Richard Hartmann, Grafana Labs | KubeCon + CloudNativeCon NA 2022
>>Good afternoon everyone, and welcome back to the Cube. I am Savannah Peterson here, coming to you from Detroit, Michigan. We're at Cuban Day three. Such a series of exciting interviews. We've done over 30, but this conversation is gonna be extra special, don't you think, John? >>Yeah, this is gonna be a good one. Griffon Labs is here with us. We're getting the conversation of what's going on in the industry management, watching the Kubernetes clusters. This is large scale conversations this week. It's gonna be a good one. >>Yeah. Yeah. I'm very excited. He's also got a fantastic Twitter handle, twitchy. H Please welcome Richie Hartman, who is the director of community here at Griffon. Richie, thank you so much for joining us. Thanks >>For having me. >>How's the show been for you? >>Busy. I, I mean, I, I, >>In >>A word, I have a ton of talks at at like maintain a thing and like the covering board searches at the TLC panel. I run forme day. So it's, it's been busy. It, yeah. Monday, I didn't have to run anything. That was quite nice. But there >>You, you have your hands in a lot. I'm not even gonna cover it. Looking at your bio, there's, there's so many different things that you're working on. I know that Grafana specifically had some announcements this week. Yeah, >>Yeah, yeah. We had quite a few, like the, the two largest ones is a, we now have a field Kubernetes integration on Grafana Cloud. So our, our approach is generally extremely open source first. So we try to push stuff into the exporters, like into the open source exporters, into mixes into things which are out there as open source for anyone to use. But that's little bit like a tool set, not a ready made solution. So when we talk integrations, we actually talk about things where you get this like one click experience, You log into your Grafana cloud, you click, I have a Kubernetes, which probably most of us have, and things just work like you in just the data. You have to write dashboards, you have to write alerts, you have to write everything to just get started with extremely opinionated dashboards, SLOs, alerts, again, all those things made by experts, so anyone can use them. And you don't have to reinvent the view for every single user. So that's the one. The other is, >>It's a big deal. >>Oh yeah, it is. Yeah. It is. It, we, we has, its heavily in integrations course. While, I mean, I don't have to convince anyone that perme is a DD factor standard in everything. Cloudnative. But again, it's, it's, it's sometimes a little bit hard to handle or a little bit not easy to get into. So, so smoothing this, this, this path onto onboarding yourself onto this stack and onto those types of solutions. Yes. Is what a lot of people need. Course, if you, if you look at the statistics from coupon, and we just heard this in the governing board session yesterday. Yeah. Like 60% of the people here are first time attendees. So there's a lot of people who just come into this thing and who need, like, this is your path. This is where you should be going. Or at least if you want to go, go there. This is how to get there. >>Here's your runway for takeoff. Yes. Yeah. I think that's a really good point. And I love that you, you had those numbers. I was curious. I, I had seen on Twitter, speaking of Twitter, I had seen, I had seen that, that there were a lot of people here coming for the first time. You're a community guy. Are we at an inflection point where this community is about to continue to scale? >>That's a very good question. Which I can't really answer. So I mean, >>Obviously I bet you're gonna try. >>I covid changed a few things. Yeah. Probably most people, >>A couple things. I mean, you know, casually, it's like such a gentle way of putting that, that was >>Beautiful. I'm gonna say yes, just to explode. All these new ERs are gonna learn Prometheus. They're gonna roll in with a open, open metrics, open telemetry. I love it, >>You know, But, but at the same time, like Cuban is, is ramping back up. But if you look at the, if you look at the registration numbers between Valencia Andro, it was more or less the same. Interesting. Which, so it didn't go onto this, onto this flu trajectory, which it was on like, up to, up to 2019. I expect this to take up again. But also with the economic situation, everything, I, I don't think >>It's, I think the jury's still out on hybrid. I think there's a lot, lot more hybrid. Let's see how the projects are gonna go. That's what I think it's gonna be the tell sign. How many people are in participating? How are the project's advancing? Some of the momentum, >>I mean, from the project level, Most of this is online anyway. Of course. That's how open source, right. I've been working for >>Ages. That's >>Cause you don't have any trouble budget or, or any office or, It's >>Always been that way. >>Yeah, precisely. So the projects are arguably spearheading this, this development and the, the online numbers. I I, I have some numbers in my head, but I'm, I'm not a hundred percent certain to, but they're higher for this time in Detroit than in volunteer as far somewhere. Cool. So that is growing and it's grown in parallel, which also is great. Cause it's much more accessible, much more inclusive. You don't have to have a budget of at least, let's say, I don't know, two to five k to, to fly over the pond and, and attend this thing. You can just do it from your home. So that is, that's a lot more inclusive. And I expect this to, to basically be a second more or less orthogonal growth, growth path. But the best thing about coupon is the hallway track. I'm just meeting people, talking to people and that kind of thing is not really possible with, >>It's, it's great to see people >>In person. No, and it makes such a difference. I mean, yeah. Even and interviewing people in person too. I mean, it does a, it's, it's, and, and this, this whole, I mean cncf, this whole community, every company here is community first. It's how these projects come to be. I think it's awesome. I feel like you got something you're saying to say, Johnny. >>Yeah. And I love some of the advancements. Rich Richie, we talked last time about, you know, open telemetry, open metrics. You're involved in dashboards. Yeah. One of the themes here is ease of use, simplicity, developer productivity. Where do you see the ease of use going from a project standpoint? For me, as you mentions everywhere, it's pretty much, it is, it's almost all corners of the world. Yep. And new people coming in. How, how are you making it easier? What's going on? Give us the update on that. >>So we also, funnily enough at precisely this topic in the TC panel just a few hours ago, about ease of use and about how to, how to make things easier to, to handle how developers currently, like if they just want to get into the cloud native seen, they have like, like we, we did some neck and math, like maybe 10 tools at least, which you have to be somewhat proficient in to just get started, which is honestly horrendous. Yeah. Course. Like with a server, I just had my survey install my thing and it runs, maybe I need a database, but that's roughly it. And this needs to change again. Like it's, it's nice that everything is, is un unraveled. And you have, you, you, you, you don't have those service boundaries which you had before. You can do all the horizontal scaling, you can do all the automatic scaling, all those things that they're super nice. But at the same time, this complexity, which used to be nicely compartmentalized, was deliberately broken up. And so it's becoming a lot harder to, to, like, we, we need to find new ways to compartmentalize this complexity back to, to human understandable levels again, in particular, as we keep onboarding new and new and new, new people, of course it's just not good use of anyone's time to, to just like learn the basics again and again and again. This is something which should be just compartmentalized and automated away. We're >>The three, We were talking to Matt Klein earlier and he was talking about as projects become mature and all over the place and have reach and and usage, you gotta work on the boring stuff. Yes. And when it's boring, that means you have success. Yes. But then you gotta work on the plumbing. What are some of the things that you guys are working on? Because people are relying on the product. >>Oh yeah. So for with my premises head on, the highlight feature is exponential or native or spars. Histograms. There's like three different names for one single concept. If you know Prometheus, you ha you currently have hard bucket boundaries where I say my latency is lower equal two seconds, one second, a hundred milliseconds, what have you. And I can put stuff into those histogram buckets accordingly to those predefined levels, which is extremely efficient, but like on the, on the code level. But it's not very nice for the humans course you need to understand your system before you're able to, to, to choose good cutoff points. And if you, if you, if you add new ones, that's completely fine. But if you want to actually change them, course you, you figured out that you made a fundamental mistake, you're going to have a break in the continue continuity of your observability data. And you cannot undo this in, into the past. So this is just gone native histograms. On the other hand, allow me to, to, okay, I'm not going to get get into the math, but basically you define a single formula, which there comes a good default. If you have good reasons, then you can change it. But if you don't, just don't talk, >>The people are in the math, Hit him up on Twitter. Twitter, h you'll get you that math. >>So the, >>The thing is people want the math, believe me. >>Oh >>Yeah. I mean we don't have time, but hit him up. Yeah. >>There's ProCon in two weeks in Munich and there will be whole talk about like the, the dirty details of all of the stuff. But the, the high level answer is it just does what people would expect it to do. And with very little overhead, you become, you get highly, highly or high resolution histograms, which is really important for a lot of use cases. But this is not just Prometheus with my open metrics head on the 2.0 feature, like the breaking highlight feature of Open Metrics 2.0 will be you guested precisely the same with my open telemetry head on. Low and behold the same underlying technology is being put or has been put into open telemetry. And we've worked for month and month and month and even longer between all different projects to, to assert that we have one single standard which is actually compatible with each other course. One of the worst things which you can have in the cloud ecosystem is if you have soly different things and they break in subtly wrong ways, like it's much better to just not work than to break in a way, which is just a little bit wrong. Of course you won't figure this out until it's too late. So we spent, like with all three hats, we spent insane amounts of time on making this happen and, and making this nice. >>Savannah, one of the things we have so much going on at Cube Con. I mean just you're unpacking like probably another day of cube. We can't go four days, but open time. >>I know, I know. I'm the same >>Open telemetry >>Challenge acceptance open. >>Sorry, we're gonna stay here. All the, They >>Shut the lights off on us last night. >>They literally gonna pull the plug on us. Yeah, yeah, yeah, yeah. They've done that before. It's not the first time we go until they kick us out. We love, love doing this. But Open telemetry is got a lot of news too. So that's, We haven't really talked much about that. >>We haven't at >>All. So there's a lot of stuff going on that, I won't call it boring. That's like code word's. That's cube talk for, for it's working. Yeah. So it's not bad, but there's a lot of stuff going on. Like open telemetry, open metrics, This is the stuff that matters cuz when you go in large scale, that's key. It's just what, missing all the, all the stuff. >>No, >>What are we missing? What are people missing? What's going on in the show that you think that's not actually being reported on? I mean it's a lot of high web assembly for instance got a lot >>Of high. Oh yeah, I was gonna say, I'm glad you're asking this because you, you've already mentioned about seven different hats that you wear. I can only imagine how many hats are actually in your hat cabinet. But you, you are someone with your, with your fingers in a lot of different things. So you can kind of give us a state of the union. Yeah. So go ahead. Let's talk about >>It. So I think you already hit a few good points. Ease of use is definitely one of them. And, and improving the developer experience and not having this like a value of pain. Yeah. That is one of the really big ones. It's going to be interesting cause it is boring. It is janitorial and it needs a different type of persona. A lot of, or maybe not most, but a large fraction of developers like the shiny stuff. And we could see this in Prometheus where like initially the people who contributed this the most where like those restless people who need to fix that one thing, this is impossible, are going to do it. Which changed over the years where the people who now contribute the most are off the janitorial. Like keep things boring, keep things running, still have substantial changes. But but not like more on the maintenance level. >>Yeah. The maintainers. I was just gonna bring that >>Up. Yeah. On the, on the keep things boring while still pushing 'em forward. Yeah. And the thing about ease of use is a lot of this is boring. A lot of this is strategy. A lot of this is toil. A lot of this takes lots of research also in areas where developers are not really good at, like UX for example, and ui like most software developers are really bad at those cause they just think differently from normal humans, I guess. >>So that's an interesting observation that you just made. I we could unpack that on a whole nother show as well. >>So the, the thing is this is going to be interesting for the open source scene course. This needs deliberate investment by companies who assign people to those projects and say, okay, fix that one thing or make it easier to use what have you. That is a lot easier with, with first party products and projects from companies cuz they can invest directly into the thing and they see much more of a value prop. It's, it's kind of normal by now to, to allow developers or even assigned developers onto open source projects. That's not so much the case for the tpms, for the architects, for the UX and your I people like for the documentation people that there's not as much awareness of that this is also driving value for everyone. Yes. And also there's not much as much. >>Yeah, that's a great point. This whole workflow production system of open source, which has grown and keeps growing and we'll keep growing. These be funded. And one of the things we were talking earlier in another session about is about the recession potentially we're hitting and the global issues, macroeconomics that might force some of these projects or companies not to get VC >>Funding. It's such a theme at the show. So, >>So to me, I said it's just not about VC funding. There's other funding mechanisms that's community oriented. There's companies participating, there's other meccas. Richie, if you could have your wishlist of how things could progress an open source, what would you want to see happen in terms of how it's, how things are funded, how things are executed. Cuz developers are going to run businesses. Cuz ultimately if you follow digital transformation to completion, it and developers aren't a department serving the business. They are the business. And that's coming fast. You know, what has to happen in your opinion, if you had the wish magic wand, what would you, what would you snap your fingers to make happen? >>If I had a magic wand that's very different from, from what is achievable. But let, let's >>Go with, Okay, go with the magic wand first. Cause we'll, we'll, we'll we'll riff on that. So >>I'm here for dreams. Yeah, yeah, >>Yeah. I mean I, I've been in open source for more than two, two decades, but now, and most of the open source is being driven forward by people who are not being paid for those. So for example, Gana is the first time I'm actually paid by a company to do my com community work. It's always been on the side. Of course I believe in it and I like doing it. I'm also not bad at it. And so I just kept doing it. But it was like at night on the weekends and everything. And to be honest, it's still at night and in the weekends, but the majority of it is during paid company time, which is awesome. Yeah. Most of the people who have driven this space forward are not in this position. They're doing it at night, they're doing it on the weekends. They're doing it out of dedication to a cause. Yeah. >>The commitment is insane. >>Yeah. At the same time you have companies mostly hyperscalers and either they have really big cloud offerings or they have really big advertisement business or both. And they're extracting a huge amount of value, which has been created in large part elsewhere. Like yes, they employ a ton of developers, but a lot of the technologies they built on and the shoulders of the giants they stand upon it are really poorly paid. And there are some efforts to like, I think the core foundation like which redistribute a little bit of money and such. But if I had my magic wand, everyone who is an open source and actually drives things forwards, get, I don't know, 20% of the value which they create just magically somehow. Yeah. >>Or, or other companies don't extract as much value and, and redistribute more like put more full-time engineers onto projects or whichever, like that would be the ideal state where the people who actually make the thing out of dedication are not more or less left on the sideline. Of course they're too dedicated to just say, Okay, I'm, I'm not doing this anymore. You figure this stuff out and let things tremble and falter. So I mean, it's like with nurses and such who, who just like, they, they know they have something which is important and they keep doing it. Of course they believe in it. >>I think this, I think this is an opportunity to start messaging this narrative because yeah, absolutely. Now we're at an inflection point where there's a big community, there is a shared responsibility in my opinion, to not spread the wealth, but make sure that it's equally balanced and, and the, and I think there's a way to do that. I don't know how yet, but I see that more than ever, it's not just come in, raid the kingdom, steal all the jewels, monetize it, and throw some token token money around. >>Well, in the burnout. Yeah, I mean I, the other thing that I'm thinking about too is it's, you know, it's, it's the, it's the financial aspect of this. It's the cognitive load. And I'm curious actually, when I ask you this question, how do you avoid burnout? You do a million different things and we're, you know, I'm sure the open source community that passion the >>Coach. Yeah. So it's just write code, >>It's, oh, my, my, my software engineering days are firmly over. I'm, I'm, I'm like, I'm the cat herer and the janitor and like this type of thing. I, I don't really write code anymore. >>It's how do you avoid burnout? >>So a i I didn't curse ahead burnout a few years ago. I was not nice, but that was still when I had like a full day job and that day job was super intense and on top I did all the things. Part of being honest, a lot of the people who do this are really dedicated and are really bad at setting boundaries between work >>And process. That's why I bring it up. Yeah. Literally why I bring it up. Yeah. >>I I I'm firmly in that area and I'm, I'm, I don't claim I have this fully figured out yet. It's also even more risky to some extent per like, it's, it's good if you're paid for this and you can do it during your work time. But on the other hand, if it's so nice and like if your hobby and your job are almost completely intersectional, it >>Becomes really, the lines are blurry. >>Yeah. And then yeah, like have work from home. You, you don't even commute anything or anymore. You just sit down at your computer and you just have fun doing your stuff and all of a sudden it's deep at night and you're still like, I want to keep going. >>Sounds like God, something cute. I >>Know. I was gonna say, I was like, passion is something we all have in common here on this. >>That's the key. That is the key point There is a, the, the passion project becomes the job. But now the contribution is interesting because now yeah, this ecosystem is, is has a commercial aspect. Again, this is the, this is the balance between commercialization and keeping that organic production system that's called open source. I mean, it's so fascinating and this is amazing. I want to continue that conversation. It's >>Awesome. Yeah. Yeah. This is, this is great. Richard, this entire conversation has been excellent. Thank you so much for joining us. How can people find you? I mean, I give em your Twitter handle, but if they wanna find out more about Grafana Prometheus and the 1700 things you do >>For grafana grafana.com, for Prometheus, promeus.io for my own stuff, GitHub slash richie age slash talks. Of course I track all my talks in there and like, I don't, I currently don't have a personal website cause I stop bothering, but my, like that repository is, is very, you find what I do over, like for example, the recording link will be uploaded to this GitHub. >>Yeah. Great. Follow. You also run a lot of events and a lot of community activity. Congratulations for you. Also, I talked about this last time, the largest IRC network on earth. You ran, built a data center from scratch. What happened? You done >>That? >>Haven't done a, he even built a cloud hyperscale compete with Amazon. That's the next one. Why don't you put that on the >>Plate? We'll be sure to feature whatever Richie does next year on the cube. >>I'm game. Yeah. >>Fantastic. On that note, Richie, again, thank you so much for being here, John, always a pleasure. Thank you. And thank you for tuning in to us here live from Detroit, Michigan on the cube. My name is Savannah Peterson and here's to hoping that you find balance in your life this weekend.
