Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great questions, Dave. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.97+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
Cube | ORGANIZATION | 0.9+ |
SuperCloud2 | ORGANIZATION | 0.89+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.88+ |
one more piece | QUANTITY | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great question, Steve. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, and it does get disconnected on a regular basis. In fact, I forget the exact number, but some several dozen locations get disconnected daily just by virtue of the fact that there's construction going on and things are happening in the real world. When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two things | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.98+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
Cube | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.86+ |
one more piece | QUANTITY | 0.86+ |
SuperCloud2 | ORGANIZATION | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Jack Andersen & Joel Minnick, Databricks | AWS Marketplace Seller Conference 2022
(upbeat music) >> Welcome back everyone to The Cubes coverage here in Seattle, Washington. For AWS's Marketplace Seller Conference. It's the big news within the Amazon partner network, combining with marketplace, forming the Amazon partner organization. Part of a big reorg as they grow to the next level, NextGen cloud, mid-game on the chessboard. Cube's got it covered. I'm John Furry, your host at Cube. Great guests here from Data bricks. Both cube alumni's. Jack Anderson, GM and VP of the Databricks partnership team for AWS. You handle that relationship and Joel Minick vice president of product and partner marketing. You guys have the keys to the kingdom with Databricks and AWS. Thanks for joining. Good to see you again. >> Thanks for having us back. >> Yeah, John, great to be here. >> So I feel like we're at Reinvent 2013. Small event, no stage, but there's a real shift happening with procurement. Obviously it's a no brainer on the micro, you know, people should be buying online. Self-service, Cloud Scale. But Amazon's got billions being sold through their marketplace. They've reorganized their partner network. You can see kind of what's going on. They've kind of figured it out. Like let's put everything together and simplify and make it less of a website, marketplace. Merge our partner organizations, have more synergy and frictionless experiences so everyone can make more money and customer's are going to be happier. >> Yeah, that's right. >> I mean, you're running relationship. You're in the middle of it. >> Well, Amazon's mental model here is that they want the world's best ISVs to operate on AWS so that we can collaborate and co architect on behalf of customers. And that's exactly what the APO and marketplace allow us to do, is to work with Amazon on these really, you know, unique use cases. >> You know, I interviewed Ali many times over the years. I remember many years ago, maybe six, seven years ago, we were talking. He's like, "we're all in on AWS." Obviously now the success of Databricks, you've got multiple clouds, see that. Customers have choice. But I remember the strategy early on. It was like, we're going to be deep. So this is, speaks volumes to the relationship you have. Years. Jack, take us through the relationship that Databricks has with AWS from a partner perspective. Joel, and from a product perspective. Because it's not like you guys are Johnny come lately, new to the scene. >> Right. >> You've been there, almost president creation of this wave. What's the relationship and how does it relate to what's going on today? >> So most people may not know that Databricks was born on AWS. We actually did our first $100 million of revenue on Amazon. And today we're obviously available on multiple clouds. But we're very fond of our Amazon relationship. And when you look at what the APN allows us to do, you know, we're able to expand our reach and co-sell with Amazon, and marketplace broadens our reach. And so, we think of marketplace in three different aspects. We've got the marketplace private offer business, which we've been doing for a number of years. Matter of fact, we were driving well over a hundred percent year over year growth in private offers. And we have a nine figure business. So it's a very significant business. And when a customer uses a private offer, that private offer counts against their private pricing agreement with AWS. So they get pricing power against their private pricing. So it's really important it goes on their Amazon bill. In may we launched our pay as you go, on demand offering. And in five short months, we have well over a thousand subscribers. And what this does, is it really reduces the barriers to entry. It's low friction. So anybody in an enterprise or startup or public sector company can start to use Databricks on AWS, in a consumption based model, and have it go against their monthly bill. And so we see customers, you know, doing rapid experimentation, pilots, POCs. They're really learning the value of that first, use case. And then we see rapid use case expansion. And the third aspect is the consulting partner, private offer, CPPO. Super important in how we involve our partner ecosystem of our consulting partners and our resellers that are able to work with Databricks on behalf of customers. >> So you got the big contracts with the private offer. You got the product market fit, kind of people iterating with data, coming in with the buyers you get. And obviously the integration piece all fitting in there. >> Exactly. >> Okay, so those are the offers, that's current, what's in marketplace today. Is that the products... What are people buying? >> Yeah. >> I mean, I guess what's the... Joel, what are people buying in the marketplace? And what does it mean for them? >> So fundamentally what they're buying is the ability to take silos out of their organization. And that is the problem that Databricks is out there to solve. Which is, when you look across your data landscape today, you've got unstructured data, you've got structured data, you've got real time streaming data. And your teams are trying to use all of this data to solve really complicated problems. And as Databricks, as the Lakehouse Company, what we're helping customers do is, how do they get into the new world? How do they move to a place where they can use all of that data across all of their teams? And so we allow them to begin to find, through the marketplace, those rapid adoption use cases where they can get rid of these data warehousing, data lake silos they've had in the past. Get their unstructured and structured data onto one data platform, an open data platform, that is no longer adherent to any proprietary formats and standards and something they can, very much, very easily, integrate into the rest of their data environment. Apply one common data governance layer on top of that. So that from the time they ingest that data, to the time they use that data, to the time they share that data, inside and outside of their organization, they know exactly how it's flowing. They know where it came from. They know who's using it. They know who has access to it. They know how it's changing. And then with that common data platform, with that common governance solution, they'd being able to bring all of those use cases together. Across their real time streaming, their data engineering, their BI, their AI. All of their teams working on one set of data. And that lets them move really, really fast. And it also lets them solve challenges they just couldn't solve before. A good example of this, you know, one of the world's now largest data streaming platforms runs on Databricks with AWS. And if you think about what does it take to set that up? Well, they've got all this customer data that was historically inside of data warehouses. That they have to understand who their customers are. They have all this unstructured data, they've built their data science model, so they can do the right kinds of recommendation engines and forecasting around. And then they've got all this streaming data going back and forth between click stream data, from what the customers are doing with their platform and the recommendations they want to push back out. And if those teams were all working in individual silos, building these kinds of platforms would be extraordinarily slow and complex. But by building it on Databricks, they were able to release it in record time and have grown at a record pace to now be the number one platform. >> And this product, it's impacting product development. >> Absolutely. >> I mean, this is like the difference between lagging months of product development, to like days. >> Yes. >> Pretty much what you're getting at. >> Yes. >> So total agility. >> Mm-hmm. >> I got that. Okay, now, I'm a customer I want to buy in the marketplace, but you got direct Salesforce up there. So how do you guys look at this? Is there channel conflict? Are there comp programs? Because one of the things I heard today in on the stage from AWS's leadership, Chris, was up there speaking, and Mona was, "Hey, he's a CRO conference chief revenue officer" conversation. Which means someone's getting compensated. So, if I'm the sales rep at Databricks, what's my motion to the customer? Do I get paid? Does Amazon sell it? Take us through that. Is there channel conflict? Or, how do you handle it? >> Well, I'd add what Joel just talked about with, you know, with the solution, the value of the solution our entire offering is available on AWS marketplace. So it's not a subset, it's the entire Data Bricks offering. And- >> The flagship, all the, the top stuff. >> Everything, the flagship, the complete offering. So it's not segmented. It's not a sub segment. >> Okay. >> It's, you know, you can use all of our different offerings. Now when it comes to seller compensation, we view this two different ways, right? One is that AWS is also incented, right? Versus selling a native service to recommend Databricks for the right situation. Same thing with Databricks, our sales force wants to do the right thing for the customer. If the customer wants to use marketplace as their procurement vehicle. And that really helps customers because if you get Databricks and five other ISVs together, and let's say each ISV is spending, you're spending a million dollars. You have $5 million of spend. You put that spend through the flywheel with AWS marketplace, and then you can use that in your negotiations with AWS to get better pricing overall. So that's how we view it. >> So customers are driving. This sounds like. >> Correct. For sure. >> So they're looking at this as saying, Hey, I'm going to just get purchasing power with all my relationships. Because it's a solution architectural market, right? >> Yeah. It makes sense. Because if most customers will have a primary and secondary cloud provider. If they can consolidate, you know, multiple ISV spend through that same primary provider, you get pricing power. >> Okay, Joel, we're going to date ourselves. At least I will. So back in the old days, (group laughter) It used to be, do a Barney deal with someone, Hey, let's go to market together. You got to get paper, you do a biz dev deal. And then you got to say, okay, now let's coordinate our sales teams, a lot of moving parts. So what you're getting at here is that the alternative for Databricks, or any company is, to go find those partners and do deals, versus now Amazon is the center point for the customer. So you can still do those joint deals, but this seems to be flipping the script a little bit. >> Well, it is, but we still have vars and consulting partners that are doing implementation work. Very valuable work, advisory work, that can actually work with marketplace through the CPPO offering. So the marketplace allows multiple ways to procure your solution. >> So it doesn't change your business structure. It just makes it more efficient. >> That's correct. >> That's a great way to say it. >> Yeah, that's great. >> Okay. So, that's it. So that's just makes it more efficient. So you guys are actually incented to point customers to the marketplace. >> Yes. >> Absolutely. >> Economically. >> Economically, it's the right thing to do for the customer. It's the right thing to do for our relationship with Amazon. Especially when it comes back to co-selling, right? Because Amazon now is leaning in with ISVs and making recommendations for, you know, an ISV solution. And our teams are working backwards from those use cases, you know, to collaborate and land them. >> Yeah. I want to get that out there. Go ahead, Joel. >> So one of the other things I might add to that too, you know, and why this is advantageous for companies like Databricks to work through the marketplace. Is it makes it so much easier for customers to deploy a solution. It's very, literally, one click through the marketplace to get Databricks stood up inside of your environment. And so if you're looking at how do I help customers most rapidly adopt these solutions in the AWS cloud, the marketplace is a fantastic accelerator to that. >> You know, it's interesting. I want to bring this up and get your reaction to it because to me, I think this is the future of procurement. So from a procurement standpoint, I mean, again, dating myself, EDI back in the old days, you know, all that craziness. Now this is all the internet, basically through the console. I get the infrastructure side, you know, spin up and provision some servers, all been good. You guys have played well there in the marketplace. But now as we get into more of what I call the business apps, and they brought this up on stage. A little nuanced. Most enterprises aren't yet there of integrating tech, on the business apps, into the stack. This is where I think you guys are a use case of success where you guys have been successful with data integration. It's an integrators dilemma, not an innovator's dilemma. So like, I want to integrate. So now I have integration points with Databricks, but I want to put an app in there. I want to provision an application, but it has to be built. It's not, you don't buy it. You build, you got to build stuff. And this is the nuance. What's your reaction to that? Am I getting this right? Or am I off because, no one's going to be buying software like they used to. They buy software to integrate it. >> Yeah, no- >> Because everything's integrated. >> I think AWS has done a great job at creating a partner ecosystem, right? To give customers the right tools for the right jobs. And those might be with third parties. Databricks is doing the same thing with our partner connect program, right? We've got customer partners like Five Tran and DBT that, you know, augment and enhance our platform. And so you're looking at multi ISV architectures and all of that can be procured through the AWS marketplace. >> Yeah. It's almost like, you know, bundling and un bundling. I was talking about this with, with Dave Alante about Supercloud. Which is why wouldn't a customer want the best solution in their architecture? Period. In its class. If someone's got API security or an API gateway. Well, you know, I don't want to be forced to buy something because it's part of a suite. And that's where you see things get sub optimized. Where someone dominates a category and they have, oh, you got to buy my version of this. >> Joel and I were talking, we were actually saying, what's really important about Databricks, is that customers control the data, right? You want to comment on that? >> Yeah. I was going to say, you know, what you're pushing on there, we think is extraordinarily, you know, the way the market is going to go. Is that customers want a lot of control over how they build their data stack. And everyone's unique in what tools are the right ones for them. And so one of the, you know, philosophically, I think, really strong places, Databricks and AWS have lined up, is we both take an approach that you should be able to have maximum flexibility on the platform. And as we think about the Lakehouse, one thing we've always been extremely committed to, as a company, is building the data platform on an open foundation. And we do that primarily through Delta Lake and making sure that, to Jack's point, with Databricks, the data is always in your control. And then it's always stored in a completely open format. And that is one of the things that's allowed Databricks to have the breadth of integrations that it has with all the other data tools out there. Because you're not tied into any proprietary format, but instead are able to take advantage of all the innovation that's happening out there in the open source ecosystem. >> When you see other solutions out there that aren't as open as you guys, you guys are very open by the way, we love that too. We think that's a great strategy, but what am I foreclosing if I go with something else that's not as open? What's the customer's downside as you think about what's around the corner in the industry? Because if you believe it's going to be open, open source, which I think open source software is the software industry, and integration is a big deal. Because software's going to be plentiful. >> Sure. >> Let's face it. It's a good time to be in software business. But Cloud's booming. So what's the downside, from your Databricks perspective? You see a buyer clicking on Databricks versus that alternative. What's potentially should they be a nervous about, down the road, if they go with a more proprietary or locked in approach? >> Yeah. >> Well, I think the challenge with proprietary ecosystems is you become beholden to the ability of that provider to both build relationships and convince other vendors that they should invest in that format. But you're also, then, beholden to the pace at which that provider is able to innovate. >> Mm-hmm. >> And I think we've seen lots of times over history where, you know, a proprietary format may run ahead, for a while, on a lot of innovation. But as that market control begins to solidify, that desire to innovate begins to degrade. Whereas in the open formats- >> So extract rents versus innovation. (John laughs) >> Exactly. Yeah, exactly. >> I'll say it. >> But in the open world, you know, you have to continue to innovate. >> Yeah. >> And the open source world is always innovating. If you look at the last 10 to 15 years, I challenge you to find, you know, an example where the innovation in the data and AI world is not coming from open source. And so by investing in open ecosystems, that means you are always going to be at the forefront of what is the latest. >> You know, again, not to date myself again, but you look back at the eighties and nineties, the protocol stacked with proprietary. >> Yeah. >> You know, SNA and IBM, deck net was digital. You know the rest. And then TCPIP was part of the open systems interconnect. >> Mm-hmm. >> Revolutionary (indistinct) a big part of that, as well as my school did. And so like, you know, that was, but it didn't standardize the whole stack. It stopped at IP and TCP. >> Yeah. >> But that helped inter operate, that created a nice defacto. So this is a big part of this mid game. I call it the chessboard, you know, you got opening game and mid-game, then you get the end game. You're not there at the end game yet at Cloud. But Cloud- >> There's, always some form of lock in, right? Andy Jazzy will address it, you know, when making a decision. But if you're going to make a decision you want to reduce- You don't want to be limited, right? So I would advise a customer that there could be limitations with a proprietary architecture. And if you look at what every customer's trying to become right now, is an AI driven business, right? And so it has to do with, can you get that data out of silos? Can you organize it and secure it? And then can you work with data scientists to feed those models? >> Yeah. >> In a very consistent manner. And so the tools of tomorrow will, to Joel's point, will be open and we want interoperability with those tools. >> And choice is a matter too. And I would say that, you know, the argument for why I think Amazon is not as locked in as maybe some other clouds, is that they have to compete directly too. Redshift competes directly with a lot of other stuff. But they can't play the bundling game because the customers are getting savvy to the fact that if you try to bundle an inferior product with something else, it may not work great at all. And they're going to be, they're onto it. This is the- >> To Amazon's credit by having these solutions that may compete with native services in marketplace, they are providing customers with choice, low price- >> And access to the core value. Which is the hardware- >> Exactly. >> Which is their platform. Okay. So I want to get you guys thought on something else I see emerging. This is, again, kind of Cube rumination moment. So on stage, Chris unpacked a lot of stuff. I mean this marketplace, they're touching a lot of hot buttons here, you know, pricing, compensation, workflows, services behind the curtain. And one of those things he mentioned was, they talk about resellers or channel partners, depending upon what you talk about. We believe, Dave and I believe on the Cube, that the entire indirect sales channel of the industry is going to be disrupted radically. Because those players were selling hardware in the old days and software. That game is going to change. You mentioned you guys have a program, let me get your thoughts on this. We believe that once this gets set up, they can play in this game and bring their services in. Which means that the old reseller channels are going to be rewritten. They're going to be refactored with this new kinds of access. Because you've got scale, you've got money and you've got product. And you got customers coming into the marketplace. So if you're like a reseller that sold computers to data centers or software, you know, a value added reseller or VAB or business. >> You've got to evolve. >> You got to, you got to be here. >> Yes. >> Yeah. >> How are you guys working with those partners? Because you say you have a product in your marketplace there. How do I make money if I'm a reseller with Databricks, with Amazon? Take me through that use case. >> Well I'll let Joel comment, but I think it's pretty straightforward, right? Customers need expertise. They need knowhow. When we're seeing customers do mass migrations to the cloud or Hadoop specific migrations or data transformation implementations. They need expertise from consulting and SI partners. If those consulting and SI partners happen to resell the solution as well. Well, that's another aspect of their business. But I really think it is the expertise that the partners bring to help customers get outcomes. >> Joel, channel big opportunity for Amazon to reimagine this. >> For sure. Yeah. And I think, you know, to your comment about how do resellers take advantage of that, I think what Jack was pushing on is spot on. Which is, it's becoming more and more about the expertise you bring to the table. And not just transacting the software. But now actually helping customers make the right choices. And we're seeing, you know, both SIs begin to be able to resell solutions and finding a lot of opportunity in that. >> Yeah. And I think we're seeing traditional resellers begin to move into that SI model as well. And that's going to be the evolution that this goes. >> At the end of the day, it's about services, right? >> For sure. Yeah. >> I mean... >> You've got a great service. You're going to have high gross profits. >> Yeah >> Managed service provider business is alive and well, right? Because there are a number of customers that want that type of a service. >> I think that's going to be a really hot, hot button for you guys. I think being the way you guys are open, this channel, partner services model coming in, to the fold, really kind of makes for kind of that Supercloud like experience, where you guys now have an ecosystem. And that's my next question. You guys have an ecosystem going on, within Databricks. >> For sure. >> On top of this ecosystem. How does that work? This is kind of like, hasn't been written up in business school and case studies yet. This is new. What is this? >> I think, you know, what it comes down to is, you're seeing ecosystems begin to evolve around the data platforms. And that's going to be one of the big, kind of, new horizons for us as we think about what drives ecosystems. It's going to be around, well, what's the data platform that I'm using? And then all the tools that have to encircle that to get my business done. And so I think there's, you know, absolutely ecosystems inside of the AWS business on all of AWS's services, across data analytics and AI. And then to your point, you are seeing ecosystems now arise around Databricks in its Lakehouse platform as well. As customers are looking at well, if I'm standing these Lakehouses up and I'm beginning to invest in this, then I need a whole set of tools that help me get that done as well. >> I mean you think about ecosystem theory, we're living a whole nother dream. And I'm not kidding. It hasn't yet been written up and for business school case studies is that, we're now in a whole nother connective tissue, ecology thing happening. Where you have dependencies and value proposition. Economics, connectedness. So you have relationships in these ecosystems. >> And I think one of the great things about the relationships with these ecosystems, is that there's a high degree of overlap. >> Yeah. >> So you're seeing that, you know, the way that the cloud business is evolving, the ecosystem partners of Databricks, are the same ecosystem partners of AWS. And so as you build these platforms out into the cloud, you're able to really take advantage of best of breed, the broadest set of solutions out there for you. >> Joel, Jack, I love it because you know what it means? The best ecosystem will win, if you keep it open. >> Sure, sure. >> You can see everything. If you're going to do it in the dark, you know, you don't know the outcome. I mean, this is really kind of what we're talking about. >> And John, can I just add that when I was at Amazon, we had a theory that there's buyers and builders, right? There's very innovative companies that want to build things themselves. We're seeing now that that builders want to buy a platform. Right? >> Yeah. >> And so there's a platform decision being made and that ecosystem is going to evolve around the platform. >> Yeah, and I totally agree. And the word innovation gets kicked around. That's why, you know, when we had our Supercloud panel, it was called the innovators dilemma, with a slash through it, called the integrater's dilemma. Innovation is the digital transformation. So- >> Absolutely. >> Like that becomes cliche in a way, but it really becomes more of a, are you open? Are you integrating? If APIs are connective tissue, what's automation, what's the service messages look like? I mean, a whole nother set of, kind of thinking, goes on in these new ecosystems and these new products. >> And that thinking is, has been born in Delta Sharing, right? So the idea that you can have a multi-cloud implementation of Databricks, and actually share data between those two different clouds, that is the next layer on top of the native cloud solution. >> Well, Databricks has done a good job of building on top of the goodness of, and the CapEx gift from AWS. But you guys have done a great job taking that building differentiation into the product. You guys have great customer base, great growing ecosystem. And again, I think a shining example of what every enterprise is going to do. Build on top of something, operating model, get that operating model, driving revenue. >> Mm-hmm. >> Yeah. >> Whether, you're Goldman Sachs or capital one or XYZ corporation. >> S and P global, NASDAQ. >> Yeah. >> We've got, you know, the biggest verticals in the world are solving tough problems with Databricks. I think we'd be remiss because if Ali was here, he would really want to thank Amazon for all of the investments across all of the different functions. Whether it's the relationship we have with our engineering and service teams. Our marketing teams, you know, product development. And we're going to be at Reinvent. A big presence at Reinvent. We're looking forward to seeing you there, again. >> Yeah. We'll see you guys there. Yeah. Again, good ecosystem. I love the ecosystem evolutions happening. This NextGen Cloud is here. We're seeing this evolve, kind of new economics, new value propositions kind of scaling up. Producing more. So you guys are doing a great job. Thanks for coming on the Cube and taking the time. Joel, great to see you at the check. >> Thanks for having us, John. >> Okay. Cube coverage here. The world's changing as APN comes together with the marketplace for a new partner organization at Amazon web services. The Cube's got it covered. This should be a very big, growing ecosystem as this continues. Billions of being sold through the marketplace. And of course the buyers are happy as well. So we've got it all covered. I'm John Furry. your host of the cube. Thanks for watching. (upbeat music)
SUMMARY :
You guys have the keys to the kingdom on the micro, you know, You're in the middle of it. you know, unique use cases. to the relationship you have. and how does it relate to And so we see customers, you know, And obviously the integration Is that the products... buying in the marketplace? And that is the problem that Databricks And this product, it's the difference between So how do you guys look at So it's not a subset, it's the Everything, the flagship, and then you can use So customers are driving. For sure. Hey, I'm going to just you know, multiple ISV spend here is that the alternative So the marketplace allows multiple ways So it doesn't change So you guys are actually incented It's the right thing to do for out there. the marketplace to get Databricks stood up I get the infrastructure side, you know, Databricks is doing the same thing And that's where you see And that is one of the things that aren't as open as you guys, down the road, if they go that provider is able to innovate. that desire to innovate begins to degrade. So extract rents versus innovation. Yeah, exactly. But in the open world, you know, And the open source the protocol stacked with proprietary. You know the rest. And so like, you know, that was, I call it the chessboard, you know, And if you look at what every customer's And so the tools of tomorrow And I would say that, you know, And access to the core value. to data centers or software, you know, How are you guys working that the partners bring to to reimagine this. And I think, you know, And that's going to be the Yeah. You're going to have high gross profits. that want that type of a service. I think being the way you guys are open, This is kind of like, And so I think there's, you know, So you have relationships And I think one of the great things And so as you build these because you know what it means? in the dark, you know, that want to build things themselves. to evolve around the platform. And the word innovation more of a, are you open? So the idea that you and the CapEx gift from AWS. Whether, you're Goldman for all of the investments across Joel, great to see you at the check. And of course the buyers
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David Nicholson | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Joel | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Mona | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
David Vellante | PERSON | 0.99+ |
Keith | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Jeff | PERSON | 0.99+ |
Kevin | PERSON | 0.99+ |
Joel Minick | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
Ryan | PERSON | 0.99+ |
Cathy Dally | PERSON | 0.99+ |
Patrick | PERSON | 0.99+ |
Greg | PERSON | 0.99+ |
Rebecca Knight | PERSON | 0.99+ |
Stephen | PERSON | 0.99+ |
Kevin Miller | PERSON | 0.99+ |
Marcus | PERSON | 0.99+ |
Dave Alante | PERSON | 0.99+ |
Eric | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Dan | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Greg Tinker | PERSON | 0.99+ |
Utah | LOCATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Raleigh | LOCATION | 0.99+ |
Brooklyn | LOCATION | 0.99+ |
Carl Krupitzer | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Lenovo | ORGANIZATION | 0.99+ |
JetBlue | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
Dave | PERSON | 0.99+ |
Angie Embree | PERSON | 0.99+ |
Kirk Skaugen | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
Simon | PERSON | 0.99+ |
United | ORGANIZATION | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
Southwest | ORGANIZATION | 0.99+ |
Kirk | PERSON | 0.99+ |
Frank | PERSON | 0.99+ |
Patrick Osborne | PERSON | 0.99+ |
1984 | DATE | 0.99+ |
China | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
Jack Andersen & Joel Minnick, Databricks | AWS Marketplace Seller Conference 2022
>>Welcome back everyone to the cubes coverage here in Seattle, Washington, AWS's marketplace seller conference. It's the big news within the Amazon partner network, combining with marketplaces, forming the Amazon partner organization, part of a big reorg as they grow the next level NextGen cloud mid-game on the chessboard. Cube's got cover. I'm John fur, host of Cub, a great guests here from data bricks, both cube alumnis, Jack Anderson, GM of the and VP of the data bricks partnership team. For ADOS, you handle that relationship and Joel Minick vice president of product and partner marketing. You guys are the, have the keys to the kingdom with data, bricks, and AWS. Thanks for joining. Thanks for good to see you again. Thanks for >>Having us back. Yeah, John, great to be here. >>So I feel like we're at reinvent 2013 small event, no stage, but there's a real shift happening with procurement. Obviously it makes it's a no brainer on the micro, you know, people should be buying online self-service cloud scale, but Amazon's got billions being sold to their marketplace. They've reorganized their partner network. You can see kind of what's going on. They've kind of figured it out. Like let's put everything together and simplify and make it less of a website marketplace merge our partner to have more synergy and friction, less experiences so everyone can make more money and customer's gonna be happier. >>Yeah, that's right. >>I mean, you're run relationship. You're in the middle of it. >>Well, Amazon's mental model here is that they want the world's best ISVs to operate on AWS so that we can collaborate and co architect on behalf of customers. And that's exactly what the APO and marketplace allow us to do is to work with Amazon on these really, you know, unique use cases. >>You know, I interviewed Ali many times over the years. I remember many years ago, I think six, maybe six, seven years ago, we were talking. He's like, we're all in ons. Obviously. Now the success of data bricks, you've got multiple clouds. See that customers have choice, but I remember the strategy early on. It was like, we're gonna be deep. So this is speaks volumes to the, the relationship you have years. Jack take us through the relationship that data bricks has with AWS from a, from a partner perspective, Joel, and from a product perspective, because it's not like you got to Johnny come lately new to the new, to the scene, right? We've been there almost president creation of this wave. What's the relationship and has it relate to what's going on today? >>So, so most people may not know that data bricks was born on AWS. We actually did our first 100 million of revenue on Amazon. And today we're obviously available on multiple clouds, but we're very fond of our Amazon relationship. And when you look at what the APN allows us to do, you know, we're able to expand our reach and co-sell with Amazon and marketplace broadens our reach. And so we think of marketplace in three different aspects. We've got the marketplace, private offer business, which we've been doing for a number of years. Matter of fact, we we're driving well over a hundred percent year over year growth in private offers and we have a nine figure business. So it's a very significant business. And when a customer uses a private offer that private offer counts against their private pricing agreement with AWS. So they get pricing power against their, their private pricing. >>So it's really important. It goes on their Amazon bill in may. We launched our pay as you go on demand offering. And in five short months, we have well over a thousand subscribers. And what this does is it really reduces the barriers to entry it's low friction. So anybody in an enterprise or startup or public sector company can start to use data bricks on AWS and pay consumption based model and have it go against their monthly bill. And so we see customers, you know, doing rapid experimentation pilots, POCs, they're, they're really learning the value of that first use case. And then we see rapid use case expansion. And the third aspect is the consulting partner, private offers C P O super important in how we involve our partner ecosystem of our consulting partners and our resellers that are able to work with data bricks on behalf of customers. >>So you got the big contracts with the private offer. You got the product market fit, kind of people iterating with data coming in with, with the buyers you go. And obviously the integration piece all fitting in there. Exactly. Exactly. Okay. So that's that those are the offers that's current and what's in marketplace today. Is that the products, what are, what are people buying? I mean, I guess what's the Joel, what are, what are people buying in the marketplace and what does it mean for >>Them? So fundamentally what they're buying is the ability to take silos out of their organization. And that's, that is the problem that data bricks is out there to solve, which is when you look across your data landscape today, you've got unstructured data, you've got structured data, you've got real time streaming data, and your teams are trying to use all of this data to solve really complicated problems. And as data bricks as the lake house company, what we're helping customers do is how do they get into the new world? How do they move to a place where they can use all of that data across all of their teams? And so we allow them to begin to find through the marketplace, those rapid adoption use cases where they can get rid of these data, warehousing data lake silos they've had in the past, get their unstructured and structured data onto one data platform and open data platform that is no longer adherent to any proprietary formats and standards and something. >>They can very much, very easily integrate into the rest of their data environment, apply one common data governance layer on top of that. So that from the time they ingest that data to the time they use that data to the time they share that data inside and outside of their organization, they know exactly how it's flowing. They know where it came from. They know who's using it. They know who has access to it. They know how it's changing. And then with that common data platform with that common governance solution, they'd being able to bring all of those use cases together across their real time, streaming their data engineering, their BI, their AI, all of their teams working on one set of data. And that lets them move really, really fast. And it also lets them solve challenges. They just couldn't solve before a good example of this, you know, one of the world's now largest data streaming platforms runs on data bricks with AWS. >>And if you think about what does it take to set that up? Well, they've got all this customer data that was historically inside of data warehouses, that they have to understand who their customers are. They have all this unstructured data, they've built their data science model, so they can do the right kinds of recommendation engines and forecasting around. And then they've got all this streaming data going back and forth between click stream data from what the customers are doing with their platform and the recommendations they wanna push back out. And if those teams were all working in individual silos, building these kinds of platforms would be extraordinarily slow and complex, but by building it on data bricks, they were able to release it in record time and have grown at, at record pace >>To not be that's product platform that's impacting product development. Absolutely. I mean, this is like the difference between lagging months of product development to like days. Yes. Pretty much what you're getting at. Yeah. So total agility. I got that. Okay. Now I'm a customer I wanna buy in the marketplace, but I also, you got direct Salesforce up there. So how do you guys look at this? Is there channel conflict? Are there comp programs? Because one of the things I heard today in on the stage from a Davis's leadership, Chris was up there speaking and, and, and moment I was, Hey, he's a CRO conference, chief revenue officer conversation, which means someone's getting compensated. So if I'm the sales rep at data bricks, what's my motion to the customer. Do I get paid? Does Amazon sell it? Take us through that. Is there channel conflict? Is there or an audio lift? >>Well, I I'd add what Joel just talked about with, with, you know, what the solution, the value of the solution our entire offering is available on AWS marketplace. So it's not a subset, the entire data bricks offering and >>The flagship, all the, the top, >>Everything, the flagship, the complete offering. So it's not, it's not segmented. It's not a sub segment. It's it's, you know, you can use all of our different offerings. Now when it comes to seller compensation, we, we, we view this two, two different ways, right? One is that AWS is also incented, right? Versus selling a native service to recommend data bricks for the right situation. Same thing with data bricks. Our Salesforce wants to do the right thing for the customer. If the customer wants to use marketplace as their procurement vehicle. And that really helps customers because if you get data bricks and five other ISVs together, and let's say each ISV is spending, you're spending a million dollars, you have $5 million of spend, you put that spend through the flywheel with AWS marketplace. And then you can use that in your negotiations with AWS to get better pricing overall. So that's how we, >>We do it. So customers are driving. This sounds like, correct. For sure. So they're looking at this as saying, Hey, I'm gonna just get purchasing power with all my relationships because it's a solution architectural market, right? >>Yeah. It makes sense. Because if most customers will have a primary and secondary cloud provider, if they can consolidate, you know, multiple ISV spend through that same primary provider, you get pricing >>Power, okay, Jill, we're gonna date ourselves. At least I will. So back in the old days, it used to be, do a Barney deal with someone, Hey, let's go to market together. You gotta get paper, you do a biz dev deal. And then you gotta say, okay, now let's coordinate our sales teams, a lot of moving parts. So what you're getting at here is that the alternative for data bricks or any company is to go find those partners and do deals versus now Amazon is the center point for the customer so that you can still do those joint deals. But this seems to be flipping the script a little bit. >>Well, it is, but we still have VAs and consulting partners that are doing implementation work very valuable work advisory work that can actually work with marketplace through the C PPO offering. So the marketplace allows multiple ways to procure your >>Solution. So it doesn't change your business structure. It just makes it more efficient. That's >>Correct. >>That's a great way to say it. Yeah, >>That's great. So that's so that's it. So that's just makes it more efficient. So you guys are actually incented to point customers to the marketplace. >>Yes, >>Absolutely. Economically. Yeah. >>E economically it's the right thing to do for the customer. It's the right thing to do for our relationship with Amazon, especially when it comes back to co-selling right? Because Amazon now is leaning in with ISVs and making recommendations for, you