. And so if you have some enormous retailer who's managing the flow of information throughout their organization they may literally have thousands or even tens of thousands of data pipelines that need to execute every day to do things as simple as delivering metrics for the executives to consume at the end of the day, to producing on a weekly basis new machine learning models that can be used to drive product recommendations. One of our customers, for example, is a British food delivery service. And you get those recommendations in your application that says, "Well, maybe you want to have samosas with your curry." That sort of thing is powered by machine learning models that they train on a regular basis to reflect changing conditions in the market. And those are produced through Airflow and through the Astronomer platform, which is essentially a managed platform for running airflow. So at its simplest it really is just scheduling and managing those workflows. But that's easier said than done of course. I mean if you have 10 thousands of those things then you need to make sure that they all run that they all have sufficient compute resources. If things fail, how do you track those down across those 10,000 workflows? How easy is it for an average data scientist or data engineer to contribute their code, their Python notebooks or their SQL code into a production environment? And then you've got reproducibility, governance, auditing, like managing data flows across an organization which we think of as orchestrating them is much more than just scheduling. It becomes really complicated pretty quickly. >> I imagine there's a fair amount of complexity there. Jeff, let's bring you into the conversation. Talk a little bit about Astronomer through your lens, data orchestration and how it applies to MLOps. >> So I come from a machine learning background and for me the interesting part is that machine learning requires the expansion into orchestration. A lot of the same things that you're using to go and develop and build pipelines in a standard data orchestration space applies equally well in a machine learning orchestration space. What you're doing is you're moving data between different locations, between different tools, and then tasking different types of tools to act on that data. So extending it made logical sense from a implementation perspective. And a lot of my focus at Astronomer is really to explain how Airflow can be used well in a machine learning context. It is being used well, it is being used a lot by the customers that we have and also by users of the open source version. But it's really being able to explain to people why it's a natural extension for it and how well it fits into that. And a lot of it is also extending some of the infrastructure capabilities that Astronomer provides to those customers for them to be able to run some of the more platform specific requirements that come with doing machine learning pipelines. >> Let's get into some of the things that make Astronomer unique. Jeff, sticking with you, when you're in customer conversations, what are some of the key differentiators that you articulate to customers? >> So a lot of it is that we are not specific to one cloud provider. So we have the ability to operate across all of the big cloud providers. I know, I'm certain we have the best developers that understand how best practices implementations for data orchestration works. So we spend a lot of time talking to not just the business outcomes and the business users of the product, but also also for the technical people, how to help them better implement things that they may have come across on a Stack Overflow article or not necessarily just grown with how the product has migrated. So it's the ability to run it wherever you need to run it and also our ability to help you, the customer, better implement and understand those workflows that I think are two of the primary differentiators that we have. >> Lisa: Got it. >> I'll add another one if you don't mind. >> You can go ahead, Steven. >> Is lineage and dependencies between workflows. One thing we've done is to augment core Airflow with Lineage services. So using the Open Lineage framework, another open source framework for tracking datasets as they move from one workflow to another one, team to another, one data source to another is a really key component of what we do and we bundle that within the service so that as a developer or as a production engineer, you really don't have to worry about lineage, it just happens. Jeff, may show us some of this later that you can actually see as data flows from source through to a data warehouse out through a Python notebook to produce a predictive model or a dashboard. Can you see how those data products relate to each other? And when something goes wrong, figure out what upstream maybe caused the problem, or if you're about to change something, figure out what the impact is going to be on the rest of the organization. So Lineage is a big deal for us. >> Got it. >> And just to add on to that, the other thing to think about is that traditional Airflow is actually a complicated implementation. It required quite a lot of time spent understanding or was almost a bespoke language that you needed to be able to develop in two write these DAGs, which is like fundamental pipelines. So part of what we are focusing on is tooling that makes it more accessible to say a data analyst or a data scientist who doesn't have or really needs to gain the necessary background in how the semantics of Airflow DAGs works to still be able to get the benefit of what Airflow can do. So there is new features and capabilities built into the astronomer cloud platform that effectively obfuscates and removes the need to understand some of the deep work that goes on. But you can still do it, you still have that capability, but we are expanding it to be able to have orchestrated and repeatable processes accessible to more teams within the business. >> In terms of accessibility to more teams in the business. You talked about data scientists, data analysts, developers. Steven, I want to talk to you, as the chief data officer, are you having more and more conversations with that role and how is it emerging and evolving within your customer base? >> Hmm. That's a good question, and it is evolving because I think if you look historically at the way that Airflow has been used it's often from the ground up. You have individual data engineers or maybe single data engineering teams who adopt Airflow 'cause it's very popular. Lots of people know how to use it and they bring it into an organization and say, "Hey, let's use this to run our data pipelines." But then increasingly as you turn from pure workflow management and job scheduling to the larger topic of orchestration you realize it gets pretty complicated, you want to have coordination across teams, and you want to have standardization for the way that you manage your data pipelines. And so having a managed service for Airflow that exists in the cloud is easy to spin up as you expand usage across the organization. And thinking long term about that in the context of orchestration that's where I think the chief data officer or the head of analytics tends to get involved because they really want to think of this as a strategic investment that they're making. Not just per team individual Airflow deployments, but a network of data orchestrators. >> That network is key. Every company these days has to be a data company. We talk about companies being data driven. It's a common word, but it's true. It's whether it is a grocer or a bank or a hospital, they've got to be data companies. So talk to me a little bit about Astronomer's business model. How is this available? How do customers get their hands on it? >> Jeff, go ahead. >> Yeah, yeah. So we have a managed cloud service and we have two modes of operation. One, you can bring your own cloud infrastructure. So you can say here is an account in say, AWS or Azure and we can go and deploy the necessary infrastructure into that, or alternatively we can host everything for you. So it becomes a full SaaS offering. But we then provide a platform that connects at the backend to your internal IDP process. So however you are authenticating users to make sure that the correct people are accessing the services that they need with role-based access control. From there we are deploying through Kubernetes, the different services and capabilities into either your cloud account or into an account that we host. And from there Airflow does what Airflow does, which is its ability to then reach to different data systems and data platforms and to then run the orchestration. We make sure we do it securely, we have all the necessary compliance certifications required for GDPR in Europe and HIPAA based out of the US, and a whole bunch host of others. So it is a secure platform that can run in a place that you need it to run, but it is a managed Airflow that includes a lot of the extra capabilities like the cloud developer environment and the open lineage services to enhance the overall airflow experience. >> Enhance the overall experience. So Steven, going back to you, if I'm a Conde Nast or another organization, what are some of the key business outcomes that I can expect? As one of the things I think we've learned during the pandemic is access to realtime data is no longer a nice to have for organizations. It's really an imperative. It's that demanding consumer that wants to have that personalized, customized, instant access to a product or a service. So if I'm a Conde Nast or I'm one of your customers, what can I expect my business to be able to achieve as a result of data orchestration? >> Yeah, I think in a nutshell it's about providing a reliable, scalable, and easy to use service for developing and running data workflows. And talking of demanding customers, I mean, I'm actually a customer myself, as you mentioned, I'm the head of data for Astronomer. You won't be surprised to hear that we actually use Astronomer and Airflow to run all of our data pipelines. And so I can actually talk about my experience. When I started I was of course familiar with Airflow, but it always seemed a little bit unapproachable to me if I was introducing that to a new team of data scientists. They don't necessarily want to have to think about learning something new. But I think because of the layers that Astronomer has provided with our Astro service around Airflow it was pretty easy for me to get up and running. Of course I've got an incentive for doing that. I work for the Airflow company, but we went from about, at the beginning of last year, about 500 data tasks that we were running on a daily basis to about 15,000 every day. We run something like a million data operations every month within my team. And so as one outcome, just the ability to spin up new production workflows essentially in a single day you go from an idea in the morning to a new dashboard or a new model in the afternoon, that's really the business outcome is just removing that friction to operationalizing your machine learning and data workflows. >> And I imagine too, oh, go ahead, Jeff. >> Yeah, I think to add to that, one of the things that becomes part of the business cycle is a repeatable capabilities for things like reporting, for things like new machine learning models. And the impediment that has existed is that it's difficult to take that from a team that's an analyst team who then provide that or a data science team that then provide that to the data engineering team who have to work the workflow all the way through. What we're trying to unlock is the ability for those teams to directly get access to scheduling and orchestrating capabilities so that a business analyst can have a new report for C-suite execs that needs to be done once a week, but the time to repeatability for that report is much shorter. So it is then immediately in the hands of the person that needs to see it. It doesn't have to go into a long list of to-dos for a data engineering team that's already overworked that they eventually get it to it in a month's time. So that is also a part of it is that the realizing, orchestration I think is fairly well and a lot of people get the benefit of being able to orchestrate things within a business, but it's having more people be able to do it and shorten the time that that repeatability is there is one of the main benefits from good managed orchestration. >> So a lot of workforce productivity improvements in what you're doing to simplify things, giving more people access to data to be able to make those faster decisions, which ultimately helps the end user on the other end to get that product or the service that they're expecting like that. Jeff, I understand you have a demo that you can share so we can kind of dig into this. >> Yeah, let me take you through a quick look of how the whole thing works. So our starting point is our cloud infrastructure. This is the login. You go to the portal. You can see there's a a bunch of workspaces that are available. Workspaces are like individual places for people to operate in. I'm not going to delve into all the deep technical details here, but starting point for a lot of our data science customers is we have what we call our Cloud IDE, which is a web-based development environment for writing and building out DAGs without actually having to know how the underpinnings of Airflow work. This is an internal one, something that we use. You have a notebook-like interface that lets you write python code and SQL code and a bunch of specific bespoke type of blocks if you want. They all get pulled together and create a workflow. So this is a workflow, which gets compiled to something that looks like a complicated set of Python code, which is the DAG. I then have a CICD process pipeline where I commit this through to my GitHub repo. So this comes to a repo here, which is where these DAGs that I created in the previous step exist. I can then go and say, all right, I want to see how those particular DAGs have been running. We then get to the actual Airflow part. So this is the managed Airflow component. So we add the ability for teams to fairly easily bring up an Airflow instance and write code inside our notebook-like environment to get it into that instance. So you can see it's been running. That same process that we built here that graph ends up here inside this, but you don't need to know how the fundamentals of Airflow work in order to get this going. Then we can run one of these, it runs in the background and we can manage how it goes. And from there, every time this runs, it's emitting to a process underneath, which is the open lineage service, which is the lineage integration that allows me to come in here and have a look and see this was that actual, that same graph that we built, but now it's the historic version. So I know where things started, where things are going, and how it ran. And then I can also do a comparison. So if I want to see how this particular run worked compared to one historically, I can grab one from a previous date and it will show me the comparison between the two. So that combination of managed Airflow, getting Airflow up and running very quickly, but the Cloud IDE that lets you write code and know how to get something into a repeatable format get that into Airflow and have that attached to the lineage process adds what is a complete end-to-end orchestration process for any business looking to get the benefit from orchestration. >> Outstanding. Thank you so much Jeff for digging into that. So one of my last questions, Steven is for you. This is exciting. There's a lot that you guys are enabling organizations to achieve here to really become data-driven companies. So where can folks go to get their hands on this? >> Yeah, just go to astronomer.io and we have plenty of resources. If you're new to Airflow, you can read our documentation, our guides to getting started. We have a CLI that you can download that is really I think the easiest way to get started with Airflow. But you can actually sign up for a trial. You can sign up for a guided trial where our teams, we have a team of experts, really the world experts on getting Airflow up and running. And they'll take you through that trial and allow you to actually kick the tires and see how this works with your data. And I think you'll see pretty quickly that it's very easy to get started with Airflow, whether you're doing that from the command line or doing that in our cloud service. And all of that is available on our website >> astronomer.io. Jeff, last question for you. What are you excited about? There's so much going on here. What are some of the things, maybe you can give us a sneak peek coming down the road here that prospects and existing customers should be excited about? >> I think a lot of the development around the data awareness components, so one of the things that's traditionally been complicated with orchestration is you leave your data in the place that you're operating on and we're starting to have more data processing capability being built into Airflow. And from a Astronomer perspective, we are adding more capabilities around working with larger datasets, doing bigger data manipulation with inside the Airflow process itself. And that lends itself to better machine learning implementation. So as we start to grow and as we start to get better in the machine learning context, well, in the data awareness context, it unlocks a lot more capability to do and implement proper machine learning pipelines. >> Awesome guys. Exciting stuff. Thank you so much for talking to me about Astronomer, machine learning, data orchestration, and really the value in it for your customers. Steve and Jeff, we appreciate your time. >> Thank you. >> My pleasure, thanks. >> And we thank you for watching. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem. I'm your host, Lisa Martin. You're watching theCUBE, the leader in live tech coverage. (upbeat music)

Published Date : Mar 9 2023

SUMMARY :

of the AWS Startup Showcase let's give the audience and now it powers the data ecosystem What is the business impact or outcomes for the executives to consume how it applies to MLOps. and for me the interesting that you articulate to customers? So it's the ability to run it if you don't mind. that you can actually see as data flows the other thing to think about to more teams in the business. about that in the context of orchestration So talk to me a little bit at the backend to your So Steven, going back to you, just the ability to spin up but the time to repeatability a demo that you can share that allows me to come There's a lot that you guys We have a CLI that you can download What are some of the things, in the place that you're operating on and really the value in And we thank you for watching.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JeffPERSON

0.99+

Lisa MartinPERSON

0.99+

Jeff FletcherPERSON

0.99+

StevenPERSON

0.99+

StevePERSON

0.99+

Steven HillionPERSON

0.99+

LisaPERSON

0.99+

EuropeLOCATION

0.99+

Conde NastORGANIZATION

0.99+

USLOCATION

0.99+

thousandsQUANTITY

0.99+

twoQUANTITY

0.99+

HIPAATITLE

0.99+

AWSORGANIZATION

0.99+

two guestsQUANTITY

0.99+

AirflowORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

10 thousandsQUANTITY

0.99+

OneQUANTITY

0.99+

Electronic ArtsORGANIZATION

0.99+

oneQUANTITY

0.99+

PythonTITLE

0.99+

two modesQUANTITY

0.99+

AirflowTITLE

0.98+

10,000 workflowsQUANTITY

0.98+

about 500 data tasksQUANTITY

0.98+

todayDATE

0.98+

one outcomeQUANTITY

0.98+

tens of thousandsQUANTITY

0.98+

GDPRTITLE

0.97+

SQLTITLE

0.97+

GitHubORGANIZATION

0.96+

astronomer.ioOTHER

0.94+

SlackORGANIZATION

0.94+

AstronomerORGANIZATION

0.94+

some years agoDATE

0.92+

once a weekQUANTITY

0.92+

AstronomerTITLE

0.92+

theCUBEORGANIZATION

0.92+

last yearDATE

0.91+

KubernetesTITLE

0.88+

single dayQUANTITY

0.87+

about 15,000 every dayQUANTITY

0.87+

one cloudQUANTITY

0.86+

IDETITLE

0.86+

SiliconANGLE News | AWS Responds to OpenAI with Hugging Face Expanded Partnership


 

(upbeat music) >> Hello everyone. Welcome to Silicon Angle news breaking story here. Amazon Web Services, expanding their relationship with Hugging Face, breaking news here on Silicon Angle. I'm John Furrier, Silicon Angle reporter, founder and also co-host of theCUBE. And I have with me Swami from Amazon Web Services, vice president of database analytics machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on, taking the time. >> Hey John, pleasure to be here. >> We've had many conversations on theCUBE over the years. We've watched Amazon really move fast into the large data modeling. You SageMaker became a very smashing success. Obviously you've been on this for a while, now with Chat GPT, open AI, a lot of buzz going mainstream, takes it from behind the curtain, inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment I think in the industry. I want to get your perspective because your news with Hugging Face, I think is a is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware application centric, more programmable, more API access. What's the big news about with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah, first of all, they're very excited to announce our expanded collaboration with Hugging Face because with this partnership, our goal, as you all know, I mean Hugging Face I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS will be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this we can accelerate the training, fine tuning, and deployment of these large language models and vision models from Hugging Face in the cloud. So, and the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these Chat GPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models. They need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale, so And unlike search, web search style applications where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where a Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale. I'll deep dive on it and by training teaming up on the SageMaker front now the time it takes to build these models and fine tune them as also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the, to the time savings and the cost savings as well on the on the training and inference. It's a huge issue. But before we get into that, just how long have you guys been working with Hugging Face? I know this is a previous relationship. This is an expansion of that relationship. Can you comment on the what's different about what's happened before and then now? >> Yeah, so Hugging Face, we have had an great relationship in the past few years as well where they have actually made their models available to run on AWS in a fashion, even inspect their Bloom project was something many of our customers even used. Bloom Project for context is their open source project, which builds a GPT three style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation of this generative AI model, building on their highly successful Bloom project as well. And the nice thing is now by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way. Now for instance, tier 1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs and Forex more higher throughput. Now these models, especially as they train that next generation generated AI model, it is going to be not only more accessible to all the developers who use it in open. So it'll be a lot cheaper as well. And that's what makes this moment really exciting because yeah, we can't democratize AI unless we make it broadly accessible and cost efficient, and easy to program and use as well. >> Okay, thanks Swami. We really appreciate. Swami's a Cube alumni, but also vice President, database analyst machine learning web services breaking down the Hugging Face announcement. Obviously the relationship he called it the GitHub of machine learning. This is the beginning of what we will see, a continuing competitive battle with Microsoft. Microsoft launching OpenAI. Amazon's been doing it for years. They got Alexa, they know what they're doing. It's going to be very interesting to see how this all plays out. You're watching Silicon Angle News, breaking here. I'm John Furrier, host of the Cube. Thanks for watching. (ethereal music)

Published Date : Feb 23 2023

SUMMARY :

And I have with me Swami into the large data modeling. the time it takes to build these models and the cost savings as well on the and easy to program and use as well. I'm John Furrier, host of the

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Amazon Web ServicesORGANIZATION

0.99+

John FurrierPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

SwamiPERSON

0.99+

AmazonORGANIZATION

0.99+

millionsQUANTITY

0.99+

GitHubORGANIZATION

0.98+

AlexaTITLE

0.98+

InferentiaORGANIZATION

0.97+

Silicon AngleORGANIZATION

0.97+

TrainiumORGANIZATION

0.97+

Hugging FaceORGANIZATION

0.96+

oneQUANTITY

0.95+

up to 60%QUANTITY

0.95+

up to 50%QUANTITY

0.95+

CubeORGANIZATION

0.94+

Hugging FaceTITLE

0.94+

Chat GPTTITLE

0.86+

BloomPERSON

0.84+

OpenAITITLE

0.83+

theCUBEORGANIZATION

0.77+

Chat GPTTITLE

0.76+

1OTHER

0.75+

Silicon Angle NewsTITLE

0.74+

FaceTITLE

0.73+

BloomTITLE

0.72+

developersQUANTITY

0.7+

TrainiumTITLE

0.7+

Silicon AngleORGANIZATION

0.64+

past few yearsDATE

0.63+

BloomORGANIZATION

0.56+

SiliconANGLE NewsTITLE

0.55+

SageMakerTITLE

0.53+

tierQUANTITY

0.52+

HuggingORGANIZATION

0.49+

SiliconORGANIZATION

0.48+

AngleLOCATION

0.47+

SiliconANGLE News | Swami Sivasubramanian Extended Version


 

(bright upbeat music) >> Hello, everyone. Welcome to SiliconANGLE News breaking story here. Amazon Web Services expanding their relationship with Hugging Face, breaking news here on SiliconANGLE. I'm John Furrier, SiliconANGLE reporter, founder, and also co-host of theCUBE. And I have with me, Swami, from Amazon Web Services, vice president of database, analytics, machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on and taking the time. >> Hey, John, pleasure to be here. >> You know- >> Looking forward to it. >> We've had many conversations on theCUBE over the years, we've watched Amazon really move fast into the large data modeling, SageMaker became a very smashing success, obviously you've been on this for a while. Now with ChatGPT OpenAI, a lot of buzz going mainstream, takes it from behind the curtain inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment, I think, in the industry, I want to get your perspective, because your news with Hugging Face, I think is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware, application centric, more programmable, more API access. What's the big news about, with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah. First of all, they're very excited to announce our expanded collaboration with Hugging Face, because with this partnership, our goal, as you all know, I mean, Hugging Face, I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS, we'll be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this, we can accelerate the training, fine tuning and deployment of these large language models, and vision models from Hugging Face in the cloud. And the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models, are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these ChatGPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative, generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models, they need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale. So, and unlike web search style applications, where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale, I'll deep dive on it. And by teaming up on the SageMaker front, now the time it takes to build these models and fine tune them is also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the time savings and the cost savings as well on the training and inference, it's a huge issue, but before we get into that, just how long have you guys been working with Hugging Face? I know there's a previous relationship, this is an expansion of that relationship, can you comment on what's different about what's happened before and then now? >> Yeah. So, Hugging Face, we have had a great relationship in the past few years as well, where they have actually made their models available to run on AWS, you know, fashion. Even in fact, their Bloom Project was something many of our customers even used. Bloom Project, for context, is their open source project which builds a GPT-3 style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation office generative AI model, building on their highly successful Bloom Project as well. And the nice thing is, now, by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way, now, for instance, Trn1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs, and four x more higher throughput than (indistinct). Now, these models, especially as they train that next generation generative AI models, it is going to be, not only more accessible to all the developers, who use it in open, so it'll be a lot cheaper as well. And that's what makes this moment really exciting, because we can't democratize AI unless we make it broadly accessible and cost efficient and easy to program and use as well. >> Yeah. >> So very exciting. >> I'll get into the SageMaker and CodeWhisperer angle in a second, but you hit on some good points there. One, accessibility, which is, I call the democratization, which is getting this in the hands of developers, and/or AI to develop, we'll get into that in a second. So, access to coding and Git reasoning is a whole nother wave. But the three things I know you've been working on, I want to put in the buckets here and comment, one, I know you've, over the years, been working on saving time to train, that's a big point, you mentioned some of those stats, also cost, 'cause now cost is an equation on, you know, bundling whether you're uncoupling with hardware and software, that's a big issue. Where do I find the GPUs? Where's the horsepower cost? And then also sustainability. You've mentioned that in the past, is there a sustainability angle here? Can you talk about those three things, time, cost, and sustainability? >> Certainly. So if you look at it from the AWS perspective, we have been supporting customers doing machine learning for the past years. Just for broader context, Amazon has been doing ML the past two decades right from the early days of ML powered recommendation to actually also supporting all kinds of generative AI applications. If you look at even generative AI application within Amazon, Amazon search, when you go search for a product and so forth, we have a team called MFi within Amazon search that helps bring these large language models into creating highly accurate search results. And these are created with models, really large models with tens of billions of parameters, scales to thousands of training jobs every month and trained on large model of hardware. And this is an example of a really good large language foundation model application running at production scale, and also, of course, Alexa, which uses a large generator model as well. And they actually even had a research paper that showed that they are more, and do better in accuracy than other systems like GPT-3 and whatnot. So, and we also touched on things like CodeWhisperer, which uses generative AI to improve developer productivity, but in a responsible manner, because 40% of some of the studies show 40% of this generated code had serious security flaws in it. This is where we didn't just do generative AI, we combined with automated reasoning capabilities, which is a very, very useful technique to identify these issues and couple them so that it produces highly secure code as well. Now, all these learnings taught us few things, and which is what you put in these three buckets. And yeah, like more than 100,000 customers using ML and AI services, including leading startups in the generative AI space, like stability AI, AI21 Labs, or Hugging Face, or even Alexa, for that matter. They care about, I put them in three dimension, one is around cost, which we touched on with Trainium and Inferentia, where we actually, the Trainium, you provide to 50% better cost savings, but the other aspect is, Trainium is a lot more power efficient as well compared to traditional one. And Inferentia is also better in terms of throughput, when it comes to what it is capable of. Like it is able to deliver up to three x higher compute performance and four x higher throughput, compared to it's previous generation, and it is extremely cost efficient and power efficient as well. >> Well. >> Now, the second element that really is important is in a day, developers deeply value the time it takes to build these models, and they don't want to build models from scratch. And this is where SageMaker, which is, even going to Kaggle uses, this is what it is, number one, enterprise ML platform. What it did to traditional machine learning, where tens of thousands of customers use StageMaker today, including the ones I mentioned, is that what used to take like months to build these models have dropped down to now a matter of days, if not less. Now, a generative AI, the cost of building these models, if you look at the landscape, the model parameter size had jumped by more than thousand X in the past three years, thousand x. And that means the training is like a really big distributed systems problem. How do you actually scale these model training? How do you actually ensure that you utilize these efficiently? Because these machines are very expensive, let alone they consume a lot of power. So, this is where SageMaker capability to build, automatically train, tune, and deploy models really concern this, especially with this distributor training infrastructure, and those are some of the reasons why some of the leading generative AI startups are actually leveraging it, because they do not want a giant infrastructure team, which is constantly tuning and fine tuning, and keeping these clusters alive. >> It sounds like a lot like what startups are doing with the cloud early days, no data center, you move to the cloud. So, this is the trend we're seeing, right? You guys are making it easier for developers with Hugging Face, I get that. I love that GitHub for machine learning, large language models are complex and expensive to build, but not anymore, you got Trainium and Inferentia, developers can get faster time to value, but then you got the transformers data sets, token libraries, all that optimized for generator. This is a perfect storm for startups. Jon Turow, a former AWS person, who used to work, I think for you, is now a VC at Madrona Venture, he and I were talking about the generator AI landscape, it's exploding with startups. Every alpha entrepreneur out there is seeing this as the next frontier, that's the 20 mile stairs, next 10 years is going to be huge. What is the big thing that's happened? 'Cause some people were saying, the founder of Yquem said, "Oh, the start ups won't be real, because they don't all have AI experience." John Markoff, former New York Times writer told me that, AI, there's so much work done, this is going to explode, accelerate really fast, because it's almost like it's been waiting for this moment. What's your reaction? >> I actually think there is going to be an explosion of startups, not because they need to be AI startups, but now finally AI is really accessible or going to be accessible, so that they can create remarkable applications, either for enterprises or for disrupting actually how customer service is being done or how creative tools are being built. And I mean, this is going to change in many ways. When we think about generative AI, we always like to think of how it generates like school homework or arts or music or whatnot, but when you look at it on the practical side, generative AI is being actually used across various industries. I'll give an example of like Autodesk. Autodesk is a customer who runs an AWS and SageMaker. They already have an offering that enables generated design, where designers can generate many structural designs for products, whereby you give a specific set of constraints and they actually can generate a structure accordingly. And we see similar kind of trend across various industries, where it can be around creative media editing or various others. I have the strong sense that literally, in the next few years, just like now, conventional machine learning is embedded in every application, every mobile app that we see, it is pervasive, and we don't even think twice about it, same way, like almost all apps are built on cloud. Generative AI is going to be part of every startup, and they are going to create remarkable experiences without needing actually, these deep generative AI scientists. But you won't get that until you actually make these models accessible. And I also don't think one model is going to rule the world, then you want these developers to have access to broad range of models. Just like, go back to the early days of deep learning. Everybody thought it is going to be one framework that will rule the world, and it has been changing, from Caffe to TensorFlow to PyTorch to various other things. And I have a suspicion, we had to enable developers where they are, so. >> You know, Dave Vellante and I have been riffing on this concept called super cloud, and a lot of people have co-opted to be multicloud, but we really were getting at this whole next layer on top of say, AWS. You guys are the most comprehensive cloud, you guys are a super cloud, and even Adam and I are talking about ISVs evolving to ecosystem partners. I mean, your top customers have ecosystems building on top of it. This feels like a whole nother AWS. How are you guys leveraging the history of AWS, which by the way, had the same trajectory, startups came in, they didn't want to provision a data center, the heavy lifting, all the things that have made Amazon successful culturally. And day one thinking is, provide the heavy lifting, undifferentiated heavy lifting, and make it faster for developers to program code. AI's got the same thing. How are you guys taking this to the next level, because now, this is an opportunity for the competition to change the game and take it over? This is, I'm sure, a conversation, you guys have a lot of things going on in AWS that makes you unique. What's the internal and external positioning around how you take it to the next level? >> I mean, so I agree with you that generative AI has a very, very strong potential in terms of what it can enable in terms of next generation application. But this is where Amazon's experience and expertise in putting these foundation models to work internally really has helped us quite a bit. If you look at it, like amazon.com search is like a very, very important application in terms of what is the customer impact on number of customers who use that application openly, and the amount of dollar impact it does for an organization. And we have been doing it silently for a while now. And the same thing is true for like Alexa too, which actually not only uses it for natural language understanding other city, even national leverages is set for creating stories and various other examples. And now, our approach to it from AWS is we actually look at it as in terms of the same three tiers like we did in machine learning, because when you look at generative AI, we genuinely see three sets of customers. One is, like really deep technical expert practitioner startups. These are the startups that are creating the next generation models like the likes of stability AIs or Hugging Face with Bloom or AI21. And they generally want to build their own models, and they want the best price performance of their infrastructure for training and inference. That's where our investments in silicon and hardware and networking innovations, where Trainium and Inferentia really plays a big role. And we can nearly do that, and that is one. The second middle tier is where I do think developers don't want to spend time building their own models, let alone, they actually want the model to be useful to that data. They don't need their models to create like high school homeworks or various other things. What they generally want is, hey, I had this data from my enterprises that I want to fine tune and make it really work only for this, and make it work remarkable, can be for tech summarization, to generate a report, or it can be for better Q&A, and so forth. This is where we are. Our investments in the middle tier with SageMaker, and our partnership with Hugging Face and AI21 and co here are all going to very meaningful. And you'll see us investing, I mean, you already talked about CodeWhisperer, which is an open preview, but we are also partnering with a whole lot of top ISVs, and you'll see more on this front to enable the next wave of generated AI apps too, because this is an area where we do think lot of innovation is yet to be done. It's like day one for us in this space, and we want to enable that huge ecosystem to flourish. >> You know, one of the things Dave Vellante and I were talking about in our first podcast we just did on Friday, we're going to do weekly, is we highlighted the AI ChatGPT example as a horizontal use case, because everyone loves it, people are using it in all their different verticals, and horizontal scalable cloud plays perfectly into it. So I have to ask you, as you look at what AWS is going to bring to the table, a lot's changed over the past 13 years with AWS, a lot more services are available, how should someone rebuild or re-platform and refactor their application of business with AI, with AWS? What are some of the tools that you see and recommend? Is it Serverless, is it SageMaker, CodeWhisperer? What do you think's going to shine brightly within the AWS stack, if you will, or service list, that's going to be part of this? As you mentioned, CodeWhisperer and SageMaker, what else should people be looking at as they start tinkering and getting all these benefits, and scale up their ups? >> You know, if we were a startup, first, I would really work backwards from the customer problem I try to solve, and pick and choose, bar, I don't need to deal with the undifferentiated heavy lifting, so. And that's where the answer is going to change. If you look at it then, the answer is not going to be like a one size fits all, so you need a very strong, I mean, granted on the compute front, if you can actually completely accurate it, so unless, I will always recommend it, instead of running compute for running your ups, because it takes care of all the undifferentiated heavy lifting, but on the data, and that's where we provide a whole variety of databases, right from like relational data, or non-relational, or dynamo, and so forth. And of course, we also have a deep analytical stack, where data directly flows from our relational databases into data lakes and data virus. And you can get value along with partnership with various analytical providers. The area where I do think fundamentally things are changing on what people can do is like, with CodeWhisperer, I was literally trying to actually program a code on sending a message through Twilio, and I was going to pull up to read a documentation, and in my ID, I was actually saying like, let's try sending a message to Twilio, or let's actually update a Route 53 error code. All I had to do was type in just a comment, and it actually started generating the sub-routine. And it is going to be a huge time saver, if I were a developer. And the goal is for us not to actually do it just for AWS developers, and not to just generate the code, but make sure the code is actually highly secure and follows the best practices. So, it's not always about machine learning, it's augmenting with automated reasoning as well. And generative AI is going to be changing, and not just in how people write code, but also how it actually gets built and used as well. You'll see a lot more stuff coming on this front. >> Swami, thank you for your time. I know you're super busy. Thank you for sharing on the news and giving commentary. Again, I think this is a AWS moment and industry moment, heavy lifting, accelerated value, agility. AIOps is going to be probably redefined here. Thanks for sharing your commentary. And we'll see you next time, I'm looking forward to doing more follow up on this. It's going to be a big wave. Thanks. >> Okay. Thanks again, John, always a pleasure. >> Okay. This is SiliconANGLE's breaking news commentary. I'm John Furrier with SiliconANGLE News, as well as host of theCUBE. Swami, who's a leader in AWS, has been on theCUBE multiple times. We've been tracking the growth of how Amazon's journey has just been exploding past five years, in particular, past three. You heard the numbers, great performance, great reviews. This is a watershed moment, I think, for the industry, and it's going to be a lot of fun for the next 10 years. Thanks for watching. (bright music)

Published Date : Feb 22 2023

SUMMARY :

Swami, great to have you on inside the ropes, if you And one of the biggest complaints we hear and easy to program and use as well. I call the democratization, the Trainium, you provide And that means the training What is the big thing that's happened? and they are going to create this to the next level, and the amount of dollar impact that's going to be part of this? And generative AI is going to be changing, AIOps is going to be John, always a pleasure. and it's going to be a lot

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

SwamiPERSON

0.99+

Amazon Web ServicesORGANIZATION

0.99+

Jon TurowPERSON

0.99+

John MarkoffPERSON

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

AmazonORGANIZATION

0.99+

John FurrierPERSON

0.99+

40%QUANTITY

0.99+

AutodeskORGANIZATION

0.99+

50%QUANTITY

0.99+

Madrona VentureORGANIZATION

0.99+

20 mileQUANTITY

0.99+

Hugging FaceORGANIZATION

0.99+

FridayDATE

0.99+

second elementQUANTITY

0.99+

more than 100,000 customersQUANTITY

0.99+

AI21ORGANIZATION

0.99+

tens of thousandsQUANTITY

0.99+

first podcastQUANTITY

0.99+

three tiersQUANTITY

0.98+

SiliconANGLEORGANIZATION

0.98+

twiceQUANTITY

0.98+

Bloom ProjectTITLE

0.98+

oneQUANTITY

0.98+

SageMakerORGANIZATION

0.98+

Hugging FaceTITLE

0.98+

AlexaTITLE

0.98+

firstQUANTITY

0.98+

GitHubORGANIZATION

0.98+

one modelQUANTITY

0.98+

up to 50%QUANTITY

0.97+

ChatGPTTITLE

0.97+

FirstQUANTITY

0.97+

more than thousand XQUANTITY

0.97+

amazon.comORGANIZATION

0.96+

tens of billionsQUANTITY

0.96+

OneQUANTITY

0.96+

up to 60%QUANTITY

0.96+

one frameworkQUANTITY

0.96+

YquemORGANIZATION

0.94+

three thingsQUANTITY

0.94+

InferentiaORGANIZATION

0.94+

CodeWhispererTITLE

0.93+

fourQUANTITY

0.92+

three setsQUANTITY

0.92+

threeQUANTITY

0.92+

TwilioORGANIZATION

0.92+

Paola Peraza Calderon & Viraj Parekh, Astronomer | Cube Conversation


 

(soft electronic music) >> Hey everyone, welcome to this CUBE conversation as part of the AWS Startup Showcase, season three, episode one, featuring Astronomer. I'm your host, Lisa Martin. I'm in the CUBE's Palo Alto Studios, and today excited to be joined by a couple of guests, a couple of co-founders from Astronomer. Viraj Parekh is with us, as is Paola Peraza-Calderon. Thanks guys so much for joining us. Excited to dig into Astronomer. >> Thank you so much for having us. >> Yeah, thanks for having us. >> Yeah, and we're going to be talking about the role of data orchestration. Paola, let's go ahead and start with you. Give the audience that understanding, that context about Astronomer and what it is that you guys do. >> Mm-hmm. Yeah, absolutely. So, Astronomer is a, you know, we're a technology and software company for modern data orchestration, as you said, and we're the driving force behind Apache Airflow. The Open Source Workflow Management tool that's since been adopted by thousands and thousands of users, and we'll dig into this a little bit more. But, by data orchestration, we mean data pipeline, so generally speaking, getting data from one place to another, transforming it, running it on a schedule, and overall just building a central system that tangibly connects your entire ecosystem of data services, right. So what, that's Redshift, Snowflake, DVT, et cetera. And so tangibly, we build, we at Astronomer here build products powered by Apache Airflow for data teams and for data practitioners, so that they don't have to. So, we sell to data engineers, data scientists, data admins, and we really spend our time doing three things. So, the first is that we build Astro, our flagship cloud service that we'll talk more on. But here, we're really building experiences that make it easier for data practitioners to author, run, and scale their data pipeline footprint on the cloud. And then, we also contribute to Apache Airflow as an open source project and community. So, we cultivate the community of humans, and we also put out open source developer tools that actually make it easier for individual data practitioners to be productive in their day-to-day jobs, whether or not they actually use our product and and pay us money or not. And then of course, we also have professional services and education and all of these things around our commercial products that enable folks to use our products and use Airflow as effectively as possible. So yeah, super, super happy with everything we've done and hopefully that gives you an idea of where we're starting. >> Awesome, so when you're talking with those, Paola, those data engineers, those data scientists, how do you define data orchestration and what does it mean to them? >> Yeah, yeah, it's a good question. So, you know, if you Google data orchestration you're going to get something about an automated process for organizing silo data and making it accessible for processing and analysis. But, to your question, what does that actually mean, you know? So, if you look at it from a customer's perspective, we can share a little bit about how we at Astronomer actually do data orchestration ourselves and the problems that it solves for us. So, as many other companies out in the world do, we at Astronomer need to monitor how our own customers use our products, right? And so, we have a weekly meeting, for example, that goes through a dashboard and a dashboarding tool called Sigma where we see the number of monthly customers and how they're engaging with our product. But, to actually do that, you know, we have to use data from our application database, for example, that has behavioral data on what they're actually doing in our product. We also have data from third party API tools, like Salesforce and HubSpot, and other ways in which our customer, we actually engage with our customers and their behavior. And so, our data team internally at Astronomer uses a bunch of tools to transform and use that data, right? So, we use FiveTran, for example, to ingest. We use Snowflake as our data warehouse. We use other tools for data transformations. And even, if we at Astronomer don't do this, you can imagine a data team also using tools like, Monte Carlo for data quality, or Hightouch for Reverse ETL, or things like that. And, I think the point here is that data teams, you know, that are building data-driven organizations have a plethora of tooling to both ingest the right data and come up with the right interfaces to transform and actually, interact with that data. And so, that movement and sort of synchronization of data across your ecosystem is exactly what data orchestration is responsible for. Historically, I think, and Raj will talk more about this, historically, schedulers like KRON and Oozie or Control-M have taken a role here, but we think that Apache Airflow has sort of risen over the past few years as the defacto industry standard for writing data pipelines that do tasks, that do data jobs that interact with that ecosystem of tools in your organization. And so, beyond that sort of data pipeline unit, I think where we see it is that data acquisition is not only writing those data pipelines that move your data, but it's also all the things around it, right, so, CI/CD tool and Secrets Management, et cetera. So, a long-winded answer here, but I think that's how we talk about it here at Astronomer and how we're building our products. >> Excellent. Great context, Paola. Thank you. Viraj, let's bring you into the conversation. Every company these days has to be a data company, right? They've got to be a software company- >> Mm-hmm. >> whether it's my bank or my grocery store. So, how are companies actually doing data orchestration today, Viraj? >> Yeah, it's a great question. So, I think one thing to think about is like, on one hand, you know, data orchestration is kind of a new category that we're helping define, but on the other hand, it's something that companies have been doing forever, right? You need to get data moving to use it, you know. You've got it all in place, aggregate it, cleaning it, et cetera. So, when you look at what companies out there are doing, right. Sometimes, if you're a more kind of born in the cloud company, as we say, you'll adopt all these cloud native tooling things your cloud provider gives you. If you're a bank or another sort of institution like that, you know, you're probably juggling an even wider variety of tools. You're thinking about a cloud migration. You might have things like Kron running in one place, Uzi running somewhere else, Informatics running somewhere else, while you're also trying to move all your workloads to the cloud. So, there's quite a large spectrum of what the current state is for companies. And then, kind of like Paola was saying, Apache Airflow started in 2014, and it was actually started by Airbnb, and they put out this blog post that was like, "Hey here's how we use Apache Airflow to orchestrate our data across all their sources." And really since then, right, it's almost been a decade since then, Airflow emerged as the open source standard, and there's companies of all sorts using it. And, it's really used to tie all these tools together, especially as that number of tools increases, companies move to hybrid cloud, hybrid multi-cloud strategies, and so on and so forth. But you know, what we found is that if you go to any company, especially a larger one and you say like, "Hey, how are you doing data orchestration?" They'll probably say something like, "Well, I have five data teams, so I have eight different ways I do data orchestration." Right. This idea of data orchestration's been there but the right way to do it, kind of all the abstractions you need, the way your teams need to work together, and so on and so forth, hasn't really emerged just yet, right? It's such a quick moving space that companies have to combine what they were doing before with what their new business initiatives are today. So, you know, what we really believe here at Astronomer is Airflow is the core of how you solve data orchestration for any sort of use case, but it's not everything. You know, it needs a little more. And, that's really where our commercial product, Astro comes in, where we've built, not only the most tried and tested airflow experience out there. We do employ a majority of the Airflow Core Committers, right? So, we're kind of really deep in the project. We've also built the right things around developer tooling, observability, and reliability for customers to really rely on Astro as the heart of the way they do data orchestration, and kind of think of it as the foundational layer that helps tie together all the different tools, practices and teams large companies have to do today. >> That foundational layer is absolutely critical. You've both mentioned open source software. Paola, I want to go back to you, and just give the audience an understanding of how open source really plays into Astronomer's mission as a company, and into the technologies like Astro. >> Mm-hmm. Yeah, absolutely. I mean, we, so we at Astronomers started using Airflow and actually building our products because Airflow is open source and we were our own customers at the beginning of our company journey. And, I think the open source community is at the core of everything we do. You know, without that open source community and culture, I think, you know, we have less of a business, and so, we're super invested in continuing to cultivate and grow that. And, I think there's a couple sort of concrete ways in which we do this that personally make me really excited to do my own job. You know, for one, we do things like we organize meetups and we sponsor the Airflow Summit and there's these sort of baseline community efforts that I think are really important and that reminds you, hey, there just humans trying to do their jobs and learn and use both our technology and things that are out there and contribute to it. So, making it easier to contribute to Airflow, for example, is another one of our efforts. As Viraj mentioned, we also employ, you know, engineers internally who are on our team whose full-time job is to make the open source project better. Again, regardless of whether or not you're a customer of ours or not, we want to make sure that we continue to cultivate the Airflow project in and of itself. And, we're also building developer tooling that might not be a part of the Apache Open Source project, but is still open source. So, we have repositories in our own sort of GitHub organization, for example, with tools that individual data practitioners, again customers are not, can use to make them be more productive in their day-to-day jobs with Airflow writing Dags for the most common use cases out there. The last thing I'll say is how important I think we've found it to build sort of educational resources and documentation and best practices. Airflow can be complex. It's been around for a long time. There's a lot of really, really rich feature sets. And so, how do we enable folks to actually use those? And that comes in, you know, things like webinars, and best practices, and courses and curriculum that are free and accessible and open to the community are just some of the ways in which I think we're continuing to invest in that open source community over the next year and beyond. >> That's awesome. It sounds like open source is really core, not only to the mission, but really to the heart of the organization. Viraj, I want to go back to you and really try to understand how does Astronomer fit into the wider modern data stack and ecosystem? Like what does that look like for customers? >> Yeah, yeah. So, both in the open source and with our commercial customers, right? Folks everywhere are trying to tie together a huge variety of tools in order to start making sense of their data. And you know, I kind of think of it almost like as like a pyramid, right? At the base level, you need things like data reliability, data, sorry, data freshness, data availability, and so on and so forth, right? You just need your data to be there. (coughs) I'm sorry. You just need your data to be there, and you need to make it predictable when it's going to be there. You need to make sure it's kind of correct at the highest level, some quality checks, and so on and so forth. And oftentimes, that kind of takes the case of ELT or ETL use cases, right? Taking data from somewhere and moving it somewhere else, usually into some sort of analytics destination. And, that's really what businesses can do to just power the core parts of getting insights into how their business is going, right? How much revenue did I had? What's in my pipeline, salesforce, and so on and so forth. Once that kind of base foundation is there and people can get the data they need, how they need it, it really opens up a lot for what customers can do. You know, I think one of the trendier things out there right now is MLOps, and how do companies actually put machine learning into production? Well, when you think about it you kind of have to squint at it, right? Like, machine learning pipelines are really just any other data pipeline. They just have a certain set of needs that might not not be applicable to ELT pipelines. And, when you kind of have a common layer to tie together all the ways data can move through your organization, that's really what we're trying to make it so companies can do. And, that happens in financial services where, you know, we have some customers who take app data coming from their mobile apps, and actually run it through their fraud detection services to make sure that all the activity is not fraudulent. We have customers that will run sports betting models on our platform where they'll take data from a bunch of public APIs around different sporting events that are happening, transform all of that in a way their data scientist can build models with it, and then actually bet on sports based on that output. You know, one of my favorite use cases I like to talk about that we saw in the open source is we had there was one company whose their business was to deliver blood transfusions via drone into remote parts of the world. And, it was really cool because they took all this data from all sorts of places, right? Kind of orchestrated all the aggregation and cleaning and analysis that happened had to happen via airflow and the end product would be a drone being shot out into a real remote part of the world to actually give somebody blood who needed it there. Because it turns out for certain parts of the world, the easiest way to deliver blood to them is via drone and not via some other, some other thing. So, these kind of, all the things people do with the modern data stack is absolutely incredible, right? Like you were saying, every company's trying to be a data-driven company. What really energizes me is knowing that like, for all those best, super great tools out there that power a business, we get to be the connective tissue, or the, almost like the electricity that kind of ropes them all together and makes so people can actually do what they need to do. >> Right. Phenomenal use cases that you just described, Raj. I mean, just the variety alone of what you guys are able to do and impact is so cool. So Paola, when you're with those data engineers, those data scientists, and customer conversations, what's your pitch? Why use Astro? >> Mm-hmm. Yeah, yeah, it's a good question. And honestly, to piggyback off of Viraj, there's so many. I think what keeps me so energized is how mission critical both our product and data orchestration is, and those use cases really are incredible and we work with customers of all shapes and sizes. But, to answer your question, right, so why use Astra? Why use our commercial products? There's so many people using open source, why pay for something more than that? So, you know, the baseline for our business really is that Airflow has grown exponentially over the last five years, and like we said has become an industry standard that we're confident there's a huge opportunity for us as a company and as a team. But, we also strongly believe that being great at running Airflow, you know, doesn't make you a successful company at what you do. What makes you a successful company at what you do is building great products and solving problems and solving pin points of your own customers, right? And, that differentiating value isn't being amazing at running Airflow. That should be our job. And so, we want to abstract those customers from meaning to do things like manage Kubernetes infrastructure that you need to run Airflow, and then hiring someone full-time to go do that. Which can be hard, but again doesn't add differentiating value to your team, or to your product, or to your customers. So, folks to get away from managing that infrastructure sort of a base, a base layer. Folks who are looking for differentiating features that make their team more productive and allows them to spend less time tweaking Airflow configurations and more time working with the data that they're getting from their business. For help, getting, staying up with Airflow releases. There's a ton of, we've actually been pretty quick to come out with new Airflow features and releases, and actually just keeping up with that feature set and working strategically with a partner to help you make the most out of those feature sets is a key part of it. And, really it's, especially if you're an organization who currently is committed to using Airflow, you likely have a lot of Airflow environments across your organization. And, being able to see those Airflow environments in a single place and being able to enable your data practitioners to create Airflow environments with a click of a button, and then use, for example, our command line to develop your Airflow Dags locally and push them up to our product, and use all of the sort of testing and monitoring and observability that we have on top of our product is such a key. It sounds so simple, especially if you use Airflow, but really those things are, you know, baseline value props that we have for the customers that continue to be excited to work with us. And of course, I think we can go beyond that and there's, we have ambitions to add whole, a whole bunch of features and expand into different types of personas. >> Right? >> But really our main value prop is for companies who are committed to Airflow and want to abstract themselves and make use of some of the differentiating features that we now have at Astronomer. >> Got it. Awesome. >> Thank you. One thing, one thing I'll add to that, Paola, and I think you did a good job of saying is because every company's trying to be a data company, companies are at different parts of their journey along that, right? And we want to meet customers where they are, and take them through it to where they want to go. So, on one end you have folks who are like, "Hey, we're just building a data team here. We have a new initiative. We heard about Airflow. How do you help us out?" On the farther end, you know, we have some customers that have been using Airflow for five plus years and they're like, "Hey, this is awesome. We have 10 more teams we want to bring on. How can you help with this? How can we do more stuff in the open source with you? How can we tell our story together?" And, it's all about kind of taking this vast community of data users everywhere, seeing where they're at, and saying like, "Hey, Astro and Airflow can take you to the next place that you want to go." >> Which is incredibly- >> Mm-hmm. >> and you bring up a great point, Viraj, that every company is somewhere in a different place on that journey. And it's, and it's complex. But it sounds to me like a lot of what you're doing is really stripping away a lot of the complexity, really enabling folks to use their data as quickly as possible, so that it's relevant and they can serve up, you know, the right products and services to whoever wants what. Really incredibly important. We're almost out of time, but I'd love to get both of your perspectives on what's next for Astronomer. You give us a a great overview of what the company's doing, the value in it for customers. Paola, from your lens as one of the co-founders, what's next? >> Yeah, I mean, I think we'll continue to, I think cultivate in that open source community. I think we'll continue to build products that are open sourced as part of our ecosystem. I also think that we'll continue to build products that actually make Airflow, and getting started with Airflow, more accessible. So, sort of lowering that barrier to entry to our products, whether that's price wise or infrastructure requirement wise. I think making it easier for folks to get started and get their hands on our product is super important for us this year. And really it's about, I think, you know, for us, it's really about focused execution this year and all of the sort of core principles that we've been talking about. And continuing to invest in all of the things around our product that again, enable teams to use Airflow more effectively and efficiently. >> And that efficiency piece is, everybody needs that. Last question, Viraj, for you. What do you see in terms of the next year for Astronomer and for your role? >> Yeah, you know, I think Paola did a really good job of laying it out. So it's, it's really hard to disagree with her on anything, right? I think executing is definitely the most important thing. My own personal bias on that is I think more than ever it's important to really galvanize the community around airflow. So, we're going to be focusing on that a lot. We want to make it easier for our users to get get our product into their hands, be that open source users or commercial users. And last, but certainly not least, is we're also really excited about Data Lineage and this other open source project in our umbrella called Open Lineage to make it so that there's a standard way for users to get lineage out of different systems that they use. When we think about what's in store for data lineage and needing to audit the way automated decisions are being made. You know, I think that's just such an important thing that companies are really just starting with, and I don't think there's a solution that's emerged that kind of ties it all together. So, we think that as we kind of grow the role of Airflow, right, we can also make it so that we're helping solve, we're helping customers solve their lineage problems all in Astro, which is our kind of the best of both worlds for us. >> Awesome. I can definitely feel and hear the enthusiasm and the passion that you both bring to Astronomer, to your customers, to your team. I love it. We could keep talking more and more, so you're going to have to come back. (laughing) Viraj, Paola, thank you so much for joining me today on this showcase conversation. We really appreciate your insights and all the context that you provided about Astronomer. >> Thank you so much for having us. >> My pleasure. For my guests, I'm Lisa Martin. You're watching this Cube conversation. (soft electronic music)