SUMMARY :
We've done over 30, but this conversation is gonna be extra special, don't you think, We're getting the conversation of what's going on in the industry management, Richie, thank you so much for joining us. I mean, I, I, I run forme day. You, you have your hands in a lot. You have to write dashboards, you have to write alerts, you have to write everything to just get started with Like 60% of the people here are first time attendees. And I love that you, you had those numbers. So I mean, I covid changed a few things. I mean, you know, casually, it's like such a gentle way of putting that, I love it, I expect this to take up again. Some of the momentum, I mean, from the project level, Most of this is online anyway. So the projects are arguably spearheading this, I feel like you got something you're saying to say, Johnny. it's almost all corners of the world. You can do all the horizontal scaling, you can do all the automatic scaling, all those things that they're super nice. What are some of the things that you But it's not very nice for the humans course you need The people are in the math, Hit him up on Twitter. Yeah. One of the worst things which you can have in the cloud ecosystem is if you have soly different things and Savannah, one of the things we have so much going on at Cube Con. I'm the same All the, They It's not the first time we go until they Like open telemetry, open metrics, This is the stuff that matters cuz when you go in large scale, So you can kind of give us a state of the union. And, and improving the developer experience and not having this like a I was just gonna bring that the thing about ease of use is a lot of this is boring. So that's an interesting observation that you just made. So the, the thing is this is going to be interesting for the open source scene course. And one of the things we were talking earlier in So, Richie, if you could have your wishlist of how things could But let, let's So Yeah, yeah, Gana is the first time I'm actually paid by a company to do my com community work. shoulders of the giants they stand upon it are really poorly paid. are not more or less left on the sideline. I think this, I think this is an opportunity to start messaging this narrative because yeah, Yeah, I mean I, the other thing that I'm thinking about too is it's, you know, I'm, I'm like, I'm the cat herer and the janitor and like this type of thing. a lot of the people who do this are really dedicated and are really Yeah. I I I'm firmly in that area and I'm, I'm, I don't claim I have this fully You, you don't even commute anything or anymore. I That is the key point There is a, the, the passion project becomes the job. things you do like that repository is, is very, you find what I do over, like for example, the recording link will be uploaded Also, I talked about this last time, the largest IRC network on earth. That's the next one. We'll be sure to feature whatever Richie does next year on the cube. Yeah. My name is Savannah Peterson and here's to hoping that you find balance in your life this weekend.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Richie Hartman | PERSON | 0.99+ |
Richie | PERSON | 0.99+ |
Matt Klein | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Richard Hartmann | PERSON | 0.99+ |
Richard | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Grafana Labs | ORGANIZATION | 0.99+ |
Prometheus | TITLE | 0.99+ |
Rich Richie | PERSON | 0.99+ |
60% | QUANTITY | 0.99+ |
Griffon Labs | ORGANIZATION | 0.99+ |
two seconds | QUANTITY | 0.99+ |
one second | QUANTITY | 0.99+ |
Munich | LOCATION | 0.99+ |
20% | QUANTITY | 0.99+ |
10 tools | QUANTITY | 0.99+ |
Detroit | LOCATION | 0.99+ |
Monday | DATE | 0.99+ |
Detroit, Michigan | LOCATION | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
Grafana Prometheus | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
five k | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
two | QUANTITY | 0.98+ |
next year | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
this week | DATE | 0.98+ |
two decades | QUANTITY | 0.98+ |
one single concept | QUANTITY | 0.98+ |
GitHub | ORGANIZATION | 0.98+ |
2019 | DATE | 0.98+ |
Grafana cloud | TITLE | 0.98+ |
One | QUANTITY | 0.97+ |
last night | DATE | 0.97+ |
Savannah | PERSON | 0.97+ |
ORGANIZATION | 0.96+ | |
earth | LOCATION | 0.96+ |
four days | QUANTITY | 0.96+ |
over 30 | QUANTITY | 0.95+ |
Johnny | PERSON | 0.95+ |
one click | QUANTITY | 0.95+ |
Grafana Cloud | TITLE | 0.95+ |
CloudNativeCon | EVENT | 0.94+ |
few hours ago | DATE | 0.93+ |
2.0 | OTHER | 0.93+ |
Griffon | ORGANIZATION | 0.93+ |
hundred percent | QUANTITY | 0.92+ |
two weeks | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
grafana grafana.com | OTHER | 0.9+ |
more than two | QUANTITY | 0.89+ |
three different names | QUANTITY | 0.88+ |
two largest | QUANTITY | 0.88+ |
promeus.io | OTHER | 0.86+ |
a hundred milliseconds | QUANTITY | 0.86+ |
few years ago | DATE | 0.86+ |
single formula | QUANTITY | 0.85+ |
first | QUANTITY | 0.83+ |
Con. | EVENT | 0.83+ |
IRC | ORGANIZATION | 0.82+ |
Kubernetes | TITLE | 0.81+ |
seven different hats | QUANTITY | 0.8+ |
one single standard | QUANTITY | 0.79+ |
Valencia Andro | ORGANIZATION | 0.79+ |
NA 2022 | EVENT | 0.77+ |
Open Metrics 2.0 | OTHER | 0.74+ |
KubeCon + | EVENT | 0.7+ |
Ruchir Puri, IBM and Tom Anderson, Red Hat | AnsibleFest 2022
>>Good morning live from Chicago. It's the cube on the floor at Ansible Fast 2022. This is day two of our wall to wall coverage. Lisa Martin here with John Furrier. John, we're gonna be talking next in the segment with two alumni about what Red Hat and IBM are doing to give Ansible users AI superpowers. As one of our alumni guests said, just off the keynote stage, we're nearing an inflection point in ai. >>The power of AI with Ansible is really gonna be an innovative, I think an inflection point for a long time because Ansible does such great things. This segment's gonna explore that innovation, bringing AI and making people more productive and more importantly, you know, this whole low code, no code, kind of right in the sweet spot of the skills gap. So should be a great segment. >>Great segment. Please welcome back two of our alumni. Perry is here, the Chief scientist, IBM Research and IBM Fellow. And Tom Anderson joins us once again, VP and general manager at Red Hat. Gentlemen, great to have you on the program. We're gonna have you back. >>Thank you for having >>Us and thanks for joining us. Fresh off the keynote stage. Really enjoyed your keynote this morning. Very exciting news. You have a project called Project Wisdom. We're talking about this inflection point in ai. Tell the audience, the viewers, what is Project Wisdom And Wisdom differs from intelligence. How >>I think Project Wisdom is really about, as I said, sort of combining two major forces that are in many ways disrupting and, and really constructing many a aspects of our society, which are software and AI together. Yeah. And I truly believe it's gonna result in a se shift on how not just enterprises, but society carries forefront. And as I said, intelligence is, is, I would argue at least artificial intelligence is more, in some ways mechanical, if I may say it, it's about algorithms, it's about data, it's about compute. Wisdom is all about what is truly important to bring out. It's not just about when you bring out a, a insight, when you bring out a decision to be able to explain that decision as well. It's almost like humans have wisdom. Machines have intelligence and, and it's about project wisdom. That's why we called it wisdom. >>Because it is about being a, a assistant augmenting humans. Just like be there with the humans and, and almost think of it as behave and interact with them as another colleague will versus intelligence, which is, you know, as I said, more mechanical is about data. Computer algorithms crunch together and, and we wanna bring the power of project wisdom and artificial intelligence to developers to, as you said, close the skills gap to be able to really make them more productive and have wisdom for Ansible be their assistant. Yeah. To be able to get things for them that they would find many ways mundane, many ways hard to find and again, be an assistant and augmented, >>You know, you know what's interesting, I want to get into the origin, how it all happened, but interesting IBM research, well known for the deep tech, big engineering. And you guys have been doing this for a long time, so congratulations. But it's interesting here at this event, even on stage here event, you're starting to see the automation come in. So the question comes up, scale. So what happens, IBM buys Red Hat, you go raid the, the raid, the ip, Trevor Treasure trove of ai. I mean this cuz this is kind of like bringing two killer apps together. The Ansible configuration automation layer with ai just kind of a, >>Yeah, it's an amazing relationship. I was gonna say marriage, but I don't wanna say marriage cause I may be >>Last. I didn't mean say raid the Treasure Trobe, but the kind of >>Like, oh my God. An amazing relationship where we bring all this expertise around automation, obviously around IP and application infrastructure automation and IBM research, Richie and his team bring this amazing capacity and experience around ai. Bring those two things together and applying AI to automation for our teams is so incredibly fantastic. I just can't contain my enthusiasm about it. And you could feel it in the keynote this morning that Richie was doing the energy in the room and when folks saw that, it's just amazing. >>The geeks are gonna love it for sure. But here I wanna get into the whole evolution. Computers on computers, remember the old days thinking machines was a company generations ago that I think they've sold or went outta business, but self-learning, learning machines, computers, programming, computers was actually on your slide you kind of piece out this next wave of AI and machine learning, starting with expert systems really kind of, I'm almost say static, but like okay programs. Yeah, yeah. And then now with machine learning and that big debate was unsupervised, supervised, which is not really perfect. Deep learning, which now explores some things, but now we're at another wave. Take, take us through the thought there explaining what this transition looks like and why. >>I think we are, as I said, we are really at an inflection point in the journey of ai. And if ai, I think it's fair to say data is the pain of ai without data, AI doesn't exist. But if I were to train AI with what is known as supervised learning or or data that is labeled, you are almost sort of limited because there are only so many people who have that expertise. And interestingly, they all have day jobs. So they're not just gonna sit around and label this for you. Some people may be available, but you know, this is not, again, as I as Tom said, we are really trying to apply it to some very sort of key domains which require subject matter expertise. This is not like labeling cats and dogs that everybody else in the board knows there are, the community's very large, but still the skills to go around are not that many. >>And I truly believe to apply AI to the, to the word of, you know, enterprises information technology automation, you have to have unsupervised learning and that's the only way to skate. Yeah. And these two trends really about, you know, information technology percolating across every enterprise and unsupervised learning, which is learning on this very large amount of data with of course know very large compute with some very powerful algorithms like transformer architectures and others which have been disrupting the, the domain of natural language as well are coming together with what I described as foundation models. Yeah. Which anybody who plays with it, you'll be blown away. That's literally blown away. >>And you call that self supervision at scale, which is kind of the foundation. So I have to ask you, cuz this comes up a lot with cloud, cloud scale, everyone tells horizontally scalable cloud, but vertically specialized applications where domain expertise and data plays. So the better the data, the better the self supervision, better the learning. But if it's horizontally scalable is a lot to learn. So how do you create that data ops where it's where the machines are gonna be peaked to maximize what's addressable, but what's also in the domain too, you gotta have that kind of diversity. Can you share your thoughts on that? >>Absolutely. So in, in the domain of foundation models, there are two main stages I would say. One is what I'll describe as pre-training, which is think of it as the, the machine in this particular case is knowledgeable about the domain of code in general. It knows syntax of Python, Java script know, go see Java and so, so on actually, and, and also Yammel as well, which is obviously one would argue is the domain of information technology. And once you get to that level, it's a, it's almost like having a developer who knows all of this but may not be an expert at Ansible just yet. He or she can be an expert at Ansible but is not there yet. That's what I'll call background knowledge. And also in the, in the case of foundation models, they are very adept at natural language as well. So they can connect natural language to code, but they are not yet expert at the domain of Ansible. >>Now there's something called, the second stage of learning is called fine tuning, which is about this data ops where I take data, which is sort of the SME data in this particular case. And it's curated. So this is not just generic data, you pick off GitHub, you don't know what exists out there. This is the data which is governed, which we know is of high quality as well. And you think of it as you specialize the generic AI with pre-trained AI with that data. And those two stages, including the governance of that data that goes into it results in this sort of really breakthrough technology that we've been calling Project Wisdom for. Our first application is Ansible, but just watch out that area. There are many more to come and, and we are gonna really, I'm really excited about this partnership with Red Hat because across IBM and research, I think where wherever we, if there is one place where we can find excited, open source, open developer community, it is Right. That's, >>Yeah. >>Tom, talk about the, the role of open source and Project Wisdom, the involvement of the community and maybe Richard, any feedback that you've gotten since coming off stage? I'm sure you were mobbed. >>Yeah, so for us this is, it's called Project Wisdom, not Product Wisdom. Right? Sorry. Right. And so, no, you didn't say that but I wanna just emphasize that it is a project and for us that is a key word in the upstream community that this is where we're inviting the community to jump on board with us and bring their expertise. All these people that are here will start to participate. They're excited in it. They'll bring their expertise and experience and that fine tuning of the model will just get better and better. So we're really excited about introducing this now and involving the community because it's super nuts. Everything that Red Hat does is around the community and this is no different. And so we're really excited about Project Wisdom. >>That's interesting. The project piece because if you see in today's world the innovation strategy before where we are now, go back to say 15 years ago it was of standard, it's gotta have standard bodies. You can still innovate and differentiate, but yet with open source and community, it's a blending of research and practitioners. I think that to me is a big story here is that what you guys are demonstrating is the combination of research and practitioners in the project. Yes. So how does this play out? Cuz this is kind of like how things are gonna get done in the cloud cuz Amazon's not gonna just standardize their stack at at higher level services, nor is Azure and they might get some plumbing commonalities below, but for Project Project Wisdom to be successful, they can, it doesn't need to have standards. If I get this right, if I can my on point here, what do you guys think about that? React to that? Yeah, >>So I definitely, I think standardization in terms of what we will call ML ops pipeline for models to be deployed and managed and operated. It's like models, like any other code, there's standardization on DevOps ops pipeline, there's standardization on machine learning pipeline. And these models will be deployed in the cloud because they need to scale. The only way to scale to, you know, thousands of users is through cloud. And there is, there are standard pipelines that we are working and architecting together with the Red Hat community leveraging open source packages. Yeah. Is really to, to help scale out the AI models of wisdom together. And another point I wanted to pick up on just what Tom said, I've been sort of in the area of productizing AI for for long now having experience with Watson as well. The only scenario where I've seen AI being successful is in this scenario where, what I describe as it meets the criteria of flywheel of ai. >>What do I mean by flywheel of ai? It cannot be some research people build a model. It may be wowing, but you roll it out and there's no feedback. Yeah, exactly. Okay. We are duh. So what actually, the only way the more people use these models, the more they give you feedback, the better it gets because it knows what is right and what is not right. It will never be right the first time. Actually, you know, the data it is trained on is a depiction of reality. Yeah. It is not a reality in itself. Yeah. The reality is a constantly moving target and the only way to make AI successful is to close that loop with the community. And that's why I just wanted to reemphasize the point on why community is that important >>Actually. And what's interesting Tom is this is a difference between standards bodies, old school and communities. Because developers are very efficient in their feedback. Yes. They jump to patterns that serve their needs, whether it's self-service or whatever. You can kind of see what's going on. Yeah. It's either working or not. Yeah, yeah, >>Yeah. We get immediate feedback from the community and we know real fast when something isn't working, when something is working, there are no problems with the flow of data between the members of the community and, and the developers themselves. So yeah, it's, I'm it's great. It's gonna be fantastic. The energy around Project Wisdom already. I bet. We're gonna go down to the Project Wisdom session, the breakout session, and I bet you the room will be overflowed. >>How do people get involved real quick? Get, get a take a minute to explain how I would get involved. I'm a community member. Yep. I'm watching this video, I'm intrigued. This has got me enthusiastic. How do I get more confident with this opportunity? >>So you go to, first of all, you go to red hat.com/project Wisdom and you register your interests and you wanna participate. We're gonna start growing this process, bringing people in, getting ready to make the service available to people to start using and to experiment with. Start getting their feedback. So this is the beginning of, of a journey. This isn't the, you know, this isn't the midpoint of a journey, this is the begin. You know, even though the work has been going on for a year, this is the beginning of the community journey now. And so we're gonna start working together through channels like Discord and whatnot to be able to exchange information and bring people in. >>What are some of the key use cases, maybe Richie are starting with you that, that you think maybe dream use cases that you think the community will help to really uncover as we're looking at Project Wisdom really helping in this transformation of ai. >>So if I focus on let's say Ansible itself, there are much wider use cases, but Ansible itself and you know, I, I would say I had not realized, I've been working on AI for Good for long, but I had not realized the excitement and the power of Ansible community itself. It's very large, it's very bottom sum, which I love actually. But as I went to lot of like CTOs and CIOs of lot of our customers as well, it was becoming clear the use cases of, you know, I've got thousand Ansible developers or IT or automation experts. They write code all the time. I don't know what all of this code is about. So the, the system administrators, managers, they're trying to figure out sort of how to organize all of this together and think of it as Google for finding all of these automation code automation content. >>And I'm very excited about not just the use cases that we demonstrated today, that is beginning of the journey, but to be able to help enterprises in finding the right code through natural language interfaces, generating the code, helping Del us debug their code as well. Giving them predictive insights into this may happen. Just watch out for it when you deploy this. Something like that happened before, just watch out for it as well. So I'm, I'm excited about the entire life cycle of IT automation, Not just about at the build time, but also at the time of deployment. At the time of management. This is just a start of a journey, but there are many exciting use cases abound for Ansible and beyond. >>It's gonna be great to watch this as it unfolds. Obviously just announcing this today. We thank you both so much for joining us on the program, talking about Project wisdom and, and sharing how the community can get involved. So you're gonna have to come back next year. We're gonna have to talk about what's going on. Cause I imagine with the excitement of the community and the volume of the community, this is just the tip of the iceberg. Absolutely. >>This is absolutely exactly. You're excited about. >>Excellent. And you should be. Congratulations. Thank, thanks again for joining us. We really appreciate your insights. Thank you. Thank >>You for having >>Us. For our guests and John Furrier, I'm Lisa Barton and you're watching The Cube Lie from Chicago at Ansible Fest 22. This is day two of wall to wall coverage on the cube. Stick around. Our next guest joins us in just a minute.
SUMMARY :
It's the cube on the floor at Ansible Fast 2022. bringing AI and making people more productive and more importantly, you know, this whole low code, Gentlemen, great to have you on the program. Tell the audience, the viewers, what is Project Wisdom And Wisdom differs from intelligence. It's not just about when you bring out a, a insight, when you bring out a decision to to developers to, as you said, close the skills gap to And you guys have been doing this for a long time, I was gonna say marriage, And you could feel it in the keynote this morning And then now with machine learning and that big debate was unsupervised, This is not like labeling cats and dogs that everybody else in the board the domain of natural language as well are coming together with And you call that self supervision at scale, which is kind of the foundation. And once you So this is not just generic data, you pick off GitHub, of the community and maybe Richard, any feedback that you've gotten since coming off stage? Everything that Red Hat does is around the community and this is no different. story here is that what you guys are demonstrating is the combination of research and practitioners The only way to scale to, you know, thousands of users is through the only way to make AI successful is to close that loop with the community. They jump to patterns that serve the breakout session, and I bet you the room will be overflowed. Get, get a take a minute to explain how I would get involved. So you go to, first of all, you go to red hat.com/project Wisdom and you register your interests and you What are some of the key use cases, maybe Richie are starting with you that, that you think maybe dream use the use cases of, you know, I've got thousand Ansible developers So I'm, I'm excited about the entire life cycle of IT automation, and sharing how the community can get involved. This is absolutely exactly. And you should be. This is day two of wall to wall coverage on the cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tom | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Lisa Barton | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Richard | PERSON | 0.99+ |
Tom Anderson | PERSON | 0.99+ |
Ansible | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
Chicago | LOCATION | 0.99+ |
John | PERSON | 0.99+ |
Perry | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Richie | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
Ruchir Puri | PERSON | 0.99+ |
two alumni | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Java | TITLE | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
two stages | QUANTITY | 0.99+ |
second stage | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
two things | QUANTITY | 0.99+ |
GitHub | ORGANIZATION | 0.99+ |
first application | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
ORGANIZATION | 0.98+ | |
both | QUANTITY | 0.98+ |
Discord | ORGANIZATION | 0.97+ |
15 years ago | DATE | 0.97+ |
AnsibleFest | EVENT | 0.97+ |
Trevor Treasure | PERSON | 0.97+ |
thousand | QUANTITY | 0.97+ |
red hat.com/project | OTHER | 0.96+ |
One | QUANTITY | 0.95+ |
The Cube Lie | TITLE | 0.93+ |
Ansible Fest 22 | EVENT | 0.93+ |
first time | QUANTITY | 0.93+ |
Project Wisdom | ORGANIZATION | 0.92+ |
two killer apps | QUANTITY | 0.92+ |
two major forces | QUANTITY | 0.92+ |
users | QUANTITY | 0.9+ |
IBM Research | ORGANIZATION | 0.9+ |
DevOps | TITLE | 0.89+ |
Azure | TITLE | 0.85+ |
Project Wisdom | TITLE | 0.85+ |
this morning | DATE | 0.85+ |
Yammel | TITLE | 0.82+ |
Project Wisdom | ORGANIZATION | 0.81+ |
a year | QUANTITY | 0.78+ |
Ansible Fast | ORGANIZATION | 0.75+ |
two main stages | QUANTITY | 0.74+ |
wave | EVENT | 0.72+ |
day | QUANTITY | 0.69+ |
first | QUANTITY | 0.67+ |
Project | ORGANIZATION | 0.66+ |
Project Project Wisdom | TITLE | 0.63+ |
Wisdom | TITLE | 0.61+ |
Brad Shapiro, HPE Financial Services | HPE Discover 2022
>>The cube presents HPE discover 2022 brought to you by HPE. >>Welcome back to HPE. Discover 2022. My name is Dave Lanta. I'm here with my co-host John fur. John we've been watching the evolution of H HP to HPE. We've seen GreenLake when Antonio Neri, I called it. I called it burn the boats. He goes, no, no, no, it wasn't burn the boats. I said, well, okay, burn the bridges. But it was all in on as a service on, on GreenLake. And we're gonna talk about that. Brad Shapiro is here. He's the vice president and managing director of the enterprise business at HPE financial services. Brad. Good to see him. Good to see >>You as well. >>Yeah, you guys got it all started. When, when Antonio kinda laid down, the gauntlet said, this is where we're going. Let's make it happen now. Cause the first place he turned I would imagine is the financial services said, okay, how do we start this today? Can you help us? And they take us back to that >>And yeah, sure. So, you know, uh, yeah, HP financial services, um, it's kind of a foundational element cuz when you think about it, asset management is really what we're doing here. And I know asset management's a, a big word, right? And it can mean lots of things to, to different people. Um, in this context, uh, we started looking at how do customers manage assets over the life cycle and a lot of customers while they were interested in a consumption model and looking at GreenLake for their private cloud, they were certainly looking at public cloud for certain workloads and then maybe even traditional data center for other activities that, that they're running. So it's really that hybrid environment. Uh, but they were stuck going well, Hey, I'm in a CapEx model today. How do I get out of CapEx and really get into this hybrid model? >>And that's where asset management comes in. So one of the, the biggest initial focus is, and we continue to have that focus. We call it our accelerated migration offer and it's really us going in and acquiring the customer assets, moving it on the HPE balance sheet and then figuring out what are we gonna do with those assets, which are gonna stay in use under a consumption model, which are excess. And we can put through our, uh, asset up cycling process, we monetize the majority of that, put that back into reuse and then maybe a small amount gets recycled. So, so really focused on the assets and accelerating customers transition to GreenLake. Did you >>See, or are you seeing a difference between like Le traditional leasing customers who already have kind of on that model versus like what you just described as sort of the, the CapEx was more complicated, you gotta get, I presume procurement involved the legal issues and was there a lot less, was it less friction with the, the leasing customers? Well, >>You know, I, I look at leasing and financing, very similar to CapEx. It's, it's a much more traditional model versus this new as a service experience. Um, so if, if they were in a leasing model, we could convert those leases into GreenLake. I wouldn't say one was any more difficult than the other. Yeah. Um, they were both really traditional mindset, um, and not really looking at a consumption model. So I think we had our fair share of both. And I think we, we have and are able to address both customers moving in into a consumption >>Mode. Right. How does this tie into sustainability? Because you know, we have on one end of the spectrum, the, the high end sustainability, you know, the, the science and sure. And the behind it, tactically speaking companies still now want to operate in this kind of, there's a sustainable angle here. Yeah. Talk about that piece of it. How does that tie in obviously consumption versus CapEx you're building, you're not building, what, what does that thread through the sustainability angle? >>Yeah. So, so first let me just say sustainability is really important to our customers. Um, and, and we're seeing it all over and it is real. Um, the good thing is that you can get business value out of the solutions and have a more sustainable model. So when I think about, and I talk to customers about sustainability, uh, there's a number of fronts they're focused on one, their customers believe it's important, right? So, so they're focused on making sure they're driving sustainable models. Uh, I've seen an increasing number of customers, both commercial and public sector have sustainability requirements in their tenders, in their RFPs. And you have to be able to, to comply with those. Um, second, uh, they, they look at it and go, how do I attract talent? It's increasingly important for them to attract talent. And then really if you, because >>They wanna work for a mission driven company that's >>Sustainable. Absolutely. Absolutely. And, and the third area is investors. You know, the investment community is now looking at ESG and whole and you know, certainly environmental impacts, um, in where they're making an investment. So quick personal story, I was talking, uh, to a friend of mine who works for a hedge fund and he was telling me over the last year, they've hired a whole team. That's focused on just doing analysis of companies, ESG initiatives, determining where they're gonna invest their money. So it's, it's a wall street thing now. So this is real from a number of angles where, where sustainability has an impact. Now, how we play in that. Um, clearly when you go to a GreenLake consumption model, the idea is improving utilization of the asset. So driving higher utilization means you need less assets. You know, over time, the, the secret is we're gonna sell you less, right? >>You're gonna have less assets, but you're gonna have higher utilization. That's good for the environment where HPE Fs comes in is when those assets are done. We put those assets back into reuse. So we have a remark, we have remarketing facilities, one in, in Andover, mass, one in kin Scotland. And then we have 80 different facilities. We have partnerships around the world and our focus is how do we drive more reuse, 85% of the assets we get back, go into reuse. And when you look at servers and PCs and things like that, it's over 95% go into reuse. So a real focus on reuse is good for the environment as well. And then needless to say, the new technology that goes into a GreenLake deal, we're seeing like 30% energy savings coming, coming out of those environments. So all really good stuff related to it's >>Interesting. I mean, a couple points there is one is, you know, Benoff kind of got it all started pre pandemic. He was out talking about, you know, sustainability and ESG. And a lot of people were like, no way. It's all about bottom line profits. And so he was ahead of that. And I guess, you know, back to at least you were, oh, you were always in the residual value game, but now it's a little different, isn't it? Absolutely. It's, it's it's yes. You gotta figure out what the value of that asset's gonna be, but also there's a sustainability aspect of it as >>Well. Yeah, absolutely. And the, the pretty cool thing here is while you drive sustainability, we're also seeing customers that, that go into GreenLake. Um, we had a good example with Kern county, a 42% savings over their CapEx environment when they moved to GreenLake. So it was better for the environment and significant savings. So you can have kind of like have your cake and eat it too. You, you get better environmental, uh, impacts and you're getting better bottom line, uh, performance. >>It's a business case there too do. Now we kind of, I was talking upfront about the, the early days of GreenLake where, you know, they were, it was a financial model. Yeah. And now it's evolving to actually a technology model. We heard Alma with the platform. How has that, or has that changed the way that financial services your >>Group >>Yeah. Approaches the, the, the market. >>Yeah. So, um, yeah, that's a great point. You know, when people talk about GreenLake, they think about the old days. And, and look, I've been around a while. I remember the flex capacity, right? Yeah, of course this isn't flex capacity. I mean, the platform's amazing and it really starts to bring to life the whole thought, when we talk about hybrid, right, there are workloads sure. They might belong best in the public cloud. Right. There, there are workloads that belong best in the private cloud, under the HPE GreenLake model. And there are still workloads that customers may say, Hey, look, I've got legacy applications. I'm gonna continue to run them in a traditional data center. And so from an H P E Fs perspective, you know, we look at this, not as a leasing and financing company, we're looking at this on how do we leverage the customer's existing assets? >>How do we create incremental budget using those existing assets? And then what kind of model best serves that workload? And then how do you optimize the capacity and the spend on that? So, you know, an interesting note in the past year, we put 500 million back into customer budgets by just leveraging their existing it estate. And, and it does, it's not all HPE product, you know, we're, we're, we're monetizing third party products in the data center, in the network, in the workplace. So we can really look at, we call it any tech any time, anywhere we look at all the technology and really assess what's the best way to leverage that investment. Yeah. And, and get the most out of >>It. Yeah. I mean, it's really evolved from just recycling assets for profit, but integrating the business model into the value proposition, the core value proposition in GreenLake. That's great innovation. Um, and, and congratulations on that. Sure. My, my question for you is more kind of zooming out at the market. Mm-hmm <affirmative>, from your perspective in financial services at HPE, what has the pandemic proven to you guys? How has it changed? How you guys work and how has it changed the customer environment? Cuz you mentioned assets. I think real estate. Oh no. One's going back to work. Yeah, no one's been in the office. How has the market changed with hybrids as a steady state now coming outta the pandemic? What are customers doing with the assets? What are some of the trends that you're seeing in the customer base? >>Yeah. So, so look, I'll give you my personal perspective of what I think about as a business leader. And when I talk to customers, I think we're all thinking about the same thing. So I start with experience, what experience do I wanna create for my customers and very closely linked to that, my colleagues, right? So it, the, the people working in our organization, what experience am I creating for them? So they can in turn, create that experience for partners and customers externally. So experience is one thing. The second is innovation, right? We spend a lot of time thinking about what's next? Where do we want to go? What's the innovation and more and more that innovation is all digital, right? So digital transformation is huge within my organization. And it's huge within all of our customers. Dave, I think the last time we talked, I was in my living room on a little laptop screen and zoom and, and I think I use the analogy E every business is now a digital business, even my pizza shop in jerseys. >>Yeah. Right. I mean, everything was online curbside pickup. So what I'm finding is the, the trends in terms of how to leverage technology is how do you create that customer experience? And then how does digital now blend as we're coming out of the pandemic? And, and you're, you know, now able to go into restaurants and stores, how do you blend digital with that in person experience and maybe leverage the best of both. Right. And, and how do you do that in a seamless way to really give customers choice and give them that smooth, seamless experience. So that, that's what I see happening. And you know, what we are trying to do with our asset management plays with the financial modeling we do is how do we get more of that spend going to innovation versus maintenance. And, and that's a big key because, you know, you have to be fast. So I talk about innovation. I talk about customer experience, speed to market. I mean, you know, and the bar keeps getting higher, right? It's like, as soon as you think you're fast, you're slow. We, because you have to keep, it all keeps rolling. >>We heard yesterday on the cube from, uh, one of the HP point, next executives said, you gotta perform and transform >>At the >>Same time at the same time. And you gotta know where the people are gonna land. Absolutely. And how the assets are gonna be distributed. >>And to your point, Brad, you know, from our virtual interview, you're so right. I mean, every business has to be a digital business. And you know, my, my personal story, John, you know, my brother Richie was the executive chef at legal seafood. Right. Pandemic. So then that was a, a place you wanted to go to that restaurant, famous restaurant in Boston when they reopened, they weren't ready. Right. They didn't have the digital story together. They ended up having to, we were just at Smith and Linsky, they ended up selling to Smith and Wilensky's oh, and you, you drive around, you see a lot of these retail businesses is shut down. Yeah. Right. And so, okay. So we're, they weren't able to get through that, you know, cross that chasm in digital transformation. Yeah. A lot of businesses were able to and make it a tailwind. >>Yeah. And, and look, the other thing I think all businesses are focused on right now, uh, with the labor market is talent. And, and so when you think about all of these things tying together, you want to drive, uh, you know, innovation. You want to drive your digital transformation. You wanna make that environmentally sustainable. And, and I think all of that, if you start putting all that together, those are the companies that are gonna attract the talent in the marketplace. And, and really there there's a battle for talent and >>You wanna make it profitable. Uh, Brad bureau. Thanks so much for you. Great to see you face to face. >>Yeah. Likewise. Thanks. Thanks. >>All right. Keep it right there, John. And I will be back. We're wrapping up day three of HPE, discover 2022. You're watching the cube.