know, an ISV solution and our teams are working backwards from those use cases, you know, to collaborate, land them. >>Yeah. I want, I wanna get that out there. Go ahead, Joel. >>So one of the other things I might add to that too, you know, and why this is advantageous for, for companies like data bricks to, to work through the marketplace, is it makes it so much easier for customers to deploy a solution. It's, it's very, literally one click through the marketplace to get data bricks stood up inside of your environment. And so if you're looking at how do I help customers most rapidly adopt these solutions in the AWS cloud, the marketplace is a fantastic accelerator to that. You >>Know, it's interesting. I wanna bring this up and get your reaction to it because to me, I think this is the future of procurement. So from a procurement standpoint, I mean, again, dating myself EDI back in the old days, you know, all that craziness. Now this is all the, all the internet, basically through the console, I get the infrastructure side, you know, spin up and provision. Some servers, all been good. You guys have played well there in the marketplace. But now as we get into more of what I call the business apps, and they brought this up on stage little nuance, most enterprises aren't yet there of integrating tech on the business apps, into the stack. This is where I think you guys are a use case of success where you guys have been successful with data integration. It's an integrator's dilemma, not an innovator's dilemma. So like, I want to integrate, so now I have integration points with data bricks, but I want to put an app in there. I want to provision an application, but it has to be built. It's not, you don't buy it. You build, you gotta build stuff. And this is the nuance. What's your reaction to that? Am I getting this right? Or, or am I off because no, one's gonna be buying software. Like they used to, they buy software to integrate it. >>Yeah, >>No, I, cause everything's integrated. >>I think AWS has done a great job at creating a partner ecosystem, right. To give customers the right tools for the right jobs. And those might be with third parties, data bricks is doing the same thing with our partner connect program. Right. We've got customer, customer partners like five tra and D V T that, you know, augment and enhance our platform. And so you, you're looking at multi ISV architectures and all of that can be procured through the AWS marketplace. >>Yeah. It's almost like, you know, bundling and unbundling. I was talking about this with, with Dave ante about Supercloud, which is why wouldn't a customer want the best solution in their architecture period. And it's class. If someone's got API security or an API gateway. Well, you know, I don't wanna be forced to buy something because it's part of a suite and that's where you see things get suboptimized where someone dominates a category and they have, oh, you gotta buy my version of this. Yeah. >>Joel, Joel. And that's Joel and I were talking, we're actually saying what what's really important about Databricks is that customers control the data. Right? You wanna comment on that? >>Yeah. I was say the, you know what you're pushing on there we think is extraordinarily, you know, the way the market is gonna go is that customers want a lot of control over how they build their data stack. And everyone's unique in what tools are the right ones for them. And so one of the, you know, philosophically I think really strong places, data, bricks, and AWS have lined up is we both take an approach that you should be able to have maximum flexibility on the platform. And as we think about the lake house, one thing we've always been extremely committed to as a company is building the data platform on an open foundation. And we do that primarily through Delta lake and making sure that to Jack's point with data bricks, the data is always in your control. And then it's always stored in a completely open format. And that is one of the things that's allowed data bricks to have the breadth of integrations that it has with all the other data tools out there, because you're not tied into any proprietary format, but instead are able to take advantage of all the innovation that's happening out there in the open source ecosystem. >>When you see other solutions out there that aren't as open as you guys, you guys are very open by the way, we love that too. We think that's a great strategy, but what's the, what am I foreclosing? If I go with something else that's not as open what what's the customer's downside as you think about what's around the corner in the industry. Cuz if you believe it's gonna be open, open source, which I think opens our software is the software industry and integration is a big deal, cuz software's gonna be plentiful. Let's face it. It's a good time to be in software business, but cloud's booming. So what's the downside from your data bricks perspective, you see a buyer clicking on data bricks versus that alternative what's potentially is should they be a nervous about down the road if they go with a more proprietary or locked in approach? Well, >>I think the challenge with proprietary ecosystems is you become beholden to the ability of that provider to both build relationships and convince other vendors that they should invest in that format. But you're also then beholden to the pace at which that provider is able to innovate. And I think we've seen lots of times over history where, you know, a proprietary format may run ahead for a while on a lot of innovation. But as that market control begins to solidify that desire to innovate begins to, to degrade, whereas in the open format. So >>Extract rents versus innovation. Exactly. >>Yeah, exactly. >>But >>I'll say it in the open world, you know, you have to continue to innovate. Yeah. And the open source world is always innovating. If you look at the last 10 to 15 years, I challenge you to find, you know, an example where the innovation in the data and AI world is not coming from open source. And so by investing in open ecosystems, that means you were always going to be at the forefront of what is the >>Latest, you know, again, not to date myself again, but you look back at the eighties and nineties, the protocol stacked for proprietary. Yeah. You know, SNA at IBM deck net was digital, you know, the rest is, and then TCP, I P was part of the open systems, interconnect, revolutionary Oly, a big part of that as well as my school did. And so like, you know, that was, but it didn't standardize the whole stack. It stopped at IP and TCP. Yeah. But that helped interoperate, that created a nice defacto. So this is a big part of this mid game. I call it the chessboard, you know, you got opening game and mid game. Then you got the end game and we're not there. The end game yet cloud the cloud. >>There's, there's always some form of lock in, right. Andy jazzy will, will address it, you know, when making a decision. But if you're gonna make a decision you want to reduce as you don't wanna be limited. Right. So I would advise a customer that there could be limitations with a proprietary architecture. And if you look at what every customer's trying to become right now is an AI driven business. Right? And so it has to do with, can you get that data outta silos? Can you, can you organize it and secure it? And then can you work with data scientists to feed those models? Yeah. In a, in a very consistent manner. And so the tools of tomorrow will to Joel's point will be open and we want interoperability with those >>Tools and, and choice is a matter too. And I would say that, you know, the argument for why I think Amazon is not as locked in as maybe some other clouds is that they have to compete directly too. Redshift competes directly with a lot of other stuff, but they can't play the bundling game because the customers are getting savvy to the fact that if you try to bundle an inferior product with something else, it may not work great at all. And they're gonna be they're onto it. This is >>The Amazon's credit by having these, these solutions that may compete with native services in marketplace, they are providing customers with choice, low >>Price and access to the S and access to the core value. Exactly. Which the >>Hardware, which is their platform. Okay. So I wanna get you guys thought on something else. I, I see emerging, this is again kind of cube rumination moment. So on stage Chris unpacked, a lot of stuff. I mean this marketplace, they're touching a lot of hot buttons here, you know, pricing compensation, workflows services behind the curtain. And one of the things he mentioned was they talk about resellers or channel partners, depending upon what you talk about. We believe Dave and I believe on the cube that the entire indirect sales channel of the industry is gonna be disrupted radically because those players were selling hardware in the old days and software, that game is gonna change. You know, you mentioned you guys have a program, want to get your thoughts on this. We believe that once this gets set up, they can play in this game and bring their services in which means that the old reseller channels are gonna be rewritten. They're gonna be refactored with this new kinds of access. Cuz you've got scale, you've got money and you've got product and you got customers coming into the marketplace. So if you're like a reseller that sold computers to data centers or software, you know, value added reseller or V or business, >>You've gotta evolve. >>You gotta, you gotta be here. Yes. How are you guys working with those partners? Cuz you say you have a part in your marketplace there. How do I make money? If I'm a reseller with data bricks with eight Amazon, take me through that use case. >>Well I'll let Joel comment, but I think it's, it's, it's pretty straightforward, right? Customers need expertise. They need knowhow. When we're seeing customers do mass migrations to the cloud or Hadoop specific migrations or data transformation implementations, they need expertise from consulting and SI partners. If those consulting SI partners happen to resell the solution as well. Well, that's another aspect of their business, but I really think it is the expertise that the partners bring to help customers get outcomes. >>Joel, channel big opportunity for re re Amazon to reimagine this. >>For sure. Yeah. And I think, you know, to your comment about how to resellers take advantage of that, I think what Jack was pushing on is spot on, which is it's becoming more about more and more about the expertise you bring to the table and not just transacting the software, but now actually helping customers make the right choices. And we're seeing, you know, both SI begin to be able to resell solutions and finding a lot of opportunity in that. Yeah. And I think we're seeing traditional resellers begin to move into that SI model as well. And that's gonna be the evolution that >>This gets at the end of the day. It's about services for sure, for sure. You've got a great service. You're gonna have high gross profits. And >>I think that the managed service provider business is alive and well, right? Because there are a number of customers that want that, that type of a service. >>I think that's gonna be a really hot, hot button for you guys. I think being the way you guys are open this channel partner services model coming in to the fold really kind of makes for kind of that super cloudlike experience where you guys now have an ecosystem. And that's my next question. You guys have an ecosystem going on within data bricks for sure. On top of this ecosystem, how does that work? This is kinda like hasn't been written up in business school and case studies yet this is new. What is this? >>I think, you know, what it comes down to is you're seeing ecosystems begin to evolve around the data platforms and that's gonna be one of the big kind of new horizons for us as we think about what drives ecosystems it's going to be around. Well, what is the, what's the data platform that I'm using and then all the tools that have to encircle that to get my business done. And so I think there's, you know, absolutely ecosystems inside of the AWS business on all of AWS's services, across data analytics and AI. And then to your point, you are seeing ecosystems now arise around data bricks in its Lakehouse platform, as well as customers are looking at well, if I'm standing these Lakehouse up and I'm beginning to invest in this, then I need a whole set of tools that help me get that done as well. >>I mean you think about ecosystem theory, we're living a whole nother dream and I'm, and I'm not kidding. It hasn't yet been written up and for business school case studies is that we're now in a whole nother connective tissue ecology thing happening where you have dependencies and value proposition economics connectedness. So you have relationships in these ecosystems. >>And I think one of the great things about relationships with these ecosystems is that there's a high degree of overlap. Yeah. So you're seeing that, you know, the way that the cloud business is evolving, the, the ecosystem partners of data bricks are the same ecosystem partners of AWS. And so as you build these platforms out into the cloud, you're able to really take advantage of best of breed, the broadest set of solutions out there for >>You. Joel, Jack, I love it because you know what it means the best ecosystem will win. If you keep it open. Sure. You can see everything. If you're gonna do it in the dark, you know, you don't know the outcome. I mean, this is really kind we're talking about. >>And John, can I just add that when I was in Amazon, we had a, a theory that there's buyers and builders, right? There's very innovative companies that want to build things themselves. We're seeing now that that builders want to buy a platform. Right? Yeah. And so there's a platform decision being made and that ecosystem gonna evolve around the >>Platform. Yeah. And I totally agree. And, and, and the word innovation get kicks around. That's why, you know, when we had our super cloud panel was called the innovators dilemma with a slash through it called the integrated dilemma, innovation is the digital transformation. So absolutely like that becomes cliche in a way, but it really becomes more of a, are you open? Are you integrating if APIs are the connective tissue, what's automation, what's the service message look like. I mean, a whole nother set of kind of thinking goes on and these new ecosystems and these new products >>And that, and that thinking is, has been born in Delta sharing. Right? So the idea that you can have a multi-cloud implementation of data bricks, and actually share data between those two different clouds, that is the next layer on top of the native cloud >>Solution. Well, data bricks has done a good job of building on top of the goodness of, and the CapEx gift from AWS. But you guys have done a great job taking that building differentiation into the product. You guys have great customer base, great grow ecosystem. And again, I think in a shining example of what every enterprise is going to do, build on top of something operating model, get that operating model, driving revenue. >>Yeah. >>Well we, whether whether you're Goldman Sachs or capital one or XYZ corporation >>S and P global NASDAQ, right. We've got, you know, these, the biggest verticals in the world are solving tough problems with data breaks. I think we'd be remiss cuz if Ali was here, he would really want to thank Amazon for all of the investments across all of the different functions, whether it's the relationship we have with our engineering and service teams. Yeah. Our marketing teams, you know, product development and we're gonna be at reinvent the big presence of reinvent. We're looking forward to seeing you there again. >>Yeah. We'll see you guys there. Yeah. Again, good ecosystem. I love the ecosystem evolutions happening this next gen cloud is here. We're seeing this evolve kind of new economics, new value propositions kind of scaling up, producing more so you guys are doing a great job. Thanks for coming on the Cuban, taking time. Chill. Great to see you at the check. Thanks for having us. Thanks. Going. Okay. Cube coverage here. The world's changing as APN comes to give the marketplace for a new partner organization at Amazon web services, the Cube's got a covered. This should be a very big growing ecosystem as this continues, billions of being sold through the marketplace. Of course the buyers are happy as well. So we've got it all covered. I'm John furry, your host of the cube. Thanks for watching.
SUMMARY :
Thanks for good to see you again. Yeah, John, great to be here. Obviously it makes it's a no brainer on the micro, you know, You're in the middle of it. you know, unique use cases. So this is speaks volumes to the, the relationship you have years. And when you look at what the APN allows us to do, And so we see customers, you know, doing rapid experimentation pilots, POCs, So you got the big contracts with the private offer. And that's, that is the problem that data bricks is out there to solve, They just couldn't solve before a good example of this, you know, And if you think about what does it take to set that up? So how do you guys look at this? Well, I I'd add what Joel just talked about with, with, you know, what the solution, the value of the solution our entire offering And that really helps customers because if you get data bricks So they're looking at this as saying, you know, multiple ISV spend through that same primary provider, you get pricing And then you gotta say, okay, now let's coordinate our sales teams, a lot of moving parts. So the marketplace allows multiple ways to procure your So it doesn't change your business structure. Yeah, So you guys are actually incented to Yeah. It's the right thing to do for our relationship with Amazon, So one of the other things I might add to that too, you know, and why this is advantageous for, I get the infrastructure side, you know, spin up and provision. you know, augment and enhance our platform. you know, I don't wanna be forced to buy something because it's part of a suite and the data. And that is one of the things that's allowed data bricks to have the breadth of integrations that it has with When you see other solutions out there that aren't as open as you guys, you guys are very open by the I think the challenge with proprietary ecosystems is you become beholden to the Exactly. I'll say it in the open world, you know, you have to continue to innovate. I call it the chessboard, you know, you got opening game and mid game. And so it has to do with, can you get that data outta silos? And I would say that, you know, the argument for why I think Amazon Price and access to the S and access to the core value. So I wanna get you guys thought on something else. You gotta, you gotta be here. If those consulting SI partners happen to resell the solution as well. And we're seeing, you know, both SI begin to be This gets at the end of the day. I think that the managed service provider business is alive and well, right? I think being the way you guys are open this channel I think, you know, what it comes down to is you're seeing ecosystems begin to evolve around So you have relationships in And so as you build these platforms out into the cloud, you're able to really take advantage you don't know the outcome. And John, can I just add that when I was in Amazon, we had a, a theory that there's buyers and builders, That's why, you know, when we had our super cloud panel So the idea that you can have a multi-cloud implementation of data bricks, and actually share data But you guys have done a great job taking that building differentiation into the product. We're looking forward to seeing you there again. Great to see you at the check.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
Joel Minick | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Joel | PERSON | 0.99+ |
Ali | PERSON | 0.99+ |
Jack Anderson | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
$5 million | QUANTITY | 0.99+ |
Jack | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
XYZ | ORGANIZATION | 0.99+ |
Joel Minnick | PERSON | 0.99+ |
Jack Andersen | PERSON | 0.99+ |
Andy jazzy | PERSON | 0.99+ |
third aspect | QUANTITY | 0.99+ |
John fur | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Barney | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
five short months | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
APO | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
first 100 million | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
billions | QUANTITY | 0.98+ |
Johnny | PERSON | 0.97+ |
Davis | PERSON | 0.97+ |
a million dollars | QUANTITY | 0.96+ |
Salesforce | ORGANIZATION | 0.96+ |
data bricks | ORGANIZATION | 0.95+ |
each ISV | QUANTITY | 0.95+ |
Seattle, Washington | LOCATION | 0.95+ |
two different ways | QUANTITY | 0.95+ |
one data platform | QUANTITY | 0.95+ |
seven years ago | DATE | 0.94+ |
Rinesh Patel, Snowflake & Jack Berkowitz, ADP | Snowflake Summit 2022
(upbeat music) >> Welcome back to theCUBE's continuing coverage of Snowflake Summit 22 live from Caesars Forum in Las Vegas. I'm Lisa Martin with Dave Vellante. We've got a couple of guests joining us now. We're going to be talking about financial services. Rinesh Patel joins us, the Global Head of Financial Services for Snowflake, and Jack Berkowitz, Chief Data Officer at ADP. Guys, welcome to the program. >> Thanks, thanks for having us. >> Thanks for having us. >> Talk to us about what's going on in the financial services industry as a whole. Obviously, we've seen so much change in the last couple of years. What does the data experience look like for internal folks and of course, for those end user consumers and clients? >> So, one of the big things happening inside of the financial services industry is overcoming the COVID wait, right? A lot of banks, a lot of institutions like ours had a lot of stuff on-prem. And then the move to the Cloud allows us to have that flexibility to deal with it. And out of that is also all these new capabilities. So the machine learning revolution has really hit the services industry, right? And so it's affecting how our IT teams or our data teams are building applications. Also really affecting what the end consumers get out of them. And so there's all sorts of consumerization of the experience over the past couple of years much faster than we ever expected it to happen. >> Right, we have these expectations as consumers that bleed into our business lives that I can do transactions. It's going to be on the swipe in terms of checking authenticity, fraud detection, et cetera. And of course we don't want things to go back in terms of how brands are serving us. Talk about some of the things that you guys have put in place with Snowflake in the last couple of years, particularly at ADP. >> Yeah, so one of the big things that we've done, is, one of the things that we provide is compensation data. So we issue a thing called the National Employment Report that informs the world as to what's happening in the U.S. economy in terms of workers. And then we have compensation data on top of that. So the thing that we've been able to do with Snowflake is to lower the time that it takes us to process that and get that information out into the fingertips of people. And so people can use it to see what's changed in terms of with the worker changes, how much people are making. And they can get it very, very quickly. And we're able to do that with Snowflake now. Used to take us weeks, now it's in a matter of moments we can get that updated information out to people. >> Interesting. It helps with the talent war and- >> Helps in the talent war, helps people adjust, even where they're going to put supply chain in reaction to where people are migrating. We can have all of that inside of the Snowflake system and available almost instantaneously. >> You guys announced the Financial Data Cloud last year. What was that like? 'Cause I know we had Frank on early, he clearly was driving the verticalization of Snowflake if you will, which is kind of rare for a relatively new software company but what's that been like? Give us the update on where you're at and biggest vertical, right? >> Absolutely, it's been an exciting 12 months. We're a platform, but the journey and the vision is more. We're trying to bring together a fragmented ecosystem across financial services. The aim is really to bring together key customers, key data providers, key solution providers all across the different Clouds that exist to allow them to collaborate with data in a seamless way. To solve industry problems. To solve industry problems like ESG, to solve industry problems like quantitative research. And we're seeing a massive groundswell of customers coming to Snowflake, looking at the Financial Services Data Cloud now to actually solve business problems, business critical problems. That's really driving a lot of change in terms of how they operate, in terms of how they win customers, mitigate risk and so forth. >> Jack, I think, I feel like the only industry that's sometimes more complicated than security, is data. Maybe not, security's still maybe more fragmented- >> Well really the intersection of the two is a nightmare. >> And so as you look out on this ecosystem, how do you as the chief data officer, how do you and your organization, what process do you use to decide, okay, which of the, like a chef, which of these ingredients am I going to put together for my business. >> It's a great question, right? There's been explosion of companies. We kind of look at it in two ways. One is we want to make sure that the software and the data can interoperate because we don't want to be in the business of writing bridge code. So first thing is, is having the ecosystem so that the things are tested and can work together. The other area is, and it's important to us is understanding the risk profile of that company. We process about 20% of the U.S. payroll, another 25% of the taxes. And so there's a risk to us that we have an imperative to protect. So we're looking at those companies are they financed, what's their management team. What's the sales experience like, that's important to us. And so technology and the experience of the company coming together are super important to us. >> What's your purview as a chief data officer, I mean, a lot of CDOs that I know came out of the back office and it was a compliance or data quality. You come out of industry from a technology company. So you're sort of the modern... You're like the modern CDO. >> Thanks. Thanks. >> Dave: What's your role? >> I appreciate that. >> You know what I'm saying though? >> And for a while it was like, oh yeah, compliance. >> So I actually- >> And then all of a sudden, boom, big deal. >> Yeah, I really have two jobs. So I have that job with data governance but a lot of data security. But I also have a product development unit, a massive business in monetization of data or people analytics or these compensation benchmarks or helping people get mortgages. So providing that information, so that people can get their mortgage, or their bank loans, or all this other type of transactional data. *So it's both sides of that equation is my reading inside. >> You're responsible for building data products? >> That's right. >> Directly. >> That's right. I've got a massive team that builds data products. >> Okay. That's somewhat unique in your... >> I think it's where CDOs need to be. So we build data products. We build, and we assist as a hub to allow other business units to build analytics that help them either optimize their cost or increase their sales. And then we help with all that governance and communication, we don't want to divide it up. There's a continuum to it. >> And you're a peer of the CIO and the CISO? >> Yeah, exactly. They're my peers. I actually talk to them almost every day. So I've got the CIO as a peer. >> It's a team. >> I've got the security as a peer and we get things done together. >> Talk about the alignment with business. We've been talking a lot about alignment with the data folks, the business folks, the technical folks to identify the right solutions, to be able to govern data, to monetize it, to create data products. What does that... You mentioned a couple of your cohorts, but on the business side, who are some of those key folks? >> So we're like any other big, big organization. We have lots of different business units. So we work directly with either the operational team or the heads of those business units to divine analytic missions that they'll actually execute. And at the same time, we actually have a business unit that's all around data monetization. And so I work with them every single day. And so these business units will come together. I think the big thing for us is to define value and measure that value as we go. As long as we're measuring that value as we go, then we can continue to see improvements. And so, like I said, sometimes it's bottom line, sometimes it's top line, but we're involved. Data is actually a substrate of the company. It's not a side thing to the company. >> Yeah, you are. >> ADP. >> Yeah but if they say data first but you really are data first. >> Yeah. I mean, our CEO says- >> Data's your product. >> Data's our middle name. And it literally is. >> Well, so what do you do in the Snowflake financial services data Cloud? Are you monetizing? >> Yeah. >> What's the plan? >> Yeah, so we have clients. So part of our data monetization is actually providing aggregate and anonymized information that helps other clients make business decisions. So they'll take it into their analytics. So, supply chain optimization, where should we actually put the warehouses based on the population shifts? And so we're actually using the file distribution capabilities or the information distribution, no longer files, where we use Snowflake to actually be that data cloud for those clients. So the data just pops up for our other clients. >> I think the industry's existed a lot with the physical movement of data. When you physically move data, you also physically move the data management challenges. Where do you store it? How do you map it? How do you concord it? And ultimately data sharing is taking away that friction that exists. So it's easier to be able to make informed decisions with the data at hand across two counterparties. >> Yeah, and there's a benefit to us 'cause it lowers our friction. We can have a conversation and somebody can be... Obviously the contracts have to be signed, but once they get done, somebody's up and running on it within minutes. And where it used to be, as you were saying, the movement of data and loss of control, we never actually lose control of it. We know where it is. >> Or yeah, contracts signed, now you got to go through this long process of making sure everything's cool, or a lot of times it could slow down the sale. >> That's right. >> Let's see how that's going to... Let's do a little advanced work. Now you're working without a contract. Here, you can say, "Hey, we're in the Snowflake data cloud. It's governed, you're a part of the ecosystem." >> Yeah, and the ecosystem we announced, oh gee, I think it's probably almost a year and a half ago, a relationship with ICE, Intercontinental Exchange, where they're actually taking our information and their information and creating a new data product that they in turn sell. So you get this sort of combination. >> Absolutely. The ability to form partnerships and monetize data with your partners vastly increases as a consequence. >> Talk to us about the adoption of the financial services data cloud in the last what, maybe nine months or so, since it was announced? And also in terms of the its value proposition, how does the ADP use case articulate that? >> So, very much so. So in terms of momentum, we're a global organization, as you mentioned, we are verticalized. So we have increasingly more expertise and expertise experience now within financial services that allows us to really engage and accelerate our momentum with the top banks, with the biggest asset managers by AUM, insurance companies, sovereign wealth funds on Snowflake. And obviously those data providers and solution providers that we engage with. So the momentum's really there. We're really moving very, very fast in a great market because we've got great opportunity with the capabilities that we have. I mean, ADP is just one of many use cases that we're working with and collaborations that we're taking to market. So yeah, the opportunity to monetize data and help our partners monetize the data has vastly increased within this space. >> When you think about... Oh go ahead, please. >> Yeah I was just going to say, and from our perspective, as we were getting into this, Snowflake was with us on the journey. And that's been a big deal. >> So when you think about data privacy, governance, et cetera, and public policy, it seems like you have, obviously you got things going on in Europe, and you got California, you have other states, there's increasing in complexity. You guys probably love that. (Dave laughs) More data warehouses, but where are we at with that whole? >> It's a great question. Privacy is... We hold some of the most critical information about people because that's our job to help people get paid. And we respect that as sort of our prime agenda. Part of it deals with the technology. How do you monitor, how do you see, make sure that you comply with all these regulations, but a lot of it has to do with the basic ethics of why you're doing and what you're doing. So we have a data and AI ethics board that meets and reviews our use cases. Make sure not only are we doing things properly to the regulation, but are these the types of products, are these the types of opportunities that we as a company want to stand behind on behalf of the consumers? Our company's been around 75 years. We talk about ourselves as a national asset. We have a trust relationship. We want to ensure that that trust relationship is never violated. >> Are you in a position where you can influence public policy and create more standards or framework. >> We actually are, right. We issue something every month called the National Employment Report. It actually tells you what's happening in the U.S. economy. We also issue it in some overseas countries like France. Because of that, we work a lot with various groups. And we can help shape, either data policy, we're involved in understanding although we don't necessarily want to be out in the front, but we want to learn about what's happening with federal trade commission, EOC, because at the end of the day we serve people, I always joke ADP, it's my grandfather's ADP. Well, it was actually my grandfather's ADP. (Dave laughs) He was a small businessman, and he used a ADP all those years ago. So we want to be part of that conversation because we want to continue to earn that trust every day. >> Well, plus your observation space is pretty wide. >> And you've got context and perspective on that that you can bring. >> We move somewhere between two, two and a half trillion dollars a year through our systems. And so we understand what's happening in the economy. >> What are some of the, oh sorry. >> Can your National Employment Report combined with a little Snowflake magic tell us what the hell's going to happen with this economy? >> It's really interesting you say that. Yeah, we actually can. >> Okay. (panelists laugh) >> I think when you think about the amount of data that we are working with, the types of partners that we're working with, the opportunities are infinite. They really, really are. >> So it's either a magic eight ball or it's a crystal ball, but you have it. >> We think- >> We've just uncovered that here on theCUBE. >> We think we have great partners. We have great data. We have a set of industry problems out there that we're working, collaboration with the community to be able to solve. >> What are some of the upcoming use cases Rinesh, that excite you, that are coming up in financial services- >> Great question. >> That snowflake is just going to knock out of the park. >> So look, I think there's a set of here and now problems that the industry faces, ESG's a good one. If you think about ESG, it means many different things from business ethics, to diversity, to your carbon footprint and every asset manager has to make sure they have now some form of green strategy that reflects the values of their investors. And every bank is looking to put in place sustainable lending to help their corporate customers transition. That's a big data problem. And so we're very much at the center of helping those organizations support those informed investors and help those corporates transition to a more sustainable landscape. >> Let me give you an example on Snowflake, we launched capabilities about diversity benchmarks. The first time in the industry companies can understand for their industry, their size, their location what their diversity profile looks like and their org chart profile looks like to differentiate or at least to understand are they doing the right things inside the business. The ability for banks to understand that and everything else, it's a big deal. And that was built on Snowflake. >> I think it's massive, especially in the context of the question around regulation 'cause we're seeing more and more disclosure agreements come out where regulators are making sure that there's no greenwashing taking place. So when you have really strong sources of data that are standardized, that allow that investment process to ingest that data, it does allow for a better outcome for investors. >> Real data, I mean, that diversity example they don't have to rely on a survey. >> It's not a survey. >> Anecdotes. >> It's coming right out of the transactional systems and it's updated, whenever those paychecks are run, whether it's weekly, whether it's biweekly or monthly, all that information gets updated and it's available. >> So it sounds like ADP is a facilitator of a lot of companies ESG initiatives, at least in part? >> Well, we partner with companies all the time. We have over 900,000 clients and all of them are... We've never spoken to a client who's not concerned about their people. And that's just good business. And so, yeah we're involved in that and we'll see where it goes over time now. >> I think there's tremendous opportunity if you think about the data that the ADP have in terms of diversity, in terms of gender pay gap. Huge, huge opportunity to incorporate that, as I said into the ESG principles and criteria. >> Good, 'cause that definitely is what needs to be addressed. (Lisa laughs) Guys thank you so much for joining Dave and me on the program, talking about Snowflake ADP, what you're doing together, and the massive potential that you're helping unlock with the value of data. We appreciate your insights and your time. >> Thank you for having us. >> Dave: Thanks guys. >> Thank you so much. >> For our guests, and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, live in Las Vegas at Snowflake Summit 22. Dave and I will be right back with our next guest. (upbeat music)
SUMMARY :
the Global Head of Financial in the last couple of years. inside of the financial services industry And of course we don't is, one of the things that we It helps with the talent war and- inside of the Snowflake system You guys announced the We're a platform, but the like the only industry Well really the intersection of the two And so as you look so that the things are I mean, a lot of CDOs that I know Thanks. And for a while it was And then all of a sudden, So I have that job with data governance that builds data products. That's somewhat unique in your... And then we help with all that governance So I've got the CIO I've got the security as a peer Talk about the alignment with business. and measure that value as we go. but you really are data first. I mean, our CEO says- And it literally is. So the data just pops up So it's easier to be able Obviously the contracts have to be signed, could slow down the sale. in the Snowflake data cloud. Yeah, and the ecosystem we announced, and monetize data with your partners and help our partners monetize the data When you think about... as we were getting into this, are we at with that whole? behalf of the consumers? where you can influence public policy the day we serve people, Well, plus your observation that you can bring. happening in the economy. It's really interesting you say that. Okay. about the amount of data or it's a crystal ball, but you have it. that here on theCUBE. We think we have great partners. going to knock out of the park. that the industry faces, ESG's a good one. And that was built on Snowflake. of the question around regulation they don't have to rely on a survey. the transactional systems companies all the time. about the data that the ADP and the massive potential Dave and I will be right
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian Gilmore | PERSON | 0.99+ |
David Brown | PERSON | 0.99+ |
Tim Yoakum | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tim Yokum | PERSON | 0.99+ |
Stu | PERSON | 0.99+ |
Herain Oberoi | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Kamile Taouk | PERSON | 0.99+ |
John Fourier | PERSON | 0.99+ |
Rinesh Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Santana Dasgupta | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Canada | LOCATION | 0.99+ |
BMW | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ICE | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Venkat | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Camille | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Venkat Krishnamachari | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Don Tapscott | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Intercontinental Exchange | ORGANIZATION | 0.99+ |
Children's Cancer Institute | ORGANIZATION | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.99+ |
Sabrina Yan | PERSON | 0.99+ |
Tim | PERSON | 0.99+ |
Sabrina | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
MontyCloud | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Leo | PERSON | 0.99+ |
COVID-19 | OTHER | 0.99+ |
Santa Ana | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Tushar | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Valente | PERSON | 0.99+ |
JL Valente | PERSON | 0.99+ |
1,000 | QUANTITY | 0.99+ |
Jack Gold, Jack Gold & Associates | Citrix Synergy 2019