Published Date : Feb 21 2023

SUMMARY :

to this CUBE conversation Thank you so much and what it is that you guys do. and hopefully that gives you an idea and the problems that it solves for us. to be a data company, right? So, how are companies actually kind of all the abstractions you need, and just give the And that comes in, you of the organization. and analysis that happened that you just described, Raj. that you need to run Airflow, that we now have at Astronomer. Awesome. and I think you did a good job of saying and you bring up a great point, Viraj, and all of the sort of core principles and for your role? and needing to audit the and all the context that you (soft electronic music)

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Viraj ParekhPERSON

0.99+

Lisa MartinPERSON

0.99+

PaolaPERSON

0.99+

VirajPERSON

0.99+

2014DATE

0.99+

AstronomerORGANIZATION

0.99+

Paola Peraza-CalderonPERSON

0.99+

Paola Peraza CalderonPERSON

0.99+

AirflowORGANIZATION

0.99+

AirbnbORGANIZATION

0.99+

five plus yearsQUANTITY

0.99+

AstroORGANIZATION

0.99+

RajPERSON

0.99+

UziORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

firstQUANTITY

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

KronORGANIZATION

0.99+

10 more teamsQUANTITY

0.98+

AstronomersORGANIZATION

0.98+

AstraORGANIZATION

0.98+

oneQUANTITY

0.98+

AirflowTITLE

0.98+

InformaticsORGANIZATION

0.98+

Monte CarloTITLE

0.98+

this yearDATE

0.98+

HubSpotORGANIZATION

0.98+

one companyQUANTITY

0.97+

AstronomerTITLE

0.97+

next yearDATE

0.97+

ApacheORGANIZATION

0.97+

Airflow SummitEVENT

0.97+

AWSORGANIZATION

0.95+

both worldsQUANTITY

0.93+

KRONORGANIZATION

0.93+

CUBEORGANIZATION

0.92+

MORGANIZATION

0.92+

RedshiftTITLE

0.91+

SnowflakeTITLE

0.91+

five data teamsQUANTITY

0.91+

GitHubORGANIZATION

0.91+

OozieORGANIZATION

0.9+

Data LineageORGANIZATION

0.9+

Andy Thurai, Constellation Research | CloudNativeSecurityCon 23


 

(upbeat music) (upbeat music) >> Hi everybody, welcome back to our coverage of the Cloud Native Security Con. I'm Dave Vellante, here in our Boston studio. We're connecting today with Palo Alto, with John Furrier and Lisa Martin. We're also live from the show floor in Seattle. But right now, I'm here with Andy Thurai who's from Constellation Research, friend of theCUBE, and we're going to discuss the intersection of AI and security, the potential of AI, the risks and the future. Andy, welcome, good to see you again. >> Good to be here again. >> Hey, so let's get into it, can you talk a little bit about, I know this is a passion of yours, the ethical considerations surrounding AI. I mean, it's front and center in the news, and you've got accountability, privacy, security, biases. Should we be worried about AI from a security perspective? >> Absolutely, man, you should be worried. See the problem is, people don't realize this, right? I mean, the ChatGPT being a new shiny object, it's all the craze that's about. But the problem is, most of the content that's produced either by ChatGPT or even by others, it's an access, no warranties, no accountability, no whatsoever. Particularly, if it is content, it's okay. But if it is something like a code that you use for example, one of their site projects that GitHub's co-pilot, which is actually, open AI + Microsoft + GitHub's combo, they allow you to produce code, AI writes code basically, right? But when you write code, problem with that is, it's not exactly stolen, but the models are created by using the GitHub code. Actually, they're getting sued for that, saying that, "You can't use our code". Actually there's a guy, Tim Davidson, I think he's named the professor, he actually demonstrated how AI produces exact copy of the code that he has written. So right now, it's a lot of security, accountability, privacy issues. Use it either to train or to learn. But in my view, it's not ready for enterprise grade yet. >> So, Brian Behlendorf today in his keynotes said he's really worried about ChatGPT being used to automate spearfishing. So I'm like, okay, so let's unpack that a little bit. Is the concern there that it just, the ChatGPT writes such compelling phishing content, it's going to increase the probability of somebody clicking on it, or are there other dimensions? >> It could, it's not necessarily just ChatGPT for that matter, right? AI can, actually, the hackers are using it to an extent already, can use to individualize content. For example, one of the things that you are able to easily identify when you're looking at the emails that are coming in, the phishing attack is, you look at some of the key elements in it, whether it's a human or even if it's an automated AI based system. They look at certain things and they say, "Okay, this is phishing". But if you were to read an email that looks exact copy of what I would've sent to you saying that, "Hey Dave, are you on for tomorrow? Or click on this link to do whatever. It could individualize the message. That's where the volume at scale to individual to masses, that can be done using AI, which is what scares me. >> Is there a flip side to AI? How is it being utilized to help cybersecurity? And maybe you could talk about some of the more successful examples of AI in security. Like, are there use cases or are there companies out there, Andy, that you find, I know you're close to a lot of firms that are leading in this area. You and I have talked about CrowdStrike, I know Palo Alto Network, so is there a positive side to this story? >> Yeah, I mean, absolutely right. Those are some of the good companies you mentioned, CrowdStrike, Palo Alto, Darktrace is another one that I closely follow, which is a good company as well, that they're using AI for security purposes. So, here's the thing, right, when people say, when they're using malware detection systems, most of the malware detection systems that are in today's security and malware systems, use some sort of a signature and pattern scanning in the malware. You know how many identified malwares are there today in the repository, in the library? More than a billion, a billion. So, if you are to check for every malware in your repository, that's not going to work. The pattern based recognition is not going to work. So, you got to figure out a different way of identification of pattern of usage, not just a signature in a malware, right? Or there are other areas you could use, things like the usage patterns. For example, if Andy is coming in to work at a certain time, you could combine a facial recognition saying, that should he be in here at that time, and should he be doing things, what he is supposed to be doing. There are a lot of things you could do using that, right? And the AIOps use cases, which is one of my favorite areas that I work, do a lot of work, right? That it has use cases for detecting things that are anomaly, that are not supposed to be done in a way that's supposed to be, reducing the noise so it can escalate only the things what you're supposed to. So, AIOps is a great use case to use in security areas which they're not using it to an extent yet. Incident management is another area. >> So, in your malware example, you're saying, okay, known malware, pretty much anybody can deal with that now. That's sort of yesterday's problem. >> The unknown is the problem. >> It's the unknown malware really trying to understand the patterns, and the patterns are going to change. It's not like you're saying a common signature 'cause they're going to use AI to change things up at scale. >> So, here's the problem, right? The malware writers are also using AI now, right? So, they're not going to write the old malware, send it to you. They are actually creating malware on the fly. It is possible entirely in today's world that they can create a malware, drop in your systems and it'll it look for the, let me get that name right. It's called, what are we using here? It's called the TTPs, Tactics, Techniques and procedures. It'll look for that to figure out, okay, am I doing the right pattern? And then malware can sense it saying that, okay, that's the one they're detecting. I'm going to change it on the fly. So, AI can code itself on the fly, rather malware can code itself on the fly, which is going to be hard to detect. >> Well, and when you talk about TTP, when you talk to folks like Kevin Mandia of Mandiant, recently purchased by Google or other of those, the ones that have the big observation space, they'll talk about the most malicious hacks that they see, involve lateral movement. So, that's obviously something that people are looking for, AI's looking for that. And of course, the hackers are going to try to mask that lateral movement, living off the land and other things. How do you see AI impacting the future of cyber? We talked about the risks and the good. One of the things that Brian Behlendorf also mentioned is that, he pointed out that in the early days of the internet, the protocols had an inherent element of trust involved. So, things like SMTP, they didn't have security built in. So, they built up a lot of technical debt. Do you see AI being able to help with that? What steps do you see being taken to ensure that AI based systems are secure? >> So, the major difference between the older systems and the newer systems is the older systems, sadly even today, a lot of them are rules-based. If it's a rules-based systems, you are dead in the water and not able, right? So, the AI-based systems can somewhat learn from the patterns as I was talking about, for example... >> When you say rules-based systems, you mean here's the policy, here's the rule, if it's not followed but then you're saying, AI will blow that away, >> AI will blow that away, you don't have to necessarily codify things saying that, okay, if this, then do this. You don't have to necessarily do that. AI can somewhat to an extent self-learn saying that, okay, if that doesn't happen, if this is not a pattern that I know which is supposed to happen, who should I escalate this to? Who does this system belong to? And the other thing, the AIOps use case we talked about, right, the anomalies. When an anomaly happens, then the system can closely look at, saying that, okay, this is not normal behavior or usage. Is that because system's being overused or is it because somebody's trying to access something, could look at the anomaly detection, anomaly prevention or even prediction to an extent. And that's where AI could be very useful. >> So, how about the developer angle? 'Cause CNCF, the event in Seattle is all around developers, how can AI be integrated? We did a lot of talk at the conference about shift-left, we talked about shift-left and protect right. Meaning, protect the run time. So, both are important, so what steps should be taken to ensure that the AI systems are being developed in a secure and ethically sound way? What's the role of developers in that regard? >> How long do you got? (Both laughing) I think it could go for base on that. So, here's the problem, right? Lot of these companies are trying to see, I mean, you might have seen that in the news that Buzzfeed is trying to hire all of the writers to create the thing that ChatGPT is creating, a lot of enterprises... >> How, they're going to fire their writers? >> Yeah, they replace the writers. >> It's like automated automated vehicles and automated Uber drivers. >> So, the problem is a lot of enterprises still haven't done that, at least the ones I'm speaking to, are thinking about saying, "Hey, you know what, can I replace my developers because they are so expensive? Can I replace them with AI generated code?" There are a few issues with that. One, AI generated code is based on some sort of a snippet of a code that has been already available. So, you get into copyright issues, that's issue number one, right? Issue number two, if AI creates code and if something were to go wrong, who's responsible for that? There's no accountability right now. Or you as a company that's creating a system that's responsible, or is it ChatGPT, Microsoft is responsible. >> Or is the developer? >> Or the developer. >> The individual developer might be. So, they're going to be cautious about that liability. >> Well, so one of the areas where I'm seeing a lot of enterprises using this is they are using it to teach developers to learn things. You know what, if you're to code, this is a good way to code. That area, it's okay because you are just teaching them. But if you are to put an actual production code, this is what I advise companies, look, if somebody's using even to create a code, whether with or without your permission, make sure that once the code is committed, you validate that the 100%, whether it's a code or a model, or even make sure that the data what you're feeding in it is completely out of bias or no bias, right? Because at the end of the day, it doesn't matter who, what, when did that, if you put out a service or a system out there, it is involving your company liability and system, and code in place. You're going to be screwed regardless of what, if something were to go wrong, you are the first person who's liable for it. >> Andy, when you think about the dangers of AI, and what keeps you up at night if you're a security professional AI and security professional. We talked about ChatGPT doing things, we don't even, the hackers are going to get creative. But what worries you the most when you think about this topic? >> A lot, a lot, right? Let's start off with an example, actually, I don't know if you had a chance to see that or not. The hackers used a bank of Hong Kong, used a defect mechanism to fool Bank of Hong Kong to transfer $35 million to a fake account, the money is gone, right? And the problem that is, what they did was, they interacted with a manager and they learned this executive who can control a big account and cloned his voice, and clone his patterns on how he calls and what he talks and the whole name he has, after learning that, they call the branch manager or bank manager and say, "Hey, you know what, hey, move this much money to whatever." So, that's one way of kind of phishing, kind of deep fake that can come. So, that's just one example. Imagine whether business is conducted by just using voice or phone calls itself. That's an area of concern if you were to do that. And imagine this became an uproar a few years back when deepfakes put out the video of Tom Cruise and others we talked about in the past, right? And Tom Cruise looked at the video, he said that he couldn't distinguish that he didn't do it. It is so close, that close, right? And they are doing things like they're using gems... >> Awesome Instagram account by the way, the guy's hilarious, right? >> So, they they're using a lot of this fake videos and fake stuff. As long as it's only for entertainment purposes, good. But imagine doing... >> That's right there but... >> But during the election season when people were to put out saying that, okay, this current president or ex-president, he said what? And the masses believe right now whatever they're seeing in TV, that's unfortunate thing. I mean, there's no fact checking involved, and you could change governments and elections using that, which is scary shit, right? >> When you think about 2016, that was when we really first saw, the weaponization of social, the heavy use of social and then 2020 was like, wow. >> To the next level. >> It was crazy. The polarization, 2024, would deepfakes... >> Could be the next level, yeah. >> I mean, it's just going to escalate. What about public policy? I want to pick your brain on this because I I've seen situations where the EU, for example, is going to restrict the ability to ship certain code if it's involved with critical infrastructure. So, let's say, example, you're running a nuclear facility and you've got the code that protects that facility, and it can be useful against some other malware that's outside of that country, but you're restricted from sending that for whatever reason, data sovereignty. Is public policy, is it aligned with the objectives in this new world? Or, I mean, normally they have to catch up. Is that going to be a problem in your view? >> It is because, when it comes to laws it's always miles behind when a new innovation happens. It's not just for AI, right? I mean, the same thing happened with IOT. Same thing happened with whatever else new emerging tech you have. The laws have to understand if there's an issue and they have to see a continued pattern of misuse of the technology, then they'll come up with that. Use in ways they are ahead of things. So, they put a lot of restrictions in place and about what AI can or cannot do, US is way behind on that, right? But California has done some things, for example, if you are talking to a chat bot, then you have to basically disclose that to the customer, saying that you're talking to a chat bot, not to a human. And that's just a very basic rule that they have in place. I mean, there are times that when a decision is made by the, problem is, AI is a black box now. The decision making is also a black box now, and we don't tell people. And the problem is if you tell people, you'll get sued immediately because every single time, we talked about that last time, there are cases involving AI making decisions, it gets thrown out the window all the time. If you can't substantiate that. So, the bottom line is that, yes, AI can assist and help you in making decisions but just use that as a assistant mechanism. A human has to be always in all the loop, right? >> Will AI help with, in your view, with supply chain, the software supply chain security or is it, it's always a balance, right? I mean, I feel like the attackers are more advanced in some ways, it's like they're on offense, let's say, right? So, when you're calling the plays, you know where you're going, the defense has to respond to it. So in that sense, the hackers have an advantage. So, what's the balance with software supply chain? Are the hackers have the advantage because they can use AI to accelerate their penetration of the software supply chain? Or will AI in your view be a good defensive mechanism? >> It could be but the problem is, the velocity and veracity of things can be done using AI, whether it's fishing, or malware, or other security and the vulnerability scanning the whole nine yards. It's scary because the hackers have a full advantage right now. And actually, I think ChatGPT recently put out two things. One is, it's able to direct the code if it is generated by ChatGPT. So basically, if you're trying to fake because a lot of schools were complaining about it, that's why they came up with the mechanism. So, if you're trying to create a fake, there's a mechanism for them to identify. But that's a step behind still, right? And the hackers are using things to their advantage. Actually ChatGPT made a rule, if you go there and read the terms and conditions, it's basically honor rule suggesting, you can't use this for certain purposes, to create a model where it creates a security threat, as that people are going to listen. So, if there's a way or mechanism to restrict hackers from using these technologies, that would be great. But I don't see that happening. So, know that these guys have an advantage, know that they're using AI, and you have to do things to be prepared. One thing I was mentioning about is, if somebody writes a code, if somebody commits a code right now, the problem is with the agile methodologies. If somebody writes a code, if they commit a code, you assume that's right and legit, you immediately push it out into production because need for speed is there, right? But if you continue to do that with the AI produced code, you're screwed. >> So, bottom line is, AI's going to speed us up in a security context or is it going to slow us down? >> Well, in the current version, the AI systems are flawed because even the ChatGPT, if you look at the the large language models, you look at the core piece of data that's available in the world as of today and then train them using that model, using the data, right? But people are forgetting that's based on today's data. The data changes on a second basis or on a minute basis. So, if I want to do something based on tomorrow or a day after, you have to retrain the models. So, the data already have a stale. So, that in itself is stale and the cost for retraining is going to be a problem too. So overall, AI is a good first step. Use that with a caution, is what I want to say. The system is flawed now, if you use it as is, you'll be screwed, it's dangerous. >> Andy, you got to go, thanks so much for coming in, appreciate it. >> Thanks for having me. >> You're very welcome, so we're going wall to wall with our coverage of the Cloud Native Security Con. I'm Dave Vellante in the Boston Studio, John Furrier, Lisa Martin and Palo Alto. We're going to be live on the show floor as well, bringing in keynote speakers and others on the ground. Keep it right there for more coverage on theCUBE. (upbeat music) (upbeat music) (upbeat music) (upbeat music)

Published Date : Feb 2 2023

SUMMARY :

and security, the potential of I mean, it's front and center in the news, of the code that he has written. that it just, the ChatGPT AI can, actually, the hackers are using it of the more successful So, here's the thing, So, in your malware the patterns, and the So, AI can code itself on the fly, that in the early days of the internet, So, the AI-based systems And the other thing, the AIOps use case that the AI systems So, here's the problem, right? and automated Uber drivers. So, the problem is a lot of enterprises So, they're going to be that the data what you're feeding in it about the dangers of AI, and the whole name he So, they they're using a lot And the masses believe right now whatever the heavy use of social and The polarization, 2024, would deepfakes... Is that going to be a And the problem is if you tell people, So in that sense, the And the hackers are using So, that in itself is stale and the cost Andy, you got to go, and others on the ground.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Tim DavidsonPERSON

0.99+

Brian BehlendorfPERSON

0.99+

AndyPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

Andy ThuraiPERSON

0.99+

SeattleLOCATION

0.99+

Kevin MandiaPERSON

0.99+

100%QUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

EUORGANIZATION

0.99+

Tom CruisePERSON

0.99+

Palo AltoORGANIZATION

0.99+

UberORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

DarktraceORGANIZATION

0.99+

John FurrierPERSON

0.99+

$35 millionQUANTITY

0.99+

CrowdStrikeORGANIZATION

0.99+

OneQUANTITY

0.99+

Constellation ResearchORGANIZATION

0.99+

BuzzfeedORGANIZATION

0.99+

More than a billion, a billionQUANTITY

0.99+

GitHubORGANIZATION

0.99+

BostonLOCATION

0.99+

Palo Alto NetworkORGANIZATION

0.99+

DavePERSON

0.99+

2016DATE

0.99+

tomorrowDATE

0.99+

bothQUANTITY

0.99+

two thingsQUANTITY

0.99+

first stepQUANTITY

0.99+

todayDATE

0.99+

MandiantORGANIZATION

0.99+

one exampleQUANTITY

0.99+

2024DATE

0.99+

ChatGPTORGANIZATION

0.98+

CloudNativeSecurityConEVENT

0.98+

Bank of Hong KongORGANIZATION

0.98+

oneQUANTITY

0.98+

ChatGPTTITLE

0.98+

yesterdayDATE

0.98+

Constellation ResearchORGANIZATION

0.97+

2020DATE

0.97+

firstQUANTITY

0.97+

InstagramORGANIZATION

0.97+

BothQUANTITY

0.97+

theCUBEORGANIZATION

0.94+

Hong KongLOCATION

0.93+

one wayQUANTITY

0.92+

PaloORGANIZATION

0.92+

Cloud Native Security Con.EVENT

0.89+

nine yardsQUANTITY

0.89+

CNCFEVENT

0.88+

AIOpsORGANIZATION

0.86+

first personQUANTITY

0.85+

CaliforniaORGANIZATION

0.78+

Issue number twoQUANTITY

0.75+

deepfakesORGANIZATION

0.74+

few years backDATE

0.74+

Boston StudioLOCATION

0.73+

HPE Compute Engineered for your Hybrid World-Containers to Deploy Higher Performance AI Applications


 

>> Hello, everyone. Welcome to theCUBE's coverage of "Compute Engineered for your Hybrid World," sponsored by HPE and Intel. Today we're going to discuss the new 4th Gen Intel Xeon Scalable process impact on containers and AI. I'm John Furrier, your host of theCUBE, and I'm joined by three experts to guide us along. We have Jordan Plum, Senior Director of AI and products for Intel, Bradley Sweeney, Big Data and AI Product Manager, Mainstream Compute Workloads at HPE, and Gary Wang, Containers Product Manager, Mainstream Compute Workloads at HPE. Welcome to the program gentlemen. Thanks for coming on. >> Thanks John. >> Thank you for having us. >> This segment is going to be talking about containers to deploy high performance AI applications. This is a really important area right now. We're seeing a lot more AI deployed, kind of next gen AI coming. How is HPE supporting and testing and delivering containers for AI? >> Yeah, so what we're doing from HPE's perspective is we're taking these container platforms, combining with the next generation Intel servers to fully validate the deployment of the containers. So what we're doing is we're publishing the reference architectures. We're creating these automation scripts, and also creating a monitoring and security strategy for these container platforms. So for customers to easily deploy these Kubernete clusters and to easily secure their community environments. >> Gary, give us a quick overview of the new Proliant DL 360 and 380 Gen 11 servers. >> Yeah, the load, for example, for container platforms what we're seeing mostly is the DL 360 and DL 380 for matching really well for container use cases, especially for AI. The DL 360, with the expended now the DDR five memory and the new PCI five slots really, really helps the speeds to deploy these container environments and also to grow the data that's required to store it within these container environments. So for example, like the DL 380 if you want to deploy a data fabric whether it's the Ezmeral data fabric or different vendors data fabric software you can do so with the DL 360 and DL 380 with the new Intel Xeon processors. >> How does HP help customers with Kubernetes deployments? >> Yeah, like I mentioned earlier so we do a full validation to ensure the container deployment is easy and it's fast. So we create these automation scripts and then we publish them on GitHub for customers to use and to reference. So they can take that and then they can adjust as they need to. But following the deployment guide that we provide will make the, deploy the community deployment much easier, much faster. So we also have demo videos that's also published and then for reference architecture document that's published to guide the customer step by step through the process. >> Great stuff. Thanks everyone. We'll be going to take a quick break here and come back. We're going to do a deep dive on the fourth gen Intel Xeon scalable process and the impact on AI and containers. You're watching theCUBE, the leader in tech coverage. We'll be right back. (intense music) Hey, welcome back to theCUBE's continuing coverage of "Compute Engineered for your Hybrid World" series. I'm John Furrier with the Cube, joined by Jordan Plum with Intel, Bradley Sweeney with HPE, and Gary Wang from HPE. We're going to do a drill down and do a deeper dive into the AI containers with the fourth gen Intel Xeon scalable processors we appreciate your time coming in. Jordan, great to see you. I got to ask you right out of the gate, what is the view right now in terms of Intel's approach to containers for AI? It's hot right now. AI is booming. You're seeing kind of next gen use cases. What's your approach to containers relative to AI? >> Thanks John and thanks for the question. With the fourth generation Xeon scalable processor launch we have tested and validated this platform with over 400 deep learning and machine learning models and workloads. These models and workloads are publicly available in the framework repositories and they can be downloaded by anybody. Yet customers are not only looking for model validation they're looking for model performance and performance is usually a combination of a given throughput at a target latency. And to do that in the data center all the way to the factory floor, this is not always delivered from these generic proxy models that are publicly available in the industry. >> You know, performance is critical. We're seeing more and more developers saying, "Hey, I want to go faster on a better platform, faster all the time." No one wants to run slower stuff, that's for sure. Can you talk more about the different container approaches Intel is pursuing? >> Sure. First our approach is to meet the customers where they are and help them build and deploy AI everywhere. Some customers just want to focus on deployment they have more mature use cases, and they just want to download a model that works that's high performing and run. Others are really focused more on development and innovation. They want to build and train models from scratch or at least highly customize them. Therefore we have several container approaches to accelerate the customer's time to solution and help them meet their business SLA along their AI journey. >> So what developers can just download these containers and just go? >> Yeah, so let me talk about the different kinds of containers we have. We start off with pre-trained containers. We'll have about 55 or more of these containers where the model is actually pre-trained, highly performant, some are optimized for low latency, others are optimized for throughput and the customers can just download these from Intel's website or from HPE and they can just go into production right away. >> That's great. A lot of choice. People can just get jump right in. That's awesome. Good, good choice for developers. They want more faster velocity. We know that. What else does Intel provide? Can you share some thoughts there? What you guys else provide developers? >> Yeah, so we talked about how hey some are just focused on deployment and they maybe they have more mature use cases. Other customers really want to do some more customization or optimization. So we have another class of containers called development containers and this includes not just the kind of a model itself but it's integrated with the framework and some other capabilities and techniques like model serving. So now that customers can download just not only the model but an entire AI stack and they can be sort of do some optimizations but they can also be sure that Intel has optimized that specific stack on top of the HPE servers. >> So it sounds simple to just get started using the DL model and containers. Is that it? Where, what else are customers looking for? What can you take a little bit deeper? >> Yeah, not quite. Well, while the customer customer's ability to reproduce performance on their site that HPE and Intel have measured in our own labs is fantastic. That's not actually what the customer is only trying to do. They're actually building very complex end-to-end AI pipelines, okay? And a lot of data scientists are really good at building models, really good at building algorithms but they're less experienced in building end-to-end pipelines especially 'cause the number of use cases end-to-end are kind of infinite. So we are building end-to-end pipeline containers for use cases like media analytics and sentiment analysis, anomaly detection. Therefore a customer can download these end-to-end containers, right? They can either use them as a reference, just like, see how we built them and maybe they have some changes in their own data center where they like to use different tools, but they can just see, "Okay this is what's possible with an end-to-end container on top of an HPE server." And other cases they could actually, if the overlap in the use case is pretty close, they can just take our containers and go directly into production. So this provides developers, all three types of containers that I discussed provide developers an easy starting point to get them up and running quickly and make them productive. And that's a really important point. You talked a lot about performance, John. But really when we talk to data scientists what they really want to be is productive, right? They're under pressure to change the business to transform the business and containers is a great way to get started fast >> People take product productivity, you know, seriously now with developer productivity is the hottest trend obviously they want performance. Totally nailed it. Where can customers get these containers? >> Right. Great, thank you John. Our pre-trained model containers, our developmental containers, and our end-to-end containers are available at intel.com at the developer catalog. But we'd also post these on many third party marketplaces that other people like to pull containers from. And they're frequently updated. >> Love the developer productivity angle. Great stuff. We've still got more to discuss with Jordan, Bradley, and Gary. We're going to take a short break here. You're watching theCUBE, the leader in high tech coverage. We'll be right back. (intense music) Welcome back to theCUBE's coverage of "Compute Engineered for your Hybrid World." I'm John Furrier with theCUBE and we'll be discussing and wrapping up our discussion on containers to deploy high performance AI. This is a great segment on really a lot of demand for AI and the applications involved. And we got the fourth gen Intel Xeon scalable processors with HP Gen 11 servers. Bradley, what is the top AI use case that Gen 11 HP Proliant servers are optimized for? >> Yeah, thanks John. I would have to say intelligent video analytics. It's a use case that's supplied across industries and verticals. For example, a smart hospital solution that we conducted with Nvidia and Artisight in our previous customer success we've seen 5% more hospital procedures, a 16 times return on investment using operating room coordination. With that IVA, so with the Gen 11 DL 380 that we provide using the the Intel four gen Xeon processors it can really support workloads at scale. Whether that is a smart hospital solution whether that's manufacturing at the edge security camera integration, we can do it all with Intel. >> You know what's really great about AI right now you're starting to see people starting to figure out kind of where the value is does a lot of the heavy lifting on setting things up to make humans more productive. This has been clearly now kind of going neck level. You're seeing it all in the media now and all these new tools coming out. How does HPE make it easier for customers to manage their AI workloads? I imagine there's going to be a surge in demand. How are you guys making it easier to manage their AI workloads? >> Well, I would say the biggest way we do this is through GreenLake, which is our IT as a service model. So customers deploying AI workloads can get fully-managed services to optimize not only their operations but also their spending and the cost that they're putting towards it. In addition to that we have our Gen 11 reliance servers equipped with iLO 6 technology. What this does is allows customers to securely manage their server complete environment from anywhere in the world remotely. >> Any last thoughts or message on the overall fourth gen intel Xeon based Proliant Gen 11 servers? How they will improve workload performance? >> You know, with this generation, obviously the performance is only getting ramped up as the needs and requirements for customers grow. We partner with Intel to support that. >> Jordan, gimme the last word on the container's effect on AI applications. Your thoughts as we close out. >> Yeah, great. I think it's important to remember that containers themselves don't deliver performance, right? The AI stack is a very complex set of software that's compiled together and what we're doing together is to make it easier for customers to get access to that software, to make sure it all works well together and that it can be easily installed and run on sort of a cloud native infrastructure that's hosted by HPE Proliant servers. Hence the title of this talk. How to use Containers to Deploy High Performance AI Applications. Thank you. >> Gentlemen. Thank you for your time on the Compute Engineered for your Hybrid World sponsored by HPE and Intel. Again, I love this segment for AI applications Containers to Deploy Higher Performance. This is a great topic. Thanks for your time. >> Thank you. >> Thanks John. >> Okay, I'm John. We'll be back with more coverage. See you soon. (soft music)

Published Date : Dec 27 2022

SUMMARY :

Welcome to the program gentlemen. and delivering containers for AI? and to easily secure their of the new Proliant DL 360 and also to grow the data that's required and then they can adjust as they need to. and the impact on AI and containers. And to do that in the about the different container and they just want to download a model and they can just go into A lot of choice. and they can be sort of So it sounds simple to just to use different tools, is the hottest trend to pull containers from. on containers to deploy we can do it all with Intel. for customers to manage and the cost that they're obviously the performance on the container's effect How to use Containers on the Compute Engineered We'll be back with more coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Jordan PlumPERSON

0.99+

GaryPERSON

0.99+

JohnPERSON

0.99+

NvidiaORGANIZATION

0.99+

Gary WangPERSON

0.99+

BradleyPERSON

0.99+

HPEORGANIZATION

0.99+

John FurrierPERSON

0.99+

16 timesQUANTITY

0.99+

5%QUANTITY

0.99+

JordanPERSON

0.99+

ArtisightORGANIZATION

0.99+

DL 360COMMERCIAL_ITEM

0.99+

IntelORGANIZATION

0.99+

three expertsQUANTITY

0.99+

DL 380COMMERCIAL_ITEM

0.99+

HPORGANIZATION

0.99+

Compute Engineered for your Hybrid WorldTITLE

0.98+

FirstQUANTITY

0.98+

Bradley SweeneyPERSON

0.98+

over 400 deep learningQUANTITY

0.97+

intelORGANIZATION

0.97+

theCUBEORGANIZATION

0.96+

Gen 11 DL 380COMMERCIAL_ITEM

0.95+

XeonCOMMERCIAL_ITEM

0.95+

TodayDATE

0.95+

fourth genQUANTITY

0.92+

GitHubORGANIZATION

0.91+

380 Gen 11COMMERCIAL_ITEM

0.9+

about 55 or moreQUANTITY

0.89+

four gen XeonCOMMERCIAL_ITEM

0.88+

Big DataORGANIZATION

0.88+

Gen 11COMMERCIAL_ITEM

0.87+

five slotsQUANTITY

0.86+

ProliantCOMMERCIAL_ITEM

0.84+

GreenLakeORGANIZATION

0.75+

Compute Engineered for your HybridTITLE

0.7+

EzmeralORGANIZATION

0.68+

Wendi Whitmore, Palo Alto Networks | Palo Alto Networks Ignite22


 

>>The Cube presents Ignite 22, brought to you by Palo Alto Networks. >>Welcome back to Vegas. Guys. We're happy that you're here. Lisa Martin here covering with Dave Valante, Palo Alto Networks Ignite 22. We're at MGM Grand. This is our first day, Dave of two days of cube coverage. We've been having great conversations with the ecosystem with Palo Alto executives, with partners. One of the things that they have is unit 42. We're gonna be talking with them next about cyber intelligence. And the threat data that they get is >>Incredible. Yeah. They have all the data, they know what's going on, and of course things are changing. The state of play changes. Hold on a second. I got a text here. Oh, my Netflix account was frozen. Should I click on this link? Yeah. What do you think? Have you had a, it's, have you had a little bit more of that this holiday season? Yeah, definitely. >>Unbelievable, right? A lot of smishing going on. >>Yeah, they're very clever. >>Yeah, we're very pleased to welcome back one of our alumni to the queue. Wendy Whitmore is here, the SVP of Unit 42. Welcome back, Wendy. Great to have >>You. Thanks Lisa. So >>Unit 42 created back in 2014. One of the things that I saw that you said in your keynote this morning or today was everything old is still around and it's co, it's way more prolific than ever. What are some of the things that Unit 42 is seeing these days with, with respect to cyber threats as the landscape has changed so much the last two years alone? >>You know, it, it has. So it's really interesting. I've been responding to these breaches for over two decades now, and I can tell you that there are a lot of new and novel techniques. I love that you already highlighted Smishing, right? In the opening gate. Right. Because that is something that a year ago, no one knew what that word was. I mean, we, it's probably gonna be invented this year, right? But that said, so many of the tactics that we have previously seen, when it comes to just general espionage techniques, right? Data act filtration, intellectual property theft, those are going on now more than ever. And you're not hearing about them as much in the news because there are so many other things, right? We're under the landscape of a major war going on between Russia and Ukraine of ransomware attacks, you know, occurring on a weekly basis. And so we keep hearing about those, but ultimately these nations aid actors are using that top cover, if you will, as a great distraction. It's almost like a perfect storm for them to continue conducting so much cyber espionage work that like we may not be feeling that today, but years down the road, they're, the work that they're doing today is gonna have really significant impact. >>Ransomware has become a household word in the last couple of years. I think even my mom knows what it is, to some degree. Yeah. But the threat actors are far more sophisticated than they've ever written. They're very motivated. They're very well funded. I think I've read a stat recently in the last year that there's a ransomware attack once every 11 seconds. And of course we only hear about the big ones. But that is a concern that goes all the way up to the board. >>Yeah. You know, we have a stat in our ransomware threat report that talks about how often victims are posted on leak sites. And I think it's once every seven minutes at this point that a new victim is posted. Meaning a victim has had their data, a victim organization had their data stolen and posted on some leak site in the attempt to be extorted. So that has become so common. One of the shifts that we've seen this year in particular and in recent months, you know, a year ago when I was at Ignite, which was virtual, we talked about quadruple extortion, meaning four different ways that these ransomware actors would go out and try to make money from these attacks in what they're doing now is often going to just one, which is, I don't even wanna bother with encrypting your data now, because that means that in order to get paid, I probably have to decrypt it. Right? That's a lot of work. It's time consuming. It's kind of painstaking. And so what they've really looked to do now is do the extortion where they simply steal the data and then threaten to post it on these leak sites, you know, release it other parts of the web and, and go from there. And so that's really a blending of these techniques of traditional cyber espionage with intellectual property theft. Wow. >>How trustworthy are those guys in terms of, I mean, these are hackers, right? In terms of it's really the, the hacker honor system, isn't it? I mean, if you get compromised like that, you really beholden to criminals. And so, you >>Know, so that's one of the key reasons why having the threat intelligence is so important, right? Understanding which group that you're dealing with and what their likelihood of paying is, what's their modus operandi. It's become even more important now because these groups switch teams more frequently than NFL trades, you know, free agents during the regular season, right? Or players become free agents. And that's because their infrastructure. So the, you know, infrastructure, the servers, the systems that they're using to conduct these attacks from is actually largely being disrupted more from law enforcement, international intelligence agencies working together with public private partnerships. So what they're doing is saying, okay, great. All that infrastructure that I just had now is, is burned, right? It's no longer effective. So then they'll disband a team and then they'll recruit a new team and it's constant like mixing and matching in players. >>All that said, even though that's highly dynamic, one of the other areas that they pride themselves on is customer service. So, and I think it's interesting because, you know, when I said they're not wanting to like do all the decryption? Yeah. Cuz that's like painful techni technical slow work. But on the customer service side, they will create these customer service portals immediately stand one up, say, you know, hey it's, it's like an Amazon, you know, if you've ever had to return a package on Amazon for example, and you need to click through and like explain, you know, Hey, I didn't receive this package. A portal window pops up, you start talking to either a bot or a live agent on the backend. In this case they're hu what appeared to be very much humans who are explaining to you exactly what happened, what they're asking for, super pleasant, getting back within minutes of a response. And they know that in order for them to get paid, they need to have good customer service because otherwise they're not going to, you know, have a business. How, >>So what's the state of play look like from between nation states, criminals and how, how difficult or not so difficult is it for you to identify? Do you have clear signatures? My understanding in with Solar Winds it was a little harder, but maybe help us understand and help our audience understand what the state of play is right now. >>One of the interesting things that I think is occurring, and I highlighted this this morning, is this idea of convergence. And so I'll break it down for one example relates to the type of malware or tools that these attackers use. So traditionally, if we looked at a nation state actor like China or Russia, they were very, very specific and very strategic about the types of victims that they were going to go after when they had zero day. So, you know, new, new malware out there, new vulnerabilities that could be exploited only by them because the rest of the world didn't know about it. They might have one organization that they would target that at, at most, a handful and all very strategic for their objective. They wanted to keep that a secret as long as possible. Now what we're seeing actually is those same attackers going towards one, a much larger supply chain. >>So, so lorenzen is a great example of that. The Hafnia attacks towards Microsoft Exchange server last year. All great examples of that. But what they're also doing is instead of using zero days as much, or you know, because those are expensive to build, they take a lot of time, a lot of funding, a lot of patience and research. What they're doing is using commercially available tools. And so there's a tool that our team identified earlier this year called Brute Rael, C4 or BRC four for short. And that's a tool that we now know that nation state actors are using. But just two weeks ago we invested a ransomware attack where the ransomware actor was using that same piece of tooling. So to your point, yak can get difficult for defenders when you're looking through and saying, well wait, they're all using some of the same tools right now and some of the same approaches when it comes to nation states, that's great for them because they can blend into the noise and it makes it harder to identify as >>Quickly. And, and is that an example of living off the land or is that B BRC four sort of a homegrown hacker tool? Is it, is it a, is it a commercial >>Off the shelf? So it's a tool that was actually, so you can purchase it, I believe it's about 2,500 US dollars for a license. It was actually created by a former Red teamer from a couple well-known companies in the industry who then decided, well hey, I built this tool for work, I'm gonna sell this. Well great for Red teamers that are, you know, legitimately doing good work, but not great now because they're, they built a, a strong tool that has the ability to hide amongst a, a lot of protocols. It can actually hide within Slack and teams to where you can't even see the data is being exfiltrated. And so there's a lot of concern. And then now the reality that it gets into the wrong hands of nation state actors in ransomware actors, one of the really interesting things about that piece of malware is it has a setting where you can change wallpaper. And I don't know if you know offhand, you know what that means, but you know, if that comes to mind, what you would do with it. Well certainly a nation state actor is never gonna do something like that, right? But who likes to do that are ransomware actors who can go in and change the background wallpaper on a desktop that says you've been hacked by XYZ organization and let you know what's going on. So pretty interesting, obviously the developer doing some work there for different parts of the, you know, nefarious community. >>Tremendous amount of sophistication that's gone on the last couple of years alone. I was just reading that Unit 42 is now a founding member of the Cyber Threat Alliance includes now more than 35 organizations. So you guys are getting a very broad picture of today's threat landscape. How can customers actually achieve cyber resilience? Is it achievable and how do you help? >>So I, I think it is achievable. So let me kind of parse out the question, right. So the Cyber Threat Alliance, the J C D C, the Cyber Safety Review Board, which I'm a member of, right? I think one of the really cool things about Palo Alto Networks is just our partnerships. So those are just a handful. We've got partnerships with over 200 organizations. We work closely with the Ukrainian cert, for example, sharing information, incredible information about like what's going on in the war, sharing technical details. We do that with Interpol on a daily basis where, you know, we're sharing information. Just last week the Africa cyber surge operation was announced where millions of nodes were taken down that were part of these larger, you know, system of C2 channels that attackers are using to conduct exploits and attacks throughout the world. So super exciting in that regard and it's something that we're really passionate about at Palo Alto Networks in terms of resilience, a few things, you know, one is visibility, so really having a, an understanding of in a real, as much of real time as possible, right? What's happening. And then it goes into how you, how can we decrease operational impact. So that's everything from network segmentation to wanna add the terms and phrases I like to use a lot is the win is really increasing the time it takes for the attackers to get their work done and decreasing the amount of time it takes for the defenders to get their work done, right? >>Yeah. I I call it increasing the denominator, right? And the ROI equation benefit over or value, right? Equals equals or benefit equals value over cost if you can increase the cost to go go elsewhere, right? Absolutely. And that's the, that's the game. Yeah. You mentioned Ukraine before, what have we learned from Ukraine? I, I remember I was talking to Robert Gates years ago, 2016 I think, and I was asking him, yeah, but don't we have the best cyber technology? Can't we attack? He said, we got the most to lose too. Yeah. And so what have we learned from, from Ukraine? >>Well, I, I think that's part of the key point there, right? Is you know, a great offense essentially can also be for us, you know, deterrent. So in that aspect we have as an, as a company and or excuse me, as a country, as a company as well, but then as partners throughout all parts of the world have really focused on increasing the intelligence sharing and specifically, you know, I mentioned Ukrainian cert. There are so many different agencies and other sorts throughout the world that are doing everything they can to share information to help protect human life there. And so what we've really been concerned with, with is, you know, what cyber warfare elements are going to be used there, not only how does that impact Ukraine, but how does it potentially spread out to other parts of the world critical infrastructure. So you've seen that, you know, I mentioned CS rrb, but cisa, right? >>CISA has done a tremendous job of continuously getting out information and doing everything they can to make sure that we are collaborating at a commercial level. You know, we are sharing information and intelligence more than ever before. So partners like Mania and CrowdStrike, our Intel teams are working together on a daily basis to make sure that we're able to protect not only our clients, but certainly if we've got any information relevant that we can share that as well. And I think if there's any silver lining to an otherwise very awful situation, I think the fact that is has accelerated intelligence sharing is really positive. >>I was gonna ask you about this cause I think, you know, 10 or so years ago, there was a lot of talk about that, but the industry, you know, kind of kept things to themselves, you know, a a actually tried to monetize some of that private data. So that's changing is what I'm hearing from you >>More so than ever more, you know, I've, I mentioned I've been in the field for 20 years. You know, it, it's tough when you have a commercial business that relies on, you know, information to, in order to pay people's salaries, right? I think that has changed quite a lot. We see the benefit of just that continuous sharing. There are, you know, so many more walls broken down between these commercial competitors, but also the work on the public private partnership side has really increased some of those relationships. Made it easier. And you know, I have to give a whole lot of credit and mention sisa, like the fact that during log four J, like they had GitHub repositories, they were using Slack, they were using Twitter. So the government has really started pushing forward with a lot of the newer leadership that's in place to say, Hey, we're gonna use tools and technology that works to share and disseminate information as quickly as we can. Right? That's fantastic. That's helping everybody. >>We knew that every industry, no, nobody's spared of this. But did you notice in the last couple of years, any industries in particular that are more vulnerable? Like I think of healthcare with personal health information or financial services, any industries kind of jump out as being more susceptible than others? >>So I think those two are always gonna be at the forefront, right? Financial services and healthcare. But what's been really top of mind is critical infrastructure, just making sure right? That our water, our power, our fuel, so many other parts of right, the ecosystem that go into making sure that, you know, we're keeping, you know, houses heated during the winter, for example, that people have fresh water. Those are extremely critical. And so that is really a massive area of focus for the industry right now. >>Can I come back to public-private partnerships? My question is relates to regulations because the public policy tends to be behind tech, the technology industry as an understatement. So when you take something like GDPR is the obvious example, but there are many, many others, data sovereignty, you can't move the data. Are are, are, is there tension between your desire as our desire as an industry to share data and government's desire to keep data private and restrict that data sharing? How is that playing out? How do you resolve that? >>Well I think there have been great strides right in each of those areas. So in terms of regulation when it comes to breaches there, you know, has been a tendency in the past to do victim shaming, right? And for organizations to not want to come forward because they're concerned about the monetary funds, right? I think there's been tremendous acceleration. You're seeing that everywhere from the fbi, from cisa, to really working very closely with organizations to, to have a true impact. So one example would be a ransomware attack that occurred. This was for a client of ours within the United States and we had a very close relationship with the FBI at that local field office and made a phone call. This was 7:00 AM Eastern time. And this was an organization that had this breach gone public, would've made worldwide news. There would've been a very big impact because it would've taken a lot of their systems offline. >>Within the 30 minutes that local FBI office was on site said, we just saw this piece of malware last week, we have a decryptor for it from another organization who shared it with us. Here you go. And within 60 minutes, every system was back up and running. Our teams were able to respond and get that disseminated quickly. So efforts like that, I think the government has made a tremendous amount of headway into improving relationships. Is there always gonna be some tension between, you know, competing, you know, organizations? Sure. But I think that we're doing a whole lot to progress it, >>But governments will make exceptions in that case. Especially for something as critical as the example that you just gave and be able to, you know, do a reach around, if you will, on, on onerous regulations that, that ne aren't helpful in that situation, but certainly do a lot of good in terms of protecting privacy. >>Well, and I think there used to be exceptions made typically only for national security elements, right? And now you're seeing that expanding much more so, which I think is also positive. Right. >>Last question for you as we are wrapping up time here. What can organizations really do to stay ahead of the curve when it comes to, to threat actors? We've got internal external threats. What can they really do to just be ahead of that curve? Is that possible? >>Well, it is now, it's not an easy task so I'm not gonna, you know, trivialize it. But I think that one, having relationships with right organizations in advance always a good thing. That's a, everything from certainly a commercial relationships, but also your peers, right? There's all kinds of fantastic industry spec specific information sharing organizations. I think the biggest thing that impacts is having education across your executive team and testing regularly, right? Having a plan in place, testing it. And it's not just the security pieces of it, right? As security responders, we live these attacks every day, but it's making sure that your general counsel and your head of operations and your CEO knows what to do. Your board of directors, do they know what to do when they receive a phone call from Bloomberg, for example? Are they supposed supposed to answer? Do your employees know that those kind of communications in advance and training can be really critical and make or break a difference in an attack. >>That's a great point about the testing but also the communication that it really needs to be company wide. Everyone at every level needs to know how to react. Wendy, it's been so great having, >>Wait one last question. Sure. Do you have a favorite superhero growing up? >>Ooh, it's gotta be Wonder Woman. Yeah, >>Yeah, okay. Yeah, so cuz I'm always curious, there's not a lot of women in, in security in cyber. How'd you get into it? And many cyber pros like wanna save the world? >>Yeah, no, that's a great question. So I joined the Air Force, you know, I, I was a special agent doing computer crime investigations and that was a great job. And I learned about that from, we had an alumni day and all these alumni came in from the university and they were in flight suits and combat gear. And there was one woman who had long blonde flowing hair and a black suit and high heels and she was carrying a gun. What did she do? Because that's what I wanted do. >>Awesome. Love it. We >>Blonde >>Wonder Woman. >>Exactly. Wonder Woman. Wendy, it's been so great having you on the program. We, we will definitely be following unit 42 and all the great stuff that you guys are doing. Keep up the good >>Work. Thanks so much Lisa. Thank >>You. Day our pleasure. For our guest and Dave Valante, I'm Lisa Martin, live in Las Vegas at MGM Grand for Palo Alto Ignite, 22. You're watching the Cube, the leader in live enterprise and emerging tech coverage.