SUMMARY :
I called it burn the boats. Yeah, you guys got it all started. it's kind of a foundational element cuz when you think about it, asset management is moving it on the HPE balance sheet and then figuring out what are we gonna do And I think we, we have and the, the high end sustainability, you know, the, the science and sure. And you have to be able to, to comply with those. So driving higher utilization means you need less assets. And when you look at servers and PCs and things like that, it's over 95% And I guess, you know, And the, the pretty cool thing here is while you drive sustainability, the early days of GreenLake where, you know, they were, it was a financial model. P E Fs perspective, you know, we look at this, not as a leasing and financing And then how do you and how has it changed the customer environment? And when I talk to customers, I think we're all thinking about the same thing. And you know, what we are trying to do with our asset And you gotta know where the people are gonna land. And you know, my, my personal story, John, you know, my brother Richie was the And, and so when you think about all of these things Great to see you face to face. Thanks. And I will be back.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Lanta | PERSON | 0.99+ |
Brad | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Brad Shapiro | PERSON | 0.99+ |
Richie | PERSON | 0.99+ |
John | PERSON | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
85% | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
HPE Financial Services | ORGANIZATION | 0.99+ |
42% | QUANTITY | 0.99+ |
Antonio | PERSON | 0.99+ |
Antonio Neri | PERSON | 0.99+ |
500 million | QUANTITY | 0.99+ |
CapEx | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
Scotland | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
John fur | PERSON | 0.99+ |
GreenLake | ORGANIZATION | 0.99+ |
HP | ORGANIZATION | 0.99+ |
ESG | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
last year | DATE | 0.99+ |
H HP | ORGANIZATION | 0.98+ |
second | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
past year | DATE | 0.97+ |
both customers | QUANTITY | 0.97+ |
Smith | ORGANIZATION | 0.96+ |
third area | QUANTITY | 0.96+ |
over 95% | QUANTITY | 0.96+ |
2022 | DATE | 0.94+ |
Smith and Wilensky | ORGANIZATION | 0.93+ |
day three | QUANTITY | 0.92+ |
pandemic | EVENT | 0.91+ |
80 different facilities | QUANTITY | 0.9+ |
Andover | LOCATION | 0.9+ |
Alma | PERSON | 0.89+ |
Kern | LOCATION | 0.87+ |
one thing | QUANTITY | 0.81+ |
Linsky | ORGANIZATION | 0.77+ |
couple points | QUANTITY | 0.65+ |
HPE Fs | ORGANIZATION | 0.54+ |
Benoff | PERSON | 0.5+ |
GreenLake | TITLE | 0.45+ |
Supercharge Your Business with Speed Rob Bearden - Joe Ansaldi | Cloudera 2021
>> Okay. We want to pick up on a couple of themes that Mick discussed, you know, supercharging your business with AI, for example, and this notion of getting hybrid right. So right now we're going to turn the program over to Rob Bearden, the CEO of Cloudera and Manuvir Das who's the head of enterprise computing at NVIDIA. And before I hand it off to Rob, I just want to say for those of you who follow me at the Cube, we've extensively covered the transformation of the semiconductor industry. We are entering an entirely new era of computing in the enterprise and it's being driven by the emergence of data intensive applications and workloads. No longer will conventional methods of processing data suffice to handle this work. Rather, we need new thinking around architectures and ecosystems. And one of the keys to success in this new era is collaboration between software companies like Cloudera and semiconductor designers like NVIDIA. So let's learn more about this collaboration and what it means to your data business. Rob, take it away. >> Thanks Mick and Dave. That was a great conversation on how speed and agility is everything in a hyper competitive hybrid world. You touched on AI as essential to a data first strategy in accelerating the path to value and hybrid environments. And I want to drill down on this aspect. Today, every business is facing accelerating change. Everything from face-to-face meetings to buying groceries has gone digital. As a result, businesses are generating more data than ever. There are more digital transactions to track and monitor now. Every engagement with coworkers, customers and partners is virtual. From website metrics to customer service records and even onsite sensors. Enterprises are accumulating tremendous amounts of data and unlocking insights from it is key to our enterprises success. And with data flooding every enterprise, what should the businesses do? At Cloudera, we believe this onslaught of data offers an opportunity to make better business decisions faster and we want to make that easier for everyone, whether it's fraud detection, demand forecasting, preventative maintenance, or customer churn. Whether the goal is to save money or produce income, every day that companies don't gain deep insight from their data is money they've lost. And the reason we're talking about speed and why speed is everything in a hybrid world and in a hyper competitive climate, is that the faster we get insights from all of our data, the faster we grow and the more competitive we are. So those faster insights are also combined with the scalability and cost benefit that cloud provides. And with security and edge to AI data intimacy, that's why the partnership between Cloudera and NVIDIA together means so much. And it starts with a shared vision, making data-driven decision-making a reality for every business. And our customers will now be able to leverage virtually unlimited quantities and varieties of data to power an order of magnitude faster decision-making. And together we turbo charged the enterprise data cloud to enable our customers to work faster and better, and to make integration of AI approaches a reality for companies of all sizes in the cloud. We're joined today by NVIDIA's Manduvir Das, and to talk more about how our technologies will deliver the speed companies need for innovation in our hyper competitive environment. Okay, Manuvir, thank you for joining us. Over to you now. >> Thank you Rob, for having me. It's a pleasure to be here on behalf of NVIDIA. We're so excited about this partnership with Cloudera. You know, when, when NVIDIA started many years ago, we started as a chip company focused on graphics. But as you know, over the last decade, we've really become a full stack, accelerated computing company where we've been using the power of GPU hardware and software to accelerate a variety of workloads, AI being a prime example. And when we think about Cloudera, and your company, your great company, there's three things we see Rob. The first one is that for the companies that were already transforming themselves by the use of data, Cloudera has been a trusted partner for them. The second thing we've seen is that when it comes to using your data, you want to use it in a variety of ways with a powerful platform, which of course you have built over time. And finally, as we've heard already, you believe in the power of hybrid, that data exists in different places and the compute needs to follow the data. Now, if you think about NVIDIA's mission going forward to democratize accelerated computing for all companies, our mission actually aligns very well with exactly those three things. Firstly, you know, we've really worked with a variety of companies to date who have been the early adopters using the power acceleration by changing their technology and their stacks. But more and more we see the opportunity of meeting customers where they are with tools that they're familiar with, with partners that they trust. And of course, Cloudera being a great example of that. The second part of NVIDIA's mission is we focused a lot in the beginning on deep learning where the power of GPU is really shown through. But as we've gone forward, we found that GPU's can accelerate a variety of different workloads from machine learning to inference. And so again, the power of your platform is very appealing. And finally, we know that AI is all about data, more and more data. We believe very strongly in the idea that customers put their data, where they need to put it. And the compute, the AI compute, the machine learning compute, needs to meet the customer where their data is. And so that matches really well with your philosophy, right? And, and Rob, that's why we were so excited to do this partnership with you. It's come to fruition. We have a great combined stack now for the customer and we already see people using it. I think the IRS is a fantastic example where, literally, they took the workflow they had, they took the servers they had, they added GPUs into those servers. They did not change anything. And they got an eight times performance improvement for their fraud detection workflows, right? And that's the kind of success we're looking forward to with all customers. So the team has actually put together a great video to show us what the IRS is doing with this technology. Let's take a look. >> How you doing? My name's Joe Ansaldi. I'm the branch chief of the technical branch in RAS. It's actually the research division, research and statistical division of the IRS. Basically, the mission that RAS has is we do statistical and research on all things related to taxes, compliance issues, fraud issues, you know, anything that you can think of basically, we do research on that. We're running into issues now that we have a lot of ideas to actually do data mining on our big troves of data, but we don't necessarily have the infrastructure or horsepower to do it. So our biggest challenge is definitely the, the infrastructure to support all the ideas that the subject matter experts are coming up with in terms of all the algorithms they would like to create. And the diving deeper within the algorithm space, the actual training of those algorithms, the number of parameters each of those algorithms have. So that's, that's really been our challenge now. The expectation was that with NVIDIA and Cloudera's help and with the cluster, we actually build out to test this on the actual fraud detection algorithm. Our expectation was we were definitely going to see some speed up in computational processing times. And just to give you context, the size of the data set that we were, the SME was actually working her algorithm against was around four terabytes. If I recall correctly, we had a 22 to 48 times speed up after we started tweaking the original algorithm. My expectations, quite honestly, in that sphere, in terms of the timeframe to get results, was it that you guys actually exceeded them. It was really, really quick. The definite now term, short term, what's next is going to be the subject matter expert is actually going to take our algorithm run with that. So that's definitely the now term thing we want to do. Going down, go looking forward, maybe out a couple of months, we're also looking at procuring some A-100 cards to actually test those out. As you guys can guess, our datasets are just getting bigger and bigger and bigger, and it demands to actually do something when we get more value added out of those data sets is just putting more and more demands on our infrastructure. So, you know, with the pilot, now we have an idea with the infrastructure, the infrastructure we need going forward and then also just our in terms of thinking of the algorithms and how we can approach these problems to actually code out solutions to them. Now we're kind of like the shackles are off and we can just run a, you know, run to our heart's desire, wherever our imaginations takes our SMEs to actually develop solutions. Now have the platforms to run them on. Just kind of to close out, we really would be remiss, I've worked with a lot of companies through the year and most of them been spectacular. And you guys are definitely in that category, the whole partnership, as I said, a little bit early, it was really, really well, very responsive. I would be remiss if I didn't thank you guys. So thank you for the opportunity. Doing fantastic. and I'd have to also, I want to thank my guys. my staff, Raul, David worked on this, Richie worked on this, Lex and Tony just, they did a fantastic job and I want to publicly thank them for all the work they did with you guys and Chev, obviously also is fantastic. So thank you everyone. >> Okay. That's a real great example of speed and action. Now let's get into some follow up questions guys, if I may, Rob, can you talk about the specific nature of the relationship between Cloudera and NVIDIA? Is it primarily go to market or are you doing engineering work? What's the story there? >> It's really both. It's both go to market and engineering The engineering focus is to optimize and take advantage of NVIDIA's platform to drive better price performance, lower cost, faster speeds, and better support for today's emerging data intensive applications. So it's really both. >> Great. Thank you. Manuvir, maybe you could talk a little bit more about why can't we just use existing general purpose platforms that are, that are running all this ERP and CRM and HCM and you know, all the, all the Microsoft apps that are out there. What, what do NVIDIA and Cloudera bring to the table that goes beyond the conventional systems that we've known for many years? >> Yeah. I think Dave, as we've talked about the asset that the customer has is really the data, right? And the same data can be utilized in many different ways. Some machine learning, some AI, some traditional data analytics. So, the first step here was really to take a general platform for data processing, Cloudera data platform, and integrate with that. Now NVIDIA has a software stack called rapids, which has all of the primitives that make different kinds of data processing go fast on GPU's. And so the integration here has really been taking rapids and integrating it into a Cloudera data platform so that regardless of the technique the customer is using to get insight from the data, the acceleration will apply in all cases. And that's why it was important to start with a platform like Cloudera rather than a specific application. >> So, I think this is really important because if you think about, you know, the software defined data center brought in, you know, some great efficiencies, but at the same time, a lot of the compute power is now going towards doing things like networking and storage and security offloads. So the good news, the reason this is important is because when you think about these data intensive workloads, we can now put more processing power to work for those, you know, AI intensive things. And so that's what I want to talk about a little bit, maybe a question for both of you, maybe Rob, you could start. You think about AI that's done today in the enterprise. A lot of it is modeling in the cloud, but when we look at a lot of the exciting use cases, bringing real-time systems together, transaction systems and analytics systems, and real-time AI inference, at least even at the edge, huge potential for business value. In a consumer, you're seeing a lot of applications with AI biometrics and voice recognition and autonomous vehicles and the liking. So you're putting AI into these data intensive apps within the enterprise. The potential there is enormous. So what can we learn from sort of where we've come from, maybe these consumer examples and Rob, how are you thinking about enterprise AI in the coming years? >> Yeah, you're right. The opportunity is huge here, but you know, 90% of the cost of AI applications is the inference. And it's been a blocker in terms of adoption because it's just been too expensive and difficult from a performance standpoint. And new platforms like these being developed by Cloudera and NVIDIA will dramatically lower the cost of enabling this type of workload to be done. And what we're going to see the most improvements will be in the speed and accuracy for existing enterprise AI apps like fraud detection, recommendation engine, supply chain management, drug province. And increasingly the consumer led technologies will be bleeding into the enterprise in the form of autonomous factory operations. An example of that would be robots. That AR, VR and manufacturing so driving better quality. The power grid management, automated retail, IOT, you know, the intelligent call centers, all of these will be powered by AI, but really the list of potential use cases now are going to be virtually endless. >> I mean, Manufir, this is like your wheelhouse. Maybe you could add something to that. >> Yeah. I mean, I agree with Rob. I mean he listed some really good use cases, you know, The way we see this at NVIDIA, this journey is in three phases or three steps, right? The first phase was for the early adopters. You know, the builders who assembled use cases, particular use cases like a chat bot from the ground up with the hardware and the software. Almost like going to your local hardware store and buying piece parts and constructing a table yourself right now. Now, I think we are in the first phase of the democratization. For example, the work we do with Cloudera, which is for a broader base of customers, still building for a particular use case, but starting from a much higher baseline. So think about, for example, going to Ikea now and buying a table in a box, right. And you still come home and assemble it, but all the parts are there, the instructions are there, there's a recipe you just follow and it's easy to do, right? So that's sort of the phase we're in now. And then going forward, the opportunity we really look forward to for the democratization, you talked about applications like CRM, et cetera. I think the next wave of democratization is when customers just adopt and deploy the next version of an application they already have. And what's happening is that under the covers, the application is infused by AI and it's become more intelligent because of AI and the customer just thinks they went to the store and bought a table and it showed up and somebody placed it in the right spot. Right? And they didn't really have to learn how to do AI. So these are the phases. And I think we're very excited to be going there. >> You know, Rob, the great thing about, for your customers is they don't have to build out the AI. They can, they can buy it. And just in thinking about this, it seems like there are a lot of really great and even sometimes narrow use cases. So I want to ask you, you know, staying with AI for a minute, one of the frustrations, and Mick I talked about this, the GIGO problem that we've all, you know, studied in college, you know, garbage in, garbage out. But, but the frustrations that users have had is really getting fast access to quality data that they can use to drive business results. So do you see, and how do you see AI maybe changing the game in that regard, Rob, over the next several years? >> So yeah, the combination of massive amounts of data that had been gathered across the enterprise in the past 10 years with an open APIs are dramatically lowering the processing costs that perform at much greater speed and efficiency. And that's allowing us as an industry to democratize the data access while at the same time delivering the federated governance and security models. And hybrid technologies are playing a key role in making this a reality and enabling data access to be quote, hybridized, meaning access and treated in a substantially similar way, irrespective of the physical location of where that data actually resides. >> And that's great. That is really the value layer that you guys are building out on top of all this great infrastructure that the hyperscalers have have given us. You know, a hundred billion dollars a year that you can build value on top of, for your customers. Last question, and maybe Rob, you could, you could go first and then Manuvir, you could bring us home. Where do you guys want to see the relationship go between Cloudera and NVIDIA? In other words, how should we as outside observers be, be thinking about and measuring your project, specifically in the industry's progress generally? >> Yes. I think we're very aligned on this and for Cloudera, it's all about helping companies move forward, leverage every bit of their data and all the places that it may be hosted and partnering with our customers, working closely with our technology ecosystem of partners, means innovation in every industry and that's inspiring for us. And that's what keeps us moving forward. >> Yeah and I agree with Rob and for us at NVIDIA, you know, we, this partnership started with data analytics. As you know, Spark is a very powerful technology for data analytics. People who use Spark rely on Cloudera for that. And the first thing we did together was to really accelerate Spark in a seamless manner. But we're accelerating machine learning. We're accelerating artificial intelligence together. And I think for NVIDIA it's about democratization. We've seen what machine learning and AI have done for the early adopters and help them make their businesses, their products, their customer experience better. And we'd like every company to have the same opportunity.