(upbeat theme music plays) >> Live from Atlanta, Georgia, it's theCube. Covering Citrix Synergy, Atlanta, 2019, brought to you by Citrix. >> Hi, welcome back to theCube. Lisa Martin with Keith Townsend, and we are live in Atlanta, Georgia for Citrix Synergy, 2019. We are pleased to welcome Jack Gold to The Cube, President and founder of Jack Gold & Associates. Jack, it's great to have you join Keith and me this afternoon. >> Thank you for having me. >> So, we had a great day. We've talked to eight or nine folks or so, lot's of really relevant exciting news from Citrix this morning. Talking about the employee experience as, and how I kind of interpreted it, as a catalyst for digital transformation, cultural transformation. You've been working with Citrix for a long time. I'd love to get your perspective on not just what you heard today from Citrix, and with Google and Microsoft, but in the last year or so since they've really kind of done a re-brand effort. What're your thoughts on that? >> Yeah, it's interesting from a Citrix perspective. Citrix, the old Citrix I guess I would put in quotes right, was always known as the VDI company. I've got, you know, the screen that will talk to the server, that will talk to whatever other apps I need it to talk to, and I can have a nice thin client sitting on my desktop and I don't have to spend a lot of money. And I also don't have to worry about if I'm going to bank people stealing stuff off the hard drive, or whatever. They've made a pretty significant transition that was the old work space, if you will. The modern work spaces which is where Citrix is really moving is one where, look we've all grown up with smart phones for the last ten or fifteen years, our kids don't know anything different. They're not going to deal with anything that's complex, anything where I have to log in and out of applications, anything where I have to switch between screens, this just doesn't make any sense for them. And so, what we're seeing Citrix do is move into an environment where, as I said, it's about the modern workspace, it's about being able to help me do my job not getting in my way of me doing my job, and that's really the transition. It's not just Citrix, the industry is moving in that direction as well, but Citrix is really at the forefront of making a lot of that work now. >> So, Jack, talk to us about the new promise of the new Citrix. The, if you remember me, it had to have be about seven years ago, I did a blog post of running Windows XP on your iPad. It was taking, you know, the then desktop solution and running it on your iPad. >> (Jack) Sure. >> And it was a cool trick. But we talked about, today, we would hope by today, that mobile technology would of forced companies to rewrite applications, for a mobile first experience. But that simply hasn't happened. So, presenting a bad application on to a mobile dot, to a mobile work station, or a mobile device, doesn't work. We end up packing in, trying it, and squeezing, and trying to get our work done, how is Citrix promising to change that experience, even versus their competitors? >> Sure. Well, first of all so two bad's don't make a good. Right. Having a bad app on a bad device doesn't make it good. >> (Keith) Right. >> Doesn't make it easy to use, doesn't help me get my job done. What we really are talking about, now, is the ability to build a workspace. Something where I sit and look at, that helps me get my job done, as opposed to getting in the way. Which means that, instead of having to punch fourteen different holes, or you know, icons and sit at my keyboard and type forty-eight different commands and do thirty-eight different log-ins as each one is different, and by the way I couldn't remember them so I just called the help desk in-between, and that's another half an hour of my time that I didn't want to, that I wasted. >> (laughs) Give me my word perfect templates. >> (Lisa laughs) >> (Jack) There you go, there you go, word perfect I remember that no so well. I remember it well not so nicely. What we're really trying to focus on now is user experience, right. What we're really trying to focus on is if, if you wanted to get your work done, I want to make it easy. Think about it as going to a grocery store. If you can't, if you've got a list of groceries and you can't find what you want in five minutes, you leave, you go somewhere else. You go to another grocery store where things are much easier to find. It's the same at work, or it should be the same at work. Now, that said, a lot of apps and organizations, especially big enterprises where they have, some can have literally thousands of apps, are not going away. The notion that everything is going to go into the modern workspace, where everything looks like a phone, it's a nice idea, it's properly not going to happen. Legacy apps will be legacy apps for a very long time, it's like mainframes are dead, guess what, they're still around. That said, that doesn't mean that you can't take some of those legacy apps and make them easier to use with the proper front-end. And that's really what Citrix is trying to do with the workspaces, and other's again, it's not just Citrix in this, we have to be fair there are lots people working in this space. But, if you can make the front-end workspace more attractive, easier to use, easier to navigate, even if I've got old, clunky stuff in the background. For me as a user, you can give me back fifteen, twenty, thirty minutes a day, an hour a day, that's really productivity. Look, if you're paying me a hundred dollars an hour, and you save me an hour a day you just made a hundred dollars every day that I'm working at that company, that sounds like a lot, but there are people who make that kind of money. Or even a fifty or twenty-five dollars, it all adds up. And so, what we're really doing is trying to move into an environment where if I can make you more productive but making things more easier for you to navigate, and getting in and our of applications more quickly, getting more information to me more quickly, which makes the overall organization more productive because I'm sharing more information with you, then that's a real win-win, and that's where I think Citrix is really trying to position itself, and doing a fairly good job at doing that. Clearly they don't have all of the components yet, but then no one does. This is an ongoing process. >> So, employee experience is table-stakes for any business, as we look at the modern workforce it's highly disrupted. >> (Jack) Yes. >> It's composed of five different generations. >> (Jack) Yes. >> Who have varying expertise with technology. It is also demanding because we're all consumers. >> (Jack) Yes. >> And so we have this expectation, or this, yeah I'd say expectation that I want to be able to go in and have this personalized experience. I don't want to have to become an expert in sales-force because I might need to understand, can I talk to that costumer and ask them to be a reference? How much time are you going to take? But this personalization is becoming more and more critical as we see this influence from the consumer side. >> Right. >> Were some of the things that you heard today from Citrix, what are your thoughts on how their going to be able to improve that more personalized employee experience? >> So people think of personalization, I think sometimes, too narrowly. For some people personalization is, you know, I've got my phone out, and I have the apps that I want on my phone and that's personalization. I think of it a little bit differently. We need to extend personalization. When I'm at work, what I want is not just the apps I want, clearly I want those, right, but also the ability, to get help with those apps as I need it, right. And so where Citrix is going is trying to put intelligence into the system, so that when I'm interacting with back-end solutions or my neighbors, or with teams collaboration, I get the assistance I need to make it easier for me to do that work. It's not just the apps, it's also help with the apps. And if we can do that, that's really what we want. We go, you know, if I have a problem with my laptop I'm going to come to you and say, hey, you did this yesterday what was the result, can you help me for five minutes? Five minutes is never five minutes, it's usually an hour and a half, but still. I'll come to you. Why can't I have an app on my desk that does the same thing? I'm having trouble. Help me. Fix it. Let me know what I'm doing wrong, or let me know how I can do it better. And that's where Citrix is trying to go with the analytics that they've got in place. Which is huge, I think they're underplaying that, because I think that the whole analytic space in making things easier for people to use, because in understanding where my problems are is huge, and that's going to pick up. The notion of having a nice pretty, pretty may not be the right word, but attractive at least, workspace for me to go in that doesn't get frustrated, frustration is a killer in productivity, as everyone knows. There are examples I've heard multiple people tell me now that they go out and hire, especially with millennials, that go out an hire twenty or thirty new employees, and half of them quit within a week because their systems are so bad that they get so frustrated that they're not going to work there. So, the notion of having a modern workspace where I get the applications that I need, I get the assistance I need, because of the analytics of that backend telling the systems what I need, and making it easier for me to do it. And then allowing me to be productive not just for myself, but for the organization, is where we all need to go and I think that Citrix is making some real progress going that way. >> (Keith) Well Jack, we're talking about products that haven't quite been released yet, so I'm trying to get a sense or, worth's the right built versus buy stage, in complexity Citrix should be? You know, I can make it apple pie by going out and picking the apple. >> (Jack laughs) Right. >> And making my own crust or, I can go buy filling, or I can just go buy any mince pie, stick it in the oven and warm it up. Three very different experiences. Three different layers of investment, and outcomes frankly. In this world, I can go hire application developers to write these many apps, to write these customizations, to write these integrations, but that's, I think that's akin to picking the apple and that just simply doesn't scale. But, also while any mince pie is okay every now and again, I want, you know, something of higher quality. Where do you think Citrix is on the kind of range of built versus buy with this intelligent experience? >> So built versus buy is a very interesting phenomenon. And it's interesting because a lot of it has to do with where you think you are right now in the world, right. You know you mention going out and getting developers and building your own, that's all well and good, it doesn't scale, and by the way in today's market you can't find them to begin with. So you often don't even have a choice. So that's number one. Number two is that there are companies out there that still think for competitive advantage that they have to do everything from scratch, like building your pie. Yes, you probably make the best pie in the world, but guess what, sometimes a good enough pie is good enough. Right, and if you're in business sometimes good enough is the only way you survive. It doesn't have to be a hundred percent perfect, ninety percent's okay too. People can deal with that. So that's the other piece. The third piece of it is, from an end-user perspective, right, if end-users are accustom to having an interaction in a certain way and the you go out and get developers that come in and do it, something completely different, which they're apt to do because each will have their own kind of flavor to it, then you just force them to learn one, two, three, four, five different interface interactions I'm not going to do that. I'm going to get frustrated as heck, and I'm going to go call the help desk or I'm going to go get my app and say go do this for me. Both of which are counterproductive to the company and to me. So, it really depends on where you are in the stage of where your company is, I would say built versus buy it's not a one or a zero. There's lots of shades of gray in between, it's also not all or nothing. So, some applications might be built internally, some you may want to buy externally, some you may have a hybrid, and the nice thing about where workspaces is going now is that you plug all of those into the same environment. That's really the ultimate goal, is to make it as easy and transparent for the organization as possible, and also for the user because the user ultimately is the end consumer. And if it's not good for the end consumer, it's not good for the company either. >> (Lisa) So delivering this great game-changing customer experience for this, as we talked about before this distributed modern work force that wants to be able to access mobile apps, Sass apps. >> (Jack) Right. >> Web apps from tablets, PC, phone, desktop. >> (Jack) Your car, your refrigerator >> Exactly. >> (Jack) Anything with a screen on it. >> Oh yeah, the refrigerators. Wherever you are, I think, okay people >> (Jack) Sure. >> We're people, and we are the biggest single security threat there is. >> (Jack laughs) >> So in your perspective, how is what Citrix is talking about balancing security as an essential component of this employee experience? >> So there are a few things, number one is a lot of companies think that if they limit the end user experience they're more secure. The truth of the matter is, yes, I mean if you don't let me get in to an app I can't steal application or information, or lose it somehow. But I also can't get my work done. So there's a balance between security and privacy which many companies don't talk about which is not exactly the same thing, there are two unique things, more and more privacy is becoming as big or bigger an issue than security, but you know we can get at that in a minute. But, the notion of security really relates to what I was talking about earlier which is analytics. If I know what you're suppose to be doing, you're here at Synergy. If someone just got your credentials and logged in from Los Angeles or New York or Chicago or Denver or wherever, I know it's not you. I can shut that thing down very quickly and not have to worry about them stealing information, also if you're, if I know you're not suppose to be in a certain version of SAP, you're not suppose to be doing some ERP system and you're in it, then again the analytics tells me that there's something going on, there's something anomalous going on that I need to investigate. So, having a system that protects because there's a kind of a front end to everything that's going on in the back end, and a realization of what's going on behind that screen gives me a much higher sense of security from a corporate perspective, it's not perfect there is no such thing as perfect security, but it's a lot better than just letting us kind of do our own thing, and loading, you know, semantic or McAfee or whatever on your PC. And that's where the industry ultimately has to go. That becomes part of the new modern workspace. It's not just about more productive it's about more secure. It's about more private. It's about not letting information escape that shouldn't be there to begin with. >> (Keith) So last question on data grabbing. Because we haven't talked about data and data is, you know, probably the most important thing in this topic. The importance of the (unintelligible) and Google announcement. You know, we, the yottabyte, the first time I've heard that term, yottabye of data that data's going to be spread across the world and this, this ideal of centralized compute and us being able to present, compute into data centers, no longer going to work, that we're going to have to, applications are going to be spread across the world. Where do you Citrix advancing that discipline of providing apps where they need to be with these relationships? >> So, it's an interesting phenomenon what we're going through right now, if you look back a couple of decades ago everything was centralized, people were centralized, they all work in one building, computing was centralized it was all in the data center, IT was centralized, it was all, you know, working around the servers. The Cloud is the opposite direction, although I would argue The Cloud isn't new, The Cloud is just time-share in a different environment, for us old people who remember the old IBM time-share computers. But everything is becoming distributed, data is distributed, people are distributed, applications are distributed, networks are distributed, you name it. The key critical factor for companies in keeping their productivity, keeping up the productivity is to make sure that the distributed environment doesn't get in the way of doing work. So you've got things like latency, if it takes me, if I'm in. (crowd cheers) >> They're having a party behind us. >> No, they agree with you! >> (Jack laughs) Yes, apparently. I, you know, if I'm here at Synergy but I have to work back at my offices near Boston, I can't wait five minutes for information to come back and forth, it's like the old days. Latency now has to be within five microseconds or people get frustrated, so that becomes a network issue, applications, same way, if I have to go to a data center, the data isn't local to my server here, it has to go to London, I'm not going to wait three minutes for it to come back like we use to, or ten minutes or an hour and a half. Or come back the next morning. You know, you want to book a flight on an airline, are you going to wait thirty minutes for them to find you a seat? You're going to go to another airline. So the whole notion of distributed means that it's very different now, even though it's distributed, everything is local. And by local, keeping it local means that you have to have latency below a certain point (crowd cheers) so that I don't realize that it's distributed, or I don't care that it's distributed. Yottabyte's of data means that we're going to have data everywhere, accessible all the time, and we're going to produce data like crazy. You know, a typical car, an autonomous car will produce a gigabyte of data every minute. Hundreds every, you know, hour. So, the amount of data is going to be fantastic that we have to deal with. Then, the big question becomes, okay so, I can't personally deal with all this data, it's impossible, I have to have the assistance, the intelligence within the system to go off and make something of that data so that I can actually interact with it in a meaningful fashion. That's where Citrix would like to go, that's where other's would like to go. They can't do it alone, because the problem is just too darn big. But, it will, we will get there, companies will get there eventually, not all of them perhaps, only the ones that are going to be successful long term are going to get there. >> Well, Jack, I wish we had more time to chat with you. This has, I just feel like going dot, dot, dot, to be continued. And I want to say, coincidence, I don't know, there were two rounds of applause when you talked about latency. (Keith laughs) >> There we go. They're just waiting for the bar to open, it's taking too long. >> (Lisa laughs) You think that's what it is? >> (Jack) Properly. >> All right well we'll get you over there, and thank-you again for joining Keith and me this afternoon. >> Thank-you very much. >> (Lisa) Our pleasure. For Keith Townsend, I'm Lisa Martin, you're watching theCube live from Citrix Synergy, 2019. Thanks for watching. (upbeat theme music plays)
SUMMARY :
brought to you by Citrix. Jack, it's great to have you join Keith and me not just what you heard today from Citrix, and with They're not going to deal with anything that's complex, you know, the then desktop solution and running it on your how is Citrix promising to change that experience, Having a bad app on a bad device is the ability to build a workspace. and make them easier to use with the proper front-end. So, employee experience is table-stakes for Who have varying expertise with technology. to that costumer and ask them to be a reference? I'm going to come to you and say, hey, you did this yesterday make it apple pie by going out and picking the apple. and again, I want, you know, something of higher quality. is the only way you survive. to access mobile apps, Sass apps. Wherever you are, We're people, and we are the biggest single But, the notion of security really relates to what I was The importance of the is to make sure that the distributed environment doesn't So, the amount of data is going to be fantastic to be continued. it's taking too long. All right well we'll get you over there, and thank-you For Keith Townsend, I'm Lisa Martin, you're watching theCube
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Keith | PERSON | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
twenty | QUANTITY | 0.99+ |
Jack | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
five minutes | QUANTITY | 0.99+ |
Chicago | LOCATION | 0.99+ |
Denver | LOCATION | 0.99+ |
ten minutes | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
three minutes | QUANTITY | 0.99+ |
Citrix | ORGANIZATION | 0.99+ |
ninety percent | QUANTITY | 0.99+ |
an hour and a half | QUANTITY | 0.99+ |
thirty minutes | QUANTITY | 0.99+ |
iPad | COMMERCIAL_ITEM | 0.99+ |
New York | LOCATION | 0.99+ |
eight | QUANTITY | 0.99+ |
Jack Gold | PERSON | 0.99+ |
Los Angeles | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
2019 | DATE | 0.99+ |
Five minutes | QUANTITY | 0.99+ |
fifteen | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Synergy | ORGANIZATION | 0.99+ |
an hour and a half | QUANTITY | 0.99+ |
Atlanta, Georgia | LOCATION | 0.99+ |
Both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Lisa | PERSON | 0.99+ |
Citrix Synergy | ORGANIZATION | 0.99+ |
Windows XP | TITLE | 0.99+ |
third piece | QUANTITY | 0.99+ |
two rounds | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
two unique things | QUANTITY | 0.99+ |
McAfee | ORGANIZATION | 0.98+ |
hundred percent | QUANTITY | 0.98+ |
Atlanta | LOCATION | 0.98+ |
an hour a day | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
last year | DATE | 0.98+ |
first experience | QUANTITY | 0.98+ |
next morning | DATE | 0.98+ |
five microseconds | QUANTITY | 0.98+ |
one | QUANTITY | 0.97+ |
half an hour | QUANTITY | 0.97+ |
Jack McCauley, Oculus VR – When IoT Met AI: The Intelligence of Things - #theCUBE
>> Announcer: From the Fairmont Hotel in the heart of Silicon Valley, it's The Cube. Covering when IOT met AI, the intelligence of things. Brought to you by Western Digital. >> Hey, welcome back everybody. Jeff Rick here with The Cube. We're in downtown San Jose at the Fairmont Hotel at a little show called when IOT Met AI, the Intelligence of Things. Talking about big data, IOT, AI and how those things are all coming together with virtual reality, artificial intelligence, augmented reality, all the fun buzz words, but this is where it's actually happening and we're real excited to have a pioneer in this space. He's Jack McCauley. He was a co-founder at Occulus VR, now spending his time at UC Berkeley as an innovator in residence. Jack welcome. >> Thank you. >> So you've been watching this thing evolve, obviously Occulus, way out front in kind of the VR space and I think augmented a reality in some ways is even more exciting than just kind of pure virtual reality. >> Right. >> So what do you think as you see this thing develop from the early days when you first sat down and started putting this all together? >> Well, I come from a gaming background. That's what I did for 30 years. I worked in video game development, particularly in hardware and things, console hardware. >> That's right, you did the Guitar Hero. >> Guitar Hero. Yeah, that's right. >> We got that one at home. >> I built their guitars and designed and built their guitars for Activision. And when were part of Red Octane, which is a studio. I primarily worked in the studio, not the headquarters, but I did some of the IP work with them too, so, to your question, you know when you produce a product and put it on the market, you never really know how it's going to do. >> Jeff: Right. >> So we make, we made two developer kits, put them out there and they exceeded our expectations and that was very good. It means that there is a market for VR, there is. We produce a consumer version and sales are not what we expected for that particular product. That was designated towards PC gamers and hopefully console games. But what has done well is the mobile stuff has exceeded everyone's mildest expectations. I heard numbers, Gear VR, which is Occulus designed product for me, sold 7 million of those. That's a smash hit. Now, worldwide for phone mounted VR goggles, it's about 20 million and that's just in two years, so that's really intriguing. So, what has happened is it's shifted away from an expensive PC based rig with $700 or whatever it costs, plus $1,500 for the computer to something that costs $50 and you just stick your cell phone in it and that's what people, it doesn't give you the best experience, but that's what has sold and so if I were doing a start-up right now, I would not be working on PC stuff, I'd be working on mobile stuff. >> Jeff: Right. >> And the next thing I think, which will play out of this is, and I think you mentioned it prior to the interview, is the 360 cameras and Google has announced a camera that they're going to come out and it's for their VR 180 initiative, which allows you to see 180 video in stereo with a cell phone strapped to your face. And that's very intriguing. There's a couple of companies out there working on similar products. Lucid Cam, which is a start-up company here has a 180 camera that's very, very good and they have one coming out that's in 4K. They just launched their product. So to answer your question, it looks like what is going to happen is for VR, is that it's a cell phone strapped to your face and a camera somewhere else that you can view and experience. A concert. Imagine taking it to a sporting event where 5,000 people can view your video, 10,000 from your seat. That's very intriguing. >> Yeah, it's interesting I had my first kind of experience just not even 360 or live view, but I did a periscope from the YouTube concert here at Levi Stadium a couple of months ago, just to try it out, I'd never really done it and it was fascinating to watch the engagement of people on that application who had either seen them the prior week in Seattle or were anticipating them coming to the Rose Bowl, I think, you know, within a couple of days, and to have an interaction just based on my little, you know, mobile phone, I was able to find a rail so I had a pretty steady vantage point, but it was a fascinating, different way to experience media, as well as engagement, as well as kind of a crowd interaction beyond the people that happened to be kind of standing in a circle. >> You, what's intriguing about VR 180 is that anybody can film the concert and put the video on YouTube or stream it through their phone. And formerly it would require a $10,000 camera, a stereo camera set up professionally, but can you imagine though that a crowd, you know, sourced sort of thing where the media is sourced by the crowd and anyone can watch it with a mobile phone. That's what's happening, I think, and with Google's announcement, it even that reinforces my opinion anyways that that is where the market will be. It's live events, sporting events. >> Right, it's an experience, right? It all comes back to kind of experience. People are so much more experience drive these days than I think thing driven from everything from buying cars versus taking a new Uber and seeing it over and over and over again. People want the experience, but not necessarily, as the CEO of Zura said, the straps and straddles of ownership, let me have the fun, I don't necessarily want to own it. But I think the other thing that gets less talked about, get your opinion, is really the kind of combination of virtual reality plus the real world, augmented reality. We see the industrial internet of things all the time where, you know, you go take a walk on that factory before you put your goggles on and not only do you see what you see that's actually in front of you, but now you can start to see, it's almost like a heads up display, certain characteristics of the machinery and this and that are now driven from the database side back into the goggles, but now the richness of your observation has completely changed. >> Yes, and in some ways when you think of what Google did with Google Glass, not as well as we had liked. >> But for a first attempt. >> Yeah. They're way ahead of their time and there will come a time when, you know, Snap has their specs, right? Have you seen those? It's not augmented reality, but, there will come a time when you can probably have a manacle on your face and see the kinds of things you need to see if your driving a car for instance that, I mean, a heads up display or a projector projecting right into your retina. So, and, so I think that's the main thing for augmented reality. Will people, I mean, your Pokemon Go, that's kind of a AR game in a way. You look through your cell phone and the character stays fixed on the table or wherever you're looking for it. I mean that uses a mobile device to do that and I can imagine other applications that use a mobile device to do that and I'm aware of people working on things like that right now. >> So do you think that the breakthrough on the mobile versus the PC-based system was just good enough? In being able to just experience that so easily, you know, I mean, Google gave out hundreds and hundreds of thousands of the cardboard boxes, so wow. >> Yeah. Well, it didn't mean that Gear VR didn't move into the market, it did. You know, it did anyways, but to answer your question about AR, you know, I think that, you know, without having good locals, I mean the problem with wearing the Google Glass and the Google cardboard and Gear VR is it kind of makes you sick a little bit and nobody's working on the localization part. Like how to get rid of the nausea effect. I watched a video that was filmed with Lucid Cam at the Pride Parade in San Francisco and I put it on and somebody was moving with the crowd and I just felt nauseous, so that problem probably probably is one I would attempt to attack if I were going to build a company or something like that right now. >> But I wonder too, how much of that is kind of getting used to the format because people when they first put them on for sure, there's like, ah, but you know, if you settle in a little bit and our eyes are pretty forgiving, you get used to things pretty quickly. Your mind can get accustomed to it to a certain degree, but even I get nauseous and I don't get nauseous very easily. >> Okay, so you're title should just be tinkerer. I looked at your Twitter handle. You're building all kinds of fun stuff in your not a garage, but your big giant lab and you're working at Berkeley. What are some of the things that you can share that you see coming down the road that people aren't necessary thinking about that's going to take some of these technologies to the next level. >> I got one for you. So you've heard of autonomous vehicles, right? >> Jeff: Yep, yep. >> And you've heard of Hollow Lens, right. Hollow Lens is an augmented reality device you put on your had and it's got built in localization and it creates what's, it's uses what's know as SLAM or S-L-A-M to build a mesh of the world around you. And with that mesh, the next guy that comes into that virtual world that you mapped will be away ahead. In other words, the map will already exists and he'll modify upon that and the mesh always gets updated. Can you imagine getting that into a self-driving vehicle just for safety's sake, mapping out the road ahead of you, the vehicle ahead of you has already mapped the road for you and you're adding to the mesh and adjusting the mesh, so I think that that's, you know, as far as Hollow Lens is concerned and their localization system, that's going to be really relevant to self-driving cars. Now whether or not it'll be Microsoft's SLAM or somebody else's, I think that that's probably the best, that's the good thing that came out of Hollow Lens and that will bleed into the self-driving car market. It's a big data crunching number and in Jobs, he was actually looking at this a long time ago, like what can we do with self-driving vehicles and I think he had banned the idea because he realized he had a huge computing and data problem. That was 10 years ago. Things have changed. But I think that that's the thing that will possibly come out of, you know, this AR stuff is that localization is just going to be transported to other areas of technology and self-driving cars and so forth. >> I just love autonomous vehicles because everything gets distilled and applied into that application, which is a great application for people to see and understand it's so tangible. >> Yeah, it may change the way we think about cars and we may just not ever own a car. >> I think absolutely. The car industry, it's ownership, it's usage, it's frequency of usage, how they're used. It's not a steel cage anymore for safety as the crash rates go down significantly. I think there's a lot of changes. >> Yeah, you buy a car and it sits for 20 hours a day. >> Right. >> Unutilized. >> All right. Well, Jack I hope maybe I get a chance to come out and check out your lab one time because you're making all kinds of cool stuff. When's that car going to be done? >> I took it upon myself to remodel a house the same time I was doing that, but the car is moving ahead. In September I think I can get it started. Get the engine running and get the power train up and running. Right now I'm working on the electronics and we have an interesting feature on that car that we're going to do an announcement on later. >> Okay, we'll look out for that. We'll keep watching the Twitter. All right, thanks for taking a few minutes. All right, let's check with Cauley. I'm Jeff Rick. You're watching The Cube from When IOT Met AI, the Intelligence of Things in San Jose. We'll be right back after this short break. Thanks for watching. (technological jingle)
SUMMARY :
Brought to you by Western Digital. We're in downtown San Jose at the Fairmont Hotel and I think augmented a reality in some ways I worked in video game development, Yeah, that's right. it on the market, you never really know to something that costs $50 and you just stick and a camera somewhere else that you the people that happened to be kind but can you imagine though that a crowd, you know, but now the richness of your observation Yes, and in some ways when you think of what a time when, you know, Snap has their specs, right? you know, I mean, Google gave out hundreds is it kind of makes you sick a little bit there's like, ah, but you know, if you settle What are some of the things that you can share I got one for you. and adjusting the mesh, so I think that that's, you know, gets distilled and applied into that application, Yeah, it may change the way we think about as the crash rates go down significantly. When's that car going to be done? the same time I was doing that, the Intelligence of Things in San Jose.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Rick | PERSON | 0.99+ |
Jack McCauley | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
$700 | QUANTITY | 0.99+ |
Western Digital | ORGANIZATION | 0.99+ |
Jack | PERSON | 0.99+ |
Levi Stadium | LOCATION | 0.99+ |
7 million | QUANTITY | 0.99+ |
September | DATE | 0.99+ |
30 years | QUANTITY | 0.99+ |
Seattle | LOCATION | 0.99+ |
$10,000 | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
$1,500 | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Occulus | ORGANIZATION | 0.99+ |
$50 | QUANTITY | 0.99+ |
Cauley | PERSON | 0.99+ |
5,000 people | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Oculus | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
10,000 | QUANTITY | 0.99+ |
The Cube | TITLE | 0.99+ |
Pokemon Go | TITLE | 0.99+ |
360 | QUANTITY | 0.99+ |
Red Octane | ORGANIZATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
180 camera | QUANTITY | 0.99+ |
first attempt | QUANTITY | 0.99+ |
Gear VR | COMMERCIAL_ITEM | 0.98+ |
10 years ago | DATE | 0.98+ |
two years | QUANTITY | 0.98+ |
YouTube | ORGANIZATION | 0.98+ |
two developer | QUANTITY | 0.98+ |
Pride Parade | EVENT | 0.98+ |
20 hours a day | QUANTITY | 0.98+ |
ORGANIZATION | 0.97+ | |
about 20 million | QUANTITY | 0.97+ |
San Jose | LOCATION | 0.96+ |
first | QUANTITY | 0.96+ |
Guitar Hero | TITLE | 0.96+ |
Activision | ORGANIZATION | 0.96+ |
180 video | QUANTITY | 0.95+ |
Fairmont Hotel | ORGANIZATION | 0.95+ |
When IoT Met AI: The Intelligence of Things | TITLE | 0.94+ |
360 cameras | QUANTITY | 0.93+ |
UC Berkeley | ORGANIZATION | 0.92+ |
Snap | ORGANIZATION | 0.92+ |
prior week | DATE | 0.91+ |
a couple of days | QUANTITY | 0.91+ |
one time | QUANTITY | 0.91+ |
first kind | QUANTITY | 0.9+ |
one | QUANTITY | 0.9+ |
a couple of months ago | DATE | 0.9+ |
hundreds of thousands | QUANTITY | 0.9+ |
VR 180 | COMMERCIAL_ITEM | 0.85+ |
hundreds and | QUANTITY | 0.84+ |
Google Glass | COMMERCIAL_ITEM | 0.82+ |
Berkeley | LOCATION | 0.81+ |
When IOT Met | TITLE | 0.79+ |
Cam | TITLE | 0.75+ |
SLAM | TITLE | 0.73+ |
the Intelligence of Things | TITLE | 0.73+ |
Glass | COMMERCIAL_ITEM | 0.71+ |
Zura | ORGANIZATION | 0.68+ |
cardboard boxes | QUANTITY | 0.66+ |
#theCUBE | TITLE | 0.63+ |
The Cube | ORGANIZATION | 0.58+ |
Rose Bowl | EVENT | 0.52+ |
couple | QUANTITY | 0.48+ |
IOT | TITLE | 0.48+ |
companies | QUANTITY | 0.47+ |
4K | OTHER | 0.47+ |
Lucid Cam | ORGANIZATION | 0.47+ |
Lucid | PERSON | 0.47+ |
Hollow Lens | ORGANIZATION | 0.46+ |
The Cube | COMMERCIAL_ITEM | 0.43+ |
Jack Berkowitz, Oracle - Oracle Modern Customer Experience #ModernCX - #theCUBE
(upbeat music) [Narrator] Live from Las Vegas. It's the CUBE, covering Oracle Modern Customer Experience 2017. Brought to you by Oracle. >> Welcome back everyone. We're live in Las Vegas here at the Mandalay Bay for Oracle's Modern Customer Experience conference, their second year. This is the CUBE, Silicon ANGLES flagship program. We go out to the events and extract the signal from the noise. I'm John Furrier. My co-host Peter Burris, head of research at Wikibon.com. Our next guest is Jack Berkowitz who's the Vice President of Products and Data Science at Oracle. Well, great to have you on the CUBE. Thanks for coming on. >> Thanks a lot. >> Appreciate it. Love talking to the product guys, getting down and dirty on the products. So, AI is hot this year. It's everywhere. Everyone's got an AI in their product. What is the AI component in your product? >> Well, what we're working on is building truly adaptive experiences for people. So, we have a whole bunch of different techniques and technologies all of it comes together essentially to create a system that amplifies peoples capabilities. That's really the key thing. Two real important components. First of all, it's all about data. Everybody talks about it. Well, what we've put together is, in terms of consumers, is the largest collection of consumer data in the Oracle data cloud. So we take advantage of all that consumer data. We also have a lot of work going on with collecting business data, both Oracle originated data as well as partner data. We're bringing that all that together and it sets the context for the AI. Now on top of that we have not just the latest trends in terms of machine learning or neural networks or things like that, but we're borrowing concepts from advertising, borrowing concepts from hedge funds so that we can make a real-time system. It's all about real-time. >> You mentioned neural networks. A lot of stuff conceptually in computer science has been around literally for decades. What is, from your definition - obviously cloud creates a lot of data out there now, but what is AI these days? Because everyone now is seeing AI as a mainstream term. Even the word metadata, since Snowden's thing, is now a mainstream term. Who would have thought metadata and AI would be talked about at kitchen tables? >> Yeah. >> What is AI from your perspective? >> Yeah, from my perspective it's really about augmenting folks. It's really about helping people do things. So maybe we'll automate some very manual tasks out, right, that will free up people to have more time to do some other things. I don't think it's about replacing people. People are creative. We want to get people back to being creative and people are great at problem solving so let's get them that information. Let's get them aid so they can get back to it. >> And give them options. >> Give them options, exactly. Exactly. You know, if you can free up somebody from having to manipulate spreadsheets and all this other stuff so they can just get the answer and get on with things, people are happier. >> So Oracle is using first-person data and third-person data to build these capabilities, right? >> Jack: Yeah, exactly. >> How is that going to play out? How is Oracle going to go to a customer and say we will appropriately utilize this third-person data in a way that does not undermine your first-person rights or value proposition? >> That's a great question. So, privacy and respect has been sort of the principle we've been driving at here. So there's the mechanics of it. People can opt in. People can opt out. There's all the mechanics and the regulatory side of it but it's really about how do you use these things so that it doesn't feel creepy. How do you do this in a subtle way so that somebody accepts the fact that that's the case? And it's really about the benefit to the person as to whether or not they're willing to make that trade-off. A great example is Waze. Waze I use all the time to get around San Francisco traffic. You guys probably use it as well. Well, guess what? If you really think about it, Waze knows what time I leave the house in the morning, what time I come home. Uber knows that once a month I leave at 2:00 on a Sunday and come back a week later. So, as long as you think about that, I'm getting a benefit from Waze I'm happy to have that partnership with them in terms of my data and they respect it and so therefore it works. >> And that comes back to some of the broader concepts of modern customer experience. It is that quid pro quo that I'll take a little data from you to improve the service that I'm able to provide as measured by the increasing value customer experience that's provided. >> Yeah, that's right. I used to live in London and in London there's these stores where you can go in and that sales guy has been there for like twenty years and you just develop a relationship. He knows you. He knows your kids, and so sure enough, stationary store or whatever it is and he gives you that personal experience. That's a relationship that I've built. That really all we're trying to do with all of this. We're trying to create a situation where people can have relationships again. >> And he's prompted with history of knowing you, just give you a pleasant surprise or experience that makes you go wow. And that's data driven now. So how do you guys do that? Cause this is something that, you know, Mark Heard brought up in his keynote that every little experience in the world is a data touchpoint. >> Jack: Yeah. >> And digital, whatever you're doing, so how do you guys put that in motion for data because that means data's got to be freely available. >> Data's got to be freely available. One of the big things that we brought to bear with the Suite X is that the data is connected and the experiences are connected so really we're talking about adding that connected intelligence on top of that data. So, it's not just the data. In fact we talked about it last night. It's not just the data even from the CX systems from service, but even the feed of what inventory's going on in real-time. So I can tell somebody if something's broken, hey, tell you what. This store has it. You can go exchange it, in real-time. Instead of having to wait for a courier or things like that. So it is that data being connected and the fact that our third-party data, you know this consumer data, is actually connected as well. So we bring that in on the fly with the appropriate context so it just works. >> So one of the new things here is the adaptive intelligence positioning products. What is that and take a minute to explain the features of how that came to be and how it's different from the competition. >> Okay, great. So the products are very purposeful built apps that plug in and amplify Oracle cloud apps and you can actually put in a third-party capability if you happen to have it. So that's the capability and it's got the decision science and machine learning and the data. >> Peter: So give me an example of a product. >> So a product is adaptive intelligence offers which we were showing here. It gives product recommendations, gives promotions, gives content recommendations on websites but also in your email. If you go into the store you get the same stuff and we can then go and activate advertising campaigns to bring in more people based on those successful pick ups of products or promotions. Its a great example. Very constrained use case addressed? >> Peter: Fed by a lot of different data. >> Fed by a lot of different data. The reason why they're adaptive is because they happen in real-time. So this isn't a batch mode thing. We don't calculate it the day before. We don't calculate it a week before or every three hours. It's actually click by click for you, and for you, reacting and re-scoring and re-balancing. And so we can get a wisdom of the crowds going on and an individual reaction, click by click, interaction by interaction. >> This is an important point I think that's nuanced in the industry. You mentioned batch mode which talks about how things are processed and managed to real-time and the big data space is a huge transition whether you're looking at hadoop or in memory or at all the architectures out there from batch data lakes to data in motion they're calling it. >> Yeah, exactly. >> So now you have this free flowing scalable data layers, if you will, every where, so being adaptive means what? Being ready? Being ... >> Being ready is the fundamental principle to getting to being adaptive. Being adaptive is just like this conversation. Being able to adjust, right? And not giving you the same exact answer seven times in a row because you asked me the same question. >> Or if it's in some talking point database you'd pull up from a FAQ. >> Peter: So it adapts to context. >> It's all about adapting to context. If the concepts change, then the system will adopt that context and adapt it's response. >> That's right. And we were showing last night, even in the interaction, as more context is given, the system can then pick that up and spin and then give you what you need? >> The Omni Channel is a term that's not new but certainly is amplified by this because now you have a world certainly with multiple clouds available to customers but also data is everywhere. Data is everywhere and channels are everywhere. >> Data is everywhere. And being adaptive also means customizing something at a point and time >> Exactly. and you might not know what it is up until seconds or near real-time or actually real-time. >> Real time, right? Real human time. 100 milliseconds. 