Published Date : Dec 14 2022

SUMMARY :

The Cube presents Ignite 22, brought to you by Palo Alto One of the things that they have is unit Have you had a, it's, have you had a little bit more of that this holiday season? A lot of smishing going on. Wendy Whitmore is here, the SVP One of the things that I saw that you said in your keynote this morning or I love that you already highlighted Smishing, And of course we only hear about the big ones. the data and then threaten to post it on these leak sites, you know, I mean, if you get compromised like that, you really So the, you know, infrastructure, the servers, the systems that they're using to conduct these attacks from immediately stand one up, say, you know, hey it's, it's like an Amazon, you know, if you've ever had to return a or not so difficult is it for you to identify? One of the interesting things that I think is occurring, and I highlighted this this morning, days as much, or you know, because those are expensive to build, And, and is that an example of living off the land or is that B BRC four sort of a homegrown for Red teamers that are, you know, legitimately doing good work, but not great So you guys are getting a very broad picture of today's threat landscape. at Palo Alto Networks in terms of resilience, a few things, you know, can increase the cost to go go elsewhere, right? And so what we've really been concerned with, with is, you know, And I think if there's any silver lining to an otherwise very awful situation, I was gonna ask you about this cause I think, you know, 10 or so years ago, there was a lot of talk about that, but the industry, And you know, I have to give a whole lot of credit and mention sisa, like the fact that during log four But did you notice in the last couple of years, making sure that, you know, we're keeping, you know, houses heated during the winter, is the obvious example, but there are many, many others, data sovereignty, you can't move the data. of regulation when it comes to breaches there, you know, has been a tendency in the past to Is there always gonna be some tension between, you know, competing, you know, Especially for something as critical as the example that you just And now you're seeing that expanding much more so, which I think is also positive. Last question for you as we are wrapping up time here. Well, it is now, it's not an easy task so I'm not gonna, you know, That's a great point about the testing but also the communication that it really needs to be company wide. Wait one last question. Yeah, How'd you get into it? So I joined the Air Force, you know, I, I was a special agent doing computer We Wendy, it's been so great having you on the program. For our guest and Dave Valante, I'm Lisa Martin, live in Las Vegas at MGM

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave ValantePERSON

0.99+

Lisa MartinPERSON

0.99+

WendyPERSON

0.99+

2014DATE

0.99+

FBIORGANIZATION

0.99+

LisaPERSON

0.99+

InterpolORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

DavePERSON

0.99+

Cyber Threat AllianceORGANIZATION

0.99+

BloombergORGANIZATION

0.99+

two daysQUANTITY

0.99+

Cyber Safety Review BoardORGANIZATION

0.99+

Wendi WhitmorePERSON

0.99+

Las VegasLOCATION

0.99+

last yearDATE

0.99+

Wendy WhitmorePERSON

0.99+

20 yearsQUANTITY

0.99+

AmazonORGANIZATION

0.99+

Palo Alto NetworksORGANIZATION

0.99+

last weekDATE

0.99+

United StatesLOCATION

0.99+

twoQUANTITY

0.99+

J C D CORGANIZATION

0.99+

Palo AltoORGANIZATION

0.99+

one womanQUANTITY

0.99+

CISAORGANIZATION

0.99+

todayDATE

0.99+

NetflixORGANIZATION

0.99+

first dayQUANTITY

0.99+

CrowdStrikeORGANIZATION

0.99+

Robert GatesPERSON

0.99+

a year agoDATE

0.99+

30 minutesQUANTITY

0.99+

XYZORGANIZATION

0.99+

VegasLOCATION

0.99+

zero daysQUANTITY

0.99+

over 200 organizationsQUANTITY

0.99+

Unit 42ORGANIZATION

0.99+

more than 35 organizationsQUANTITY

0.99+

ManiaORGANIZATION

0.99+

GitHubORGANIZATION

0.99+

IgniteORGANIZATION

0.98+

this yearDATE

0.98+

two weeks agoDATE

0.98+

oneQUANTITY

0.98+

MicrosoftORGANIZATION

0.98+

one exampleQUANTITY

0.98+

eachQUANTITY

0.98+

GDPRTITLE

0.98+

millionsQUANTITY

0.98+

zero dayQUANTITY

0.97+

2016DATE

0.97+

MGM GrandLOCATION

0.97+

OneQUANTITY

0.97+

UkraineLOCATION

0.96+

one last questionQUANTITY

0.96+

earlier this yearDATE

0.95+

60 minutesQUANTITY

0.95+

UkrainianOTHER

0.95+

unit 42OTHER

0.95+

one organizationQUANTITY

0.94+

fbiORGANIZATION

0.93+

IntelORGANIZATION

0.92+

RussiaORGANIZATION

0.92+

years agoDATE

0.92+

about 2,500 US dollarsQUANTITY

0.92+

once every 11 secondsQUANTITY

0.9+

10 or so years agoDATE

0.9+

this morningDATE

0.89+

Gunnar Hellekson, Red Hat & Adnan Ijaz, AWS | AWS re:Invent 2022


 

(bright music) >> Hello everyone. Welcome to theCUBE's coverage of AWS re:Invent 22. I'm John Furrier, host of theCUBE. Got some great coverage here talking about software supply chain and sustainability in the cloud. We've got a great conversation. Gunnar Hellekson, vice president and general manager at Red Hat Enterprise Linux and Business Unit of Red Hat. Thanks for coming on. And Adnan Ijaz, director of product management of commercial software services, AWS. Gentlemen, thanks for joining me today. >> It's a pleasure. (Adnan speaks indistinctly) >> You know, the hottest topic coming out of Cloud Native developer communities is slide chain software sustainability. This is a huge issue. As open source continues to power away and fund and grow this next generation modern development environment, you know, supply chain, you know, sustainability is a huge discussion because you got to check things out, what's in the code. Okay, open source is great, but now we got to commercialize it. This is the topic, Gunnar, let's get in with you. What are you seeing here and what's some of the things that you're seeing around the sustainability piece of it? Because, you know, containers, Kubernetes, we're seeing that that run time really dominate this new abstraction layer, cloud scale. What's your thoughts? >> Yeah, so I, it's interesting that the, you know, so Red Hat's been doing this for 20 years, right? Making open source safe to consume in the enterprise. And there was a time when in order to do that you needed to have a long term life cycle and you needed to be very good at remediating security vulnerabilities. And that was kind of, that was the bar that you had to climb over. Nowadays with the number of vulnerabilities coming through, what people are most worried about is, kind of, the providence of the software and making sure that it has been vetted and it's been safe, and that things that you get from your vendor should be more secure than things that you've just downloaded off of GitHub, for example. Right? And that's a place where Red Hat's very comfortable living, right? Because we've been doing it for 20 years. I think there's another aspect to this supply chain question as well, especially with the pandemic. You know, we've got these supply chains have been jammed up. The actual physical supply chains have been jammed up. And the two of these issues actually come together, right? Because as we go through the pandemic, we've got these digital transformation efforts, which are in large part, people creating software in order to manage better their physical supply chain problems. And so as part of that digital transformation, you have another supply chain problem, which is the software supply chain problem, right? And so these two things kind of merge on these as people are trying to improve the performance of transportation systems, logistics, et cetera. Ultimately, it all boils down to, both supply chain problems actually boil down to a software problem. It's very interesting. >> Well, that is interesting. I want to just follow up on that real quick if you don't mind. Because if you think about the convergence of the software and physical world, you know, that's, you know, IOT and also hybridcloud kind of plays into that at scale, this opens up more surface area for attacks, especially when you're under a lot of pressure. This is where, you know, you have a service area on the physical side and you have constraints there. And obviously the pandemic causes problems. But now you've got the software side. How are you guys handling that? Can you just share a little bit more of how you guys looking at that with Red Hat? What's the customer challenge? Obviously, you know, skills gaps is one, but, like, that's a convergence at the same time more security problems. >> Yeah, yeah, that's right. And certainly the volume of, if we just look at security vulnerabilities themselves, just the volume of security vulnerabilities has gone up considerably as more people begin using the software. And as the software becomes more important to, kind of, critical infrastructure. More eyeballs around it and so we're uncovering more problems, which is kind of, that's okay, that's how the world works. And so certainly the number of remediations required every year has gone up. But also the customer expectations, as I mentioned before, the customer expectations have changed, right? People want to be able to show to their auditors and to their regulators that no, in fact, I can show the providence of the software that I'm using. I didn't just download something random off the internet. I actually have like, you know, adults paying attention to how the software gets put together. And it's still, honestly, it's still very early days. I think as an industry, I think we're very good at managing, identifying remediating vulnerabilities in the aggregate. We're pretty good at that. I think things are less clear when we talk about, kind of, the management of that supply chain, proving the providence, and creating a resilient supply chain for software. We have lots of tools, but we don't really have lots of shared expectations. And so it's going to be interesting over the next few years, I think we're going to have more rules are going to come out. I see NIST has already published some of them. And as these new rules come out, the whole industry is going to have to kind of pull together and really rally around some of this shared understanding so we can all have shared expectations and we can all speak the same language when we're talking about this problem. >> That's awesome. Adnan, Amazon web service is obviously the largest cloud platform out there. You know, the pandemic, even post pandemic, some of these supply chain issues, whether it's physical or software, you're also an outlet for that. So if someone can't buy hardware or something physical, they can always get to the cloud. You guys have great network compute and whatnot and you got thousands of ISVs across the globe. How are you helping customers with this supply chain problem? Because whether it's, you know, I need to get in my networking gears and delay, I'm going to go to the cloud and get help there. Or whether it's knowing the workloads and what's going on inside them with respect to open source. 'Cause you've got open source, which is kind of an external forcing function. You've got AWS and you got, you know, physical compute stores, networking, et cetera. How are you guys helping customers with the supply chain challenge, which could be an opportunity? >> Yeah, thanks John. I think there are multiple layers to that. At the most basic level, we are helping customers by abstracting away all these data center constructs that they would have to worry about if they were running their own data centers. They would have to figure out how the networking gear, you talk about, you know, having the right compute, right physical hardware. So by moving to the cloud, at least they're delegating that problem to AWS and letting us manage and making sure that we have an instance available for them whenever they want it. And if they want to scale it, the capacity is there for them to use. Now then, so we kind of give them space to work on the second part of the problem, which is building their own supply chain solutions. And we work with all kinds of customers here at AWS from all different industry segments, automotive, retail, manufacturing. And you know, you see the complexity of the supply chain with all those moving pieces, like hundreds and thousands of moving pieces, it's very daunting. And then on the other hand, customers need more better services. So you need to move fast. So you need to build your agility in the supply chain itself. And that is where, you know, Red Hat and AWS come together. Where we can enable customers to build their supply chain solutions on platforms like Red Hat Enterprise Linux RHEL or Red Hat OpenShift on AWS, we call it ROSA. And the benefit there is that you can actually use the services that are relevant for the supply chain solutions like Amazon managed blockchain, you know, SageMaker. So you can actually build predictive analytics, you can improve forecasting, you can make sure that you have solutions that help you identify where you can cut costs. And so those are some of the ways we're helping customers, you know, figure out how they actually want to deal with the supply chain challenges that we're running into in today's world. >> Yeah, and you know, you mentioned sustainability outside of software sustainability, you know, as people move to the cloud, we've reported on SiliconANGLE here in theCUBE, that it's better to have the sustainability with the cloud because then the data centers aren't using all that energy too. So there's also all kinds of sustainability advantages. Gunnar, because this is kind of how your relationship with Amazon's expanded. You mentioned ROSA, which is Red Hat, you know, on OpenShift, on AWS. This is interesting because one of the biggest discussions is skills gap, but we were also talking about the fact that the humans are a huge part of the talent value. In other words, the humans still need to be involved. And having that relationship with managed services and Red Hat, this piece becomes one of those things that's not talked about much, which is the talent is increasing in value, the humans, and now you got managed services on the cloud. So we'll look at scale and human interaction. Can you share, you know, how you guys are working together on this piece? 'Cause this is interesting, 'cause this kind of brings up the relationship of that operator or developer. >> Yeah, yeah. So I think there's, so I think about this in a few dimensions. First is that it's difficult to find a customer who is not talking about automation at some level right now. And obviously you can automate the processes and the physical infrastructure that you already have, that's using tools like Ansible, right? But I think that combining it with the elasticity of a solution like AWS, so you combine the automation with kind of elastic and converting a lot of the capital expenses into operating expenses, that's a great way actually to save labor, right? So instead of like racking hard drives, you can have somebody do something a little more like, you know, more valuable work, right? And so, okay, but that gives you a platform. And then what do you do with that platform? You know, if you've got your systems automated and you've got this kind of elastic infrastructure underneath you, what you do on top of it is really interesting. So a great example of this is the collaboration that we had with running the RHEL workstation on AWS. So you might think, like, well why would anybody want to run a workstation on a cloud? That doesn't make a whole lot of sense. Unless you consider how complex it is to set up, if you have, the use case here is like industrial workstations, right? So it's animators, people doing computational fluid dynamics, things like this. So these are industries that are extremely data heavy. Workstations have very large hardware requirements, often with accelerated GPUs and things like this. That is an extremely expensive thing to install on-premise anywhere. And if the pandemic taught us anything, it's if you have a bunch of very expensive talent and they all have to work from home, it is very difficult to go provide them with, you know, several tens of thousands of dollars worth of workstation equipment. And so combine the RHEL workstation with the AWS infrastructure and now all that workstation computational infrastructure is available on demand and available right next to the considerable amount of data that they're analyzing or animating or working on. So it's a really interesting, it was actually, this is an idea that was actually born with the pandemic. >> Yeah. >> And it's kind of a combination of everything that we're talking about, right? It's the supply chain challenges of the customer, it's the lack of talent, making sure that people are being put to their best and highest use. And it's also having this kind of elastic, I think, OpEx heavy infrastructure as opposed to a CapEx heavy infrastructure. >> That's a great example. I think that illustrates to me what I love about cloud right now is that you can put stuff in the cloud and then flex what you need, when you need it, in the cloud rather than either ingress or egress of data. You just get more versatility around the workload needs, whether it's more compute or more storage or other high level services. This is kind of where this next gen cloud is going. This is where customers want to go once their workloads are up and running. How do you simplify all this and how do you guys look at this from a joint customer perspective? Because that example I think will be something that all companies will be working on, which is put it in the cloud and flex to whatever the workload needs and put it closer to the compute. I want to put it there. If I want to leverage more storage and networking, well, I'll do that too. It's not one thing, it's got to flex around. How are you guys simplifying this? >> Yeah, I think, so, I'll give my point of view and then I'm very curious to hear what Adnan has to say about it. But I think about it in a few dimensions, right? So there is a technically, like, any solution that Adnan's team and my team want to put together needs to be kind of technically coherent, right? Things need to work well together. But that's not even most of the job. Most of the job is actually ensuring an operational consistency and operational simplicity, so that everything is, the day-to-day operations of these things kind of work well together. And then also, all the way to things like support and even acquisition, right? Making sure that all the contracts work together, right? It's a really... So when Adnan and I think about places of working together, it's very rare that we're just looking at a technical collaboration. It's actually a holistic collaboration across support, acquisition, as well as all the engineering that we have to do. >> Adnan, your view on how you're simplifying it with Red Hat for your joint customers making collaborations? >> Yeah, Gunnar covered it well. I think the benefit here is that Red Hat has been the leading Linux distribution provider. So they have a lot of experience. AWS has been the leading cloud provider. So we have both our own points of view, our own learning from our respective set of customers. So the way we try to simplify and bring these things together is working closely. In fact, I sometimes joke internally that if you see Gunnar and my team talking to each other on a call, you cannot really tell who belongs to which team. Because we're always figuring out, okay, how do we simplify discount experience? How do we simplify programs? How do we simplify go to market? How do we simplify the product pieces? So it's really bringing our learning and share our perspective to the table and then really figure out how do we actually help customers make progress. ROSA that we talked about is a great example of that, you know, together we figured out, hey, there is a need for customers to have this capability in AWS and we went out and built it. So those are just some of the examples in how both teams are working together to simplify the experience, make it complete, make it more coherent. >> Great, that's awesome. Next question is really around how you help organizations with the sustainability piece, how to support them simplifying it. But first, before we get into that, what is the core problem around this sustainability discussion we're talking about here, supply chain sustainability, what is the core challenge? Can you both share your thoughts on what that problem is and what the solution looks like and then we can get into advice? >> Yeah. Well from my point of view, it's, I think, you know, one of the lessons of the last three years is every organization is kind of taking a careful look at how resilient it is, or I should say, every organization learned exactly how resilient it was, right? And that comes from both the physical challenges and the logistics challenges that everyone had, the talent challenges you mentioned earlier. And of course the software challenges, you know, as everyone kind of embarks on this digital transformation journey that we've all been talking about. And I think, so I really frame it as resilience, right? And resilience at bottom is really about ensuring that you have options and that you have choices. The more choices you have, the more options you have, the more resilient you and your organization is going to be. And so I know that's how I approach the market. I'm pretty sure that's how Adnan is approaching the market, is ensuring that we are providing as many options as possible to customers so that they can assemble the right pieces to create a solution that works for their particular set of challenges or their unique set of challenges and unique context. Adnan, does that sound about right to you? >> Yeah, I think you covered it well. I can speak to another aspect of sustainability, which is becoming increasingly top of mind for our customers. Like, how do they build products and services and solutions and whether it's supply chain or anything else which is sustainable, which is for the long term good of the planet. And I think that is where we have also been very intentional and focused in how we design our data center, how we actually build our cooling system so that those are energy efficient. You know, we are on track to power all our operations with renewable energy by 2025, which is five years ahead of our initial commitment. And perhaps the most obvious example of all of this is our work with ARM processors, Graviton3, where, you know, we are building our own chip to make sure that we are designing energy efficiency into the process. And you know, the ARM Graviton3 processor chips, they are about 60% more energy efficient compared to some of the CD6 comparable. So all those things that also we are working on in making sure that whatever our customers build on our platform is long term sustainable. So that's another dimension of how we are working that into our platform. >> That's awesome. This is a great conversation. You know, the supply chain is on both sides, physical and software. You're starting to see them come together in great conversations. And certainly moving workloads to the cloud and running them more efficiently will help on the sustainability side, in my opinion. Of course, you guys talked about that and we've covered it. But now you start getting into how to refactor, and this is a big conversation we've been having lately is as you not just lift and shift, but replatform it and refactor, customers are seeing great advantages on this. So I have to ask you guys, how are you helping customers and organizations support sustainability and simplify the complex environment that has a lot of potential integrations? Obviously API's help of course, but that's the kind of baseline. What's the advice that you give customers? 'Cause you know, it can look complex and it becomes complex, but there's an answer here. What's your thoughts? >> Yeah, I think, so whenever I get questions like this from customers, the first thing I guide them to is, we talked earlier about this notion of consistency and how important that is. One way to solve the problem is to create an entirely new operational model, an entirely new acquisition model, and an entirely new stack of technologies in order to be more sustainable. That is probably not in the cards for most folks. What they want to do is have their existing estate and they're trying to introduce sustainability into the work that they are already doing. They don't need to build another silo in order to create sustainability, right? And so there has to be some common threads, there has to be some common platforms across the existing estate and your more sustainable estate, right? And so things like Red Hat Enterprise Linux, which can provide this kind of common, not just a technical substrate, but a common operational substrate on which you can build these solutions. If you have a common platform on which you are building solutions, whether it's RHEL or whether it's OpenShift or any of our other platforms, that creates options for you underneath. So that in some cases maybe you need to run things on-premises, some things you need to run in the cloud, but you don't have to profoundly change how you work when you're moving from one place to another. >> Adnan, what's your thoughts on the simplification? >> Yeah, I mean, when you talk about replatforming and refactoring, it is a daunting undertaking, you know, especially in today's fast paced world. But the good news is you don't have to do it by yourself. Customers don't have to do it on their own. You know, together AWS and Red Hat, we have our rich partner ecosystem, you know, AWS has over 100,000 partners that can help you take that journey, the transformation journey. And within AWS and working with our partners like Red Hat, we make sure that we have- In my mind, there are really three big pillars that you have to have to make sure that customers can successfully re-platform, refactor their applications to the modern cloud architecture. You need to have the rich set of services and tools that meet their different scenarios, different use cases. Because no one size fits all. You have to have the right programs because sometimes customers need those incentives, they need those, you know, that help in the first step. And last but not least, they need training. So all of that, we try to cover that as we work with our customers, work with our partners. And that is where, you know, together we try to help customers take that step, which is a challenging step to take. >> Yeah, you know, it's great to talk to you guys, both leaders in your field. Obviously Red Hats, I remember the days back when I was provisioning and loading OSs on hardware with CDs, if you remember those days, Gunnar. But now with the high level services, if you look at this year's reinvent, and this is kind of my final question for the segment is, that we'll get your reaction to, last year we talked about higher level service. I sat down with Adam Saleski, we talked about that. If you look at what's happened this year, you're starting to see people talk about their environment as their cloud. So Amazon has the gift of the CapEx, all that investment and people can operate on top of it. They're calling that environment their cloud. Okay? For the first time we're seeing this new dynamic where it's like they have a cloud, but Amazon's the CapEx, they're operating. So, you're starting to see the operational visibility, Gunnar, around how to operate this environment. And it's not hybrid, this, that, it's just, it's cloud. This is kind of an inflection point. Do you guys agree with that or have a reaction to that statement? Because I think this is, kind of, the next gen supercloud-like capability. We're going, we're building the cloud. It's now an environment. It's not talking about private cloud, this cloud, it's all cloud. What's your reaction? >> Yeah, I think, well, I think it's very natural. I mean, we use words like hybridcloud, multicloud, I guess supercloud is what the kids are saying now, right? It's all describing the same phenomena, right? Which is being able to take advantage of lots of different infrastructure options, but still having something that creates some commonality among them so that you can manage them effectively, right? So that you can have, kind of, uniform compliance across your estate. So that you can have, kind of, you can make the best use of your talent across the estate. I mean this is, it's a very natural thing. >> John: They're calling it cloud, the estate is the cloud. >> Yeah. So yeah, so fine, if it means that we no longer have to argue about what's multicloud and what's hybridcloud, I think that's great. Let's just call it cloud. >> Adnan, what's your reaction, 'cause this is kind of the next gen benefits of higher level services combined with amazing, you know, compute and resource at the infrastructure level. What's your view on that? >> Yeah, I think the construct of a unified environment makes sense for customers who have all these use cases which require, like for instance, if you are doing some edge computing and you're running WS outpost or you know, wavelength and these things. So, and it is fair for customer to think that, hey, this is one environment, same set of tooling that they want to build that works across all their different environments. That is why we work with partners like Red Hat so that customers who are running Red Hat Enterprise Linux on-premises and who are running in AWS get the same level of support, get the same level of security features, all of that. So from that sense, it actually makes sense for us to build these capabilities in a way that customers don't have to worry about, okay, now I'm actually in the AWS data center versus I'm running outpost on-premises. It is all one. They just use the same set of CLI, command line APIs and all of that. So in that sense it actually helps customers have that unification so that consistency of experience helps their workforce and be more productive versus figuring out, okay, what do I do, which tool I use where? >> Adnan, you just nailed it. This is about supply chain sustainability, moving the workloads into a cloud environment. You mentioned wavelength, this conversation's going to continue. We haven't even talked about the edge yet. This is something that's going to be all about operating these workloads at scale and all with the cloud services. So thanks for sharing that and we'll pick up that edge piece later. But for re:Invent right now, this is really the key conversation. How to make the sustained supply chain work in a complex environment, making it simpler. And so thanks you for sharing your insights here on theCUBE. >> Thanks, thanks for having us. >> Okay, this is theCUBE's coverage of AWS re:Invent 22. I'm John Furrier, your host. Thanks for watching. (bright music)

Published Date : Dec 7 2022

SUMMARY :

sustainability in the cloud. It's a pleasure. you know, supply chain, you know, interesting that the, you know, This is where, you know, And so certainly the and you got thousands of And that is where, you know, Yeah, and you know, you that you already have, challenges of the customer, is that you can put stuff in the cloud Making sure that all the that if you see Gunnar and my team Can you both share your thoughts on and that you have choices. And you know, the ARM So I have to ask you guys, that creates options for you underneath. And that is where, you know, great to talk to you guys, So that you can have, kind of, cloud, the estate is the cloud. if it means that we no combined with amazing, you know, that customers don't have to worry about, And so thanks you for sharing coverage of AWS re:Invent 22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

AdnanPERSON

0.99+

Gunnar HelleksonPERSON

0.99+

John FurrierPERSON

0.99+

Adnan IjazPERSON

0.99+

Adam SaleskiPERSON

0.99+

GunnarPERSON

0.99+

20 yearsQUANTITY

0.99+

2025DATE

0.99+

CapExORGANIZATION

0.99+

twoQUANTITY

0.99+

Red HatORGANIZATION

0.99+

last yearDATE

0.99+

firstQUANTITY

0.99+

FirstQUANTITY

0.99+

NISTORGANIZATION

0.99+

RHELTITLE

0.99+

bothQUANTITY

0.99+

first stepQUANTITY

0.99+

second partQUANTITY

0.99+

over 100,000 partnersQUANTITY

0.99+

ARMORGANIZATION

0.99+

thousandsQUANTITY

0.99+

OpenShiftTITLE

0.99+

both teamsQUANTITY

0.99+

oneQUANTITY

0.99+

pandemicEVENT

0.98+

two thingsQUANTITY

0.98+

this yearDATE

0.97+

five yearsQUANTITY

0.97+

todayDATE

0.97+

Red Hat Enterprise LinuxTITLE

0.97+

Red Hat OpenShiftTITLE

0.97+

about 60%QUANTITY

0.97+

both sidesQUANTITY

0.97+

Red HatTITLE

0.96+

Red Hat Enterprise LinuxTITLE

0.96+

GitHubORGANIZATION

0.96+

first timeQUANTITY

0.96+

Red Hat Enterprise LinuxORGANIZATION

0.94+

theCUBEORGANIZATION

0.94+

LinuxTITLE

0.93+

Tomer Shiran, Dremio | AWS re:Invent 2022


 

>>Hey everyone. Welcome back to Las Vegas. It's the Cube live at AWS Reinvent 2022. This is our fourth day of coverage. Lisa Martin here with Paul Gillen. Paul, we started Monday night, we filmed and streamed for about three hours. We have had shammed pack days, Tuesday, Wednesday, Thursday. What's your takeaway? >>We're routed final turn as we, as we head into the home stretch. Yeah. This is as it has been since the beginning, this show with a lot of energy. I'm amazed for the fourth day of a conference, how many people are still here I am too. And how, and how active they are and how full the sessions are. Huge. Proud for the keynote this morning. You don't see that at most of the day four conferences. Everyone's on their way home. So, so people come here to learn and they're, and they're still >>Learning. They are still learning. And we're gonna help continue that learning path. We have an alumni back with us, Toron joins us, the CPO and co-founder of Dremeo. Tomer, it's great to have you back on the program. >>Yeah, thanks for, for having me here. And thanks for keeping the, the best session for the fourth day. >>Yeah, you're right. I like that. That's a good mojo to come into this interview with Tomer. So last year, last time I saw you was a year ago here in Vegas at Reinvent 21. We talked about the growth of data lakes and the data lake houses. We talked about the need for open data architectures as opposed to data warehouses. And the headline of the Silicon Angle's article on the interview we did with you was, Dremio Predicts 2022 will be the year open data architectures replace the data warehouse. We're almost done with 2022. Has that prediction come true? >>Yeah, I think, I think we're seeing almost every company out there, certainly in the enterprise, adopting data lake, data lakehouse technology, embracing open source kind of file and table formats. And, and so I think that's definitely happening. Of course, nothing goes away. So, you know, data warehouses don't go away in, in a year and actually don't go away ever. We still have mainframes around, but certainly the trends are, are all pointing in that direction. >>Describe the data lakehouse for anybody who may not be really familiar with that and, and what it's, what it really means for organizations. >>Yeah. I think you could think of the data lakehouse as the evolution of the data lake, right? And so, you know, for, for, you know, the last decade we've had kind of these two options, data lakes and data warehouses and, you know, warehouses, you know, having good SQL support, but, and good performance. But you had to spend a lot of time and effort getting data into the warehouse. You got locked into them, very, very expensive. That's a big problem now. And data lakes, you know, more open, more scalable, but had all sorts of kind of limitations. And what we've done now as an industry with the Lake House, and especially with, you know, technologies like Apache Iceberg, is we've unlocked all the capabilities of the warehouse directly on object storage like s3. So you can insert and update and delete individual records. You can do transactions, you can do all the things you could do with a, a database directly in kind of open formats without getting locked in at a much lower cost. >>But you're still dealing with semi-structured data as opposed to structured data. And there's, there's work that has to be done to get that into a usable form. That's where Drio excels. What, what has been happening in that area to, to make, I mean, is it formats like j s o that are, are enabling this to happen? How, how we advancing the cause of making semi-structured data usable? Yeah, >>Well, I think first of all, you know, I think that's all changed. I think that was maybe true for the original data lakes, but now with the Lake house, you know, our bread and butter is actually structured data. It's all, it's all tables with the schema. And, you know, you can, you know, create table insert records. You know, it's, it's, it's really everything you can do with a data warehouse you can now do in the lakehouse. Now, that's not to say that there aren't like very advanced capabilities when it comes to, you know, j s O and nested data and kind of sparse data. You know, we excel in that as well. But we're really seeing kind of the lakehouse take over the, the bread and butter data warehouse use cases. >>You mentioned open a minute ago. Talk about why it's, why open is important and the value that it can deliver for customers. >>Yeah, well, I think if you look back in time and you see all the challenges that companies have had with kind of traditional data architectures, right? The, the, the, a lot of that comes from the, the, the problems with data warehouses. The fact that they are, you know, they're very expensive. The data is, you have to ingest it into the data warehouse in order to query it. And then it's almost impossible to get off of these systems, right? It takes an enormous effort, tremendous cost to get off of them. And so you're kinda locked in and that's a big problem, right? You also, you're dependent on that one data warehouse vendor, right? You can only do things with that data that the warehouse vendor supports. And if you contrast that to data lakehouse and open architectures where the data is stored in entirely open formats. >>So things like par files and Apache iceberg tables, that means you can use any engine on that data. You can use s SQL Query Engine, you can use Spark, you can use flin. You know, there's a dozen different engines that you can use on that, both at the same time. But also in the future, if you ever wanted to try something new that comes out, some new open source innovation, some new startup, you just take it and point out the same data. So that data's now at the core, at the center of the architecture as opposed to some, you know, vendors logo. Yeah. >>Amazon seems to be bought into the Lakehouse concept. It has big announcements on day two about eliminating the ETL stage between RDS and Redshift. Do you see the cloud vendors as pushing this concept forward? >>Yeah, a hundred percent. I mean, I'm, I'm Amazon's a great, great partner of ours. We work with, you know, probably 10 different teams there. Everything from, you know, the S3 team, the, the glue team, the click site team, you know, everything in between. And, you know, their embracement of the, the, the lake house architecture, the fact that they adopted Iceberg as their primary table format. I think that's exciting as an industry. We're all coming together around standard, standard ways to represent data so that at the end of the day, companies have this benefit of being able to, you know, have their own data in their own S3 account in open formats and be able to use all these different engines without losing any of the functionality that they need, right? The ability to do all these interactions with data that maybe in the past you would have to move the data into a database or, or warehouse in order to do, you just don't have to do that anymore. Speaking >>Of functionality, talk about what's new this year with drio since we've seen you last. >>Yeah, there's a lot of, a lot of new things with, with Drio. So yeah, we now have full Apache iceberg support, you know, with DML commands, you can do inserts, updates, deletes, you know, copy into all, all that kind of stuff is now, you know, fully supported native part of the platform. We, we now offer kind of two flavors of dr. We have, you know, Dr. Cloud, which is our SaaS version fully hosted. You sign up with your Google or, you know, Azure account and, and, and you're up in, you're up and running in, in, in a minute. And then dral software, which you can self host usually in the cloud, but even, even even outside of the cloud. And then we're also very excited about this new idea of data as code. And so we've introduced a new product that's now in preview called Dr. >>Arctic. And the idea there is to bring the concepts of GI or GitHub to the world of data. So things like being able to create a branch and work in isolation. If you're a data scientist, you wanna experiment on your own without impacting other people, or you're a data engineer and you're ingesting data, you want to transform it and test it before you expose it to others. You can do that in a branch. So all these ideas that, you know, we take for granted now in the world of source code and software development, we're bringing to the world of data with Jamar. And when you think about data mesh, a lot of people talking about data mesh now and wanting to kind of take advantage of, of those concepts and ideas, you know, thinking of data as a product. Well, when you think about data as a product, we think you have to manage it like code, right? You have to, and that's why we call it data as code, right? The, all those reasons that we use things like GI have to build products, you know, if we wanna think of data as a product, we need all those capabilities also with data. You know, also the ability to go back in time. The ability to undo mistakes, to see who changed my data and when did they change that table. All of those are, are part of this, this new catalog that we've created. >>Are you talk about data as a product that's sort of intrinsic to the data mesh concept. Are you, what's your opinion of data mesh? Is the, is the world ready for that radically different approach to data ownership? >>You know, we are now in dozens of, dozens of our customers that are using drio for to implement enterprise-wide kind of data mesh solutions. And at the end of the day, I think it's just, you know, what most people would consider common sense, right? In a large organization, it is very hard for a centralized single team to understand every piece of data, to manage all the data themselves, to, you know, make sure the quality is correct to make it accessible. And so what data mesh is first and foremost about is being able to kind of federate the, or distribute the, the ownership of data, the governance of the data still has to happen, right? And so that is, I think at the heart of the data mesh, but thinking of data as kind of allowing different teams, different domains to own their own data to really manage it like a product with all the best practices that that we have with that super important. >>So we we're doing a lot with data mesh, you know, the way that cloud has multiple projects and the way that Jamar allows you to have multiple catalogs and different groups can kind of interact and share data among each other. You know, the fact that we can connect to all these different data sources, even outside your data lake, you know, with Redshift, Oracle SQL Server, you know, all the different databases that are out there and join across different databases in addition to your data lake, that that's all stuff that companies want with their data mesh. >>What are some of your favorite customer stories that where you've really helped them accelerate that data mesh and drive business value from it so that more people in the organization kind of access to data so they can really make those data driven decisions that everybody wants to make? >>I mean, there's, there's so many of them, but, you know, one of the largest tech companies in the world creating a, a data mesh where you have all the different departments in the company that, you know, they, they, they were a big data warehouse user and it kinda hit the wall, right? The costs were so high and the ability for people to kind of use it for just experimentation, to try new things out to collaborate, they couldn't do it because it was so prohibitively expensive and difficult to use. And so what they said, well, we need a platform that different people can, they can collaborate, they can ex, they can experiment with the data, they can share data with others. And so at a big organization like that, the, their ability to kind of have a centralized platform but allow different groups to manage their own data, you know, several of the largest banks in the world are, are also doing data meshes with Dr you know, one of them has over over a dozen different business units that are using, using Dremio and that ability to have thousands of people on a platform and to be able to collaborate and share among each other that, that's super important to these >>Guys. Can you contrast your approach to the market, the snowflakes? Cause they have some of those same concepts. >>Snowflake's >>A very closed system at the end of the day, right? Closed and very expensive. Right? I think they, if I remember seeing, you know, a quarter ago in, in, in one of their earnings reports that the average customer spends 70% more every year, right? Well that's not sustainable. If you think about that in a decade, that's your cost is gonna increase 200 x, most companies not gonna be able to swallow that, right? So companies need, first of all, they need more cost efficient solutions that are, you know, just more approachable, right? And the second thing is, you know, you know, we talked about the open data architecture. I think most companies now realize that the, if you want to build a platform for the future, you need to have the data and open formats and not be locked into one vendor, right? And so that's kind of another important aspect beyond that's ability to connect to all your data, even outside the lake to your different databases, no sequel databases, relational databases, and drs semantic layer where we can accelerate queries. And so typically what you have, what happens with data warehouses and other data lake query engines is that because you can't get the performance that you want, you end up creating lots and lots of copies of data. You, for every use case, you're creating a, you know, a pre-joy copy of that data, a pre aggregated version of that data. And you know, then you have to redirect all your data. >>You've got a >>Governance problem, individual things. It's expensive. It's expensive, it's hard to secure that cuz permissions don't travel with the data. So you have all sorts of problems with that, right? And so what we've done because of our semantic layer that makes it easy to kind of expose data in a logical way. And then our query acceleration technology, which we call reflections, which transparently accelerates queries and gives you subsecond response times without data copies and also without extracts into the BI tools. Cause if you start doing bi extracts or imports, again, you have lots of copies of data in the organization, all sorts of refresh problems, security problems, it's, it's a nightmare, right? And that just collapsing all those copies and having a, a simple solution where data's stored in open formats and we can give you fast access to any of that data that's very different from what you get with like a snowflake or, or any of these other >>Companies. Right. That, that's a great explanation. I wanna ask you, early this year you announced that your Dr. Cloud service would be a free forever, the basic DR. Cloud service. How has that offer gone over? What's been the uptake on that offer? >>Yeah, it, I mean it is, and thousands of people have signed up and, and it's, I think it's a great service. It's, you know, it's very, very simple. People can go on the website, try it out. We now have a test drive as well. If, if you want to get started with just some sample public sample data sets and like a tutorial, we've made that increasingly easy as well. But yeah, we continue to, you know, take that approach of, you know, making it, you know, making it easy, democratizing these kind of cloud data platforms and, and kinda lowering the barriers to >>Adoption. How, how effective has it been in driving sales of the enterprise version? >>Yeah, a lot of, a lot of, a lot of business with, you know, that, that we do like when it comes to, to selling is, you know, folks that, you know, have educated themselves, right? They've started off, they've followed some tutorials. I think generally developers, they prefer the first interaction to be with a product, not with a salesperson. And so that's, that's basically the reason we did that. >>Before we ask you the last question, I wanna just, can you give us a speak peek into the product roadmap as we enter 2023? What can you share with us that we should be paying attention to where Drum is concerned? >>Yeah. You know, actually a couple, couple days ago here at the conference, we, we had a press release with all sorts of new capabilities that we, we we just released. And there's a lot more for, for the coming year. You know, we will shortly be releasing a variety of different performance enhancements. So we'll be in the next quarter or two. We'll be, you know, probably twice as fast just in terms of rock qu speed, you know, that's in addition to our reflections and our career acceleration, you know, support for all the major clouds is coming. You know, just a lot of capabilities in Inre that make it easier and easier to use the platform. >>Awesome. Tomer, thank you so much for joining us. My last question to you is, if you had a billboard in your desired location and it was going to really just be like a mic drop about why customers should be looking at Drio, what would that billboard say? >>Well, DRIO is the easy and open data lake house and, you know, open architectures. It's just a lot, a lot better, a lot more f a lot more future proof, a lot easier and a lot just a much safer choice for the future for, for companies. And so hard to argue with those people to take a look. Exactly. That wasn't the best. That wasn't the best, you know, billboards. >>Okay. I think it's a great billboard. Awesome. And thank you so much for joining Poly Me on the program, sharing with us what's new, what some of the exciting things are that are coming down the pipe. Quite soon we're gonna be keeping our eye Ono. >>Awesome. Always happy to be here. >>Thank you. Right. For our guest and for Paul Gillin, I'm Lisa Martin. You're watching The Cube, the leader in live and emerging tech coverage.

Published Date : Dec 1 2022

SUMMARY :

It's the Cube live at AWS Reinvent This is as it has been since the beginning, this show with a lot of energy. it's great to have you back on the program. And thanks for keeping the, the best session for the fourth day. And the headline of the Silicon Angle's article on the interview we did with you was, So, you know, data warehouses don't go away in, in a year and actually don't go away ever. Describe the data lakehouse for anybody who may not be really familiar with that and, and what it's, And what we've done now as an industry with the Lake House, and especially with, you know, technologies like Apache are enabling this to happen? original data lakes, but now with the Lake house, you know, our bread and butter is actually structured data. You mentioned open a minute ago. The fact that they are, you know, they're very expensive. at the center of the architecture as opposed to some, you know, vendors logo. Do you see the at the end of the day, companies have this benefit of being able to, you know, have their own data in their own S3 account Apache iceberg support, you know, with DML commands, you can do inserts, updates, So all these ideas that, you know, we take for granted now in the world of Are you talk about data as a product that's sort of intrinsic to the data mesh concept. And at the end of the day, I think it's just, you know, what most people would consider common sense, So we we're doing a lot with data mesh, you know, the way that cloud has multiple several of the largest banks in the world are, are also doing data meshes with Dr you know, Cause they have some of those same concepts. And the second thing is, you know, you know, stored in open formats and we can give you fast access to any of that data that's very different from what you get What's been the uptake on that offer? But yeah, we continue to, you know, take that approach of, you know, How, how effective has it been in driving sales of the enterprise version? to selling is, you know, folks that, you know, have educated themselves, right? you know, probably twice as fast just in terms of rock qu speed, you know, that's in addition to our reflections My last question to you is, if you had a Well, DRIO is the easy and open data lake house and, you And thank you so much for joining Poly Me on the program, sharing with us what's new, Always happy to be here. the leader in live and emerging tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

Paul GillenPERSON

0.99+

Paul GillinPERSON

0.99+

AmazonORGANIZATION

0.99+

TomerPERSON

0.99+

Tomer ShiranPERSON

0.99+

ToronPERSON

0.99+

Las VegasLOCATION

0.99+

70%QUANTITY

0.99+

Monday nightDATE

0.99+

VegasLOCATION

0.99+

fourth dayQUANTITY

0.99+

PaulPERSON

0.99+

last yearDATE

0.99+

AWSORGANIZATION

0.99+

dozensQUANTITY

0.99+

GoogleORGANIZATION

0.99+

10 different teamsQUANTITY

0.99+

DremioPERSON

0.99+

early this yearDATE

0.99+

SQL Query EngineTITLE

0.99+

The CubeTITLE

0.99+

TuesdayDATE

0.99+

2023DATE

0.99+

oneQUANTITY

0.98+

a year agoDATE

0.98+

next quarterDATE

0.98+

S3TITLE

0.98+

a quarter agoDATE

0.98+

twiceQUANTITY

0.98+

OracleORGANIZATION

0.98+

second thingQUANTITY

0.98+

DrioORGANIZATION

0.98+

couple days agoDATE

0.98+

bothQUANTITY

0.97+

DRIOORGANIZATION

0.97+

2022DATE

0.97+

Lake HouseORGANIZATION

0.96+

thousands of peopleQUANTITY

0.96+

WednesdayDATE

0.96+

SparkTITLE

0.96+

200 xQUANTITY

0.96+

firstQUANTITY

0.96+

DrioTITLE

0.95+

DremeoORGANIZATION

0.95+

two optionsQUANTITY

0.94+

about three hoursQUANTITY

0.94+

day twoQUANTITY

0.94+

s3TITLE

0.94+

Apache IcebergORGANIZATION

0.94+

a minute agoDATE

0.94+

Silicon AngleORGANIZATION

0.94+

hundred percentQUANTITY

0.93+

ApacheORGANIZATION

0.93+

single teamQUANTITY

0.93+

GitHubORGANIZATION

0.91+

this morningDATE

0.9+

a dozen different enginesQUANTITY

0.89+

IcebergTITLE

0.87+

RedshiftTITLE

0.87+

lastDATE

0.87+

this yearDATE

0.86+

first interactionQUANTITY

0.85+

two flavorsQUANTITY

0.84+

ThursdayDATE

0.84+

AzureORGANIZATION

0.84+

DR. CloudORGANIZATION

0.84+

SQL ServerTITLE

0.83+

four conferencesQUANTITY

0.82+

coming yearDATE

0.82+

over over a dozen different businessQUANTITY

0.81+

one vendorQUANTITY

0.8+

PolyORGANIZATION

0.79+

JamarPERSON

0.77+

GIORGANIZATION

0.77+

InreORGANIZATION

0.76+

Dr.ORGANIZATION

0.73+

Lake houseORGANIZATION

0.71+

ArcticORGANIZATION

0.71+

a yearQUANTITY

0.7+

a minuteQUANTITY

0.7+

SQLTITLE

0.69+

AWS Reinvent 2022EVENT

0.69+

subsecondQUANTITY

0.68+

DMLTITLE

0.68+

Austin Parker, Lightstep | AWS re:Invent 2022


 