SUMMARY :
And one of the keys to is that the faster we get and the compute needs to follow the data. Now have the platforms to run them on. of the relationship between The engineering focus is to optimize and you know, all the, And so the integration here a lot of the compute power And increasingly the Maybe you could add something to that. from the ground up with the the GIGO problem that we've all, you know, irrespective of the physical location that the hyperscalers have have given us. and all the places that it may be hosted And the first thing we did
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
NVIDIA | ORGANIZATION | 0.99+ |
Mick | PERSON | 0.99+ |
Rob Bearden | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Rob | PERSON | 0.99+ |
22 | QUANTITY | 0.99+ |
Raul | PERSON | 0.99+ |
Joe Ansaldi | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Richie | PERSON | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
RAS | ORGANIZATION | 0.99+ |
Lex | PERSON | 0.99+ |
second | QUANTITY | 0.99+ |
Ikea | ORGANIZATION | 0.99+ |
Tony | PERSON | 0.99+ |
first phase | QUANTITY | 0.99+ |
IRS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
first step | QUANTITY | 0.99+ |
eight times | QUANTITY | 0.99+ |
48 times | QUANTITY | 0.99+ |
second thing | QUANTITY | 0.99+ |
Chev | PERSON | 0.99+ |
Firstly | QUANTITY | 0.98+ |
three steps | QUANTITY | 0.98+ |
Today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
three things | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
first | QUANTITY | 0.96+ |
three phases | QUANTITY | 0.95+ |
Manuvir | ORGANIZATION | 0.95+ |
first one | QUANTITY | 0.95+ |
Manuvir | PERSON | 0.95+ |
Cloudera | TITLE | 0.93+ |
around four terabytes | QUANTITY | 0.93+ |
first strategy | QUANTITY | 0.92+ |
each | QUANTITY | 0.91+ |
last decade | DATE | 0.89+ |
years ago | DATE | 0.89+ |
Spark | TITLE | 0.89+ |
SME | ORGANIZATION | 0.88+ |
Manuvir Das | PERSON | 0.88+ |
MAIN STAGE INDUSTRY EVENT 1
>>Have you ever wondered how we sequence the human genome, how your smartphone is so well smart, how we will ever analyze all the patient data for the new vaccines or even how we plan to send humans to Mars? Well, at Cloudera, we believe that data can make what is impossible today possible tomorrow we are the enterprise data cloud company. In fact, we provide analytics and machine learning technology that does everything from making your smartphone smarter, to helping scientists ensure that new vaccines are both safe and effective, big data, no problem out era, the enterprise data cloud company. >>So I think for a long time in this country, we've known that there's a great disparity between minority populations and the majority of population in terms of disease burden. And depending on where you live, your zip code has more to do with your health than almost anything else. But there are a lot of smaller, um, safety net facilities, as well as small academic medical colleges within the United States. And those in those smaller environments don't have the access, you know, to the technologies that the larger ones have. And, you know, I call that, uh, digital disparity. So I'm, Harry's in academic scientist center and our mission is to train diverse health care providers and researchers, but also provide services to underserved populations. As part of the reason that I think is so important for me hearing medical college, to do data science. One of the things that, you know, both Cloudera and Claire sensor very passionate about is bringing those height in technologies to, um, to the smaller organizations. >>It's very expensive to go to the cloud for these small organizations. So now with the partnership with Cloudera and Claire sets a clear sense, clients now enjoy those same technologies and really honestly have a technological advantage over some of the larger organizations. The reason being is they can move fast. So we were able to do this on our own without having to, um, hire data scientists. Uh, we probably cut three to five years off of our studies. I grew up in a small town in Arkansas and is one of those towns where the railroad tracks divided the blacks and the whites. My father died without getting much healthcare at all. And as an 11 year old, I did not understand why my father could not get medical attention because he was very sick. >>Since we come at my Harry are looking to serve populations that reflect themselves or affect the population. He came from. A lot of the data you find or research you find health is usually based on white men. And obviously not everybody who needs a medical provider is going to be a white male. >>One of the things that we're concerned about in healthcare is that there's bias in treatment already. We want to make sure those same biases do not enter into the algorithms. >>The issue is how do we get ahead of them to try to prevent these disparities? >>One of the great things about our dataset is that it contains a very diverse group of patients. >>Instead of just saying, everyone will have these results. You can break it down by race, class, cholesterol, level, other kinds of factors that play a role. So you can make the treatments in the long run. More specifically, >>Researchers are now able to use these technologies and really take those hypotheses from, from bench to bedside. >>We're able to overall improve the health of not just the person in front of you, but the population that, yeah, >>Well, the future is now. I love a quote by William Gibson who said the future is already here. It's just not evenly distributed. If we think hard enough and we apply things properly, uh, we can again take these technologies to, you know, underserved environments, um, in healthcare. Nobody should be technologically disadvantage. >>When is a car not just a car when it's a connected data driven ecosystem, dozens of sensors and edge devices gathering up data from just about anything road, infrastructure, other vehicles, and even pedestrians to create safer vehicles, smarter logistics, and more actionable insights. All the data from the connected car supports an entire ecosystem from manufacturers, building safer vehicles and fleet managers, tracking assets to insurers monitoring, driving behaviors to make roads safer. Now you can control the data journey from edge to AI. With Cloudera in the connected car, data is captured, consolidated and enriched with Cloudera data flow cloud Dara's data engineering, operational database and data warehouse provide the foundation to develop service center applications, sales reports, and engineering dashboards. With data science workbench data scientists can continuously train AI models and use data flow to push the models back to the edge, to enhance the car's performance as the industry's first enterprise data cloud Cloudera supports on-premise public and multi-cloud deployments delivering multifunction analytics on data anywhere with common security governance and metadata management powered by Cloudera SDX, an open platform built on open source, working with open compute architectures and open data stores all the way from edge to AI powering the connected car. >>The future has arrived. >>The Dawn of a retail Renaissance is here and shopping will never be the same again. Today's connected. Consumers are always on and didn't control. It's the era of smart retail, smart shelves, digital signage, and smart mirrors offer an immersive customer experience while delivering product information, personalized offers and recommendations, video analytics, capture customer emotions and gestures to better understand and respond to in-store shopping experiences. Beacons sensors, and streaming video provide valuable data into in-store traffic patterns, hotspots and dwell times. This helps retailers build visual heat maps to better understand custom journeys, conversion rates, and promotional effectiveness in our robots automate routine tasks like capturing inventory levels, identifying out of stocks and alerting in store personnel to replenish shelves. When it comes to checking out automated e-commerce pickup stations and frictionless checkouts will soon be the norm making standing in line. A thing of the past data and analytics are truly reshaping. >>The everyday shopping experience outside the store, smart trucks connect the supply chain, providing new levels of inventory visibility, not just into the precise location, but also the condition of those goods. All in real time, convenience is key and customers today have the power to get their goods delivered at the curbside to their doorstep, or even to their refrigerators. Smart retail is indeed here. And Cloudera makes all of this possible using Cloudera data can be captured from a variety of sources, then stored, processed, and analyzed to drive insights and action. In real time, data scientists can continuously build and train new machine learning models and put these models back to the edge for delivering those moment of truth customer experiences. This is the enterprise data cloud powered by Cloudera enabling smart retail from the edge to AI. The future has arrived >>For is a global automotive supplier. We have three business groups, automotive seating in studios, and then emission control technologies or biggest automotive customers are Volkswagen for the NPSA. And we have, uh, more than 300 sites. And in 75 countries >>Today, we are generating tons of data, more and more data on the manufacturing intelligence. We are trying to reduce the, the defective parts or anticipate the detection of the, of the defective part. And this is where we can get savings. I would say our goal in manufacturing is zero defects. The cost of downtime in a plant could be around the a hundred thousand euros. So with predictive maintenance, we are identifying correlations and patterns and try to anticipate, and maybe to replace a component before the machine is broken. We are in the range of about 2000 machines and we can have up to 300 different variables from pressure from vibration and temperatures. And the real-time data collection is key, and this is something we cannot achieve in a classical data warehouse approach. So with the be data and with clouded approach, what we are able to use really to put all the data, all the sources together in the classical way of working with that at our house, we need to spend weeks or months to set up the model with the Cloudera data lake. We can start working on from days to weeks. We think that predictive or machine learning could also improve on the estimation or NTC patient forecasting of what we'll need to brilliance with all this knowledge around internet of things and data collection. We are applying into the predictive convene and the cockpit of the future. So we can work in the self driving car and provide a better experience for the driver in the car. >>The Cloudera data platform makes it easy to say yes to any analytic workload from the edge to AI, yes. To enterprise grade security and governance, yes. To the analytics your people want to use yes. To operating on any cloud. Your business requires yes to the future with a cloud native platform that flexes to meet your needs today and tomorrow say yes to CDP and say goodbye to shadow it, take a tour of CDP and see how it's an easier, faster and safer enterprise analytics and data management platform with a new approach to data. Finally, a data platform that lets you say yes, >>Welcome to transforming ideas into insights, presented with the cube and made possible by cloud era. My name is Dave Volante from the cube, and I'll be your host for today. And the next hundred minutes, you're going to hear how to turn your best ideas into action using data. And we're going to share the real world examples and 12 industry use cases that apply modern data techniques to improve customer experience, reduce fraud, drive manufacturing, efficiencies, better forecast, retail demand, transform analytics, improve public sector service, and so much more how we use data is rapidly evolving as is the language that we use to describe data. I mean, for example, we don't really use the term big data as often as we used to rather we use terms like digital transformation and digital business, but you think about it. What is a digital business? How is that different from just a business? >>Well, digital business is a data business and it differentiates itself by the way, it uses data to compete. So whether we call it data, big data or digital, our belief is we're entering the next decade of a world that puts data at the core of our organizations. And as such the way we use insights is also rapidly evolving. You know, of course we get value from enabling humans to act with confidence on let's call it near perfect information or capitalize on non-intuitive findings. But increasingly insights are leading to the development of data, products and services that can be monetized, or as you'll hear in our industry, examples, data is enabling machines to take cognitive actions on our behalf. Examples are everywhere in the forms of apps and products and services, all built on data. Think about a real-time fraud detection, know your customer and finance, personal health apps that monitor our heart rates. >>Self-service investing, filing insurance claims and our smart phones. And so many examples, IOT systems that communicate and act machine and machine real-time pricing actions. These are all examples of products and services that drive revenue cut costs or create other value. And they all rely on data. Now while many business leaders sometimes express frustration that their investments in data, people, and process and technologies haven't delivered the full results they desire. The truth is that the investments that they've made over the past several years should be thought of as a step on the data journey. Key learnings and expertise from these efforts are now part of the organizational DNA that can catapult us into this next era of data, transformation and leadership. One thing is certain the next 10 years of data and digital transformation, won't be like the last 10. So let's get into it. Please join us in the chat. >>You can ask questions. You can share your comments, hit us up on Twitter right now. It's my pleasure to welcome Mick Holliston in he's the president of Cloudera mic. Great to see you. Great to see you as well, Dave, Hey, so I call it the new abnormal, right? The world is kind of out of whack offices are reopening again. We're seeing travel coming back. There's all this pent up demand for cars and vacations line cooks at restaurants. Everything that we consumers have missed, but here's the one thing. It seems like the algorithms are off. Whether it's retail's fulfillment capabilities, airline scheduling their pricing algorithms, you know, commodity prices we don't know is inflation. Transitory. Is it a long-term threat trying to forecast GDP? It's just seems like we have to reset all of our assumptions and make a feel a quality data is going to be a key here. How do you see the current state of the industry and the role data plays to get us into a more predictable and stable future? Well, I >>Can sure tell you this, Dave, uh, out of whack is definitely right. I don't know if you know or not, but I happen to be coming to you live today from Atlanta and, uh, as a native of Atlanta, I can, I can tell you there's a lot to be known about the airport here. It's often said that, uh, whether you're going to heaven or hell, you got to change planes in Atlanta and, uh, after 40 minutes waiting on algorithm to be right for baggage claim when I was not, I finally managed to get some bag and to be able to show up dressed appropriately for you today. Um, here's one thing that I know for sure though, Dave, clean, consistent, and safe data will be essential to getting the world and businesses as we know it back on track again, um, without well-managed data, we're certain to get very inconsistent outcomes, quality data will the normalizing factor because one thing really hasn't changed about computing since the Dawn of time. Back when I was taking computer classes at Georgia tech here in Atlanta, and that's what we used to refer to as garbage in garbage out. In other words, you'll never get quality data-driven insights from a poor data set. This is especially important today for machine learning and AI, you can build the most amazing models and algorithms, but none of it will matter if the underlying data isn't rock solid as AI is increasingly used in every business app, you must build a solid data foundation mic. Let's >>Talk about hybrid. Every CXO that I talked to, they're trying to get hybrid, right? Whether it's hybrid work hybrid events, which is our business hybrid cloud, how are you thinking about the hybrid? Everything, what's your point of view with >>All those descriptions of hybrid? Everything there, one item you might not have quite hit on Dave and that's hybrid data. >>Oh yeah, you're right. Mick. I did miss that. What, what do you mean by hybrid data? Well, >>David in cloud era, we think hybrid data is all about the juxtaposition of two things, freedom and security. Now every business wants to be more agile. They want the freedom to work with their data, wherever it happens to work best for them, whether that's on premises in a private cloud and public cloud, or perhaps even in a new open data exchange. Now this matters to businesses because not all data applications are created equal. Some apps are best suited to be run in the cloud because of their transitory nature. Others may be more economical if they're running a private cloud, but either way security, regulatory compliance and increasingly data sovereignty are playing a bigger and more important role in every industry. If you don't believe me, just watch her read a recent news story. Data breaches are at an all time high. And the ethics of AI applications are being called into question every day and understanding the lineage of machine learning algorithms is now paramount for every business. So how in the heck do you get both the freedom and security that you're looking for? Well, the answer is actually pretty straightforward. The key is developing a hybrid data strategy. And what do you know Dave? That's the business cloud era? Is it on a serious note from cloud era's perspective? Adopting a hybrid data strategy is central to every business's digital transformation. It will enable rapid adoption of new technologies and optimize economic models while ensuring the security and privacy of every bit of data. What can >>Make, I'm glad you brought in that notion of hybrid data, because when you think about things, especially remote work, it really changes a lot of the assumptions. You talked about security, the data flows are going to change. You've got the economics, the physics, the local laws come into play. So what about the rest of hybrid? Yeah, >>It's a great question, Dave and certainly cloud era itself as a business and all of our customers are feeling this in a big way. We now have the overwhelming majority of our workforce working from home. And in other words, we've got a much larger surface area from a security perspective to keep in mind the rate and pace of data, just generating a report that might've happened very quickly and rapidly on the office. Uh, ether net may not be happening quite so fast in somebody's rural home in, uh, in, in the middle of Nebraska somewhere. Right? So it doesn't really matter whether you're talking about the speed of business or securing data, any way you look at it. Uh, hybrid I think is going to play a more important role in how work is conducted and what percentage of people are working in the office and are not, I know our plans, Dave, uh, involve us kind of slowly coming back to work, begin in this fall. And we're looking forward to being able to shake hands and see one another again for the first time in many cases for more than a year and a half, but, uh, yes, hybrid work, uh, and hybrid data are playing an increasingly important role for every kind of business. >>Thanks for that. I wonder if we could talk about industry transformation for a moment because it's a major theme of course, of this event. So, and the case. Here's how I think about it. It makes, I mean, some industries have transformed. You think about retail, for example, it's pretty clear, although although every physical retail brand I know has, you know, not only peaked up its online presence, but they also have an Amazon war room strategy because they're trying to take greater advantage of that physical presence, uh, and ended up reverse. We see Amazon building out physical assets so that there's more hybrid going on. But when you look at healthcare, for example, it's just starting, you know, with such highly regulated industry. It seems that there's some hurdles there. Financial services is always been data savvy, but you're seeing the emergence of FinTech and some other challenges there in terms of control, mint control of payment systems in manufacturing, you know, the pandemic highlighted America's reliance on China as a manufacturing partner and, and supply chain. Uh it's so my point is it seems that different industries they're in different stages of transformation, but two things look really clear. One, you've got to put data at the core of the business model that's compulsory. It seems like embedding AI into the applications, the data, the business process that's going to become increasingly important. So how do you see that? >>Wow, there's a lot packed into that question there, Dave, but, uh, yeah, we, we, uh, you know, at Cloudera I happened to be leading our own digital transformation as a technology company and what I would, what I would tell you there that's been arresting for us is the shift from being largely a subscription-based, uh, model to a consumption-based model requires a completely different level of instrumentation and our products and data collection that takes place in real, both for billing, for our, uh, for our customers. And to be able to check on the health and wellness, if you will, of their cloud era implementations. But it's clearly not just impacting the technology industry. You mentioned healthcare and we've been helping a number of different organizations in the life sciences realm, either speed, the rate and pace of getting vaccines, uh, to market, uh, or we've been assisting with testing process. >>That's taken place because you can imagine the quantity of data that's been generated as we've tried to study the efficacy of these vaccines on millions of people and try to ensure that they were going to deliver great outcomes and, and healthy and safe outcomes for everyone. And cloud era has been underneath a great deal of that type of work and the financial services industry you pointed out. Uh, we continue to be central to the large banks, meeting their compliance and regulatory requirements around the globe. And in many parts of the world, those are becoming more stringent than ever. And Cloudera solutions are really helping those kinds of organizations get through those difficult challenges. You, you also happened to mention, uh, you know, public sector and in public sector. We're also playing a key role in working with government entities around the world and applying AI to some of the most challenging missions that those organizations face. >>Um, and while I've made the kind of pivot between the industry conversation and the AI conversation, what I'll share with you about AI, I touched upon a little bit earlier. You can't build great AI, can't grow, build great ML apps, unless you've got a strong data foundation underneath is back to that garbage in garbage out comment that I made previously. And so in order to do that, you've got to have a great hybrid dated management platform at your disposal to ensure that your data is clean and organized and up to date. Uh, just as importantly from that, that's kind of the freedom side of things on the security side of things. You've got to ensure that you can see who just touched, not just the data itself, Dave, but actually the machine learning models and organizations around the globe are now being challenged. It's kind of on the topic of the ethics of AI to produce model lineage. >>In addition to data lineage. In other words, who's had access to the machine learning models when and where, and at what time and what decisions were made perhaps by the humans, perhaps by the machines that may have led to a particular outcome. So every kind of business that is deploying AI applications should be thinking long and hard about whether or not they can track the full lineage of those machine learning models just as they can track the lineage of data. So lots going on there across industries, lots going on as those various industries think about how AI can be applied to their businesses. Pretty >>Interesting concepts. You bring it into the discussion, the hybrid data, uh, sort of new, I think, new to a lot of people. And th this idea of model lineage is a great point because people want to talk about AI, ethics, transparency of AI. When you start putting those models into, into machines to do real time inferencing at the edge, it starts to get really complicated. I wonder if we could talk about you still on that theme of industry transformation? I felt like coming into the pandemic pre pandemic, there was just a lot of complacency. Yeah. Digital transformation and a lot of buzz words. And then we had this forced March to digital, um, and it's, but, but people are now being more planful, but there's still a lot of sort of POC limbo going on. How do you see that? Can you help accelerate that and get people out of that state? It definitely >>Is a lot of a POC limbo or a, I think some of us internally have referred to as POC purgatory, just getting stuck in that phase, not being able to get from point a to point B in digital transformation and, um, you know, for every industry transformation, uh, change in general is difficult and it takes time and money and thoughtfulness, but like with all things, what we found is small wins work best and done quickly. So trying to get to quick, easy successes where you can identify a clear goal and a clear objective and then accomplish it in rapid fashion is sort of the way to build your way towards those larger transformative efforts set. Another way, Dave, it's not wise to try to boil the ocean with your digital transformation efforts as it relates to the underlying technology here. And to bring it home a little bit more practically, I guess I would say at cloud era, we tend to recommend that companies begin to adopt cloud infrastructure, for example, containerization. >>And they begin to deploy that on-prem and then they start to look at how they may move those containerized workloads into the public cloud. That'll give them an opportunity to work with the data and the underlying applications themselves, uh, right close to home in place. They can kind of experiment a little bit more safely and economically, and then determine which workloads are best suited for the public cloud and which ones should remain on prem. That's a way in which a hybrid data strategy can help get a digital transformation accomplish, but kind of starting small and then drawing fast from there on customer's journey to the we'll make we've >>Covered a lot of ground. Uh, last question. Uh, w what, what do you want people to leave this event, the session with, and thinking about sort of the next era of data that we're entering? >>Well, it's a great question, but, uh, you know, I think it could be summed up in, uh, in two words. I want them to think about a hybrid data, uh, strategy. So, uh, you know, really hybrid data is a concept that we're bringing forward on this show really for the, for the first time, arguably, and we really do think that it enables customers to experience what we refer to Dave as the power of, and that is freedom, uh, and security, and in a world where we're all still trying to decide whether each day when we walk out each building, we walk into, uh, whether we're free to come in and out with a mask without a mask, that sort of thing, we all want freedom, but we also also want to be safe and feel safe, uh, for ourselves and for others. And the same is true of organizations. It strategies. They want the freedom to choose, to run workloads and applications and the best and most economical place possible. But they also want to do that with certainty, that they're going to be able to deploy those applications in a safe and secure way that meets the regulatory requirements of their particular industry. So hybrid data we think is key to accomplishing both freedom and security for your data and for your business as a whole, >>Nick, thanks so much great conversation and really appreciate the insights that you're bringing to this event into the industry. Really thank you for your time. >>You bet Dave pleasure being with you. Okay. >>We want to pick up on a couple of themes that Mick discussed, you know, supercharging your business with AI, for example, and this notion of getting hybrid, right? So right now we're going to turn the program over to Rob Bearden, the CEO of Cloudera and Manny veer, DAS. Who's the head of enterprise computing at Nvidia. And before I hand it off to Robin, I just want to say for those of you who follow me at the cube, we've extensively covered the transformation of the semiconductor industry. We are entering an entirely new era of computing in the enterprise, and it's being driven by the emergence of data, intensive applications and workloads no longer will conventional methods of processing data suffice to handle this work. Rather, we need new thinking around architectures and ecosystems. And one of the keys to success in this new era is collaboration between software companies like Cloudera and semiconductor designers like Nvidia. So let's learn more about this collaboration and what it means to your data business. Rob, thanks, >>Mick and Dave, that was a great conversation on how speed and agility is everything in a hyper competitive hybrid world. You touched on AI as essential to a data first strategy and accelerating the path to value and hybrid environments. And I want to drill down on this aspect today. Every business is facing accelerating everything from face-to-face meetings to buying groceries has gone digital. As a result, businesses are generating more data than ever. There are more digital transactions to track and monitor. Now, every engagement with coworkers, customers and partners is virtual from website metrics to customer service records, and even onsite sensors. Enterprises are accumulating tremendous amounts of data and unlocking insights from it is key to our enterprises success. And with data flooding every enterprise, what should the businesses do? A cloud era? We believe this onslaught of data offers an opportunity to make better business decisions faster. >>And we want to make that easier for everyone, whether it's fraud, detection, demand, forecasting, preventative maintenance, or customer churn, whether the goal is to save money or produce income every day that companies don't gain deep insight from their data is money they've lost. And the reason we're talking about speed and why speed is everything in a hybrid world and in a hyper competitive climate, is that the faster we get insights from all of our data, the faster we grow and the more competitive we are. So those faster insights are also combined with the scalability and cost benefit they cloud provides and with security and edge to AI data intimacy. That's why the partnership between cloud air and Nvidia together means so much. And it starts with the shared vision making data-driven, decision-making a reality for every business and our customers will now be able to leverage virtually unlimited quantities of varieties, of data, to power, an order of magnitude faster decision-making and together we turbo charge the enterprise data cloud to enable our customers to work faster and better, and to make integration of AI approaches a reality for companies of all sizes in the cloud. >>We're joined today by NVIDIA's Mandy veer dos, and to talk more about how our technologies will deliver the speed companies need for innovation in our hyper competitive