150 milliseconds, anywhere in the world, is what we're striving for. >> And that means knowing that in some database somewhere you checked into a hotel, The Four Seasons, doing a little check in the hotel and now, oh, you left your house on Uber. Oh, you're the CEO of Oracle. You're in a rental car. I'm going to give you a different experience. >> Jack: Yeah. >> Knowing you're a travel warrior, executive. That's kind of what Mark Heard was trying to get to yesterday. >> Yeah, that's what he's getting to. So it's a bit of a journey, right? This is not a sprint. So there's been all this press and you think, oh my god, if I don't have ... It's a journey. It's a bit of a marathon, but these are the experiences that are happening. >> I want to pick up on 150 milliseconds is quite the design point. I mean human beings are not able to register information faster than about 80 milliseconds. >> Jack: Yeah, yeah. So you're talking about two brain cycles coming back to that. >> Jack: Yeah. >> I mean it's an analogy but it's not a bad one. >> Jack: No. >> 150 milliseconds anywhere in the world. That is a supreme design point. >> And it is what we're shooting for. Obviously there's things about networks and everything that have to be worked through but yeah, that responsiveness, but you're seeing that responsiveness at some of the big consumer sites. You see that type of responsiveness. That's what we want to get to. >> So at the risk of getting too technical here, how does multiple cloud integration or hopping change that equation? Is this one of the reasons it's going to drive customers to a tighter relationship with Oracle because it's going to be easier to provide the 150 millisecond response inside the Oracle fabric? >> Yeah, you nailed it. And I don't want to take too many shots at my competitors, but I'm going to. We don't have to move data. I don't have to move my data from me to AWS to some place else, right, Blue Mix, whatever it happens to be. And because we don't have to move data, we can get that speed. And because it's behind the fabric, as you put it, we can get that speed. We have the ability to scale the data centers. We have the data centers located where we need them. Now your recommendations, if you happen to be here today, they're here. They may transition to Sydney if you're in Australia to be able to give you that speed but that is the notion to have that seamless experience for you, even for travelers. >> That's a gauntlet. You just threw down a gauntlet. >> Jack: I did. Yeah. >> And that's what we're going to go compete against. Because what we're competing is on the experience for people. We're not competing on who's got the better algorithm. We're competing on that experience to people and everything about that. >> So that also brings up the point of third-party data because to have that speed certainly you have advantages in your architecture but humans don't care about Oracle and on which server. They care about what's going on on their phone, on their mobile. >> Jack: That's right. >> Okay, so the user, that requires some integration. So it won't be 100 percent Oracle. There's some third-party. What's the architecture, philosophy, guiding principles around integrating third-party data for you guys. Because it's certainly part of the system. It's part of the product, but I don't think it's ... >> So there's third=party data which could be from data partners or Oracle originated data through our Oracle data cloud or the 1500 licensed data partners there and there's also third-party systems. So for example if somebody had Magento Commerce and they wanted to include that into our capability. On the third party systems, we actually have built this around an API architecture or infrastructure using REST and it's basically a challenge I gave my PMs. I said look, I want you to test against the Oracle cloud system. I want you to test against the Oracle on-prem system and I want you to find the leading third-party system. I don't care if it's sales force or anybody else and I want you to test against that and so as long as people can map to the REST APIs that we have, they can have inter-operation with their systems. >> I mean the architectural philosophy is to decouple and make highly cohesive elements and you guys are a big part of that with Oracle as a component. >> Jack: That's right. >> But I'm still going to need to get stuff from other places and so API is a strategy and microservices are all going to be involved with that. >> Yeah, and actually we deployed a full microservice architecture so behind the scenes on that offers one, 19 microservices interplaying and operating. >> But the reality is this is going to be one of the biggest challenges that answers faces is that how we bridge, or how we gateway, cloud services from a lot of different providers is a non-trivial challenge. >> Jack: That's right. >> I remember back early on in my career when we had all these mini computer companies and each one had their own proprietary network on the shop floor for doing cell controllers or finance or whatever it might be and when customers wanted to bring those things together the mini computer companies said, yeah, put a bridge in place. >> Yeah, exactly. >> And along came TCPIP and Cisco and said forget that. Throw them all out. It wasn't the microprocessor that couldn't stick to those mini computer companies. It was TCPIP. The challenge that we face here is how are we going to do something similar because we're not going to bridge these things. The latency and the speed, and you hit the key point, where is the data, is going to have an enormous impact on this. >> That's right. And again, the investments we have been making with the CX Cloud Suite will allow us to do that. Allow us to take advantage with a whole bunch of data right away and the integration with the ODCs, so we couldn't probably have done this two or three years ago because we weren't ready. We're ready now. And now we can start to build it. We can start to take it now up to the next level. >> And to his point about the road map and TCPIP was interesting. We're all historians here. We're old enough to remember those days, but TCPIP standardized the OSI model which was a fantasy of seven layers of open standards if you remember. >> Jack: Seven layers, yep, whew. >> Peter: See we still talk about it. >> What layer are you on? >> But at the time, the proprietary was IBM and DEC owned the network stacks so that essentially leveled off there so the high-water mark was operating at TCPIP. Is there an equivalent analog to that in this world because IF you can almost take what he said and say take it to the cloud and say look at some point in this whatever stack you want to call it, if it is a stack, there has to be a moment of coalescing around something for everybody. And then a point of differentiation. >> So yeah, and again I'm just going to go back - and that's a great question by the way and it's - I'm like thinking this through as I say it, but I'm going to go right back to what I said. It's about people. So if I coalesce the information around that person, whether that person is a consumer or that person's a sales guy or that person's working on inventory management or better yet disaster relief, which is all those things put together. It's about them and about what they need. So if I get that central object around people, around companies then I have something that I can coalesce and share a semantic on. So the semantic is another old seven layer word. I didn't want to say it today but I can have ... >> Disruptive enabler. >> So then what you're saying is that we need a stack, and I use that word prohibitively, but we need a way of characterizing layer seven application so that we have ... >> Or horizontal >> Either way. But the idea is that we need to get more into how the data gets handled and not just how the message gets handled. >> Jack: That's right. >> OSI's always focused on how the message got handled. Now we're focused on how the data gets handled given that messaging substraight and that is going to be the big challenge for the industry. >> Jack: Yeah. >> Well, certainly Larry Ellis is going to love this conversation, OSI, TCPIP, going old school right here. >> Jack: Like you said, we're all old and yeah, that's what we grew up in. >> Yeah, but this is definitely ... >> Hey, today's computers and today's notions are built on the shoulders of giants. >> Well the enabling that's happening is so disruptive it's going to be a 20 or 30 year innovation window and we're just at the beginning. So the final question I have for you Jack is summarize for the folks watching. What is the exciting things about the AI and the adaptive intelligence announcements and products that you guys are showing here and how does that go forward into the future without revealing any kind of secrets on Oracle like you're a public company. What's the bottom line? What's the exciting thing they should know about? >> I think the exciting thing is that they're going to be able to take advantage of these technologies, these techniques, all this stuff, without having to hire a thousand data scientists in a seven month program or seven year program to take advantage of it. They're going to be able to get up and running very, very quickly. They can experiment with it to be able to make sure that it's doing the right thing. From a CX company, they can get back to doing what they do which is building great product, building great promotions, building a great customer service experience. They don't have to worry about gee, what's our seven year plan for building AI capabilities? That's pretty exciting. It lets them get back to doing what they do which is to compete on their products. >> And I think the messaging of this show is really good because you talk about empowerment, the hero. It's kind of gimmicky but the truth is what cloud has shown in the world is you can offload some of those mundane stuff and really focus on the task at hand, being creative or building solutions, or whatever you're doing. >> Yeah. Mark was talking about it. You have this much money to spend, what's my decision to spend it on. Spend it on competing with your products. >> All right, Jack Berkowitz live here inside the CUBE here at Oracle's Modern Customer Experience, talking about the products, the data science, AI's hot. Great products. Thanks for joining us. Appreciate it. Welcome to the CUBE and good job sharing some great insight and the data here. I'm John Furrier with Peter Burris. We'll be back with more after this short break. (upbeat music)
SUMMARY :
Brought to you by Oracle. Well, great to have you on the CUBE. What is the AI component in your product? and it sets the context for the AI. Even the word metadata, since Snowden's thing, Let's get them aid so they can get back to it. from having to manipulate spreadsheets And it's really about the benefit to the person And that comes back to some of the broader concepts or whatever it is and he gives you that personal experience. that every little experience in the world got to be freely available. One of the big things that we brought to bear What is that and take a minute to explain the features and machine learning and the data. to bring in more people based on those successful pick ups We don't calculate it the day before. and the big data space is a huge transition So now you have this free flowing scalable data layers, Being ready is the fundamental principle Or if it's in some talking point database If the concepts change, then the system will adopt and then give you what you need? available to customers but also data is everywhere. Data is everywhere. and you might not know what it is 150 milliseconds, anywhere in the world, I'm going to give you a different experience. to get to yesterday. So there's been all this press and you think, is quite the design point. coming back to that. 150 milliseconds anywhere in the world. that have to be worked through but yeah, but that is the notion to have that seamless experience That's a gauntlet. Jack: I did. We're competing on that experience to people because to have that speed certainly It's part of the product, but I don't think it's ... and so as long as people can map to the REST APIs I mean the architectural philosophy is to decouple and microservices are all going to be involved with that. full microservice architecture so behind the scenes on But the reality is this is going to be one on the shop floor for doing cell controllers or finance The latency and the speed, and you hit the key point, And again, the investments we have been making And to his point about the road map and say take it to the cloud and say look and that's a great question by the way so that we have ... But the idea is that we need to get more OSI's always focused on how the message got handled. to love this conversation, OSI, TCPIP, Jack: Like you said, we're all old and yeah, are built on the shoulders of giants. and how does that go forward into the future without It lets them get back to doing what they do in the world is you can offload some of those mundane stuff You have this much money to spend, and the data here.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mark Heard | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Jack Berkowitz | PERSON | 0.99+ |
Larry Ellis | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Mark | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
DEC | ORGANIZATION | 0.99+ |
Sydney | LOCATION | 0.99+ |
20 | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
150 milliseconds | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
seven year | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
30 year | QUANTITY | 0.99+ |
Snowden | PERSON | 0.99+ |
twenty years | QUANTITY | 0.99+ |
a week later | DATE | 0.99+ |
100 milliseconds | QUANTITY | 0.99+ |
Waze | ORGANIZATION | 0.99+ |
seven times | QUANTITY | 0.99+ |
1500 licensed data partners | QUANTITY | 0.99+ |
150 millisecond | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Mandalay Bay | LOCATION | 0.99+ |
100 percent | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.98+ |
Seven layers | QUANTITY | 0.98+ |
Blue Mix | ORGANIZATION | 0.98+ |
19 microservices | QUANTITY | 0.98+ |
two | DATE | 0.98+ |
last night | DATE | 0.98+ |
First | QUANTITY | 0.98+ |
second year | QUANTITY | 0.98+ |
Wikibon.com | ORGANIZATION | 0.98+ |
each one | QUANTITY | 0.98+ |
about 80 milliseconds | QUANTITY | 0.97+ |
One | QUANTITY | 0.97+ |
Hu Yoshida, Hitachi Data Systems & Jack Rondoni, Brocade - CUBEconversations - #theCUBE
hey welcome back everybody Jeff Rick here or the cube conversation and the SiliconANGLE cubes Palo Alto studio a little bit of a break and the crazy conference season so here to kind of fix the gear and take things up and sit down and in the context of a conversation outside of a show to really get the update and we're really excited to be joined here by two guests who are announcing a pretty exciting deal that's happening today is who you shoot a CTO of Hitachi Data scissors welcome again to you and jack mazzoni vice president storage networking at brocade welcome thank you so let's just jump right into it tell everybody what happened today and why this is big news yeah sure I'm gonna start it and so what we're announcing today is broke aids developed its its next-gen called gen-6 fibre channel switches and it's a whole portfolio and we're very excited that hitachi who resells the OEM are our product to to their customer base is launching on the state as well so we're very excited about that and it's big news right and so you'll be able to buy this product today from hitachi for all the great customers that we have out there today and that's the big announcement excellent and why is this important to your customers well this is just the next evolution in fibre channel I mean 32 gigabit per second don't you know we were just on 16 now not long ago and so it's going to open up a lot of bandwidth open up you know more workload being processed provide new opportunities for new applications as well so it's funny a lot a lot of talk on you know already it in the end of Moore's law we're going to be able to squeak out more compute power outage micro processors and stuff but it sounds like you guys are squeezing out a lot more performance on the network yeah I know absolutely and one thing that you know Hugh mentioned earlier which I thought was great is you know when you get performance like this in the network and you just get performance in general enables consolidation enables efficiencies right and when flash is able to go and allow you to do let's say the same or more amount of workloads with less course that's a good thing right and and the networks then got to be able to handle that and it's that kind of efficiencies that when we can jointly bring to our customers that allows them to then spend the time and think about how they transform their IT operations right into this digital transformation era into into enabling IT to be the strategic foundation to go drive the enterprise right and I know sometimes it's hard to to make that connection all the way from Genesis fibre channel to that that's how that connection goes so so it's it's been a proven winner to drive performance it saves money it saves it enables innovation and I think the commitment that brocade and Hitachi have had to to quality to the highest levels of reliability and customer service over the years has really been a cornerstone of our success it's been a great partnership I know our CEO likes to say we partner better than anybody in the industry and that's absolutely true and Hitachi has just been one of those fantastic partners for us for over a decade now so let's unpack that a little bit why is partnership so important and not only just specifically between the two companies here but you know we go to a ton of shows and every show now even if it's a specific vendor like the pentaho show is a whole ecosystem right nobody can do it alone anymore and there's a really kind of renewed focus around the ecosystem and and everyone kind of coming together at the end of the day provide solutions to customers that are going to solve problems so it's a very important piece of it yeah and I think you've a great example that is if it really is a requirement if you think about private cloud infrastructures and converge infrastructures you're bringing so many elements together to deliver a total solution and Hitachi UCP is a great example where you have you know great technologies from hitachi in there we've been able to participate some of our fibre channel as well as our IP storage switches we were able to participate with that and so really I think if you want to participate in a cloud type of architecture whether it's public private hybrid you're going to have to partner you're going to have to particles you may not have all the technologies you may not have all the specialties and customers could require that on at some some levels that's kind of my take on it yes I mean you know we could have tried to develop our own fibre channel switches but you know that would have taken a lot more effort and time and distraction from what our core competencies are you know I mean brocade has a conference season networking both IP and fibre channel networking so it doesn't make any sense for us to try to do that which is better to partner with that right so and the future is going to be all about partnering and and more toward open source to right and the other thing that we find over and over again is really the changing expectations of the way software performs and we hear it all the time you know that why doesn't the software at my work perform like the software on my phone and why isn't it faster and why isn't it more integrated with other sources of information so the demand for better faster stronger applications is only going to increase right nobody wants less data though he wants less performance buddy wats less latency and especially in kind of an API world where all these applications are now not just siloed stacks of applications but they're pulling data from all sorts of places the speed and latency really becomes critical yeah I know I absolutely right and that's why I think this announcement and the construct of the you know the all-flash data center and all the advancements happening with flash is so important it's that linkage and then what the applications can do once they take advantage that you know I always tell people it's like remember the first time your laptop went to a all flash disk remember that experience like via the old spinning disk you're booting up well go to windows right and then you with all flash it was like that emotional experience or how great it was right you take that level at an enterprise level right where you have thousands and thousands of thousands of disks running thousands of applications and now you bring in flash and then around the corner you ring in nvme it's amazing to think about what's going to be coming down the future right and we're very excited about our position it really being it that the the central point of if you will where all this information flow has to go through the network and you know whether it's fibre channel whether it's IP you know we're going to keep to our core values which is you know the highest levels of qualities resiliency bringing in the analytics and partner partner with the top quality companies in the world such as itachi and what was interesting about this release is you added a lot more than a tease a lot more manageability lot more reporting a lot more visibility you know one of the big themes obviously in big data is to move from you know reactive to predictive too prescriptive right and so to have the management layer to have kind of the extra amount of information that you can take advantage of because you've got excess capacity and the pipes if you will and better connectivity to the infrastructure enables a whole different layer of management is which is if you've talked about you and prior interviews you people have to manage a lot more right they're not managing individual boxes anymore now whole different scale man need to be able to automate that those management tools helps us to automate that the infrastructure management also the security part is very important you know the security that brocade brings them into their right into the switch itself right and the security is an interesting point right because that's again a consistent theme everywhere we go it's the old moat just doesn't work anymore the mode and the castle walls now you really have to have security baked in all over the place and the data layer the networking layer all over the place it was the interesting thing is if you think about fiber channel all right let's just offer five channels of technology it is fundamentally right more secure than Ethernet oh we love you know really a great IP portfolio and everything but if you think about Ethernet or excuse me fibre channel when you plug in it it's off by default well first it's a separate network all together right so that's that's one layer secure but it's an off by default meaning that just get you plug in doesn't mean you have access to anything you know you got to go through one man here go there's only going to go through some other stuff but some people say its complexity but but you're at least now actively saying how are the communication is going to happen thin within the this network or either that's really the opposite right because the benefit ethering you plug it in and hey everybody's connected right that's what you want but but when it comes to enterprise let's say storage applications that needs a really but is that the behavior you want that anything that just plugs into it all of a sudden now can connect and and that's one thing that gets kind of lost sometimes than the discussions and the monitor data centers and here I'm really glad that you brought it up and you dropped out of to Jeff it's it's we realize that we're adding more things into it right we're adding more capabilities for in-flight encryption you mentioned forward error correction so the other capabilities were built in it so we take security very seriously and and inherently I think that's another reason that the viability of fibre channel has remained for as long as it has been yeah and it just own it one more time you know kind of what are some of the specific benefits that came out of you two working together for this launch how are you really kind of taking advantage of each other's strengths to really provide a better solution today that people can go out and get well one of the things is they offer backward compelled compatibility we're with two generations right right and that enables us we have a lot of legacy things that we've got to bring forward they don't just rip everything out and put in all these stuff turn the data center off for the weekend is my bonus so you know it gives us that easy transition migration into these higher higher technology levels big one yeah a big one yeah and I think when when the in the porn part two is when we deliver our systems to itachi they test it with their latest and greatest storage they do this full you know systems total solution test so when a customer that brings it into the environment it's it's been fully tested completely NM by brocade and hitachi and then to Hugh's point it's it also then works its backward compatible with everything in the environment nothing's going to you know that nothing will ever break but you know so much time and effort is put into making sure everything runs to seamless as possible because again you have to think about the environments that we're in all right those from mission-critical big environments they got to solve some serious problems they're not up for science projects they're not for risk right yes they have to advance the technology but it's got it done be done in a way that a mitigator essence done a responsible way and that's where I think when you bring their storage and our network together as well as their servers right we have our technology part of their server solutions as well you get some very compelling solutions all right well congratulations to both of you and also to the team's I'm sure there was a lot of work that went up into this day and it's always a relief to get here so thanks for stopping by and sharing the story thank you absolutely right with you and Jack I'm chef Rick you're watching the Q's the cube conversation from Palo Alto thanks for watching we'll see you next time
**Summary and Sentiment Analysis are not been shown because of improper transcript**
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hitachi | ORGANIZATION | 0.99+ |
Jeff Rick | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
hitachi | ORGANIZATION | 0.99+ |
Hitachi Data Systems | ORGANIZATION | 0.99+ |
jack mazzoni | PERSON | 0.99+ |
two companies | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
Rick | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
two guests | QUANTITY | 0.99+ |
Hugh | PERSON | 0.99+ |
today | DATE | 0.99+ |
itachi | ORGANIZATION | 0.99+ |
brocade | ORGANIZATION | 0.99+ |
thousands of applications | QUANTITY | 0.99+ |
Jack Rondoni | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.98+ |
both | QUANTITY | 0.98+ |
a ton of shows | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
two | QUANTITY | 0.96+ |
one layer | QUANTITY | 0.95+ |
windows | TITLE | 0.95+ |
two generations | QUANTITY | 0.95+ |
five channels | QUANTITY | 0.94+ |
first time | QUANTITY | 0.94+ |
every show | QUANTITY | 0.94+ |
16 | QUANTITY | 0.94+ |
first | QUANTITY | 0.94+ |
thousands of thousands of disks | QUANTITY | 0.94+ |
Moore | PERSON | 0.93+ |
over a decade | QUANTITY | 0.93+ |
one thing | QUANTITY | 0.92+ |
32 gigabit per second | QUANTITY | 0.91+ |
NM | ORGANIZATION | 0.88+ |
one more | QUANTITY | 0.8+ |
a lot of work | QUANTITY | 0.78+ |
vice | PERSON | 0.78+ |
Hitachi Data | ORGANIZATION | 0.72+ |
Hu Yoshida | PERSON | 0.71+ |
Genesis | ORGANIZATION | 0.7+ |
SiliconANGLE | ORGANIZATION | 0.64+ |
lot of | QUANTITY | 0.58+ |
part two | QUANTITY | 0.56+ |
Brocade | ORGANIZATION | 0.5+ |
Jack Norris, MapR - Spark Summit East 2016 #SparkSummit #theCUBE
>>From New York expecting the signal to nine. It's the cube covering sparks summit east brought to you by spark summit. Now your hosts, Dave Volante and George Gilbert >>Right here in Midtown at the Hilton hotel. This has sparked somebody and this is the cube. The cube goes out to the events. We extract the signal from the noise. Jack Norris is here. He's the CMO of Mapbox, long time cube, alum jackets. It's great to see you again. Hey, if you've been here since the beginning of this whole big data >>Meme and it might've started here, I don't know. I think we've yeah, >>I think you're right. I mean, it really did start it. I think in this building, it was our first big data show at the original, you know, uh, uh, Hadoop world. And, uh, and you guys, like I say, I've been there from the start. Uh, you were kind of impatient early on. You said, you know, we're just going to go build solutions and, uh, and ignore the noise and you built a really nice, nice business. Um, you guys have been growing, you're growing your Salesforce and, uh, and things are good and all of a sudden, boom, the spark thing comes in. So we're seeing the evolution. I remember saying to George and the early days of a dupe, we were geeking out talking to all the bits and bytes and then it turned into a business discussion. It's like we're back to the hardcore bits and bites. So give us the update from Matt bar's point of view, where are we in the whole big data space? >>Well, I think, um, I think it has transitioned. I mean, uh, if you look at the typical large fortune company, the web to Datto's, it's really, how do we best leverage our data and how do we leverage our data in that we can, we can make decisions much faster, right? That high-frequency decision-making process. Um, and typically that involves taking production data and analytics and joining them together so that you're actually impacting business as it happens and to do that effectively requires, um, innovations. So the exciting thing about spark is taking and, uh, and having a distributed compute engine, it's much easier to develop and, uh, in much faster. >>So in the remember the early days we'd be at these shows and the big question was, you know, can you take the humans out of the equation? It's like, no, no humans are the last mile. Um, is that, is that changing or would we still need that human interaction or, >>Um, humans are important part of the process, but increasingly if you can adjust and make, you know, small algorithmic decisions, um, and, and make those decisions at that kind of moment of truth, you got big impact, and I'll give you a few examples. So, um, ad platforms, you know, Rubicon project over a hundred billion ad auctions a day, you know, humans, part of that process in terms of setting that up and reviewing the process, but each, you know, each supply and demand decision, there is an automated decision optimizing that has a huge impact on the bottom line, um, fraud, uh, you know, credit card swiping that transaction and deciding is this fraudulent or not avoiding false positives, et cetera, a big leveraged item. So we're seeing things like that across manufacturing, across retail healthcare. And, um, it isn't about asking bigger questions or doing reports and looking back at, you know, what happened last week. It's more, how can I have an infrastructure in place that allows this organization to be agile? Because it's not the companies with the most data that's going to win. It's the companies that are the most agile and making intelligent. >>So it's so much data. Humans can ingest it any faster. I mean, we just, we can't keep up. So the world needs data scientists that needs trained developers. You've got some news I want to talk about on the training side, but even that we can only throw so many bodies at the problem. So it's really software. That's going to allow us to scale it. Software's hard. Software takes time. So we've seen a lot of the spend in the analytics, big data world on, on services. And obviously you guys and others have been working hard to shift it towards software. I want to come back to that training issue. We heard this morning about, uh, Databricks launched a move. They trained 20,000 people. That's a lot, but still long way to go. You guys are putting some investment into training. Talk about that news. Yeah. >>Yeah. Um, well it starts at the underlying software. If you can do things in the platform to make it much easier and do things that are hard to surround with services, like, uh, data protection, right? If you've lost data, it doesn't matter how many people you throw at it, you can't recover it. Right. So that's kind of the starting point you're gonna get fired. >>The, the, uh, the approach we've taken is, is to take, uh, a software product approach to the training as well. So we rolled out on demand training. So it's free, it's on demand. You work at your own pace. It's got different modules, there's some training associated with that, or some hands-on labs, if you will. Um, we launched that last January. So it's basically coming up the year anniversary. We recently celebrated, we trained 50,000 people, uh, on, on Hadoop and big data. Um, today we're announcing expansion on spark classes. We've got full curriculum around spark, including a certification. So you can get sparked certification through this, this map, our on demand training. Okay. >>Gotcha. You said something really, really intriguing that I want to dive into a little bit is where we were talking about the small decisions that can be made really, really fast for that a human in the loop human might have to train them, but it at runtime now where you said, it's not about asking bigger questions, it's finding faster answers, um, what had to change in your platform or in the underlying technology to make that possible. >>You know, um, there's a lot that into it. It's typically a series of functions, uh, a kind of breadth that needs to be brought to the problem as well as squeezing out latencies. So instead of, um, the traditional approach, which is different applications and different analytic techniques dictate a separate silo, a separate, you know, scheme of data. And you've got those all around the organization and data kind of travels, and you get an answer at the end of some period of time. Uh, it's converging that altogether into a single platform, squeezing out those latencies so that you can have an informed action at the speed of business, if you will. And, >>Um, let's say spark never came along. Would that be possible? >>Yes. Yes. Would you, how would you, so if you look at kind of the different architectures that are out there, there's typically deep analytics in terms of, you know, let's go look at the trends, you know, the last seven years, what happened. And then look, let's look at, um, doing actions on a streaming set, say for instance, storm, and then let's do a real time database operations. So you could do that with, with HBase or map RDB and all of that together. What spark has really done is made that whole development process just much easier and much more streamlined. And that's where a lot of the excitements happen. >>So you mentioned earlier, um, to, to use cases, ad tech and fraud detection. Um, and I want to ask you about those in the state of those. So ad tech obviously has come a long way, but it's still got a ways to go. I mean, you look at, I mean, who's making money on ads. Obviously Google will make tons of money. Everybody else is sorta chasing them Facebook making money. It's probably cause they didn't let Google in. Okay. So how will spark affect sort of that business? Uh, and, and what's map, R's sort of role in evolving that, you know, to the next level. >>So, so, um, there's, there's different kind of compute and the types of things you can do, um, on the data. I think increasingly we're seeing the kind of streaming analytics and making those decisions as the data arrives, right. And then there's the whole ecosystem in terms of how do you coordinate those flows of data? It's not just a simple, here's the origin, here's the destination. There's typically a complex data flow. Um, that's where we've kind of focused on map our streams, this huge publish and subscribe infrastructure so that you can get real-time data to the appropriate location and then do the right operations, a lot of that involved with spark, but not exclusively. >>Okay. And then on fraud detection, um, obviously come a long way. Sampling could have died. Yes. And now, but now we're getting too many false positives. You get the call and, you know, I mean, I get a lot of calls because we can buy so much equipment, but, um, but now what about the next level? What are you guys doing to take fraud detection to the next level? So that when I get on the plane in Boston and I land in London, it knows, um, is that a database problem? Is it an integration problem, a systems problem, and how, what role you guys play in solving that? >>Well, there's, there's, um, you know, there's, there's a lot of details and techniques that probably go, um, beyond, you know, what, what we'll share publicly or what are our customers talk about publicly? I think in general, it's the more data that you can apply to a problem. The more context, the better off you are, that's the way I kind of summarize it so that instead of a sampling or instead of a boy, that's a strange purchase over there, it's understanding, well, this is Dave Valenti and this is the full body of, of, uh, expenditures he's done, then the types of things and here's who he frequently purchases from. And here's kind of a transaction trend started in San Francisco, went to New York, et cetera. So in context it would make more sense. So >>Part of that is more data. And the other part of that is just better algorithms and better, better learnings and applying that on a continuous basis. How are your customers dealing with that, that constraint? I mean, if they got a, a hundred dollars to spend, yeah. They can only spend so much on, on each of those gathering more data, cleaning the data, they spent so much time getting it ready versus making their machine learning algorithms or whatever the other techniques to do. What are you seeing there as sort of best practice? It was probably varies. I'm sure, but give us some color on it. >>Um, I'll actually go back to Google and Google a letter last round, um, you know, excellent, excellent insights coming from Google. They wrote a paper called the unreasonable effectiveness of data and in it, they basically squarely addressed that problem. And given the choice to invest in either the complex model and algorithm or put more data at it, putting more data, had a huge impact. And, um, you know, my simple explanation is if you're sampling the data, you have to have a model that tries to recreate reality. If you're looking at all of the data, then the anomalies can, can pop up and be more apparent. And, um, the more context you can bring, the more data from other sources. So you get around, you know, a better picture of what's happening, the better off you are. And so that requires scale. It requires speed and requires different techniques that can be brought to bear, right? The database operation, here's a streaming operation, here's a deep, you know, file machine learning algorithm. >>So there's a lot of vendors in the sort of big data ecosystem are coming at spark from different angles and, um, are, are trying to add value to it and sort of bathe themselves in sort of the halo. Yep. Now you guys took some time upfront to build a converged platform so that you weren't trying to wrap your arms around 37 different projects. Can you tell us how having perhaps not anticipated spark how this converts platform allows you to add more value to it than other approaches? >>So, so we simplify, if you look at the Hadoop ecosystem, it's basically separated into the components for compute and management on top of the data layer, right? The Hadoop distributed file system. So how do you scale data? How do you protect it? It's very simply what's going on. Spark really does a great job at that top layer. Doesn't do anything about defining the underlying storage layer in the Hadoop community that underlying storage layer is a batch system. So you're trying to do, you know, micro batch kind of streaming operations on top of batch oriented data. What we addressed was to take that whole data layer, make it real time, make it random. Read-write converge enterprise storage together with Hadoop support and spark support on a single platform. And that's basically >>With the difference and to make an enterprise great. You guys were really the first to lead the lecture. You were, everybody started talking about attic price straight after you were kind of delivering it. So you've had a lead there. Do you feel like you still have a lead there, or is that the kind of thing where you sort of hit the top of the S-curve and start innovating elsewhere? >>NC state did a study, uh, just this past year, a recent study identified that only 25% of data corruption issues are identified and properly handled by the Hadoop distributed file system. 42% of those are silent. So there's a huge gap in terms of quote unquote enterprise grade features and what we think. >>Yes, silent data corruption has been a problem for decades now. And you're saying it's no different in the duke ecosystem, especially as, as mainstream businesses start to, uh, to adopt this what's happening in the valley. Uh, we're seeing, you know, in the wall street journal every day you read about down rounds, flat rounds, people can't get B rounds. Uh, you guys are funded, you know, you're growing, you're talking about investments, you know, what do you see? Do you, do you feel like you're achieving escape velocity? Um, maybe give us sort of an update on, uh, the state of the business. >>Yeah. I, I think the state of the business is best represented by the customers, right? And the customers kind of vote, right. They vote in terms of, you know, how well is this technology driving their business? So we've got a recent study, um, that kind of shows the, the returns that customers, um, are getting, uh, we've got a 1% chance, a 99% retention rate with our customers. We've got, uh, an expansion rate. That's, that's unbelievable. We've got multi-million dollar customers in, uh, in seven of the top verticals and nine out of the top $10 million customers. So we're seeing significant investments and more importantly, significant returns on the part of customers where they're not just doing a single application on the platform, but multiple >>Applications, Jack Norris map are always focused. Always a pleasure having you on the cube. Thanks very much for coming on. Appreciate it. Keep right there, buddy. We'll be back with our next guest is the cube we're live from spark somebody's right back. Okay.