(lively music) >> Good afternoon cloud community and welcome back to beautiful Las Vegas, Nevada. We are here at AWS re:Invent, day four of our wall to wall coverage. It is day four in the afternoon and we are holding strong. I'm Savannah Peterson, joined by my fabulous co-host Paul Gillen. Paul, how you doing? >> I'm doing well, fine Savannah. You? >> You look great. >> We're in the home stretch here. >> Yeah, (laughs) we are. >> You still look fresh as a daisy. I don't know how you do it. >> (laughs) You're too kind. You're too kind, but I'm vain enough to take that compliment. I'm very excited about the conversation that we're going to have up next. We get to get a little DevRel and we got a little swagger on the stage. Welcome, Austin. How you doing? >> Hey, great to be here. Thanks for having me. >> Savannah: Yeah, it's our pleasure. How's the show been for you so far? >> Busy, exciting. Feels a lot like, you know it used to be right? >> Yeah, I know. A little reminiscent of the before times. >> Well, before times. >> Before we dig into the technical stuff, you're the most intriguingly dressed person we've had on the show this week. >> Austin: I feel extremely underdressed. >> Well, and we were talking about developer fancy. Talk to me a little bit about your approach to fashion. Wasn't expecting to lead with this, but I like this but I like this actually. >> No, it's actually good with my PR. You're going to love it. My approach, here's the thing, I give free advice all the time about developer relations, about things that work, have worked, and don't work in community and all that stuff. I love talking about that. Someone came up to me and said, "Where do you get your fashion tips from? What's the secret Discord server that I need to go on?" I'm like, "I will never tell." >> Oh, okay. >> This is an actual trait secret. >> Top secret. Wow! Talk about. >> If someone else starts wearing the hat, then everyone's going to be like, "There's so many white guys." Look, I'm a white guy with a beard that works in technology. >> Savannah: I've never met one of those. >> Exactly, there's none of them at all. So, you have to do something to kind stand out from the crowd a little bit. >> I love it, and it's a talk trigger. We're talking about it now. Production team loved it. It's fantastic. >> It's great. >> So your DevRel for Lightstep, in case the audience isn't familiar tell us about Lightstep. >> So Lightstep is a cloud native observability platform built at planet scale, and it powers observability at some places you've heard of like Spotify, GitHub, right? We're designed to really help developers that are working in the cloud with Kubernetes, with these huge distributed systems, understand application performance and being able to find problems, fix problems. We're also part of the ServiceNow family and as we all know ServiceNow is on a mission to help the world of work work better by powering digital transformation around IT and customer experiences for their many, many, many global 2000 customers. We love them very much. >> You know, it's a big love fest here. A lot of people have talked about the collaboration, so many companies working together. You mentioned unified observability. What is unified observability? >> So if you think about a tradition, or if you've heard about this traditional idea of observability where you have three pillars, right? You have metrics, and you have logs, and you have traces. All those three things are different data sources. They're picked up by different tools. They're analyzed by different people for different purposes. What we believe and what we're working to accomplish right now is to take all that and if you think those pillars, flip 'em on their side and think of them as streams of data. If we can take those streams and integrate them together and let you treat traces and metrics and logs not as these kind of inviolate experiences where you're kind of paging between things and going between tab A to tab B to tab C, and give you a standard way to query this, a standard way to display this, and letting you kind of find the most relevant data, then it really unlocks a lot of power for like developers and SREs to spend less time like managing tools. You know, figuring out where to build their query or what dashboard to check, more just being able to like kind of ask a question, get an answer. When you have an incident or an outage that's the most important thing, right? How quickly can you get those answers that you need so that you can restore system health? >> You don't want to be looking in multiple spots to figure out what's going on. >> Absolutely. I mean, some people hear unified observability and they go to like tool consolidation, right? That's something I hear from a lot of our users and a lot of people in re:Invent. I'll talk to SREs, they're like, "Yeah, we've got like six or seven different metrics products alone, just on services that they cover." It is important to kind of consolidate that but we're really taking it a step lower. We're looking at the data layer and trying to say, "Okay, if the data is all consistent and vendor neutral then that gives you flexibility not only from a tool consolidation perspective but also you know, a consistency, reliability. You could have a single way to deploy your observability out regardless of what cloud you're on, regardless if you're using Kubernetes or Fargate or whatever else. or even just Bare Metal or EC2 Bare Metal, right? There's been so much historically in this space. There's been a lot of silos and we think that unify diversability means that we kind of break down those silos, right? The way that we're doing it primarily is through a project called OpenTelemetry which you might have heard of. You want to talk about that in a minute? . >> Savannah: Yeah, let's talk about it right now. Why don't you tell us about it? Keep going, you're great. You're on a roll. >> I am. >> Savannah: We'll just hang out over here. >> It's day four. I'm going to ask the questions and answer the questions. (Savannah laughs) >> Yes, you're right. >> I do yeah. >> Open Tele- >> OpenTelemetry . >> Explain what OpenTelemetry is first. >> OpenTelemetry is a CNCF project, Cloud Native Computing Foundation. The goal is to make telemetry data, high quality telemetry data, a builtin feature of cloud native software right? So right now if you wanted to get logging data out, depending on your application stack, depending on your application run time, depending on language, depending on your deployment environment. You might have a lot... You have to make a lot of choices, right? About like, what am I going to use? >> Savannah: So many different choices, and the players are changing all the time. >> Exactly, and a lot of times what people will do is they'll go and they'll say like, "We have to use this commercial solution because they have a proprietary agent that can do a lot of this for us." You know? And if you look at all those proprietary agents, what you find very quickly is it's very commodified right? There's no real difference in what they're doing at a code level and what's stopped the industry from really adopting a standard way to create this logs and metrics and traces, is simply just the fact that there was no standard. And so, OpenTelemetry is that standard, right? We've got dozens of companies many of them like very, many of them here right? Competitors all the same, working together to build this open standard and implementation of telemetry data for cloud native software and really any software right? Like we support over 12 languages. We support Kubernetes, Amazon. AWS is a huge contributor actually and we're doing some really exciting stuff with them on their Amazon distribution of OpenTelemetry. So it's been extremely interesting to see it over the past like couple years go from like, "Hey, here's this like new thing that we're doing over here," to really it's a generalized acceptance that this is the way of the future. This is what we should have been doing all along. >> Yeah. >> My opinion is there is a perception out there that observability is kind of a commodity now that all the players have the same set of tools, same set of 15 or 17 or whatever tools, and that there's very little distinction in functionality. Would you agree with that? >> I don't know if I would characterize it that way entirely. I do think that there's a lot of duplicated effort that happens and part of the reason is because of this telemetry data problem, right? Because you have to wind up... You know, there's this idea of table stakes monitoring that we talk about right? Table stakes monitoring is the stuff that you're having to do every single day to kind of make sure your system is healthy to be able to... When there's an alert, gets triggered, to see why it got triggered and to go fix it, right? Because everyone has the kind of work on that table stake stuff and then build all these integrations, there's very little time for innovation on top of that right? Because you're spending all your time just like working on keeping up with technology. >> Savannah: Doing the boring stuff to make sure the wheels don't fall off, basically. >> Austin: Right? What I think the real advantage of OpenTelemetry is that it really, from like a vendor perspective, like it unblocks us from having to kind of do all this repetitive commodified work. It lets us help move that out to the community level so that... Instead of having to kind of build, your Kubernetes integration for example, you can just have like, "Hey, OpenTelemetry is integrated into Kubernetes and you just have this data now." If you are a commercial product, or if you're even someone that's interested in fixing a, scratching a particular itch about observability. It's like, "I have this specific way that I'm doing Kubernetes and I need something to help me really analyze that data. Well, I've got the data now I can just go create a project. I can create an analysis tool." I think that's what you'll see over time as OpenTelemetry promulgates out into the ecosystem is more people building interesting analysis features, people using things like machine learning to analyze this large amount, large and consistent amount of OpenTelemetry data. It's going to be a big shakeup I think, but it has the potential to really unlock a lot of value for our customers. >> Well, so you're, you're a developer relations guy. What are developers asking for right now out of their observability platforms? >> Austin: That's a great question. I think there's two things. The first is that they want it to just work. It's actually the biggest thing, right? There's so many kind of... This goes back to the tool proliferation, right? People have too much data in too many different places, and getting that data out can still be really challenging. And so, the biggest thing they want is just like, "I want something that I can... I want a lot of these questions I have to ask, answered already and OpenTelemetry is going towards it." Keep in mind it's the project's only three years old, so we obviously have room to grow but there are people running it in production and it works really well for them but there's more that we can do. The second thing is, and this isn't what really is interesting to me, is it's less what they're asking for and more what they're not asking for. Because a lot of the stuff that you see people, saying around, "Oh, we need this like very specific sort of lower level telemetry data, or we need this kind of universal thing." People really just want to be able to get questions or get questions answered, right? They want tools that kind of have these workflows where you don't have to be an expert because a lot of times this tooling gets locked behind sort of is gate kept almost in a organization where there are teams that's like, "We're responsible for this and we're going to set it up and manage it for you, and we won't let you do things outside of it because that would mess up- >> Savannah: Here's your sandbox and- >> Right, this is your sandbox you can play in and a lot of times that's really useful and very tuned for the problems that you saw yesterday, but people are looking at like what are the problems I'm going to get tomorrow? We're deploying more rapidly. We have more and more intentional change happening in the system. Like it's not enough to have this reactive sort of approach where our SRE teams are kind of like or this observability team is building a platform for us. Developers want to be able to get in and have these kind of guided workflows really that say like, "Hey, here's where you're starting at. Let's get you to an answer. Let's help you find the needle in the haystack as it were, without you having to become a master of six different or seven different tools." >> Savannah: Right, and it shouldn't be that complicated. >> It shouldn't be. I mean we've certainly... We've been working on this problem for many years now, starting with a lot of our team that started at Google and helped build Google's planet scale monitoring systems. So we have a lot of experience in the field. It's actually one... An interesting story that our founder or now general manager tells BHS, Ben Sigelman, and he told me this story once and it's like... He had built this really cool thing called Dapper that was a tracing system at Google, and people weren't using it. Because they were like, "This is really cool, but I don't know how to... but it's not relevant to me." And he's like, the one thing that we did to get to increase usage 20 times over was we just put a link. So we went to the place that people were already looking for that data and we added a link that says, "Hey, go over here and look at this." It's those simple connections being able to kind of draw people from like point A to point B, take them from familiar workflows into unfamiliar ones. You know, that's how we think about these problems right? How is this becoming a daily part of someone's usage? How is this helping them solve problems faster and really improve their their life? >> Savannah: Yeah, exactly. It comes down to quality of life. >> Warner made the case this morning that computer architecture should be inherently event-driven and that we are moving toward a world where the person matters less than what the software does, right? The software is triggering events. Does this complicate observability or simplify it? >> Austin: I think that at the end of the day, it's about getting the... Observability to me in a lot of ways is about modeling your system, right? It's about you as a developer being able to say this is what I expect the system to do and I don't think the actual application architecture really matters that much, right? Because it's about you. You are building a system, right? It can be event driven, can be support request response, can be whatever it is. You have to be able to say, "This is what I expect to... For these given inputs, this is the expected output." Now maybe there's a lot of stuff that happens in the middle that you don't really care about. And then, I talk to people here and everyone's talking about serverless right? Everyone... You can see there's obviously some amazing statistics about how many people are using Lambda, and it's very exciting. There's a lot of stuff that you shouldn't have to care about as a developer, but you should care about those inputs and outputs. You will need to have that kind of intermediate information and understand like, what was the exact path that I took through this invented system? What was the actual resources that were being used? Because even if you trust that all this magic behind the scenes is just going to work forever, sometimes it's still really useful to have that sort of lower level abstraction, to say like, "Well, this is what actually happened so that I can figure out when I deployed a new change, did I make performance better or worse?" Or being able to kind of segregate your data out and say like... Doing AB testing, right? Doing canary releases, doing all of these things that you hear about as best practices or well architected applications. Observability is at the core of all that. You need observability to kind of do any of, ask any of those higher level interesting questions. >> Savannah: We are here at ReInvent. Tell us a little bit more about the partnership with AWS. >> So I would have to actually probably refer you to someone at Service Now on that. I know that we are a partner. We collaborate with them on various things. But really at Lightstep, we're very focused on kind of the open source part of this. So we work with AWS through the OpenTelemetry project, on things like the AWS distribution for OpenTelemetry which is really... It's OpenTelemetry, again is really designed to be like a neutral standard but we know that there are going to be integrators and implementers that need to package up and bundle it in a certain way to make it easy for their end users to consume it. So that's what Amazon has done with ADOT which is the shortening for it. So it's available in several different ways. You can use it as like an SDK and drop it into your application. There's Lambda layers. If you want to get Lambda observability, you just add this extension in and then suddenly you're getting OpenTelemetry data on the other side. So it's really cool. It's been a really exciting to kind of work with people on the AWS side over the past several years. >> Savannah: It's exciting, >> I've personally seen just a lot of change. I was talking to a PM earlier this week... It's like, "Hey, two years ago I came and talked to you about OpenTelemetry and here we are today. You're still talking about OpenTelemetry." And they're like, "What changes?" Our customers have started coming to us asking for OpenTelemetry and we see the same thing now. >> Savannah: Timing is right. >> Timing is right, but we see the same thing... Even talking to ServiceNow customers who are... These very big enterprises, banks, finance, healthcare, whatever, telcos, it used to be... You'd have to go to them and say like, "Let me tell you about distributed tracing. Let me tell you about OpenTelemetry. Let me tell you about observability." Now they're coming in and saying, "Yeah, so we're standard." If you think about Kubernetes and how Kubernetes, a lot of enterprises have spent the past five-six years standardizing, and Kubernetes is a way to deploy applications or manage containerized applications. They're doing the same journey now with OpenTelemetry where they're saying, "This is what we're betting on and we want partners we want people to help us go along that way." >> I love it, and they work hand in hand in all CNCF projects as well that you're talking about. >> Austin: Right, so we're integrated into Kubernetes. You can find OpenTelemetry and things like kept in which is application standards. And over time, it'll just like promulgate out from there. So it's really exciting times. >> A bunch of CNCF projects in this area right? Prometheus. >> Prometheus, yeah. Yeah, so we inter-operate with Prometheus as well. So if you have Prometheus metrics, then OpenTelemetry can read those. It's a... OpenTelemetry metrics are like a super set of Prometheus. We've been working with the Prometheus community for quite a while to make sure that there's really good compatibility because so many people use Prometheus you know? >> Yeah. All right, so last question. New tradition for us here on theCUBE. We're looking for your 32nd hot take, Instagram reel, biggest theme, biggest buzz for those not here on the show floor. >> Oh gosh. >> Savannah: It could be for you too. It could be whatever for... >> I think the two things that are really striking to me is one serverless. Like I see... I thought people were talking about servers a lot and they were talking about it more than ever. Two, I really think it is observability right? Like we've gone from observability being kind of a niche. >> Savannah: Not that you're biased. >> Huh? >> Savannah: Not that you're biased. >> Not that I'm biased. It used to be a niche. I'd have to go niche thing where I would go and explain what this is to people and nowpeople are coming up. It's like, "Yeah, yeah, we're using OpenTelemetry." It's very cool. I've been involved with OpenTelemetry since the jump, since it was started really. It's been very exciting to see and gratifying to see like how much adoption we've gotten even in a short amount of time. >> Yeah, absolutely. It's a pretty... Yeah, it's been a lot. That was great. Perfect soundbite for us. >> Austin: Thanks, I love soundbites. >> Savannah: Yeah. Awesome. We love your hat and your soundbites equally. Thank you so much for being on the show with us today. >> Thank you for having me. >> Savannah: Hey, anytime, anytime. Will we see you in Amsterdam, speaking of KubeCon? Awesome, we'll be there. >> There's some real exciting OpenTelemetry stuff coming up for KubeCon. >> Well, we'll have to get you back on theCUBE. (talking simultaneously) Love that for us. Thank you all for tuning in two hour wall to wall coverage here, day four at AWS re:Invent in fabulous Las Vegas, Nevada, with Paul Gillin. I'm Savannah Peterson and you're watching theCUBE, the leader in high tech coverage. (lively music)

Published Date : Dec 1 2022

SUMMARY :

and we are holding strong. I'm doing well, fine Savannah. I don't know how you do it. and we got a little swagger on the stage. Hey, great to be here. How's the show been for you so far? Feels a lot like, you A little reminiscent of the before times. on the show this week. Well, and we were talking server that I need to go on?" Talk about. then everyone's going to be like, something to kind stand out and it's a talk trigger. in case the audience isn't familiar and being able to find about the collaboration, and going between tab A to tab B to tab C, in multiple spots to and they go to like tool Why don't you tell us about it? Savannah: We'll just and answer the questions. The goal is to make telemetry data, and the players are changing all the time. Exactly, and a lot of and that there's very little and part of the reason is because of this boring stuff to make sure but it has the potential to really unlock What are developers asking for right now and we won't let you for the problems that you saw yesterday, Savannah: Right, and it And he's like, the one thing that we did It comes down to quality of life. and that we are moving toward a world is just going to work forever, about the partnership with AWS. that need to package up and talked to you about OpenTelemetry and Kubernetes is a way and they work hand in hand and things like kept in which A bunch of CNCF projects So if you have Prometheus metrics, We're looking for your 32nd hot take, Savannah: It could be for you too. that are really striking to me and gratifying to see like It's a pretty... on the show with us today. Will we see you in Amsterdam, OpenTelemetry stuff coming up I'm Savannah Peterson and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Peter BurrisPERSON

0.99+

Dave VellantePERSON

0.99+

Michael DellPERSON

0.99+

Rebecca KnightPERSON

0.99+

MichaelPERSON

0.99+

ComcastORGANIZATION

0.99+

ElizabethPERSON

0.99+

Paul GillanPERSON

0.99+

Jeff ClarkPERSON

0.99+

Paul GillinPERSON

0.99+

NokiaORGANIZATION

0.99+

SavannahPERSON

0.99+

DavePERSON

0.99+

RichardPERSON

0.99+

MichealPERSON

0.99+

Carolyn RodzPERSON

0.99+

Dave VallantePERSON

0.99+

VerizonORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Eric SeidmanPERSON

0.99+

PaulPERSON

0.99+

Lisa MartinPERSON

0.99+

GoogleORGANIZATION

0.99+

KeithPERSON

0.99+

Chris McNabbPERSON

0.99+

JoePERSON

0.99+

CarolynPERSON

0.99+

QualcommORGANIZATION

0.99+

AlicePERSON

0.99+

2006DATE

0.99+

JohnPERSON

0.99+

NetflixORGANIZATION

0.99+

AWSORGANIZATION

0.99+

congressORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

AT&TORGANIZATION

0.99+

Elizabeth GorePERSON

0.99+

Paul GillenPERSON

0.99+

Madhu KuttyPERSON

0.99+

1999DATE

0.99+

Michael ConlanPERSON

0.99+

2013DATE

0.99+

Michael CandolimPERSON

0.99+

PatPERSON

0.99+

Yvonne WassenaarPERSON

0.99+

Mark KrzyskoPERSON

0.99+

BostonLOCATION

0.99+

Pat GelsingerPERSON

0.99+

DellORGANIZATION

0.99+

Willie LuPERSON

0.99+

IBMORGANIZATION

0.99+

YvonnePERSON

0.99+

HertzORGANIZATION

0.99+

AndyPERSON

0.99+

2012DATE

0.99+

MicrosoftORGANIZATION

0.99+

Manu Parbhakar, AWS & Joel Jackson, Red Hat | AWS re:Invent 2022


 

>>Hello, brilliant humans and welcome back to Las Vegas, Nevada, where we are live from the AWS Reinvent Show floor here with the cube. My name is Savannah Peterson, joined with Dave Valante, and we have a very exciting conversation with you. Two, two companies you may have heard of. We've got AWS and Red Hat in the house. Manu and Joel, thank you so much for being here. Love this little fist bump. Started off, that's right. Before we even got rolling, Manu, you said that you wanted this to be the best segment of, of the cubes airing. We we're doing over a hundred segments, so you're gonna have to bring the heat. >>We're ready. We're did go. Are we ready? Yeah, go. We're ready. Let's bring it on. >>We're ready. All right. I'm, I'm ready. Dave's ready. Let's do it. How's the show going for you guys real quick before we dig in? >>Yeah, I think after Covid, it's really nice to see that we're back into the 2019 level and, you know, people just want to get out, meet people, have that human touch with each other, and I think a lot of trust gets built as a functional that, so it's super amazing to see our partners and customers here at Reedman. Yeah, >>And you've got a few in the house. That's true. Just a few maybe, maybe a couple >>Very few shows can say that, by the way. Yeah, it's maybe a handful. >>I think one of the things we were saying, it's almost like the entire Silicon Valley descended in the expo hall area, so >>Yeah, it's >>For a few different reasons. There's a few different silicon defined. Yeah, yeah, yeah. Don't have strong on for you. So far >>It's, it's, it is amazing. It's the 10th year, right? It's decade, I think I've been to five and it's, it grows every single year. It's the, you have to be here. It's as simple as that. And customers from every single industry are here too. You don't get, a lot of shows have every single industry and almost every single location around the globe. So it's, it's a must, must be >>Here. Well, and the personas evolved, right? I was at reinvent number two. That was my first, and it was all developers, not all, but a lot of developers. And today it's a business mix, really is >>Totally, is a business mix. And I just, I've talked about it a little bit down the show, but the diversity on the show floor, it's the first time I've had to wait in line for the ladies' room at a tech conference. Almost a two decade career. It is, yeah. And it was really refreshing. I'm so impressed. So clearly there's a commitment to community, but also a commitment to diversity. Yeah. And, and it's brilliant to see on the show floor. This is a partnership that is robust and has been around for a little while. Money. Why don't you tell us a little bit about the partnership here? >>Yes. So Red Hand and AWS are best friends, you know, forever together. >>Aw, no wonder we got the fist bumps and all the good vibes coming out. I know, it's great. I love that >>We have a decade of working together. I think the relationship in the first phase was around running rail bundled with E two. Sure. We have about 70,000 customers that are running rail, which are running mission critical workloads such as sap, Oracle databases, bespoke applications across the state of verticals. Now, as more and more enterprise customers are finally, you know, endorsing and adopting public cloud, I think that business is just gonna continue to grow. So a, a lot of progress there. The second titration has been around, you know, developers tearing Red Hat and aws, Hey, listen, we wanna, it's getting competitive. We wanna deliver new features faster, quicker, we want scale and we want resilience. So just entire push towards devs containers. So that's the second chapter with, you know, red Hat OpenShift on aws, which launched as a, a joint manage service in 2021 last year. And I think the third phase, which you're super excited about, is just bringing the ease of consumption, one click deployment, and then having our customers, you know, benefit from the joint committed spend programs together. So, you know, making sure that re and Ansible and JBoss, the entire portfolio of Red Hat products are available on AWS marketplace. So that's the 1, 2, 3, it of our relationship. It's a decade of working together and, you know, best friends are super committed to making sure our customers and partners continue successful. >>Yeah, that he said it, he said it perfectly. 2008, I know you don't like that, but we started with Rel on demand just in 2008 before E two even had a console. So the partnership has been there, like Manu says, for a long time, we got the partnership, we got the products up there now, and we just gotta finalize that, go to market and get that gas on the fire. >>Yeah. So Graviton Outpost, local zones, you lead it into all the new stuff. So that portends, I mean, 2008, we're talking two years after the launch of s3. >>That's right. >>Right. So, and now look, so is this a harbinger of things to come with these new innovations? >>Yeah, I, I would say, you know, the innovation is a key tenant of our partnership, our relationship. So if you look at from a product standpoint, red Hat or Rel was one of the first platforms that made a support for graviton, which is basically 40% better price performance than any other distribution. Then that translated into making sure that Rel is available on all of our regions globally. So this year we launched Switzerland, Spain, India, and Red Hat was available on launch there, support for Nitro support for Outpost Rosa support on Outpost as well. So I think that relationship, that innovation on the product side, that's pretty visible. I think that innovation again then translates into what we are doing on marketplace with one click deployments we spoke about. I think the third aspect of the know innovation is around making sure that we are making our partners and our customers successful. So one of the things that we've done so far is Joe leads a, you know, a black belt team that really goes into each customer opportunity, making sure how can we help you be successful. We launched and you know, we should be able to share that on a link. After this, we launched like a big playlist, which talks about every single use case on how do you get successful and running OpenShift on aws. So that innovation on behalf of our customers partners to make them successful, that's been a key tenant for us together as >>Well. That's right. And that team that Manu is talking about, we're gonna, gonna 10 x that team this year going into January. Our fiscal yield starts in January. Love that. So yeah, we're gonna have a lot of no hiring freeze over here. Nope. No ma'am. No. Yeah, that's right. Yeah. And you know what I love about working with aws and, and, and Manu just said it very, all of that's customer driven. Every single event that we, that he just talked about in that timeline, it's customer driven, right? Customers wanted rail on demand, customers want JBoss up in the cloud, Ansible this week, you know, everything's up there now. So it's just getting that go to market tight and we're gonna, we're gonna get that done. >>So what's the algorithm for customer driven in terms of taking the input? Because if every customers saying, Hey, I this a >>Really similar >>Question right up, right? I, that's what I want. And if you know, 95% of the customers say it, Jay, maybe that's a good idea. >>Yeah, that's right. Trends. But >>Yeah. You know, 30% you might be like, mm, you know, 20%, you know, how do you guys decide when to put gas on the fire? >>No, that, I think, as I mentioned, there are about 70,000 large customers that are running rail on Easy Two, many of these customers are informing our product strategy. So we have, you know, close to about couple of thousand power users. We have customer advisory booths, and these are the, you know, customers are informing us, Hey, let's get all of the Red Hat portfolio and marketplace support for graviton, support for Outpost. Why don't we, why are we not able to dip into the consumption committed spend programs for both Red Hat and aws? That's right. So it's these power users both at the developer level as well as the guys who are actually doing large commercial consumption. They are the ones who are informing the roadmap for both Red Hat and aws. >>But do, do you codify the the feedback? >>Yeah, I'm like, I wanna see the database, >>The, I think it was, I don't know, it was maybe Chasy, maybe it was Besos, that that data beats intuition. So do you take that information and somehow, I mean, it's global, 70,000 customers, right? And they have different weights, different spending patterns, different levels of maturity. Yeah. Do you, how do you codify that and then ultimately make the decision? Yeah, I >>If, I mean, well you, you've got the strategic advisory boards, which are made up of customers and partners and you know, you get, you get a good, you gotta get a good slice of your customer base to get, and you gotta take their feedback and you gotta do something with it, right? That's the, that's the way we do it and codify it at the product level, I'm sure open source. That's, that's basically how we work at the product level, right? The most elegant solution in open source wins. And that's, that's pretty much how we do that at the, >>I would just add, I think it's also just the implicit trust that the two companies had built with each other, working in the trenches, making our customers and partners successful over the last decade. And Alex, give an example. So that manifests itself in context of like, you know, Amazon and Red Hat just published the entire roadmap for OpenShift. What are the new features that are becoming over the next six to nine to 12 months? It's open source available on GitHub. Customers can see, and then they can basically come back and give feedback like, Hey, you know, we want hip compliance. We just launched. That was a big request that was coming from our >>Customers. That is not any process >>Also for Graviton or Nvidia instances. So I I I think it's a, >>Here's the thing, the reason I'm pounding on this is because you guys have a pretty high hit rate, and I think as a >>Customer, mildly successful company >>As, as a customer advocate, the better, you know, if, if you guys make bets that pay off, it's gonna pay off for customers. Right. And because there's a lot of failures in it. Yeah. I mean, let's face it. That's >>Right. And I think, I think you said the key word bets. You place a lot of small bets. Do you have the, the innovation engine to do that? AWS is the perfect place to place those small bets. And then you, you know, pour gas on the fire when, when they take off. >>Yeah, it's a good point. I mean, it's not expensive to experiment. Yeah. >>Especially in the managed service world. Right? >>And I know you love taking things to market and you're a go to market guy. Let's talk gtm, what's got your snow pumped about GTM for 2023? >>We, we are gonna, you know, 10 x the teams that's gonna be focused on these products, right? So we're gonna also come out with a hybrid committed spend program for our customers that meet them where they want to go. So they're coming outta the data center going into a cloud. We're gonna have a nice financial model for them to do that. And that's gonna take a lot of the friction out. >>Yeah. I mean, you've nailed it. I, I think the, the fact that now entire Red Hat portfolio is available on marketplace, you can do it on one click deployment. It's deeply integrated with Amazon services and the most important part that Joel was making now customers can double dip. They can drive benefit from the consumption committed spend programs, both from Red Hat and from aws, which is amazing. Which is a game changer That's right. For many of our large >>Customers. That's right. And that, so we're gonna, we're gonna really go to town on that next year. That's, and all the, all the resources that I have, which are the technology sellers and the sas, you know, the engineers we're growing this team the most out that team. So it's, >>When you say 10 x, how many are you at now? I'm >>Curious to see where you're headed. Tell you, okay. There's not right? Oh no, there's not one. It's triple digit. Yeah, yeah. >>Today. Oh, sweet. Awesome. >>So, and it's a very sizable team. They're actually making sure that each of our customers are successful and then really making sure that, you know, no customer left behind policy. >>And it's a great point that customers love when Amazonians and Red Hats show up, they love it and it's, they want to get more of it, and we're gonna, we're gonna give it to 'em. >>Must feel great to be loved like that. >>Yeah, that's right. Yeah. Yeah. I would say yes. >>Seems like it's safe to say that there's another decade of partnership between your two companies. >>Hope so. That's right. That's the plan. >>Yeah. And I would say also, you know, just the IBM coming into the mix here. Yeah. I, you know, red Hat has informed the way we have turned around our partnership with ibm, essentially we, we signed the strategic collaboration agreement with the company. All of IBM software now runs on Rosa. So that is now also providing a lot of tailwinds both to our rail customers and as well as Rosa customers. And I think it's a very net creative, very positive for our partnership. >>That's right. It's been very positive. Yep. Yeah. >>You see the >>Billboards positive. Yeah, right. Also that, that's great. Great point, Dave. Yep. We have a, we have a new challenge, a new tradition on the cube here at Reinvent where we're, well, it's actually kind of a glamor moment for you, depending on how you leverage it. We're looking for your 32nd hot take your Instagram reel, your sizzle thought leadership, biggest takeaway, most important theme from this year's show. I know you want, right, Joel? I mean, you TM boy, I feel like you can spit the time. >>Yeah. It is all about Rosa for us. It is all in on that, that's the native OpenShift offering on aws and that's, that's the soundbite we're going go to town with. Now, I don't wanna forget all the other products that are in there, but Rosa is a, is a very key push for us this year. >>Fantastic. All right. Manu. >>I think our customers, it's getting super competitive. Our customers want to innovate just a >>Little bit. >>The enterprise customers see the cloud native companies. I wanna do what these guys are doing. I wanna develop features at a fast clip. I wanna scale, I wanna be resilient. And I think that's really the spirit that's coming out. So to Joel's point, you know, move to worlds containers, serverless, DevOps, which was like, you know, aha, something that's happening on the side of an enterprise is not becoming mainstream. The business is demanding it. The, it is becoming the centerpiece in the business strategy. So that's been really like the aha. Big thing that's happening here. >>Yeah. And those architectures are coming together, aren't they? That's correct. Right. You know, VMs and containers, it used to be one architecture and then at the other end of the spectrum is serverless. People thought of those as different things and now it's a single architecture and, and it's kind of right approach for the right job. >>And, and a compliments say to Red Hat, they do an incredible job of hiding that complexity. Yeah. Yes. And making sure that, you know, for example, just like, make it easier for the developers to create value and then, and you know, >>Yeah, that's right. Those, they were previously siloed architectures and >>That's right. OpenShift wanna be place where you wanna run containers or virtual machines. We want that to be this Yeah. Single place. Not, not go bolt on another piece of architecture to just do one or the other. Yeah. >>And hey, the hybrid cloud vision is working for ibm. No question. You know, and it's achievable. Yeah. I mean, I just, I've said unlike, you know, some of the previous, you know, visions on fixing the world with ai, hybrid cloud is actually a real problem that you're attacking and it's showing the results. Agreed. Oh yeah. >>Great. Alright. Last question for you guys. Cause it might be kind of fun, 10 years from now, oh, we're at another, we're sitting here, we all look the same. Time has passed, but we are not aging, which is a part of the new technology that's come out in skincare. That's my, I'm just throwing that out there. Why not? What do you guys hope that you can say about the partnership and, and your continued commitment to community? >>Oh, that's a good question. You go first this time. Yeah. >>I think, you know, the, you know, for looking into the future, you need to look into the past. And Amazon has always been driven by working back from our customers. That's like our key tenant, principle number 1 0 1. >>Couple people have said that on this stage this week. Yeah. >>Yeah. And I think our partnership, I hope over the next decade continues to keep that tenant as a centerpiece. And then whatever comes out of that, I think we, we are gonna be, you know, working through that. >>Yeah. I, I would say this, I think you said that, well, the customer innovation is gonna lead us to wherever that is. And it's, it's, it's gonna be in the cloud for sure. I think we can say that in 10 years. But yeah, anything from, from AI to the quant quantum computing that IBM's really pushing behind that, you know, those are, those are gonna be things that hopefully we show up on a, on a partnership with Manu in 10 years, maybe sooner. >>Well, whatever happens next, we'll certainly be covering it here on the cube. That's right. Thank you both for being here. Joel Manu, fantastic interview. Thanks to see you guys. Yeah, good to see you brought the energy. I think you're definitely ranking high on the top interviews. We >>Love that for >>The day. >>Thank >>My pleasure >>Job, guys. Now that you're competitive at all, and thank you all for tuning in to our live coverage here from AWS Reinvent in Las Vegas, Nevada, with Dave Valante. I'm Savannah Peterson. You're watching The Cube, the leading source for high tech coverage.

Published Date : Nov 30 2022

SUMMARY :

Manu and Joel, thank you so much for being here. Are we ready? How's the show going for you guys real and, you know, people just want to get out, meet people, have that human touch with each other, And you've got a few in the house. Very few shows can say that, by the way. So far It's the, you have to be here. I was at reinvent number two. And I just, I've talked about it a little bit down the show, but the diversity on the show floor, you know, forever together. I love that you know, benefit from the joint committed spend programs together. 2008, I know you don't like that, but we started So that portends, I mean, 2008, we're talking two years after the launch of s3. harbinger of things to come with these new innovations? Yeah, I, I would say, you know, the innovation is a key tenant of our So it's just getting that go to market tight and we're gonna, we're gonna get that done. And if you know, 95% of the customers say it, Yeah, that's right. how do you guys decide when to put gas on the fire? So we have, you know, close to about couple of thousand power users. So do you take that information and somehow, I mean, it's global, you know, you get, you get a good, you gotta get a good slice of your customer base to get, context of like, you know, Amazon and Red Hat just published the entire roadmap for OpenShift. That is not any process So I I I think it's a, As, as a customer advocate, the better, you know, if, if you guys make bets AWS is the perfect place to place those small bets. I mean, it's not expensive to experiment. Especially in the managed service world. And I know you love taking things to market and you're a go to market guy. We, we are gonna, you know, 10 x the teams that's gonna be focused on these products, Red Hat portfolio is available on marketplace, you can do it on one click deployment. you know, the engineers we're growing this team the most out that team. Curious to see where you're headed. then really making sure that, you know, no customer left behind policy. And it's a great point that customers love when Amazonians and Red Hats show up, I would say yes. That's the plan. I, you know, red Hat has informed the way we have turned around our partnership with ibm, That's right. I mean, you TM boy, I feel like you can spit the time. It is all in on that, that's the native OpenShift offering I think our customers, it's getting super competitive. So to Joel's point, you know, move to worlds containers, and it's kind of right approach for the right job. And making sure that, you know, for example, just like, make it easier for the developers to create value and Yeah, that's right. OpenShift wanna be place where you wanna run containers or virtual machines. I mean, I just, I've said unlike, you know, some of the previous, What do you guys hope that you can say about Yeah. I think, you know, the, you know, Couple people have said that on this stage this week. you know, working through that. you know, those are, those are gonna be things that hopefully we show up on a, on a partnership with Manu Yeah, good to see you brought the energy. Now that you're competitive at all, and thank you all for tuning in to our live coverage here from

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JoelPERSON

0.99+

Savannah PetersonPERSON

0.99+

Dave ValantePERSON

0.99+

AmazonORGANIZATION

0.99+

ManuPERSON

0.99+

IBMORGANIZATION

0.99+

Manu ParbhakarPERSON

0.99+

40%QUANTITY

0.99+

AWSORGANIZATION

0.99+

NvidiaORGANIZATION

0.99+

Joel ManuPERSON

0.99+

2021DATE

0.99+

TwoQUANTITY

0.99+

JanuaryDATE

0.99+

two companiesQUANTITY

0.99+

two companiesQUANTITY

0.99+

DavePERSON

0.99+

Red HandORGANIZATION

0.99+

95%QUANTITY

0.99+

fiveQUANTITY

0.99+

third phaseQUANTITY

0.99+

2019DATE

0.99+

Joel JacksonPERSON

0.99+

RosaORGANIZATION

0.99+

second chapterQUANTITY

0.99+

firstQUANTITY

0.99+

2008DATE

0.99+

20%QUANTITY

0.99+

Red HatORGANIZATION

0.99+

30%QUANTITY

0.99+

next yearDATE

0.99+

OutpostORGANIZATION

0.99+

red HatORGANIZATION

0.99+

10th yearQUANTITY

0.99+

JayPERSON

0.99+

Silicon ValleyLOCATION

0.99+

bothQUANTITY

0.99+

10 yearsQUANTITY

0.99+

first phaseQUANTITY

0.99+

TodayDATE

0.99+

ibmORGANIZATION

0.99+

awsORGANIZATION

0.99+

JoePERSON

0.99+

70,000 customersQUANTITY

0.99+

2023DATE

0.99+

oneQUANTITY

0.99+

Las Vegas, NevadaLOCATION

0.98+

CovidPERSON

0.98+

first timeQUANTITY

0.98+

nineQUANTITY

0.98+

12 monthsQUANTITY

0.98+

10QUANTITY

0.98+

eachQUANTITY

0.98+

todayDATE

0.98+

this yearDATE

0.98+

about 70,000 customersQUANTITY

0.98+

GravitonORGANIZATION

0.98+

this weekDATE

0.97+

AmazoniansORGANIZATION

0.97+

third aspectQUANTITY

0.97+

SpainLOCATION

0.97+

E twoEVENT

0.97+

each customerQUANTITY

0.97+

The CubeTITLE

0.96+

John Kreisa, Couchbase | AWS re:Invent 2022


 

(upbeat music) >> Good morning and welcome back to fabulous Las Vegas, Nevada. We're here at AWS re:Invent with wall-to-wall coverage all day long on theCUBE. My name is Savannah Peterson and I am joined this morning by the beautiful Lisa Martin. Lisa, good morning. >> Good morning. Good. >> How you feeling day three? >> Day three is we are going to be shot out of a cannon today. The amount of content coming at you from theCUBE today- >> Get ready, you all. >> Us two gals, is a lot. We're going to have some great conversations. >> And we're starting with a really great one with a Cube Alumni to the max. You've been on the show multiple times. >> John: Yeah. >> Very excited to welcome John, the CMO of Couchbase. Welcome. How you doing this morning? >> Thanks. I'm doing great. Great to be here with you. >> How do you feel about the show so far? What's your pulse? >> The show has been great. I say the energy is great. The traffic at our booth, the conversations that we're having, both with prospective customers and even just partners, right? They're all here. The ecosystem is here >> And everyone's finally back in person and it feels so good. >> John: It does. >> So, we're going to dig in a little bit but just in case the audience isn't familiar, tell us about Couchbase. >> Sure. Couchbase is a publicly traded database company. We have a cloud database platform called Capella which is hosted on AWS and GCP. It is used for building mission-critical applications. So, we have great customers, we're building apps that really matter and are using to drive their business. So, we're very excited about that. 30% of the Fortune 100 are Couchbase customers. >> Nice. Talk a little bit about the AWS relationship. >> Mm-hm. Yeah, so we have a great AWS relationship. In fact, yesterday we announced a deepening of that relationship, a strategic collaboration agreement. We're very excited. It's a multi-year agreement. It's focused on go-to market, from a sales and marketing standpoint. We're going to target, you know, various verticals and, you know, really generate joint business between the two of us. So, it's a deepening of a already strong relationship and we're really excited about that. >> Savannah: Yeah. Go ahead. >> What are some of the industry verticals that you're going to be tackling together? >> Well, gaming for one, right? Manufacturing, the workloads that Couchbase is good for are these mission-critical workloads are ones that are really suited for us to be used with AWS. So, we've done some work with them already in those areas and I'm sure we'll be digging in even deeper. >> That's exciting. Speaking of digging in deeper, tell us a little bit more about Capella. >> Capella. It's a cloud databases services I mentioned. We launched it last October and we are super excited by the uptake, the interest that we're seeing. We have a free 30 day trial, so, you know, people can come and try it and get their hands dirty just getting experience with the product and then, you know, become a customer after that. And we're seeing very strong interest from our existing customer base as well. So, we're really excited about how things are going. >> Talk about Capella and the latest release and how it's really enabling Couchbase to invest deeper into the developer experience. >> Yeah, so, at the end of October, we announced a revamp of our user interface, our user experience for Capella really focused on developers. And what we've done is make it so that it's familiar to developers, right? It's a GitHub-like experience. So, developer comes in, they're very familiar, of course, with GitHub, they are familiar with how the Couchbase Capella interface will work. And so that's something that, you know, we've really invested, in fact, we've invested in developers quite a bit. We announced a Couchbase community hub and a Couchbase ambassadors program, both focused on developers and getting out there and building our community. >> A community is a big topic that we've been talking about at all the conferences this year. We're all back in person, in community. How often are you communicating with your community to get feedback on what that experience should be like? >> Yeah, I mean, we actually have a Discord server, so we're in constant communication. (Savannah laughing) >> Savannah: Yes. (John laughing) 24/7. (laughing) >> Basically, you know, we have staff who's dedicated to making sure that the users on there are getting their answers and giving us feedback on the experience. The ambassadors are somebody who have a really strong relationship, who get early insight and give us feedback before we even release a product. So, it gives us a chance to really test-drive it with core developers and get the insight we need before we get it in the market. >> Yeah. It matters so much. You can build it, but they won't come if it's not fantastic. >> John: Exactly. >> Lisa: Right. >> Let's shift a little bit and talk about customers. How, and price, how do you guys compare? >> Customers and? >> And price, your price performance? >> Price, oh. So, customers, we also announced this week a joint customer Arthrex with AWS. Arthrex is a orthopedics medical devices company and they use our Edge capabilities along with running Couchbase on AWS. So, you think of the kinds of surgeries that orthopedic surgeons do, it's scopes and they are often inside. So, what it does is it collects the data, the video data and all of that on a medical devices and then brings it back to a centralized app for the doctors to use sort of in post when they're actually doing further medical recommendations. >> Savannah: It's so cool. >> So, it's cool, the thing about it is it can work whether it's online or offline, it's one of the reasons that Arthrex selected us because the fact that it can, you know, often sometimes there's not connectivity in the operating room, I'd say deep inside of a hospital. So, these devices work regardless and then when they get connectivity, it sinks back to that centralized service. So, it's one of the main reasons that they selected us. >> That's outstanding. You know, one of the things that John Furrier, you know, John, well, you guys go way back. >> John: Way back. >> He had a sit down with Adam Selensky, oh, about 10 days or so ago. He gets an exclusive with the CEO of AWS every pre re:Invent. And one of the things that Adam said is that the role or the title, data analyst, is going to go away, in that every role will have responsibilities of analyzing data. And I always think of that in terms of operations, marketing, finance, sales, but you just brought up physicians as data analysts in their jobs, right? Probably not, we're thinking about it in that way. >> Yeah. >> But it's so interesting how data is really being democratized. >> John: Yeah. >> And how Couchbase is an enabler of that in an operating room. >> John: Yeah, yeah, yeah. >> That's amazing. >> It's a great story. There's many others and I think, you know, we have embedded operational analytics in Couchbase Capella, and, you know, in our offerings in general. So, what that does is allows us to do real-time, highly personalized applications based on that analytics that are coming in real-time from the data from the applications. And so that's something that's actually driving a highly interactive user experience, one that's very personalized and customized. And that's one of the things that our customers really like about what we do. >> It's fascinating. I never thought about it from a medical device perspective. >> Lisa: No, no. >> John: No. >> My gosh is if doctors don't have enough cognitive burden load. >> John: I know. >> You know, right? Like, they don't need to be a data analyst. I would much rather they were just good at the surgery part. That's a piece of the puzzle I need them to do. Yeah, for sure. That's a fascinating customer example. Can you share any other joint AWS examples with us? >> Joint AW- I mean, there's many in the gaming area where, because Couchbase is memory-first architecture, we deliver very, very interactive user experiences and we're used a lot for session management, user ID management in the gaming space, specifically with AWS. It's an area we've done some joint work already and had a lot of success, you know, with small and large gaming companies. >> Yeah. It looks like you also, according to my notes here, we've got things in travel and hospitality as well. >> Yes. Also Carnival Cruises is a great example. We enable their on-ship, on-board experience, highly customized, everybody wears a device called a medallion, and as they move around the ship, it knows where they are and it's able to provide customized services. You walk up to a bar, you have your favorite drink, it can be hit the bar when you land there. >> I'll take that. >> How about that? (laugh) >> That's outstanding. >> Isn't that great? >> Can we carry that onto the AWS show floor? >> Exactly. >> Or Starbucks order? >> Yeah, yeah. Yes, please. Yes, please. Well, another thing that's so interesting these days, is that every company has to be a data company. Say they have to be a software company. They have to be a data company. You just gave some great examples. Hospitality, gaming, healthcare, where that data democratization has to happen. >> John: Yeah. >> Businesses has to transform. But one of the things that Adam also told John is that CIOs, CEOs are coming to him not wanting to talk about technology but about transformation. >> Yeah. >> Huge topic. >> And that's a journey where every customer is at different levels. >> Yeah. >> How is Couchbase helping businesses transform and where are your customer conversations these days? >> Yeah, yeah, yeah. So, I mean, the transformation of the business is a major topic of conversation. So, we completely agree with that. How Couchbase helps is, you know, in our database, one of the things we have is the SQL engine. And so as people are looking to move and modernize their infrastructure, if they're moving off of, or from like a technology that's principally based on SQL but doesn't give all the flexibility of a JSON database or document database like we do, we actually enable them to get more easily onto our platform so that they can start that transformation. And then it's a, you know, it's a journey of how they want to transform their business and it's really focused on how do they better serve their customers and clients, whether it's internal or external? >> It really matters. I mean, and that ease of use as well as the transformation journey. It takes a long time for people to adapt. So, every piece of that puzzle, every Lego being quicker or easier, more intuitive, like you said, with the user experience, we can tell you're very thoughtful. How does this improve the total cost of ownership for your customers? >> That's one of the things that we announced along with that developer changes, was a new storage engine underneath Couchbase Capella. And it's 10 X more dense storage. And what that means is fewer servers. So, fewer servers is a much better cost of ownership story. That plus just the performance of the platform itself, we find, you know, against competition, we can do things on say six nodes that take 18 nodes for others. >> Lisa: Oh wow. >> And we have a great consolidation story as well because we have, it's a multi-modal database, meaning that it has SQL engine, document database, full tech search, eventing and analytics, all these pieces on one common data layer. So, you can actually consolidate off of other technologies onto one, onto Couchbase, and that actually saves you money. So, that's a great story for us. >> There's got to be a sustainability element to that as well? >> Yeah, I mean it's, obviously, if you're using less, using fewer servers, there's a kind of power consumption aspect of it as well. Absolutely. >> Are you finding that a lot of customers and companies we talk to these days have in their RFPs, they must only work with vendors who have an actual ESG program? Are you finding more customers coming to you saying, how can you help us dial down our carbon emissions? >> John: Yeah. >> Savannah: Great question. >> We've got a sustainability program that we've got to meet, we've got commitments to our customers. >> John: Yeah. >> Is that something that's really now kind of a hard and fast requirement? >> We're hearing it, we're definitely hearing it. I wouldn't say it's, you know, massively pervasive but I would say it's a growing component of, as you said, RFPs. And it's something that we feel like we have a great story for. And so, you know, it's something that helps when we get into those conversations, we can clearly articulate how we can provide that value and how we meet some of those needs that they have. >> Yeah, that's awesome. So, we have a bit of a challenge, new to the show at re:Invent. >> John: Mm-hm. >> Where we are prompting you to give us your 30 second Instagram Reel sizzle highlight. Don't worry, I'm not actually timing you, but your thought leadership hot-take on the most important theme or takeaway from this year's show. >> From the conference here. I would say that, and I think this was talked about a little bit by AWS as well, but the convergence of analytics and operational data, you know, through the applications is one that we're certainly seeing as well. It's the reason we have analytics in our database. But as I walk around and look at it, I see that very much as a common theme as well, in terms of what other vendors are saying and just the conversations we're having. So for me, that's one of the things I think would be a takeaway from this show. >> Yeah. Embedded analytics, real-time, everybody wants to know what's going on, in context. >> Yeah. That's right. >> Right now, not last week, not what we're processing from last month. >> Exactly. >> I mean, right? (cross-talking) >> So, I can react and take advantage or take an action if I have to. >> Exactly. And then deliver that personalized experience that we all expect these days. >> Oh, yes. >> I'll take that medallion- >> It's about the medallion. I was like, okay. >> You up with that, John? >> We'll get right on it. >> Lisa: All right. (laughs) >> About this. So, what's next for Couchbase? >> John: Well- >> I know you got the partnership, you've got all this exciting momentum. >> So, we're excited heading into next year. We're going to continue to innovate on Capella, right? Continue to deliver more value, lean into our developer community that we have. We're investing heavily, not just from a product standpoint but from a company standpoint in terms of, you know, our community meetups and some of those things. We have a big community-focused event coming up in March called Connect, Couchbase Connect. So, that's something that we'll, you know, continue to drive. That'll be a major theme for us next year. Cloud and developers and, you know, continuing to enable that ecosystem. >> Lisa: Excellent. >> I just had a Microsoft moment where I saw you saying, "Cloud developers," on stage. (Lisa and Savannah laughing) >> I'm not going Steve Ballmer on you. (all laughing) >> Pardon. I was trying to get someone to sing yesterday. I was hoping you were my Ballmer dance. Oh, man. Well, this has been a really great way to start the day. John, thank you so much for being on the show with us, seriously. And it's great that you keep coming back. I'm glad we haven't scared you off. (John laughing) >> Never. >> Savannah: We will have you anytime. >> Thank you. >> And thank you all for tuning in for yet another fantastic day of all day live coverage here from AWS re:Invent. We are in Sin City, having a fabulous time with Lisa Martin. I'm Savannah Peterson. This is theCUBE and we are the leader in high-tech technology coverage. (upbeat music) (upbeat music fades)

Published Date : Nov 30 2022

SUMMARY :

by the beautiful Lisa Martin. Good morning. at you from theCUBE today- We're going to have some You've been on the show multiple times. How you doing this morning? Great to be here with you. I say the energy is great. and it feels so good. but just in case the So, we have great customers, the AWS relationship. We're going to target, you Manufacturing, the Speaking of digging in deeper, the product and then, you know, and the latest release And so that's something that, you know, about at all the conferences this year. Yeah, I mean, we actually Savannah: Yes. get the insight we need come if it's not fantastic. How, and price, how do you guys compare? for the doctors to use sort of in post because the fact that it can, you know, You know, one of the is that the role or the But it's so interesting how data of that in an operating room. And that's one of the things I never thought about it from My gosh is if doctors don't have enough That's a piece of the and had a lot of success, you know, and hospitality as well. it can be hit the bar when you land there. They have to be a data company. But one of the things that Adam And that's a journey one of the things we So, every piece of that puzzle, we find, you know, against competition, So, you can actually consolidate consumption aspect of it as well. program that we've got to meet, And it's something that we feel So, we have a bit of a challenge, Where we are prompting you to give us and just the conversations we're having. in context. not what we're processing from last month. So, I can react and take that we all expect these days. It's about the medallion. Lisa: All right. So, what's I know you got the partnership, So, that's something that we'll, you know, where I saw you saying, I'm not going Steve Ballmer on you. And it's great that you keep coming back. have you anytime. And thank you all for tuning in

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

AdamPERSON

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

LisaPERSON

0.99+

Adam SelenskyPERSON

0.99+

SavannahPERSON

0.99+

John KreisaPERSON

0.99+

Savannah PetersonPERSON

0.99+

Sin CityLOCATION

0.99+

John FurrierPERSON

0.99+

MarchDATE

0.99+

30 dayQUANTITY

0.99+

ArthrexORGANIZATION

0.99+

twoQUANTITY

0.99+

last monthDATE

0.99+

Steve BallmerPERSON

0.99+

oneQUANTITY

0.99+

30%QUANTITY

0.99+

next yearDATE

0.99+

yesterdayDATE

0.99+

last weekDATE

0.99+

CouchbaseORGANIZATION

0.99+

30 secondQUANTITY

0.99+

BallmerPERSON

0.99+

Las Vegas, NevadaLOCATION

0.98+

CapellaORGANIZATION

0.98+

last OctoberDATE

0.98+

todayDATE

0.98+

18 nodesQUANTITY

0.98+

this weekDATE

0.98+

bothQUANTITY

0.98+

MicrosoftORGANIZATION

0.97+

this yearDATE

0.97+

GitHubORGANIZATION

0.97+

SQLTITLE

0.97+

LegoORGANIZATION

0.96+

six nodesQUANTITY

0.96+

Ev Kontsevoy, Teleport | AWS re:Invent 2022


 