environment. Okay, man, you're veer. Thank you for joining us over the unit. >>Thank you, Rob, for having me. It's a pleasure to be here on behalf of Nvidia. We are so excited about this partnership with Cloudera. Uh, you know, when, when, uh, when Nvidia started many years ago, we started as a chip company focused on graphics, but as you know, over the last decade, we've really become a full stack accelerated computing company where we've been using the power of GPU hardware and software to accelerate a variety of workloads, uh, AI being a prime example. And when we think about Cloudera, uh, and your company, a great company, there's three things we see Rob. Uh, the first one is that for the companies that will already transforming themselves by the use of data, Cloudera has been a trusted partner for them. The second thing seen is that when it comes to using your data, you want to use it in a variety of ways with a powerful platform, which of course you have built over time. >>And finally, as we've heard already, you believe in the power of hybrid, that data exists in different places and the compute needs to follow the data. Now, if you think about in various mission, going forward to democratize accelerated computing for all companies, our mission actually aligns very well with exactly those three things. Firstly, you know, we've really worked with a variety of companies today who have been the early adopters, uh, using the power acceleration by changing the technology in their stacks. But more and more, we see the opportunity of meeting customers, where they are with tools that they're familiar with with partners that they trust. And of course, Cloudera being a great example of that. Uh, the second, uh, part of NVIDIA's mission is we focused a lot in the beginning on deep learning where the power of GPU is really shown through, but as we've gone forward, we found that GPU's can accelerate a variety of different workloads from machine learning to inference. >>And so again, the power of your platform, uh, is very appealing. And finally, we know that AI is all about data, more and more data. We believe very strongly in the idea that customers put their data, where they need to put it. And the compute, the AI compute the machine learning compute needs to meet the customer where their data is. And so that matches really well with your philosophy, right? And Rob, that's why we were so excited to do this partnership with you. It's come to fruition. We have a great combined stack now for the customer and we already see people using it. I think the IRS is a fantastic example where literally they took the workflow. They had, they took the servers, they had, they added GPS into those servers. They did not change anything. And they got an eight times performance improvement for their fraud detection workflows, right? And that's the kind of success we're looking forward to with all customers. So the team has actually put together a great video to show us what the IRS is doing with this technology. Let's take a look. >>My name's Joanne salty. I'm the branch chief of the technical branch and RAs. It's actually the research division research and statistical division of the IRS. Basically the mission that RAs has is we do statistical and research on all things related to taxes, compliance issues, uh, fraud issues, you know, anything that you can think of. Basically we do research on that. We're running into issues now that we have a lot of ideas to actually do data mining on our big troves of data, but we don't necessarily have the infrastructure or horsepower to do it. So it's our biggest challenge is definitely the, the infrastructure to support all the ideas that the subject matter experts are coming up with in terms of all the algorithms they would like to create. And the diving deeper within the algorithm space, the actual training of those Agra algorithms, the of parameters each of those algorithms have. >>So that's, that's really been our challenge. Now the expectation was that with Nvidia in cloud, there is help. And with the cluster, we actually build out the test this on the actual fraud, a fraud detection algorithm on our expectation was we were definitely going to see some speed up in prom, computational processing times. And just to give you context, the size of the data set that we were, uh, the SMI was actually working, um, the algorithm against Liz around four terabytes. If I recall correctly, we'd had a 22 to 48 times speed up after we started tweaking the original algorithm. My expectations, quite honestly, in that sphere, in terms of the timeframe to get results, was it that you guys actually exceeded them? It was really, really quick. Uh, the definite now term short term what's next is going to be the subject matter expert is actually going to take our algorithm run with that. >>So that's definitely the now term thing we want to do going down, go looking forward, maybe out a couple of months, we're also looking at curing some, a 100 cards to actually test those out. As you guys can guess our datasets are just getting bigger and bigger and bigger, and it demands, um, to actually do something when we get more value added out of those data sets is just putting more and more demands on our infrastructure. So, you know, with the pilot, now we have an idea with the infrastructure, the infrastructure we need going forward. And then also just our in terms of thinking of the algorithms and how we can approach these problems to actually code out solutions to them. Now we're kind of like the shackles are off and we can just run them, you know, come onto our art's desire, wherever imagination takes our skis to actually develop solutions, know how the platforms to run them on just kind of the close out. >>I rarely would be very missed. I've worked with a lot of, you know, companies through the year and most of them been spectacular. And, uh, you guys are definitely in that category. The, the whole partnership, as I said, a little bit early, it was really, really well, very responsive. I would be remiss if I didn't. Thank you guys. So thank you for the opportunity to, and fantastic. And I'd have to also, I want to thank my guys. My, uh, my staff, David worked on this Richie worked on this Lex and Tony just, they did a fantastic job and I want to publicly thank him for all the work they did with you guys and Chev, obviously also. Who's fantastic. So thank you everyone. >>Okay. That's a real great example of speed and action. Now let's get into some follow up questions guys, if I may, Rob, can you talk about the specific nature of the relationship between Cloudera and Nvidia? Is it primarily go to market or you do an engineering work? What's the story there? >>It's really both. It's both go to market and engineering and engineering focus is to optimize and take advantage of invidious platform to drive better price performance, lower cost, faster speeds, and better support for today's emerging data intensive applications. So it's really both >>Great. Thank you. Many of Eric, maybe you could talk a little bit more about why can't we just existing general purpose platforms that are, that are running all this ERP and CRM and HCM and you know, all the, all the Microsoft apps that are out there. What, what do Nvidia and cloud era bring to the table that goes beyond the conventional systems that we've known for many years? >>Yeah. I think Dave, as we've talked about the asset that the customer has is really the data, right? And the same data can be utilized in many different ways. Some machine learning, some AI, some traditional data analytics. So the first step here was really to take a general platform for data processing, Cloudera data platform, and integrate with that. Now Nvidia has a software stack called rapids, which has all of the primitives that make different kinds of data processing go fast on GPU's. And so the integration here has really been taking rapids and integrating it into a Cloudera data platform. So that regardless of the technique, the customer's using to get insight from that data, the acceleration will apply in all cases. And that's why it was important to start with a platform like Cloudera rather than a specific application. >>So I think this is really important because if you think about, you know, the software defined data center brought in, you know, some great efficiencies, but at the same time, a lot of the compute power is now going toward doing things like networking and storage and security offloads. So the good news, the reason this is important is because when you think about these data intensive workloads, we can now put more processing power to work for those, you know, AI intensive, uh, things. And so that's what I want to talk about a little bit, maybe a question for both of you, maybe Rob, you could start, you think about the AI that's done today in the enterprise. A lot of it is modeling in the cloud, but when we look at a lot of the exciting use cases, bringing real-time systems together, transaction systems and analytics systems and real time, AI inference, at least even at the edge, huge potential for business value and a consumer, you're seeing a lot of applications with AI biometrics and voice recognition and autonomous vehicles and the like, and so you're putting AI into these data intensive apps within the enterprise. >>The potential there is enormous. So what can we learn from sort of where we've come from, maybe these consumer examples and Rob, how are you thinking about enterprise AI in the coming years? >>Yeah, you're right. The opportunity is huge here, but you know, 90% of the cost of AI applications is the inference. And it's been a blocker in terms of adoption because it's just been too expensive and difficult from a performance standpoint and new platforms like these being developed by cloud air and Nvidia will dramatically lower the cost, uh, of enabling this type of workload to be done. Um, and what we're going to see the most improvements will be in the speed and accuracy for existing enterprise AI apps like fraud detection, recommendation, engine chain management, drug province, and increasingly the consumer led technologies will be bleeding into the enterprise in the form of autonomous factory operations. An example of that would be robots that AR VR and manufacturing. So driving quality, better quality in the power grid management, automated retail IOT, you know, the intelligent call centers, all of these will be powered by AI, but really the list of potential use cases now are going to be virtually endless. >>I mean, this is like your wheelhouse. Maybe you could add something to that. >>Yeah. I mean, I agree with Rob. I mean he listed some really good use cases. You know, the way we see this at Nvidia, this journey is in three phases or three steps, right? The first phase was for the early adopters. You know, the builders who assembled, uh, use cases, particular use cases like a chat bot, uh, uh, from the ground up with the hardware and the software almost like going to your local hardware store and buying piece parts and constructing a table yourself right now. I think we are in the first phase of the democratization, uh, for example, the work we did with Cloudera, which is, uh, for a broader base of customers, still building for a particular use case, but starting from a much higher baseline. So think about, for example, going to Ikea now and buying a table in a box, right. >>And you still come home and assemble it, but all the parts are there. The instructions are there, there's a recipe you just follow and it's easy to do, right? So that's sort of the phase we're in now. And then going forward, the opportunity we really look forward to for the democratization, you talked about applications like CRM, et cetera. I think the next wave of democratization is when customers just adopt and deploy the next version of an application they already have. And what's happening is that under the covers, the application is infused by AI and it's become more intelligent because of AI and the customer just thinks they went to the store and bought, bought a table and it showed up and somebody placed it in the right spot. Right. And they didn't really have to learn, uh, how to do AI. So these are the phases. And I think they're very excited to be going there. Yeah. You know, >>Rob, the great thing about for, for your customers is they don't have to build out the AI. They can, they can buy it. And, and just in thinking about this, it seems like there are a lot of really great and even sometimes narrow use cases. So I want to ask you, you know, staying with AI for a minute, one of the frustrations and Mick and I talked about this, the guy go problem that we've all studied in college, uh, you know, garbage in, garbage out. Uh, but, but the frustrations that users have had is really getting fast access to quality data that they can use to drive business results. So do you see, and how do you see AI maybe changing the game in that regard, Rob over the next several years? >>So yeah, the combination of massive amounts of data that have been gathered across the enterprise in the past 10 years with an open API APIs are dramatically lowering the processing costs that perform at much greater speed and efficiency, you know, and that's allowing us as an industry to democratize the data access while at the same time, delivering the federated governance and security models and hybrid technologies are playing a key role in making this a reality and enabling data access to be hybridized, meaning access and treated in a substantially similar way, your respect to the physical location of where that data actually resides. >>That's great. That is really the value layer that you guys are building out on top of that, all this great infrastructure that the hyperscalers have have given us, I mean, a hundred billion dollars a year that you can build value on top of, for your customers. Last question, and maybe Rob, you could, you can go first and then manufacture. You could bring us home. Where do you guys want to see the relationship go between cloud era and Nvidia? In other words, how should we, as outside observers be, be thinking about and measuring your project specifically and in the industry's progress generally? >>Yeah, I think we're very aligned on this and for cloud era, it's all about helping companies move forward, leverage every bit of their data and all the places that it may, uh, be hosted and partnering with our customers, working closely with our technology ecosystem of partners means innovation in every industry and that's inspiring for us. And that's what keeps us moving forward. >>Yeah. And I agree with Robin and for us at Nvidia, you know, we, this partnership started, uh, with data analytics, um, as you know, a spark is a very powerful technology for data analytics, uh, people who use spark rely on Cloudera for that. And the first thing we did together was to really accelerate spark in a seamless manner, but we're accelerating machine learning. We accelerating artificial intelligence together. And I think for Nvidia it's about democratization. We've seen what machine learning and AI have done for the early adopters and help them make their businesses, their products, their customer experience better. And we'd like every company to have the same opportunity. >>Okay. Now we're going to dig into the data landscape and cloud of course. And talk a little bit more about that with drew Allen. He's a managing director at Accenture drew. Welcome. Great to see you. Thank you. So let's talk a little bit about, you know, you've been in this game for a number of years. Uh, you've got particular expertise in, in data and finance and insurance. I mean, you know, you think about it within the data and analytics world, even our language is changing. You know, we don't say talk about big data so much anymore. We talk more about digital, you know, or, or, or data driven when you think about sort of where we've come from and where we're going. What are the puts and takes that you have with regard to what's going on in the business today? >>Well, thanks for having me. Um, you know, I think some of the trends we're seeing in terms of challenges and puts some takes are that a lot of companies are already on this digital journey. Um, they focused on customer experience is kind of table stakes. Everyone wants to focus on that and kind of digitizing their channels. But a lot of them are seeing that, you know, a lot of them don't even own their, their channels necessarily. So like we're working with a big cruise line, right. And yes, they've invested in digitizing what they own, but a lot of the channels that they sell through, they don't even own, right. It's the travel agencies or third party, real sellers. So having the data to know where, you know, where those agencies are, that that's something that they've discovered. And so there's a lot of big focus on not just digitizing, but also really understanding your customers and going across products because a lot of the data has built, been built up in individual channels and in digital products. >>And so bringing that data together is something that customers that have really figured out in the last few years is a big differentiator. And what we're seeing too, is that a big trend that the data rich are getting richer. So companies that have really invested in data, um, are having, uh, an outside market share and outside earnings per share and outside revenue growth. And it's really being a big differentiator. And I think for companies just getting started in this, the thing to think about is one of the missteps is to not try to capture all the data at once. The average company has, you know, 10,000, 20,000 data elements individually, when you want to start out, you know, 500, 300 critical data elements, about 5% of the data of a company drives 90% of the business value. So focusing on those key critical data elements is really what you need to govern first and really invest in first. And so that's something we, we tell companies at the beginning of their data strategy is first focus on those critical data elements, really get a handle on governing that data, organizing that data and building data products around >>That day. You can't boil the ocean. Right. And so, and I, I feel like pre pandemic, there was a lot of complacency. Oh yeah, we'll get to that. You know, not on my watch, I'll be retired before that, you know, is it becomes a minute. And then of course the pandemic was, I call it sometimes a forced March to digital. So in many respects, it wasn't planned. It just ha you know, you had to do it. And so now I feel like people are stepping back and saying, okay, let's now really rethink this and do it right. But is there, is there a sense of urgency, do you think? Absolutely. >>I think with COVID, you know, we were working with, um, a retailer where they had 12,000 stores across the U S and they had didn't have the insights where they could drill down and understand, you know, with the riots and with COVID was the store operational, you know, with the supply chain of the, having multiple distributors, what did they have in stock? So there are millions of data points that you need to drill down at the cell level, at the store level to really understand how's my business performing. And we like to think about it for like a CEO and his leadership team of it, like, think of it as a digital cockpit, right? You think about a pilot, they have a cockpit with all these dials and, um, dashboards, essentially understanding the performance of their business. And they should be able to drill down and understand for each individual, you know, unit of their work, how are they performing? That's really what we want to see for businesses. Can they get down to that individual performance to really understand how their business >>Is performing good, the ability to connect those dots and traverse those data points and not have to go in and come back out and go into a new system and come back out. And that's really been a lot of the frustration. W where does machine intelligence and AI fit in? Is that sort of a dot connector, if you will, and an enabler, I mean, we saw, you know, decades of the, the AI winter, and then, you know, there's been a lot of talk about it, but it feels like with the amount of data that we've collected over the last decade and the, the, the low costs of processing that data now, it feels like it's, it's real. Where do you see AI fitting? Yeah, >>I mean, I think there's been a lot of innovation in the last 10 years with, um, the low cost of storage and computing and these algorithms in non-linear, um, you know, knowledge graphs, and, um, um, a whole bunch of opportunities in cloud where what I think the, the big opportunity is, you know, you can apply AI in areas where a human just couldn't have the scale to do that alone. So back to the example of a cruise lines, you know, you may have a ship being built that has 4,000 cabins on the single cruise line, and it's going to multiple deaths that destinations over its 30 year life cycle. Each one of those cabins is being priced individually for each individual destination. It's physically impossible for a human to calculate the dynamic pricing across all those destinations. You need a machine to actually do that pricing. And so really what a machine is leveraging is all that data to really calculate and assist the human, essentially with all these opportunities where you wouldn't have a human being able to scale up to that amount of data >>Alone. You know, it's interesting. One of the things we talked to Nicolson about earlier was just the everybody's algorithms are out of whack. You know, you look at the airline pricing, you look at hotels it's as a consumer, you would be able to kind of game the system and predict that they can't even predict these days. And I feel as though that the data and AI are actually going to bring us back into some kind of normalcy and predictability, uh, what do you see in that regard? Yeah, I think it's, >>I mean, we're definitely not at a point where, when I talked to, you know, the top AI engineers and data scientists, we're not at a point where we have what they call broad AI, right? You can get machines to solve general knowledge problems, where they can solve one problem and then a distinctly different problem, right? That's still many years away, but narrow why AI, there's still tons of use cases out there that can really drive tons of business performance challenges, tons of accuracy challenges. So for example, in the insurance industry, commercial lines, where I work a lot of the time, the biggest leakage of loss experience in pricing for commercial insurers is, um, people will go in as an agent and they'll select an industry to say, you know what, I'm a restaurant business. Um, I'll select this industry code to quote out a policy, but there's, let's say, you know, 12 dozen permutations, you could be an outdoor restaurant. >>You could be a bar, you could be a caterer and all of that leads to different loss experience. So what this does is they built a machine learning algorithm. We've helped them do this, that actually at the time that they're putting in their name and address, it's crawling across the web and predicting in real time, you know, is this a address actually, you know, a business that's a restaurant with indoor dining, does it have a bar? Is it outdoor dining? And it's that that's able to accurately more price the policy and reduce the loss experience. So there's a lot of that you can do even with narrow AI that can really drive top line of business results. >>Yeah. I liked that term, narrow AI, because getting things done is important. Let's talk about cloud a little bit because people talk about cloud first public cloud first doesn't necessarily mean public cloud only, of course. So where do you see things like what's the right operating model, the right regime hybrid cloud. We talked earlier about hybrid data help us squint through the cloud landscape. Yeah. I mean, I think for most right, most >>Fortune 500 companies, they can't just snap their fingers and say, let's move all of our data centers to the cloud. They've got to move, you know, gradually. And it's usually a journey that's taking more than two to three plus years, even more than that in some cases. So they're have, they have to move their data, uh, incrementally to the cloud. And what that means is that, that they have to move to a hybrid perspective where some of their data is on premise and some of it is publicly on the cloud. And so that's the term hybrid cloud essentially. And so what they've had to think about is from an intelligence perspective, the privacy of that data, where is it being moved? Can they reduce the replication of that data? Because ultimately you like, uh, replicating the data from on-premise to the cloud that introduces, you know, errors and data quality issues. So thinking about how do you manage, uh, you know, uh on-premise and, um, public as a transition is something that Accenture thinks, thinks, and helps our clients do quite a bit. And how do you move them in a manner that's well-organized and well thought of? >>Yeah. So I've been a big proponent of sort of line of business lines of business becoming much more involved in, in the data pipeline, if you will, the data process, if you think about our major operational systems, they all have sort of line of business context in them. And then the salespeople, they know the CRM data and, you know, logistics folks there they're very much in tune with ERP, almost feel like for the past decade, the lines of business have been somewhat removed from the, the data team, if you will. And that, that seems to be changing. What are you seeing in terms of the line of line of business being much more involved in sort of end to end ownership, if you will, if I can use that term of, uh, of the data and sort of determining things like helping determine anyway, the data quality and things of that nature. Yeah. I >>Mean, I think this is where thinking about your data operating model and thinking about ideas of a chief data officer and having data on the CEO agenda, that's really important to get the lines of business, to really think about data sharing and reuse, and really getting them to, you know, kind of unlock the data because they do think about their data as a fiefdom data has value, but you've got to really get organizations in their silos to open it up and bring that data together because that's where the value is. You know, data doesn't operate. When you think about a customer, they don't operate in their journey across the business in silo channels. They don't think about, you know, I use only the web and then I use the call center, right? They think about that as just one experience and that data is a single journey. >>So we like to think about data as a product. You know, you should think about a data in the same way. You think about your products as, as products, you know, data as a product, you should have the idea of like every two weeks you have releases to it. You have an operational resiliency to it. So thinking about that, where you can have a very product mindset to delivering your data, I think is very important for the success. And that's where kind of, there's not just the things about critical data elements and having the right platform architecture, but there's a soft stuff as well, like a, a product mindset to data, having the right data, culture, and business adoption and having the right value set mindset for, for data, I think is really >>Important. I think data as a product is a very powerful concept and I think it maybe is uncomfortable to some people sometimes. And I think in the early days of big data, if you will, people thought, okay, data is a product going to sell my data and that's not necessarily what you mean, thinking about products or data that can fuel products that you can then monetize maybe as a product or as a, as, as a service. And I like to think about a new metric in the industry, which is how long does it take me to get from idea I'm a business person. I have an idea for a data product. How long does it take me to get from idea to monetization? And that's going to be something that ultimately as a business person, I'm going to use to determine the success of my data team and my data architecture. Is that kind of thinking starting to really hit the marketplace? Absolutely. >>I mean, I insurers now are working, partnering with, you know, auto manufacturers to monetize, um, driver usage data, you know, on telematics to see, you know, driver behavior on how, you know, how auto manufacturers are using that data. That's very important to insurers, you know, so how an auto manufacturer can monetize that data is very important and also an insurance, you know, cyber insurance, um, are there news new ways we can look at how companies are being attacked with viruses and malware. And is there a way we can somehow monetize that information? So companies that are able to agily, you know, think about how can we collect this data, bring it together, think about it as a product, and then potentially, you know, sell it as a service is something that, um, company, successful companies, you're doing great examples >>Of data products, and it might be revenue generating, or it might be in the case of, you know, cyber, maybe it reduces my expected loss and exactly. Then it drops right to my bottom line. What's the relationship between Accenture and cloud era? Do you, I presume you guys meet at the customer, but maybe you could give us some insight. >>Yeah. So, um, I, I'm in the executive sponsor for, um, the Accenture Cloudera partnership on the Accenture side. Uh, we do quite a lot of business together and, um, you know, Cloudera has been a great partner for us. Um, and they've got a great product in terms of the Cloudera data platform where, you know, what we do is as a big systems integrator for them, we help, um, you know, configure and we have a number of engineers across the world that come in and help in terms of, um, engineer architects and install, uh, cloud errors, data platform, and think about what are some of those, you know, value cases where you can really think about organizing data and bringing it together for all these different types of use cases. And really just as the examples we thought about. So the telematics, you know, um, in order to realize something like that, you're bringing in petabytes and huge scales of data that, you know, you just couldn't bring on a normal, uh, platform. You need to think about cloud. You need to think about speed of, of data and real-time insights and cloud era is the right data platform for that. So, um, >>Having a cloud Cloudera ushered in the modern big data era, we kind of all know that, and it was, which of course early on, it was very services intensive. You guys were right there helping people think through there weren't enough data scientists. We've sort of all, all been through that. And of course in your wheelhouse industries, you know, financial services and insurance, they were some of the early adopters, weren't they? Yeah, absolutely. >>Um, so, you know, an insurance, you've got huge amounts of data with loss history and, um, a lot with IOT. So in insurance, there's a whole thing of like sensorized thing in, uh, you know, taking the physical world and digitizing it. So, um, there's a big thing in insurance where, um, it's not just about, um, pricing out the risk of a loss experience, but actual reducing the loss before it even happens. So it's called risk control or loss control, you know, can we actually put sensors on oil pipelines or on elevators and, you know, reduce, um, you know, accidents before they happen. So we're, you know, working with an insurer to actually, um, listen to elevators as they move up and down and are there signals in just listening to the audio of an elevator over time that says, you know what, this elevator is going to need maintenance, you know, before a critical accident could happen. So there's huge applications, not just in structured data, but in unstructured data like voice and audio and video where a partner like Cloudera has a huge role to play. >>Great example of it. So again, narrow