SUMMARY :
covering sparks summit east brought to you by spark summit. It's great to see you again. I think we've yeah, You said, you know, we're just going to go build solutions and, if you look at the typical large fortune company, So in the remember the early days we'd be at these shows and the big question was, you know, and reviewing the process, but each, you know, each supply and demand decision, And obviously you guys and others have been working hard to shift it towards software. If you can do things in the platform to make it much easier and do things that are hard to surround So you can get sparked certification through really fast for that a human in the loop human might have to train them, but it at runtime around the organization and data kind of travels, and you get an answer at the end of some period Would that be possible? let's go look at the trends, you know, the last seven years, what happened. So you mentioned earlier, um, to, to use cases, ad tech and fraud detection. so that you can get real-time data to the appropriate location and then do the right operations, You get the call and, you know, I mean, I get a lot of calls because we can buy so much equipment, but, The more context, the better off you are, that's the way I kind of summarize What are you seeing there as sort of best practice? um, you know, my simple explanation is if you're sampling the data, this converts platform allows you to add more value to it than other approaches? So how do you scale data? You were, everybody started talking about attic price straight after you were kind of delivering it. and properly handled by the Hadoop distributed file system. you know, in the wall street journal every day you read about down rounds, flat rounds, people can't get B rounds. They vote in terms of, you know, Always a pleasure having you on the cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Valenti | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
New York | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
George | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
George Gilbert | PERSON | 0.99+ |
99% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
42% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Databricks | ORGANIZATION | 0.99+ |
50,000 people | QUANTITY | 0.99+ |
nine | QUANTITY | 0.99+ |
20,000 people | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
Datto | ORGANIZATION | 0.99+ |
last January | DATE | 0.99+ |
$10 million | QUANTITY | 0.98+ |
seven | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Mapbox | ORGANIZATION | 0.98+ |
today | DATE | 0.97+ |
1% | QUANTITY | 0.97+ |
Hadoop | TITLE | 0.97+ |
Matt | PERSON | 0.96+ |
single platform | QUANTITY | 0.96+ |
NC | ORGANIZATION | 0.95+ |
this morning | DATE | 0.95+ |
single application | QUANTITY | 0.94+ |
25% | QUANTITY | 0.94+ |
Midtown | LOCATION | 0.93+ |
first big | QUANTITY | 0.92+ |
Rubicon | ORGANIZATION | 0.92+ |
37 different projects | QUANTITY | 0.92+ |
last seven years | DATE | 0.89+ |
over a hundred billion ad auctions a day | QUANTITY | 0.88+ |
this past year | DATE | 0.86+ |
spark | ORGANIZATION | 0.85+ |
multi-million dollar | QUANTITY | 0.84+ |
decades | QUANTITY | 0.83+ |
a hundred dollars | QUANTITY | 0.79+ |
data corruption | QUANTITY | 0.7+ |
HBase | TITLE | 0.67+ |
Hilton | ORGANIZATION | 0.67+ |
RDB | TITLE | 0.64+ |
Spark | ORGANIZATION | 0.57+ |
MapR | ORGANIZATION | 0.57+ |
map | TITLE | 0.57+ |
Salesforce | ORGANIZATION | 0.53+ |
2016 | EVENT | 0.51+ |
- Spark Summit | EVENT | 0.46+ |
East | LOCATION | 0.42+ |
Jack Norris - Hadoop on the Hudson - theCUBE
>>Live from New York city. It's cute. here's your host? Jeff Frick. >>Hi, Jeff Frick here with the Q we're on the ground at the USS Intrepid at the Hadoop on the Hudson party put on by Matt BARR. It's uh, I think it's the party of the night tonight here in big data week, New York city with strata cough, a dupe world, big data NYC. So Jack a great >>Venue. Yeah, it's excellent. Here. >>The place is filled. I'm just struck by the technology. There's a Gemini capsule over there, about 50 years old. It's about the size of a Volkswagen, I think would be much bigger. And to think that those guys went up into space with probably less technology than is on your four year old flip phone. Amazing. Yeah. >>Not, not much data at all. No. If >>You look at it, just kind of get that bounce on the gravity thing, which I never quite understood. So talk about you guys had some big news today. Once you give us a rundown on some of the announcements, >>We had two big announcements. One was incorporating the map RDB and our community edition that came out. We also reported results from our customers where the majority of customers reported less than a 12 month payback, uh, 65% of five X or greater return and 40%, 10 X or greater. And that included a subset of those customers that had experienced with other distributions. So kind of a Testament to when you get serious about Hadoop, you get serious with Mapbox >>And when they're getting those return on investments, we're always trying to explore where's the big, the big ROI, because it's really in value that's released for the customer. It's not necessarily because it's a cheaper way to do it, >>Right? So, so there are some costs that 63% was cost reduction that was driving it about 41% were top-line revenue projects. And about 23% were related to risk reduction and risk mitigation. And if you add those up, it's greater than a hundred percent because of many customers that are doing multiple applications. >>Great. So you've been coming to Hadoop world for longer than you would admit to me before we came on camera and, and the baseball playoffs are going on right now. I mean, we like to talk in sports analogy. So kind of where are we in, in kind of what inning are we in this adoption of big data and the duke specifically >>Early, early innings. Um, but, uh, what we've seen is the bases are loaded and we're up >>And it's it. And it seems to be we're way past now the POC stage. Now we're really getting in there for that. >>And the, the customer announcement, we did kind of shows how people are hitting it out of the park with Hadoop. And a lot of that is by impacting the operations, impacting the business as it happens. And that's coupling analytics plus this higher arrival rate data from a variety of sources and making adjustments so that you can impact revenue as businesses happening. You can mitigate risk as it's happening. It's not just reporting, looking back >>Function. Right, right. It's being able to react in real time, which is defined by, in time to do something about it. Right. Exactly. All right. Well, thanks for hosting a great party, Jack Norris. Here we are on the ground, uh, at the USS Intrepid at the Hadoop on the Hudson. Uh, uh, if you take a nice picture, tweet that in. I think they got some prizes. Hadoop Hudson is a hashtag Jeff Frick on the ground. You're watching the cube. Thanks. Big ship.
SUMMARY :
It's cute. It's uh, I think it's the party of the night tonight here And to think that those guys went up into space with probably less technology than is on your four Not, not much data at all. You look at it, just kind of get that bounce on the gravity thing, which I never quite understood. So kind of a Testament to when you get serious about Hadoop, And when they're getting those return on investments, we're always trying to explore where's the big, And if you add those up, it's greater than a hundred percent because of many customers that are doing multiple applications. So kind of where are we in, Um, but, uh, what we've seen is the bases are loaded and we're up And it seems to be we're way past now the POC stage. And a lot of that is by impacting the operations, It's being able to react in real time, which is defined by,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Frick | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
Jack Norris | PERSON | 0.99+ |
Matt BARR | PERSON | 0.99+ |
65% | QUANTITY | 0.99+ |
63% | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
10 X | QUANTITY | 0.99+ |
New York city | LOCATION | 0.99+ |
NYC | LOCATION | 0.99+ |
today | DATE | 0.99+ |
greater than a hundred percent | QUANTITY | 0.99+ |
about 23% | QUANTITY | 0.99+ |
Volkswagen | ORGANIZATION | 0.98+ |
two big announcements | QUANTITY | 0.98+ |
Jack | PERSON | 0.98+ |
about 41% | QUANTITY | 0.98+ |
five X | QUANTITY | 0.98+ |
about 50 years old | QUANTITY | 0.94+ |
Mapbox | ORGANIZATION | 0.93+ |
Hadoop | TITLE | 0.93+ |
tonight | DATE | 0.91+ |
less than a 12 month | QUANTITY | 0.91+ |
Hudson | LOCATION | 0.87+ |
Hadoop | LOCATION | 0.86+ |
four year old | QUANTITY | 0.83+ |
Hadoop on | LOCATION | 0.78+ |
USS Intrepid | ORGANIZATION | 0.76+ |
map RDB | TITLE | 0.68+ |
Hadoop Hudson | TITLE | 0.68+ |
Gemini | COMMERCIAL_ITEM | 0.53+ |
some | QUANTITY | 0.5+ |
Hadoop on the | TITLE | 0.5+ |
Jack Norris - Hadoop Summit 2014 - theCUBE - #HadoopSummit
>>The queue at Hadoop summit, 2014 is brought to you by anchor sponsor Hortonworks. We do, I do. And headline sponsor when disco we make Hadoop invincible >>Okay. Welcome back. Everyone live here in Silicon valley in San Jose. This is a dupe summit. This is Silicon angle and Wiki bonds. The cube is our flagship program. We go out to the events and extract the signal to noise. I'm John barrier, the founder SiliconANGLE joins my cohost, Jeff Kelly, top big data analyst in the, in the community. Our next guest, Jack Norris, COO of map R security enterprise. That's the buzz of the show and it was the buzz of OpenStack summit. Another open source show. And here this year, you're just seeing move after, move at the moon, talking about a couple of critical issues. Enterprise grade Hadoop, Hortonworks announced a big acquisition when all in, as they said, and now cloud era follows suit with their news. Today, I, you sitting back saying, they're catching up to you guys. I mean, how do you look at that? I mean, cause you guys have that's the security stuff nailed down. So what Dan, >>You feel about that now? I think I'm, if you look at the kind of Hadoop market, it's definitely moving from a test experimental phase into a production phase. We've got tremendous customers across verticals that are doing some really interesting production use cases. And we recognized very early on that to really meet the needs of customers required some architectural innovation. So combining the open source ecosystem packages with some innovations underneath to really deliver high availability, data protection, disaster recovery features, security is part of that. But if you can't predict the PR protect the data, if you can't have multitenancy and separate workflows across the cluster, then it doesn't matter how secure it is. You know, you need those. >>I got to ask you a direct question since we're here at Hadoop summit, because we get this question all the time. Silicon lucky bond is so successful, but I just don't understand your business model without plates were free content and they have some underwriters. So you guys have been very successful yet. People aren't looking at map are as good at the quiet leader, like you doing your business, you're making money. Jeff. He had some numbers with us that in the Hindu community, about 20% are paying subscriptions. That's unlike your business model. So explain to the folks out there, the business model and specifically the traction because you have >>Customers. Yeah. Oh no, we've got, we've got over 500 paying customers. We've got at least $1 million customer in seven different verticals. So we've got breadth and depth and our business model is simple. We're an enterprise software company. That's looking at how to provide the best of open source as well as innovations underneath >>The most open distribution of Hadoop. But you add that value separately to that, right? So you're, it's not so much that you're proprietary at all. Right. Okay. >>You clarify that. Right. So if you look at, at this exciting ecosystem, Hadoop is fairly early in its life cycle. If it's a commoditization phase like Linux or, or relational database with my SQL open source, kind of equates the whole technology here at the beginning of this life cycle, early stages of the life cycle. There's some architectural innovations that are really required. If you look at Hadoop, it's an append only file system relying on Linux. And that really limits the types of operations. That types of use cases that you can do. What map ours done is provide some deep architectural innovations, provide complete read-write file systems to integrate data protection with snapshots and mirroring, et cetera. So there's a whole host of capabilities that make it easy to integrate enterprise secure and, and scale much better. Do you think, >>I feel like you were maybe a little early to the market in the sense that we heard Merv Adrian and his keynote this morning. Talk about, you know, it's about 10 years when you start to get these questions about security and governance and we're about nine years into Hadoop. Do you feel like maybe you guys were a little early and now you're at a tipping point, whereas these more, as more and more deployments get ready to go to production, this is going to be an area that's going to become increasingly important. >>I think, I think our timing has been spectacular because we, we kind of came out at a time when there was some customers that were really serious about Hadoop. We were able to work closely with them and prove our technology. And now as the market is just ramping, we're here with all of those features that they need. And what's a, what's an issue. Is that an incremental improvement to provide those kind of key features is not really possible if the underlying architecture isn't there and it's hard to provide, you know, online real-time capabilities in a underlying platform that's append only. So the, the HDFS layer written in Java, relying on the Linux file system is kind of the, the weak underbelly, if you will, of, of the ecosystem. There's a lot of, a lot of important developments happening yarn on top of it, a lot of really kind of exciting things. So we're actively participating in including Apache drill and on top of a complete read-write file system and integrated Hindu database. It just makes it all come to life. >>Yeah. I mean, those things on top are critical, but you know, it's, it's the underlying infrastructure that, you know, we asked, we keep on community about that. And what's the, what are the things that are really holding you back from Paducah and production and the, and the biggest challenge is they cited worth high availability, backup, and recovery and maintaining performance at scale. Those are the top three and that's kind of where Matt BARR has been focused, you know, since day one. >>So if you look at a major retailer, 2000 nodes and map bar 50 unique applications running on a single cluster on 10,000 jobs a day running on top of that, if you look at the Rubicon project, they recently went public a hundred million add actions, a hundred billion ad auctions a day. And on top of that platform, beats music that just got acquired for $3 billion. Basically it's the underlying map, our engine that allowed them to scale and personalize that music service. So there's a, there's a lot of proof points in terms of how quickly we scale the enterprise grade features that we provide and kind of the blending of deep predictive analytics in a batch environment with online capabilities. >>So I got to ask you about your go to market. I'll see Cloudera and Hortonworks have different business models. Just talk about that, but Cloudera got the massive funding. So you get this question all the time. What do you, how do you counter that army and the arms race? I think >>I just wrote an article in Forbes and he says cash is not a strategy. And I think that was, that was an excellent, excellent article. And he goes in and, you know, in this fast growing market, you know, an amount of money isn't necessarily translate to architectural innovations or speeding the development of that. This is a fairly fragmented ecosystem in terms of the stack that runs on top of it. There's no single application or single vendor that kind of drives value. So an acquisition strategy is >>So your field Salesforce has direct or indirect, both mixable. How do you handle the, because Cloudera has got feet on the street and every squirrel will find it, not if they're parked there, parking sales reps and SCS and all the enterprise accounts, you know, they're going to get the, squirrel's going to find a nut once in awhile. Yeah. And they're going to actually try to engage the clients. So, you know, I guess it is a strategy if they're deploying sales and marketing, right? So >>The beauty about that, and in fact, we're all in this together in terms of sharing an API and driving an ecosystem, it's not a fragmented market. You can start with one distribution and move to another, without recompiling or without doing any sort of changes. So it's a fairly open community. If this were a vendor lock-in or, you know, then spending money on brand, et cetera, would, would be important. Our focus is on the, so the sales execution of direct sales, yes, we have direct sales. We also have partners and it depends on the geographies as to what that percentage is. >>And John Schroeder on with the HP at fifth big data NYC has updated the HP relationship. >>Oh, excellent. In fact, we just launched our application gallery app gallery, make it very easy for administrators and developers and analysts to get access and understand what's available in the ecosystem. That's available directly on our website. And one of the featured applications there today is an integration with the map, our sandbox and HP Vertica. So you can get early access, try it and get the best of kind of enterprise grade SQL first, >>First Hadoop app store, basically. Yeah. If you want to call it that way. Right. So like >>Sure. Available, we launched with close to 30, 30 with, you know, a whole wave kind of following that. >>So talk a little bit about, you know, speaking of verdict and kind of the sequel on Hadoop. So, you know, there's a lot of talk about that. Some confusion about the different methods for applying SQL on predicts or map art takes an open approach. I know you'll support things like Impala from, from a competitor Cloudera, talk about that approach from a map arts perspective. >>So I guess our, our, our perspective is kind of unbiased open source. We don't try to pick and choose and dictate what's the right open source based on either our participation or some community involvement. And the reality is with multiple applications being run on the platform, there are different use cases that make difference, you know, make different sense. So whether it's a hive solution or, you know, drill drills available, or HP Vertica people have the choice. And it's part of, of a broad range of capabilities that you want to be able to run on the platform for your workflows, whether it's SQL access or a MapReduce or a spark framework shark, et cetera. >>So, yeah, I mean there is because there's so many different there's spark there's, you know, you can run HP Vertica, you've got Impala, you've got hive. And the stinger initiative is, is that whole kind of SQL on Hadoop ecosystem, still working itself out. Are we going to have this many options in a year or two years from now? Or are they complimentary and potentially, you know, each has its has its role. >>I think the major differences is kind of how it deals with the new data formats. Can it deal with self-describing data? Sources can leverage, Jason file does require a centralized metadata, and those are some of the perspectives and advantages say the Apache drill has to expand the data sets that are possible enabled data exploration without dependency on a, on an it administrator to define that, that metadata. >>So another, maybe not always as exciting, but taking workloads from existing systems, moving them to Hadoop is one of the ways that a lot of people get started with, to do whether associated transformation workloads or there's something in that vein. So I know you've announced a partnership with Syncsort and that's one of the things that they focus on is really making it as easy as possible to meet those. We'll talk a little bit about that partnership, why that makes sense for you and, and >>When your customer, I think it's a great proof point because we announced that partnership around mainframe offload, we have flipped comScore and experience in that, in that press release. And if you look at a workload on a mainframe going to duke, that that seems like that's a, that's really an oxymoron, but by having the capabilities that map R has and making that a system of record with that full high availability and that data protection, we're actually an option to offload from mainframe offload, from sand processing and provide a really cost effective, scalable alternative. And we've got customers that had, had tried to offload from the mainframe multiple times in the past, on successfully and have done it successfully with Mapbox. >>So talk a little bit more about kind of the broader partnership strategy. I mean, we're, we're here at Hadoop summit. Of course, Hortonworks talks a lot about their partnerships and kind of their reseller arrangements. Fedor. I seem to take a little bit more of a direct approach what's map R's approach to kind of partnering and, and as that relates to kind of resell arrangements and things like, >>I think the app gallery is probably a great proof point there. The strategy is, is an ecosystem approach. It's having a collection of tools and applications and management facilities as well as applications on top. So it's a very open strategy. We focus on making sure that we have open API APIs at that application layer, that it's very easy to get data in and out. And part of that architecture by presenting standard file system format, by allowing non Java applications to run directly on our platform to support standard database connections, ODBC, and JDBC, to provide database functionality. In addition to kind of this deep predictive analytics really it's about supporting the broadest set of applications on top of a single platform. What we're seeing in this kind of this, this modern architecture is data gravity matters. And the more processing you can do on a single platform, the better off you are, the more agile, the more competitive, right? >>So in terms of, so you're partnering with people like SAS, for example, to kind of bring some of the, some of the analytic capabilities into the platform. Can you kind of tell us a little bit about any >>Companies like SAS and revolution analytics and Skytree, and I mean, just a whole host of, of companies on the analytics side, as well as on the tools and visualization, et cetera. Yeah. >>Well, I mean, I, I bring up SAS because I think they, they get the fact that the, the whole data gravity situation is they've got it. They've got to go to where the data is and not have the data come to them. So, you know, I give them credit for kind of acknowledging that, that kind of big data truth ism, that it's >>All going to the data, not bringing the data >>To the computer. Jack talk about the success you had with the customers had some pretty impressive numbers talking about 500 customers, Merv agent. The garden was on with us earlier, essentially reiterating not mentioning that bar. He was just saying what you guys are doing is right where the puck is going. And some think the puck is not even there at the same rink, some other vendors. So I gotta give you props on that. So what I want you to talk about the success you have in specifically around where you're winning and where you're successful, you guys have struggled with, >>I need to improve on, yeah, there's a, there's a whole class of applications that I think Hadoop is enabling, which is about operations in analytics. It's taking this, this higher arrival rate machine generated data and doing analytics as it happens and then impacting the business. So whether it's fraud detection or recommendation engines, or, you know, supply chain applications using sensor data, it's happening very, very quickly. So a system that can tolerate and accept streaming data sources, it has real-time operations. That is 24 by seven and highly available is, is what really moves the needle. And that's the examples I used with, you know, add a Rubicon project and, you know, cable TV, >>The very outcome. What's the primary outcomes your clients want with your product? Is it stability? And the platform has enabled development. Is there a specific, is there an outcome that's consistent across all your wins? >>Well, the big picture, some of them are focused on revenues. Like how do we optimize revenue either? It's a new data source or it's a new application or it's existing application. We're exploding the dataset. Some of it's reducing costs. So they want to do things like a mainframe offload or data warehouse offload. And then there's some that are focused on risk mitigation. And if there's anything that they have in common it's, as they moved from kind of test and looked at production, it's the key capabilities that they have in enterprise systems today that they want to make sure they're in Hindu. So it's not, it's not anything new. It's just like, Hey, we've got SLS and I've got data protection policies, and I've got a disaster recovery procedure. And why can't I expect the same level of capabilities in Hindu that I have today in those other systems. >>It's a final question. Where are you guys heading this year? What's your key objectives. Obviously, you're getting these announcements as flurry of announcements, good success state of the company. How many employees were you guys at? Give us a quick update on the numbers. >>So, you know, we just reported this incredible momentum where we've tripled core growth year over year, we've added a tremendous amount of customers. We're over 500 now. So we're basically sticking to our knitting, focusing on the customers, elevating the proof points here. Some of the most significant customers we have in the telco and financial services and healthcare and, and retail area are, you know, view this as a strategic weapon view, this is a huge competitive advantage, and it's helping them impact their business. That's really spring our success. We've, you know, we're, we're growing at an incredible clip here and it's just, it's a great time to have made those calls and those investments early on and kind of reaping the benefits. >>It's. Now I've always said, when we, since the first Hadoop summit, when Hortonworks came out of Yahoo and this whole community kind of burst open, you had to duke world. Now Riley runs at it's a whole different vibe of itself. This was look at the developer vibe. So I got to ask you, and we would have been a big fan. I mean, everyone has enough beachhead to be successful, not about map arbors Hortonworks or cloud air. And this is why I always kind of smile when everyone goes, oh, Cloudera or Hortonworks. I mean, they're two different animals at this point. It would do different things. If you guys were over here, everyone has their quote, swim lanes or beachhead is not a lot of super competition. Do you think, or is it going to be this way for awhile? What's your fork at some? At what point do you see more competition? 10 years out? I mean, Merv was talking a 10 year horizon for innovation. >>I think that the more people learn and understand about Hadoop, the more they'll appreciate these kind of set of capabilities that matter in production and post-production, and it'll migrate earlier. And as we, you know, focus on more developer tools like our sandbox, so people can easily get experienced and understand kind of what map are, is. I think we'll start to see a lot more understanding and momentum. >>Awesome. Jack Norris here, inside the cube CMO, Matt BARR, a very successful enterprise grade, a duke player, a leader in the space. Thanks for coming on. We really appreciate it. Right back after the short break you're live in Silicon valley, I had dupe December, 2014, the right back.