>>Hello everyone and welcome back to Las Vegas. I've got my jazz hands because I am very jazzed to be here at AWS Reinvent Live from the show floor all week. My name is Savannah Peterson, joined with the infamous John Farer. John, how you feeling >>After feeling great? Love? What's going on here? The vibe is a cloud, cloud native. Lot of security conversation, data, stuff we love Cloud Native, >>M I >>A L, I mean big news. Security, security, data lake. I mean, who would've thought Amazon have a security data lake? You know, e k s, I mean >>You might have with that tweet you had out >>Inside outside the containers. Reminds me, it feels like coan here. >>It honestly, and there's a lot of overlap and it's interesting that you mention CubeCon because we talked to the next company when we were in Detroit just a couple weeks ago. Teleport E is the CEO and founder F Welcome to the show. How you doing? >>I'm doing well. Thank you for having me today. >>We feel very lucky to have you. We hosted Drew who works on the product marketing side of Teleport. Yeah, we got to talk caddies and golf last time on the show. We'll talk about some of your hobbies a little bit later, but just in case someone's tuning in, unfamiliar with Teleport, you're all about identity. Give us a little bit of a pitch, >>Little bit of our pitch. Teleport is the first identity native infrastructure access platform. It's used by engineers and it's used by machines. So notice that I used very specific choice of words first identity native, what does it mean? Identity native? It consists of three things and we're writing a book about those, but I'll let you know. Stay >>Tuned on that front. >>Exactly, yes, but I can talk about 'em today. So the first component of identity, native access is moving away from secrets towards true identity. The secrets, I mean things like passwords, private keys, browser cookies, session tokens, API keys, all of these things is secrets and they make you vulnerable. The point is, as you scale, it's absolutely impossible to protect all of the seekers because they keep growing and multiplying. So the probability of you getting hacked over time is high. So you need to get rid of secrets altogether that that's the first thing that we do. We use something called True Identity. It's a combination of your biometrics as well as identity of your machines. That's tpms, HSMs, Ubikes and so on, so forth. >>Go >>Ahead. The second component is Zero Trust. Like Teleport is built to not trust the network. So every resource inside of your data center automatically gets configured as if there is no perimeter it, it's as safe as it was on the public network. So that's the second thing. Don't trust the network. And the third one is that we keep access policy in one place. So Kubernetes clusters, databases on stage, rdp, all of these protocols, the access policy will be in one place. That's identity. Okay, >>So I'm, I'm a hacker. Pretend I'm a hacker. >>Easy. That sounds, >>That sounds really good to me. Yeah, I'm supposed to tell 'em you're hacker. Okay. I can go to one place and hack that. >>I get this question a lot. The thing is, you want centralization when it comes to security, think about your house being your AWS account. Okay? Everything inside your furniture, your valuable, like you'll watch collection, like that's your data, that's your servers, paper clusters, so and so forth. Right Now I have a choice and your house is in a really bad neighborhood. Okay, that's the bad internet. Do you wanna have 20 different doors or do you want to have one? But like amazing one, extremely secure, very modern. So it's very easy for you to actually maintain it and enforce policy. So the answer is, oh, you probably need to have >>One. And so you're designing security identity from a perspective of what's best for the security posture. Exactly. Sounds like, okay, so now that's not against the conventional wisdom of the perimeter's dead, the cloud's everywhere. So in a way kind of brings perimeter concepts into the posture because you know, the old model of the firewall, the moat >>It Yeah. Just doesn't scale. >>It doesn't scale. You guys bring the different solution. How do you fit into the new perimeters dead cloud paradigm? >>So the, the way it works that if you are, if you are using Teleport to access your infrastructure, let's just use for example, like a server access perspective. Like that machine that you're accessing doesn't listen on a network if it runs in Teleport. So instead Teleport creates this trusted outbound tunnels to the proxy. So essentially you are managing devices using out going connection. It's kind of like how your phone runs. Yeah. Like your phone is actually ultimate, it's like a teleport like, like I It's >>Like teleporting into your environment. >>Yeah, well play >>Journal. But >>Think about actually like one example of an amazing company that's true Zero trust that we're all familiar with would be Apple. Because every time you get a new iOS on your phone, the how is it different from Apple running massive software deployment into enormous cloud with billions of servers sprinkle all over the world without perimeter. How is it possible That's exactly the kind of technology that Teleports >>Gives you. I'm glad you clarified. I really wanted to get that out on the table. Cuz Savannah, this is, this is the paradigm shift around what an environment is Exactly. Did the Apple example, so, okay, tell 'em about customer traction. Are people like getting it right away? Are their teams ready? Are they go, oh my god this is >>Great. Pretty much you see we kinda lucky like in a, in a, like in this business and I'm walking around looking at all these successful startups, like every single one of them has a story about launching the right thing at just the right like moment. Like in technology, like the window to launch something is extremely short. Like months. I'm literally talking months. So we built Teleport started to work on it in like 2015. It was internal project, I believe it or not, also a famous example. It's really popular like internal project, put it on GitHub and it sat there relatively unnoticed for a while and then it just like took off around 2000 >>Because people start to feel the pain. They needed it. Exactly, >>Exactly. >>Yeah. The timing. Well and And what a great way to figure out when the timing is right? When you do something like that, put it on GitHub. Yeah. >>People >>Tell you what's up >>Yeah's Like a basketball player who can just like be suspended in the air over the hoop for like half the game and then finally his score and wins >>The game. Or video gamer who's lagged, everyone else is lagging and they got the latency thing. Exactly. Thing air. Okay. Talk about the engineering side. Cause I, I like this at co con, you mentioned it at the opening of this segment that you guys are for engineers, not it >>Business people. That's right. >>Explain that. Interesting. This is super important. Explain why and why that's resonating. >>So there is this ongoing shift on more and more responsibilities going to engineers. Like remember back in the day before we even had clouds, we had people actually racking servers, sticking cables into them, cutting their fingers, like trying to get 'em in. So those were not engineers, they were different teams. Yeah. But then you had system administrators who would maintain these machines for you. Now all of these things are done with code. And when these things are done with code and with APIs, that shifts to engineers. That is what Teleport does with policy. So if you want to have a set of rules that govern who or what and when under what circumstances can access what data like on Kubernetes, on databases, on, on servers wouldn't be nice to use code for it. So then you could use like a version control and you can keep track of changes. That's what teleport enables. Traditionally it preferred more kind of clicky graphical things like clicking buttons. And so it's just a different world, different way of doing it. So essentially if you want security as code, that's what Teleport provides and naturally this language resonates with this persona. >>Love that. Security is coding. It's >>A great term. Yeah. Love it. I wanna, I wanna, >>Okay. We coined it, someone else uses it on the show. >>We borrow it >>To use credit. When did you, when did you coin that? Just now? >>No, >>I think I coined it before >>You wanted it to be a scoop. I love that. >>I wish I had this story when I, I was like a, like a poor little 14 year old kid was dreaming about security code but >>Well Dave Ante will testify that I coined data as code before anyone else but it got 10 years ago. You >>Didn't hear it this morning. Jimmy actually brought it back up. Aws, you're about startups and he's >>Whoever came up with lisp programming language that had this concept that data and code are exact same thing, >>Right? We could debate nerd lexicon all day on the cube. In fact, that could even be a segment first >>Of we do. First of all, the fact that Lisp came up on the cube is actually a milestone because Lisp is a very popular language for object-oriented >>Grandfather of everything. >>Yes, yes, grandfather. Good, good. Good catch there. Yeah, well done. >>All right. I'm gonna bring us back. I wanna ask you a question >>Talking about nerd this LIS is really >>No, I think it's great. You know how nerdy we can get here though. I mean we can just hang out in the weeds the whole time. All right. I wanna ask you a question that I asked Drew when we were in Detroit just because I think for some folks and especially the audience, they may not have as distinctive a definition as y'all do. How do you define identity? >>Oh, that's a great question. So identity as a term was, it was always used for security purposes. But most people probably use identity in the context of single signon sso. Meaning that if your company uses identity for access, which instead of having each application have an account for you, like a data entry with your first name, last name emails and your role. Yeah. You instead have a central database, let's say Okta or something like that. Yep. And then you, you use that to access everything that's kind of identity based access because there is a single source of identity. What we say is that we, that needs to be extended because it it no longer enough because that identity can be stolen. So if someone gets access to your Okta account using your credentials, then they can become you. So in order for identity to be attached to you and become your true identity, you have to rely on physical world objects. That's biometrics your facial fingerprint, like your facial print, your fingerprints as well as biometric of your machine. Like your laptops have PPM modules on it. They're absolutely unique. They cannot be cloned stolen. So that is your identity as well. So if you combine whatever is in Octa with the biker chip in this laptop and with your finger that collectively is your true identity, which cannot be stolen. So it's can't be hacked. >>And someone can take my finger like they did in the movies. >>So they would have to do that. And they would also have to They'd >>Steal your match. Exactly, exactly. Yeah. And they'd have to have your eyes >>And they have to, and you have >>Whatever the figure that far, they meant what >>They want. So that is what Drew identity is from telecom and >>Biometric. I mean it's, we're so there right now it's, it's really not an issue. It's only getting faster and better to >>Market. There is one important thing I said earlier that I want to go back to that I said that teleport is not just for engineers, it's also for machines. Cuz machines they also need the identity. So when we talk about access silos and that there are many different doors into your apartment, there are many different ways to access your data. So on the infrastructure side, machines are doing more and more. So we are offloading more and more tasks to them. That's a really good, what do machines use to access each other? Biome? They use API keys, they use private keys, they use basically passwords. Yeah. Like they're secrets and we already know that that's bad, right? Yeah. So how do you extend biometrics to machines? So this is why AWS offers cloud HSM service. HSM is secure hardware security module. That's a unique private key for the machine that is not accessible by anyone. And Teleport uses that to give identities to machines. Does do >>Customers have to enable that themselves or they have that part of a Amazon, the that >>Special. So it's available on aws. It's available actually in good old, like old bare metal machines that have HSMs on them on the motherboard. And it's optional by the way Teleport can work even if you don't have that capability. But the point is that we tried, you >>Have a biometric equivalent for the machines with >>Take advantage of it. Yeah. It's a hardware thing that you have to have and we all have it. Amazon sells it. AWS sells it to us. Yeah. And Teleport allows you to leverage that to enhance security of the infrastructure. >>So that classic hardware software play on that we're always talking about here on the cube. It's all, it's all important. I think this is really fascinating though. So I had an on the way to the show, I just enrolled in Clear and I had used a different email. I enrolled for the second time and my eyes wouldn't let me have two accounts. And this was the first time I had tried to sort of hack my own digital identity. And the girl, I think she was humoring me that was, was kindly helping me, the clear employee. But I think she could tell I was trying to mess with it and I wanted to see what would happen. I wanted to see if I could have two different accounts linked to my biometric data and I couldn't it, it picked it up right away. >>That's your true >>Identity. Yeah, my true identity. So, and forgive me cuz this is kind of just a personal question. It might be a little bit finger finger to the wind, but how, just how much more secure if you could, if you could give us a, a rating or a percentage or a a number. How much more secure is leveraging biometric data for identity than the secrets we've been using historically? >>Look, I could, I played this game with you and I can answer like infinitely more secure, right? Like but you know how security works that it all depends on implementation. So let's say you, you can deploy teleport, you can put us on your infrastructure, but if you're running, let's say like a compromised old copy of WordPress that has vulnerability, you're gonna get a hack through that angle. But >>Happens happens to my personal website all the time. You just touched Yeah, >>But the fact is that we, I I don't see how your credentials will be stolen in this system simply because your TPM on your laptop and your fingerprint, they cannot be downloaded. They like a lot of people actually ask us a slightly different question. It's almost the opposite of it. Like how can I trust you with my biometrics? When I use my fingerprint? That's my information. I don't want the company I work at to get my fingerprint people. I think it's a legit question to ask. >>Yeah. And it's >>What you, the answer to that question is your fingerprint doesn't really leave your laptop teleport doesn't see your fingerprint. What happens is when your fingerprint gets validated, it's it's your laptop is matching what's on the tpm. Basically Apple does it and then Apple simply tells teleport, yep that's F or whoever. And that's what we are really using. So when you are using this form authentication, you're not sharing your biometric with the company you work at. >>It's a machine to human confirmation first and >>Then it's it. It's basically you and the laptop agreeing that my fingerprint matches your TPM and if your laptop agrees, it's basically hardware does validation. So, and teleport simply gets that signal. >>So Ed, my final question for you is here at the show coupon, great conversations there for your company. What's your conversations here like at reinvent? Are you meeting with Amazon people, customers? What are some of the conversations? Because this is a much broader, I mean it's still technical. Yep. But you know, a lot of business kind of discussions, architectural refactoring of organizations. What are some of the things that you're talking about here with Telepo? What are, >>So I will mention maybe two trends I observed. The first one is not even security related. It's basically how like as a cloud becomes more mature, people now actually at different organizations develop their own internal ways of doing cloud properly. And they're not the same. Because when cloud was earlier, like there were this like best practices that everyone was trying to follow and there was like, there was just a maybe lack of expertise in the world and and now finding that different organizations just do things completely different. Like one, like for example, yeah, like some companies love having handful, ideally just one enormous Kubernetes cluster with a bunch of applications on it. And the other companies, they create Kubernetes clusters for different workloads and it's just like all over the map and both of them are believed that they're doing it properly. >>Great example of bringing in, that's Kubernetes with the complexity. And >>That's kind of one trend I'm noticing. And the second one is security related. Is that everyone is struggling with the access silos is that ideally every organization is dreaming about a day, but they have like one place which is which with great user experience that simply spells out this is what policy is to access this particular data. And it gets a automatically enforced by every single cloud provider, but every single application, but every single protocol, but every single resource. But we don't have that unfortunately Teleport is slowly becoming that, of course. Excuse me for plugging >>TelePro. No, no worries. >>But it is this ongoing theme that everyone is can't wait to have that single source of truth for accessing their data. >>The second person to say single source of truth on this stage in the last 24 >>Hours or nerds will love that. I >>Know I feel well, but it's all, it all comes back to that. I keep using this tab analogy, but we all want everything in one place. We don't wanna, we don't wanna have to be going all over the place and to look for >>Both. Because if it's and everything else places, it means that different teams are responsible for it. Yeah. So it becomes this kind of internal information silo as well. So you not even, >>And the risks and liabilities there, depending on who's overseeing everything. That's awesome. Right? So we have a new challenge on the cube specific to this show thing of this as your 30 minute or 30 minute that would be bold. 32nd sizzle reel, Instagram highlight. What is your hot take? Most important thing, biggest theme of the show this year. >>This year. Okay, so here's my thing. Like I want cloud to become something I want it to be. And every time I come here and I'm like, are we closer? Are we closer? So here's what I want. I want all cloud providers collectively to kind of merge. So then when we use them, it feels like we are programming one giant machine. Kind of like in the matrix, right? The movie. So like I want cloud to feel like a computer, like to have this almost intimate experience you have with your laptop. Like you can like, like do this and the laptop like performs the instructions. So, and it feels to me that we are getting closer. So like walking around here and seeing how everything works now, like on the single signon on from a security perspective, there is so that consolidation is finally happening. So it's >>The software mainframe we used to call it back in 2010. >>Yeah, yeah. Just kind of planetary scale thing. Yes. It's not the Zuckerberg that who's building metaverse, it's people here at reinvent. >>Unlimited resource for developers. Just call in. Yeah, yeah. Give me some resource, spin me up some, some compute. >>I would like alter that slightly. I would just basically go and do this and you shouldn't even worry about how it gets done. Just put instructions into this planetary mainframe and mainframe will go and figure this out. Okay. >>We gotta take blue or blue or red pill. I >>Know. I was just gonna say y'all, we are this, this, this, this segment is lit. >>We got made tricks. We got brilliant. We didn't get super cloud in here but we, we can weave that in. We got >>List. We just said it. So >>We got lisp. Oh great con, great conversation. Cloud native. >>Outstanding conversation. And thank you so much for being here. We love having teleport on the show. Obviously we hope to see you back again soon and and Drew as well. And thank all of you for tuning in this afternoon. Live from Las Vegas, Nevada, where we are hanging out at AWS Reinvent with John Furrier. I'm Savannah Peterson. This is the Cube. We are the source for high tech coverage.

Published Date : Nov 30 2022

SUMMARY :

John, how you feeling Lot of security conversation, data, stuff we love Cloud Native, I mean, who would've thought Amazon have a security data lake? Inside outside the containers. the CEO and founder F Welcome to the show. Thank you for having me today. We'll talk about some of your hobbies a little bit later, but just in case someone's tuning in, unfamiliar with Teleport, So notice that I So the probability of you getting hacked over time is high. So that's the second thing. So I'm, I'm a hacker. I can go to one place and hack that. So the answer is, oh, you probably need to have into the posture because you know, How do you fit into the new perimeters So the, the way it works that if you are, if you are using Teleport to access your infrastructure, But How is it possible That's exactly the kind of technology that Teleports I'm glad you clarified. So we built Teleport started to work on it in like 2015. Because people start to feel the pain. When you do something like that, Cause I, I like this at co con, you mentioned it at the opening of this segment that you That's right. This is super important. So essentially if you want Security is coding. I wanna, I wanna, When did you, when did you coin that? I love that. You Didn't hear it this morning. We could debate nerd lexicon all day on the cube. First of all, the fact that Lisp came up on the cube is actually a milestone because Lisp is a Yeah, well done. I wanna ask you a question I wanna ask you a question that I asked Drew when we were in Detroit just because I think for some So in order for identity to be attached to you and become your true identity, you have to rely So they would have to do that. And they'd have to have your eyes So that is what Drew identity is from telecom and I mean it's, we're so there right now it's, it's really not an issue. So how do you extend biometrics to machines? And it's optional by the way Teleport can work even if you don't have that capability. And Teleport allows you to leverage that So I had an on the way to the show, I just enrolled It might be a little bit finger finger to the wind, but how, just how much more secure if you could, So let's say you, you can deploy teleport, you can put us on your infrastructure, Happens happens to my personal website all the time. But the fact is that we, I I don't see how your credentials So when you are using this form authentication, you're not sharing your biometric with the company you It's basically you and the laptop agreeing that my fingerprint matches your TPM and So Ed, my final question for you is here at the show coupon, great conversations there for And the other companies, Great example of bringing in, that's Kubernetes with the complexity. And the second one is security related. No, no worries. But it is this ongoing theme that everyone is can't wait to have that single I We don't wanna, we don't wanna have to be going all over the place and to look for So you not even, So we have a new challenge on the cube specific to this show thing of this as your 30 minute or 30 you have with your laptop. It's not the Zuckerberg that who's building metaverse, Give me some resource, spin me up some, some compute. I would just basically go and do this and you shouldn't even I We got made tricks. So We got lisp. And thank all of you for tuning in this afternoon.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Savannah PetersonPERSON

0.99+

AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

John FarerPERSON

0.99+

AppleORGANIZATION

0.99+

2010DATE

0.99+

2015DATE

0.99+

DetroitLOCATION

0.99+

Las VegasLOCATION

0.99+

Ev KontsevoyPERSON

0.99+

JimmyPERSON

0.99+

30 minuteQUANTITY

0.99+

DrewPERSON

0.99+

TeleportORGANIZATION

0.99+

30 minuteQUANTITY

0.99+

Dave AntePERSON

0.99+

EdPERSON

0.99+

JohnPERSON

0.99+

iOSTITLE

0.99+

second thingQUANTITY

0.99+

SavannahPERSON

0.99+

two accountsQUANTITY

0.99+

two different accountsQUANTITY

0.99+

John FurrierPERSON

0.99+

BothQUANTITY

0.99+

ZuckerbergPERSON

0.99+

third oneQUANTITY

0.99+

one placeQUANTITY

0.99+

bothQUANTITY

0.99+

each applicationQUANTITY

0.99+

Las Vegas, NevadaLOCATION

0.99+

TeleProORGANIZATION

0.99+

second componentQUANTITY

0.98+

This yearDATE

0.98+

10 years agoDATE

0.98+

todayDATE

0.98+

second timeQUANTITY

0.98+

firstQUANTITY

0.98+

first thingQUANTITY

0.98+

second personQUANTITY

0.98+

single sourceQUANTITY

0.97+

first timeQUANTITY

0.97+

three thingsQUANTITY

0.97+

20 different doorsQUANTITY

0.97+

this yearDATE

0.97+

InstagramORGANIZATION

0.96+

TelepoORGANIZATION

0.96+

first nameQUANTITY

0.96+

14 year oldQUANTITY

0.96+

Teleport EORGANIZATION

0.96+

oneQUANTITY

0.95+

billions of serversQUANTITY

0.95+

first oneQUANTITY

0.95+

second oneQUANTITY

0.95+

this afternoonDATE

0.94+

singleQUANTITY

0.94+

FirstQUANTITY

0.94+

GitHubORGANIZATION

0.94+

couple weeks agoDATE

0.94+

two trendsQUANTITY

0.92+

first componentQUANTITY

0.91+

CubeConORGANIZATION

0.9+

one important thingQUANTITY

0.89+

awsORGANIZATION

0.89+

one exampleQUANTITY

0.87+

Ken Exner, Chief Product Officer, Elastic | AWS re:Invent 2022


 

(upbeat music) >> Hello friends and welcome back to theCUBE's Live coverage of AWS re:Invent 2022 from the Venetian Expo in Vegas, baby. This show is absolutely packed. Lisa Martin with Dave Vellante, Dave this is day two, but really full day one of our wall to wall coverage on theCUBE. We've had great conversations the last half day this morning already, we've been talking with a lot of companies, a lot of Amazonians and some Amazonians that have left and gone on to interesting more things, which is what we're going to talk about next. >> Well, I'm excited about this segment because it's a really interesting space. You've got a search company who's gotten into observability and security and through our ETR partner our research, we do quarterly research and Elastic off the charts. Obviously they're the public company, so you can see how well they're doing. But the spending momentum on this platform is very, very strong and it has been consistently for quite some time. So really excited to learn more. >> The voice of the customer speaking loudly, from Elastic, its Chief Product Officer joins us, Ken Exner. Ken, welcome to the program. Hi, thank you, good to be here. >> Dave Vellante: Hey Ken. >> So a lot of us know about Elastic from Elastic Search but it's so much more than that these days. Talk about Elastic, what's going on now? What's the current product strategy? What's your vision? >> Yeah. So people know Elastic from the ELK Stack, you know Elastic Search, Logstash, Kibana. Very, very popular open source projects. They've been used by millions of developers for years and years. But one of the things that we started noticing over the years is that people were using it for all kinds of different use cases beyond just traditional search. So people started using Elastic Search to search through operational data, search through logs, search through all kinds of other types of data just to find different answers. And what we started realizing is the customers were taking us into different spaces. They took us into log analytics they started building log management solutions. And we said, cool, we can actually help these customers by providing solutions that already do this for them. So it took us into observability, they took us into security, and we started building solutions for security and observability based on what customers were starting to do with the platform. So customers can still use the platform for any number of different use cases for how do you get answers added data or they can use our pre-built packaged solutions for observability and security. >> So you were a longtime Amazonian. >> I was. I was. >> Talk a little bit about some of the things that you did there and what attracted you to Elastic? 'Cause it's only been a couple months, right? >> I've been here three months, I think three months as of yesterday. And I was at AWS for 16 years. So I was there a long, long time. I was there pretty much from the beginning. I was hired as one of the first product managers in AWS. Adam Selipsky hired me. And it was a great run. I had a ton of fun, I learned a lot. But you know, after 16 years I was kind of itching to do something new and it was going to take something special because I had a great gig and enjoyed the team at AWS. But I saw in Elastic sort of a great foundational technology they had a lot of momentum, a huge community behind it. I saw the business opportunity where they were going. I saw, you know the business opportunity of observability and security. These are massive industries with tons of business problems. Customers are excited about trying to get more answers out of data about their operational environment. And I saw, you know, that customers were struggling with their operating environments and things were becoming increasingly complicated. We used to talk in AWS about, you know how customers want to move from monolithic applications to monoliths, but one of the secrets was that things were increasingly complicated. Suddenly people had all these different microservices they had all these different managed services and their operating environment got complicated became this constellation of different systems, all emitting data. So companies like Elastic were helping people find answers in that data, find the problems with their systems so helping tame that complexity. So I saw that opportunity and I said I want to jump on that. Great foundational technology, good community and building solutions that actually helped solve real problems. >> Right. >> So, before you joined you probably looked back, and said, let think about the market, what's happening in the market space. What were the big trends that you saw that sort of informed your decision? >> Well, just sort of the mountain of data that was sort of emerging. Adam Selipsky in his talk this morning began by talking about how data is just multiplying constant. And I saw this, I saw how much data businesses were drowning in. Operational data, security data. You know, if you're trying to secure your business you have all these different endpoints you have all these different devices, you have different systems that you need to monitor all tons of data. And companies like Elastic were helping companies sort of manage that complexity, helping them find answers in that. So, when you're trying to track intruders or trying to track you know, malicious activity, there's a ton of different systems you need to pay attention to. And you know, there's a bunch of data. It's different devices, laptops and phone devices and stuff that you need to pay attention to. And you find correlations across that to figure out what is going on in your network, what is going on in your business. And that was exciting to me. This is a company sort of tackling one of the hardest problems which is helping you understand your operating environment, helping you understand and secure your business. >> So everybody's getting into observability. >> Yep. >> Right, it's a very crowded space right now. First of all, you know it's like overnight it just became the hottest thing going. VCs were throwing money at it. Why was that and how were you guys different? >> Well, we began by focusing on log analytics because that was the core of what we were doing. But customers started using it beyond log analytics and started using it for APM and started using it for performance data. And what we realized is that we could do all this for customers. So we ended up, sort of overnight over the course of three years building that a complete observe observability suite. So you can do APM, you can do profiling, you can do tracing, sort of distributed tracing, you can do synthetic monitoring everything you want to do, wheel user wondering. >> Metrics? >> All of it, metrics, all of it. And you can use the same system for this. So this was sort of a powerful concept, not only is it the best in leading log system, it also provides everything you need for complete observability. And because it's based on this open platform you can extend it to a number of different scenarios. So this is important, a lot of the different observability companies provide you something that's sort of packaged and as long as you're trying to do what it wants to support, it's great. But with Elastic, you have this flexible data architecture that you can use for anything. So companies use it to monitor assembly lines, they use it to monitor dish networks, for example use it to not only manage their fleet of servers they also use it to manage all their devices. So 25 million desktop devices. So, you know, observability systems like that that can do a number of different scenarios, I think that's a powerful thing. It's not just about how do you manage your servers how do you manage the things that are simple. It's how do you manage anything? How do you get observability into anything. >> Multiple use cases. >> Sorry, when you say complete, okay you talked about all the different APM, log analytics tracing, metrics, and also end-to-end. >> Ken Exner: End-to-end, yeah. >> Could you talk about that component of complete? >> So, if you're trying to find an issue like you have some metric that goes into alarm. You want to have a metric system that has alarming. Once that metric goes in alarm you're going to want to dig into your log. So you're going to want it to take you to the area of your logs that has that issue. Once you gets to there, you're going to want to find the trace ID that takes you to your traces and looks at sort of profiling, distributed tracing information. So a system that can do all of that end-to-end is a powerful solution. So it not only helps you track things end-to-end across the different signals that you're monitoring, but it actually helps you remediate more quickly. And the other thing that Elastic does that is unique is a lot of ML in this. So not only helping you find the information but surfacing things before you even know of them. So anomaly detection for example, helps you know about something before you even realize that there was an issue. So you should pay attention to this because it's anomalous. So a lot of systems help you find something if you know what to look for. But we're trying to help you not only find the things that you know to look for, but help you find the things that you didn't even think to know about. >> And it's fair to say one of your differentiators is you're open, open source. I mean, maybe talk about the ELK stack a little bit and how that plays. >> Yeah, well, so the great thing about this is we've extended that openness to both security and to observability. An example of this on the security side is all the detection rules that you use for looking for intrusion all the detection rules are open source and there's an entire community around this. So if you wanted to create a detection rule you can publish an open source, there's a bunch in GitHub you can benefit from what the community is doing as well. So in the world of security you want to be supported by the entire community, everyone looking for the same kind of issues. And there's an entire community around Elastic that is helping support these detection rules. So that approach, you know wanting to focus on community is differentiating for us. Not just, we got you covered as long you use things from us you can use it from the entire community. >> Well there implies the name Elastic. >> Yeah >> Talk a little bit about the influence that the customer has in the product roadmap and the direction. You've talked a little bit in the beginning about customers were leading us in different directions. It sounds very Amazonian in terms of following the customers where they go. >> It does, it actually does, it was one of the things that resonated for me personally is the journey that Elastic took to observability and security was customer led. So, we started looking at what customers were doing and realized that they were taking us into log analytics they were taking us into APM, they were taking us into these different solutions, and yeah, it is an Amazonian thing, so it resonated for me personally. And they're going to continue taking us in new places. Like we love seeing all the novel things that customers do with the platform and it's sort of one of the hallmarks of a great platform is you can have all kinds of novel things that, novel use cases for how people use your platform and we'll continue to see things and we may get taken into other solutions as well as we start seeing things emerge, like common patterns. But for now we're really excited about security and observability. >> So what do you see, so security's a big space, right? >> Yep. >> You see the optiv taxonomy and it makes your eyes bleed 'cause there's so many tools in there. Where do you fit in that taxonomy? How do you see and think about the security space and the opportunity for your customers? >> Yeah, so we began with logs in the security space as well. So SIEM, which is intrusion detection is based on aggregating a bunch of logs and helping you do threat hunting on those logs. So looking for patterns of malicious behavior or intrusion. So we started there and we did both detections as well as just ad hoc threat hunting. But then we started expanding into endpoint protection. So if we were going to have agents on all these different devices they were gathering logs, what if we also started providing remediation. So if you had malicious activity that was happening on one of the servers, don't just grab the information quarantine it, isolate it. So that took us into sort of endpoint protection or XDR. And then beyond that, we recently got into cloud security as well. So similar to observability, we started with logs but expanded to a full suite so that you can do everything. You can have both endpoint protection, you can have cloud security, all of it from one solution. >> Security is a very crowded market as well. What's your superpower? >> Ken Exner: What's our super power? >> Yeah. >> I think it, a lot of it is just the openness. It's the open platform, there's the community around it. People know and love the, the Elastic Search ELK stack and use it, we go into businesses all the time and they're familiar, their security engineers are using our product for searching through logs. So they're familiar with the product already and the community behind it. So they were excited about being able to use detection rules from other businesses and stay on top of that and be part of that community. The transparency of that is important to the customers. So if you're trying to be the most secure place, the most secure business, you want to basically invest in a community that's going to support that and not be alone in that. >> Right, absolutely, so much that rides on that. Favorite customer example that you think really articulates the value of Elastic, its openness, its transparency. >> Well, there's a customer Dish Media Dish Networks that's going to present here at re:Invent tomorrow at 1:45 at Mandalay Bay. I'm excited about their example because they use it to manage, I think it's 10 billion records a day across 25 million devices. So it illustrates the scale that we can support for managing observability for a company but also just sort of the unique use cases. We can use this for set top boxes for all their customers and they can track the performance that those customers are having. It's a unique case that a lot of vendors couldn't support but we can support because of the openness of the platform, the open data architecture that we have. So I think it illustrates the scale that we support, the elasticity, but also the openness of the data platform. >> Awesome and folks can catch that tomorrow, 1:45 PM at the Mandalay Bay. Last question for you, Ken, is you have a bumper sticker. >> Ken Exner: A bumper sticker? >> A bumper sticker you're going to put it on your fancy sexy new car and it's about elastic, what does it say? >> Helping you get answers out of data. So yeah. >> Love it, love it. Brilliant. >> Ken Exner: Thank you. >> Short and sweet. Ken, it's been a pleasure. >> It's been a pleasure being here, thank you. >> Thank you so much for sharing your journey with us as an Amazonian now into Elastic what Elastic is doing from a product perspective. We will keep our eyes peeled as Dave was saying. >> Ken Exner: Fantastic. >> The data show is really strong spending momentum so well done. >> Thank you very much, good to meet you. >> Our pleasure. For our guest and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)

Published Date : Nov 29 2022

SUMMARY :

and some Amazonians that have left so you can see how well they're doing. from Elastic, its Chief So a lot of us know about the ELK Stack, you know I was. And I saw, you know, that What were the big trends that you saw and stuff that you need So everybody's getting First of all, you know So you can do APM, you can do profiling, architecture that you you talked about all the the trace ID that takes you to your traces and how that plays. So that approach, you know that the customer has and it's sort of one of the hallmarks and the opportunity for your customers? so that you can do everything. What's your superpower? and the community behind it. that you think really So it illustrates the you have a bumper sticker. Helping you get answers out of data. Love it, love it. Short and sweet. It's been a pleasure Thank you so much so well done. in live enterprise and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Adam SelipskyPERSON

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Lisa MartinPERSON

0.99+

Ken ExnerPERSON

0.99+

KenPERSON

0.99+

16 yearsQUANTITY

0.99+

three monthsQUANTITY

0.99+

AWSORGANIZATION

0.99+

Mandalay BayLOCATION

0.99+

Elastic SearchTITLE

0.99+

three yearsQUANTITY

0.99+

bothQUANTITY

0.99+

Venetian ExpoEVENT

0.99+

VegasLOCATION

0.98+

one solutionQUANTITY

0.98+

oneQUANTITY

0.98+

25 million devicesQUANTITY

0.97+

yesterdayDATE

0.97+

ElasticTITLE

0.96+

tomorrow at 1:45DATE

0.96+

tomorrow, 1:45 PMDATE

0.96+

FirstQUANTITY

0.95+

25 million desktopQUANTITY

0.94+

APMTITLE

0.91+

ElasticORGANIZATION

0.91+

10 billion records a dayQUANTITY

0.88+

day oneQUANTITY

0.88+

theCUBEORGANIZATION

0.87+

ELK StackORGANIZATION

0.87+

this morningDATE

0.86+

day twoQUANTITY

0.85+

last half dayDATE

0.84+

GitHubORGANIZATION

0.83+

couple monthsQUANTITY

0.82+

InventEVENT

0.82+

AmazonianORGANIZATION

0.79+

AWS re:Invent 2022EVENT

0.78+

first product managersQUANTITY

0.77+

millions of developersQUANTITY

0.76+

tons of dataQUANTITY

0.76+

Elastic Search ELKTITLE

0.74+

LogstashORGANIZATION

0.67+

yearsQUANTITY

0.67+

KibanaORGANIZATION

0.67+

reEVENT

0.55+

ELKORGANIZATION

0.51+

Evan Kaplan, InfluxData | AWS re:invent 2022


 

>>Hey everyone. Welcome to Las Vegas. The Cube is here, live at the Venetian Expo Center for AWS Reinvent 2022. Amazing attendance. This is day one of our coverage. Lisa Martin here with Day Ante. David is great to see so many people back. We're gonna be talk, we've been having great conversations already. We have a wall to wall coverage for the next three and a half days. When we talk to companies, customers, every company has to be a data company. And one of the things I think we learned in the pandemic is that access to real time data and real time analytics, no longer a nice to have that is a differentiator and a competitive all >>About data. I mean, you know, I love the topic and it's, it's got so many dimensions and such texture, can't get enough of data. >>I know we have a great guest joining us. One of our alumni is back, Evan Kaplan, the CEO of Influx Data. Evan, thank you so much for joining us. Welcome back to the Cube. >>Thanks for having me. It's great to be here. So here >>We are, day one. I was telling you before we went live, we're nice and fresh hosts. Talk to us about what's new at Influxed since the last time we saw you at Reinvent. >>That's great. So first of all, we should acknowledge what's going on here. This is pretty exciting. Yeah, that does really feel like, I know there was a show last year, but this feels like the first post Covid shows a lot of energy, a lot of attention despite a difficult economy. In terms of, you know, you guys were commenting in the lead into Big data. I think, you know, if we were to talk about Big Data five, six years ago, what would we be talking about? We'd been talking about Hadoop, we were talking about Cloudera, we were talking about Hortonworks, we were talking about Big Data Lakes, data stores. I think what's happened is, is this this interesting dynamic of, let's call it if you will, the, the secularization of data in which it breaks into different fields, different, almost a taxonomy. You've got this set of search data, you've got this observability data, you've got graph data, you've got document data and what you're seeing in the market and now you have time series data. >>And what you're seeing in the market is this incredible capability by developers as well and mostly open source dynamic driving this, this incredible capability of developers to assemble data platforms that aren't unicellular, that aren't just built on Hado or Oracle or Postgres or MySQL, but in fact represent different data types. So for us, what we care about his time series, we care about anything that happens in time, where time can be the primary measurement, which if you think about it, is a huge proportion of real data. Cuz when you think about what drives ai, you think about what happened, what happened, what happened, what happened, what's going to happen. That's the functional thing. But what happened is always defined by a period, a measurement, a time. And so what's new for us is we've developed this new open source engine called IOx. And so it's basically a refresh of the whole database, a kilo database that uses Apache Arrow, par K and data fusion and turns it into a super powerful real time analytics platform. It was already pretty real time before, but it's increasingly now and it adds SQL capability and infinite cardinality. And so it handles bigger data sets, but importantly, not just bigger but faster, faster data. So that's primarily what we're talking about to show. >>So how does that affect where you can play in the marketplace? Is it, I mean, how does it affect your total available market? Your great question. Your, your customer opportunities. >>I think it's, it's really an interesting market in that you've got all of these different approaches to database. Whether you take data warehouses from Snowflake or, or arguably data bricks also. And you take these individual database companies like Mongo Influx, Neo Forge, elastic, and people like that. I think the commonality you see across the volume is, is many of 'em, if not all of them, are based on some sort of open source dynamic. So I think that is an in an untractable trend that will continue for on. But in terms of the broader, the broader database market, our total expand, total available tam, lots of these things are coming together in interesting ways. And so the, the, the wave that will ride that we wanna ride, because it's all big data and it's all increasingly fast data and it's all machine learning and AI is really around that measurement issue. That instrumentation the idea that if you're gonna build any sophisticated system, it starts with instrumentation and the journey is defined by instrumentation. So we view ourselves as that instrumentation tooling for understanding complex systems. And how, >>I have to follow quick follow up. Why did you say arguably data bricks? I mean open source ethos? >>Well, I was saying arguably data bricks cuz Spark, I mean it's a great company and it's based on Spark, but there's quite a gap between Spark and what Data Bricks is today. And in some ways data bricks from the outside looking in looks a lot like Snowflake to me looks a lot like a really sophisticated data warehouse with a lot of post-processing capabilities >>And, and with an open source less >>Than a >>Core database. Yeah. Right, right, right. Yeah, I totally agree. Okay, thank you for that >>Part that that was not arguably like they're, they're not a good company or >>No, no. They got great momentum and I'm just curious. Absolutely. You know, so, >>So talk a little bit about IOx and, and what it is enabling you guys to achieve from a competitive advantage perspective. The key differentiators give us that scoop. >>So if you think about, so our old storage engine was called tsm, also open sourced, right? And IOx is open sourced and the old storage engine was really built around this time series measurements, particularly metrics, lots of metrics and handling those at scale and making it super easy for developers to use. But, but our old data engine only supported either a custom graphical UI that you'd build yourself on top of it or a dashboarding tool like Grafana or Chronograph or things like that. With IOCs. Two or three interventions were important. One is we now support, we'll support things like Tableau, Microsoft, bi, and so you're taking that same data that was available for instrumentation and now you're using it for business intelligence also. So that became super important and it kind of answers your question about the expanded market expands the market. The second thing is, when you're dealing with time series data, you're dealing with this concept of cardinality, which is, and I don't know if you're familiar with it, but the idea that that it's a multiplication of measurements in a table. And so the more measurements you want over the more series you have, you have this really expanding exponential set that can choke a database off. And the way we've designed IIS to handle what we call infinite cardinality, where you don't even have to think about that design point of view. And then lastly, it's just query performance is dramatically better. And so it's pretty exciting. >>So the unlimited cardinality, basically you could identify relationships between data and different databases. Is that right? Between >>The same database but different measurements, different tables, yeah. Yeah. Right. Yeah, yeah. So you can handle, so you could say, I wanna look at the way, the way the noise levels are performed in this room according to 400 different locations on 25 different days, over seven months of the year. And that each one is a measurement. Each one adds to cardinality. And you can say, I wanna search on Tuesdays in December, what the noise level is at 2:21 PM and you get a very quick response. That kind of instrumentation is critical to smarter systems. How are >>You able to process that data at at, in a performance level that doesn't bring the database to its knees? What's the secret sauce behind that? >>It's AUM database. It's built on Parque and Apache Arrow. But it's, but to say it's nice to say without a much longer conversation, it's an architecture that's really built for pulling that kind of data. If you know the data is time series and you're looking for a time measurement, you already have the ability to optimize pretty dramatically. >>So it's, it's that purpose built aspect of it. It's the >>Purpose built aspect. You couldn't take Postgres and do the same >>Thing. Right? Because a lot of vendors say, oh yeah, we have time series now. Yeah. Right. So yeah. Yeah. Right. >>And they >>Do. Yeah. But >>It's not, it's not, the founding of the company came because Paul Dicks was working on Wall Street building time series databases on H base, on MyQ, on other platforms and realize every time we do it, we have to rewrite the code. We build a bunch of application logic to handle all these. We're talking about, we have customers that are adding hundreds of millions to billions of points a second. So you're talking about an ingest level. You know, you think about all those data points, you're talking about ingest level that just doesn't, you know, it just databases aren't designed for that. Right? And so it's not just us, our competitors also build good time series databases. And so the category is really emergent. Yeah, >>Sure. Talk about a favorite customer story they think really articulates the value of what Influx is doing, especially with IOx. >>Yeah, sure. And I love this, I love this story because you know, Tesla may not be in favor because of the latest Elon Musker aids, but, but, but so we've had about a four year relationship with Tesla where they built their power wall technology around recording that, seeing your device, seeing the stuff, seeing the charging on your car. It's all captured in influx databases that are reporting from power walls and mega power packs all over the world. And they report to a central place at, at, at Tesla's headquarters and it reports out to your phone and so you can see it. And what's really cool about this to me is I've got two Tesla cars and I've got a Tesla solar roof tiles. So I watch this date all the time. So it's a great customer story. And actually if you go on our website, you can see I did an hour interview with the engineer that designed the system cuz the system is super impressive and I just think it's really cool. Plus it's, you know, it's all the good green stuff that we really appreciate supporting sustainability, right? Yeah. >>Right, right. Talk about from a, what's in it for me as a customer, what you guys have done, the change to IOCs, what, what are some of the key features of it and the key values in it for customers like Tesla, like other industry customers as well? >>Well, so it's relatively new. It just arrived in our cloud product. So Tesla's not using it today. We have a first set of customers starting to use it. We, the, it's in open source. So it's a very popular project in the open source world. But the key issues are, are really the stuff that we've kind of covered here, which is that a broad SQL environment. So accessing all those SQL developers, the same people who code against Snowflake's data warehouse or data bricks or Postgres, can now can code that data against influx, open up the BI market. It's the cardinality, it's the performance. It's really an architecture. It's the next gen. We've been doing this for six years, it's the next generation of everything. We've seen how you make time series be super performing. And that's only relevant because more and more things are becoming real time as we develop smarter and smarter systems. The journey is pretty clear. You instrument the system, you, you let it run, you watch for anomalies, you correct those anomalies, you re instrument the system. You do that 4 billion times, you have a self-driving car, you do that 55 times, you have a better podcast that is, that is handling its audio better, right? So everything is on that journey of getting smarter and smarter. So >>You guys, you guys the big committers to IOCs, right? Yes. And how, talk about how you support the, develop the surrounding developer community, how you get that flywheel effect going >>First. I mean it's actually actually a really kind of, let's call it, it's more art than science. Yeah. First of all, you you, you come up with an architecture that really resonates for developers. And Paul Ds our founder, really is a developer's developer. And so he started talking about this in the community about an architecture that uses Apache Arrow Parque, which is, you know, the standard now becoming for file formats that uses Apache Arrow for directing queries and things like that and uses data fusion and said what this thing needs is a Columbia database that sits behind all of this stuff and integrates it. And he started talking about it two years ago and then he started publishing in IOCs that commits in the, in GitHub commits. And slowly, but over time in Hacker News and other, and other people go, oh yeah, this is fundamentally right. >>It addresses the problems that people have with things like click cows or plain databases or Coast and they go, okay, this is the right architecture at the right time. Not different than original influx, not different than what Elastic hit on, not different than what Confluent with Kafka hit on and their time is you build an audience of people who are committed to understanding this kind of stuff and they become committers and they become the core. Yeah. And you build out from it. And so super. And so we chose to have an MIT open source license. Yeah. It's not some secondary license competitors can use it and, and competitors can use it against us. Yeah. >>One of the things I know that Influx data talks about is the time to awesome, which I love that, but what does that mean? What is the time to Awesome. Yeah. For developer, >>It comes from that original story where, where Paul would have to write six months of application logic and stuff to build a time series based applications. And so Paul's notion was, and this was based on the original Mongo, which was very successful because it was very easy to use relative to most databases. So Paul developed this commitment, this idea that I quickly joined on, which was, hey, it should be relatively quickly for a developer to build something of import to solve a problem, it should be able to happen very quickly. So it's got a schemaless background so you don't have to know the schema beforehand. It does some things that make it really easy to feel powerful as a developer quickly. And if you think about that journey, if you feel powerful with a tool quickly, then you'll go deeper and deeper and deeper and pretty soon you're taking that tool with you wherever you go, it becomes the tool of choice as you go to that next job or you go to that next application. And so that's a fundamental way we think about it. To be honest with you, we haven't always delivered perfectly on that. It's generally in our dna. So we do pretty well, but I always feel like we can do better. >>So if you were to put a bumper sticker on one of your Teslas about influx data, what would it >>Say? By the way, I'm not rich. It just happened to be that we have two Teslas and we have for a while, we just committed to that. The, the, so ask the question again. Sorry. >>Bumper sticker on influx data. What would it say? How, how would I >>Understand it be time to Awesome. It would be that that phrase his time to Awesome. Right. >>Love that. >>Yeah, I'd love it. >>Excellent time to. Awesome. Evan, thank you so much for joining David, the >>Program. It's really fun. Great thing >>On Evan. Great to, you're on. Haven't Well, great to have you back talking about what you guys are doing and helping organizations like Tesla and others really transform their businesses, which is all about business transformation these days. We appreciate your insights. >>That's great. Thank >>You for our guest and Dave Ante. I'm Lisa Martin, you're watching The Cube, the leader in emerging and enterprise tech coverage. We'll be right back with our next guest.