sort of use case for machine intelligence, but, but real value. True. We'll leave it like that. Thanks so much for taking some time. Yes. Thank you so much. Okay. We continue now with the theme of turning ideas into insights. So ultimately you can take action. We heard earlier that public cloud first doesn't mean public cloud only, and a winning strategy comprises data, irrespective of physical location on prem, across multiple clouds at the edge where real time inference is going to drive a lot of incremental value. Data is going to help the world come back to normal. We heard, or at least semi normal as we begin to better understand and forecast demand and supply and balances and economic forces. AI is becoming embedded into every aspect of our business, our people, our processes, and applications. And now we're going to get into some of the foundational principles that support the data and insights centric processes, which are fundamental to digital transformation initiatives. And it's my pleasure to welcome two great guests, Michelle Goetz. Who's a Kuba woman, VP and principal analyst at Forrester, and doing some groundbreaking work in this area. And Cindy, Mikey, who is the vice president of industry solutions and value management at Cloudera. Welcome to both of >>You. Welcome. Thank you. Thanks Dave. >>All right, Michelle, let's get into it. Maybe you could talk about your foundational core principles. You start with data. What are the important aspects of this first principle that are achievable today? >>It's really about democratization. If you can't make your data accessible, um, it's not usable. Nobody's able to understand what's happening in the business and they don't understand, um, what insights can be gained or what are the signals that are occurring that are going to help them with decisions, create stronger value or create deeper relationships, their customers, um, due to their experiences. So it really begins with how do you make data available and bring it to where the consumer of the data is rather than trying to hunt and Peck around within your ecosystem to find what it is that's important. Great. >>Thank you for that. So, Cindy, I wonder in hearing what Michelle just said, what are your thoughts on this? And when you work with customers at Cloudera, does, are there any that stand out that perhaps embody the fundamentals that Michelle just shared? >>Yeah, there's, there's quite a few. And especially as we look across, um, all the industries that we're actually working with customers in, you know, a few that stand out in top of mind for me is one is IQ via and what they're doing with real-world evidence and bringing together data across the entire, um, healthcare and life sciences ecosystems, bringing it together in different shapes and formats, making the ed accessible by both internally, as well as for their, um, the entire extended ecosystem. And then for SIA, who's working to solve some predictive maintenance issues within, there are a European car manufacturer and how do they make sure that they have, you know, efficient and effective processes when it comes to, uh, fixing equipment and so forth. And then also, um, there's, uh, an Indonesian based, um, uh, telecommunications company tech, the smell, um, who's bringing together, um, over the last five years, all their data about their customers and how do they enhance our customer experience? How do they make information accessible, especially in these pandemic and post pandemic times, um, uh, you know, just getting better insights into what customers need and when do they need it? >>Cindy platform is another core principle. How should we be thinking about data platforms in this day and age? I mean, where does, where do things like hybrid fit in? Um, what's cloud era's point >>Of view platforms are truly an enabler, um, and data needs to be accessible in many different fashions. Um, and also what's right for the business. When, you know, I want it in a cost and efficient and effective manner. So, you know, data needs to be, um, data resides everywhere. Data is developed and it's brought together. So you need to be able to balance both real time, you know, our batch historical information. It all depends upon what your analytical workloads are. Um, and what types of analytical methods you're going to use to drive those business insights. So putting and placing data, um, landing it, making it accessible, analyzing it needs to be done in any accessible platform, whether it be, you know, a public cloud doing it on-prem or a hybrid of the two is typically what we're seeing, being the most successful. >>Great. Thank you, Michelle. Let's move on a little bit and talk about practices and practices and processes as the next core principles. Maybe you could provide some insight as to how you think about balancing practices and processes while at the same time managing agility. >>Yeah, it's a really great question because it's pretty complex. When you have to start to connect your data to your business, the first thing to really gravitate towards is what are you trying to do? And what Cindy was describing with those customer examples is that they're all based off of business goals off of very specific use cases that helps kind of set the agenda about what is the data and what are the data domains that are important to really understanding and recognizing what's happening within that business activity and the way that you can affect that either in, you know, near time or real time, or later on, as you're doing your strategic planning, what that's balancing against is also being able to not only see how that business is evolving, but also be able to go back and say, well, can I also measure the outcomes from those processes and using data and using insight? >>Can I also get intelligence about the data to know that it's actually satisfying my objectives to influence my customers in my market? Or is there some sort of data drift or detraction in my, um, analytic capabilities that are allowing me to be effective in those environments, but everything else revolves around that and really thinking succinctly about a strategy that isn't just data aware, what data do I have and how do I use it, but coming in more from that business perspective to then start to be, data-driven recognizing that every activity you do from a business perspective leads to thinking about information that supports that and supports your decisions, and ultimately getting to the point of being insight driven, where you're able to both, uh, describe what you want your business to be with your data, using analytics, to then execute on that fluidly and in real time. And then ultimately bringing that back with linking to business outcomes and doing that in a continuous cycle where you can test and you can learn, you can improve, you can optimize, and you can innovate because you can see your business as it's happening. And you have the right signals and intelligence that allow you to make great decisions. >>I like how you said near time or real time, because it is a spectrum. And you know, one of the spectrum, autonomous vehicles, you've got to make a decision in real time, but, but, but near real-time, or real-time, it's, it's in the eyes of the holder, if you will, it's it might be before you lose the customer before the market changes. So it's really defined on a case by case basis. Um, I wonder Michelle, if you could talk about in working with a number of organizations, I see folks, they sometimes get twisted up and understanding the dependencies that technology generally, and the technologies around data specifically can have on critical business processes. Can you maybe give some guidance as to where customers should start, where, you know, where can we find some of the quick wins and high return, it >>Comes first down to how does your business operate? So you're going to take a look at the business processes and value stream itself. And if you can understand how people and customers, partners, and automation are driving that step by step approach to your business activities, to realize those business outcomes, it's way easier to start thinking about what is the information necessary to see that particular step in the process, and then take the next step of saying what information is necessary to make a decision at that current point in the process, or are you collecting information asking for information that is going to help satisfy a downstream process step or a downstream decision. So constantly making sure that you are mapping out your business processes and activities, aligning your data process to that helps you now rationalize. Do you need that real time near real time, or do you want to start grading greater consistency by bringing all of those signals together, um, in a centralized area to eventually oversee the entire operations and outcomes as they happen? It's the process and the decision points and acting on those decision points for the best outcome that really determines are you going to move in more of a real-time, uh, streaming capacity, or are you going to push back into more of a batch oriented approach? Because it depends on the amount of information and the aggregate of which provides the best insight from that. >>Got it. Let's, let's bring Cindy back into the conversation in your city. We often talk about people process and technology and the roles they play in creating a data strategy. That's that's logical and sound. Can you speak to the broader ecosystem and the importance of creating both internal and external partners within an organization? Yeah. >>And that's, uh, you know, kind of building upon what Michelle was talking about. If you think about datas and I hate to use the phrase almost, but you know, the fuel behind the process, um, and how do you actually become insight-driven? And, you know, you look at the capabilities that you're needing to enable from that business process, that insight process, um, you're extended ecosystem on, on how do I make that happen? You know, partners, um, and, and picking the right partner is important because a partner is one that actually helps under or helps you implement what your decisions are. Um, so, um, looking for a partner that has the capability that believes in being insight-driven and making sure that when you're leveraging data, um, you know, for within process on that, if you need to do it in a time fashion, that they can actually meet those needs of the business, um, and enabling on those, those process activities. So the ecosystem looking at how you, um, look at, you know, your vendors are, and fundamentally they need to be that trusted partner. Um, do they bring those same principles of value of being insight driven? So they have to have those core values themselves in order to help you as a, um, an end of business person enable those capabilities. So, so yeah, I'm >>Cool with fuel, but it's like super fuel when you talk about data, cause it's not scarce, right? You're never going to run out. So Michelle, let's talk about leadership. W w who leads, what does so-called leadership look like in an organization that's insight driven? >>So I think the really interesting thing that is starting to evolve as late is that organizations enterprises are really recognizing that not just that data is an asset and data has value, but exactly what we're talking about here, data really does drive what your business outcomes are going to be data driving into the insight or the raw data itself has the ability to set in motion. What's going to happen in your business processes and your customer experiences. And so, as you kind of think about that, you're now starting to see your CEO, your CMO, um, your CRO coming back and saying, I need better data. I need information. That's representative of what's happening in my business. I need to be better adaptive to what's going on with my customers. And ultimately that means I need to be smarter and have clearer forecasting into what's about ready to come, not just, you know, one month, two months, three months or a year from now, but in a week or tomorrow. >>And so that's, how is having a trickle down effect to then looking at two other types of roles that are elevating from technical capacity to more business capacity, you have your chief data officer that is shaping the exp the experiences, uh, with data and with insight and reconciling, what type of information is necessary with it within the context of answering these questions and creating a future fit organization that is adaptive and resilient to things that are happening. And you also have a chief digital officer who is participating because they're providing the experience and shaping the information and the way that you're going to interact and execute on those business activities, and either running that autonomously or as part of an assistance for your employees and for your customers. So really to go from not just data aware to data driven, but ultimately to be insight driven, you're seeing way more, um, participation, uh, and leadership at that C-suite level. And just underneath, because that's where the subject matter expertise is coming in to know how to create a data strategy that is tightly connected to your business strategy. >>Right. Thank you. Let's wrap. And I've got a question for both of you, maybe Cindy, you could start and then Michelle bring us home. You know, a lot of customers, they want to understand what's achievable. So it's helpful to paint a picture of a, of a maturity model. Uh, you know, I'd love to go there, but I'm not going to get there anytime soon, but I want to take some baby steps. So when you're performing an analysis on, on insight driven organization, city, what do you see as the major characteristics that define the differences between sort of the, the early, you know, beginners, the sort of fat middle, if you will, and then the more advanced, uh, constituents. >>Yeah, I'm going to build upon, you know, what Michelle was talking about as data as an asset. And I think, you know, also being data where, and, you know, trying to actually become, you know, insight driven, um, companies can also have data and they can have data as a liability. And so when you're data aware, sometimes data can still be a liability to your organization. If you're not making business decisions on the most recent and relevant data, um, you know, you're not going to be insight driven. So you've got to move beyond that, that data awareness, where you're looking at data just from an operational reporting, but data's fundamentally driving the decisions that you make. Um, as a business, you're using data in real time. You're, um, you're, you know, leveraging data to actually help you make and drive those decisions. So when we use the term you're, data-driven, you can't just use the term, you know, tongue in cheek. It actually means that I'm using the recent, the relevant and the accuracy of data to actually make the decisions for me, because we're all advancing upon. We're talking about, you know, artificial intelligence and so forth. Being able to do that, if you're just data where I would not be embracing on leveraging artificial intelligence, because that means I probably haven't embedded data into my processes. It's data could very well still be a liability in your organization. So how do you actually make it an asset? Yeah, I think data >>Where it's like cable ready. So, so Michelle, maybe you could, you could, you could, uh, add to what Cindy just said and maybe add as well, any advice that you have around creating and defining a data strategy. >>So every data strategy has a component of being data aware. This is like building the data museum. How do you capture everything that's available to you? How do you maintain that memory of your business? You know, bringing in data from your applications, your partners, third parties, wherever that information is available, you want to ensure that you're capturing and you're managing and you're maintaining it. And this is really where you're starting to think about the fact that it is an asset. It has value, but you may not necessarily know what that value is. Yet. If you move into a category of data driven, what starts to shift and change there is you're starting to classify label, organize the information in context of how you're making decisions and how you do business. It could start from being more, um, proficient from an analytic purpose. You also might start to introduce some early stages of data science in there. >>So you can do some predictions and some data mining to start to weed out some of those signals. And you might have some simple types of algorithms that you're deploying to do a next next best action for example. And that's what data-driven is really about. You're starting to get value out of it. The data itself is starting to make sense in context of your business, but what you haven't done quite yet, which is what insight driven businesses are, is really starting to take away. Um, the gap between when you see it, know it and then get the most value and really exploit what that insight is at the time when it's right. So in the moment we talk about this in terms of perishable insights, data and insights are ephemeral. And we want to ensure that the way that we're managing that and delivering on that data and insights is in time with our decisions and the highest value outcome we're going to have, that that insight can provide us. >>So are we just introducing it as data-driven organizations where we could see, you know, spreadsheets and PowerPoint presentations and lots of mapping to help make sort of longer strategic decisions, or are those insights coming up and being activated in an automated fashion within our business processes that are either assisting those human decisions at the point when they're needed, or an automated decisions for the types of digital experiences and capabilities that we're driving in our organization. So it's going from, I'm a data hoarder. If I'm data aware to I'm interested in what's happening as a data-driven organization and understanding my data. And then lastly being insight driven is really where light between business, data and insight. There is none it's all coming together for the best outcomes, >>Right? So people are acting on perfect or near perfect information or machines or, or, uh, doing so with a high degree of confidence, great advice and insights. And thank you both for sharing your thoughts with our audience today. It's great to have you. Thank you. Thank you. Okay. Now we're going to go into our industry. Deep dives. There are six industry breakouts, financial services, insurance, manufacturing, retail communications, and public sector. Now each breakout is going to cover two distinct use cases for a total of essentially 12 really detailed segments that each of these is going to be available on demand, but you can scan the calendar on the homepage and navigate to your breakout session for choice of choice or for more information, click on the agenda page and take a look to see which session is the best fit for you. And then dive in, join the chat and feel free to ask questions or contribute your knowledge, opinions, and data. Thanks so much for being part of the community and enjoy the rest of the day.
SUMMARY :
Have you ever wondered how we sequence the human genome, One of the things that, you know, both Cloudera and Claire sensor very and really honestly have a technological advantage over some of the larger organizations. A lot of the data you find or research you find health is usually based on white men. One of the things that we're concerned about in healthcare is that there's bias in treatment already. So you can make the treatments in the long run. Researchers are now able to use these technologies and really take those you know, underserved environments, um, in healthcare. provide the foundation to develop service center applications, sales reports, It's the era of smart but also the condition of those goods. biggest automotive customers are Volkswagen for the NPSA. And the real-time data collection is key, and this is something we cannot achieve in a classical data Finally, a data platform that lets you say yes, and digital business, but you think about it. And as such the way we use insights is also rapidly evolving. the full results they desire. Great to see you as well, Dave, Hey, so I call it the new abnormal, I finally managed to get some bag and to be able to show up dressed appropriately for you today. events, which is our business hybrid cloud, how are you thinking about the hybrid? Everything there, one item you might not have quite hit on Dave and that's hybrid data. What, what do you mean by hybrid data? So how in the heck do you get both the freedom and security You talked about security, the data flows are going to change. in the office and are not, I know our plans, Dave, uh, involve us kind of mint control of payment systems in manufacturing, you know, the pandemic highlighted America's we, uh, you know, at Cloudera I happened to be leading our own digital transformation of that type of work and the financial services industry you pointed out. You've got to ensure that you can see who just touched, perhaps by the humans, perhaps by the machines that may have led to a particular outcome. You bring it into the discussion, the hybrid data, uh, sort of new, I think, you know, for every industry transformation, uh, change in general is And they begin to deploy that on-prem and then they start Uh, w what, what do you want people to leave Well, it's a great question, but, uh, you know, I think it could be summed up in, uh, in two words. Really thank you for your time. You bet Dave pleasure being with you. And before I hand it off to Robin, I just want to say for those of you who follow me at the cube, we've extensively covered the a data first strategy and accelerating the path to value and hybrid environments. And the reason we're talking about speed and why speed Thank you for joining us over the unit. chip company focused on graphics, but as you know, over the last decade, that data exists in different places and the compute needs to follow the data. And that's the kind of success we're looking forward to with all customers. the infrastructure to support all the ideas that the subject matter experts are coming up with in terms And just to give you context, know how the platforms to run them on just kind of the close out. the work they did with you guys and Chev, obviously also. Is it primarily go to market or you do an engineering work? and take advantage of invidious platform to drive better price performance, lower cost, purpose platforms that are, that are running all this ERP and CRM and HCM and you So that regardless of the technique, So the good news, the reason this is important is because when you think about these data intensive workloads, maybe these consumer examples and Rob, how are you thinking about enterprise AI in The opportunity is huge here, but you know, 90% of the cost of AI Maybe you could add something to that. You know, the way we see this at Nvidia, this journey is in three phases or three steps, And you still come home and assemble it, but all the parts are there. uh, you know, garbage in, garbage out. perform at much greater speed and efficiency, you know, and that's allowing us as an industry That is really the value layer that you guys are building out on top of that, And that's what keeps us moving forward. this partnership started, uh, with data analytics, um, as you know, So let's talk a little bit about, you know, you've been in this game So having the data to know where, you know, And I think for companies just getting started in this, the thing to think about is one of It just ha you know, I think with COVID, you know, we were working with, um, a retailer where they had 12,000 the AI winter, and then, you know, there's been a lot of talk about it, but it feels like with the amount the big opportunity is, you know, you can apply AI in areas where some kind of normalcy and predictability, uh, what do you see in that regard? and they'll select an industry to say, you know what, I'm a restaurant business. And it's that that's able to accurately So where do you see things like They've got to move, you know, more involved in, in the data pipeline, if you will, the data process, and really getting them to, you know, kind of unlock the data because they do where you can have a very product mindset to delivering your data, I think is very important data is a product going to sell my data and that's not necessarily what you mean, thinking about products or that are able to agily, you know, think about how can we collect this data, Of data products, and it might be revenue generating, or it might be in the case of, you know, cyber, maybe it reduces my expected So the telematics, you know, um, in order to realize something you know, financial services and insurance, they were some of the early adopters, weren't they? this elevator is going to need maintenance, you know, before a critical accident could happen. So ultimately you can take action. Thanks Dave. Maybe you could talk about your foundational core principles. are the signals that are occurring that are going to help them with decisions, create stronger value And when you work with customers at Cloudera, does, are there any that stand out that perhaps embody um, uh, you know, just getting better insights into what customers need and when do they need it? I mean, where does, where do things like hybrid fit in? whether it be, you know, a public cloud doing it on-prem or a hybrid of the two is typically what we're to how you think about balancing practices and processes while at the same time activity and the way that you can affect that either in, you know, near time or Can I also get intelligence about the data to know that it's actually satisfying guidance as to where customers should start, where, you know, where can we find some of the quick wins a decision at that current point in the process, or are you collecting and technology and the roles they play in creating a data strategy. and I hate to use the phrase almost, but you know, the fuel behind the process, Cool with fuel, but it's like super fuel when you talk about data, cause it's not scarce, ready to come, not just, you know, one month, two months, three months or a year from now, And you also have a chief digital officer who is participating the early, you know, beginners, the sort of fat middle, And I think, you know, also being data where, and, you know, trying to actually become, any advice that you have around creating and defining a data strategy. How do you maintain that memory of your business? Um, the gap between when you see you know, spreadsheets and PowerPoint presentations and lots of mapping to to be available on demand, but you can scan the calendar on the homepage and navigate to your breakout
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mick Holliston | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Cindy | PERSON | 0.99+ |
William Gibson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Accenture | ORGANIZATION | 0.99+ |
Michelle | PERSON | 0.99+ |
Arkansas | LOCATION | 0.99+ |
Michelle Goetz | PERSON | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Atlanta | LOCATION | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Rob | PERSON | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Rob Bearden | PERSON | 0.99+ |
Mars | LOCATION | 0.99+ |
Volkswagen | ORGANIZATION | 0.99+ |
Nebraska | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
22 | QUANTITY | 0.99+ |
Mick | PERSON | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
90% | QUANTITY | 0.99+ |
Robin | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
12 | QUANTITY | 0.99+ |
4,000 cabins | QUANTITY | 0.99+ |
10,000 | QUANTITY | 0.99+ |
two words | QUANTITY | 0.99+ |
millions | QUANTITY | 0.99+ |
Ikea | ORGANIZATION | 0.99+ |
Eric | PERSON | 0.99+ |
five years | QUANTITY | 0.99+ |
one month | QUANTITY | 0.99+ |
Nick | PERSON | 0.99+ |
100 cards | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Unleash the Power of Your Cloud Data | Beyond.2020 Digital