SUMMARY :
The queue at Hadoop summit, 2014 is brought to you by anchor sponsor I mean, cause you guys have that's the security stuff nailed down. I think I'm, if you look at the kind of Hadoop market, I got to ask you a direct question since we're here at Hadoop summit, because we get this question all the time. That's looking at how to provide the best of open source But you add that value separately to So if you look at, at this exciting ecosystem, Talk about, you know, it's about 10 years when you start to get these questions about security and governance and we're about isn't there and it's hard to provide, you know, online real-time And what's the, what are the things that are really holding you back from Paducah So if you look at a major retailer, 2000 nodes and map bar 50 So I got to ask you about your go to market. you know, in this fast growing market, you know, an amount of money isn't necessarily all the enterprise accounts, you know, they're going to get the, squirrel's going to find a nut once in awhile. We also have partners and it depends on the geographies as to what that percentage So you can get early If you want to call it that way. a whole wave kind of following that. So talk a little bit about, you know, speaking of verdict and kind of the sequel on Hadoop. And it's part of, of a broad range of capabilities that you want So, yeah, I mean there is because there's so many different there's spark there's, you know, you can run HP Vertica, of the perspectives and advantages say the Apache drill has to expand the data sets why that makes sense for you and, and And if you look at a workload on a mainframe going to duke, So talk a little bit more about kind of the broader partnership strategy. And the more processing you can do on a single platform, the better off you are, Can you kind and I mean, just a whole host of, of companies on the analytics side, as well as on the tools So, you know, I give them credit for kind of acknowledging that, that kind of big data truth So what I want you to talk about the success you have in specifically around where you're winning and you know, add a Rubicon project and, you know, cable TV, And the platform has enabled development. the key capabilities that they have in enterprise systems today that they want to make sure they're in Hindu. Where are you guys heading this year? So, you know, we just reported this incredible momentum where we've tripled core and this whole community kind of burst open, you had to duke world. And as we, you know, focus on more developer tools like our sandbox, a duke player, a leader in the space.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Kelly | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
John Schroeder | PERSON | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Jeff | PERSON | 0.99+ |
$3 billion | QUANTITY | 0.99+ |
December, 2014 | DATE | 0.99+ |
Jason | PERSON | 0.99+ |
Matt BARR | PERSON | 0.99+ |
10,000 jobs | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
10 year | QUANTITY | 0.99+ |
Syncsort | ORGANIZATION | 0.99+ |
Dan | PERSON | 0.99+ |
Silicon valley | LOCATION | 0.99+ |
John barrier | PERSON | 0.99+ |
Java | TITLE | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
24 | QUANTITY | 0.99+ |
Hadoop | TITLE | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
this year | DATE | 0.99+ |
Jack | PERSON | 0.99+ |
fifth | QUANTITY | 0.99+ |
Linux | TITLE | 0.99+ |
Skytree | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Merv | PERSON | 0.98+ |
about 10 years | QUANTITY | 0.98+ |
San Jose | LOCATION | 0.98+ |
Hadoop | EVENT | 0.98+ |
about 20% | QUANTITY | 0.97+ |
seven | QUANTITY | 0.97+ |
over 500 | QUANTITY | 0.97+ |
a year | QUANTITY | 0.97+ |
about 500 customers | QUANTITY | 0.97+ |
SQL | TITLE | 0.97+ |
seven different verticals | QUANTITY | 0.97+ |
two years | QUANTITY | 0.97+ |
single platform | QUANTITY | 0.96+ |
2014 | DATE | 0.96+ |
Apache | ORGANIZATION | 0.96+ |
Hadoop | LOCATION | 0.95+ |
SiliconANGLE | ORGANIZATION | 0.94+ |
comScore | ORGANIZATION | 0.94+ |
single vendor | QUANTITY | 0.94+ |
day one | QUANTITY | 0.94+ |
Salesforce | ORGANIZATION | 0.93+ |
about nine years | QUANTITY | 0.93+ |
Hadoop Summit 2014 | EVENT | 0.93+ |
Merv | ORGANIZATION | 0.93+ |
two different animals | QUANTITY | 0.92+ |
single application | QUANTITY | 0.92+ |
top three | QUANTITY | 0.89+ |
SAS | ORGANIZATION | 0.89+ |
Riley | PERSON | 0.88+ |
First | QUANTITY | 0.87+ |
Forbes | TITLE | 0.87+ |
single cluster | QUANTITY | 0.87+ |
Mapbox | ORGANIZATION | 0.87+ |
map R | ORGANIZATION | 0.86+ |
map | ORGANIZATION | 0.86+ |
Jack Norris - BigDataNYC 2013 - theCUBE - #BigDataNYC
>>I from Midtown Manhattan, the cute quiet coverage of big data NYC Civicon angled, Wiki bonds production made possible by Hortonworks. We do hairdo and lamb disco and new made invincible. And now your hosts, John furrier and Volante >>Hi buddy. We're back. This is Dave Volante with Jeff Kelly with Wiki bond. And this is the cube Silicon angle's continuous production. We're here at big data NYC right across the street from the Hilton where strata comp and a dupe world is going on. We've got a multi-time cube guest, Jack Norris, the CMO of map bars here, Jack. Welcome back to the cube first. So by the way, thank you so much for the support. As you know, we're across the street here at the Warwick hotel map, our, you guys have always been so generous supporting the cube. We can't thank you enough for that. So really appreciate it. Thank you. So we were able to listen to your keynote yesterday. It was, we, we, we weren't broadcasting, you know, head to head yesterday and had an opportunity to hear your keynote. So, first of all, how did that go? I want to ask you some questions about it. >>It, it was a really well-received and I think people were kind of clamoring to try to separate the myths from, from reality on, on Hadoop, >>We had three myths that you talked about, you know, one related to the distraction. I'd like to get into some of those. So what was the, the first myth was around the, the, the, the district distribution battle. So take us through that. >>So, you know, th the impression that it's a knock-down drag-out competitive battle across Hadoop distributions was the first myth. And the reality is that all of the distribution share the same open source Apache code. And this is one of the first markets that's really, really created, or the first open-source technologies it's really created a market. I mean, look, what's happened here with this whole, this whole big data and Hadoop, but given that early stage, there's the requirement to really combine that open source code with additional innovations to meet customer needs. And so what you see is you see those aggregators that are taken open source, you see others that are taking the open source, and then adding maybe management utility, couple of, of, you know, different applications on top. And then our approach at map R is we're taking the open source with those management innovations, doing some development, the open source community with things like Apache drill, and then really focusing on the underlying architecture, the data platform and providing innovations at that layer. So >>Actually sort of the three major destroys that we talk about all the time. You know, you guys, Hortonworks and Hadoop, you guys have been consistent the whole time as has Hortonworks, right? Cloud era basically put out a post recently saying, Hey, kind of going in a different direction, sort of what I call the tapped out of the Hadoop distro, you know, piece of it. But so there's a lot of discussion around it. You're putting forth the, Hey, it's not an internet seen war, but does it matter is my question? >>Well, I think if you take a step back, the Hadoop ecosystem is incredibly strong growing very, very quickly, fastest growing big data technology, one of the top 10 technologies overall. And I think it's because we are sharing the same API. It is possible for customers to learn on one, develop and move seamlessly to another. And, you know, in the keynote, I talked about the difference between the no SQL market, which is, you know, there is no consensus there and, and customers have to figure out not only what's the right word workload, but what's the technology that's actually going to have some staying power, right? >>That's a powerful comment. Amazon turn the data center and into an API, or you as the duke community is essentially turning data, access into an API. And that is a very powerful and leverageable concept. Okay. Your second myth was around the whole, no SQL yes. Piece of it. You help you put up a slide. I thought I read Jeff Kelly's reports. And I thought, I thought I knew them all, but there were a couple in there that I didn't recognize as you probably knew them all, but so take us through myth. Number two >>Too. I'm sure we missed some >>There wasn't room on the slide for anymore. >>The, yeah, it's basically about the consensus. There is no real consensus. There's no common API. There's no ability to move applications seamlessly across no SQL solutions. If you look at one no SQL solution, and that's, HBase a big inherent advantage because it's integrated with Hindu, you know, this whole trend is about compute and data together. So if you've got a no sequel solution, that's on that same, you know, massive data store, you know, big leg up. And, and then we got into the, well, if you've got HBase, it's included in all the distributions and all the distribution share the same open source, then obviously it must run the same across all distributions. And there, we shared some pretty interesting data to show the difference. When you, when you do architectural differences and innovations underneath that you can dramatically change the performance of, of not only MapReduce, but of no SQL. Yes. >>Okay. So not all no SQL is created equally. Not all HBase is created equally as essentially what you're saying there. Now the third piece was to dupe is enterprise ready, right? Yeah. So you guys were first to say, well, we have a Hadoop platform that's enterprise ready way ahead on that. Got criticized a lot for going down that path shrugged and said, okay, we'll just keep doing business with customers. And you've been again, very clear and consistent on that. So talk about the third myth >>And that's, you know, is, is Hadoop ready for prime time? And I think the way to combat that myth is by customer examples and showing the tremendous success that customers are enjoying with Hadoop. And, you know, we, we don't have time on the cube here to go through all of them, but, you know, I like to point out 90 billion auctions a day with Rubicon, they've surpassed Google in terms of ad reach. They're doing that on Mapbox 1.7 trillion events a month with comScore that's on, on map bar. You look in, in traditional enterprise, you know, a single retailer with over 2000 nodes of Hadoop. I mean, it's a key part of their merchandising and retail operations, and combining all sorts of, of data feeds and all sorts of use cases there, financial services over a thousand nodes of risk medication, personalized offers streamlining their operations. I mean, it's, it's dramatic. And then, you know, we shared some of the more, more interesting ones, esoteric ones like garbage and whiskey and weather prediction. >>There was consider these, we even as diverse and eclectic as they are, they consider these mission critical application. >>Oh, absolutely. No it it's. And I think that's the difference because what we're talking about is not Hadoop as this cash, right? This temporary processing, where we can do, you know, some interesting batch analytics and then take that and put that someplace else. And yes, there are applications like that, but companies soon realized that if I'm going to use this as a key part of my operations, and it's about data on compute, then I want a consistent permanent store. I want a system of record. So all of the SLS and high availability and data protection features that they expect in their enterprise applications should be present in Hadoop, right? That's where we focus. Let's run down a couple of those. >>What are some of the key capabilities that you need in an enterprise enterprise grade platform? That map bar is >>Well, let's, let's take, let's take business continuity cause that's important if you're really going to trust data there. And you know, one of the big drivers as you expand data is how much am I going to spend on it? And if you look at a large investment bank, $270 million of their budget, not total, but incremental to address the additional capacity, there's a big emphasis for let's look at a better way to do that. So instead of spending $15,000 a terabyte, if you can spend a few hundred dollars a terabyte, that's a huge, huge advantage. And that's the focus of Hindu, but to do that, well, then the features that are in this enterprise storage have to be present. And we're talking about, you know, mirroring and not a copy table function, but replication, that's how that's how organizations do it, right. If you're going to recovery and recovery, you know, you can't back up a petabyte of information through a copy function, right? You have to do a snapshot and the snapshots have to be consistent, right. And, and we're not saying anything that, you know, an enterprise administrator doesn't know, there is some confusion when you're more on the developer side as to what these features are and the difference between a fuzzy snapshot and a point in time, consistent snaps. >>Got it. So let's talk a little bit about the, the enterprise data hub, this, this concept that Michael Wilson with clutter introduced yesterday. Tell us a little bit about your take on, on, on Mike's I guess, definition and, and essentially I think trying to name the category of kind of what Hadoop can do and what, and where it sits in the architecture. Did you agree with his, his, >>Yeah. I mean, if you look at, at that description, it's about I'm taking important data and I'm putting it in a dupe and I'm combining a lot of different data sources and it's been referred to as a data lake and a data reservoir and a data ocean. I mean, we've heard a lot of terms. We worked with an outside consultant that was originally an architect at Terre data. It's been about eight months, almost a year ago now where he defined it and enterprise data hub. And it's it's, he went through kind of the list of requirements. And once you move from a transitory to a permanent store, then that becomes an enterprise data hub. And an enterprise data hub can be used to select and process information, maybe it's ETL and serve some downstream applications. It can also be useful to do analysis directly on it, to, you know, to serve different business functions. But the system requirements that he established for that I think are absolutely true. And it's, you have to have the full data protection. You have to have the full disaster recovery. You have to have the full high availability because this is going to be important data serving the organization. If it's data that you can lose, if it's data that you, you don't really care about having highly available, then it's a very narrow use case that that data hub serves. >>So you're saying the enterprise data hub isn't ready for prime time. >>No, I'm saying that there, there are requirements. And we have companies today that have deployed an enterprise data hub and they are quite successful with it. And, you know, the quotes are the ETL functions that they're doing on that hub are 10 times faster and it's 10 times cheaper than what they're seeing. >>Soundbite, Dave, >>I agree, but it's nuanced. Right. And so, you know, the customers cause a lot of vendors, right? They're all saying the same thing to the customers, right? So you've got your messaging that you've, you know, you've proven out over the last several years and then the entire market starts to use the same terminology. So it is, this is why I, like, I think this, what is, what are those >>Things? We're in a little bit of this, this kind of marketing fog here in the relative early stages. I think the best response there is customer proof points. And I think some education in the very beginning, you know, when they're in development and test, it's really important to understand, you know, what is Hadoop and what can I use it for and what data source am I going to leverage? I think the features that we're talking about really start to show up as you deploy in production. And as you expand its use in production and there we've enjoyed tremendous success, >>But he would argue that you have a lead in this space. I wouldn't, I don't think you would either the space being robustness enterprise ready, mission criticality is your lead increasing, decreasing staying the same. >>What's your sense? Well, it's hard cause there's no, you know, th th there's no external service that's out there, you know, interviewing every customer and, and giving numbers. I do know that we passed 500 paying customers. I do know that we've got significant deployments and you can measure those in terms of number of nodes, you know, in the thousands of nodes, you can measure those in terms of use cases. So we've got, you know, one company they've passed 20 different use cases on the same cluster. I think that's an interesting proof point. We're scaling in terms of the number of, of people in an organization that are trained in leveraging the data in map are again in the, in the thousands. So, you know, I think this market is so big and so dynamic that this isn't about, you know, one company success at the expense of everyone. Else's zero sum game. I think, you know, we're all here kind of raising this, this boat and focusing on this paradigm shift, but when it comes to production success, that's our focus. And I think that's where we've, we've proven that >>One thing I'm really want to get your opinion on, you know, as, as to do matures and some of the innovations you guys are doing and, and making the platform, you know, basically a multi application platform, you can do more things with Hadoop. And we've been talking about this on the cube, is that as that happens, you're going to start you as an industry. You're going to start bumping up against the EDW vendors and some of the other database vendors in the traditional world. And you're now you're doing some of the things that those, those tools can do now, you know, two years ago, it was very much just, this is all very complimentary Hadoop and your EDW. There's no overlap. We're gonna all play nice. But increasingly we're seeing that there is an overlap. How do you view that? Is that, and what is your relationship with those, with those EDW vendors and, and what are you hearing from customers when you go into a customer? Okay. >>So, I mean, there's a, there's a lot in that question. I think the F the first comment though, is don't look at Hadoop through this single data warehouse lens. And if you look at, at trying to use Hadoop to completely replace an enterprise data warehouse where there's, here's a few decades of experience, there, there are many organizations that have a lot of activities that are based in that data warehouse. And that's where we're seeing a data warehouse offload that is complimentary, but it gives organizations this lever to say, well, I'm going to control the fill rate, and I'm going to take some of the data that's no longer, you know, really active and put that on Hadoop and really change my ability to manage the costs in a data warehouse environment. The other thing that's interesting is that the types of applications that duper doing, I think are creating a new class it's about operations and analytics, kind of combined together, taking high arrival rate data and making very quick micro changes to optimize whether that's fraud detection or recommendation engines, or taking sensor data and predictive analytics for, for maintenance, et cetera. There is just a tremendous number of, of applications. In some cases, leveraging a new data source in some cases, doing new applications, but it's just opening things up. And, and I think organizations are moving to be very data-driven and Hadoop is at the center of that. >>And you control the field, right? That's another really good soundbites. And, and these that, you mentioned this high arrival rate data, this fraud detection, predictive analytics, maintenance, these are things that you're doing today with >>Navarre right? Yeah, >>Absolutely. Great. All right, Jack. Well, listen, always a pleasure. Thanks very much for coming by. Great to see you again. All right. Keep it right there about Uber, right back with our next guest. This is the cube we're live from the big apple.
SUMMARY :
I from Midtown Manhattan, the cute quiet coverage of big data NYC So by the way, thank you so much for the We had three myths that you talked about, you know, one related to the distraction. So, you know, th the impression that it's a knock-down drag-out sort of what I call the tapped out of the Hadoop distro, you know, piece of it. And, you know, in the keynote, I talked about the difference between the no SQL market, And I thought, I thought I knew them all, but there were a couple in there that I didn't recognize as you probably knew them all, that's on that same, you know, massive data store, you know, big leg up. So you guys were first to say, And that's, you know, is, is Hadoop ready for prime time? where we can do, you know, some interesting batch analytics and then take that and put that someplace else. And you know, one of the big drivers as you expand Did you agree with his, his, to, you know, to serve different business functions. And, you know, the quotes are the ETL functions that they're doing on that hub are 10 And so, you know, the customers cause a lot of you know, when they're in development and test, it's really important to understand, you know, I wouldn't, I don't think you would either the space being robustness enterprise so dynamic that this isn't about, you know, one company success at the expense those tools can do now, you know, two years ago, it was very much just, this is all very complimentary Hadoop and your EDW. And if you look at, at trying to use Hadoop to completely replace an enterprise data warehouse And you control the field, right? Great to see you again.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Kelly | PERSON | 0.99+ |
Michael Wilson | PERSON | 0.99+ |
10 times | QUANTITY | 0.99+ |
Jack | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
10 times | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
$270 million | QUANTITY | 0.99+ |
Mike | PERSON | 0.99+ |
yesterday | DATE | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
third piece | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
Hadoop | TITLE | 0.99+ |
Midtown Manhattan | LOCATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Volante | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
20 different use cases | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
second | QUANTITY | 0.99+ |
John furrier | PERSON | 0.98+ |
NYC | LOCATION | 0.98+ |
two years ago | DATE | 0.98+ |
Hadoop | ORGANIZATION | 0.98+ |
first comment | QUANTITY | 0.98+ |
Rubicon | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.97+ |
Terre data | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
1.7 trillion events | QUANTITY | 0.97+ |
third | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
one | QUANTITY | 0.96+ |
single | QUANTITY | 0.96+ |
a year ago | DATE | 0.95+ |
one company | QUANTITY | 0.94+ |
HBase | TITLE | 0.94+ |
Navarre | PERSON | 0.93+ |
EDW | ORGANIZATION | 0.92+ |
over 2000 nodes | QUANTITY | 0.91+ |
big apple | ORGANIZATION | 0.91+ |
first markets | QUANTITY | 0.9+ |
nodes | QUANTITY | 0.89+ |
about eight months | QUANTITY | 0.88+ |
2013 | DATE | 0.88+ |
Soundbite | ORGANIZATION | 0.87+ |
three myths | QUANTITY | 0.87+ |
Hindu | ORGANIZATION | 0.87+ |
first open-source | QUANTITY | 0.86+ |
Wiki bond | ORGANIZATION | 0.85+ |
BigDataNYC | EVENT | 0.85+ |
$15,000 a terabyte | QUANTITY | 0.85+ |
three major | QUANTITY | 0.82+ |
90 billion auctions a day | QUANTITY | 0.81+ |
500 paying customers | QUANTITY | 0.79+ |
comScore | ORGANIZATION | 0.79+ |
map R | ORGANIZATION | 0.78+ |
over a thousand nodes | QUANTITY | 0.77+ |
Hilton | LOCATION | 0.77+ |
few hundred dollars a terabyte | QUANTITY | 0.76+ |
Number two | QUANTITY | 0.76+ |
10 technologies | QUANTITY | 0.74+ |
Jack Norris - Hadoop Summit 2013 - theCUBE - #HadoopSummit
>>Ash it's, you know, what will that mean to my investment? And the announcement fusion IO is that, you know, we're 25 times faster on read intensive HBase applications. The combination. So as organizations are deploying Hadoop, and they're looking at technology changes coming down the pike, they can rest assured that they'll be able to take advantage of those in a much more aggressive fashion with map R than, than other distribution. >>Jack, how I got to ask you, we were talking last night at the Hadoop summit, kind of the kickoff party and, you know, everyone was there. All the top execs were there and all the developers, you know, we were in the queue. I think, I think that either Dave or myself coined the term, the big three of big data, you guys ROMs cloud Cloudera map R and Hortonworks, really at the, at the beginning of the key players early on and Charles from Cloudera was just recently on. And, and he's like, oh no, this, this enterprise grade stuff has been kicked around. It's been there from the beginning. You guys have been there from the beginning and Matt BARR has never, ever waffled on your, on your messaging. You've always been very clear. Hey, we're going to take a dupe open source a dupe and turn it into an enterprise grade product. Right. So that's clear, right? That's, that's, that's a great, that's a great, so what's your take on this because now enterprise grade is kind of there, I guess, the buzz around getting the, like the folks that have crossed the chasm implemented. So what can you comment on that about one enterprise grade, the reality of it, certainly from your perspective, you haven't been any but others. And then those folks that are now rolling it out for the first time, what can you share with them around? What does it mean to be enterprise grade? >>So enterprise grade is more about the customer experience than, than a marketing claim. And, you know, by enterprise grade, what we're talking about are some of the capabilities and features that they've grown to expect in their, their other enterprise applications. So, you know, the ability to meet full S SLA is full ha recovery from multiple failures, rolling upgrades, data protection was consistent snapshots business continuity with mirroring the ability to share a cluster across multiple groups and have, you know, volumes. I mean, there's a, there's a host of features that fall under the umbrella enterprise grade. And when you move from no support for any of those features to support to a few of them, I don't think that's going to, to ha it's more like moving to low availability. And, and there's just a lot of differences in terms of when we say enterprise grade with those features mean versus w what we view as kind of an incomplete story. So >>What do you, what do you mean by low availability? Well, I mean, it's tongue in cheek. It's nice. It's a good term. It's really saying, you know, just available when you sometimes is that what you mean? Is this not true availability? I mean, availability is 99.9%. Right? >>Right. So if you've got a, an ha solution that can't recover from multiple failures, that's downtime. If you've got an HBase application that's running online and you have data that goes down and it takes 10 to 30 minutes to have the region servers recover it from another place in the distribution, that's downtime. If you have snapshots that aren't consistent across the cluster, that doesn't provide data protection, there's no point in time recovery for, for a cluster. So, you know, there's a lot of details underneath that, but what it, what it amounts to is, do you have interruptions? Do you have downtime? Do you have the potential for losing data? And our answer is you need a series of features that are hardened and proven to deliver that. >>What about recoverability? You mentioned that you guys have done a lot of work in that area with snapshotting, that's kind of being kicked around, are our folks addressing, what are the comp what's your competition doing in those areas of recoverability just mentioned availability. Okay, got that. Recoverability security, compliance, and usability. Those are the areas that seem to be the hot focus areas what's going on in the energy. How would you give them the grade, the letter grade, if you will, candidly, compared to what you guys offer? Well, the, >>The first of all, it's take recoverability. You know, one of the tenants is you have a point in time recovery, the ability to restore to a previous point that's consistent across the cluster. And right now there's, there's no point in time recovery for, for HDFS, for the files. And there's no point in time recovery for HBase tables. So there's snapshot support. It's being talked about in the open source community with respect to snapshots, but it's being referred to in the JIRAs as fuzzy snapshots and really compared to copy table. >>So, Jack, I want to turn the conversation to the, kind of the topic we've talked about before kind of the open versus a proprietary that, that whole debate we've, we've, we've heard about that. We talked about that before here on the cube. So just kind of reiterate for us your take. I mean, we, we hear perhaps because of the show we're at, there's a lot of talk about the open source nature of Hadoop and some of the purists, as you might call them are saying, it's gotta be open a hundred percent Patrick compatible, et cetera. And then there's others that are taking a different approach, explain your approach and why you think that's the key way to make, to really spur adoption of a dupe and make it >>W w we're we're a part of the community we're, we've got, you know, commitment going on. We've, you know, pioneered and pushed a patchy drill, but we have done innovations as well. And I think that those innovations are really required to support and extend the, the whole ecosystem. So canonical distributes RN, three D distribution. We've got, you know, all our, our packages are, are available on get hub and, and open source. So it's not, it's not a binary debate. And I think the, the point being that there's companies that have jumped ahead and now that Peloton is, is, you know, pedaling faster and, and we'll, we'll catch up. We'll streamline. I think the difference is we rearchitected. So we're basically in a race car and, you know, are, are racing ahead with, with enterprise grade features that are required. And there's a lot of work that still needs to be done, needs to be accomplished before that full rearchitecture is, is in place. >>Well, I mean, I think for me, the proof is really in the pudding when you, when it comes to talk about customers that are doing real things and real production, grade mission, critical applications that they're running. And to me that shows the successor or relative success of a given approach. So I know you guys are working with companies like ancestry.com, live nation and Quicken loans. Maybe you could, could you walk us through a couple of those scenarios? Let's take ancestry.com. Obviously they've got a huge amount of data based on the kind of geological information, where do you guys do >>With them? Yeah, so they've got, I mean, they've got the world's largest family genealogy services available on the web. So there's a massive amount of data that they make accessible and, and, you know, ability for, for analysis. And then they've rolled out new features and new applications. One of which is to ship a kit out, have people spit in a tube, returned back and they do DNA matching and reveal additional details. So really some really fabulous leading edge things that are being done with, with the use of, of Hadoop. >>Interesting. So talk about when you went to, to work with them, what were some of their key requirements? Was it around, it was more around the enterprise enterprise, grade security and uptime kind of equation, or was it more around some of the analytics? What, what, what's the kind of the killer use case for them? >>It's kind of, you know, it's, it's hard with a specific company or even, you know, to generalize across companies. Cause they're really three main areas in terms of ease of use and administration dependability, which includes the full ha and then, and then performance. And in some cases, it's, it's just one of those that kind of drives it. And it's used to justify, in other cases, it's kind of a collection. The ease of use is being able to use a cluster, not only as Hadoop, but to access it and treat it like enterprise storage. So it's a complete POSIX compliance file system underneath that allows the, the mounting and access and updates and using it in dynamic read-write. So what that means from an application level, it's, it's faster, it's much easier to administer and it's much easier and reliable for developers to, to utilize. >>I got to ask you about the marketing question cause I see, you know, map our, you guys have done a good job of marketing. Certainly we want to be thankful to you guys is supporting the cube in the past and you guys have been great supporters of our mission, but now the ecosystem's evolving a lot more competition. Claudia mentioned those eight companies they're tracking in quote Hadoop, and certainly Jeff and I, and, and SiliconANGLE by look at there's a lot more because Hadoop washing has been going on now for the term Hadoop watching me and jumping in and doing Hadoop, slapping that onto an existing solution. It's not been happening full, full, full bore for a year. At least what's the next for you guys to break above the noise? Obviously the communities are very active projects are coming online. You guys have your mission in the enterprise. What's the strategy for you guys going forward is more of the same and anything new even share. >>Yeah, I, I, I think as far as breaking above the noise, it will be our customers, their success and their use cases that really put the spotlight on what the differences are in terms of, of, you know, using a big data platform. And I think what, what companies will start to realize is I'd rather analogy between supply chain and the big, the big revolution in supply chain was focusing on inventory at each stage in the supply chain. And how do you reduce that inventory level and how do you speed the, the flow of goods and the agility of a company for competitive advantage. And I think we're going to view data the same way. So companies instead of raw data that they're copying and moving across different silos, if they're able to process data in place and send small results sets, they're going to be faster, more agile and more competitive. >>And that puts the spotlight on what data platform is out there that can support a broad set of applications and it can have the broadest set of functionality. So, you know, what we're delivering is a mission grade, you know, enterprise grade mission, critical support platform that supports MapReduce and does that high performance provides NFS POSIX access. So you can use it like a file system integrates, you know, enterprise grade, no SQL applications. So now you can do, you know, high-speed consistent performance, real time operations in addition to batch streaming, integrated search, et cetera. So it's, it's really exciting to provide that platform and have organizations transform what they're doing. >>How's the feedback on with Ted Dunning? I haven't seen a lot of buzz on the Twittersphere is getting positive feedback here. He's a, a tech athlete. He's a guru, he's an expert. He's got his hands in all the pies. He's a scientist type. What's he up to? What's his, what's his role within Mapa and he's obviously playing in the open-source community. What's he up to these days, >>Chief application architect, he's on the leading edge of my house. So machine learning, so, you know, sharing insights there, he was speaking at the storm meetup two nights ago and sharing how you can integrate long running batch, predictive analytics with real-time streaming and how the use of snapshots really that, that easy and possible. He travels the world and is helping organizations understand how they can take some very complex, long running processes and really simplify and shorten those >>Chance to meet him in New York city had last had duke world at a, at a, a party and great guy, fantastic geek, and certainly is doing a great work and shout out to Ted. Congratulations, continue up that support. How's everyone else doing? How's John and Treevis doing how's the team at map are we're pedaling as best as you can growing >>Really quickly. No, we're just shifting gears. Would it be on pedaling >>Engine? >>Yeah. Give us an update on the company in terms of how the growth and kind of where you guys are moving that. >>Yeah. We're, we're expanding worldwide, you know, just this, you know, last few months we've opened up offices and in London and Munich and Paris, we're expanding in Asia, Japan and Korea. So w our, our sales and services and engineering, and basically across the whole company continues to expand rapidly. Some really great, interesting partnerships and, and a lot of growth Natalie's we add customers, but it's, it's nice to see customers that continue to really grow their use of map are within their organization, both in terms of amount of data that they're analyzing and the number of applications that they're bringing to bear on the platform. >>Well, that a little bit, because I think, you know, one of the, one of the trends we do see is when a company brings in big data, big data platform, and they might start experiment experimenting with it, build an application. And then maybe in the, maybe in the marketing department, then the sales guys see it and they say, well, maybe we can do something with that. How is that typically the kind of the experience you're seeing and how do you support companies that want to start expanding beyond those initial use cases to support other departments, potentially even other physical locations around the world? How do you, how do you kind of, >>That's been the beauty of that is if you have a platform that can support those new applications. So if you know, mission critical workloads are not an issue, if you support volumes so that you can logically separate makes it much easier, which we have. So one of our customers Zions bank, they brought in Matt BARR to do fraud detection. And pretty soon the fact that they were able to collect all of that data, they had other departments coming to them and saying, Hey, we'd like to use that to do analysis on because we're not getting that data from our existing system. >>Yeah. They come in and you're sitting on a goldmine, there are use cases. And you also mentioned kind of, as you're expanding internationally, what's your take on the international market for big data to do specifically is, is the U S kind of a leaps and bounds ahead of the rest of the world in terms of adoption of the technology. What are you seeing out there in terms of where, where the rest of the, >>I wouldn't say leaps and bounds, and I think internationally, they're able to maybe skip some of the experimental steps. So we're seeing, we're seeing deployment of class financial services and telecom, and it's, it's fairly broad recruit technologies there. The largest provider of recruiting services, indeed.com is one of their subsidiaries they're doing a lot with, with Hadoop and map are specifically, so it's, it's, it's been, it's been expanding rapidly. Fantastic. >>I also, you know, when you think about Europe, what's going on with Google and some of the, the privacy concerns even here, or I should say, is there, are there different regulatory environments you've got to navigate when you're talking about data and how you use data when you're starting to expand to other, other locales? >>Yeah. There's typically by vertical, there's different, different requirements, HIPAA and healthcare, and basal to, and financial services. And so all of those, and it, it, it basically, it's the same theme of when you're bringing Hadoop into an organization and into a data center, the same sorts of concerns and requirements and privacy that you're applying in other areas will be applied on Hindu. >>I'm now kind of turning back to the technology. You mentioned Apache drill. I'd love to get an update on kind of where, where that stands. You know, it's put, then put that into context for people. We hear a lot about the SQL and Hadoop question here, where does drill fit into that, into that equation? >>Well, the, the, you know, there's a lot of different approaches to provide SQL access. A lot of that is driven by how do you, how do you leverage some of the talent and organization that, you know, speak SQL? So there's developments with respect to hive, you know, there's other projects out there. Apache drill is an open source project, getting a lot of community involvement. And the design center there is pretty interesting. It started from the beginning as an open source project. And two main differences. One was in looking at supporting SQL it's, let's do full ANSI SQL. So it's full 2003 ANSI, sequel, not a SQL like, and that'll support the greatest number of applications and, you know, avoid a lot of support and, and issues. And the second design center is let's support a broad set of data sources. So nested sources like Jason scheme on discovery, and basically fitting it into an enterprise environment, which sometimes is kinda messy and can get messy as acquisitions happen, et cetera. So it's complimentary, it's about, you know, enabling interactive, low latency queries. >>Jack, I want to give you the final word. We are out of time. Thanks for coming on the cube. Really preached. Great to see you again, keep alumni, but final word. And we'll end the segment here on the cube is your quick thoughts on what's happening here at Hadoop world. What is this show about? Share with the audience? What's the vibe, the summary quick soundbite on Hadoop. >>I think I'll go back to how we started. It's not, if you used to do putz, how you use to do and, you know, look at not only the first application, but what it's going to look like in multiple applications and pay attention to what enterprise grade means. >>Okay. They were secure. We got a more coverage coming, Jack Norris with map R I'll say one of the big three original, big three, still on the, on the list in our mind, and the market's mind with a unique approach to Hadoop and the mid-June great. This is the cube I'm Jennifer with Jeff Kelly. We'll be right back after this short break, >>Let's settle the PR program out there and fighting gap tech news right there. Plenty of the attack was that providing a new gadget. Let's talk about the latest game name, but just the.