Published Date : Nov 29 2022

SUMMARY :

And one of the things I think we learned in the pandemic is that access to real time data and real time analytics, I mean, you know, I love the topic and it's, it's got so many dimensions and such Evan, thank you so much for joining us. It's great to be here. Influxed since the last time we saw you at Reinvent. terms of, you know, you guys were commenting in the lead into Big data. And so it's basically a refresh of the whole database, a kilo database that uses So how does that affect where you can play in the marketplace? And you take these individual database companies like Mongo Influx, Why did you say arguably data bricks? And in some ways data bricks from the outside looking in looks a lot like Snowflake to me looks a lot Okay, thank you for that You know, so, So talk a little bit about IOx and, and what it is enabling you guys to achieve from a And the way we've designed IIS to handle what we call infinite cardinality, where you don't even have to So the unlimited cardinality, basically you could identify relationships between data And you can say, time measurement, you already have the ability to optimize pretty dramatically. So it's, it's that purpose built aspect of it. You couldn't take Postgres and do the same So yeah. And so the category is really emergent. especially with IOx. And I love this, I love this story because you know, what you guys have done, the change to IOCs, what, what are some of the key features of it and the key values in it for customers you have a self-driving car, you do that 55 times, you have a better podcast that And how, talk about how you support architecture that uses Apache Arrow Parque, which is, you know, the standard now becoming for file And you build out from it. One of the things I know that Influx data talks about is the time to awesome, which I love that, So it's got a schemaless background so you don't have to know the schema beforehand. It just happened to be that we have two Teslas and we have for a while, What would it say? Understand it be time to Awesome. Evan, thank you so much for joining David, the Great thing Haven't Well, great to have you back talking about what you guys are doing and helping organizations like Tesla and others really That's great. You for our guest and Dave Ante.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavidPERSON

0.99+

Lisa MartinPERSON

0.99+

Evan KaplanPERSON

0.99+

six monthsQUANTITY

0.99+

EvanPERSON

0.99+

TeslaORGANIZATION

0.99+

Influx DataORGANIZATION

0.99+

PaulPERSON

0.99+

55 timesQUANTITY

0.99+

twoQUANTITY

0.99+

2:21 PMDATE

0.99+

Las VegasLOCATION

0.99+

Dave AntePERSON

0.99+

Paul DicksPERSON

0.99+

six yearsQUANTITY

0.99+

last yearDATE

0.99+

hundreds of millionsQUANTITY

0.99+

Mongo InfluxORGANIZATION

0.99+

4 billion timesQUANTITY

0.99+

TwoQUANTITY

0.99+

DecemberDATE

0.99+

MicrosoftORGANIZATION

0.99+

InfluxedORGANIZATION

0.99+

AWSORGANIZATION

0.99+

HortonworksORGANIZATION

0.99+

InfluxORGANIZATION

0.99+

IOxTITLE

0.99+

MySQLTITLE

0.99+

threeQUANTITY

0.99+

TuesdaysDATE

0.99+

each oneQUANTITY

0.98+

400 different locationsQUANTITY

0.98+

25 different daysQUANTITY

0.98+

first setQUANTITY

0.98+

an hourQUANTITY

0.98+

FirstQUANTITY

0.98+

six years agoDATE

0.98+

The CubeTITLE

0.98+

OneQUANTITY

0.98+

Neo ForgeORGANIZATION

0.98+

second thingQUANTITY

0.98+

Each oneQUANTITY

0.98+

Paul DsPERSON

0.97+

IOxORGANIZATION

0.97+

todayDATE

0.97+

TeslasORGANIZATION

0.97+

MITORGANIZATION

0.96+

PostgresORGANIZATION

0.96+

over seven monthsQUANTITY

0.96+

oneQUANTITY

0.96+

fiveDATE

0.96+

Venetian Expo CenterLOCATION

0.95+

Big Data LakesORGANIZATION

0.95+

ClouderaORGANIZATION

0.94+

ColumbiaLOCATION

0.94+

InfluxDataORGANIZATION

0.94+

Wall StreetLOCATION

0.93+

SQLTITLE

0.92+

ElasticTITLE

0.92+

Data BricksORGANIZATION

0.92+

Hacker NewsTITLE

0.92+

two years agoDATE

0.91+

OracleORGANIZATION

0.91+

AWS Reinvent 2022EVENT

0.91+

Elon MuskerPERSON

0.9+

SnowflakeORGANIZATION

0.9+

ReinventORGANIZATION

0.89+

billions of points a secondQUANTITY

0.89+

four yearQUANTITY

0.88+

ChronographTITLE

0.88+

ConfluentTITLE

0.87+

SparkTITLE

0.86+

ApacheORGANIZATION

0.86+

SnowflakeTITLE

0.85+

GrafanaTITLE

0.85+

GitHubORGANIZATION

0.84+

Brian Gilmore, Influx Data | Evolving InfluxDB into the Smart Data Platform


 

>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now, in this program, we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program, you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think, like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean, if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems. Certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean, commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away. Just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean, we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like, take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and, you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally, I would just say please, like watch in ice in Tim's sessions, Like these are two of our best and brightest. They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time, really hot area. As Brian said in a moment, I'll be right back with Anna East Dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't want to miss this.

Published Date : Nov 8 2022

SUMMARY :

we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. who are using out on a, on a daily basis, you know, and having that sort of big shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, results in, in, you know, milliseconds of time since it hit the, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try you know, the risk of, of, you know, any issues that can come with new software rollouts. And you can do some experimentation and, you know, using the cloud resources. but you know, when it came to this particular new engine, you know, that power performance really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is, you know, really starting to hit that steep part of the S-curve. going out and, you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. the critical aspects of key open source components of the Influx DB engine,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Brian GilmorePERSON

0.99+

Tim YokumPERSON

0.99+

DavePERSON

0.99+

Dave ValantePERSON

0.99+

BrianPERSON

0.99+

TimPERSON

0.99+

60,000 peopleQUANTITY

0.99+

InfluxORGANIZATION

0.99+

todayDATE

0.99+

BryanPERSON

0.99+

twoQUANTITY

0.99+

twiceQUANTITY

0.99+

bothQUANTITY

0.99+

firstQUANTITY

0.99+

three years agoDATE

0.99+

Influx DBTITLE

0.99+

Influx DataORGANIZATION

0.99+

tomorrowDATE

0.98+

ApacheORGANIZATION

0.98+

Anna East Dos GeorgioPERSON

0.98+

IOTORGANIZATION

0.97+

oneQUANTITY

0.97+

In Flux DataORGANIZATION

0.96+

InfluxTITLE

0.95+

The CubeORGANIZATION

0.95+

tonsQUANTITY

0.95+

CubeORGANIZATION

0.94+

RustTITLE

0.93+

both enterprisesQUANTITY

0.92+

iot TTITLE

0.91+

secondQUANTITY

0.89+

GoTITLE

0.88+

two thumbsQUANTITY

0.87+

Anna EastPERSON

0.87+

ParqueTITLE

0.85+

a minute agoDATE

0.84+

Influx StateORGANIZATION

0.83+

Dos GeorgioORGANIZATION

0.8+

influx dataORGANIZATION

0.8+

Apache ArrowORGANIZATION

0.76+

GitHubORGANIZATION

0.75+

BryanLOCATION

0.74+

phase oneQUANTITY

0.71+

past MayDATE

0.69+

GoORGANIZATION

0.64+

number twoQUANTITY

0.64+

millisecond agoDATE

0.61+

InfluxDBTITLE

0.6+

TimeTITLE

0.55+

industrialQUANTITY

0.54+

phase twoQUANTITY

0.54+

ParqueCOMMERCIAL_ITEM

0.53+

coupleQUANTITY

0.5+

timeTITLE

0.5+

thingsQUANTITY

0.49+

TSIORGANIZATION

0.4+

ArrowTITLE

0.38+

PARQUEOTHER

0.3+

Gunnar Hellekson & Adnan Ijaz | AWS re:Invent 2022


 

>>Hello everyone. Welcome to the Cube's coverage of AWS Reinvent 22. I'm John Ferer, host of the Cube. Got some great coverage here talking about software supply chain and sustainability in the cloud. We've got a great conversation. Gunner Helickson, Vice President and general manager at Red Hat Enterprise Linux and Business Unit of Red Hat. Thanks for coming on. And Edon Eja Director, Product Management of commercial software services aws. Gentlemen, thanks for joining me today. >>Oh, it's a pleasure. >>You know, the hottest topic coming out of Cloudnative developer communities is slide chain software sustainability. This is a huge issue. As open source continues to power away and fund and grow this next generation modern development environment, you know, supply chain, you know, sustainability is a huge discussion because you gotta check things out where, what's in the code. Okay, open source is great, but now we gotta commercialize it. This is the topic, Gunner, let's get in, get with you. What, what are you seeing here and what's some of the things that you're seeing around the sustainability piece of it? Because, you know, containers, Kubernetes, we're seeing that that run time really dominate this new abstraction layer, cloud scale. What's your thoughts? >>Yeah, so I, it's interesting that the, you know, so Red Hat's been doing this for 20 years, right? Making open source safe to consume in the enterprise. And there was a time when in order to do that you needed to have a, a long term life cycle and you needed to be very good at remediating security vulnerabilities. And that was kind of, that was the bar that you had that you had to climb over. Nowadays with the number of vulnerabilities coming through, what people are most worried about is, is kind of the providence of the software and making sure that it has been vetted and it's been safe, and that that things that you get from your vendor should be more secure than things that you've just downloaded off of GitHub, for example. Right? And that's, that's a, that's a place where Red Hat's very comfortable living, right? >>Because we've been doing it for, for 20 years. I think there, there's another, there's another aspect to this, to this supply chain question as well, especially with the pandemic. You know, we've got these, these supply chains have been jammed up. The actual physical supply chains have been jammed up. And, and the two of these issues actually come together, right? Because as we've been go, as we go through the pandemic, we've had these digital transformation efforts, which are in large part people creating software in order to manage better their physical supply chain problems. And so as part of that digital transformation, you have another supply chain problem, which is the software supply chain problem, right? And so these two things kind of merge on these as people are trying to improve the performance of transportation systems, logistics, et cetera. Ultimately it all boils down to it all. Both supply chain problems actually boil down to a software problem. It's very >>Interesting that, Well, that is interesting. I wanna just follow up on that real quick if you don't mind. Because if you think about the convergence of the software and physical world, you know, that's, you know, IOT and also hybrid cloud kind of plays into that at scale, this opens up more surface area for attacks, especially when you're under a lot of pressure. This is where, you know, you can, you have a service area in the physical side and you have constraints there. And obviously the pandemic causes problems, but now you've got the software side. Can you, how are you guys handling that? Can you just share a little bit more of how you guys are looking at that with Red Hat? What's, what's the customer challenge? Obviously, you know, skills gaps is one, but like that's a convergence at the same time. More security problems. >>Yeah, yeah, that's right. And certainly the volume of, if we just look at security vulnerabilities themselves, just the volume of security vulnerabilities has gone up considerably as more people begin using the software. And as the software becomes more important to kind of critical infrastructure, more eyeballs are on it. And so we're uncovering more problems, which is kind of, that's, that's okay. That's how the world works. And so certainly the, the number of remediations required every year has gone up. But also the customer expectations, as I've mentioned before, the customer expectations have changed, right? People want to be able to show to their auditors and to their regulators that no, we, we, in fact, I can show the providence of the software that I'm using. I didn't just download something random off the internet. I actually have, like you, you know, adults paying attention to the, how the software gets put together. >>And it's still, honestly, it's still very early days. We can, I think the, in as an industry, I think we're very good at managing, identifying remediating vulnerabilities in the aggregate. We're pretty good at that. I think things are less clear when we talk about kind of the management of that supply chain, proving the provenance, proving the, and creating a resilient supply chain for software. We have lots of tools, but we don't really have lots of shared expectations. Yeah. And so it's gonna be interesting over the next few years, I think we're gonna have more rules are gonna come out. I see NIST has already, has already published some of them. And as these new rules come out, the whole industry is gonna have to kind of pull together and, and really and really rally around some of this shared understanding so we can all have shared expectations and we can all speak the same language when we're talking about this >>Problem. That's awesome. A and Amazon web service is obviously the largest cloud platform out there, you know, the pandemic, even post pandemic, some of these supply chain issues, whether it's physical or software, you're also an outlet for that. So if someone can't buy hardware or, or something physical, they can always get the cloud. You guys have great network compute and whatnot and you got thousands of ISVs across the globe. How are you helping customers with this supply chain problem? Because whether it's, you know, I need to get in my networking gears delayed, I'm gonna go to the cloud and get help there. Or whether it's knowing the workloads and, and what's going on inside them with respect open source. Cause you've got open source, which is kind of an external forcing function. You got AWS and you got, you know, physical compute stores, networking, et cetera. How are you guys helping customers with the supply chain challenge, which could be an opportunity? >>Yeah, thanks John. I think there, there are multiple layers to that. At, at the most basic level we are helping customers buy abstracting away all these data central constructs that they would have to worry about if they were running their own data centers. They would have to figure out how the networking gear, you talk about, you know, having the right compute, right physical hardware. So by moving to the cloud, at least they're delegating that problem to AWS and letting us manage and making sure that we have an instance available for them whenever they want it. And if they wanna scale it, the, the, the capacity is there for them to use now then that, so we kind of give them space to work on the second part of the problem, which is building their own supply chain solutions. And we work with all kinds of customers here at AWS from all different industry segments, automotive, retail, manufacturing. >>And you know, you see that the complexity of the supply chain with all those moving pieces, like hundreds and thousands of moving pieces, it's very daunting. So cus and then on the other hand, customers need more better services. So you need to move fast. So you need to build, build your agility in the supply chain itself. And that is where, you know, Red Hat and AWS come together where we can build, we can enable customers to build their supply chain solutions on platform like Red Hat Enterprise, Linux Rail or Red Hat OpenShift on, on aws. We call it Rosa. And the benefit there is that you can actually use the services that we, that are relevant for the supply chain solutions like Amazon managed blockchain, you know, SageMaker. So you can actually build predictive and s you can improve forecasting, you can make sure that you have solutions that help you identify where you can cut costs. And so those are some of the ways we are helping customers, you know, figure out how they actually wanna deal with the supply chain challenges that we're running into in today's world. >>Yeah, and you know, you mentioned sustainability outside of software su sustainability, you know, as people move to the cloud, we've reported on silicon angle here in the cube that it's better to have the sustainability with the cloud because then the data centers aren't using all that energy too. So there's also all kinds of sustainability advantages, Gunner, because this is, this is kind of how your relationship with Amazon's expanded. You mentioned Rosa, which is Red Hat on, you know, on OpenShift, on aws. This is interesting because one of the biggest discussions is skills gap, but we were also talking about the fact that the humans are huge part of the talent value. In other words, the, the humans still need to be involved and having that relationship with managed services and Red Hat, this piece becomes one of those things that's not talked about much, which is the talent is increasing in value the humans, and now you got managed services on the cloud, has got scale and human interactions. Can you share, you know, how you guys are working together on this piece? Cuz this is interesting cuz this kind of brings up the relationship of that operator or developer. >>Yeah, Yeah. So I think there's, so I think about this in a few dimensions. First is that the kind of the, I it's difficult to find a customer who is not talking about automation at some level right now. And obviously you can automate the processes and, and the physical infrastructure that you already have that's using tools like Ansible, right? But I think that the, combining it with the, the elasticity of a solution like aws, so you combine the automation with kind of elastic and, and converting a lot of the capital expenses into operating expenses, that's a great way actually to save labor, right? So instead of like racking hard drives, you can have somebody who's somebody do something a little more like, you know, more valuable work, right? And so, so okay, but that gives you a platform and then what do you do with that platform? >>And if you've got your systems automated and you've got this kind of elastic infrastructure underneath you, what you do on top of it is really interesting. So a great example of this is the collaboration that, that we had with running the rel workstation on aws. So you might think like, well why would anybody wanna run a workstation on, on a cloud? That doesn't make a whole lot of sense unless you consider how complex it is to set up, if you have the, the use case here is like industrial workstations, right? So it's animators, people doing computational fluid dynamics, things like this. So these are industries that are extremely data heavy. They have workstations have very large hardware requirements, often with accelerated GPUs and things like this. That is an extremely expensive thing to install on premise anywhere. And if the pandemic taught us anything, it's, if you have a bunch of very expensive talent and they all have to work from a home, it is very difficult to go provide them with, you know, several tens of thousands of dollars worth of worth of worth of workstation equipment. >>And so combine the rail workstation with the AWS infrastructure and now all that workstation computational infrastructure is available on demand and on and available right next to the considerable amount of data that they're analyzing or animating or, or, or working on. So it's a really interesting, it's, it was actually, this is an idea that I was actually born with the pandemic. Yeah. And, and it's kind of a combination of everything that we're talking about, right? It's the supply chain challenges of the customer, It's the lack of lack of talent, making sure that people are being put their best and highest use. And it's also having this kind of elastic, I think, opex heavy infrastructure as opposed to a CapEx heavy infrastructure. >>That's a great example. I think that's illustrates to me what I love about cloud right now is that you can put stuff in, in the cloud and then flex what you need when you need it at in the cloud rather than either ingress or egress data. You, you just more, you get more versatility around the workload needs, whether it's more compute or more storage or other high level services. This is kind of where this NextGen cloud is going. This is where, where, where customers want to go once their workloads are up and running. How do you simplify all this and how do you guys look at this from a joint customer perspective? Because that example I think will be something that all companies will be working on, which is put it in the cloud and flex to the, whatever the workload needs and put it closer to the work compute. I wanna put it there. If I wanna leverage more storage and networking, Well, I'll do that too. It's not one thing. It's gotta flex around what's, how are you guys simplifying this? >>Yeah, I think so for, I'll, I'll just give my point of view and then I'm, I'm very curious to hear what a not has to say about it, but the, I think and think about it in a few dimensions, right? So there's, there is a, technically like any solution that aan a nun's team and my team wanna put together needs to be kind of technically coherent, right? The things need to work well together, but that's not the, that's not even most of the job. Most of the job is actually the ensuring and operational consistency and operational simplicity so that everything is the day-to-day operations of these things kind of work well together. And then also all the way to things like support and even acquisition, right? Making sure that all the contracts work together, right? It's a really in what, So when Aon and I think about places of working together, it's very rare that we're just looking at a technical collaboration. It's actually a holistic collaboration across support acquisition as well as all the engineering that we have to do. >>And on your, your view on how you're simplifying it with Red Hat for your joint customers making Collabo >>Yeah. Gun, Yeah. Gunner covered it. Well I think the, the benefit here is that Red Hat has been the leading Linux distribution provider. So they have a lot of experience. AWS has been the leading cloud provider. So we have both our own point of views, our own learning from our respective set of customers. So the way we try to simplify and bring these things together is working closely. In fact, I sometimes joke internally that if you see Ghana and my team talking to each other on a call, you cannot really tell who who belongs to which team. Because we're always figuring out, okay, how do we simplify discount experience? How do we simplify programs? How do we simplify go to market? How do we simplify the product pieces? So it's really bringing our, our learning and share our perspective to the table and then really figure out how do we actually help customers make progress. Rosa that we talked about is a great example of that, you know, you know, we, together we figured out, hey, there is a need for customers to have this capability in AWS and we went out and built it. So those are just some of the examples in how both teams are working together to simplify the experience, make it complete, make it more coherent. >>Great. That's awesome. That next question is really around how you help organizations with the sustainability piece, how to support them, simplifying it. But first, before we get into that, what is the core problem around this sustainability discussion we're talking about here, supply chain sustainability, What is the core challenge? Can you both share your thoughts on what that problem is and what the solution looks like and then we can get into advice? >>Yeah. Well from my point of view, it's, I think, you know, one of the lessons of the last three years is every organization is kind of taking a careful look at how resilient it is. Or ever I should say, every organization learned exactly how resilient it was, right? And that comes from both the, the physical challenges and the logistics challenges that everyone had. The talent challenges you mentioned earlier. And of course the, the software challenges, you know, as everyone kind of embarks on this, this digital transformation journey that, that we've all been talking about. And I think, so I really frame it as, as resilience, right? And and resilience is at bottom is really about ensuring that you have options and that you have choices. The more choices you have, the more options you have, the more resilient you, you and your organization is going to be. And so I know that that's how, that's how I approach the market. I'm pretty sure that's exact, that's how AON is, has approaching the market, is ensuring that we are providing as many options as possible to customers so that they can assemble the right, assemble the right pieces to create a, a solution that works for their particular set of challenges or their unique set of challenges and and unique context. Aon, is that, does that sound about right to you? Yeah, >>I think you covered it well. I, I can speak to another aspect of sustainability, which is becoming increasingly top of mind for our customer is like how do they build products and services and solutions and whether it's supply chain or anything else which is sustainable, which is for the long term good of the, the planet. And I think that is where we have been also being very intentional and focused in how we design our data center. How we actually build our cooling system so that we, those are energy efficient. You know, we, we are on track to power all our operations with renewable energy by 2025, which is five years ahead of our initial commitment. And perhaps the most obvious example of all of this is our work with arm processors Graviton three, where, you know, we are building our own chip to make sure that we are designing energy efficiency into the process. And you know, we, there's the arm graviton, three arm processor chips, there are about 60% more energy efficient compared to some of the CD six comparable. So all those things that are also we are working on in making sure that whatever our customers build on our platform is long term sustainable. So that's another dimension of how we are working that into our >>Platform. That's awesome. This is a great conversation. You know, the supply chain is on both sides, physical and software. You're starting to see them come together in great conversations and certainly moving workloads to the cloud running in more efficiently will help on the sustainability side, in my opinion. Of course, you guys talked about that and we've covered it, but now you start getting into how to refactor, and this is a big conversation we've been having lately, is as you not just lift and ship but re-platform and refactor, customers are seeing great advantages on this. So I have to ask you guys, how are you helping customers and organizations support sustainability and, and simplify the complex environment that has a lot of potential integrations? Obviously API's help of course, but that's the kind of baseline, what's the, what's the advice that you give customers? Cause you know, it can look complex and it becomes complex, but there's an answer here. What's your thoughts? >>Yeah, I think so. Whenever, when, when I get questions like this from from customers, the, the first thing I guide them to is, we talked earlier about this notion of consistency and how important that is. It's one thing, it it, it is one way to solve the problem is to create an entirely new operational model, an entirely new acquisition model and an entirely new stack of technologies in order to be more sustainable. That is probably not in the cards for most folks. What they want to do is have their existing estate and they're trying to introduce sustainability into the work that they are already doing. They don't need to build another silo in order to create sustainability, right? And so there have to be, there has to be some common threads, there has to be some common platforms across the existing estate and your more sustainable estate, right? >>And, and so things like Red Hat enterprise Linux, which can provide this kind of common, not just a technical substrate, but a common operational substrate on which you can build these solutions if you have a common platform on which you are building solutions, whether it's RHEL or whether it's OpenShift or any of our other platforms that creates options for you underneath. So that in some cases maybe you need to run things on premise, some things you need to run in the cloud, but you don't have to profoundly change how you work when you're moving from one place to another. >>And that, what's your thoughts on, on the simplification? >>Yeah, I mean think that when you talk about replatforming and refactoring, it is a daunting undertaking, you know, in today's, in the, especially in today's fast paced work. So, but the good news is you don't have to do it by yourself. Customers don't have to do it on their own. You know, together AWS and Red Hat, we have our rich partner ecosystem, you know AWS over AWS has over a hundred thousand partners that can help you take that journey, the transformation journey. And within AWS and working with our partners like Red Hat, we make sure that we have all in, in my mind there are really three big pillars that you have to have to make sure that customers can successfully re-platform refactor their applications to the modern cloud architecture. You need to have the rich set of services and tools that meet their different scenarios, different use cases. Because no one size fits all. You have to have the right programs because sometimes customers need those incentives, they need those, you know, that help in the first step and last but no needs, they need training. So all of that, we try to cover that as we work with our customers, work with our partners and that is where, you know, together we try to help customers take that step, which is, which is a challenging step to take. >>Yeah. You know, it's great to talk to you guys, both leaders in your field. Obviously Red hats, well story history. I remember the days back when I was provisioning, loading OSS on hardware with, with CDs, if you remember, that was days gunner. But now with high level services, if you look at this year's reinvent, and this is like kind of my final question for the segment is then we'll get your reaction to is last year we talked about higher level services. I sat down with Adam Celski, we talked about that. If you look at what's happened this year, you're starting to see people talk about their environment as their cloud. So Amazon has the gift of the CapEx, the all that, all that investment and people can operate on top of it. They're calling that environment their cloud. Okay, For the first time we're seeing this new dynamic where it's like they have a cloud, but they're Amazon's the CapEx, they're operating. So you're starting to see the operational visibility gun around how to operate this environment. And it's not hybrid this, that it's just, it's cloud. This is kind of an inflection point. Do you guys agree with that or, or having a reaction to that statement? Because I, I think this is kind of the next gen super cloud-like capability. It's, it's, we're going, we're building the cloud. It's now an environment. It's not talking about private cloud, this cloud, it's, it's all cloud. What's your reaction? >>Yeah, I think, well I think it's a very natural, I mean we used words like hybrid cloud, multi-cloud, if, I guess super cloud is what the kids are saying now, right? It's, it's all, it's all describing the same phenomena, right? Which is, which is being able to take advantage of lots of different infrastructure options, but still having something that creates some commonality among them so that you can, so that you can manage them effectively, right? So that you can have kind of uniform compliance across your estate so that you can have kind of, you can make the best use of your talent across the estate. I mean this is a, this is, it's a very natural thing. >>They're calling it cloud, the estate is the cloud. >>Yeah. So yeah, so, so fine if it, if it means that we no longer have to argue about what's multi-cloud and what's hybrid cloud, I think that's great. Let's just call it cloud. >>And what's your reaction, cuz this is kind of the next gen benefits of, of higher level services combined with amazing, you know, compute and, and resource at the infrastructure level. What's your, what's your view on that? >>Yeah, I think the construct of a unified environment makes sense for customers who have all these use cases which require, like for instance, if you are doing some edge computing and you're running it WS outpost or you know, wave lent and these things. So, and, and it is, it is fear for customer to say, think that hey, this is one environment, same set of tooling that they wanna build that works across all their different environments. That is why we work with partners like Red Hat so that customers who are running Red Hat Enterprise Linux on premises and who are running in AWS get the same level of support, get the same level of security features, all of that. So from that sense, it actually makes sense for us to build these capabilities in a way that customers don't have to worry about, Okay, now I'm actually in the AWS data center versus I'm running outpost on premises. It is all one. They, they just use the same set of cli command line APIs and all of that. So in that sense, it's actually helps customers have that unification so that that consistency of experience helps their workforce and be more productive versus figuring out, okay, what do I do, which tool I use? Where >>And on you just nailed it. This is about supply chain sustainability, moving the workloads into a cloud environment. You mentioned wavelength, this conversation's gonna continue. We haven't even talked about the edge yet. This is something that's gonna be all about operating these workloads at scale and all the, with the cloud services. So thanks for sharing that and we'll pick up that edge piece later. But for reinvent right now, this is really the key conversation. How to bake the sustained supply chain work in a complex environment, making it simpler. And so thanks for sharing your insights here on the cube. >>Thanks. Thanks for having >>Us. Okay, this is the cube's coverage of ados Reinvent 22. I'm John Fur, your host. Thanks for watching.

Published Date : Nov 3 2022

SUMMARY :

host of the Cube. and grow this next generation modern development environment, you know, supply chain, And that was kind of, that was the bar that you had that you had to climb And so as part of that digital transformation, you have another supply chain problem, which is the software supply chain the software and physical world, you know, that's, you know, IOT and also hybrid cloud kind of plays into that at scale, And as the software becomes more important to kind of critical infrastructure, more eyeballs are on it. And so it's gonna be interesting over the next few years, I think we're gonna have more rules are gonna come out. Because whether it's, you know, you talk about, you know, having the right compute, right physical hardware. And so those are some of the ways we are helping customers, you know, figure out how they Yeah, and you know, you mentioned sustainability outside of software su sustainability, you know, so okay, but that gives you a platform and then what do you do with that platform? it is very difficult to go provide them with, you know, several tens of thousands of dollars worth of worth of worth of And so combine the rail workstation with the AWS infrastructure and now all that I think that's illustrates to me what I love about cloud right now is that you can put stuff in, operational consistency and operational simplicity so that everything is the day-to-day operations of Rosa that we talked about is a great example of that, you know, you know, we, together we figured out, Can you both share your thoughts on what that problem is and And of course the, the software challenges, you know, as everyone kind of embarks on this, And you know, we, there's the So I have to ask you guys, And so there have to be, there has to be some common threads, there has to be some common platforms So that in some cases maybe you need to run things on premise, So, but the good news is you don't have to do it by yourself. if you look at this year's reinvent, and this is like kind of my final question for the segment is then we'll get your reaction to So that you can have kind of uniform compliance across your estate so that you can have kind of, hybrid cloud, I think that's great. amazing, you know, compute and, and resource at the infrastructure level. have all these use cases which require, like for instance, if you are doing some edge computing and you're running it And on you just nailed it. Thanks for having Us. Okay, this is the cube's coverage of ados Reinvent 22.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

John FererPERSON

0.99+

twoQUANTITY

0.99+

Adam CelskiPERSON

0.99+

Adnan IjazPERSON

0.99+

Gunnar HelleksonPERSON

0.99+

last yearDATE

0.99+

Edon EjaPERSON

0.99+

John FurPERSON

0.99+

20 yearsQUANTITY

0.99+

RosaPERSON

0.99+

2025DATE

0.99+

Gunner HelicksonPERSON

0.99+

Red HatORGANIZATION

0.99+

AONORGANIZATION

0.99+

NISTORGANIZATION

0.99+

FirstQUANTITY

0.99+

bothQUANTITY

0.99+

RHELTITLE

0.99+

firstQUANTITY

0.99+

OpenShiftTITLE

0.99+

both teamsQUANTITY

0.99+

two thingsQUANTITY

0.99+

Red Hat Enterprise LinuxTITLE

0.99+

this yearDATE

0.98+

oneQUANTITY

0.98+

second partQUANTITY

0.98+

todayDATE

0.98+

thousandsQUANTITY

0.98+

CapExORGANIZATION

0.98+

first timeQUANTITY

0.98+

pandemicEVENT

0.98+

Linux RailTITLE

0.98+

Red Hat Enterprise LinuxORGANIZATION

0.98+

LinuxTITLE

0.98+

both sidesQUANTITY

0.97+

Red HatTITLE

0.97+

over a hundred thousand partnersQUANTITY

0.97+

WSORGANIZATION

0.97+

Red Hat OpenShiftTITLE

0.97+

GhanaLOCATION

0.97+

GunnerPERSON

0.96+

one wayQUANTITY

0.96+

about 60%QUANTITY

0.96+

five yearsQUANTITY

0.96+

tens of thousands of dollarsQUANTITY

0.96+

Red Hat EnterpriseTITLE

0.96+

one thingQUANTITY

0.94+

NextGenORGANIZATION

0.94+

first stepQUANTITY

0.92+

GitHubORGANIZATION

0.92+

both leadersQUANTITY

0.91+

hundreds and thousands of moving piecesQUANTITY

0.91+

awsORGANIZATION

0.9+

three big pillarsQUANTITY

0.89+

Evolving InfluxDB into the Smart Data Platform


 

>>This past May, The Cube in collaboration with Influx data shared with you the latest innovations in Time series databases. We talked at length about why a purpose built time series database for many use cases, was a superior alternative to general purpose databases trying to do the same thing. Now, you may, you may remember the time series data is any data that's stamped in time, and if it's stamped, it can be analyzed historically. And when we introduced the concept to the community, we talked about how in theory, those time slices could be taken, you know, every hour, every minute, every second, you know, down to the millisecond and how the world was moving toward realtime or near realtime data analysis to support physical infrastructure like sensors and other devices and IOT equipment. A time series databases have had to evolve to efficiently support realtime data in emerging use cases in iot T and other use cases. >>And to do that, new architectural innovations have to be brought to bear. As is often the case, open source software is the linchpin to those innovations. Hello and welcome to Evolving Influx DB into the smart Data platform, made possible by influx data and produced by the Cube. My name is Dave Valante and I'll be your host today. Now in this program we're going to dig pretty deep into what's happening with Time series data generally, and specifically how Influx DB is evolving to support new workloads and demands and data, and specifically around data analytics use cases in real time. Now, first we're gonna hear from Brian Gilmore, who is the director of IOT and emerging technologies at Influx Data. And we're gonna talk about the continued evolution of Influx DB and the new capabilities enabled by open source generally and specific tools. And in this program you're gonna hear a lot about things like Rust, implementation of Apache Arrow, the use of par k and tooling such as data fusion, which powering a new engine for Influx db. >>Now, these innovations, they evolve the idea of time series analysis by dramatically increasing the granularity of time series data by compressing the historical time slices, if you will, from, for example, minutes down to milliseconds. And at the same time, enabling real time analytics with an architecture that can process data much faster and much more efficiently. Now, after Brian, we're gonna hear from Anna East Dos Georgio, who is a developer advocate at In Flux Data. And we're gonna get into the why of these open source capabilities and how they contribute to the evolution of the Influx DB platform. And then we're gonna close the program with Tim Yokum, he's the director of engineering at Influx Data, and he's gonna explain how the Influx DB community actually evolved the data engine in mid-flight and which decisions went into the innovations that are coming to the market. Thank you for being here. We hope you enjoy the program. Let's get started. Okay, we're kicking things off with Brian Gilmore. He's the director of i t and emerging Technology at Influx State of Bryan. Welcome to the program. Thanks for coming on. >>Thanks Dave. Great to be here. I appreciate the time. >>Hey, explain why Influx db, you know, needs a new engine. Was there something wrong with the current engine? What's going on there? >>No, no, not at all. I mean, I think it's, for us, it's been about staying ahead of the market. I think, you know, if we think about what our customers are coming to us sort of with now, you know, related to requests like sql, you know, query support, things like that, we have to figure out a way to, to execute those for them in a way that will scale long term. And then we also, we wanna make sure we're innovating, we're sort of staying ahead of the market as well and sort of anticipating those future needs. So, you know, this is really a, a transparent change for our customers. I mean, I think we'll be adding new capabilities over time that sort of leverage this new engine, but you know, initially the customers who are using us are gonna see just great improvements in performance, you know, especially those that are working at the top end of the, of the workload scale, you know, the massive data volumes and things like that. >>Yeah, and we're gonna get into that today and the architecture and the like, but what was the catalyst for the enhancements? I mean, when and how did this all come about? >>Well, I mean, like three years ago we were primarily on premises, right? I mean, I think we had our open source, we had an enterprise product, you know, and, and sort of shifting that technology, especially the open source code base to a service basis where we were hosting it through, you know, multiple cloud providers. That was, that was, that was a long journey I guess, you know, phase one was, you know, we wanted to host enterprise for our customers, so we sort of created a service that we just managed and ran our enterprise product for them. You know, phase two of this cloud effort was to, to optimize for like multi-tenant, multi-cloud, be able to, to host it in a truly like sass manner where we could use, you know, some type of customer activity or consumption as the, the pricing vector, you know, And, and that was sort of the birth of the, of the real first influx DB cloud, you know, which has been really successful. >>We've seen, I think like 60,000 people sign up and we've got tons and tons of, of both enterprises as well as like new companies, developers, and of course a lot of home hobbyists and enthusiasts who are using out on a, on a daily basis, you know, and having that sort of big pool of, of very diverse and very customers to chat with as they're using the product, as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction in terms of making sure we're continuously improving that and then also making these big leaps as we're doing with this, with this new engine. >>Right. So you've called it a transparent change for customers, so I'm presuming it's non-disruptive, but I really wanna understand how much of a pivot this is and what, what does it take to make that shift from, you know, time series, you know, specialist to real time analytics and being able to support both? >>Yeah, I mean, it's much more of an evolution, I think, than like a shift or a pivot. You know, time series data is always gonna be fundamental and sort of the basis of the solutions that we offer our customers, and then also the ones that they're building on the sort of raw APIs of our platform themselves. You know, the time series market is one that we've worked diligently to lead. I mean, I think when it comes to like metrics, especially like sensor data and app and infrastructure metrics, if we're being honest though, I think our, our user base is well aware that the way we were architected was much more towards those sort of like backwards looking historical type analytics, which are key for troubleshooting and making sure you don't, you know, run into the same problem twice. But, you know, we had to ask ourselves like, what can we do to like better handle those queries from a performance and a, and a, you know, a time to response on the queries, and can we get that to the point where the results sets are coming back so quickly from the time of query that we can like limit that window down to minutes and then seconds. >>And now with this new engine, we're really starting to talk about a query window that could be like returning results in, in, you know, milliseconds of time since it hit the, the, the ingest queue. And that's, that's really getting to the point where as your data is available, you can use it and you can query it, you can visualize it, and you can do all those sort of magical things with it, you know? And I think getting all of that to a place where we're saying like, yes to the customer on, you know, all of the, the real time queries, the, the multiple language query support, but, you know, it was hard, but we're now at a spot where we can start introducing that to, you know, a a limited number of customers, strategic customers and strategic availability zones to start. But you know, everybody over time. >>So you're basically going from what happened to in, you can still do that obviously, but to what's happening now in the moment? >>Yeah, yeah. I mean if you think about time, it's always sort of past, right? I mean, like in the moment right now, whether you're talking about like a millisecond ago or a minute ago, you know, that's, that's pretty much right now, I think for most people, especially in these use cases where you have other sort of components of latency induced by the, by the underlying data collection, the architecture, the infrastructure, the, you know, the, the devices and you know, the sort of highly distributed nature of all of this. So yeah, I mean, getting, getting a customer or a user to be able to use the data as soon as it is available is what we're after here. >>I always thought, you know, real, I always thought of real time as before you lose the customer, but now in this context, maybe it's before the machine blows up. >>Yeah, it's, it's, I mean it is operationally or operational real time is different, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, is just how many sort of operational customers we have. You know, everything from like aerospace and defense. We've got companies monitoring satellites, we've got tons of industrial users, users using us as a processes storing on the plant floor, you know, and, and if we can satisfy their sort of demands for like real time historical perspective, that's awesome. I think what we're gonna do here is we're gonna start to like edge into the real time that they're used to in terms of, you know, the millisecond response times that they expect of their control systems, certainly not their, their historians and databases. >>I, is this available, these innovations to influx DB cloud customers only who can access this capability? >>Yeah. I mean commercially and today, yes. You know, I think we want to emphasize that's a, for now our goal is to get our latest and greatest and our best to everybody over time. Of course. You know, one of the things we had to do here was like we double down on sort of our, our commitment to open source and availability. So like anybody today can take a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try to, you know, implement or execute some of it themselves in their own infrastructure. You know, we are, we're committed to bringing our sort of latest and greatest to our cloud customers first for a couple of reasons. Number one, you know, there are big workloads and they have high expectations of us. I think number two, it also gives us the opportunity to monitor a little bit more closely how it's working, how they're using it, like how the system itself is performing. >>And so just, you know, being careful, maybe a little cautious in terms of, of, of how big we go with this right away, just sort of both limits, you know, the risk of, of, you know, any issues that can come with new software rollouts. We haven't seen anything so far, but also it does give us the opportunity to have like meaningful conversations with a small group of users who are using the products, but once we get through that and they give us two thumbs up on it, it'll be like, open the gates and let everybody in. It's gonna be exciting time for the whole ecosystem. >>Yeah, that makes a lot of sense. And you can do some experimentation and, you know, using the cloud resources. Let's dig into some of the architectural and technical innovations that are gonna help deliver on this vision. What, what should we know there? >>Well, I mean, I think foundationally we built the, the new core on Rust. You know, this is a new very sort of popular systems language, you know, it's extremely efficient, but it's also built for speed and memory safety, which goes back to that us being able to like deliver it in a way that is, you know, something we can inspect very closely, but then also rely on the fact that it's going to behave well. And if it does find error conditions, I mean we, we've loved working with Go and, you know, a lot of our libraries will continue to, to be sort of implemented in Go, but you know, when it came to this particular new engine, you know, that power performance and stability rust was critical. On top of that, like, we've also integrated Apache Arrow and Apache Parque for persistence. I think for anybody who's really familiar with the nuts and bolts of our backend and our TSI and our, our time series merged Trees, this is a big break from that, you know, arrow on the sort of in MI side and then Par K in the on disk side. >>It, it allows us to, to present, you know, a unified set of APIs for those really fast real time inquiries that we talked about, as well as for very large, you know, historical sort of bulk data archives in that PARQUE format, which is also cool because there's an entire ecosystem sort of popping up around Parque in terms of the machine learning community, you know, and getting that all to work, we had to glue it together with aero flight. That's sort of what we're using as our, our RPC component. You know, it handles the orchestration and the, the transportation of the Coer data. Now we're moving to like a true Coer database model for this, this version of the engine, you know, and it removes a lot of overhead for us in terms of having to manage all that serialization, the deserialization, and, you know, to that again, like blurring that line between real time and historical data. It's, you know, it's, it's highly optimized for both streaming micro batch and then batches, but true streaming as well. >>Yeah. Again, I mean, it's funny you mentioned Rust. It is, it's been around for a long time, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. And, and we're gonna dig into to more of that, but give us any, is there anything else that we should know about Bryan? Give us the last word? >>Well, I mean, I think first I'd like everybody sort of watching just to like take a look at what we're offering in terms of early access in beta programs. I mean, if, if, if you wanna participate or if you wanna work sort of in terms of early access with the, with the new engine, please reach out to the team. I'm sure you know, there's a lot of communications going out and you know, it'll be highly featured on our, our website, you know, but reach out to the team, believe it or not, like we have a lot more going on than just the new engine. And so there are also other programs, things we're, we're offering to customers in terms of the user interface, data collection and things like that. And, you know, if you're a customer of ours and you have a sales team, a commercial team that you work with, you can reach out to them and see what you can get access to because we can flip a lot of stuff on, especially in cloud through feature flags. >>But if there's something new that you wanna try out, we'd just love to hear from you. And then, you know, our goal would be that as we give you access to all of these new cool features that, you know, you would give us continuous feedback on these products and services, not only like what you need today, but then what you'll need tomorrow to, to sort of build the next versions of your business. Because you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented stack of cloud services and enterprise databases and edge databases, you know, it's gonna be what we all make it together, not just, you know, those of us who were employed by Influx db. And then finally I would just say please, like watch in ICE in Tim's sessions, like these are two of our best and brightest, They're totally brilliant, completely pragmatic, and they are most of all customer obsessed, which is amazing. And there's no better takes, like honestly on the, the sort of technical details of this, then there's, especially when it comes to like the value that these investments will, will bring to our customers and our communities. So encourage you to, to, you know, pay more attention to them than you did to me, for sure. >>Brian Gilmore, great stuff. Really appreciate your time. Thank you. >>Yeah, thanks Dave. It was awesome. Look forward to it. >>Yeah, me too. Looking forward to see how the, the community actually applies these new innovations and goes, goes beyond just the historical into the real time really hot area. As Brian said in a moment, I'll be right back with Anna East dos Georgio to dig into the critical aspects of key open source components of the Influx DB engine, including Rust, Arrow, Parque, data fusion. Keep it right there. You don't wanna miss this >>Time series Data is everywhere. The number of sensors, systems and applications generating time series data increases every day. All these data sources producing so much data can cause analysis paralysis. Influx DB is an entire platform designed with everything you need to quickly build applications that generate value from time series data influx. DB Cloud is a serverless solution, which means you don't need to buy or manage your own servers. There's no need to worry about provisioning because you only pay for what you use. Influx DB Cloud is fully managed so you get the newest features and enhancements as they're added to the platform's code base. It also means you can spend time building solutions and delivering value to your users instead of wasting time and effort managing something else. Influx TVB Cloud offers a range of security features to protect your data, multiple layers of redundancy ensure you don't lose any data access controls ensure that only the people who should see your data can see it. >>And encryption protects your data at rest and in transit between any of our regions or cloud providers. InfluxDB uses a single API across the entire platform suite so you can build on open source, deploy to the cloud and then then easily query data in the cloud at the edge or on prem using the same scripts. And InfluxDB is schemaless automatically adjusting to changes in the shape of your data without requiring changes in your application. Logic. InfluxDB Cloud is production ready from day one. All it needs is your data and your imagination. Get started today@influxdata.com slash cloud. >>Okay, we're back. I'm Dave Valante with a Cube and you're watching evolving Influx DB into the smart data platform made possible by influx data. Anna ETOs Georgio is here, she's a developer advocate for influx data and we're gonna dig into the rationale and value contribution behind several open source technologies that Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the world of data into real-time analytics and is welcome to the program. Thanks for coming on. >>Hi, thank you so much. It's a pleasure to be here. >>Oh, you're very welcome. Okay, so IX is being touted as this next gen open source core for Influx db. And my understanding is that it leverages in memory of course for speed. It's a kilo store, so it gives you a compression efficiency, it's gonna give you faster query speeds, you store files and object storage, so you got very cost effective approach. Are these the salient points on the platform? I know there are probably dozens of other features, but what are the high level value points that people should understand? >>Sure, that's a great question. So some of the main requirements that IOx is trying to achieve and some of the most impressive ones to me, the first one is that it aims to have no limits on cardinality and also allow you to write any kind of event data that you want, whether that's live tag or a field. It also wants to deliver the best in class performance on analytics queries. In addition to our already well served metrics queries, we also wanna have operator control over memory usage. So you should be able to define how much memory is used for buffering caching and query processing. Some other really important parts is the ability to have bulk data export and import super useful. Also broader ecosystem compatibility where possible we aim to use and embrace emerging standards in the data analytics ecosystem and have compatibility with things like sql, Python, and maybe even pandas in the future. >>Okay, so lot there. Now we talked to Brian about how you're using Rust and which is not a new programming language and of course we had some drama around Rust during the pandemic with the Mozilla layoffs, but the formation of the Rust Foundation really addressed any of those concerns. You got big guns like Amazon and Google and Microsoft throwing their collective weights behind it. It's really, the adoption is really starting to get steep on the S-curve. So lots of platforms, lots of adoption with rust, but why rust as an alternative to say c plus plus for example? >>Sure, that's a great question. So Russ was chosen because of his exceptional performance and reliability. So while Russ is synt tactically similar to c plus plus and it has similar performance, it also compiles to a native code like c plus plus. But unlike c plus plus, it also has much better memory safety. So memory safety is protection against bugs or security vulnerabilities that lead to excessive memory usage or memory leaks. And rust achieves this memory safety due to its like innovative type system. Additionally, it doesn't allow for dangling pointers. And dangling pointers are the main classes of errors that lead to exploitable security vulnerabilities in languages like c plus plus. So Russ like helps meet that requirement of having no limits on ality, for example, because it's, we're also using the Russ implementation of Apache Arrow and this control over memory and also Russ Russ's packaging system called crates IO offers everything that you need out of the box to have features like AY and a weight to fix race conditions, to protection against buffering overflows and to ensure thread safe async cashing structures as well. So essentially it's just like has all the control, all the fine grain control, you need to take advantage of memory and all your resources as well as possible so that you can handle those really, really high ity use cases. >>Yeah, and the more I learn about the, the new engine and, and the platform IOCs et cetera, you know, you, you see things like, you know, the old days not even to even today you do a lot of garbage collection in these, in these systems and there's an inverse, you know, impact relative to performance. So it looks like you really, you know, the community is modernizing the platform, but I wanna talk about Apache Arrow for a moment. It it's designed to address the constraints that are associated with analyzing large data sets. We, we know that, but please explain why, what, what is Arrow and and what does it bring to Influx db? >>Sure, yeah. So Arrow is a, a framework for defining in memory calmer data. And so much of the efficiency and performance of IOx comes from taking advantage of calmer data structures. And I will, if you don't mind, take a moment to kind of of illustrate why column or data structures are so valuable. Let's pretend that we are gathering field data about the temperature in our room and also maybe the temperature of our stove. And in our table we have those two temperature values as well as maybe a measurement value, timestamp value, maybe some other tag values that describe what room and what house, et cetera we're getting this data from. And so you can picture this table where we have like two rows with the two temperature values for both our room and the stove. Well usually our room temperature is regulated so those values don't change very often. >>So when you have calm oriented st calm oriented storage, essentially you take each row, each column and group it together. And so if that's the case and you're just taking temperature values from the room and a lot of those temperature values are the same, then you'll, you might be able to imagine how equal values will then enable each other and when they neighbor each other in the storage format, this provides a really perfect opportunity for cheap compression. And then this cheap compression enables high cardinality use cases. It also enables for faster scan rates. So if you wanna define like the men and max value of the temperature in the room across a thousand different points, you only have to get those a thousand different points in order to answer that question and you have those immediately available to you. But let's contrast this with a row oriented storage solution instead so that we can understand better the benefits of calmer oriented storage. >>So if you had a row oriented storage, you'd first have to look at every field like the temperature in, in the room and the temperature of the stove. You'd have to go across every tag value that maybe describes where the room is located or what model the stove is. And every timestamp you'd then have to pluck out that one temperature value that you want at that one time stamp and do that for every single row. So you're scanning across a ton more data and that's why Rowe Oriented doesn't provide the same efficiency as calmer and Apache Arrow is in memory calmer data, commoner data fit framework. So that's where a lot of the advantages come >>From. Okay. So you basically described like a traditional database, a row approach, but I've seen like a lot of traditional database say, okay, now we've got, we can handle colo format versus what you're talking about is really, you know, kind of native i, is it not as effective? Is the, is the foreman not as effective because it's largely a, a bolt on? Can you, can you like elucidate on that front? >>Yeah, it's, it's not as effective because you have more expensive compression and because you can't scan across the values as quickly. And so those are, that's pretty much the main reasons why, why RO row oriented storage isn't as efficient as calm, calmer oriented storage. Yeah. >>Got it. So let's talk about Arrow Data Fusion. What is data fusion? I know it's written in Rust, but what does it bring to the table here? >>Sure. So it's an extensible query execution framework and it uses Arrow as it's in memory format. So the way that it helps in influx DB IOCs is that okay, it's great if you can write unlimited amount of cardinality into influx Cbis, but if you don't have a query engine that can successfully query that data, then I don't know how much value it is for you. So Data fusion helps enable the, the query process and transformation of that data. It also has a PANDAS API so that you could take advantage of PANDAS data frames as well and all of the machine learning tools associated with Pandas. >>Okay. You're also leveraging Par K in the platform cause we heard a lot about Par K in the middle of the last decade cuz as a storage format to improve on Hadoop column stores. What are you doing with Parque and why is it important? >>Sure. So parque is the column oriented durable file format. So it's important because it'll enable bulk import, bulk export, it has compatibility with Python and Pandas, so it supports a broader ecosystem. Par K files also take very little disc disc space and they're faster to scan because again, they're column oriented in particular, I think PAR K files are like 16 times cheaper than CSV files, just as kind of a point of reference. And so that's essentially a lot of the, the benefits of par k. >>Got it. Very popular. So and he's, what exactly is influx data focusing on as a committer to these projects? What is your focus? What's the value that you're bringing to the community? >>Sure. So Influx DB first has contributed a lot of different, different things to the Apache ecosystem. For example, they contribute an implementation of Apache Arrow and go and that will support clearing with flux. Also, there has been a quite a few contributions to data fusion for things like memory optimization and supportive additional SQL features like support for timestamp, arithmetic and support for exist clauses and support for memory control. So yeah, Influx has contributed a a lot to the Apache ecosystem and continues to do so. And I think kind of the idea here is that if you can improve these upstream projects and then the long term strategy here is that the more you contribute and build those up, then the more you will perpetuate that cycle of improvement and the more we will invest in our own project as well. So it's just that kind of symbiotic relationship and appreciation of the open source community. >>Yeah. Got it. You got that virtuous cycle going, the people call the flywheel. Give us your last thoughts and kind of summarize, you know, where what, what the big takeaways are from your perspective. >>So I think the big takeaway is that influx data is doing a lot of really exciting things with Influx DB IOx and I really encourage, if you are interested in learning more about the technologies that Influx is leveraging to produce IOCs, the challenges associated with it and all of the hard work questions and you just wanna learn more, then I would encourage you to go to the monthly Tech talks and community office hours and they are on every second Wednesday of the month at 8:30 AM Pacific time. There's also a community forums and a community Slack channel look for the influx DDB unders IAC channel specifically to learn more about how to join those office hours and those monthly tech tech talks as well as ask any questions they have about iacs, what to expect and what you'd like to learn more about. I as a developer advocate, I wanna answer your questions. So if there's a particular technology or stack that you wanna dive deeper into and want more explanation about how INFLUX DB leverages it to build IOCs, I will be really excited to produce content on that topic for you. >>Yeah, that's awesome. You guys have a really rich community, collaborate with your peers, solve problems, and, and you guys super responsive, so really appreciate that. All right, thank you so much Anise for explaining all this open source stuff to the audience and why it's important to the future of data. >>Thank you. I really appreciate it. >>All right, you're very welcome. Okay, stay right there and in a moment I'll be back with Tim Yoakum, he's the director of engineering for Influx Data and we're gonna talk about how you update a SAS engine while the plane is flying at 30,000 feet. You don't wanna miss this. >>I'm really glad that we went with InfluxDB Cloud for our hosting because it has saved us a ton of time. It's helped us move faster, it's saved us money. And also InfluxDB has good support. My name's Alex Nada. I am CTO at Noble nine. Noble Nine is a platform to measure and manage service level objectives, which is a great way of measuring the reliability of your systems. You can essentially think of an slo, the product we're providing to our customers as a bunch of time series. So we need a way to store that data and the corresponding time series that are related to those. The main reason that we settled on InfluxDB as we were shopping around is that InfluxDB has a very flexible query language and as a general purpose time series database, it basically had the set of features we were looking for. >>As our platform has grown, we found InfluxDB Cloud to be a really scalable solution. We can quickly iterate on new features and functionality because Influx Cloud is entirely managed, it probably saved us at least a full additional person on our team. We also have the option of running InfluxDB Enterprise, which gives us the ability to even host off the cloud or in a private cloud if that's preferred by a customer. Influx data has been really flexible in adapting to the hosting requirements that we have. They listened to the challenges we were facing and they helped us solve it. As we've continued to grow, I'm really happy we have influx data by our side. >>Okay, we're back with Tim Yokum, who is the director of engineering at Influx Data. Tim, welcome. Good to see you. >>Good to see you. Thanks for having me. >>You're really welcome. Listen, we've been covering open source software in the cube for more than a decade, and we've kind of watched the innovation from the big data ecosystem. The cloud has been being built out on open source, mobile, social platforms, key databases, and of course influx DB and influx data has been a big consumer and contributor of open source software. So my question to you is, where have you seen the biggest bang for the buck from open source software? >>So yeah, you know, influx really, we thrive at the intersection of commercial services and open, so open source software. So OSS keeps us on the cutting edge. We benefit from OSS in delivering our own service from our core storage engine technologies to web services temping engines. Our, our team stays lean and focused because we build on proven tools. We really build on the shoulders of giants and like you've mentioned, even better, we contribute a lot back to the projects that we use as well as our own product influx db. >>You know, but I gotta ask you, Tim, because one of the challenge that that we've seen in particular, you saw this in the heyday of Hadoop, the, the innovations come so fast and furious and as a software company you gotta place bets, you gotta, you know, commit people and sometimes those bets can be risky and not pay off well, how have you managed this challenge? >>Oh, it moves fast. Yeah, that, that's a benefit though because it, the community moves so quickly that today's hot technology can be tomorrow's dinosaur. And what we, what we tend to do is, is we fail fast and fail often. We try a lot of things. You know, you look at Kubernetes for example, that ecosystem is driven by thousands of intelligent developers, engineers, builders, they're adding value every day. So we have to really keep up with that. And as the stack changes, we, we try different technologies, we try different methods, and at the end of the day, we come up with a better platform as a result of just the constant change in the environment. It is a challenge for us, but it's, it's something that we just do every day. >>So we have a survey partner down in New York City called Enterprise Technology Research etr, and they do these quarterly surveys of about 1500 CIOs, IT practitioners, and they really have a good pulse on what's happening with spending. And the data shows that containers generally, but specifically Kubernetes is one of the areas that has kind of, it's been off the charts and seen the most significant adoption and velocity particularly, you know, along with cloud. But, but really Kubernetes is just, you know, still up until the right consistently even with, you know, the macro headwinds and all, all of the stuff that we're sick of talking about. But, so what are you doing with Kubernetes in the platform? >>Yeah, it, it's really central to our ability to run the product. When we first started out, we were just on AWS and, and the way we were running was, was a little bit like containers junior. Now we're running Kubernetes everywhere at aws, Azure, Google Cloud. It allows us to have a consistent experience across three different cloud providers and we can manage that in code so our developers can focus on delivering services, not trying to learn the intricacies of Amazon, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. >>Just to follow up on that, is it, no. So I presume it's sounds like there's a PAs layer there to allow you guys to have a consistent experience across clouds and out to the edge, you know, wherever is that, is that correct? >>Yeah, so we've basically built more or less platform engineering, This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us because we've built a platform that our developers can lean on and they only have to learn one way of deploying their application, managing their application. And so that, that just gets all of the underlying infrastructure out of the way and, and lets them focus on delivering influx cloud. >>Yeah, and I know I'm taking a little bit of a tangent, but is that, that, I'll call it a PAs layer if I can use that term. Is that, are there specific attributes to Influx db or is it kind of just generally off the shelf paths? You know, are there, is, is there any purpose built capability there that, that is, is value add or is it pretty much generic? >>So we really build, we, we look at things through, with a build versus buy through a, a build versus by lens. Some things we want to leverage cloud provider services, for instance, Postgres databases for metadata, perhaps we'll get that off of our plate, let someone else run that. We're going to deploy a platform that our engineers can, can deliver on that has consistency that is, is all generated from code that we can as a, as an SRE group, as an ops team, that we can manage with very few people really, and we can stamp out clusters across multiple regions and in no time. >>So how, so sometimes you build, sometimes you buy it. How do you make those decisions and and what does that mean for the, for the platform and for customers? >>Yeah, so what we're doing is, it's like everybody else will do, we're we're looking for trade offs that make sense. You know, we really want to protect our customers data. So we look for services that support our own software with the most uptime, reliability, and durability we can get. Some things are just going to be easier to have a cloud provider take care of on our behalf. We make that transparent for our own team. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, like I had mentioned with SQL data stores for metadata, perhaps let's build on top of what of these three large cloud providers have already perfected. And we can then focus on our platform engineering and we can have our developers then focus on the influx data, software, influx, cloud software. >>So take it to the customer level, what does it mean for them? What's the value that they're gonna get out of all these innovations that we've been been talking about today and what can they expect in the future? >>So first of all, people who use the OSS product are really gonna be at home on our cloud platform. You can run it on your desktop machine, on a single server, what have you, but then you want to scale up. We have some 270 terabytes of data across, over 4 billion series keys that people have stored. So there's a proven ability to scale now in terms of the open source, open source software and how we've developed the platform. You're getting highly available high cardinality time series platform. We manage it and, and really as, as I mentioned earlier, we can keep up with the state of the art. We keep reinventing, we keep deploying things in real time. We deploy to our platform every day repeatedly all the time. And it's that continuous deployment that allows us to continue testing things in flight, rolling things out that change new features, better ways of doing deployments, safer ways of doing deployments. >>All of that happens behind the scenes. And like we had mentioned earlier, Kubernetes, I mean that, that allows us to get that done. We couldn't do it without having that platform as a, as a base layer for us to then put our software on. So we, we iterate quickly. When you're on the, the Influx cloud platform, you really are able to, to take advantage of new features immediately. We roll things out every day and as those things go into production, you have, you have the ability to, to use them. And so in the end we want you to focus on getting actual insights from your data instead of running infrastructure, you know, let, let us do that for you. So, >>And that makes sense, but so is the, is the, are the innovations that we're talking about in the evolution of Influx db, do, do you see that as sort of a natural evolution for existing customers? I, is it, I'm sure the answer is both, but is it opening up new territory for customers? Can you add some color to that? >>Yeah, it really is it, it's a little bit of both. Any engineer will say, well, it depends. So cloud native technologies are, are really the hot thing. Iot, industrial iot especially, people want to just shove tons of data out there and be able to do queries immediately and they don't wanna manage infrastructure. What we've started to see are people that use the cloud service as their, their data store backbone and then they use edge computing with R OSS product to ingest data from say, multiple production lines and downsample that data, send the rest of that data off influx cloud where the heavy processing takes place. So really us being in all the different clouds and iterating on that and being in all sorts of different regions allows for people to really get out of the, the business of man trying to manage that big data, have us take care of that. And of course as we change the platform end users benefit from that immediately. And, >>And so obviously taking away a lot of the heavy lifting for the infrastructure, would you say the same thing about security, especially as you go out to IOT and the Edge? How should we be thinking about the value that you bring from a security perspective? >>Yeah, we take, we take security super seriously. It, it's built into our dna. We do a lot of work to ensure that our platform is secure, that the data we store is, is kept private. It's of course always a concern. You see in the news all the time, companies being compromised, you know, that's something that you can have an entire team working on, which we do to make sure that the data that you have, whether it's in transit, whether it's at rest, is always kept secure, is only viewable by you. You know, you look at things like software, bill of materials, if you're running this yourself, you have to go vet all sorts of different pieces of software. And we do that, you know, as we use new tools. That's something that, that's just part of our jobs to make sure that the platform that we're running it has, has fully vetted software and, and with open source especially, that's a lot of work. And so it's, it's definitely new territory. Supply chain attacks are, are definitely happening at a higher clip than they used to, but that is, that is really just part of a day in the, the life for folks like us that are, are building platforms. >>Yeah, and that's key. I mean especially when you start getting into the, the, you know, we talk about IOT and the operations technologies, the engineers running the, that infrastructure, you know, historically, as you know, Tim, they, they would air gap everything. That's how they kept it safe. But that's not feasible anymore. Everything's >>That >>Connected now, right? And so you've gotta have a partner that is again, take away that heavy lifting to r and d so you can focus on some of the other activities. Right. Give us the, the last word and the, the key takeaways from your perspective. >>Well, you know, from my perspective I see it as, as a a two lane approach with, with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, what you had mentioned, air gaping. Sure there's plenty of need for that, but at the end of the day, people that don't want to run big data centers, people that want torus their data to, to a company that's, that's got a full platform set up for them that they can build on, send that data over to the cloud, the cloud is not going away. I think more hybrid approach is, is where the future lives and that's what we're prepared for. >>Tim, really appreciate you coming to the program. Great stuff. Good to see you. >>Thanks very much. Appreciate it. >>Okay, in a moment I'll be back to wrap up. Today's session, you're watching The Cube. >>Are you looking for some help getting started with InfluxDB Telegraph or Flux Check >>Out Influx DB University >>Where you can find our entire catalog of free training that will help you make the most of your time series data >>Get >>Started for free@influxdbu.com. >>We'll see you in class. >>Okay, so we heard today from three experts on time series and data, how the Influx DB platform is evolving to support new ways of analyzing large data sets very efficiently and effectively in real time. And we learned that key open source components like Apache Arrow and the Rust Programming environment Data fusion par K are being leveraged to support realtime data analytics at scale. We also learned about the contributions in importance of open source software and how the Influx DB community is evolving the platform with minimal disruption to support new workloads, new use cases, and the future of realtime data analytics. Now remember these sessions, they're all available on demand. You can go to the cube.net to find those. Don't forget to check out silicon angle.com for all the news related to things enterprise and emerging tech. And you should also check out influx data.com. There you can learn about the company's products. You'll find developer resources like free courses. You could join the developer community and work with your peers to learn and solve problems. And there are plenty of other resources around use cases and customer stories on the website. This is Dave Valante. Thank you for watching Evolving Influx DB into the smart data platform, made possible by influx data and brought to you by the Cube, your leader in enterprise and emerging tech coverage.