>>Yeah, yeah. Welcome back to the third session in our building, A vibrant data ecosystem track. This session is unleash the power of your cloud data warehouse. So what comes after you've moved your data to the cloud in this session will explore White Enterprise Analytics is finally ready for the cloud, and we'll discuss how you can consume Enterprise Analytics in the very same way he would cloud services. We'll also explore where analytics meets cloud and see firsthand how thought spot is open for everyone. Let's get going. I'm happy to say we'll be hearing from two folks from thought spot today, Michael said Cassie, VP of strategic partnerships, and Vika Valentina, senior product marketing manager. And I'm very excited to welcome from our partner at AWS Gal Bar MIA, product engineering manager with Red Shift. We'll also be sharing a live demo of thought spot for BTC Marketing Analytics directly on Red Shift data. Gal, please kick us off. >>Thank you, Military. And thanks. The talks about team and everyone attending today for joining us. When we talk about data driven organizations, we hear that 85% of businesses want to be data driven. However, on Lee. 37% have been successful in We ask ourselves, Why is that and believe it or not, Ah, lot of customers tell us that they struggled with live in defining what being data driven it even means, and in particular aligning that definition between the business and the technology stakeholders. Let's talk a little bit. Let's look at our own definition. A data driven organization is an organization that harnesses data is an asset. The drive sustained innovation and create actionable insights. The super charge, the experience of their customers so they demand more. Let's focus on a few things here. One is data is an asset. Data is very much like a product needs to evolve sustained innovation. It's not just innovation innovation, it's sustained. We need to continuously innovate when it comes to data actionable insights. It's not just interesting insights these air actionable that the business can take and act upon, and obviously the actual experience we. Whether whether the customers are internal or external, we want them to request Mawr insights and as such, drive mawr innovation, and we call this the for the flywheel. We use the flywheel metaphor here where we created that data set. Okay, Our first product. Any focused on a specific use case? We build an initial NDP around that we provided with that with our customers, internal or external. They provide feedback, the request, more features. They want mawr insights that enables us to learn bringing more data and reach that actual data. And again we create MAWR insights. And as the flywheel spins faster, we improve on operational efficiencies, supporting greater data richness, and we reduce the cost of experimentation and legacy environments were never built for this kind of agility. In many cases, customers have struggled to keep momentum in their fleet, flywheel in particular around operational efficiency and experimentation. This is where Richie fits in and helps customer make the transition to a true data driven organization. Red Shift is the most widely used data warehouse with tens of thousands of customers. It allows you to analyze all your data. It is the only cloud data warehouse that sits, allows you to analyze data that sits in your data lake on Amazon, a street with no loading duplication or CTL required. It is also allows you to scale with the business with its hybrid architectures it also accelerates performance. It's a shared storage that provides the ability to scale toe unlimited concurrency. While the UN instant storage provides low late and say access to data it also provides three. Key asks that customers consistently tell us that matter the most when it comes to cost. One is usage based pricing Instead of license based pricing. Great value as you scale your data warehouse using, for example, reserved instances they can save up to 75% compared to on the mind demand prices. And as your data grows, infrequently accessed data can be stored. Cost effectively in S three encouraged through Amazon spectrum, and the third aspect is predictable. Month to month spend with no hitting charges and surprises. Unlike and unlike other cloud data warehouses, where you need premium versions for additional enterprise capabilities. Wretched spicing include building security compression and data transfer. >>Great Thanks. Scout um, eso. As you can see, everybody wins with the cloud data warehouses. Um, there's this evolution of movement of users and data and organizations to get value with these cloud data warehouses. And the key is the data has to be accessible by the users, and this data and the ability to make business decisions on the data. It ranges from users on the front line all the way up to the boardroom. So while we've seen this evolution to the Cloud Data Warehouse, as you can see from the statistic from Forrester, we're still struggling with how much of that data actually gets used for analytics. And so what is holding us back? One of the main reasons is old technology really trying to work with today's modern cloud data warehouses? They weren't built for it. So you run into issues of trying to do data replication, getting the data out of the cloud data warehouse. You can do analysis and then maintaining these middle layers of data so that you can access it quickly and get the answers you need. Another issue that's holding us back is this idea that you have to have your data in perfect shape with the perfect pipeline based on the exact dashboard unique. Um, this isn't true. Now, with Cloud data warehouse and the speed of important business data getting into those cloud data warehouses, you need a solution that allows you to access it right away without having everything to be perfect from the start, and I think this is a great opportunity for GAL and I have a little further discussion on what we're seeing in the marketplace. Um, one of the primary ones is like, What are the limiting factors, your Siegel of legacy technologies in the market when it comes to this cloud transformation we're talking about >>here? It's a great question, Michael and the variety of aspect when it comes to legacy, the other warehouses that are slowing down innovation for companies and businesses. I'll focus on 21 is performance right? We want faster insights. Companies want the ability to analyze MAWR data faster. And when it comes to on prem or legacy data warehouses, that's hard to achieve because the second aspect comes into display, which is the lack of flexibility, right. If you want to increase your capacity of your warehouse, you need to ensure request someone needs to go and bring an actual machine and install it and expand your data warehouse. When it comes to the cloud, it's literally a click of a button, which allows you to increase the capacity of your data warehouse and enable your internal and external users to perform analytics at scale and much faster. >>It falls right into the explanation you provided there, right as the speed of the data warehouses and the data gets faster and faster as it scales, older solutions aren't built toe leverage that, um, you know, they're either they're having to make technical, you know, technical cuts there, either looking at smaller amounts of data so that they can get to the data quicker. Um, or it's taking longer to get to the data when the data warehouse is ready, when it could just be live career to get the answers you need. And that's definitely an issue that we're seeing in the marketplace. I think the other one that you're looking at is things like governance, lineage, regulatory requirements. How is the cloud you know, making it easier? >>That's That's again an area where I think the cloud shines. Because AWS AWS scale allows significantly more investment in securing security policies and compliance, it allows customers. So, for example, Amazon redshift comes by default with suck 1 to 3 p. C. I. Aiso fared rampant HIPPA compliance, all of them out of the box and at our scale. We have the capacity to implement those by default for all of our customers and allow them to focus. Their very expensive, valuable ICTY resource is on actual applications that differentiate their business and transform the customer experience. >>That's a great point, gal. So we've talked about the, you know, limiting factors. Technology wise, we've mentioned things like governance. But what about the cultural aspect? Right? So what do you see? What do you see in team struggling in meeting? You know, their cloud data warehouse strategy today. >>And and that's true. One of the biggest challenges for large large organizations when they moved to the cloud is not about the technology. It's about people, process and culture, and we see differences between organizations that talk about moving to the cloud and ones that actually do it. And first of all, you wanna have senior leadership, drive and be aligned and committed to making the move to the cloud. But it's not just that you want. We see organizations sometimes Carol get paralyzed. If they can't figure out how to move each and every last work clothes, there's no need to boil the ocean, so we often work with organizations to find that iterative motion that relative process off identifying the use cases are date identifying workloads in migrating them one at a time and and through that allowed organization to grow its knowledge from a cloud perspective as well as adopt its tooling and learn about the new capabilities. >>And from an analytics perspective, we see the same right. You don't need a pixel perfect dashboard every single time to get value from your data. You don't need to wait until the data warehouse is perfect or the pipeline to the data warehouse is perfect. With today's technology, you should be able to look at the data in your cloud data warehouse immediately and get value from it. And that's the you know, that's that change that we're pushing and starting to see today. Thanks. God, that was That was really interesting. Um, you know, as we look through that, you know, this transformation we're seeing in analytics, um, isn't really that old? 20 years ago, data warehouses were primarily on Prem and the applications the B I tools used for analytics around them were on premise well, and so you saw things like applications like Salesforce. That live in the cloud. You start having to pull data from the cloud on Prem in order to do analytics with it. Um, you know, then we saw the shift about 10 years ago in the explosion of Cloud Data Warehouse Because of their scale, cost reduced, reduce shin reduction and speed. You know, we're seeing cloud data. Warehouses like Amazon Red Shift really take place, take hold of the marketplace and are the predominant ways of storing data moving forward. What we haven't seen is the B I tools catch up. And so when you have this new cloud data warehouse technology, you really need tools that were custom built for it to take advantage of it, to be able to query the cloud data warehouse directly and get results very quickly without having to worry about creating, you know, a middle layer of data or pipelines in order to manage it. And, you know, one company captures that really Well, um, chick fil A. I'm sure everybody has heard of is one of the largest food chains in America. And, you know, they made a huge investment in red shift and one of the purposes of that investment is they wanted to get access to the data mawr quickly, and they really wanted to give their business users, um, the ability to do some ad hoc analysis on the data that they were capturing. They found that with their older tools, the problems that they were finding was that all the data when they're trying to do this analysis was staying at the analyst level. So somebody needed to create a dashboard in order to share that data with a user. And if the user's requirements changed, the analysts were starting to become burdened with requests for changes and the time it took to reflect those changes. So they wanted to move to fought spot with embrace to connect to Red Shift so they could start giving business users that capability. Query the database right away. And with this, um, they were able to find, you know, very common things in in the supply chain analysis around the ability to figure out what store should get, what product that was selling better. The other part was they didn't have to wait for the data to get settled into some sort of repository or second level database. They were able to query it quickly. And then with that, they're able to make changes right in the red shift database that were then reflected to customers and the business users right away. So what they found from this is by adopting thought spot, they were actually able to arm business users with the ability to make decisions very quickly. And they cleared up the backlog that they were having and the delay with their analysts. And they're also putting their analysts toe work on different projects where they could get better value from. So when you look at the way we work with a cloud data warehouse, um, you have to think of thoughts about embrace as the tool that access that layer. The perfect analytic partner for the Cloud Data Warehouse. We will do the live query for the business user. You don't need to know how to script and sequel, um Thio access, you know, red shift. You can type the question that you want the answer to and thought spot will take care of that query. We will do the indexing so that the results come back faster for you and we will also do the analysis on. This is one of the things I wanted to cover, which is our spot i. Q. This is new for our ability to use this with embrace and our partners at Red Shift is now. We can give you the ability to do auto analysis to look at things like leading indicators, trends and anomalies. So to put this in perspective amount imagine somebody was doing forecasting for you know Q three in the western region. And they looked at how their stores were doing. And they saw that, you know, one store was performing well, Spot like, you might be able to look at that analysis and see if there's a leading product that is underperforming based on perhaps the last few quarters of data. And bring that up to the business user for analysis right away. They don't need to have to figure that out. And, um, you know, slice and dice to find that issue on their own. And then finally, all the work you do in data management and governance in your cloud data warehouse gets reflected in the results in embrace right away. So I've done a lot of talking about embrace, and I could do more, but I think it would be far better toe. Have Vika actually show you how the product works, Vika. >>Thanks, Michael. We learned a lot today about the power of leveraging your red shift data and thought spot. But now let me show you how it works. The coronavirus pandemic has presented extraordinary challenges for many businesses, and some industries have fared better than others. One industry that seems to weather the storm pretty well actually is streaming media. So companies like Netflix and who Lou. And in this demo, we're going to be looking at data from B to C marketing efforts. First streaming media company in 2020 lately, we've been running campaigns for comedy, drama, kids and family and reality content. Each of our campaigns last four weeks, and they're staggered on a weekly basis. Therefore, we always have four campaigns running, and we can focus on one campaign launch per >>week, >>and today we'll be digging into how our campaigns are performing. We'll be looking at things like impressions, conversions and users demographic data. So let's go ahead and look at that data. We'll see what we can learn from what's happened this year so far, and how we can apply those learnings to future decision making. As you can already see on the thoughts about homepage, I've created a few pin boards that I use for reporting purposes. The homepage also includes what others on my team and I have been looking at most recently. Now, before we dive into a search, will first take a look at how to make a direct connection to the customer database and red shift to save time. I've already pre built the connection Red Shift, but I'll show you how easy it is to make that connection in just three steps. So first we give the connection name and we select our connection type and was on red Shift. Then we enter our red shift credentials, and finally, we select the tables that we want to use Great now ready to start searching. So let's start in this data to get a better idea of how our marketing efforts have been affected either positively or negatively by this really challenging situation. When we think of ad based online marketing campaigns, we think of impressions, clicks and conversions. Let's >>look at those >>on a daily basis for our purposes. So all this data is available to us in Thought spot, and we can easily you search to create a nice line chart like this that shows US trends over the last few months and based on experience. We understand that we're going to have more clicks than impressions and more impressions and conversions. If we started the chart for a minute, we could see that while impressions appear to be pretty steady over the course of the year, clicks and especially conversions both get a nice boost in mid to late March, right around the time that pandemic related policies were being implemented. So right off the bat, we found something interesting, and we can come back to this now. There are few metrics that we're gonna focus on as we analyze our marketing data. Our overall goal is obviously to drive conversions, meaning that we bring new users into our streaming service. And in order to get a visitor to sign up in the first place, we need them to get into our sign up page. A compelling campaign is going to generate clicks, so if someone is interested in our ad, they're more likely to click on it, so we'll search for Click through Rape 5% and we'll look this up by campaign name. Now even compare all the campaigns that we've launched this year to see which have been most effective and bring visitors star site. And I mentioned earlier that we have four different types of campaign content, each one aligned with one of our most popular genres. So by adding campaign content, yeah, >>and I >>just want to see the top 10. I could limit my church. Just these top 10 campaigns automatically sorted by click through rate and assigned a color for each category so we could see right away that comedy and drama each of three of the top 10 campaigns by click through rate reality is, too, including the top spot and kids and family makes one appearance as well. Without spot. We know that any non technical user can ask a question and get an answer. They can explore the answer and ask another question. When you get an answer that you want to share, keep an eye on moving forward, you pin the answer to pin board. So the BBC Marketing Campaign Statistics PIN board gives us a solid overview of our campaign related activities and metrics throughout 2020. The visuals here keep us up to date on click through rate and cost per click, but also another really important metrics that conversions or cost proposition. Now it's important to our business that we evaluate the effectiveness of our spending. Let's do another search. We're going to look at how many new customers were getting so conversions and the price cost per acquisition that we're spending to get each of these by the campaign contact category. So >>this is a >>really telling chart. We can basically see how much each new users costing us, based on the content that they see prior to signing up to the service. Drama and reality users are actually relatively expensive compared to those who joined based on comedy and kids and family content that they saw. And if all the genres kids and family is actually giving us the best bang for our marketing >>buck. >>And that's good news because the genres providing the best value are also providing the most customers. We mentioned earlier that we actually saw a sizable uptick in conversions as stay at home policies were implemented across much of the country. So we're gonna remove cost per acquisition, and we're gonna take a daily look how our campaign content has trended over the years so far. Eso By doing this now, we can see a comparison of the different genres daily. Some campaigns have been more successful than others. Obviously, for example, kids and family contact has always fared pretty well Azaz comedy. But as we moved into the stay at home area of the line chart, we really saw these two genres begin to separate from the rest. And even here in June, as some states started to reopen, we're seeing that they're still trending up, and we're also seeing reality start to catch up around that time. And while the first pin board that we looked at included all sorts of campaign metrics, this is another PIN board that we've created so solely to focus on conversions. So not only can we see which campaigns drug significant conversions, we could also dig into the demographics of new users, like which campaigns and what content brought users from different parts of the country or from different age groups. And all this is just a quick search away without spot search directly on a red shift. Data Mhm. All right, Thank you. And back to you, Michael. >>Great. Thanks, Vika. That was excellent. Um, so as you can see, you can very quickly go from zero to search with thought Spot, um, connected to any cloud data warehouse. And I think it's important to understand that we mentioned it before. Not everything has to be perfect. In your doubt, in your cloud data warehouse, um, you can use thought spot as your initial for your initial tool. It's for investigatory purposes, A Z you can see here with star, Gento, imax and anthem. And a lot of these cases we were looking at billions of rows of data within minutes. And as you as your data warehouse maturity grows, you can start to add more and more thoughts about users to leverage the data and get better analysis from it. So we hope that you've enjoyed what you see today and take the step to either do one of two things. We have a free trial of thoughts about cloud. If you go to the website that you see below and register, we can get you access the thought spots so you can start searching today. Another option, by contacting our team, is to do a zero to search workshop where 90 minutes will work with you to connect your data source and start to build some insights and exactly what you're trying to find for your business. Um thanks, everybody. I would especially like to thank golf from AWS for joining us on this today. We appreciate your participation, and I hope everybody enjoyed what they saw. I think we have a few questions now. >>Thank you, Vika, Gal and Michael. It's always exciting to see a live demo. I know that I'm one of those comedy numbers. We have just a few minutes left, but I would love to ask a couple of last questions Before we go. Michael will give you the first question. Do I need to have all of my data cleaned and ready in my cloud data warehouse before I begin with thought spot? >>That's a great question, Mallory. No, you don't. You can really start using thought spot for search right away and start getting analysis and start understanding the data through the automatic search analysis and the way that we query the data and we've seen customers do that. Chick fil a example that we talked about earlier is where they were able to use thoughts bought to notice an anomaly in the Cloud Data Warehouse linking between product and store. They were able to fix that very quickly. Then that gets reflected across all of the users because our product queries the Cloud Data Warehouse directly so you can get started right away without it having to be perfect. And >>that's awesome. And gal will leave a fun one for you. What can we look forward to from Amazon Red Shift next year? >>That's a great question. And you know, the team has been innovating extremely fast. We released more than 200 features in the last year and a half, and we continue innovating. Um, one thing that stands out is aqua, which is a innovative new technology. Um, in fact, lovely stands for Advanced Square Accelerator, and it allows customers to achieve performance that up to 10 times faster, uh, than what they've seen really outstanding and and the way we've achieved that is through a shift in paradigm in the actual technological implementation section. Uh, aqua is a new distributed and hardware accelerated processing layer, which effectively allows us to push down operations analytics operations like compression, encryption, filtering and aggregations to the storage there layer and allow the aqua nodes that are built with custom. AWS designed analytics processors to perform these operations faster than traditional soup use. And we no longer need to bring, you know, scan the data and bring it all the way to the computational notes were able to apply these these predicates filtering and encourage encryption and compression and aggregations at the storage level. And likewise is going to be available for every are a three, um, customer out of the box with no changes to come. So I apologize for being getting out a little bit, but this is really exciting. >>No, that's why we invited you. Call. Thank you on. Thank you. Also to Michael and Vika. That was excellent. We really appreciate it. For all of you tuning in at home. The final session of this track is coming up shortly. You aren't gonna want to miss it. We're gonna end strong, come back and hear directly from our customer a T mobile on how T Mobile is building a data driven organization with thought spot in which >>pro, It's >>up next, see you then.
SUMMARY :
is finally ready for the cloud, and we'll discuss how you can that provides the ability to scale toe unlimited concurrency. to the Cloud Data Warehouse, as you can see from the statistic from Forrester, which allows you to increase the capacity of your data warehouse and enable your they're either they're having to make technical, you know, technical cuts there, We have the capacity So what do you see? And first of all, you wanna have senior leadership, drive and And that's the you know, that's that change that And in this demo, we're going to be looking at data from B to C marketing efforts. I've already pre built the connection Red Shift, but I'll show you how easy it is to make that connection in just three all this data is available to us in Thought spot, and we can easily you search to create a nice line chart like this that Now it's important to our business that we evaluate the effectiveness of our spending. And if all the genres kids and family is actually giving us the best bang for our marketing And that's good news because the genres providing the best value are also providing the most customers. And as you as your Do I need to have all of my data cleaned the Cloud Data Warehouse directly so you can get started right away without it having to be perfect. forward to from Amazon Red Shift next year? And you know, the team has been innovating extremely fast. For all of you tuning in at home.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Michael | PERSON | 0.99+ |
Cassie | PERSON | 0.99+ |
Vika | PERSON | 0.99+ |
Vika Valentina | PERSON | 0.99+ |
America | LOCATION | 0.99+ |
90 minutes | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
June | DATE | 0.99+ |
2020 | DATE | 0.99+ |
T Mobile | ORGANIZATION | 0.99+ |
two folks | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
first product | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
85% | QUANTITY | 0.99+ |
third session | QUANTITY | 0.99+ |
Gal | PERSON | 0.99+ |
second aspect | QUANTITY | 0.99+ |
third aspect | QUANTITY | 0.99+ |
more than 200 features | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
one campaign | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Each | QUANTITY | 0.99+ |
T mobile | ORGANIZATION | 0.99+ |
Carol | PERSON | 0.99+ |
each category | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
37% | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two genres | QUANTITY | 0.98+ |
three steps | QUANTITY | 0.98+ |
Red Shift | ORGANIZATION | 0.98+ |
20 years ago | DATE | 0.98+ |
one store | QUANTITY | 0.98+ |
three | QUANTITY | 0.97+ |
tens of thousands of customers | QUANTITY | 0.97+ |
MIA | PERSON | 0.97+ |
21 | QUANTITY | 0.97+ |
US | LOCATION | 0.97+ |
One industry | QUANTITY | 0.97+ |
each one | QUANTITY | 0.97+ |
Mallory | PERSON | 0.97+ |
each | QUANTITY | 0.97+ |
Vika | ORGANIZATION | 0.97+ |
this year | DATE | 0.97+ |
up to 75% | QUANTITY | 0.97+ |
mid | DATE | 0.97+ |
Lee | PERSON | 0.96+ |
up to 10 times | QUANTITY | 0.95+ |
S three | TITLE | 0.95+ |
first pin board | QUANTITY | 0.93+ |
both | QUANTITY | 0.93+ |
two things | QUANTITY | 0.93+ |
four campaigns | QUANTITY | 0.93+ |
top 10 | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.92+ |
late March | DATE | 0.91+ |
Cloud Data Warehouse | ORGANIZATION | 0.91+ |
Raj Verma | DataWorks Summit Europe 2017
>> Narrator: Live from Munich, Germany it's the CUBE, covering Dataworks Summit Europe 2017. Brought to you by Hortonworks. >> Okay, welcome back everyone here at day two coverage of the CUBE here in Munich, Germany for Dataworks 2017. I'm John Furrier, my co-host Dave Vellante. Two days of wall to wall coverage SiliconANGLE Media's the CUBE. Our next guest is Raj Verma, the president and COO of Hortonworks. First time on the CUBE, new to Hortonworks. Welcome to the CUBE. >> Thank you very much, John, appreciate it. >> Looking good with a three piece suit we were commenting when you were on stage. >> Raj: Thank you. >> Great scene here in Europe, again different show vis-a-vis North America, in San Jose. You got the show coming up there, it's the big show. Here, it's a little bit different. A lot of IOT in Germany. You got a lot of car manufacturers, but industrial nation here, smart city initiatives, a lot of big data. >> Uh-huh. >> What's your thoughts? >> Yeah no, firstly thanks for having me here. It's a pleasure and good chit chatting right before the show as well. We are very, very excited about the entire data space. Europe is leading many initiatives about how to use data as a sustainable, competitive differentiator. I just moderated a panel and you guys heard me talk to a retail bank, a retailer. And really, Centrica, which was nothing but British Gas, which is rather an organization steeped in history so as to speak and that institution is now, calls itself a technology company. And, it's a technology company or an IOT company based on them using data as the currency for innovation. So now, British Gas, or Centrica calls itself a data company, when would you have ever thought that? I was at dinner with a very large automotive manufacturers and the kind of stuff they are doing with data right from the driving habits, driver safety, real time insurance premium calculation, the autonomous drive. It's just fascinating no matter what industry you talk about. It's just very, very interesting. And, we are very glad to be here. International business is a big priority for me. >> We've been following Hortonworks since it's inception when it spun out of Yahoo years ago. I think we've been to every Hadoop World going back, except for the first one. We watched the transition. It's interesting, it's always been a learning environment at these shows. And certainly the customer testimonials speaks to the ecosystem, but I have to ask you, you're new to Hortonworks. You have interesting technology background. Why did you join Hortonworks? Because you certainly see the movies before and the cycles of innovation, but now we're living in a pretty epic, machine learning, data AI is on the horizon. What were the reasons why you joined Hortonworks? >> Yeah sure, I've had a really good run in technology, fortunately was associated with two great companies, Parametric Technology and TIBCO Software. I was 16 years at TIBCO, so I've been dealing with data for 16 years. But, over the course of the last couple of years whenever I spoke to a C level executive, or a CIO they were talking to us about the fact that structured data, which is really what we did for 16 years, was not good enough for innovation. Innovation and insights into unstructured data was the seminal challenge of most of the executives that I was talking to, senior level executives. And, when you're talking about unstructured data and making sense of it there isn't a better technology than the one that we are dealing with right now, undoubtedly. So, that was one. Dealing with data because data is really the currency of our times. Every company is a data company. Second was, I've been involved with proprietary software for 23 years. And, if there is a business model that's ready for disruption it's the proprietary software business model because I'm absolutely convinced that open source is what I call a green business model. It's good for planet Earth so as to speak. It's a community based, it's based on innovation and it puts the customer and the technology provider on the same page. The customer success drives the vendor success. Yeah, so the open source community, data-- >> It's sustainables, pun intended, in the sense that it's had a continuing run. And, it's interesting Tier One software is all open source now. >> 100%, and by the way not only that if you see large companies like IBM and Microsoft they have finally woken up to the fact that if they need to attract talent and if they want to be known as talk leaders they have to have some very meaningful open source initiatives. Microsoft loves Linux, when did we ever think that was going to happen, right? And, by the way-- >> I think Steve Bauman once said it was the cancer of the industry. Now, they're behind it. But, this is the Linux foundation has also grown. We saw a project this past week. Intel donated a big project to the Linux now it's taking over, so more projects. >> Raj: Yes. >> There's more action happening than ever before. >> You know absolutely, John. Five years ago when I would go an meet a CIO and I would ask them about open source and they would wink, they say "Of course, "we do open source. But, it's less than 5%, right? Now, when I talk to a CIO they first ask their teams to go evaluated open source as the first choice. And, if they can't they come kicking and screaming towards propriety software. Most organizations, and some organizations with a lot of historical gravity so as to speak have a 50/50 even split between proprietary and open source. And, that's happened in the last three years. And, I can make a bold statement, and I know it'll be true, but in the next three years most organizations the ratio of proprietary to open source would be 20 proprietary 80 open source. >> So, obviously you've made that bet on open source, joining Hortonworks, but open is a spectrum. And, on one end of the spectrum you have Hortonworks which is, as I see it, the purest. Now, even Larry Ellison, when he gets onstage at Oracle Open World will talk about how open Oracle is, I guess that's the other end of the spectrum. So, my question is won't the Microsofts and the Oracles and the IBM, they're like recovering alcoholics and they'll accommodate their platforms through open source, embracing open source. We'll see if AWS is the same, we know it's unidirectional there. How do you see that-- >> Well, not necessarily. >> Industry dynamic, we'll talk about that later. How do you see that industry dynamic shaking out? >> No, absolutely, I think I remember way back in I think the mid to late 90s I still loved that quote by Scott McNeely, who is a friend, Dell, not Dell, Digital came out with a marketing campaign saying open VMS. And, Scott said, "How can someone lie "so much with one word?" (laughs) So, it's the fact that Oracle calling itself open, well I'll just leave it at, it's a good joke. I think the definition of open source, to me, is when you acquire a software you have three real costs. One is the cost of initial procuring that software and the hardware and all the rest of it. The second is implementation and maintenance. However, most people miss the third dimension of cost when acquiring software, which is the cost to exit the technology. Our software and open source has