SUMMARY :
IO is that, you know, we're 25 times faster on read intensive HBase applications. All the top execs were there and all the developers, you know, So, you know, the ability to meet full S SLA is full ha It's really saying, you know, just available when So, you know, there's a lot of details compared to what you guys offer? You know, one of the tenants is you have a point of Hadoop and some of the purists, as you might call them are saying, it's gotta be open a hundred percent that Peloton is, is, you know, pedaling faster and, and we'll, we'll catch up. So I know you guys are working with companies like ancestry.com, live nation and Quicken that they make accessible and, and, you know, ability for, So talk about when you went to, to work with them, what were some of their key requirements? It's kind of, you know, it's, it's hard with a specific company or even, I got to ask you about the marketing question cause I see, you know, map our, you guys have done a good job of marketing. And how do you reduce that inventory level and how do you speed the, you know, what we're delivering is a mission grade, you know, enterprise grade mission, How's the feedback on with Ted Dunning? so, you know, sharing insights there, he was speaking at the storm meetup How's John and Treevis doing how's the team at map are we're pedaling as best as you can No, we're just shifting gears. and basically across the whole company continues to expand rapidly. Well, that a little bit, because I think, you know, one of the, one of the trends we do see is when a company brings in big data, That's been the beauty of that is if you have a platform that can support those And you also mentioned kind of, they're able to maybe skip some of the experimental steps. and it, it, it basically, it's the same theme of when you're bringing Hadoop into We hear a lot about the SQL and Hadoop question support the greatest number of applications and, you know, avoid a lot of support and, Great to see you again, you know, look at not only the first application, but what it's going to look like in multiple This is the cube I'm Jennifer with Jeff Kelly. Plenty of the attack was that providing a new gadget.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ted | PERSON | 0.99+ |
London | LOCATION | 0.99+ |
Claudia | PERSON | 0.99+ |
Jeff Kelly | PERSON | 0.99+ |
Asia | LOCATION | 0.99+ |
Ted Dunning | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Paris | LOCATION | 0.99+ |
Korea | LOCATION | 0.99+ |
Matt BARR | PERSON | 0.99+ |
Munich | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
99.9% | QUANTITY | 0.99+ |
Jennifer | PERSON | 0.99+ |
Treevis | PERSON | 0.99+ |
25 times | QUANTITY | 0.99+ |
Japan | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
eight companies | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
mid-June | DATE | 0.99+ |
Charles | PERSON | 0.98+ |
Europe | LOCATION | 0.98+ |
30 minutes | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
first application | QUANTITY | 0.98+ |
Ash | PERSON | 0.98+ |
two nights ago | DATE | 0.98+ |
Hortonworks | ORGANIZATION | 0.98+ |
each stage | QUANTITY | 0.97+ |
SQL | TITLE | 0.97+ |
SiliconANGLE | ORGANIZATION | 0.97+ |
Natalie | PERSON | 0.97+ |
ancestry.com | ORGANIZATION | 0.96+ |
Hadoop | TITLE | 0.96+ |
Patrick | PERSON | 0.96+ |
last night | DATE | 0.95+ |
Jason | PERSON | 0.95+ |
2003 | DATE | 0.95+ |
Hadoop | EVENT | 0.94+ |
Apache | ORGANIZATION | 0.94+ |
Hadoop | PERSON | 0.93+ |
indeed.com | ORGANIZATION | 0.93+ |
hundred percent | QUANTITY | 0.92+ |
HBase | TITLE | 0.92+ |
Hadoop Summit 2013 | EVENT | 0.92+ |
Quicken loans | ORGANIZATION | 0.92+ |
two main differences | QUANTITY | 0.89+ |
HIPAA | TITLE | 0.89+ |
#HadoopSummit | EVENT | 0.89+ |
S SLA | TITLE | 0.89+ |
Hadoop | ORGANIZATION | 0.88+ |
Cloudera | ORGANIZATION | 0.85+ |
map R | TITLE | 0.85+ |
a year | QUANTITY | 0.83+ |
Zions bank | ORGANIZATION | 0.83+ |
Peloton | LOCATION | 0.78+ |
NFS | TITLE | 0.78+ |
MapReduce | TITLE | 0.77+ |
Cloudera map R | ORGANIZATION | 0.75+ |
live | ORGANIZATION | 0.74+ |
second design center | QUANTITY | 0.73+ |
Hindu | ORGANIZATION | 0.7+ |
theCUBE | ORGANIZATION | 0.7+ |
three main areas | QUANTITY | 0.68+ |
one enterprise grade | QUANTITY | 0.65+ |
Jack Norris | Strata Data Conference 2013
>>Okay. We're back here inside the cube, our flagship program about the events and extract the signal from the noise. This is strata conference. O'Reilly media is a big data event. We're talking about Hadoop analytics, data platforms, and big is come into the enterprise from the front door. As we heard them yesterday. I'm John Frey with Dave Volante, wiki.org. And we're here with Jack Norris, our cube alumni, and a favorite guest here. You're a in charge executive at map. Our, you guys are leading the charge with this use of a dupe. Welcome back to the cube. Thank you. Okay, so what's, let's chat about what's going on. What's your take on all the big news out here for the distributions. I'll the big power moose. You guys have a relationship with EMC. Okay. Exclusive relationship with those guys. Intel's got a distribution Horton versus with Microsoft, a lot of things going on. So this is your wheelhouse. So what's your take on the Hadoop action here? >>Well, I think there's an article in Forbes where I think they, they said it best. This is showing that map bars had the right strategy all along. And what we're seeing is, is basically there's a fairly low bar to taking a patchy Hadoop and providing a distribution. And so we're seeing a lot of new entrance in the market and there's, there's a lot of options. If you want to try Hadoop and experiment and get started. And then there's production class Hadoop, which includes enterprise data protection, snapshots mirrors, ability to integrate. And that's basically map R so start and test and dev with, with a lot of options and then move into production, class >>Mapbox. So break it down for the folks out there who are tipping the toe in the water and hearing all the noise. Cause it's right now, the noise level is very high, right? With the, with the recent announcements. But you guys have been doing business obviously for many years in this area. So when people say, Hey, I want to get a Hadoop distribution with enterprise. What, what should they be looking for? Okay. Because it's not that easy to kind of swing through the noise. So could you share with the folks out there, what, what to look for in like the, the table stakes, the check boxes? Cause there's a lot of claims. There's a lot of noise is this. And that is a lot of different options. Some teams have more committers or no committers than others, so that's all noise, but let's what are the key things that customers need to know? So I think there's, miling, >>There's three areas. All right. One is kind of how it integrates into your enterprise. And with Hadoop, you have the Hadoop distributed file system API. That's how you interact. Well, if you're able to also use standard tools that can use standard file and database access, it makes it much, much easier. So map ours unique and supporting NFS and making that happen. That's a, that's a big difference. The second is on dependability and there's high availability capabilities and then there's data protection. So I'll focus on snapshots as an example, you've got data replicated and Hindu. That's great. But if you have a user error, an application error, that's replicated just as quickly. So having the ability to recover and double-edged in time. Yeah. So if I can say, Hey, I made a mistake. Can I go back two minutes earlier with snapshots that makes it possible map ours, unique and snapshot support. And then finally, there's there's disaster recovery mirroring where you can go across clusters, mirror, what's going on across the land and being able to recover in the case of a disaster where you lose a whole cluster or use a whole >>Section and that's not available in >>Other, those aren't available either. That's >>NFS, >>Snapshots has been on the JIRA list for over five years. >>Yeah. Okay. So I wonder >>If I could find that and then there's third. Cause I said three and almost said two, the third is performance and scale and, but >>That'd be for >>Integration, dependability and speed. >>Okay. So dependability Jr's part of the VR snapshots. MDR. Okay. So let's talk about the performance because you guys had asked a Google's a big partner of you guys. So we should, we just had them on the cube strata. So you have to have a record setting. Do you have a record setting? EMC take that. Well, you work with DMC. So let me talk about the performance real quick. Then we'll talk about some of the EMC conversations, but performance, you have a variety of diverse performance benchmarks, Google you have within the enterprise. Can you talk about those? >>So, so what we announced this week was the minute sort world record. So minutes or runs across technologies is just, how can you, you know, how much data can you sort in 60 seconds? And if you look back at, at the previous record that was done in the labs with Microsoft with special purpose software, and they did 1.4 terabytes Hadoop hasn't been used since 2009, it's been several years because it's got features in there that work against performance. Things like checkpointing and logging because it assumes you've got long running MapReduce jobs. So we set the record with our distribution of Hadoop. So we have kind of one hand tied behind our back, given that technology. Secondly, we sent it in the cloud, which is the other hand tied behind our back because it's a, it's a virtualized environment. So we set the record with just with your legs And a 1.5 terabytes in 60 seconds. Very proud of that. >>Well, that's interesting because we've been doing a lot of labs testing, Dave and I and our teams on cost. Right. So, yeah. And it's an interesting benchmark because you always don't look at the nuance, the cost to compare a cloud performance versus bare metal. Most people don't factor into setup, cost of deployment. Exactly. So can you just quickly talk about that and how significant of an order of magnitude of your customer? >>So the, the previous Hadoop record took 3,400 servers about 27,000 cores, 13, 13,000, almost 14,000 discs and did 600 gigs, actually a little less than that at 5 78. And on Google, we did it with 2020 100 virtual instances, 8,000 cores did 1.5 terabytes >>And costs. You spin up the Google versus >>Basically if you look at that and you assume conservatively 4,000 per server, it's $13.8 million worth of hardware previously. And the cost to do that run on Google was $20 and 33 cents. >>Well, you got to discount. I mean, come on a partner mean it really costs that much. I mean, they that's what they would charge for it. Actually >>We are map artist's case on that minute. If you look at the Asheville charges to be 1200, >>Okay. It's not six millions, so millions to thousands. Yep. Okay. That's impressive. We'll have to go look at the numbers. Like we're going to look at GreenPlum's numbers in the next couple of weeks when talking about the Google relationship and men were that the up way with that was that >>Very excited about it. We're actually deployed throughout the cloud. We've got multiple partners Google's in limited preview. So we've got a number of customers kind of, you know, testing that and, and doing some really interesting things. >>So we monitor the data center market. I'll see with our proprietary tool that you know about the viewfinder and crowd spots and thing is that the data center verticals interesting, right? If you look at the sentiment analysis of what the conversation is on, on just the Twitter data, it's Facebook, apple, these companies. And when we dig into the numbers, it's not so much the companies, it's the fact that their data center operations are significantly being looked at as the leading indicator for where CEO's are going. So I want to ask you in your conversations with your customers, what are the conversations around moving to the cloud and where are they on that transition? Because we hear, yeah, one of the cloud for all the benefits you were mentioning, but Google and Facebook, these are the gold standards as, as architecture necessarily a cut and paste architecture, but they see the benefits that they're doing. So what are your conversations with your enterprise customers around the cloud cloud architecture and what other features besides replication and disaster recovery, are they, are they looking at >>Well, it's basically work, workload driven and dataset driven. So data that's already in the cloud are kind of a natural first step is, well, why don't I do the analysis there as well? So things like Google earth and digital advertising data, that's real interesting candidates for that also periodic workload. So if they have workloads that need to spin up and spin down, the, the cloud works, works really well for that. And in some cases it's driven by their own environments. They've got data centers that are approaching capacity and they need to kind of do offloads and then looking at the, at the cloud because it's easy to get up running quickly and uses an alternative. >>I want to do come back to one of your three sort of value props here, particularly the dependability piece and specifically the snapshot. So somebody asked me one time, how do you know a couple of years ago, how do you back up a petabyte as he could do this thing? And then his answer was, well, you don't know. So I want to, I want to ask you how your customers are protecting and, and, and, and what you guys are bringing to the table. >>So snapshots is not a bolt on feature. It's basically a low level feature based on the underlying data architecture. So when we architected that from the beginning, snapshots was, was a, was a core feature. And if you use a technique called redirect on, right, you're not copying the data, right? So you can do efficient, you can do a petabyte snapshot, you know, basically almost instantaneously because you're tracking the pointers of the latest blocks that have been written. So if, if the data change rate is, is basically, data's not changing, you can snapshot every minute and not have any additional storage overhead. >>Right. Okay. And, and so you can set that. So you, you map, map, our technologies will allow them to set that, dial that up, dial it down and switches. >>So we support logical volumes. So you can set policies at that volume and you can say, well, this volume is critical data. And then I can set policies. Well, critical data is every minute. And then I can change what the definition of critical data is. Maybe it's every five minutes, et cetera. So you can set up these different policies at volumes and have snapshots happen independently for each. >>Can you do that by workload or dataset or by application or whatever I get essentially provided as a service, as opposed to kind of a one size fits all approach. >>Exactly. And that, that also corresponds to user access, administrative privileges, you know, other features and policies within the, within the cluster. >>How about the, you know, this whole trend toward bringing SQL into, into Hadoop. What's, what's your take on that? And what's your angle? >>So interactive, SQL's an important aspect because you've got so many people trained in the organization and, and leverage, you know, sequel, but it's one of many use cases that needs to run across a big data platform. So there's a range of big data analytics, batch analytics, interactive capabilities with sequel, database operations, no sequel search streaming, all those are kind of functions that need to run across a platform. So it's a piece, but it's not the big driver, because what we've seen is that there's higher rival rate of machine generated data and machine generated response to respond to those for digital advertising, for recommendation engines for fraud detection can really move the needle for an organization, have huge swings and profitability >>And the ball down the field big time. Yeah. And >>Having an interactive piece with a kind of a human element involved, it doesn't really scale and work on a 24 by seven basis. >>Jack final question, we're over now by a minute. But when I ask a one party question, obviously, very competitive landscape right now in terms of competitiveness, the stakes are higher because the demand in the market market opportunities is massive. What's map ours business strategy going forward, no change in direction. Is it going to be same old, same old. You guys have any new things going down and you see the marketplace. >>We've got a huge lead when it comes to kind of mission critical enterprise grade features. And our focus is one platform. So the ability to support enterprise Hadoop, enterprise HBase and provide those full capabilities for ease of use for dependability, for performance. And, you know, we've seen a lot of companies test on one distribution and switch to map are and will continue to help that in the future. >>Well, we, we will, we will say we've been covering this big data space now going on four years now, Dave and I, and we've watched all the players pivot a few times. You guys have not, you guys have been true to your mission from day one and that we know where you stand. No one, everyone knows where you stand enterprise grade. It's a good strategy. I think everyone's putting that on their label now. So enterprise grade Washington, we call it a congratulations map art and said the cube. We'll be right back with our next guest here on day three wall-to-wall coverage at O'Reilly media. When do our news, our next from 12 to one, we'll be right back after this short break.
SUMMARY :
So what's your take on the Hadoop If you want to try Hadoop So could you share with the folks out there, what, what to look for in like the, the table stakes, And with Hadoop, you have the Hadoop That's If I could find that and then there's third. So let's talk about the performance because you And if you look back at, at the previous record that was done in the labs with So can you just quickly talk about that and how significant And on Google, we did it with 2020 100 virtual instances, And costs. And the cost to do that run on Google was $20 Well, you got to discount. If you look at the Asheville charges to be 1200, We'll have to go look at the numbers. So we've got a number of customers kind of, you know, testing that and, So I want to ask you in your conversations with your customers, So data that's already in the cloud are kind of a natural first step is, well, So I want to, I want to ask you how your customers are protecting and, and, So you can do efficient, you can do a petabyte snapshot, So you, you map, So you can set policies at that volume and you can say, Can you do that by workload or dataset or by application or whatever I get essentially provided as a service, you know, other features and policies within the, within the cluster. How about the, you know, this whole trend toward bringing SQL into, into Hadoop. you know, sequel, but it's one of many use cases that needs to run And the ball down the field big time. Having an interactive piece with a kind of a human element involved, and you see the marketplace. So the ability to support enterprise Hadoop, You guys have not, you guys have been true to your mission from day
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Volante | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
$20 | QUANTITY | 0.99+ |
Jack Norris | PERSON | 0.99+ |
John Frey | PERSON | 0.99+ |
apple | ORGANIZATION | 0.99+ |
$13.8 million | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
600 gigs | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
60 seconds | QUANTITY | 0.99+ |
1.5 terabytes | QUANTITY | 0.99+ |
33 cents | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
3,400 servers | QUANTITY | 0.99+ |
six millions | QUANTITY | 0.99+ |
8,000 cores | QUANTITY | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
O'Reilly | ORGANIZATION | 0.99+ |
1200 | QUANTITY | 0.99+ |
third | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
Asheville | LOCATION | 0.99+ |
millions | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
2009 | DATE | 0.99+ |
1.4 terabytes | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
three | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
24 | QUANTITY | 0.99+ |
this week | DATE | 0.99+ |
four years | QUANTITY | 0.99+ |
one party | QUANTITY | 0.99+ |
over five years | QUANTITY | 0.99+ |
three areas | QUANTITY | 0.99+ |
Hadoop | TITLE | 0.99+ |
One | QUANTITY | 0.98+ |
2020 | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
100 virtual instances | QUANTITY | 0.97+ |
second | QUANTITY | 0.97+ |
one platform | QUANTITY | 0.97+ |
first step | QUANTITY | 0.97+ |
Jack | PERSON | 0.97+ |
one time | QUANTITY | 0.97+ |
Secondly | QUANTITY | 0.95+ |
about 27,000 cores | QUANTITY | 0.94+ |
HBase | TITLE | 0.93+ |
13, 13,000 | QUANTITY | 0.93+ |
GreenPlum | ORGANIZATION | 0.92+ |
day three | QUANTITY | 0.92+ |
DMC | ORGANIZATION | 0.91+ |
Intel | ORGANIZATION | 0.9+ |
a minute | QUANTITY | 0.9+ |
day one | QUANTITY | 0.89+ |
Strata Data Conference | EVENT | 0.89+ |
4,000 per server | QUANTITY | 0.89+ |
14,000 discs | QUANTITY | 0.87+ |
five minutes | QUANTITY | 0.85+ |
Washington | LOCATION | 0.84+ |
one distribution | QUANTITY | 0.83+ |
wiki.org | OTHER | 0.83+ |
seven | QUANTITY | 0.83+ |
couple of years ago | DATE | 0.83+ |
5 78 | QUANTITY | 0.82+ |
each | QUANTITY | 0.81+ |
Jr | PERSON | 0.79+ |
12 | QUANTITY | 0.77+ |
Jack Norris | Strata-Hadoop World 2012
>>Okay. We're back here, live in New York city for big data week. This is siliconangle.tvs, exclusive coverage of Hadoop world strata plus Hadoop world big event, a big data week. And we just wrote a blog post on siliconangle.com calling this the south by Southwest for data geeks and, and, um, it's my prediction that this is going to turn into a, quite the geek Fest. Uh, obviously the crowd here is enormous packed and an amazing event. And, uh, we're excited. This is siliconangle.com. I'm the founder John ferry. I'm joined by cohost update >>Volante of Wiki bond.org, where people go for free research and peers collaborate to solve problems. And we're here with Jack Norris. Who's the vice president of market marketing at map are a company that we've been tracking for quite some time. Jack, welcome back to the cube. Thank you, Dave. I'm going to hand it to you. You know, we met quite a while ago now. It was well over a year ago and we were pushing at you guys and saying, well, you know, open source and nice look, we're solving problems for customers. We got the right model. We think, you know, this is, this is our strategy. We're sticking to it. Watch what happens. And like I said, I have to hand it to you. You guys are really have some great traction in the market and you're doing what you said. And so congratulations on that. I know you've got a lot more work to do, but >>Yeah, and actually the, the topic of openness is when it's, it's pretty interesting. Um, and, uh, you know, if you look at the different options out there, all of them are combining open source with some proprietary. Uh, now in the case of some distributions, it's very small, like an ODBC driver with a proprietary, um, driver. Um, but I think it represents that that any solution combining to make it more open is, is important. So what we've done is make innovations, but what we've made those innovations we've opened up and provided API. It's like NFS for standard access, like rest, like, uh, ODBC drivers, et cetera. >>So, so it's a spectrum. I mean, actually we were at Oracle open world a few weeks ago and you listen to Larry Ellison, talk about the Oracle public cloud mix of actually a very strong case that it's open. You can move data, it's all Java. So it's all about standards. Yeah. And, uh, yeah, it from an opposite, but it was really all about the business value. That's, that's what the bottom line is. So, uh, we had your CEO, John Schroeder on yesterday. Uh, John and I both were very impressed with, um, essentially what he described as your philosophy of we, we not as a product when we have, we have customers when we announce that product and, um, you know, that's impressive, >>Is that what he was also given some good feedback that startup entrepreneurs out there who are obviously a lot of action going on with the startup community. And he's basically said the same thing, get customers. Yeah. And that's it, that's all and use your tech, but don't be so locked into the tech, get the cutters, understand the needs and then deliver that. So you guys have done great. And, uh, I want to talk about the, the show here. Okay. Because, uh, you guys are, um, have a big booth and big presence here at the show. What, what did you guys are learning? I'll say how's the positioning, how's the new news hitting. Give us a quick update. So, >>Uh, a lot of news, uh, first started, uh, on Tuesday where we announced the M seven edition. And, uh, yeah, I brought a demo here for me, uh, for you all. Uh, because the, the big thing about M seven is what we don't have. So, uh, w we're not demoing Regents servers, we're not demoing compactions, uh, we're not demoing a lot of, uh, manual administration, uh, administrative tasks. So what that really means is that we took this stack. And if you look at HBase HBase today has about half of dupe users, uh, adopting HBase. So it's a lot of momentum in the market, uh, and, you know, use for everything from real-time analytics to kind of lightweight LTP processing. But it's an infrastructure that sits on top of a JVM that stores it's data in the Hadoop distributed file system that sits on a JVM that stores its data in a Linux file system that writes to disk. >>And so a lot of the complexity is that stack. And so as an administrator, you have to worry about how data gets permit, uh, uh, you know, kind of basically written across that. And you've got region servers to keep up, uh, when you're doing kind of rights, you have things called compactions, which increased response time. So it's, uh, it's a complex environment and we've spent quite a bit of time in, in collapsing that infrastructure and with the M seven edition, you've got files and tables together in the same layer writing directly to disc. So there's no region servers, uh, there's no compactions to deal with. There's no pre splitting of tables and trying to do manual merges. It just makes it much, much simpler. >>Let's talk about some of your customers in terms of, um, the profile of these guys are, uh, I'm assuming and correct me if I'm wrong, that you're not selling to the tire kickers. You're selling to the guys who actually have some experience with, with a dupe and have run into some of the limitations and you come in and say, Hey, we can solve some of those problems. Is that, is that, is that right? Can you talk about that a little bit >>Characterization? I think part of it is when you're in the evaluation process and when you first hear about Hadoop, it's kind of like the Gartner hype curve, right. And, uh, you know, this stuff, it does everything. And of course you got data protection, cause you've got things replicated across the cluster. And, uh, of course you've got scalability because you can just add nodes and so forth. Well, once you start using it, you realize that yes, I've got data replicated across the cluster, but if I accidentally delete something or if I've got some corruption that's replicated across the cluster too. So things like snapshots are really important. So you can return to, you know, what was it, five minutes before, uh, you know, performance where you can get the most out of your hardware, um, you know, ease of administration where I can cut this up into, into logical volumes and, and have policies at that whole level instead of at an individual file. >>So there's a, there's a bunch of features that really resonate with users after they've had some experience. And those tend to be our, um, you know, our, our kind of key customers. There's a, there's another phase two, which is when you're testing Hadoop, you're looking at, what's possible with this platform. What, what type of analytics can I do when you go into production? Now, all of a sudden you're looking at how does this fit in with my SLS? How does this fit in with my data protection, uh, policies, you know, how do I integrate with my different data sources? And can I leverage existing code? You know, we had one customer, um, you know, a large kind of a systems integrator for the federal government. They have a million lines of code that they were told to rewrite, to run with other distributions that they could use just out of the box with Matt BARR. >>So, um, let's talk about some of those customers. Can you name some names and get >>Sure. So, um, actually I'll, I'll, I'll talk with, uh, we had a keynote today and, uh, we had this beautiful customer video. They've had to cut because of times it's running in our booth and it's screaming on our website. And I think we've got to, uh, actually some of the bumper here, we kind of inserted. So, um, but I want to shout out to those because they ended up in the cutting room floor running it here. Yeah. So one was Rubicon project and, um, they're, they're an interesting company. They're a real-time advertising platform at auction network. They recently passed a Google in terms of number one ad reach as mentioned by comScore, uh, and a lot of press on that. Um, I particularly liked the headline that mentioned those three companies because it was measured by comScore and comScore's customer to map our customer. And Google's a key partner. >>And, uh, yesterday we announced a world record for the Hadoop pterosaur running on, running on Google. So, um, M seven for Rubicon, it allows them to address and replace different point solutions that were running alongside of Hadoop. And, uh, you know, it simplifies their, their potentially simplifies their architecture because now they have more things done with a single platform, increases performance, simplifies administration. Um, another customer is ancestry.com who, uh, you know, maybe you've seen their ads or heard, uh, some of their radio shots. Um, they're they do a tremendous amount of, of data processing to help family services and genealogy and figure out, you know, family backgrounds. One of the things they do is, is DNA testing. Uh, so for an internet service to do that, advanced technology is pretty impressive. And, uh, you know, you send them it's $99, I believe, and they'll send you a DNA kit spit in the tube, you send it back and then they process that and match and give you insights into your family background. So for them simplifying HBase meant additional performance, so they could do matches faster and really simplified administration. Uh, so, you know, and, and Melinda Graham's words, uh, you know, it's simpler because they're just not there. Those, those components >>Jack, I want to ask you about enterprise grade had duped because, um, um, and then, uh, Ted Dunning, because he was, he was mentioned by Tim SDS on his keynote speech. So, so you have some rockstars stars in the company. I was in his management team. We had your CEO when we've interviewed MC Sri vis and Google IO, and we were on a panel together. So as to know your team solid team, uh, so let's talk about, uh, Ted in a minute, but I want to ask you about the enterprise grade Hadoop conversation. What does that mean now? I mean, obviously you guys were very successful at first. Again, we were skeptics at first, but now your traction and your performance has proven this is a market for that kind of platform. What does that mean now in this, uh, at this event today, as this is evolving as Hadoop ecosystem is not just Hadoop anymore. It's other things. Yeah, >>There's, there's, there's three dimensions to enterprise grade. Um, the first is, is ease of use and ease of use from an administrator standpoint, how easy does it integrate into an existing environment? How easy does it, does it fit into my, my it policies? You know, do you run in a lights out data center? Does the Hadoop distribution fit into that? So that's, that's one whole dimension. Um, a key to that is, is, you know, complete NFS support. So it functions like, uh, you know, like standard storage. Uh, a second dimension is undependability reliability. So it's not just, you know, do you have a checkbox ha feature it's do you have automated stateful fail over? Do you have self healing? Can you handle multiple, uh, failures and, and, you know, automated recovery. So, you know, in a lights out data center, can you actually go there once a week? Uh, and then just, you know, replace drives. And a great example of that is one of our customers had a test cluster with, with Matt BARR. It was a POC went on and did other things. They had a power field, they came back a week later and the cluster was up and running and they hadn't done any manual tasks there. And they were, they were just blown away to the recovery process for the other distributions, a long laundry list of, >>So I've got to ask you, I got to ask you this, the third >>One, what's the third one, third one is performance and performance is, is, you know, kind of Ross' speed. It's also, how do you leverage the infrastructure? Can you take advantage of, of the network infrastructure, multiple Knicks? Can you take advantage of heterogeneous hardware? Can you mix and match for different workloads? And it's really about sharing a cluster for different use cases and, and different users. And there's a lot of features there. It's not just raw >>The existing it infrastructure policies that whole, the whole, what happens when something goes wrong. Can you automate that? And then, >>And it's easy to be dependable, fast, and speed the same thing, making HBase, uh, easy, dependable, fast with themselves. >>So the talk of the show right now, he had the keynote this morning is that map. Our marketing has dropped the big data term and going with data Kozum. Is that true? Is that true? So, Joe, Hellerstein just had a tweet, Joe, um, famous, uh, Cal Berkeley professor, computer science professor now is CEO of a startup. Um, what's the industry trifecta they're doing, and he had a good couple of epic tweets this week. So shout out to Joe Hellerstein, but Joel Hellison's tweet that says map our marketing has decided to drop the term big data and go with data Kozum with a shout out to George Gilder. So I'm kind of like middle intellectual kind of humor. So w w w what's what's your response to that? Is it true? What's happening? What is your, the embargo, the VP of marketing? >>Well, if you look at the big data term, I think, you know, there's a lot of big data washing going on where, um, you know, architectures that have been out there for 30 years or, you know, all about big data. Uh, so I think there's a, uh, there's the need for a more descriptive term. Um, the, the purpose of data Kozum was not to try to coin something or try to, you know, change a big data label. It was just to get people to take a step back and think, and to realize that we are in a massive paradigm shift. And, you know, with a shout out to George Gilder, acknowledging, you know, he recognized what the impact of, of making available compute, uh, meant he recognized with Telekom what bandwidth would mean. And if you look at the combination of we've got all this, this, uh, compute efficiency and bandwidth, now data them is, is basically taking those resources and unleashing it and changing the way we do things. >>And, um, I think, I think one of the ways to look at that is the new things that will be possible. And there's been a lot of focus on, you know, SQL interfaces on top of, of Hadoop, which are important. But I think some of the more interesting use cases are taking this machine J generated data that's being produced very, very rapidly and having automated operational analytics that can respond in a very fast time to change how you do business, either, how you're communicating with customers, um, how you're responding to two different, uh, uh, risk factors in the environment for fraud, et cetera, or, uh, just increasing and improving, um, uh, your response time to kind of cost events. We met earlier called >>Actionable insight. Then he said, assigning intent, you be able to respond. It's interesting that you talk about that George Gilder, cause we like to kind of riff and get into the concept abstract concepts, but he also was very big in supply side economics. And so if you look at the business value conversation, one of things we pointed out, uh, yesterday and this morning, so opening, um, review was, you know, the, the top conversations, insight and analytics, you know, as a killer app right now, the app market has not developed. And that's why we like companies like continuity and what you guys are doing under the hood is being worked on right at many levels, performance units of those three things, but analytics is a no brainer insight, but the other one's business value. So when you look at that kind of data, Kozum, I can see where you're going with that. >>Um, and that's kind of what people want, because it's not so much like I'm Republican because he's Republican George Gilder and he bought American spectator. Everyone knows that. So, so obviously he's a Republican, but politics aside, the business side of what big data is implementing is massive. Now that I guess that's a Republican concept. Um, but not really. I mean, businesses is, is, uh, all parties. So relative to data caused them. I mean, no one talks about e-business anymore. We talking to IBM at the IBM conference and they were saying, Hey, that was a great marketing campaign, but no one says, Hey, uh, you and eat business today. So we think that big data is going to have the same effect, which is, Hey, are you, do you have big data? No, it's just assumed. Yeah. So that's what you're basically trying to establish that it's not just about big. >>Yeah. Let me give you one small example, um, from a business value standpoint and, uh, Ted Dunning, you mentioned Ted earlier, chief application architect, um, and one of the coauthors of, of, uh, the book hoot, which deals with machine learning, uh, he dealt with one of our large financial services, uh, companies, and, uh, you know, one of the techniques on Hadoop is, is clustering, uh, you know, K nearest neighbors, uh, you know, different algorithms. And they looked at a particular process and they sped up that process by 30,000 times. So there's a blog post, uh, that's on our website. You can find out additional information on that. And I, >>There's one >>Point on this one point, but I think, you know, to your point about business value and you know, what does data Kozum really mean? That's an incredible speed up, uh, in terms of, of performance and it changes how companies can react in real time. It changes how they can do pattern recognition. And Google did a really interesting paper called the unreasonable effectiveness of data. And in there they say simple algorithms on big data, on massive amounts of data, beat a complex model every time. And so I think what we'll see is a movement away from data sampling and trying to do an 80 20 to looking at all your data and identifying where are the exceptions that we want to increase because there, you know, revenue exceptions or that we want to address because it's a cost or a fraud. >>Well, that's what I, I would give a shout out to, uh, to the guys that digital reasoning Tim asked he's plugged, uh, Ted. It was idolized him in terms of his work. Obviously his work is awesome, but two, he brought up this concept of understanding gap and he showed an interesting chart in his keynote, which was the date explosion, you know, it's up and, you know, straight up, right. It's massive amount of data, 64% unstructured by his calculation. Then he showed out a flat line called attention. So as data's been exploding over time, going up attention mean user attention is flat with some uptick maybe, but so users and humans, they can't expand their mind fast enough. So machine learning technologies have to bridge that gap. That's analytics, that's insight. >>Yeah. There's a big conversation now going on about more data, better models, people trying to squint through some of the comments that Google made and say, all right, does that mean we just throw out >>The models and data trumps algorithms, data >>Trumps algorithms, but the question I have is do you think, and your customer is talking about, okay, well now they have more data. Can I actually develop better algorithms that are simpler? And is it a virtuous cycle? >>Yeah, it's I, I think, I mean, uh, there are there's, there are a lot of debate here, a lot of information, but I think one of the, one of the interesting things is given that compute cycles, given the, you know, kind of that compute efficiency that we have and given the bandwidth, you can take a model and then iterate very quickly on it and kind of arrive at, at insight. And in the past, it was just that amount of data in that amount of time to process. Okay. That could take you 40 days to get to the point where you can do now in hours. Right. >>Right. So, I mean, the great example is fraud detection, right? So we used the sample six months later, Hey, your credit card might've been hacked. And now it's, you know, you got a phone call, you know, or you can't use your credit card or whatever it is. And so, uh, but there's still a lot of use cases where, you know, whether is an example where modeling and better modeling would be very helpful. Uh, excellent. So, um, so Dana custom, are you planning other marketing initiatives around that? Or is this sort of tongue in cheek fun? Throw it out there. A little red meat into the chum in the waters is, >>You know, what really motivated us was, um, you know, the cubes here talking, you know, for the whole day, what could we possibly do to help give them a topic of conversation? >>Okay. Data cosmos. Now of course, we found that on our proprietary HBase tools, Jack Norris, thanks for coming in. We appreciate your support. You guys have been great. We've been following you and continue to follow. You've been a great support of the cube. Want to thank you personally, while we're here. Uh, Matt BARR has been generous underwriter supportive of our great independent editorial. We want to recognize you guys, thanks for your support. And we continue to look forward to watching you guys grow and kick ass. So thanks for all your support. And we'll be right back with our next guest after this short break. >>Thank you. >>10 years ago, the video news business believed the internet was a fat. The science is settled. We all know the internet is here to stay bubbles and busts come and go. But the industry deserves a news team that goes the distance coming up on social angle are some interesting new metrics for measuring the worth of a customer on the web. What zinc every morning, we're on the air to bring you the most up-to-date information on the tech industry with scrutiny on releases of the day and news of industry-wide trends. We're here daily with breaking analysis, from the best minds in the business. Join me, Kristin Filetti daily at the news desk on Silicon angle TV, your reference point for tech innovation 18 months.