Published Date : Nov 2 2022

SUMMARY :

we talked about how in theory, those time slices could be taken, you know, As is often the case, open source software is the linchpin to those innovations. We hope you enjoy the program. I appreciate the time. Hey, explain why Influx db, you know, needs a new engine. now, you know, related to requests like sql, you know, query support, things like that, of the real first influx DB cloud, you know, which has been really successful. as they're giving us feedback, et cetera, has has, you know, pointed us in a really good direction shift from, you know, time series, you know, specialist to real time analytics better handle those queries from a performance and a, and a, you know, a time to response on the queries, you know, all of the, the real time queries, the, the multiple language query support, the, the devices and you know, the sort of highly distributed nature of all of this. I always thought, you know, real, I always thought of real time as before you lose the customer, you know, and that's one of the things that really triggered us to know that we were, we were heading in the right direction, a look at the, the libraries in on our GitHub and, you know, can ex inspect it and even can try And so just, you know, being careful, maybe a little cautious in terms And you can do some experimentation and, you know, using the cloud resources. You know, this is a new very sort of popular systems language, you know, really fast real time inquiries that we talked about, as well as for very large, you know, but it's popularity is, is you know, really starting to hit that steep part of the S-curve. going out and you know, it'll be highly featured on our, our website, you know, the whole database, the ecosystem as it expands out into to, you know, this vertically oriented Really appreciate your time. Look forward to it. goes, goes beyond just the historical into the real time really hot area. There's no need to worry about provisioning because you only pay for what you use. InfluxDB uses a single API across the entire platform suite so you can build on Influx DB is leveraging to increase the granularity of time series analysis analysis and bring the Hi, thank you so much. it's gonna give you faster query speeds, you store files and object storage, it aims to have no limits on cardinality and also allow you to write any kind of event data that It's really, the adoption is really starting to get steep on all the control, all the fine grain control, you need to take you know, the community is modernizing the platform, but I wanna talk about Apache And so you can answer that question and you have those immediately available to you. out that one temperature value that you want at that one time stamp and do that for every talking about is really, you know, kind of native i, is it not as effective? Yeah, it's, it's not as effective because you have more expensive compression and So let's talk about Arrow Data Fusion. It also has a PANDAS API so that you could take advantage of PANDAS What are you doing with and Pandas, so it supports a broader ecosystem. What's the value that you're bringing to the community? And I think kind of the idea here is that if you can improve kind of summarize, you know, where what, what the big takeaways are from your perspective. the hard work questions and you All right, thank you so much Anise for explaining I really appreciate it. Data and we're gonna talk about how you update a SAS engine while I'm really glad that we went with InfluxDB Cloud for our hosting They listened to the challenges we were facing and they helped Good to see you. Good to see you. So my question to you is, So yeah, you know, influx really, we thrive at the intersection of commercial services and open, You know, you look at Kubernetes for example, But, but really Kubernetes is just, you know, Azure, and Google and figure out how to deliver services on those three clouds with all of their differences. to the edge, you know, wherever is that, is that correct? This is the new hot phrase, you know, it, it's, Kubernetes has made a lot of things easy for us Is that, are there specific attributes to Influx db as an SRE group, as an ops team, that we can manage with very few people So how, so sometimes you build, sometimes you buy it. And of course for customers you don't even see that, but we don't want to try to reinvent the wheel, and really as, as I mentioned earlier, we can keep up with the state of the art. the end we want you to focus on getting actual insights from your data instead of running infrastructure, So cloud native technologies are, are really the hot thing. You see in the news all the time, companies being compromised, you know, technologies, the engineers running the, that infrastructure, you know, historically, as you know, take away that heavy lifting to r and d so you can focus on some of the other activities. with influx, with Anytime series data, you know, you've got a lot of stuff that you're gonna run on-prem, Tim, really appreciate you coming to the program. Thanks very much. Okay, in a moment I'll be back to wrap up. brought to you by the Cube, your leader in enterprise and emerging tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Brian GilmorePERSON

0.99+

David BrownPERSON

0.99+

Tim YoakumPERSON

0.99+

Lisa MartinPERSON

0.99+

Dave VolantePERSON

0.99+

Dave VellantePERSON

0.99+

BrianPERSON

0.99+

DavePERSON

0.99+

Tim YokumPERSON

0.99+

StuPERSON

0.99+

Herain OberoiPERSON

0.99+

JohnPERSON

0.99+

Dave ValantePERSON

0.99+

Kamile TaoukPERSON

0.99+

John FourierPERSON

0.99+

Rinesh PatelPERSON

0.99+

Dave VellantePERSON

0.99+

Santana DasguptaPERSON

0.99+

EuropeLOCATION

0.99+

CanadaLOCATION

0.99+

BMWORGANIZATION

0.99+

CiscoORGANIZATION

0.99+

MicrosoftORGANIZATION

0.99+

ICEORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Jack BerkowitzPERSON

0.99+

AustraliaLOCATION

0.99+

NVIDIAORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

VenkatPERSON

0.99+

MichaelPERSON

0.99+

CamillePERSON

0.99+

Andy JassyPERSON

0.99+

IBMORGANIZATION

0.99+

Venkat KrishnamachariPERSON

0.99+

DellORGANIZATION

0.99+

Don TapscottPERSON

0.99+

thousandsQUANTITY

0.99+

Palo AltoLOCATION

0.99+

Intercontinental ExchangeORGANIZATION

0.99+

Children's Cancer InstituteORGANIZATION

0.99+

Red HatORGANIZATION

0.99+

telcoORGANIZATION

0.99+

Sabrina YanPERSON

0.99+

TimPERSON

0.99+

SabrinaPERSON

0.99+

John FurrierPERSON

0.99+

GoogleORGANIZATION

0.99+

MontyCloudORGANIZATION

0.99+

AWSORGANIZATION

0.99+

LeoPERSON

0.99+

COVID-19OTHER

0.99+

Santa AnaLOCATION

0.99+

UKLOCATION

0.99+

TusharPERSON

0.99+

Las VegasLOCATION

0.99+

ValentePERSON

0.99+

JL ValentePERSON

0.99+

1,000QUANTITY

0.99+

The Truth About MySQL HeatWave


 

>>When Oracle acquired my SQL via the Sun acquisition, nobody really thought the company would put much effort into the platform preferring to focus all the wood behind its leading Oracle database, Arrow pun intended. But two years ago, Oracle surprised many folks by announcing my SQL Heatwave a new database as a service with a massively parallel hybrid Columbia in Mary Mary architecture that brings together transactional and analytic data in a single platform. Welcome to our latest database, power panel on the cube. My name is Dave Ante, and today we're gonna discuss Oracle's MySQL Heat Wave with a who's who of cloud database industry analysts. Holgar Mueller is with Constellation Research. Mark Stammer is the Dragon Slayer and Wikibon contributor. And Ron Westfall is with Fu Chim Research. Gentlemen, welcome back to the Cube. Always a pleasure to have you on. Thanks for having us. Great to be here. >>So we've had a number of of deep dive interviews on the Cube with Nip and Aggarwal. You guys know him? He's a senior vice president of MySQL, Heatwave Development at Oracle. I think you just saw him at Oracle Cloud World and he's come on to describe this is gonna, I'll call it a shock and awe feature additions to to heatwave. You know, the company's clearly putting r and d into the platform and I think at at cloud world we saw like the fifth major release since 2020 when they first announced MySQL heat wave. So just listing a few, they, they got, they taken, brought in analytics machine learning, they got autopilot for machine learning, which is automation onto the basic o l TP functionality of the database. And it's been interesting to watch Oracle's converge database strategy. We've contrasted that amongst ourselves. Love to get your thoughts on Amazon's get the right tool for the right job approach. >>Are they gonna have to change that? You know, Amazon's got the specialized databases, it's just, you know, the both companies are doing well. It just shows there are a lot of ways to, to skin a cat cuz you see some traction in the market in, in both approaches. So today we're gonna focus on the latest heat wave announcements and we're gonna talk about multi-cloud with a native MySQL heat wave implementation, which is available on aws MySQL heat wave for Azure via the Oracle Microsoft interconnect. This kind of cool hybrid action that they got going. Sometimes we call it super cloud. And then we're gonna dive into my SQL Heatwave Lake house, which allows users to process and query data across MyQ databases as heatwave databases, as well as object stores. So, and then we've got, heatwave has been announced on AWS and, and, and Azure, they're available now and Lake House I believe is in beta and I think it's coming out the second half of next year. So again, all of our guests are fresh off of Oracle Cloud world in Las Vegas. So they got the latest scoop. Guys, I'm done talking. Let's get into it. Mark, maybe you could start us off, what's your opinion of my SQL Heatwaves competitive position? When you think about what AWS is doing, you know, Google is, you know, we heard Google Cloud next recently, we heard about all their data innovations. You got, obviously Azure's got a big portfolio, snowflakes doing well in the market. What's your take? >>Well, first let's look at it from the point of view that AWS is the market leader in cloud and cloud services. They own somewhere between 30 to 50% depending on who you read of the market. And then you have Azure as number two and after that it falls off. There's gcp, Google Cloud platform, which is further way down the list and then Oracle and IBM and Alibaba. So when you look at AWS and you and Azure saying, hey, these are the market leaders in the cloud, then you start looking at it and saying, if I am going to provide a service that competes with the service they have, if I can make it available in their cloud, it means that I can be more competitive. And if I'm compelling and compelling means at least twice the performance or functionality or both at half the price, I should be able to gain market share. >>And that's what Oracle's done. They've taken a superior product in my SQL heat wave, which is faster, lower cost does more for a lot less at the end of the day and they make it available to the users of those clouds. You avoid this little thing called egress fees, you avoid the issue of having to migrate from one cloud to another and suddenly you have a very compelling offer. So I look at what Oracle's doing with MyQ and it feels like, I'm gonna use a word term, a flanking maneuver to their competition. They're offering a better service on their platforms. >>All right, so thank you for that. Holger, we've seen this sort of cadence, I sort of referenced it up front a little bit and they sat on MySQL for a decade, then all of a sudden we see this rush of announcements. Why did it take so long? And and more importantly is Oracle, are they developing the right features that cloud database customers are looking for in your view? >>Yeah, great question, but first of all, in your interview you said it's the edit analytics, right? Analytics is kind of like a marketing buzzword. Reports can be analytics, right? The interesting thing, which they did, the first thing they, they, they crossed the chasm between OTP and all up, right? In the same database, right? So major engineering feed very much what customers want and it's all about creating Bellevue for customers, which, which I think is the part why they go into the multi-cloud and why they add these capabilities. And they certainly with the AI capabilities, it's kind of like getting it into an autonomous field, self-driving field now with the lake cost capabilities and meeting customers where they are, like Mark has talked about the e risk costs in the cloud. So that that's a significant advantage, creating value for customers and that's what at the end of the day matters. >>And I believe strongly that long term it's gonna be ones who create better value for customers who will get more of their money From that perspective, why then take them so long? I think it's a great question. I think largely he mentioned the gentleman Nial, it's largely to who leads a product. I used to build products too, so maybe I'm a little fooling myself here, but that made the difference in my view, right? So since he's been charged, he's been building things faster than the rest of the competition, than my SQL space, which in hindsight we thought was a hot and smoking innovation phase. It kind of like was a little self complacent when it comes to the traditional borders of where, where people think, where things are separated between OTP and ola or as an example of adjacent support, right? Structured documents, whereas unstructured documents or databases and all of that has been collapsed and brought together for building a more powerful database for customers. >>So I mean it's certainly, you know, when, when Oracle talks about the competitors, you know, the competitors are in the, I always say they're, if the Oracle talks about you and knows you're doing well, so they talk a lot about aws, talk a little bit about Snowflake, you know, sort of Google, they have partnerships with Azure, but, but in, so I'm presuming that the response in MySQL heatwave was really in, in response to what they were seeing from those big competitors. But then you had Maria DB coming out, you know, the day that that Oracle acquired Sun and, and launching and going after the MySQL base. So it's, I'm, I'm interested and we'll talk about this later and what you guys think AWS and Google and Azure and Snowflake and how they're gonna respond. But, but before I do that, Ron, I want to ask you, you, you, you can get, you know, pretty technical and you've probably seen the benchmarks. >>I know you have Oracle makes a big deal out of it, publishes its benchmarks, makes some transparent on on GI GitHub. Larry Ellison talked about this in his keynote at Cloud World. What are the benchmarks show in general? I mean, when you, when you're new to the market, you gotta have a story like Mark was saying, you gotta be two x you know, the performance at half the cost or you better be or you're not gonna get any market share. So, and, and you know, oftentimes companies don't publish market benchmarks when they're leading. They do it when they, they need to gain share. So what do you make of the benchmarks? Have their, any results that were surprising to you? Have, you know, they been challenged by the competitors. Is it just a bunch of kind of desperate bench marketing to make some noise in the market or you know, are they real? What's your view? >>Well, from my perspective, I think they have the validity. And to your point, I believe that when it comes to competitor responses, that has not really happened. Nobody has like pulled down the information that's on GitHub and said, Oh, here are our price performance results. And they counter oracles. In fact, I think part of the reason why that hasn't happened is that there's the risk if Oracle's coming out and saying, Hey, we can deliver 17 times better query performance using our capabilities versus say, Snowflake when it comes to, you know, the Lakehouse platform and Snowflake turns around and says it's actually only 15 times better during performance, that's not exactly an effective maneuver. And so I think this is really to oracle's credit and I think it's refreshing because these differentiators are significant. We're not talking, you know, like 1.2% differences. We're talking 17 fold differences, we're talking six fold differences depending on, you know, where the spotlight is being shined and so forth. >>And so I think this is actually something that is actually too good to believe initially at first blush. If I'm a cloud database decision maker, I really have to prioritize this. I really would know, pay a lot more attention to this. And that's why I posed the question to Oracle and others like, okay, if these differentiators are so significant, why isn't the needle moving a bit more? And it's for, you know, some of the usual reasons. One is really deep discounting coming from, you know, the other players that's really kind of, you know, marketing 1 0 1, this is something you need to do when there's a real competitive threat to keep, you know, a customer in your own customer base. Plus there is the usual fear and uncertainty about moving from one platform to another. But I think, you know, the traction, the momentum is, is shifting an Oracle's favor. I think we saw that in the Q1 efforts, for example, where Oracle cloud grew 44% and that it generated, you know, 4.8 billion and revenue if I recall correctly. And so, so all these are demonstrating that's Oracle is making, I think many of the right moves, publishing these figures for anybody to look at from their own perspective is something that is, I think, good for the market and I think it's just gonna continue to pay dividends for Oracle down the horizon as you know, competition intens plots. So if I were in, >>Dave, can I, Dave, can I interject something and, and what Ron just said there? Yeah, please go ahead. A couple things here, one discounting, which is a common practice when you have a real threat, as Ron pointed out, isn't going to help much in this situation simply because you can't discount to the point where you improve your performance and the performance is a huge differentiator. You may be able to get your price down, but the problem that most of them have is they don't have an integrated product service. They don't have an integrated O L T P O L A P M L N data lake. Even if you cut out two of them, they don't have any of them integrated. They have multiple services that are required separate integration and that can't be overcome with discounting. And the, they, you have to pay for each one of these. And oh, by the way, as you grow, the discounts go away. So that's a, it's a minor important detail. >>So, so that's a TCO question mark, right? And I know you look at this a lot, if I had that kind of price performance advantage, I would be pounding tco, especially if I need two separate databases to do the job. That one can do, that's gonna be, the TCO numbers are gonna be off the chart or maybe down the chart, which you want. Have you looked at this and how does it compare with, you know, the big cloud guys, for example, >>I've looked at it in depth, in fact, I'm working on another TCO on this arena, but you can find it on Wiki bod in which I compared TCO for MySEQ Heat wave versus Aurora plus Redshift plus ML plus Blue. I've compared it against gcps services, Azure services, Snowflake with other services. And there's just no comparison. The, the TCO differences are huge. More importantly, thefor, the, the TCO per performance is huge. We're talking in some cases multiple orders of magnitude, but at least an order of magnitude difference. So discounting isn't gonna help you much at the end of the day, it's only going to lower your cost a little, but it doesn't improve the automation, it doesn't improve the performance, it doesn't improve the time to insight, it doesn't improve all those things that you want out of a database or multiple databases because you >>Can't discount yourself to a higher value proposition. >>So what about, I wonder ho if you could chime in on the developer angle. You, you followed that, that market. How do these innovations from heatwave, I think you used the term developer velocity. I've heard you used that before. Yeah, I mean, look, Oracle owns Java, okay, so it, it's, you know, most popular, you know, programming language in the world, blah, blah blah. But it does it have the, the minds and hearts of, of developers and does, where does heatwave fit into that equation? >>I think heatwave is gaining quickly mindshare on the developer side, right? It's not the traditional no sequel database which grew up, there's a traditional mistrust of oracles to developers to what was happening to open source when gets acquired. Like in the case of Oracle versus Java and where my sql, right? And, but we know it's not a good competitive strategy to, to bank on Oracle screwing up because it hasn't worked not on Java known my sequel, right? And for developers, it's, once you get to know a technology product and you can do more, it becomes kind of like a Swiss army knife and you can build more use case, you can build more powerful applications. That's super, super important because you don't have to get certified in multiple databases. You, you are fast at getting things done, you achieve fire, develop velocity, and the managers are happy because they don't have to license more things, send you to more trainings, have more risk of something not being delivered, right? >>So it's really the, we see the suite where this best of breed play happening here, which in general was happening before already with Oracle's flagship database. Whereas those Amazon as an example, right? And now the interesting thing is every step away Oracle was always a one database company that can be only one and they're now generally talking about heat web and that two database company with different market spaces, but same value proposition of integrating more things very, very quickly to have a universal database that I call, they call the converge database for all the needs of an enterprise to run certain application use cases. And that's what's attractive to developers. >>It's, it's ironic isn't it? I mean I, you know, the rumor was the TK Thomas Curian left Oracle cuz he wanted to put Oracle database on other clouds and other places. And maybe that was the rift. Maybe there was, I'm sure there was other things, but, but Oracle clearly is now trying to expand its Tam Ron with, with heatwave into aws, into Azure. How do you think Oracle's gonna do, you were at a cloud world, what was the sentiment from customers and the independent analyst? Is this just Oracle trying to screw with the competition, create a little diversion? Or is this, you know, serious business for Oracle? What do you think? >>No, I think it has lakes. I think it's definitely, again, attriting to Oracle's overall ability to differentiate not only my SQL heat wave, but its overall portfolio. And I think the fact that they do have the alliance with the Azure in place, that this is definitely demonstrating their commitment to meeting the multi-cloud needs of its customers as well as what we pointed to in terms of the fact that they're now offering, you know, MySQL capabilities within AWS natively and that it can now perform AWS's own offering. And I think this is all demonstrating that Oracle is, you know, not letting up, they're not resting on its laurels. That's clearly we are living in a multi-cloud world, so why not just make it more easy for customers to be able to use cloud databases according to their own specific, specific needs. And I think, you know, to holder's point, I think that definitely lines with being able to bring on more application developers to leverage these capabilities. >>I think one important announcement that's related to all this was the JSON relational duality capabilities where now it's a lot easier for application developers to use a language that they're very familiar with a JS O and not have to worry about going into relational databases to store their J S O N application coding. So this is, I think an example of the innovation that's enhancing the overall Oracle portfolio and certainly all the work with machine learning is definitely paying dividends as well. And as a result, I see Oracle continue to make these inroads that we pointed to. But I agree with Mark, you know, the short term discounting is just a stall tag. This is not denying the fact that Oracle is being able to not only deliver price performance differentiators that are dramatic, but also meeting a wide range of needs for customers out there that aren't just limited device performance consideration. >>Being able to support multi-cloud according to customer needs. Being able to reach out to the application developer community and address a very specific challenge that has plagued them for many years now. So bring it all together. Yeah, I see this as just enabling Oracles who ring true with customers. That the customers that were there were basically all of them, even though not all of them are going to be saying the same things, they're all basically saying positive feedback. And likewise, I think the analyst community is seeing this. It's always refreshing to be able to talk to customers directly and at Oracle cloud there was a litany of them and so this is just a difference maker as well as being able to talk to strategic partners. The nvidia, I think partnerships also testament to Oracle's ongoing ability to, you know, make the ecosystem more user friendly for the customers out there. >>Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able to be best of breed. That's the kind of surprising thing that I'm hearing about, about heatwave. I want to, I want to talk about Lake House because when I think of Lake House, I think data bricks, and to my knowledge data bricks hasn't been in the sites of Oracle yet. Maybe they're next, but, but Oracle claims that MySQL, heatwave, Lakehouse is a breakthrough in terms of capacity and performance. Mark, what are your thoughts on that? Can you double click on, on Lakehouse Oracle's claims for things like query performance and data loading? What does it mean for the market? Is Oracle really leading in, in the lake house competitive landscape? What are your thoughts? >>Well, but name in the game is what are the problems you're solving for the customer? More importantly, are those problems urgent or important? If they're urgent, customers wanna solve 'em. Now if they're important, they might get around to them. So you look at what they're doing with Lake House or previous to that machine learning or previous to that automation or previous to that O L A with O ltp and they're merging all this capability together. If you look at Snowflake or data bricks, they're tacking one problem. You look at MyQ heat wave, they're tacking multiple problems. So when you say, yeah, their queries are much better against the lake house in combination with other analytics in combination with O ltp and the fact that there are no ETLs. So you're getting all this done in real time. So it's, it's doing the query cross, cross everything in real time. >>You're solving multiple user and developer problems, you're increasing their ability to get insight faster, you're having shorter response times. So yeah, they really are solving urgent problems for customers. And by putting it where the customer lives, this is the brilliance of actually being multicloud. And I know I'm backing up here a second, but by making it work in AWS and Azure where people already live, where they already have applications, what they're saying is, we're bringing it to you. You don't have to come to us to get these, these benefits, this value overall, I think it's a brilliant strategy. I give Nip and Argo wallet a huge, huge kudos for what he's doing there. So yes, what they're doing with the lake house is going to put notice on data bricks and Snowflake and everyone else for that matter. Well >>Those are guys that whole ago you, you and I have talked about this. Those are, those are the guys that are doing sort of the best of breed. You know, they're really focused and they, you know, tend to do well at least out of the gate. Now you got Oracle's converged philosophy, obviously with Oracle database. We've seen that now it's kicking in gear with, with heatwave, you know, this whole thing of sweets versus best of breed. I mean the long term, you know, customers tend to migrate towards suite, but the new shiny toy tends to get the growth. How do you think this is gonna play out in cloud database? >>Well, it's the forever never ending story, right? And in software right suite, whereas best of breed and so far in the long run suites have always won, right? So, and sometimes they struggle again because the inherent problem of sweets is you build something larger, it has more complexity and that means your cycles to get everything working together to integrate the test that roll it out, certify whatever it is, takes you longer, right? And that's not the case. It's a fascinating part of what the effort around my SQL heat wave is that the team is out executing the previous best of breed data, bringing us something together. Now if they can maintain that pace, that's something to to, to be seen. But it, the strategy, like what Mark was saying, bring the software to the data is of course interesting and unique and totally an Oracle issue in the past, right? >>Yeah. But it had to be in your database on oci. And but at, that's an interesting part. The interesting thing on the Lake health side is, right, there's three key benefits of a lakehouse. The first one is better reporting analytics, bring more rich information together, like make the, the, the case for silicon angle, right? We want to see engagements for this video, we want to know what's happening. That's a mixed transactional video media use case, right? Typical Lakehouse use case. The next one is to build more rich applications, transactional applications which have video and these elements in there, which are the engaging one. And the third one, and that's where I'm a little critical and concerned, is it's really the base platform for artificial intelligence, right? To run deep learning to run things automatically because they have all the data in one place can create in one way. >>And that's where Oracle, I know that Ron talked about Invidia for a moment, but that's where Oracle doesn't have the strongest best story. Nonetheless, the two other main use cases of the lake house are very strong, very well only concern is four 50 terabyte sounds long. It's an arbitrary limitation. Yeah, sounds as big. So for the start, and it's the first word, they can make that bigger. You don't want your lake house to be limited and the terabyte sizes or any even petabyte size because you want to have the certainty. I can put everything in there that I think it might be relevant without knowing what questions to ask and query those questions. >>Yeah. And you know, in the early days of no schema on right, it just became a mess. But now technology has evolved to allow us to actually get more value out of that data. Data lake. Data swamp is, you know, not much more, more, more, more logical. But, and I want to get in, in a moment, I want to come back to how you think the competitors are gonna respond. Are they gonna have to sort of do a more of a converged approach? AWS in particular? But before I do, Ron, I want to ask you a question about autopilot because I heard Larry Ellison's keynote and he was talking about how, you know, most security issues are human errors with autonomy and autonomous database and things like autopilot. We take care of that. It's like autonomous vehicles, they're gonna be safer. And I went, well maybe, maybe someday. So Oracle really tries to emphasize this, that every time you see an announcement from Oracle, they talk about new, you know, autonomous capabilities. It, how legit is it? Do people care? What about, you know, what's new for heatwave Lakehouse? How much of a differentiator, Ron, do you really think autopilot is in this cloud database space? >>Yeah, I think it will definitely enhance the overall proposition. I don't think people are gonna buy, you know, lake house exclusively cause of autopilot capabilities, but when they look at the overall picture, I think it will be an added capability bonus to Oracle's benefit. And yeah, I think it's kind of one of these age old questions, how much do you automate and what is the bounce to strike? And I think we all understand with the automatic car, autonomous car analogy that there are limitations to being able to use that. However, I think it's a tool that basically every organization out there needs to at least have or at least evaluate because it goes to the point of it helps with ease of use, it helps make automation more balanced in terms of, you know, being able to test, all right, let's automate this process and see if it works well, then we can go on and switch on on autopilot for other processes. >>And then, you know, that allows, for example, the specialists to spend more time on business use cases versus, you know, manual maintenance of, of the cloud database and so forth. So I think that actually is a, a legitimate value proposition. I think it's just gonna be a case by case basis. Some organizations are gonna be more aggressive with putting automation throughout their processes throughout their organization. Others are gonna be more cautious. But it's gonna be, again, something that will help the overall Oracle proposition. And something that I think will be used with caution by many organizations, but other organizations are gonna like, hey, great, this is something that is really answering a real problem. And that is just easing the use of these databases, but also being able to better handle the automation capabilities and benefits that come with it without having, you know, a major screwup happened and the process of transitioning to more automated capabilities. >>Now, I didn't attend cloud world, it's just too many red eyes, you know, recently, so I passed. But one of the things I like to do at those events is talk to customers, you know, in the spirit of the truth, you know, they, you know, you'd have the hallway, you know, track and to talk to customers and they say, Hey, you know, here's the good, the bad and the ugly. So did you guys, did you talk to any customers my SQL Heatwave customers at, at cloud world? And and what did you learn? I don't know, Mark, did you, did you have any luck and, and having some, some private conversations? >>Yeah, I had quite a few private conversations. The one thing before I get to that, I want disagree with one point Ron made, I do believe there are customers out there buying the heat wave service, the MySEQ heat wave server service because of autopilot. Because autopilot is really revolutionary in many ways in the sense for the MySEQ developer in that it, it auto provisions, it auto parallel loads, IT auto data places it auto shape predictions. It can tell you what machine learning models are going to tell you, gonna give you your best results. And, and candidly, I've yet to meet a DBA who didn't wanna give up pedantic tasks that are pain in the kahoo, which they'd rather not do and if it's long as it was done right for them. So yes, I do think people are buying it because of autopilot and that's based on some of the conversations I had with customers at Oracle Cloud World. >>In fact, it was like, yeah, that's great, yeah, we get fantastic performance, but this really makes my life easier and I've yet to meet a DBA who didn't want to make their life easier. And it does. So yeah, I've talked to a few of them. They were excited. I asked them if they ran into any bugs, were there any difficulties in moving to it? And the answer was no. In both cases, it's interesting to note, my sequel is the most popular database on the planet. Well, some will argue that it's neck and neck with SQL Server, but if you add in Mariah DB and ProCon db, which are forks of MySQL, then yeah, by far and away it's the most popular. And as a result of that, everybody for the most part has typically a my sequel database somewhere in their organization. So this is a brilliant situation for anybody going after MyQ, but especially for heat wave. And the customers I talk to love it. I didn't find anybody complaining about it. And >>What about the migration? We talked about TCO earlier. Did your t does your TCO analysis include the migration cost or do you kind of conveniently leave that out or what? >>Well, when you look at migration costs, there are different kinds of migration costs. By the way, the worst job in the data center is the data migration manager. Forget it, no other job is as bad as that one. You get no attaboys for doing it. Right? And then when you screw up, oh boy. So in real terms, anything that can limit data migration is a good thing. And when you look at Data Lake, that limits data migration. So if you're already a MySEQ user, this is a pure MySQL as far as you're concerned. It's just a, a simple transition from one to the other. You may wanna make sure nothing broke and every you, all your tables are correct and your schema's, okay, but it's all the same. So it's a simple migration. So it's pretty much a non-event, right? When you migrate data from an O LTP to an O L A P, that's an ETL and that's gonna take time. >>But you don't have to do that with my SQL heat wave. So that's gone when you start talking about machine learning, again, you may have an etl, you may not, depending on the circumstances, but again, with my SQL heat wave, you don't, and you don't have duplicate storage, you don't have to copy it from one storage container to another to be able to be used in a different database, which by the way, ultimately adds much more cost than just the other service. So yeah, I looked at the migration and again, the users I talked to said it was a non-event. It was literally moving from one physical machine to another. If they had a new version of MySEQ running on something else and just wanted to migrate it over or just hook it up or just connect it to the data, it worked just fine. >>Okay, so every day it sounds like you guys feel, and we've certainly heard this, my colleague David Foyer, the semi-retired David Foyer was always very high on heatwave. So I think you knows got some real legitimacy here coming from a standing start, but I wanna talk about the competition, how they're likely to respond. I mean, if your AWS and you got heatwave is now in your cloud, so there's some good aspects of that. The database guys might not like that, but the infrastructure guys probably love it. Hey, more ways to sell, you know, EC two and graviton, but you're gonna, the database guys in AWS are gonna respond. They're gonna say, Hey, we got Redshift, we got aqua. What's your thoughts on, on not only how that's gonna resonate with customers, but I'm interested in what you guys think will a, I never say never about aws, you know, and are they gonna try to build, in your view a converged Oola and o LTP database? You know, Snowflake is taking an ecosystem approach. They've added in transactional capabilities to the portfolio so they're not standing still. What do you guys see in the competitive landscape in that regard going forward? Maybe Holger, you could start us off and anybody else who wants to can chime in, >>Happy to, you mentioned Snowflake last, we'll start there. I think Snowflake is imitating that strategy, right? That building out original data warehouse and the clouds tasking project to really proposition to have other data available there because AI is relevant for everybody. Ultimately people keep data in the cloud for ultimately running ai. So you see the same suite kind of like level strategy, it's gonna be a little harder because of the original positioning. How much would people know that you're doing other stuff? And I just, as a former developer manager of developers, I just don't see the speed at the moment happening at Snowflake to become really competitive to Oracle. On the flip side, putting my Oracle hat on for a moment back to you, Mark and Iran, right? What could Oracle still add? Because the, the big big things, right? The traditional chasms in the database world, they have built everything, right? >>So I, I really scratched my hat and gave Nipon a hard time at Cloud world say like, what could you be building? Destiny was very conservative. Let's get the Lakehouse thing done, it's gonna spring next year, right? And the AWS is really hard because AWS value proposition is these small innovation teams, right? That they build two pizza teams, which can be fit by two pizzas, not large teams, right? And you need suites to large teams to build these suites with lots of functionalities to make sure they work together. They're consistent, they have the same UX on the administration side, they can consume the same way, they have the same API registry, can't even stop going where the synergy comes to play over suite. So, so it's gonna be really, really hard for them to change that. But AWS super pragmatic. They're always by themselves that they'll listen to customers if they learn from customers suite as a proposition. I would not be surprised if AWS trying to bring things closer together, being morely together. >>Yeah. Well how about, can we talk about multicloud if, if, again, Oracle is very on on Oracle as you said before, but let's look forward, you know, half a year or a year. What do you think about Oracle's moves in, in multicloud in terms of what kind of penetration they're gonna have in the marketplace? You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at the, the Microsoft Azure deal. I think that's really interesting. I've, I've called it a little bit of early days of a super cloud. What impact do you think this is gonna have on, on the marketplace? But, but both. And think about it within Oracle's customer base, I have no doubt they'll do great there. But what about beyond its existing install base? What do you guys think? >>Ryan, do you wanna jump on that? Go ahead. Go ahead Ryan. No, no, no, >>That's an excellent point. I think it aligns with what we've been talking about in terms of Lakehouse. I think Lake House will enable Oracle to pull more customers, more bicycle customers onto the Oracle platforms. And I think we're seeing all the signs pointing toward Oracle being able to make more inroads into the overall market. And that includes garnishing customers from the leaders in, in other words, because they are, you know, coming in as a innovator, a an alternative to, you know, the AWS proposition, the Google cloud proposition that they have less to lose and there's a result they can really drive the multi-cloud messaging to resonate with not only their existing customers, but also to be able to, to that question, Dave's posing actually garnish customers onto their platform. And, and that includes naturally my sequel but also OCI and so forth. So that's how I'm seeing this playing out. I think, you know, again, Oracle's reporting is indicating that, and I think what we saw, Oracle Cloud world is definitely validating the idea that Oracle can make more waves in the overall market in this regard. >>You know, I, I've floated this idea of Super cloud, it's kind of tongue in cheek, but, but there, I think there is some merit to it in terms of building on top of hyperscale infrastructure and abstracting some of the, that complexity. And one of the things that I'm most interested in is industry clouds and an Oracle acquisition of Cerner. I was struck by Larry Ellison's keynote, it was like, I don't know, an hour and a half and an hour and 15 minutes was focused on healthcare transformation. Well, >>So vertical, >>Right? And so, yeah, so you got Oracle's, you know, got some industry chops and you, and then you think about what they're building with, with not only oci, but then you got, you know, MyQ, you can now run in dedicated regions. You got ADB on on Exadata cloud to customer, you can put that OnPrem in in your data center and you look at what the other hyperscalers are, are doing. I I say other hyperscalers, I've always said Oracle's not really a hyperscaler, but they got a cloud so they're in the game. But you can't get, you know, big query OnPrem, you look at outposts, it's very limited in terms of, you know, the database support and again, that that will will evolve. But now you got Oracle's got, they announced Alloy, we can white label their cloud. So I'm interested in what you guys think about these moves, especially the industry cloud. We see, you know, Walmart is doing sort of their own cloud. You got Goldman Sachs doing a cloud. Do you, you guys, what do you think about that and what role does Oracle play? Any thoughts? >>Yeah, let me lemme jump on that for a moment. Now, especially with the MyQ, by making that available in multiple clouds, what they're doing is this follows the philosophy they've had the past with doing cloud, a customer taking the application and the data and putting it where the customer lives. If it's on premise, it's on premise. If it's in the cloud, it's in the cloud. By making the mice equal heat wave, essentially a plug compatible with any other mice equal as far as your, your database is concern and then giving you that integration with O L A P and ML and Data Lake and everything else, then what you've got is a compelling offering. You're making it easier for the customer to use. So I look the difference between MyQ and the Oracle database, MyQ is going to capture market more market share for them. >>You're not gonna find a lot of new users for the Oracle debate database. Yeah, there are always gonna be new users, don't get me wrong, but it's not gonna be a huge growth. Whereas my SQL heatwave is probably gonna be a major growth engine for Oracle going forward. Not just in their own cloud, but in AWS and in Azure and on premise over time that eventually it'll get there. It's not there now, but it will, they're doing the right thing on that basis. They're taking the services and when you talk about multicloud and making them available where the customer wants them, not forcing them to go where you want them, if that makes sense. And as far as where they're going in the future, I think they're gonna take a page outta what they've done with the Oracle database. They'll add things like JSON and XML and time series and spatial over time they'll make it a, a complete converged database like they did with the Oracle database. The difference being Oracle database will scale bigger and will have more transactions and be somewhat faster. And my SQL will be, for anyone who's not on the Oracle database, they're, they're not stupid, that's for sure. >>They've done Jason already. Right. But I give you that they could add graph and time series, right. Since eat with, Right, Right. Yeah, that's something absolutely right. That's, that's >>A sort of a logical move, right? >>Right. But that's, that's some kid ourselves, right? I mean has worked in Oracle's favor, right? 10 x 20 x, the amount of r and d, which is in the MyQ space, has been poured at trying to snatch workloads away from Oracle by starting with IBM 30 years ago, 20 years ago, Microsoft and, and, and, and didn't work, right? Database applications are extremely sticky when they run, you don't want to touch SIM and grow them, right? So that doesn't mean that heat phase is not an attractive offering, but it will be net new things, right? And what works in my SQL heat wave heat phases favor a little bit is it's not the massive enterprise applications which have like we the nails like, like you might be only running 30% or Oracle, but the connections and the interfaces into that is, is like 70, 80% of your enterprise. >>You take it out and it's like the spaghetti ball where you say, ah, no I really don't, don't want to do all that. Right? You don't, don't have that massive part with the equals heat phase sequel kind of like database which are more smaller tactical in comparison, but still I, I don't see them taking so much share. They will be growing because of a attractive value proposition quickly on the, the multi-cloud, right? I think it's not really multi-cloud. If you give people the chance to run your offering on different clouds, right? You can run it there. The multi-cloud advantages when the Uber offering comes out, which allows you to do things across those installations, right? I can migrate data, I can create data across something like Google has done with B query Omni, I can run predictive models or even make iron models in different place and distribute them, right? And Oracle is paving the road for that, but being available on these clouds. But the multi-cloud capability of database which knows I'm running on different clouds that is still yet to be built there. >>Yeah. And >>That the problem with >>That, that's the super cloud concept that I flowed and I I've always said kinda snowflake with a single global instance is sort of, you know, headed in that direction and maybe has a league. What's the issue with that mark? >>Yeah, the problem with the, with that version, the multi-cloud is clouds to charge egress fees. As long as they charge egress fees to move data between clouds, it's gonna make it very difficult to do a real multi-cloud implementation. Even Snowflake, which runs multi-cloud, has to pass out on the egress fees of their customer when data moves between clouds. And that's really expensive. I mean there, there is one customer I talked to who is beta testing for them, the MySQL heatwave and aws. The only reason they didn't want to do that until it was running on AWS is the egress fees were so great to move it to OCI that they couldn't afford it. Yeah. Egress fees are the big issue but, >>But Mark the, the point might be you might wanna root query and only get the results set back, right was much more tinier, which been the answer before for low latency between the class A problem, which we sometimes still have but mostly don't have. Right? And I think in general this with fees coming down based on the Oracle general E with fee move and it's very hard to justify those, right? But, but it's, it's not about moving data as a multi-cloud high value use case. It's about doing intelligent things with that data, right? Putting into other places, replicating it, what I'm saying the same thing what you said before, running remote queries on that, analyzing it, running AI on it, running AI models on that. That's the interesting thing. Cross administered in the same way. Taking things out, making sure compliance happens. Making sure when Ron says I don't want to be American anymore, I want to be in the European cloud that is gets migrated, right? So tho those are the interesting value use case which are really, really hard for enterprise to program hand by hand by developers and they would love to have out of the box and that's yet the innovation to come to, we have to come to see. But the first step to get there is that your software runs in multiple clouds and that's what Oracle's doing so well with my SQL >>Guys. Amazing. >>Go ahead. Yeah. >>Yeah. >>For example, >>Amazing amount of data knowledge and, and brain power in this market. Guys, I really want to thank you for coming on to the cube. Ron Holger. Mark, always a pleasure to have you on. Really appreciate your time. >>Well all the last names we're very happy for Romanic last and moderator. Thanks Dave for moderating us. All right, >>We'll see. We'll see you guys around. Safe travels to all and thank you for watching this power panel, The Truth About My SQL Heat Wave on the cube. Your leader in enterprise and emerging tech coverage.