very low exit barriers to our technology. If you don't like our technology, switch it off. You own the software anyways. Switch off our services and the barrier of exits are very, very low. Having worked in proprietary software, as I said, for 23 years I very often had conversations with my customers where I would say, "Look, you really "don't have a choice, because if you want to exit "our technology it's going to probably cost you "ten times more than what you've spent till date." So, it a lock in architecture and then you milk that customer through maintenance, correct? >> Switching costs really are the metric-- >> Raj: Switching costs, exactly. >> You gave the example of Blockbuster Camera, and the rental, the late charge fees. Okay, that's an example of lock in. So, as we look at the company you're most compared with, now that's it's going public, Cloudera, in a way I see more similarities than differences. I mean, you guys are sort of both birds of a feather. But, you are going for what I call the long game with a volume subscription model. And, Cloudera has chosen to build proprietary components on top. So, you have to make big bets on open. You have to support those open technologies. How do you see that affecting the long term distance model? >> Yeah, I think we are committed to open source. There's absolutely no doubt about it. I do feel that we are connected data platform, which is data at rest and data in motion across on prem and cloud is the business model the going to win. We clearly have momentum on our side. You've seen the same filings that I have seen. You're talking about a company that had a three year head start on us, and a billion dollars of funding, all right, at very high valuations. And yet, they're only one year ahead in terms of revenue. And, they have burnt probably three times more cash than we have. So clearly, and it's not my opinion, if you look at the numbers purely, the numbers actually give us the credibility that our business model and what we are doing is more efficient and is working better. One of the arguments that I often hear from analysts and press is how are your margins on open source? According to the filings, again, their margins are 82% on proprietary software, my margins on open source are 84%. So, from a health of the business perspective we are better. Now, the other is they've claimed to have been making a pivot to more machine learning and deep learning and all the rest of it. And, they actually'd like us to believe that their competition is going to be Amazon, IBM, and Google. Now, with a billion dollars of funding with the Intel ecosystem behind them they could effectively compete again Hortonworks. What do you think are their chances of competing against Google, Amazon, and IBM? I just leave that for you guys to decide, to be honest with you. And, we feel very good that they have virtually vacated the space and we've got the momentum. >> On the numbers, what jumps out at you on filing since obviously, I sure, everyone at Hortonworks was digging through the S1 because for the first time now Cloudera exposes some of the numbers. I noticed some striking things different, obviously, besides their multiple on revenue valuation. Pretty obvious it's going to be a haircut coming after the public offering. But, on the sales side, which is your wheelhouse there's a value proposition that you guys at Hortonworks, we've been watching, the cadence of getting new clients, servicing clients. With product evolution is challenging enough, but also expensive. It's not you guys, but it's getting better as Sean Connolly pointed out yesterday, you guys are looking at some profitability targets on the Ee-ba-dep coming up in Q four. Publicly stated on the earnings call. How's that different from Cloudera? Are they burning more cash because of their sales motions or sales costs, or is it the product mix? What's you thoughts on the filings around Cloudera versus the Hortonworks? >> Well, look I just feel that, I can talk more about my business than theirs. Clearly, you've seen the same filings that I have and you've see the same cash burn rates that we have seen. And, we clearly are ore efficient, although we can still get better. But, because of being public for a little more than two years now we've had a thousand watt bulb being shown at us and we have been forced to be more efficient because we were in the limelight. >> John: You're open. >> In the open, right? So, people knew what our figures are, what our efficiency ratios were. So, we've been working diligently at improving them and we've gotten better, and there's still scope for improvement. However, being private did not have the same scrutiny on Cloudera. And, some would say that they were actually spending money like drunken sailors if you really read their S1 filing. So, they will come under a lot of scrutiny as well. I'm sure they'll get more efficient. But right now, clearly, you've seen the same numbers that I have, their numbers don't talk about efficiency either in the R and D side or the sales and marketing side. So, yeah we feel very good about where we are in that space. >> And, open source is this two edged sword. Like, take Yarn for example, at least from my perspective Hortonworks really led the charge to Yarn and then well before Doctor and Kubernetes ascendancy and then all of a sudden that happens and of course you've got to embrace those open source trends. So, you have the unique challenge of having to support sort of all the open source platforms. And, so that's why I call it the long game. In order for you guys to thrive you've got to both put resources into those multiple projects and you've got to get the volume of your subscription model, which you pointed out the marginal economics are just as good as most, if not any software business. So, how do you manage that resource allocation? Yes, so I think a lot of that is the fact that we've got plenty of contributors and committers to the open source community. We are seen as the angel child in open source because we are just pure, kosher open source. We just don't have a single line of proprietary code. So, we are committed to that community. We have over the last six or seven years developed models of our software development which helps us manage the collective bargaining power, so as to speak, of the community to allocate resources and prioritize the allocation of resources. It continues to be a challenge given the breadth of the open source community and what we have to handle, but fortunately I'm blessed that we've got a very, very capable engineering organization that keeps us very efficient and on the cutting edge. >> We're here with Raj Verma, With the new president and COO of Hortonworks, Chief Operating Officer. I've got to ask you because it's interesting. You're coming in with a fresh set of eyes, coming in as you mentioned, from TIBCO, interesting, which was very successful in the generation of it's time and history of TIBCO where it came from and what it did was pretty fantastic. I mean, everyone knows connecting data together was very hard in the enterprise world. TIBCO has some challenges today, as you're seeing, with being disrupted by open source, but I got to ask you. As a perspective, new executive you got, looking at the battlefield, an opportunity with open source there's some significant things happening and what are you excited about because Hortonworks has actually done some interesting things. Some, I would say, the world spun in their direction, their relationship with Microsoft, for instance, and their growth in cloud has been fantastic. I mean, Microsoft stock price when they first started working with Hortonworks I think was like 26, and obviously with Scott Di-na-tell-a on board Azure, more open source, on Open Compute to Kubernetes and Micro Services, Azure doing very, very well. You also have a partnership with Amazon Web Services so you already are living in this cloud era, okay? And so, you have a cloud dynamic going on. Are you excited by that? You bring some partnership expertise in from TIBCO. How do you look at partners? Because, you guys don't really compete with anybody, but you're partners with everybody. So, you're kind of like Switzerland, but you're also doing a lot of partnerships. What are you excited about vis-a-vis the cloud and some of the other partnerships that are happening. >> Yeah, absolutely, I think having a robust partner ecosystem is probably my number one priority, maybe number two after being profitable in a short span of time, which is, again, publicly stated. Now, our partnership with Microsoft is very, very special to us. Being available in Azure we are seeing some fantastic growth rates coming in from Azure. We are also seeing remarkable amount of traction from the market to be able to go and test out our platform with very, very low barriers of entry and, of course, almost zero barriers of exit. So, from a partnership platform cloud providers like Amazon, Microsoft, are very, very important to us. We are also getting a lot of interest from carriers in Europe, for example. Some of the biggest carriers want to offer business services around big data and almost 100%, actually not almost, 100% of the carriers that we have spoken to thus far want to partner with us and offer our platform as a cloud service. So, cloud for us is a big initiative. It gives us the entire capability to reach audiences that we might not be able to reach ringing one door bell at a time. So, it's, as I said, we've got a very robust, integrated cloud strategy. Our customers find that very, very interesting. And, building that with a very robust partner channel, high priority for us. Second, is using our platform as a development platform for application on big data is, again, a priority. And that's, again, building a partner ecosystem. The third is relationships with global SIs, Extensia, Deloitte, KPMG. The Indian SIs of In-flu-ces, and Rip-ro, and HCL and the rest. We have some work to do. We've done some good work there, but there's some work to be done there. And, not only that I think some of the initiatives that we are launching in terms of training as a service, free certification, they are all things which are aimed at reaching out to the partners and building, as I said, a robust partner ecosystem. >> There's a lot of talk a conferences like this about, especially in Hadoop, about complexity, complexity of the ecosystem, new projects, and the difficulties of understanding that. But, in reality it seems as though today anyway the technology's pretty well understood. We talked about Millennials off camera coming out today with social savvy and tooling and understanding gaming and things like that. Technology, getting it to work seems to not be the challenge anymore. It's really understanding how to apply it, how to value data, we heard in your panel today. The business process, which used to be very well known, it's counting, it's payroll, simple. Now, it's kind of ever changing daily. What do you make of that? How do you think that will effect the future of work? Yeah, I think there's some very interesting questions that you've asked in that the first, of course, is what does it take to have a very successful big data, or Hadoop project. And, I think we always talk about the fact that if you have a very robust business case backing a Hadoop project that is the number one key ingredient to delivering a Hadoop project. Otherwise, you can tend to boil the ocean, all right, or try and eat an elephant in one bite as I like to say. So, that's one and I think you're right. It's not the technology, it's not the complexity, it's not the availability of the resources. It is a leadership issue in organizations where the leader demands certain outcomes, business outcomes from the Hadoop project team and we've seen whenever that happens the projects seem to be very, very successful. Now, the second part of the question about future of work, which is a very, very interesting topic and a topic which is very, very close to my heart. There are going to be more people than jobs in the next 20, 25 years. I think that any job that can be automated will be automated, or has been automated, right? So, this is going to have a societal impact on how we live. I've been lucky enough that I joined this industry 25 years ago and I've never had to change or switch industries. But, I can assure you that our kids, and we were talking about kids off camera as well, our kids will have to probably learn a new skill every five years. So, how does that impact education? We, in our generation, were testing champions. We were educated to score well on tests. But, the new form of education, which you and I were talking about, again in California where we live, and where my daughter goes to high school and in her school the number one, the number one priority is to instill a sense of learning and joy of learning in students because that is what is going to contribute to a robust future. >> That's a good point, I want to just interject here because I think that the trend we're seeing in the higher Ed side too also point to the impact of data science, to curriculum and learning. It's not just putting catalogs online. There's now kind of an iterative kind of non-linear discovery to proficiency. But, there's also the emotional quotient aspect. You mentioned the love of learning. The immersion of tech and digital is creating an interdisciplinary requirement. So, all the folks say that, what the statistic's like half the jobs that are going to be available haven't even been figured out yet. There's a value creation around interdisciplinary skill sets and emotional quotient. >> Absolutely. >> Social, emotional because of the human social community connectedness. This is also a big data challenge opportunity. >> Oh, 100% and I think one of the things that we believe is in the future, jobs that require a greater amount of empathy are least susceptible to automation. So, things like caring for old age people in the world, and nursing, and teaching, and artists, and all the rest will be professions which will be highly paid and numerous. I also believe that the entire big data challenge about how you use data to impact communities is going to come into play. And also, I think John, you and I were again talking about it, the entire concept of corporations is only 200 years old, really, 200, 300 years old. Before that, our forefathers were individual contributors who contributed a certain part in a community, barbers, tailors, farmers, what have you. We are going to go back to the future where all of us will go back to being individual contributors. And, I think, and again I'm bringing it back to open source, open source is the start of that community which will allow the community to go back to its roots of being individual contributors rather than being part of a organization or a corporation to be successful and to contribute. >> Yeah, the Coase's Penguin has been a very famous seminal piece of work. Obviously, Ronald Coase who's wrote the book The Nature of the Firm is interesting, but that's been a kind of historical document. You look at blockchain for instance. Blockchain actually has the opportunity to disrupt what the Nature of the Firm is about because of smart contracts, supply chain, and what not. And, we have this debate on the CUBE all the time, there's some naysayers, Tim Conner's a VC and I were talking on our Friday show, Silicon Valley Friday show. He's actually a naysayer on blockchain. I'm actually pro blockchain because I think there's some skeptics that say blockchain is really hard to because it requires an ecosystem. However, we're living in an ecosystem, a world of community. So, I think The Nature of the Firm will be disrupted by people organizing in a new way vis-a-vis blockchain 'cause that's an open source paradigm. >> Yeah, no I concur. So, I'm a believer in that entire concept. I 100%-- >> I want to come back to something you talked about, about individual contributors and the relationship in link to open source and collaboration. I personally, I think we have to have a frank conversation about, I mean machines have always replaced humans, but for the first time in our history it's replacing cognitive functions. To your point about empathy, what are the things that humans can do that machines can't? And, they become fewer and fewer every year. And, a lot of these conferences people don't like to talk about that, but it's a reality that we have to talk about. And, your point is right on, we're going back to individual contribution, open source collaboration. The other point is data, is it going to be at the center of that innovation because it seems like value creation and maybe job creation, in the future, is going to be a result of the combinatorial effects of data, open source, collaboration, other. It's not going to because of Moore's Law, all right. >> 100%, and I think one of the aspects that we didn't touch upon is the new societal model that automation is going to create would need data driven governance. So, a data driven government is going to be a necessity because, remember, in those times, and I think in 25, 30 years countries will have to explore the impact of negative taxation, right? Because of all the automation that actually happens around citizen security, about citizen welfare, about cost of healthcare, cost of providing healthcare. All of that is going to be fueled by data, right? So, it's just, as the Chinese proverb says, "May you live in interesting times." We definitely are living in very interesting times. >> And, the public policy implications are, your friend and one of my business heroes, Scott McNeally says, "There's no privacy in "the internet, get over it." We interviewed John Tapscott last week he said "That's unacceptable, "we have to solve that problem." So, it brings up a lot of public policy issues. >> Well, the social economic impact, right now there's a trend we're seeing where the younger generation, we're talking about the post 9/11 generation that's entering the workforce, they have a social conscience, right? So, there's an emphasis you're seeing on social good. AI for social good is one of the hottest trends out there. But, the changing landscape around data is interesting. So, the word democratization has been used whether you're looking at the early days of blogging and podcasting which we were involved in and research to now in media this notion of data and transparency and open source is probably at a tipping point, an all time high in terms of value creation. So, I want to hear your thoughts on this because as someone who's been in the proprietary world the mode of operation was get something proprietary, lock it dowm, build a fence and a wall, protect it with folks with machine guns and fight for the competitive advantage, right? Now, the competitive advantage is open. Okay, so you're looking at pure open source model with Hortonworks. It changes how companies are competing. What is the competitive advantage of Hortonworks? Actually, to be more open. >> 100%. >> How do you manage that? >> No absolutely, I just think the proprietary nature of software, like software has disrupted a lot of businesses, all right? And, it's not a resistance to disruption itself. I mean, there has never been a business model in the history of time where you charge a lot of money to build a software, or sell a software that you built and then whatever are the defects in that software you get paid more money to fix them, all right? That's the entire perpetual and maintenance model. That model is going to get disrupted. Now, there are hundreds of billions of dollars involved in it so people are going to come kicking and screaming to the open source world, but they will have to come to the open source world. Our advantage that we're seeing is innovation now in a closed loop environment, no matter what size of a company you are, cannot keep up with the changing landscape around you from a data perspective. So, without the collective innovation of the community I don't really think a technology can stay at par with the changes around them. >> This is what I say about, this is what I think is such an important point that you're getting at because we were started SiliconANGLE actually in the Cloudera office, so we have a lot of friends that work there. We have a great admiration for them, but one of the things that Cloudera has done through their execution is they have been very profit oriented, go public at all costs kind of thing that they're doing now. You've seen that happen. Is the competitive advantage that you're pointing out is something we're seeing that similar that Andy Jasseys doing at AWS, which is it's not so much to build something proprietary per se, it's just to ship something faster. So, if you look at Amazon's competitive advantage is that they just continue to ship product faster and faster and faster than companies can build themselves. And also, the scale that they're getting with these economies is increasing the quality. So, open source has also hit the naysayers on security, right? Everyone said, "Oh, open source is not secure." As it turns out, it's more secure. Amazon at scale is actually becoming more secure. So, you're starting to see the new competitive advantage be ship more, be more open as the way to do business. What do you think the impact will be to traditional companies whether it's a startup competing or an existing bank? This is a paradigm shift, what's the impact going to be for a CIO or CEO of a big company? How do they incorporate that competitive advantage? Yeah, I think the proprietary software world is not going to go away tomorrow, John, you know that. There so much of installed software and there's a saying from where I come from that "Even a dead elephant is worth a million dollars," right? So, even that business model even though it is sort of dying it'll still be a good investment for the next ten years because of the locked in business model where customers cannot get out. Now, from a perspective of openness and what that brings as a competitive differentiators to our customer just the very base at which, as I've said I've lived in a proprietary world, you would be lucky if you were getting the next version of our software every 18 months, you'd be lucky. In the open source community you get a few versions in 18 months. So, the cadence at which releases come out have just completely disrupted the proprietary model. It is just the collective, as I said, innovative or innovation ability of the community has allowed us to release, to increase the release cadence to a few months now, all right? And, if our engineering team had it's way it'll further be cut short, right? So, the ability of customers, and what does that allow the customer to do? Ten years ago if you looked for a capability from your proprietary vendor they would say you have to wait 18 months. So, what do you do, you build it yourself, all right? So, that is what the spaghetti architecture was all about. In the new open source model you ask the community and if enough people in the community think that that's important the community builds it for you and gives it to you. >> And, the good news is the business model of open source is working. So, you got you guys have been public, you got Cloudera going public, you have MuleSoft out there, a lot of companies out there now that are public companies are open source companies, a phenomenal change over. But, the other thing that's interesting is that the hiring factor for the large enterprise to the point of, your point about so proprietary not updating, it's the same is true for the enterprise. So, just hiring candidates out of open source is now increased, the talent pool for a large enterprise. >> 100%, 100%. >> Well, I wonder if I could challenge this love fest for a minute. (laughs) So, there's another saying, I didn't grow up there, but a dying snake can still bite you. So, I bring that up because there is this hybrid model that's emerging because these elephants eventually they figure it out. And so, an example would be, we talked about Cloudera and so forth, but the better example, I think, is IBM. What IBM has done to embrace open source with investing years ago a billion dollars into Linux, what it's doing with Spark, essentially trying to elbow its way in and say, "Okay, "now we're going to co-opt the ecosystem. "And then, build our proprietary pieces on top of it." That, to me, that's a viable business model, is it not? >> Yes, I'm sure it is and to John's point with the Mule going IPO and with Cloudera having successfully built a $250 million, $261 million business is testimony, yeah, it's a testimony to the fact that companies can be built. Now, can they be more efficient, sure they can be more efficient. However, my entire comment on this is why are you doing open source? What is your intent of doing open source, to be seen as open, or to be truly open? Because, in our philosophy if you a add a slim layer of proprietariness, why are you doing that? And, as a businessman I'll tell you why you increase the stickiness factor by locking in your customer, right? So, let's not, again, we're having a frank conversation, proprietary code equals customer lock in, period. >> Agreed. And, as a business model-- >> I'm not sure I agree with that. >> As a business model. >> Please. (laughs) We'll come back to that. >> So, it's a customer lock in. Now, as a business model it is, if you were to go with the business models of the past, yes I believe most of the analysts will say it a stickier, better business model, but then we would like to prove them wrong. And, that's our mission as open source purely. >> I would caution though, Amazon's the mother of all lock in's. You kind of bristled at that before. >> They're not, I mean they use a lot of open source. I mean, did they open source it? Getting back to the lock in, the lock in is a function of stickiness, right? So, stickiness can be open source. Now, you could argue that Horonworks through they're relationship with partnering is a lock in spec with their stickiness of being open. Right, so I come back down to the proprietary-- >> Dave: My search engine I like Google. >> I mean Google's certainly got-- >> It's got to be locked in 'cause I like it? >> Well, there's a lot of do you care with proprietary technology that Google's built. >> Switching costs, as we talked about before. >> But, you're not paying for Si-tch >> If the value exceeds the price of the lock in then it's an opportunity. So, Palma Richie's talking about the hardened top, the hardened top. Do you care what's in an Intel processor? Well, Intel is a proprietary platform that provides processing power, but it enables a lot of other value. So, I think the stickiness factor of say IBM is interesting and they've done a lot open source stuff to defend them on Linux, for example they do a (mumbles) blockchain. But, they're priming the pump for their own business, that's clear for their lock In. >> Raj wasn't saying there's not value there. He's saying it's lock in, and it is. >> Well, some customers will pay for convenience. >> Your point is if the value exceeds the lock in risk than it's worth it. >> Yeah, that's my point, yeah. >> 1005, 100%. >> And, that's where the opportunity is. So, you can use open source to get to a value projectory. That's the barriers to entry, we seen 'em on the entrepreneurship side, right? It's easier to start a company now than ever before. Why? Because of open source and cloud, right? So, does that mean that every startup's going to be super successful and beat IBM? No, not really. >> Do you thinK there will be a red hat of big data and will you be it? >> We hope so. (laughs) If I had my that's definitely. That's really why I am here. >> Just an example, right? >> And, the one thing that excites us about this this year is as my former boss used to say you could be as good as you think you are or the best in the world but if you're in the landline business right now you're not going to have a very bright future. However, the business that we are in we pull from the market that we get, and you're seeing here, right? And, these are days that we have very often where customer pool is remarkable. I mean, this industry is growing at, depending on which analyst you're talking to somewhere between 50 to 80% ear on ear. All right, every customer is a prospect for us. There isn't a single conversation that we have with any organization almost of any size where they don't think that they can use their data better, or they can enhance and improve their data strategy. So, if that is in place and I am confident about our execution, very, very happy with the technology platform, the support that we get from out customers. So, all things seem to be lining up. >> Raj, thanks so much for coming on, we appreciate your time. We went a little bit over, I think, the allotted time, but wanted to get your insight as the new President and Chief Operating Officer for Hortonworks. Congratulations on the new role, and looking forward to seeing the results. Since you're a public company we'll be actually able to see the scoreboard. >> Raj: Yes. >> Congratulations, and thanks for coming on the CUBE. There's more coverage here live at Dataworks 2017. I John Furrier, stay with us more great interviews, day two coverage. We'll be right back. (jaunty music)
SUMMARY :
Munich, Germany it's the CUBE, of the CUBE here in Munich, Thank you very much, we were commenting when you were on stage. You got the show coming up about the entire data space. and the cycles of of most of the executives in the sense that it's 100%, and by the way of the industry. happening than ever before. a lot of historical gravity so as to speak And, on one end of the How do you see that industry So, it's the fact that and the rental, the late charge fees. the going to win. But, on the sales side, to be more efficient because either in the R and D side or of that is the fact that and some of the other from the market to be the projects seem to be So, all the folks say that, the human social community connectedness. I also believe that the the opportunity to disrupt So, I'm a believer in that entire concept. and maybe job creation, in the future, Because of all the automation And, the public and fight for the innovation of the community allow the customer to do? is now increased, the talent and so forth, but the better the fact that companies And, as a business model-- I agree with that. We'll come back to that. most of the analysts Amazon's the mother is a function of stickiness, right? Well, there's a lot of do you care we talked about before. If the value exceeds there's not value there. Well, some customers Your point is if the value exceeds That's the barriers to If I had my that's definitely. the market that we get, and Congratulations on the new role, on the CUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
IBM | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
TIBCO | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Raj Verma | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Scott | PERSON | 0.99+ |
Steve Bauman | PERSON | 0.99+ |
Centrica | ORGANIZATION | 0.99+ |
British Gas | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Tim Conner | PERSON | 0.99+ |
John Tapscott | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
KPMG | ORGANIZATION | 0.99+ |
Deloitte | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Scott McNeally | PERSON | 0.99+ |
Sean Connolly | PERSON | 0.99+ |
Larry Ellison | PERSON | 0.99+ |
Ronald Coase | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
San Jose | LOCATION | 0.99+ |
Germany | LOCATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Raj | PERSON | 0.99+ |
Scott McNeely | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
$261 million | QUANTITY | 0.99+ |
Andy Jasseys | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
82% | QUANTITY | 0.99+ |
$250 million | QUANTITY | 0.99+ |
16 years | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
84% | QUANTITY | 0.99+ |
23 years | QUANTITY | 0.99+ |
18 months | QUANTITY | 0.99+ |
Scott Di | PERSON | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
last week | DATE | 0.99+ |
Extensia | ORGANIZATION | 0.99+ |
Oracles | ORGANIZATION | 0.99+ |