Published Date : Nov 1 2022

SUMMARY :

Always a pleasure to have you on. I think you just saw him at Oracle Cloud World and he's come on to describe this is doing, you know, Google is, you know, we heard Google Cloud next recently, They own somewhere between 30 to 50% depending on who you read migrate from one cloud to another and suddenly you have a very compelling offer. All right, so thank you for that. And they certainly with the AI capabilities, And I believe strongly that long term it's gonna be ones who create better value for So I mean it's certainly, you know, when, when Oracle talks about the competitors, So what do you make of the benchmarks? say, Snowflake when it comes to, you know, the Lakehouse platform and threat to keep, you know, a customer in your own customer base. And oh, by the way, as you grow, And I know you look at this a lot, to insight, it doesn't improve all those things that you want out of a database or multiple databases So what about, I wonder ho if you could chime in on the developer angle. they don't have to license more things, send you to more trainings, have more risk of something not being delivered, all the needs of an enterprise to run certain application use cases. I mean I, you know, the rumor was the TK Thomas Curian left Oracle And I think, you know, to holder's point, I think that definitely lines But I agree with Mark, you know, the short term discounting is just a stall tag. testament to Oracle's ongoing ability to, you know, make the ecosystem Yeah, it's interesting when you get these all in one tools, you know, the Swiss Army knife, you expect that it's not able So when you say, yeah, their queries are much better against the lake house in You don't have to come to us to get these, these benefits, I mean the long term, you know, customers tend to migrate towards suite, but the new shiny bring the software to the data is of course interesting and unique and totally an Oracle issue in And the third one, lake house to be limited and the terabyte sizes or any even petabyte size because you want keynote and he was talking about how, you know, most security issues are human I don't think people are gonna buy, you know, lake house exclusively cause of And then, you know, that allows, for example, the specialists to And and what did you learn? The one thing before I get to that, I want disagree with And the customers I talk to love it. the migration cost or do you kind of conveniently leave that out or what? And when you look at Data Lake, that limits data migration. So that's gone when you start talking about So I think you knows got some real legitimacy here coming from a standing start, So you see the same And you need suites to large teams to build these suites with lots of functionalities You saw a lot of presentations at at cloud world, you know, we've looked pretty closely at Ryan, do you wanna jump on that? I think, you know, again, Oracle's reporting I think there is some merit to it in terms of building on top of hyperscale infrastructure and to customer, you can put that OnPrem in in your data center and you look at what the So I look the difference between MyQ and the Oracle database, MyQ is going to capture market They're taking the services and when you talk about multicloud and But I give you that they could add graph and time series, right. like, like you might be only running 30% or Oracle, but the connections and the interfaces into You take it out and it's like the spaghetti ball where you say, ah, no I really don't, global instance is sort of, you know, headed in that direction and maybe has a league. Yeah, the problem with the, with that version, the multi-cloud is clouds And I think in general this with fees coming down based on the Oracle general E with fee move Yeah. Guys, I really want to thank you for coming on to the cube. Well all the last names we're very happy for Romanic last and moderator. We'll see you guys around.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MarkPERSON

0.99+

Ron HolgerPERSON

0.99+

RonPERSON

0.99+

Mark StammerPERSON

0.99+

IBMORGANIZATION

0.99+

Ron WestfallPERSON

0.99+

RyanPERSON

0.99+

AWSORGANIZATION

0.99+

DavePERSON

0.99+

WalmartORGANIZATION

0.99+

Larry EllisonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

AlibabaORGANIZATION

0.99+

OracleORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Holgar MuellerPERSON

0.99+

AmazonORGANIZATION

0.99+

Constellation ResearchORGANIZATION

0.99+

Goldman SachsORGANIZATION

0.99+

17 timesQUANTITY

0.99+

twoQUANTITY

0.99+

David FoyerPERSON

0.99+

44%QUANTITY

0.99+

1.2%QUANTITY

0.99+

4.8 billionQUANTITY

0.99+

JasonPERSON

0.99+

UberORGANIZATION

0.99+

Fu Chim ResearchORGANIZATION

0.99+

Dave AntePERSON

0.99+

Richard Hartmann, Grafana Labs | KubeCon + CloudNativeCon NA 2022


 

>>Good afternoon everyone, and welcome back to the Cube. I am Savannah Peterson here, coming to you from Detroit, Michigan. We're at Cuban Day three. Such a series of exciting interviews. We've done over 30, but this conversation is gonna be extra special, don't you think, John? >>Yeah, this is gonna be a good one. Griffon Labs is here with us. We're getting the conversation of what's going on in the industry management, watching the Kubernetes clusters. This is large scale conversations this week. It's gonna be a good one. >>Yeah. Yeah. I'm very excited. He's also got a fantastic Twitter handle, twitchy. H Please welcome Richie Hartman, who is the director of community here at Griffon. Richie, thank you so much for joining us. Thanks >>For having me. >>How's the show been for you? >>Busy. I, I mean, I, I, >>In >>A word, I have a ton of talks at at like maintain a thing and like the covering board searches at the TLC panel. I run forme day. So it's, it's been busy. It, yeah. Monday, I didn't have to run anything. That was quite nice. But there >>You, you have your hands in a lot. I'm not even gonna cover it. Looking at your bio, there's, there's so many different things that you're working on. I know that Grafana specifically had some announcements this week. Yeah, >>Yeah, yeah. We had quite a few, like the, the two largest ones is a, we now have a field Kubernetes integration on Grafana Cloud. So our, our approach is generally extremely open source first. So we try to push stuff into the exporters, like into the open source exporters, into mixes into things which are out there as open source for anyone to use. But that's little bit like a tool set, not a ready made solution. So when we talk integrations, we actually talk about things where you get this like one click experience, You log into your Grafana cloud, you click, I have a Kubernetes, which probably most of us have, and things just work like you in just the data. You have to write dashboards, you have to write alerts, you have to write everything to just get started with extremely opinionated dashboards, SLOs, alerts, again, all those things made by experts, so anyone can use them. And you don't have to reinvent the view for every single user. So that's the one. The other is, >>It's a big deal. >>Oh yeah, it is. Yeah. It is. It, we, we has, its heavily in integrations course. While, I mean, I don't have to convince anyone that perme is a DD factor standard in everything. Cloudnative. But again, it's, it's, it's sometimes a little bit hard to handle or a little bit not easy to get into. So, so smoothing this, this, this path onto onboarding yourself onto this stack and onto those types of solutions. Yes. Is what a lot of people need. Course, if you, if you look at the statistics from coupon, and we just heard this in the governing board session yesterday. Yeah. Like 60% of the people here are first time attendees. So there's a lot of people who just come into this thing and who need, like, this is your path. This is where you should be going. Or at least if you want to go, go there. This is how to get there. >>Here's your runway for takeoff. Yes. Yeah. I think that's a really good point. And I love that you, you had those numbers. I was curious. I, I had seen on Twitter, speaking of Twitter, I had seen, I had seen that, that there were a lot of people here coming for the first time. You're a community guy. Are we at an inflection point where this community is about to continue to scale? >>That's a very good question. Which I can't really answer. So I mean, >>Obviously I bet you're gonna try. >>I covid changed a few things. Yeah. Probably most people, >>A couple things. I mean, you know, casually, it's like such a gentle way of putting that, that was >>Beautiful. I'm gonna say yes, just to explode. All these new ERs are gonna learn Prometheus. They're gonna roll in with a open, open metrics, open telemetry. I love it, >>You know, But, but at the same time, like Cuban is, is ramping back up. But if you look at the, if you look at the registration numbers between Valencia Andro, it was more or less the same. Interesting. Which, so it didn't go onto this, onto this flu trajectory, which it was on like, up to, up to 2019. I expect this to take up again. But also with the economic situation, everything, I, I don't think >>It's, I think the jury's still out on hybrid. I think there's a lot, lot more hybrid. Let's see how the projects are gonna go. That's what I think it's gonna be the tell sign. How many people are in participating? How are the project's advancing? Some of the momentum, >>I mean, from the project level, Most of this is online anyway. Of course. That's how open source, right. I've been working for >>Ages. That's >>Cause you don't have any trouble budget or, or any office or, It's >>Always been that way. >>Yeah, precisely. So the projects are arguably spearheading this, this development and the, the online numbers. I I, I have some numbers in my head, but I'm, I'm not a hundred percent certain to, but they're higher for this time in Detroit than in volunteer as far somewhere. Cool. So that is growing and it's grown in parallel, which also is great. Cause it's much more accessible, much more inclusive. You don't have to have a budget of at least, let's say, I don't know, two to five k to, to fly over the pond and, and attend this thing. You can just do it from your home. So that is, that's a lot more inclusive. And I expect this to, to basically be a second more or less orthogonal growth, growth path. But the best thing about coupon is the hallway track. I'm just meeting people, talking to people and that kind of thing is not really possible with, >>It's, it's great to see people >>In person. No, and it makes such a difference. I mean, yeah. Even and interviewing people in person too. I mean, it does a, it's, it's, and, and this, this whole, I mean cncf, this whole community, every company here is community first. It's how these projects come to be. I think it's awesome. I feel like you got something you're saying to say, Johnny. >>Yeah. And I love some of the advancements. Rich Richie, we talked last time about, you know, open telemetry, open metrics. You're involved in dashboards. Yeah. One of the themes here is ease of use, simplicity, developer productivity. Where do you see the ease of use going from a project standpoint? For me, as you mentions everywhere, it's pretty much, it is, it's almost all corners of the world. Yep. And new people coming in. How, how are you making it easier? What's going on? Give us the update on that. >>So we also, funnily enough at precisely this topic in the TC panel just a few hours ago, about ease of use and about how to, how to make things easier to, to handle how developers currently, like if they just want to get into the cloud native seen, they have like, like we, we did some neck and math, like maybe 10 tools at least, which you have to be somewhat proficient in to just get started, which is honestly horrendous. Yeah. Course. Like with a server, I just had my survey install my thing and it runs, maybe I need a database, but that's roughly it. And this needs to change again. Like it's, it's nice that everything is, is un unraveled. And you have, you, you, you, you don't have those service boundaries which you had before. You can do all the horizontal scaling, you can do all the automatic scaling, all those things that they're super nice. But at the same time, this complexity, which used to be nicely compartmentalized, was deliberately broken up. And so it's becoming a lot harder to, to, like, we, we need to find new ways to compartmentalize this complexity back to, to human understandable levels again, in particular, as we keep onboarding new and new and new, new people, of course it's just not good use of anyone's time to, to just like learn the basics again and again and again. This is something which should be just compartmentalized and automated away. We're >>The three, We were talking to Matt Klein earlier and he was talking about as projects become mature and all over the place and have reach and and usage, you gotta work on the boring stuff. Yes. And when it's boring, that means you have success. Yes. But then you gotta work on the plumbing. What are some of the things that you guys are working on? Because people are relying on the product. >>Oh yeah. So for with my premises head on, the highlight feature is exponential or native or spars. Histograms. There's like three different names for one single concept. If you know Prometheus, you ha you currently have hard bucket boundaries where I say my latency is lower equal two seconds, one second, a hundred milliseconds, what have you. And I can put stuff into those histogram buckets accordingly to those predefined levels, which is extremely efficient, but like on the, on the code level. But it's not very nice for the humans course you need to understand your system before you're able to, to, to choose good cutoff points. And if you, if you, if you add new ones, that's completely fine. But if you want to actually change them, course you, you figured out that you made a fundamental mistake, you're going to have a break in the continue continuity of your observability data. And you cannot undo this in, into the past. So this is just gone native histograms. On the other hand, allow me to, to, okay, I'm not going to get get into the math, but basically you define a single formula, which there comes a good default. If you have good reasons, then you can change it. But if you don't, just don't talk, >>The people are in the math, Hit him up on Twitter. Twitter, h you'll get you that math. >>So the, >>The thing is people want the math, believe me. >>Oh >>Yeah. I mean we don't have time, but hit him up. Yeah. >>There's ProCon in two weeks in Munich and there will be whole talk about like the, the dirty details of all of the stuff. But the, the high level answer is it just does what people would expect it to do. And with very little overhead, you become, you get highly, highly or high resolution histograms, which is really important for a lot of use cases. But this is not just Prometheus with my open metrics head on the 2.0 feature, like the breaking highlight feature of Open Metrics 2.0 will be you guested precisely the same with my open telemetry head on. Low and behold the same underlying technology is being put or has been put into open telemetry. And we've worked for month and month and month and even longer between all different projects to, to assert that we have one single standard which is actually compatible with each other course. One of the worst things which you can have in the cloud ecosystem is if you have soly different things and they break in subtly wrong ways, like it's much better to just not work than to break in a way, which is just a little bit wrong. Of course you won't figure this out until it's too late. So we spent, like with all three hats, we spent insane amounts of time on making this happen and, and making this nice. >>Savannah, one of the things we have so much going on at Cube Con. I mean just you're unpacking like probably another day of cube. We can't go four days, but open time. >>I know, I know. I'm the same >>Open telemetry >>Challenge acceptance open. >>Sorry, we're gonna stay here. All the, They >>Shut the lights off on us last night. >>They literally gonna pull the plug on us. Yeah, yeah, yeah, yeah. They've done that before. It's not the first time we go until they kick us out. We love, love doing this. But Open telemetry is got a lot of news too. So that's, We haven't really talked much about that. >>We haven't at >>All. So there's a lot of stuff going on that, I won't call it boring. That's like code word's. That's cube talk for, for it's working. Yeah. So it's not bad, but there's a lot of stuff going on. Like open telemetry, open metrics, This is the stuff that matters cuz when you go in large scale, that's key. It's just what, missing all the, all the stuff. >>No, >>What are we missing? What are people missing? What's going on in the show that you think that's not actually being reported on? I mean it's a lot of high web assembly for instance got a lot >>Of high. Oh yeah, I was gonna say, I'm glad you're asking this because you, you've already mentioned about seven different hats that you wear. I can only imagine how many hats are actually in your hat cabinet. But you, you are someone with your, with your fingers in a lot of different things. So you can kind of give us a state of the union. Yeah. So go ahead. Let's talk about >>It. So I think you already hit a few good points. Ease of use is definitely one of them. And, and improving the developer experience and not having this like a value of pain. Yeah. That is one of the really big ones. It's going to be interesting cause it is boring. It is janitorial and it needs a different type of persona. A lot of, or maybe not most, but a large fraction of developers like the shiny stuff. And we could see this in Prometheus where like initially the people who contributed this the most where like those restless people who need to fix that one thing, this is impossible, are going to do it. Which changed over the years where the people who now contribute the most are off the janitorial. Like keep things boring, keep things running, still have substantial changes. But but not like more on the maintenance level. >>Yeah. The maintainers. I was just gonna bring that >>Up. Yeah. On the, on the keep things boring while still pushing 'em forward. Yeah. And the thing about ease of use is a lot of this is boring. A lot of this is strategy. A lot of this is toil. A lot of this takes lots of research also in areas where developers are not really good at, like UX for example, and ui like most software developers are really bad at those cause they just think differently from normal humans, I guess. >>So that's an interesting observation that you just made. I we could unpack that on a whole nother show as well. >>So the, the thing is this is going to be interesting for the open source scene course. This needs deliberate investment by companies who assign people to those projects and say, okay, fix that one thing or make it easier to use what have you. That is a lot easier with, with first party products and projects from companies cuz they can invest directly into the thing and they see much more of a value prop. It's, it's kind of normal by now to, to allow developers or even assigned developers onto open source projects. That's not so much the case for the tpms, for the architects, for the UX and your I people like for the documentation people that there's not as much awareness of that this is also driving value for everyone. Yes. And also there's not much as much. >>Yeah, that's a great point. This whole workflow production system of open source, which has grown and keeps growing and we'll keep growing. These be funded. And one of the things we were talking earlier in another session about is about the recession potentially we're hitting and the global issues, macroeconomics that might force some of these projects or companies not to get VC >>Funding. It's such a theme at the show. So, >>So to me, I said it's just not about VC funding. There's other funding mechanisms that's community oriented. There's companies participating, there's other meccas. Richie, if you could have your wishlist of how things could progress an open source, what would you want to see happen in terms of how it's, how things are funded, how things are executed. Cuz developers are going to run businesses. Cuz ultimately if you follow digital transformation to completion, it and developers aren't a department serving the business. They are the business. And that's coming fast. You know, what has to happen in your opinion, if you had the wish magic wand, what would you, what would you snap your fingers to make happen? >>If I had a magic wand that's very different from, from what is achievable. But let, let's >>Go with, Okay, go with the magic wand first. Cause we'll, we'll, we'll we'll riff on that. So >>I'm here for dreams. Yeah, yeah, >>Yeah. I mean I, I've been in open source for more than two, two decades, but now, and most of the open source is being driven forward by people who are not being paid for those. So for example, Gana is the first time I'm actually paid by a company to do my com community work. It's always been on the side. Of course I believe in it and I like doing it. I'm also not bad at it. And so I just kept doing it. But it was like at night on the weekends and everything. And to be honest, it's still at night and in the weekends, but the majority of it is during paid company time, which is awesome. Yeah. Most of the people who have driven this space forward are not in this position. They're doing it at night, they're doing it on the weekends. They're doing it out of dedication to a cause. Yeah. >>The commitment is insane. >>Yeah. At the same time you have companies mostly hyperscalers and either they have really big cloud offerings or they have really big advertisement business or both. And they're extracting a huge amount of value, which has been created in large part elsewhere. Like yes, they employ a ton of developers, but a lot of the technologies they built on and the shoulders of the giants they stand upon it are really poorly paid. And there are some efforts to like, I think the core foundation like which redistribute a little bit of money and such. But if I had my magic wand, everyone who is an open source and actually drives things forwards, get, I don't know, 20% of the value which they create just magically somehow. Yeah. >>Or, or other companies don't extract as much value and, and redistribute more like put more full-time engineers onto projects or whichever, like that would be the ideal state where the people who actually make the thing out of dedication are not more or less left on the sideline. Of course they're too dedicated to just say, Okay, I'm, I'm not doing this anymore. You figure this stuff out and let things tremble and falter. So I mean, it's like with nurses and such who, who just like, they, they know they have something which is important and they keep doing it. Of course they believe in it. >>I think this, I think this is an opportunity to start messaging this narrative because yeah, absolutely. Now we're at an inflection point where there's a big community, there is a shared responsibility in my opinion, to not spread the wealth, but make sure that it's equally balanced and, and the, and I think there's a way to do that. I don't know how yet, but I see that more than ever, it's not just come in, raid the kingdom, steal all the jewels, monetize it, and throw some token token money around. >>Well, in the burnout. Yeah, I mean I, the other thing that I'm thinking about too is it's, you know, it's, it's the, it's the financial aspect of this. It's the cognitive load. And I'm curious actually, when I ask you this question, how do you avoid burnout? You do a million different things and we're, you know, I'm sure the open source community that passion the >>Coach. Yeah. So it's just write code, >>It's, oh, my, my, my software engineering days are firmly over. I'm, I'm, I'm like, I'm the cat herer and the janitor and like this type of thing. I, I don't really write code anymore. >>It's how do you avoid burnout? >>So a i I didn't curse ahead burnout a few years ago. I was not nice, but that was still when I had like a full day job and that day job was super intense and on top I did all the things. Part of being honest, a lot of the people who do this are really dedicated and are really bad at setting boundaries between work >>And process. That's why I bring it up. Yeah. Literally why I bring it up. Yeah. >>I I I'm firmly in that area and I'm, I'm, I don't claim I have this fully figured out yet. It's also even more risky to some extent per like, it's, it's good if you're paid for this and you can do it during your work time. But on the other hand, if it's so nice and like if your hobby and your job are almost completely intersectional, it >>Becomes really, the lines are blurry. >>Yeah. And then yeah, like have work from home. You, you don't even commute anything or anymore. You just sit down at your computer and you just have fun doing your stuff and all of a sudden it's deep at night and you're still like, I want to keep going. >>Sounds like God, something cute. I >>Know. I was gonna say, I was like, passion is something we all have in common here on this. >>That's the key. That is the key point There is a, the, the passion project becomes the job. But now the contribution is interesting because now yeah, this ecosystem is, is has a commercial aspect. Again, this is the, this is the balance between commercialization and keeping that organic production system that's called open source. I mean, it's so fascinating and this is amazing. I want to continue that conversation. It's >>Awesome. Yeah. Yeah. This is, this is great. Richard, this entire conversation has been excellent. Thank you so much for joining us. How can people find you? I mean, I give em your Twitter handle, but if they wanna find out more about Grafana Prometheus and the 1700 things you do >>For grafana grafana.com, for Prometheus, promeus.io for my own stuff, GitHub slash richie age slash talks. Of course I track all my talks in there and like, I don't, I currently don't have a personal website cause I stop bothering, but my, like that repository is, is very, you find what I do over, like for example, the recording link will be uploaded to this GitHub. >>Yeah. Great. Follow. You also run a lot of events and a lot of community activity. Congratulations for you. Also, I talked about this last time, the largest IRC network on earth. You ran, built a data center from scratch. What happened? You done >>That? >>Haven't done a, he even built a cloud hyperscale compete with Amazon. That's the next one. Why don't you put that on the >>Plate? We'll be sure to feature whatever Richie does next year on the cube. >>I'm game. Yeah. >>Fantastic. On that note, Richie, again, thank you so much for being here, John, always a pleasure. Thank you. And thank you for tuning in to us here live from Detroit, Michigan on the cube. My name is Savannah Peterson and here's to hoping that you find balance in your life this weekend.

Published Date : Oct 28 2022

SUMMARY :

We've done over 30, but this conversation is gonna be extra special, don't you think, We're getting the conversation of what's going on in the industry management, Richie, thank you so much for joining us. I mean, I, I, I run forme day. You, you have your hands in a lot. You have to write dashboards, you have to write alerts, you have to write everything to just get started with Like 60% of the people here are first time attendees. And I love that you, you had those numbers. So I mean, I covid changed a few things. I mean, you know, casually, it's like such a gentle way of putting that, I love it, I expect this to take up again. Some of the momentum, I mean, from the project level, Most of this is online anyway. So the projects are arguably spearheading this, I feel like you got something you're saying to say, Johnny. it's almost all corners of the world. You can do all the horizontal scaling, you can do all the automatic scaling, all those things that they're super nice. What are some of the things that you But it's not very nice for the humans course you need The people are in the math, Hit him up on Twitter. Yeah. One of the worst things which you can have in the cloud ecosystem is if you have soly different things and Savannah, one of the things we have so much going on at Cube Con. I'm the same All the, They It's not the first time we go until they Like open telemetry, open metrics, This is the stuff that matters cuz when you go in large scale, So you can kind of give us a state of the union. And, and improving the developer experience and not having this like a I was just gonna bring that the thing about ease of use is a lot of this is boring. So that's an interesting observation that you just made. So the, the thing is this is going to be interesting for the open source scene course. And one of the things we were talking earlier in So, Richie, if you could have your wishlist of how things could But let, let's So Yeah, yeah, Gana is the first time I'm actually paid by a company to do my com community work. shoulders of the giants they stand upon it are really poorly paid. are not more or less left on the sideline. I think this, I think this is an opportunity to start messaging this narrative because yeah, Yeah, I mean I, the other thing that I'm thinking about too is it's, you know, I'm, I'm like, I'm the cat herer and the janitor and like this type of thing. a lot of the people who do this are really dedicated and are really Yeah. I I I'm firmly in that area and I'm, I'm, I don't claim I have this fully You, you don't even commute anything or anymore. I That is the key point There is a, the, the passion project becomes the job. things you do like that repository is, is very, you find what I do over, like for example, the recording link will be uploaded Also, I talked about this last time, the largest IRC network on earth. That's the next one. We'll be sure to feature whatever Richie does next year on the cube. Yeah. My name is Savannah Peterson and here's to hoping that you find balance in your life this weekend.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Richie HartmanPERSON

0.99+

RichiePERSON

0.99+

Matt KleinPERSON

0.99+

Savannah PetersonPERSON

0.99+

Richard HartmannPERSON

0.99+

RichardPERSON

0.99+

AmazonORGANIZATION

0.99+

JohnPERSON

0.99+

Grafana LabsORGANIZATION

0.99+

PrometheusTITLE

0.99+

Rich RichiePERSON

0.99+

60%QUANTITY

0.99+

Griffon LabsORGANIZATION

0.99+

two secondsQUANTITY

0.99+

one secondQUANTITY

0.99+

MunichLOCATION

0.99+

20%QUANTITY

0.99+

10 toolsQUANTITY

0.99+

DetroitLOCATION

0.99+

MondayDATE

0.99+

Detroit, MichiganLOCATION

0.99+

GrafanaORGANIZATION

0.99+

yesterdayDATE

0.99+

Grafana PrometheusTITLE

0.99+

threeQUANTITY

0.99+

five kQUANTITY

0.99+

first timeQUANTITY

0.99+

twoQUANTITY

0.98+

next yearDATE

0.98+

bothQUANTITY

0.98+

oneQUANTITY

0.98+

this weekDATE

0.98+

two decadesQUANTITY

0.98+

one single conceptQUANTITY

0.98+

GitHubORGANIZATION

0.98+

2019DATE

0.98+

Grafana cloudTITLE

0.98+

OneQUANTITY

0.97+

last nightDATE

0.97+

SavannahPERSON

0.97+

TwitterORGANIZATION

0.96+

earthLOCATION

0.96+

four daysQUANTITY

0.96+

over 30QUANTITY

0.95+

JohnnyPERSON

0.95+

one clickQUANTITY

0.95+

Grafana CloudTITLE

0.95+

CloudNativeConEVENT

0.94+

few hours agoDATE

0.93+

2.0OTHER

0.93+

GriffonORGANIZATION

0.93+

hundred percentQUANTITY

0.92+

two weeksQUANTITY

0.92+

one thingQUANTITY

0.91+

grafana grafana.comOTHER

0.9+

more than twoQUANTITY

0.89+

three different namesQUANTITY

0.88+

two largestQUANTITY

0.88+

promeus.ioOTHER

0.86+

a hundred millisecondsQUANTITY

0.86+

few years agoDATE

0.86+

single formulaQUANTITY

0.85+

firstQUANTITY

0.83+

Con.EVENT

0.83+

IRCORGANIZATION

0.82+

KubernetesTITLE

0.81+

seven different hatsQUANTITY

0.8+

one single standardQUANTITY

0.79+

Valencia AndroORGANIZATION

0.79+

NA 2022EVENT

0.77+

Open Metrics 2.0OTHER

0.74+

KubeCon +EVENT

0.7+

Stephen Chin, JFrog | KubeCon + CloudNativeCon NA 2022


 

>>Good afternoon, brilliant humans, and welcome back to the Cube. We're live in Detroit, Michigan at Cub Con, and I'm joined by John Furrier. John three exciting days buzzing. How you doing? >>That's great. I mean, we're coming down to the third day. We're keeping the energy going, but this segment's gonna be awesome. The CD foundation's doing amazing work. Developers are gonna be running businesses and workflows are changing. Productivity's the top conversation, and you're gonna start to see a coalescing of the communities who are continuous delivery, and it's gonna be awesome. >>And, and our next guess is an outstanding person to talk about this. We are joined by Stephen Chin, the chair of the CD Foundation. Steven, thanks so much for being here. >>No, no, my pleasure. I mean, this has been an amazing week quote that CubeCon with all of the announcements, all of the people who came out here to Detroit and, you know, fantastic. Like just walking around, you bump into all the right people here. Plus we held a CD summit zero day events, and had a lot of really exciting announcements this week. >>Gotta love the shirt. I gotta say, it's one of my favorites. Love the logos. Love the love the branding. That project got traction. What's the news in the CD foundation? I tried to sneak in the back. I got a little laid into your co-located event. It was packed. Everyone's engaged. It was really looked, look really cool. Give us the update. >>What's the news? Yeah, I know. So we, we had a really, really powerful event. All the key practitioners, the open source leads and folks were there. And one of, one of the things which I think we've done a really good job in the past six months with the CD foundation is getting back to the roots and focusing on technical innovation, right? This is what drives foundations, having strong projects, having people who are building innovation, and also bringing in a new innovation. So one of the projects which we added to the CD foundation this week is called Persia. So it's a, it's a decentralized package repository for getting open source libraries. And it solves a lot of the problems which you get when you have centralized infrastructure. You don't have the right security certificates, you don't have the right verification libraries. And these, these are all things which large companies provision and build out inside of their infrastructure. But the open source communities don't have the benefit of the same sort of really, really strong architecture. A lot of, a lot of the systems we depend upon. It's >>A good point, yeah. >>Yeah. I mean, if you think about the systems that developers depend upon, we depend upon, you know, npm, ruby Gems, Mayn Central, and these systems been around for a while. Like they serve the community well, right? They're, they're well supported by the companies and it's, it's, it's really a great contribution that they give us. But every time there's an outage or there's a security issue, guess, guess how many security issues that our, our research team found at npm? Just ballpark. >>74. >>So there're >>It's gotta be thousands. I mean, it's gotta be a lot of tons >>Of Yeah, >>They, they're currently up to 60,000 >>Whoa. >>Vulnerable, malicious packages in NPM and >>Oh my gosh. So that's a super, that's a jar number even. I know it was gonna be huge, but Holy mo. >>Yeah. So that's a software supply chain in actually right there. So that's, that's open source. Everything's out there. What's, how do, how does, how do you guys fix that? >>Yeah, so per peria kind of shifts the whole model. So when, when you think about a system that can be sustained, it has to be something which, which is not just one company. It has to be a, a, a set of companies, be vendor neutral and be decentralized. So that's why we donated it to the Continuous Delivery Foundation. So that can be that governance body, which, which makes sure it's not a single company, it is to use modern technologies. So you, you, you just need something which is immutable, so it can't be changed. So you can rely on it. It has to have a strong transaction ledger so you can see all of the history of it. You can build up your software, build materials off of it, and it, it has to have a strong peer-to-peer architecture, so it can be sustained long term. >>Steven, you mentioned something I want to just get back to. You mentioned outages and disruption. I, you didn't, you didn't say just the outages, but this whole disruption angle is interesting if something happens. Talk about the impact of the developer. They stalled, inefficiencies create basically disruption. >>No, I mean, if, if, so, so if you think about most DevOps teams in big companies, they support hundreds or thousands of teams and an hour of outage. All those developers, they, they can't program, they can't work. And that's, that's a huge loss of productivity for the company. Now, if you, if you take that up a level when MPM goes down for an hour, how many millions of man hours are wasted by not being able to get your builds working by not being able to get your codes to compile. Like it's, it's >>Like, yeah, I mean, it's almost hard to fathom. I mean, everyone's, It's stopped. Exactly. It's literally like having the plug pulled >>Exactly on whenever you're working on, That's, that's the fundamental problem we're trying to solve. Is it, it needs to be on a, like a well supported, well architected peer to peer network with some strong backing from big companies. So the company is working on Persia, include J Frog, which who I work for, Docker, Oracle. We have Deploy hub, Huawei, a whole bunch of other folks who are also helping out. And when you look at all of those folks, they all have different interests, but it's designed in a way where no single party has control over the network. So really it's, it's a system system. You, you're not relying upon one company or one logo. You're relying upon a well-architected open source implementation that everyone can rely >>On. That's shared software, but it's kind of a fault tolerant feature too. It's like, okay, if something happens here, you have a distributed piece of it, decentralized, you're not gonna go down. You can remediate. All right, so where's this go next? I mean, cuz we've been talking about the role of developer. This needs to be a modern, I won't say modern upgrade, but like a modern workflow or value chain. What's your vision? How do you see that? Cuz you're the center of the CD foundation coming together. People are gonna be coalescing multiple groups. Yeah. >>What's the, No, I think this is a good point. So there, there's a, a lot of different continuous delivery, continuous integration technologies. We're actually, from a Linux Foundation standpoint, we're coalescing all the continued delivery events into one big conference >>Next. You just made an announcement about this earlier this week. Tell us about CD events. What's going on, what's in, what's in the cooker? >>Yeah, and I think one of the big announcements we had was the 0.1 release of CD events. And CD events allows you to take all these systems and connect them in an event scalable, event oriented architecture. The first integration is between Tecton and Capin. So now you can get CD events flowing cleanly between your, your continuous delivery and your observability. And this extends through your entire DevOps pipeline. We all, we all need a standards based framework Yep. For how we get all the disparate continuous integration, continuous delivery, observability systems to, to work together. That's also high performance. It scales with our needs and it, it kind of gives you a future architecture to build on top of. So a lot of the companies I was talking with at the CD summit Yeah. They were very excited about not only using this with the projects we announced, but using this internally as an architecture to build their own DevOps pipelines on. >>I bet that feels good to hear. >>Yeah, absolutely. Yeah. >>Yeah. You mentioned Teton, they just graduated. I saw how many projects have graduated? >>So we have two graduated projects right now. We have Jenkins, which is the first graduated project. Now Tecton is also graduated. And I think this shows that for Tecton it was, it was time, the very mature project, great support, getting a lot of users and having them join the set of graduated projects. And the continuous delivery foundation is a really strong portfolio. And we have a bunch of other projects which also are on their way towards graduation. >>Feels like a moment of social proof I bet. >>For you all. Yeah, yeah. Yeah. No, it's really good. Yeah. >>How long has the CD Foundation been around? >>The CD foundation has been around for, i, I won't wanna say the exact number of years, a few years now. >>Okay. >>But I, I think that it, it was formed because what we wanted is we wanted a foundation which was purpose built. So CNCF is a great foundation. It has a very large umbrella of projects and it takes kind of that big umbrella approach where a lot of different efforts are joining it, a lot of things are happening and you can get good traction, but it produces its own bottlenecks in process. Having a foundation which is just about continuous delivery caters to more of a DevOps, professional DevOps audience. I think this, this gives a good platform for best practices. We're working on a new CDF best practices Yeah. Guide. We're working when use cases with all the member companies. And it, it gives that thought leadership platform for continuous delivery, which you need to be an expert in that area >>And the best practices too. And to identify the issues. Because at the end of the day, with the big thing that's coming out of this is velocity and more developers coming on board. I mean, this is the big thing. More people doing more. Yeah. Well yeah, I mean you take this open source continuous thunder away, you have more developers coming in, they be more productive and then people are gonna even either on the DevOps side or on the straight AP upside. And this is gonna be a huge issue. And the other thing that comes out that I wanna get your thoughts on is the supply chain issue you talked about is hot verifications and certifications of code is such big issue. Can you share your thoughts on that? Because Yeah, this is become, I won't say a business model for some companies, but it's also becoming critical for security that codes verified. >>Yeah. Okay. So I, I think one of, one of the things which we're specifically doing with the Peria project, which is unique, is rather than distributing, for example, libraries that you developed on your laptop and compiled there, or maybe they were built on, you know, a runner somewhere like Travis CI or GitHub actions, all the libraries being distributed on Persia are built by the authorized nodes in the network. And then they're, they're verified across all of the authorized nodes. So you nice, you have a, a gar, the basic guarantee we're giving you is when you download something from the Peria network, you'll get exactly the same binary as if you built it yourself from source. >>So there's a lot of trust >>And, and transparency. Yeah, exactly. And if you remember back to like kind of the seminal project, which kicked off this whole supply chain security like, like whirlwind it was SolarWinds. Yeah. Yeah. And the exact problem they hit was the build ran, it produced a result, they modified the code of the bill of the resulting binary and then they signed it. So if you built with the same source and then you went through that same process a second time, you would've gotten a different result, which was a malicious pre right. Yeah. And it's very hard to risk take, to take a binary file Yep. And determine if there's malicious code in it. Cuz it's not like source code. You can't inspect it, you can't do a code audit. It's totally different. So I think we're solving a key part of this with Persia, where you're freeing open source projects from the possibility of having their binaries, their packages, their end reduces, tampered with. And also upstream from this, you do want to have verification of prs, people doing code reviews, making sure that they're looking at the source code. And I think there's a lot of good efforts going on in the open source security foundation. So I'm also on the governing board of Open ssf >>To Do you sleep? You have three jobs you've said on camera? No, I can't even imagine. Yeah. Didn't >>You just spin that out from this open source security? Is that the new one they >>Spun out? Yeah, So the Open Source Security foundation is one of the new Linux Foundation projects. They, they have been around for a couple years, but they did a big reboot last year around this time. And I think what they really did a good job of now is bringing all the industry players to the table, having dialogue with government agencies, figuring out like, what do we need to do to support open source projects? Is it more investment in memory, safe languages? Do we need to have more investment in, in code audits or like security reviews of opensource projects. Lot of things. And all of those things require money investments. And that's what all the companies, including Jay Frogger doing to advance open source supply chain security. I >>Mean, it's, it's really kind of interesting to watch some different demographics of the developers and the vendors and the customers. On one hand, if you're a hardware person company, you have, you talk zero trust your software, your top trust, so your trusted code, and you got zero trust. It's interesting, depending on where you're coming from, they're all trying to achieve the same thing. It means zero trust. Makes sense. But then also I got code, I I want trust. Trust and verified. So security is in everything now. So code. So how do you see that traversing over? Is it just semantics or what's your view on that? >>The, the right way of looking at security is from the standpoint of the hacker, because they're always looking for >>Well said, very well said, New >>Loop, hope, new loopholes, new exploits. And they're, they're very, very smart people. And I think when you, when you look some >>Of the smartest >>Yeah, yeah, yeah. I, I, I work with, well former hackers now, security researchers, >>They converted, they're >>Recruited. But when you look at them, there's like two main classes of like, like types of exploits. So some, some attacker groups. What they're looking for is they're looking for pulse zero days, CVEs, like existing vulnerabilities that they can exploit to break into systems. But there's an increasing number of attackers who are now on the opposite end of the spectrum. And what they're doing is they're creating their own exploits. So, oh, they're for example, putting malicious code into open source projects. Little >>Trojan horse status. Yeah. >>They're they're getting their little Trojan horses in. Yeah. Or they're finding supply chain attacks by maybe uploading a malicious library to NPM or to pii. And by creating these attacks, especially ones that start at the top of the supply chain, you have such a large reach. >>I was just gonna say, it could be a whole, almost gives me chills as we're talking about it, the systemic, So this is this >>Gnarly nation state attackers, like people who wanted serious >>Damages. Engineered hack just said they're high, highly funded. Highly skilled. Exactly. Highly agile, highly focused. >>Yes. >>Teams, team. Not in the teams. >>Yeah. And so, so one, one example of this, which actually netted quite a lot of money for the, for the hacker who exposed it was, you guys probably heard about this, but it was a, an attack where they uploaded a malicious library to npm with the same exact namespace as a corporate library and clever, >>Creepy. >>It's called a dependency injection attack. And what happens is if you, if you don't have the right sort of security package management guidelines inside your company, and it's just looking for the latest version of merging multiple repositories as like a, like a single view. A lot of companies were accidentally picking up the latest version, which was out in npm uploaded by Alex Spearson was the one who did the, the attack. And he simultaneously reported bug bounties on like a dozen different companies and netted 130 k. Wow. So like these sort of attacks that they're real Yep. They're exploitable. And the, the hackers >>Complex >>Are finding these sort of attacks now in our supply chain are the ones who really are the most dangerous. That's the biggest threat to us. >>Yeah. And we have stacker ones out there. You got a bunch of other services, the white hat hackers get the bounties. That's really important. All right. What's next? What's your vision of this show as we end Coan? What's the most important story coming outta Coan in your opinion? And what are you guys doing next? >>Well, I, I actually think this is, this is probably not what most hooks would say is the most exciting story to con, but I find this personally the best is >>I can't wait for this now. >>So, on, on Sunday, the CNCF ran the first kids' day. >>Oh. >>And so they had a, a free kids workshop for, you know, underprivileged kids for >>About, That's >>Detroit area. It was, it was taught by some of the folks from the CNCF community. So Arro, Eric hen my, my older daughter, Cassandra's also an instructor. So she also was teaching a raspberry pie workshop. >>Amazing. And she's >>Here and Yeah, Yeah. She's also here at the show. And when you think about it, you know, there's always, there's, there's, you know, hundreds of announcements this week, A lot of exciting technologies, some of which we've talked about. Yeah. But it's, it's really what matters is the community. >>It this is a community first event >>And the people, and like, if we're giving back to the community and helping Detroit's kids to get better at technology, to get educated, I think that it's a worthwhile for all of us to be here. >>What a beautiful way to close it. That is such, I'm so glad you brought that up and brought that to our attention. I wasn't aware of that. Did you know that was >>Happening, John? No, I know about that. Yeah. No, that was, And that's next generation too. And what we need, we need to get down into the elementary schools. We gotta get to the kids. They're all doing robotics club anyway in high school. Computer science is now, now a >>Sport, in my opinion. Well, I think that if you're in a privileged community, though, I don't think that every school's doing robotics. And >>That's why Well, Cal Poly, Cal Poly and the universities are stepping up and I think CNCF leadership is amazing here. And we need more of it. I mean, I'm, I'm bullish on this. I love it. And I think that's a really great story. No, >>I, I am. Absolutely. And, and it just goes to show how committed CNF is to community, Putting community first and Detroit. There has been such a celebration of Detroit this whole week. Stephen, thank you so much for joining us on the show. Best Wishes with the CD Foundation. John, thanks for the banter as always. And thank you for tuning in to us here live on the cube in Detroit, Michigan. I'm Savannah Peterson and we are having the best day. I hope you are too.

Published Date : Oct 28 2022

SUMMARY :

How you doing? We're keeping the energy going, but this segment's gonna be awesome. the chair of the CD Foundation. of the announcements, all of the people who came out here to Detroit and, you know, What's the news in the CD foundation? You don't have the right security certificates, you don't have the right verification libraries. you know, npm, ruby Gems, Mayn Central, I mean, it's gotta be a lot of tons So that's a super, that's a jar number even. What's, how do, how does, how do you guys fix that? It has to have a strong transaction ledger so you can see all of the history of it. Talk about the impact of the developer. No, I mean, if, if, so, so if you think about most DevOps teams It's literally like having the plug pulled And when you look at all of those folks, they all have different interests, you have a distributed piece of it, decentralized, you're not gonna go down. What's the, No, I think this is a good point. What's going on, what's in, what's in the cooker? And CD events allows you to take all these systems and connect them Yeah. I saw how many projects have graduated? And the continuous delivery foundation is a really strong portfolio. For you all. The CD foundation has been around for, i, I won't wanna say the exact number of years, it gives that thought leadership platform for continuous delivery, which you need to be an expert in And the other thing that comes out that I wanna get your thoughts on is So you nice, you have a, a gar, the basic guarantee And the exact problem they hit was the build ran, To Do you sleep? And I think what they really did a good job of now is bringing all the industry players to So how do you see that traversing over? And I think when you, when you look some Yeah, yeah, yeah. But when you look at them, there's like two main classes of like, like types Yeah. the supply chain, you have such a large reach. Engineered hack just said they're high, highly funded. Not in the teams. the same exact namespace as a corporate library the latest version, which was out in npm uploaded by Alex Spearson That's the biggest threat to us. And what are you guys doing next? the CNCF community. And she's And when you think about it, And the people, and like, if we're giving back to the community and helping Detroit's kids to get better That is such, I'm so glad you brought that up and brought that to our attention. into the elementary schools. And And I think that's a really great story. And thank you for tuning in to us here live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
StevenPERSON

0.99+

Stephen ChinPERSON

0.99+

Alex SpearsonPERSON

0.99+

StephenPERSON

0.99+

Continuous Delivery FoundationORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

DetroitLOCATION

0.99+

OracleORGANIZATION

0.99+

JohnPERSON

0.99+

CassandraPERSON

0.99+

HuaweiORGANIZATION

0.99+

130 k.QUANTITY

0.99+

Savannah PetersonPERSON

0.99+

hundredsQUANTITY

0.99+

John FurrierPERSON

0.99+

oneQUANTITY

0.99+

Jay FroggerPERSON

0.99+

Mayn CentralORGANIZATION

0.99+

CNCFORGANIZATION

0.99+

TectonORGANIZATION

0.99+

CD FoundationORGANIZATION

0.99+

last yearDATE

0.99+

SundayDATE

0.99+

DockerORGANIZATION

0.99+

Detroit, MichiganLOCATION

0.99+

Detroit, MichiganLOCATION

0.99+

thousandsQUANTITY

0.99+

third dayQUANTITY

0.99+

first eventQUANTITY

0.99+

Linux FoundationORGANIZATION

0.99+

Open Source SecurityORGANIZATION

0.99+

one companyQUANTITY

0.99+

KubeConEVENT

0.99+

this weekDATE

0.98+

CD foundationORGANIZATION

0.98+

CNFORGANIZATION

0.98+

one logoQUANTITY

0.98+

millionsQUANTITY

0.98+

earlier this weekDATE

0.98+

JFrogPERSON

0.98+

second timeQUANTITY

0.98+

TetonORGANIZATION

0.98+

J FrogORGANIZATION

0.97+

ArroPERSON

0.97+

CloudNativeConEVENT

0.97+

npmORGANIZATION

0.97+

first integrationQUANTITY

0.97+

GitHubORGANIZATION

0.96+

an hourQUANTITY

0.96+

two main classesQUANTITY

0.96+

PersiaORGANIZATION

0.95+

up to 60,000QUANTITY

0.95+

CapinORGANIZATION

0.95+

hundreds of announcementsQUANTITY

0.94+

zero daysQUANTITY

0.94+

zero trustQUANTITY

0.94+

three jobsQUANTITY

0.93+

single companyQUANTITY

0.92+

CubeORGANIZATION

0.91+

single viewQUANTITY

0.91+

Deploy hubORGANIZATION

0.9+

past six monthsDATE

0.9+

CDORGANIZATION

0.9+

ruby GemsORGANIZATION

0.89+

NA 2022EVENT

0.89+

Eric henPERSON

0.87+

zero dayQUANTITY

0.86+

single partyQUANTITY

0.86+