SUMMARY :
And, uh, we're excited. We think, you know, this is, this is our strategy. Um, and, uh, you know, if you look at the different options out there, we not as a product when we have, we have customers when we announce that product and, um, you know, Because, uh, you guys are, um, have a big booth and big presence here at the show. uh, and, you know, use for everything from real-time analytics to you know, kind of basically written across that. Can you talk about that a little bit And, uh, you know, this stuff, it does everything. And those tend to be our, um, you know, Can you name some names and get uh, we had this beautiful customer video. uh, you know, you send them it's $99, I believe, and they'll send you a DNA so let's talk about, uh, Ted in a minute, but I want to ask you about the enterprise grade Hadoop conversation. So it functions like, uh, you know, like standard storage. is, you know, kind of Ross' speed. Can you automate that? And it's easy to be dependable, fast, and speed the same thing, making HBase, So the talk of the show right now, he had the keynote this morning is that map. there's a lot of big data washing going on where, um, you know, architectures that have been out there for you know, SQL interfaces on top of, of Hadoop, which are important. uh, yesterday and this morning, so opening, um, review was, you know, but no one says, Hey, uh, you and eat business today. uh, you know, K nearest neighbors, uh, you know, different algorithms. Point on this one point, but I think, you know, to your point about business value and you which was the date explosion, you know, it's up and, you know, straight up, right. that Google made and say, all right, does that mean we just throw out Trumps algorithms, but the question I have is do you think, and your customer is talking about, okay, well now they have more data. cycles, given the, you know, kind of that compute efficiency that we have and given And now it's, you know, you got a phone call, you know, We want to recognize you guys, thanks for your support. We all know the internet is here to stay bubbles and busts come and go.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Joe Hellerstein | PERSON | 0.99+ |
George Gilder | PERSON | 0.99+ |
Ted Dunning | PERSON | 0.99+ |
Kristin Filetti | PERSON | 0.99+ |
Joel Hellison | PERSON | 0.99+ |
John Schroeder | PERSON | 0.99+ |
Joe | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Larry Ellison | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
John | PERSON | 0.99+ |
40 days | QUANTITY | 0.99+ |
Melinda Graham | PERSON | 0.99+ |
64% | QUANTITY | 0.99+ |
$99 | QUANTITY | 0.99+ |
comScore | ORGANIZATION | 0.99+ |
Tim | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tuesday | DATE | 0.99+ |
Matt BARR | PERSON | 0.99+ |
Hellerstein | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
George Gilder | PERSON | 0.99+ |
Ted | PERSON | 0.99+ |
John ferry | PERSON | 0.99+ |
30 years | QUANTITY | 0.99+ |
30,000 times | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
a week later | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
three companies | QUANTITY | 0.99+ |
Dana | PERSON | 0.99+ |
Tim SDS | PERSON | 0.99+ |
one point | QUANTITY | 0.99+ |
Java | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
six months later | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
one customer | QUANTITY | 0.99+ |
Linux | TITLE | 0.98+ |
once a week | QUANTITY | 0.98+ |
18 months | QUANTITY | 0.98+ |
Rubicon | ORGANIZATION | 0.98+ |
HBase | TITLE | 0.98+ |
Kozum | PERSON | 0.98+ |
Gartner | ORGANIZATION | 0.98+ |
this morning | DATE | 0.97+ |
Telekom | ORGANIZATION | 0.97+ |
this week | DATE | 0.97+ |
10 years ago | DATE | 0.97+ |
second dimension | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
Kozum | ORGANIZATION | 0.95+ |
third one | QUANTITY | 0.95+ |
One | QUANTITY | 0.94+ |
three things | QUANTITY | 0.94+ |
a year ago | DATE | 0.94+ |
Hadoop | TITLE | 0.93+ |
siliconangle.com | OTHER | 0.93+ |
Knicks | ORGANIZATION | 0.93+ |
Regents | ORGANIZATION | 0.92+ |
Jack Norris | Hadoop Summit 2012
>>Okay. We're back live in Silicon valley and San Jose, California for the continuous coverage of siliconangle.tv and have duke world 2012. This is ground zero for the alpha geeks in big data. Uh, just the tech elite. We call them tech athletes and, uh, we're excited to cover it on the ground. Extract the signal from the noise here. This is the cube, our flagship telecast. I'm joining my co-host Jeff Kelly from Wiki bond.org, the best analyst in the business. Jeff, welcome back for another segment. End of the day, day one loving every minute. Okay. We're here with our guest. Jack Norris is a cm of map bar Jack. Welcome back to the cube. You've been on a few times. Um, so you guys have some news. Yes. So let's get right to the news. So you guys are a player in the business, so share with your news, the folks. Excellent jump right in. >>So, uh, two big announcements today, we announced that Amazon is integrating map bar as part of their Lastic MapReduce service and both edition or, or free edition. M three is available as well as M five directly with Amazon, Amazon in the cloud. >>So what's the value proposition. Why would a customer say, all right, I want to do this in the cloud manpower, an Amazon cloud rather than doing it on premise. >>Okay. So let's start with, I mean, there's a lot of value propositions, all balled up into one here. Uh, first of all, in the cloud, it allows them to spin up very quickly. Within a couple minutes, you can get, uh, you know, hundreds of nodes available. Um, and, uh, and depending on where you're processing the data, if you've got a lot of data in the cloud already makes a lot of sense to do the Hadoop processing directly there. So that's, that's one area. A second is you might have an on-premise cloud deployment and need to have a disaster recovery. So map R provides point in time, snapshots, uh, as well as, as a white area replication. So you can use mirroring having Amazon available as a target is a huge advantage. And then there's also a third application area where you can do processing of the data in the cloud and then synchronize those results to an on-premise. So basically process where the data is combined the results into a cluster on premise. So you >>Don't have to move the raw data. Uh, >>On-premise actually, it's all about let's do the processing on the data. Well, you know, the whole, >>The value proposition and big data in general is let's not move, move data as little as possible. Yep. Uh, you know, so you bring the computation to the data, if you can. Uh, so what are your take on this event? I mean, we've got, uh, this is a, you know, the 4th of June summit, uh, you know, Hortonworks is now fully taken over the show and talk about what you see out here in terms of, uh, the other vendors that play. And, uh, just to kind of the attendees, the vibe you're seeing, >>Uh, it's a lot of excitement. I think a big difference between last year, which seemed to be very developer focused. We're seeing a lot of, a lot of presentations by customers. A lot of information was shared by our customers today. It was fun to see that, uh, comScore's shared, uh, shared their success. Boeing gap map is, uh, it was great for us. >>Fantastic. We look at Amazon, Amazon, first of all, is the gold standard for public cloud. Right? They've knocked it out of the park. Everyone knows Amazon. Um, but they've been criticized on the big data front because of the cycle times involve on. Um, and some developers and mean for web service spending up and down. No problem. Um, and we're seeing businesses like Netflix run on Amazon. So Amazon is not a stranger to running scale for cloud, but Hadoop has kind of been a klugey thing for Amazon. So I think, you know, talk about why Amazon and you guys is a good fit out to the market. The market reach is great. So you guys know and have a huge addressable market. Are you guys helping solve some of that complexity with the, uh, with the MapReduce side? What's, >>What's the core, I guess the first comment first response would be, I think every customer should have that type of Kluge. Uh, uh, they could have the success that Amazon has in Hadoop. They have a huge number of, of, uh, of Hadoop deployments have been very, very successful. I think, >>I mean, you know what I mean by it's natural, it's, cloogy everywhere right now. That's the problem. But Amazon has huge scale, um, and had not a natural fit. There >>Is not a natural fit >>For the data for the data component. And, uh, uh, the HBase for example, >>Component. So where were Amazons, you know, made it very frictionless is the ability to spin up Hadoop to do the analysis. The gap that was missing is some of the, the ha capabilities. The data protection features the disaster recovery, and, you know, we're map are now it gives options to those customers. You know, if they want those kinds of enterprise enterprise grade features, now they have an option within EMR. It can select a M five and, and get moving if they want a performance. And in NFS, they've got the M three options. >>Well, congratulations. I think it's a great deal for you guys and for Amazon customers. My question for you is, as you guys explore the enterprise ready equation, which has been a big topic this week, um, what does that mean to you guys? Cause it means different things to different people depends on where, how high up to OLTB do you go? Right? I mean, we're how far from batch to real time transactional, um, levels you go, I mean, low bash, no problem. But as you start to get more near real time, it's going to be a little bit different gray in this house used security HDFS. Yeah. >>Yeah. So, so duke represents the strategic platform, right? Deploying that in an organization, um, you know, moving from kind of an experimental kind of lab based to production environment creates a different set of feature requirements. How available is it? How easy is it to integrate, right? How do I kind of protect that information and how do I share it? So when we say enterprise grade, we mean you can have SLA, she can put the data there and, and be confident that the data will remain there, that you can have a point in time recovery for an application error or user mistake. Uh, you can have a disaster recovery features in place. And then the integration is about not recreating the wheel to get access to the information. So Hadoop is very powerful, but it requires interacting through an HDFS API. If you can leverage it like through map bar with NFS standard file based access standard ODBC access, open it up. >>So I can use a standard file browser applications to see and manipulate the data really opens up the use cases. And then finally, what we announced in two dot oh, was multitenancy features. So as you share that information, all of a sudden the SLA is of different groups and well, these guys need it immediately. And if you've got some low grade batch jobs are going to impact that. So you want the ability to protect, to isolate, to secure information, and basically have virtual clusters within a cluster. And those features are important to cloud, but they're also important to on-premise >>So great for the hybrid cloud environments out there. I mean, the multitenancy cracking the code on that. Exactly huge. I mean, that is basically, I mean, right now most enterprises are like private cloud because it's like, they're basically extension of their data center and you're seeing a lot more activity in the hybrid cloud as a gateway to the public cloud. So, >>And, and, you know, frankly, people are kind of struggling with in an experimental with Apache Hadoop and the other distributions, the policies are either at the individual file level or the whole cluster. And it all almost forced the creation of separate physical clusters, which kind of goes against the whole Hadoop concept. So the ability to manage it, a logical layer have separate volumes where you can apply policies to apply that applies to all the content underneath really kind of makes it much, much easier for administrators to kind of deal with these multiple use cases. >>Amazon, Amazon has always been one of those cases for the enterprise where it's been one of those and they've, this has been talked about for years, put the credit card down, go play on Amazon, but then bring it back into the it group for certification. And so I think this is a nice product for you guys to bring that comfort. You know, we're very >>Excited the enterprise saying, Hey, >>Come play in Amazon. It's Bulletproof enterprise. Ready? So congratulations. >>I wonder, can we talk, uh, talk use cases. So what are you seeing in terms of, uh, evolving use cases as, as, uh, duke continues to become more enterprise grade, uh, depending on your definition, uh, but how is that impacting what you're seeing in terms of, even if it's just, uh, you know, the, the, um, the mindset even people think now, okay, now it's enterprise grade, well, maybe, you know, in, in, depending on who you talk to, it's been that way for a bit, but what kind of, uh, use cases are you seeing develop now that it's kind of starting to gain acceptance? It's like, okay, we can trust our data is going to be there, et cetera. >>So th there's a huge range of use cases that, uh, different by industry, different by kind of dataset that's being used against everything from really a deep store where you can do analytics on it. So you're selecting the content to something that's very, very analytic machine learning intensive, where you're doing sophisticated clustering algorithms, uh, et cetera, um, where we've seen kind of an expansion of use cases are around real-time streaming and you get streaming data sets that are kind of entering into the cloud. And, um, some of the more mission, critical data moving beyond just maybe click stream data or things that if you happen to drop a few, you know, not a big deal, right. Versus the kind of trust the business type of content. >>Talk a little bit about the streaming, uh, aspects, uh, because of course, you know, we think of duke, we think of a batch system in terms of streaming data into Hadoop. You know, that's, that's a different, uh, that's something we don't, we haven't heard a lot about. So how do you guys approach that? >>So, uh, one of the artifacts of, of HDFS, which is a, is a distributed file system that scores in the underlying Linux file system, it's append only. So as an administrator, you decide, how frequently do I close the file item? I going to do that an hourly basis on it every eight hours, because you have to close the file for other applications to see the data that's been written. Right? So one of the innovations that, uh, that we pursued was to rewrite that create this dynamic read-write layer. So you can continue to write data in any application is seeing the latest data that's written. So you can Mount the cluster as if it's storage and just continue to write data. There really opens up what's, uh, what's possible companies like Informatica, they're all from a messaging product integrates directly in with, with Matt BARR and provides. >>So what kind of advantage does that provide to the end user? What w w translate that into real business value? Why, why is that important? >>Well, so one example is comScore, comScore handles 30 billion, uh, objects a day, uh, as they go out and try to measure the use of, of the web and being able to continually write and stream that information and scale and handle that in a real time and do analytics and turn around data faster, has tremendous business value to them. If they're stuck in a batch environment where the load times lengthen to the point where all of a sudden they can't keep up and they're actually reporting on, you know, old news. And I think the analogy is forecasting rain a day after it's wet. Isn't exactly valuable. >>Yeah. So you guys, obviously a great deal of the enterprise ready for Amazon, big story, big coup for the company. What's next for you. I want to ask that and make sure you get that out there on your agenda for the next year, but then I want you to take a step back a year, maybe a year and a half ago. Look back at how much has changed in this landscape. Um, share your perspective because the market has gone through an evolution where there's been a market opportunity, and then everyone goes, oh my God, it's bigger than we actually thought. I mean, Jeff, Kelly's a groundbreaking report about the $50 billion market is now being talked about as too low. So big data has absolutely opened up to a huge, and it's changed some of the tactics around strategies. So your strategy, Hortonworks strategy, even cloud era. So, and it's still evolving. So what's changed for the folks out there from a year and a half ago, a year ago to today, and then look out for the next 12 months. What's on your agenda. >>Well, if, if you look back, I think we've been fairly consistent. Um, uh, I'm, I'm not going to take credit for the vision of our CEO and CTO. Uh, but they recognized early on that Hadoop was, uh, was a strategic platform and to be a strategic platform that applied to the broadest number of use cases and organizations required some, some areas, uh, of innovation and particularly the how it, how it scaled, how it was managed, how you stored and protected the information needed a rearchitecture. And I think that, you know, architecture matters when you're going through a paradigm shift, having the right one in place creates this, this ability, you know, to speed innovation. And I think that's, if there's anything that's changed, I think it's the speed of innovation has even increased in the Hadoop community. I think it's, it's created a focus on these enterprise grade features on how do we store this valuable information and, and continue to explore. >>And I think one of the observations I'll make is that on that note is that it really focuses everyone to be just mind your own business and get the products out. You know what I'm saying? We've seen everyone, the product focus be the number one conversation. >>What we've seen is customers, you know, start and they expand rapidly. Some of that student data growth, but a lot of it is student more and more applications are being delivered and, and, uh, and, and the values kind of extracted from the hoop platform and success breeds success. Well, >>Congratulations for all your success, great win with Amazon web services and make that a little bit more easier, more robust, and more, more features for them and you, uh, more revenue for part of our, um, and I want to personally thank you for your support to the cube. Uh, we've expanded with a new studio B software for extra extra interviews, um, and wanna expand the conversation, thanks to your generous support. You can bring the independent coverage out to the market and, um, great community, thanks for helping us out. And we appreciate it. So thank you. Okay. Jack Dorsey with Matt bar, we'll be right back to wrap up day one with that. Jeff and I will give our analysis right at the short break.
SUMMARY :
So you guys are a player in the business, so share with your news, Amazon in the cloud. So what's the value proposition. And then there's also a third application area where you can do processing of the data in Don't have to move the raw data. Well, you know, the whole, uh, you know, Hortonworks is now fully taken over the show and talk about what you see out here in terms of, uh, it was great for us. So I think, you know, talk about why Amazon and you guys is a good fit out What's the core, I guess the first comment first response would be, I think every customer I mean, you know what I mean by it's natural, it's, cloogy everywhere right now. For the data for the data component. the disaster recovery, and, you know, we're map are now it gives options to those customers. I think it's a great deal for you guys and for Amazon customers. that the data will remain there, that you can have a point in time recovery for an application error or user mistake. So as you share that information, So great for the hybrid cloud environments out there. So the ability to manage it, And so I think this is a nice product for you guys to So congratulations. So what are you seeing in terms of, uh, evolving use cases as, really a deep store where you can do analytics on it. Talk a little bit about the streaming, uh, aspects, uh, because of course, you know, we think of duke, I going to do that an hourly basis on it every eight hours, because you have to close the file for other applications actually reporting on, you know, old news. I want to ask that and make sure you get that And I think that, you know, architecture matters when you're going through a paradigm shift, And I think one of the observations I'll make is that on that note is that it really focuses everyone to be What we've seen is customers, you know, start and they expand rapidly. You can bring the independent coverage out to the market and, um, great community,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff Kelly | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jack Norris | PERSON | 0.99+ |
Jack Dorsey | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
$50 billion | QUANTITY | 0.99+ |
Silicon valley | LOCATION | 0.99+ |
30 billion | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Informatica | ORGANIZATION | 0.99+ |
a year ago | DATE | 0.99+ |
next year | DATE | 0.99+ |
comScore | ORGANIZATION | 0.99+ |
a year and a half ago | DATE | 0.99+ |
Kelly | PERSON | 0.99+ |
last year | DATE | 0.99+ |
Amazons | ORGANIZATION | 0.99+ |
Linux | TITLE | 0.99+ |
Matt BARR | PERSON | 0.99+ |
San Jose, California | LOCATION | 0.99+ |
one example | QUANTITY | 0.98+ |
one area | QUANTITY | 0.97+ |
third application | QUANTITY | 0.97+ |
Matt | PERSON | 0.97+ |
one | QUANTITY | 0.97+ |
Hadoop | TITLE | 0.97+ |
this week | DATE | 0.96+ |
2012 | DATE | 0.95+ |
hundreds of nodes | QUANTITY | 0.94+ |
Hortonworks | ORGANIZATION | 0.94+ |
Jack | PERSON | 0.93+ |
both edition | QUANTITY | 0.93+ |
a day | QUANTITY | 0.93+ |
two big announcements | QUANTITY | 0.92+ |
second | QUANTITY | 0.9+ |
next 12 months | DATE | 0.88+ |
day one | QUANTITY | 0.86+ |
two dot | QUANTITY | 0.85+ |
M three | OTHER | 0.85+ |
M three | TITLE | 0.84+ |
MapReduce | ORGANIZATION | 0.82+ |
Hadoop Summit 2012 | EVENT | 0.79+ |
first response | QUANTITY | 0.79+ |
every eight hours | QUANTITY | 0.78+ |
SLA | TITLE | 0.77+ |
June | DATE | 0.77+ |
first comment | QUANTITY | 0.77+ |
Lastic MapReduce | TITLE | 0.69+ |
M five | OTHER | 0.69+ |
Boeing | ORGANIZATION | 0.68+ |
M five | TITLE | 0.67+ |
siliconangle.tv | OTHER | 0.67+ |
ground zero | QUANTITY | 0.67+ |
Wiki bond.org | ORGANIZATION | 0.62+ |
Apache | ORGANIZATION | 0.61+ |
4th of | EVENT | 0.6+ |
Jack Norris - Strata Conference 2012 - theCUBE
>>Hi everybody. We're back. This is Dave Volante from Wiki bond.org. We're live at strata in Santa Clara, California. This is Silicon angle TVs, continuous coverage of the strata conference. So Riley media or Raleigh media is a great partner of ours. And thanks to them for allowing us to be here. We've been going all week cause it's day three for us. I'm here with Jeff Kelly Wiki bonds that lead big data analysts. And we're here with Jack Norris. Who's the VP of marketing at Matt bar Jack. Welcome to the cube. Thank you, Dave. Thanks very much for coming on. And you know, we've been going all week. You guys are a great sponsor of ours. Thank you for the support. We really appreciate it. How's the show going for you? >>Great. A lot of attention, a lot of focus, a lot of discussion about Hadoop and big data. >>Yeah. So you guys getting a lot of traffic. I mean, it says I hear this 2,500 people here up from 1400 last year. So that's >>Yeah, we've had like five, six people deep in the, in the booth. So I think there's a lot of, a lot of interests. There's interesting. >>You know, when we were here last year, when you looked at the, the infrastructure and the competitive landscape, there wasn't a lot going on and just a very short time, that's completely changed. And you guys have had your hand in that. So, so that's good. Competition is a good thing, right? And, and obviously customers want choice, but so we want to talk about that a little bit. We want to talk about map bar, the kind of problems you're solving. So why don't we start there? What is map are all about? And you've got your own distribution of, of, of enterprise Hadoop. You make it Hadoop enterprise ready? Let's start there. >>Okay. Yeah, I mean, we invested heavily in creating a alternative distribution one that took the best of the open source community with the best of the map, our innovations, and really it's, it's about making Hadoop more applicable, broader use cases, more mission, critical support, you know, being able to sit in and work in a lights out data center environment. >>Okay. So what was the problem that you set out to solve? Why, why do, why do we need another distribution of Hadoop? Let me ask it that way. Get nice and close to. >>So there, there are some just big issues with, with the duke. >>One of those issues, let's talk about that. There's >>Some ease of use issues. There's some deep dependability issues. There's some, some performance. So, you know, let's take those in order right now. If you look at some of the distributions, Apache Hadoop, great technology, but it requires a programmer, right? To get access to the data it's through the Hadoop API, you can't really see the data. So there's a lot of focus of, you know, what do I do once the data's in there opening that up, providing a full file based access, right? So I can look at it and treat it like enterprise storage, see the data, use my standard tools, standard commands, you know, drag and drop from a file browser. You can do that with Matt bar. You can't do that with other districts >>Talking about mountain HDFS as a NFS correct >>Example. Correct. And then, and then just the underlying storage services. The fact that it's append only instead of full random read-write, you know, causes some, some issues. So, you know, that's some of the, the ease of use features. There's a whole lot. We could discuss there. Big picture for reliability. Dependability is there's a single point of failure, multiple single points of failure within Hadoop. So you risk data loss. So people have looked at Hadoop. Traditionally is, is batch oriented. Scratchpad right. We were out to solve that, right? We want to make sure that you can use it for mission critical data, that you don't have a risk of a data loss that you've got full high availability. You've got the full data protection in terms of snapshots and mirroring that you would expect with the enterprise products. >>It gets back to when you guys were, you know, thinking about doing this. I'm not even sure you were at the company at the time, but you, your DNA was there and you're familiar with it. So you guys saw this big data movement. You saw this at duke moon and you said, okay, this is cool. It's going to be big. And it's gonna take a long time for the community to fix all these problems. We can fix them. Now let's go do that. Is that the general discussion? Yeah. >>You know, I think, I think the what's different about this. This is the first open source package. The first open source project that's created a market. If you look at the other open source, you know, Linux, my SQL, et cetera, it was really late in the life cycle of a product. Everyone knew what the features were. It was about, you know, giving an alternative choice, better Unix. Your, your, the focus is on innovation and our founders, you know, have deep enterprise background or CTO was at Google and charge of big table, understands MapReduce at scale, spent time as chief software architect at Spinnaker, which was kind of the fastest clustered Nazanin on the planet. So recognize that the underlying layers of Hadoop needed some rearchitecture and needed some deep investment and to do that effectively and do that quickly required a whole lot of focus. And we thought that was the best way to go to market. >>Talk about the early validation from customers. Obviously you guys didn't just do this in a vacuum, I presume. So you went out and talked to some customers. Yeah. >>What sorts of conversations with customers, why we're in stealth mode? We're probably the loudest stealth >>As you were nodding. And I mean, what were they telling you at the time? Yeah, please go do this. >>The, what we address weren't secrets. I there've been gyrus for open for four or five years on, on these issues. >>Yeah. But at the same time, Jack, you've got this, you got this purist community out there that says, I don't want to, I don't want to rip out HDFS. You know, I want it to be pure. What'd you, what'd you say to those guys, you just say, okay, thank you. We, we understand you're not a prospect. >>And I think, I think that, you know, duke has a huge amount of momentum. And I think a lot of that momentum is that there isn't any risks to adopting Hadoop, right? It's not like the fractured no SQL market where there's 122 different entrance, which one's going to win. Hadoop's got the ecosystem. So when you say pure, it's about the API APIs, it's about making sure that if I create a MapReduce job, it's going to run an Apache. It's going to run a map bar. It's going to run on the other distributions. That's where I think that the heat and the focus is now to do that. You also have to have innovation occurring up and down the stack that that provides choice and alternatives for. >>So when I'm talking about purists, I don't, I agree with you the whole lock-in thing, which is the elephant in the room here. People will worry about lock-in >>Pun intended. >>No, no, but good one good catch. But so, but you're basically saying, Hey, where we're no more locked in than cloud era. Right. I mean, they've got their own >>Actually. I think we're less because it's so easy to get data in and out with our NFS. That there's probably less so, >>So, and I'm gonna come back to that. But so for instance, many, when I, when I say peers, I mean some users in ISV, some guys we've had on here, we had an Abby Mehta from Triceda on the other day, for instance, he's one who said, I just don't have time to mess with that stuff and figure out all that API integration. I mean, there are people out there that just don't want to go that route. Okay. But, but you're saying I'm, I'm inferring this plenty who do right. >>And the, and by the API route, I want to make sure I understand what you're saying. You >>Talked about, Hey, it's all about the API integration. It's not >>About, it's not the, it it's about the API APIs being consistent, a hundred percent compatible. Right. So if I, you know, write a program, that's, that's going after HDFS and the HDFS API, I want to make sure that that'll run on other distributions. Right. >>And that's your promise. Yeah. Okay. All right. So now where I was going with this was th again, there are some peers to say, oh, I just don't want to mess with all that. Now let's talk about what that means to mess with all that. So comScore was a big, high profile case study for you guys. They, they were cloud era customer. They basically, in my understanding is a couple of days migrated from Cloudera to Mapbox. And the impetus was, let's talk about that. Why'd they do that >>Performance data protection, ease of use >>License fee issues. There was some license issues there as well, right? The, the, your, your maintenance pricing was more attractive. Is that true? Or >>I read more mainly about price performance and reliability, and, you know, they tested our stuff at work real well in a test environment, they put it in production environment. Didn't actually tell all their users, they had one guys debug the software for half a day because something was wrong. It finished so quickly. >>So, so it took him a couple of days to migrate and then boom, >>Boom. And they've, they handle about 30 billion objects a day. So there, you know, the use of that really high performance support for, for streaming data flows, you know, they're talking about, they're doing forecasts and insights into web behavior, and, you know, they w the earlier they can do that, the better off they are. So >>Greg, >>So talk about the implications of, of your approach in terms of the customer base. So I'm, I'm imagining that your customers are more, perhaps advanced than a lot of your typical Hadoop users who are just getting started tinkering with Hadoop. Is it fair to say, you know, your customers know what they want and they want performance and they want it now. And they're a little more advanced than perhaps some of the typical early adopters. >>We've got people to go to our website and download the free version. And some of them are just starting off and getting used to Hadoop, but we did specifically target those very experienced Hadoop users that, you know, we're kind of, you know, stubbing their toes on, on the issues. And so they're very receptive to the message of we've made it faster. We've made it more reliable, you know, we've, we've added a lot of ease of use to the, to the Hindu. >>So I found this, let me interrupt, go back to what I was saying before is I found this comment that I found online from Mike Brown comScore. Skipio I presume you mean, he said comScore's map our direct access NFS feature, which exposes a duke distributed file system data as NFS files can then be easily mounted, modified, or overwritten. So that's a data access simplification. You also said we could capitalize on the purchase of map bar with an annual maintenance charge versus a yearly cost per node. NFS allowed our enterprise systems to easily access the data in the cluster. So does that make sense to you that, that enterprise of that annual maintenance charge versus yearly cost per node? I didn't get that. >>Oh, I think he's talking about some, some organizations prefer to do a perpetual license versus a subscription model that's >>Oh, okay. So the traditional way of licensing software >>And that, that you have to do it basically reinforces the fact that we've really invested in have kind of a, a product, you know, orientation rather than just services on top of, of some opensource. >>Okay. So you go in, you license it and then yeah. Perpetual license. >>Then you can also start with the free edition that does all the performance NFS support kick the tires >>Before you buy it. Sorry. Sorry, Jeff. Sorry to interrupt. No, no problem >>At all. So another topic, a lot of interest is security making a dupe enterprise ready. One of the pillars, there is security, making sure access controls, for instance, making sure let's talk about how you guys approach that and maybe how you differentiate from some of the other vendors out there, or the other >>Full Kerberos support. We Lincoln to enterprise standards for access eldap, et cetera. We leveraged the Linux, Pam security, and we also provide volume control. So, you know, right now in Hindu in Apache to dupe other distributions, you put policies at the file level or the entire cluster. And we see many organizations having separate physical clusters because of that limitation, right? And we'd provide volume. So you can define a volume. And in that volume control, access control, administrative privileges data protection class, and, you know, in a sense kind of segregate that content. And that provides a lot of, a lot of control and a lot more, you know, security and protection and separation of data. >>That scenario, the comScore scenario, common where somebody's moving off an existing distribution onto a map are, or, or you more going, going, seeing demand from new customers that are saying, Hey, what's this big data thing I really want to get into it. How's it shake out there >>Right now? There's this huge pent up demand for these features. And we're seeing a lot of people that have run on other distributions switched to map our >>A little bit of everything. How about, can you talk a little bit about your, your channel? You go to market strategy, maybe even some of your ecosystem and partnerships in the little time. >>Sure. So EMC is a big partner of the EMC Greenplum Mr. Edition is basically a map R you can start with any of our additions and upgrade to that. Greenplum with just a licensed key that gives us worldwide service and support. It's been a great partnership. >>We hear a lot of proof of concepts out there >>For, yeah. And then it just hit the news news today about EMC's distribution, Mr. Distribution being available with UCS Cisco's ECS gear. So now that's further expanded the, the footprint that we have about. >>Okay. So you're the EMC relationship. Anything else that you can share with us? >>We have other announcements coming out and >>Then you want to pre-announce in the queue. >>Oops. Did I let that slip >>It's alive? So be careful. And so, in terms of your, your channel strategy, you guys mostly selling direct indirect combination, >>It's it? It, it's kind of an indirect model through these, these large partners with a direct assist. >>Yeah. Okay. So you guys come in and help evangelize. Yep. Excellent. All right. Do you have anything else before we gotta got a roll here? >>Yeah, I did wonder if you could talk a little bit about, you mentioned EMC Greenplum so there's a lot of talk about the data warehouse market, the MPB data warehouses, versus a Hadoop based on that relationship. I'm assuming that Matt BARR thinks well, they're certainly complimentary. Can you just touch on that? And, you know, as opposed to some who think, well, Hadoop is going to be the platform where we go, >>Well, th th there's just, I mean, if you look at the typical organization, they're just really trying to get their, excuse me, their arms around a lot of this machine generated content, this, you know, unstructured data that just growing like wildfire. So there's a lot of Paducah specific use cases that are being rolled out. They're also kind of data lakes, data, oceans, whatever you want to call it, large pools where that information is then being extracted and loaded into data warehouses for further analysis. And I think the big pivot there is if it's well understood what the issue is, you define the schema, then there's a whole host of, of data warehouse applications out there that can be deployed. But there's many things where you don't really understand that yet having to dupe where you don't need to find a schema a is a, is a big value, >>Jack, I'm sorry. We have to go run a couple of minutes behind. Thank you very much for coming on the cube. Great story. Good luck with everything. And sounds like things are really going well and market's heating up and you're in the right place at the right time. So thank you again. Thank you to Jeff. And we'll be right back everybody to the strata conference live in Santa Clara, California, right after this word from our.
SUMMARY :
And you know, we've been going all week. A lot of attention, a lot of focus, a lot of discussion about Hadoop So that's So I think there's a lot of, And you guys have had your hand in that. broader use cases, more mission, critical support, you know, being able to sit in and work Let me ask it that way. So there, there are some just big issues with, One of those issues, let's talk about that. So there's a lot of focus of, you know, what do I do once the data's in So you risk data loss. It gets back to when you guys were, you know, thinking about doing this. It was about, you know, giving an alternative choice, better Unix. So you went out and talked to some customers. And I mean, what were they telling you at the time? I there've been gyrus for open for four or five You know, I want it to be And I think, I think that, you know, duke has a huge amount of momentum. So when I'm talking about purists, I don't, I agree with you the whole lock-in thing, I mean, they've got their own I think we're less because it's so easy to get data in and out with our NFS. So, and I'm gonna come back to that. And the, and by the API route, I want to make sure I understand what you're saying. Talked about, Hey, it's all about the API integration. So if I, you know, write a program, that's, that's going after for you guys. Is that true? and, you know, they tested our stuff at work real well in a test environment, they put it in production environment. you know, the use of that really high performance support for, to say, you know, your customers know what they want and they want performance and they want it now. experienced Hadoop users that, you know, we're kind of, you know, So does that make sense to you that, So the traditional way of licensing software And that, that you have to do it basically reinforces the fact that we've really invested in have kind Before you buy it. for instance, making sure let's talk about how you guys approach that and maybe how you differentiate from a lot of control and a lot more, you know, security and protection and separation of data. off an existing distribution onto a map are, or, or you more going, And we're seeing a lot of people that have run on other distributions switched to map our How about, can you talk a little bit about your, your channel? Mr. Edition is basically a map R you can start with any of our additions So now that's further Anything else that you can share with us? you guys mostly selling direct indirect combination, It, it's kind of an indirect model through these, these large partners with Do you have anything else before And, you know, as opposed to some who think, excuse me, their arms around a lot of this machine generated content, this, you know, So thank you again.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Jeff | PERSON | 0.99+ |
Jack Norris | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Matt BARR | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
UCS | ORGANIZATION | 0.99+ |
2,500 people | QUANTITY | 0.99+ |
Santa Clara, California | LOCATION | 0.99+ |
Greg | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Mike Brown | PERSON | 0.99+ |
half a day | QUANTITY | 0.99+ |
Spinnaker | ORGANIZATION | 0.99+ |
Hadoop | TITLE | 0.99+ |
comScore | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Riley | ORGANIZATION | 0.98+ |
EMC Greenplum | ORGANIZATION | 0.98+ |
Abby Mehta | PERSON | 0.98+ |
Linux | TITLE | 0.97+ |
strata conference | EVENT | 0.97+ |
SQL | TITLE | 0.97+ |
One | QUANTITY | 0.97+ |
one guys | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
Raleigh | ORGANIZATION | 0.97+ |
122 different entrance | QUANTITY | 0.97+ |
six people | QUANTITY | 0.97+ |
Skipio | PERSON | 0.96+ |
Jeff Kelly | PERSON | 0.95+ |
single point | QUANTITY | 0.95+ |
about 30 billion objects a day | QUANTITY | 0.94+ |
Strata Conference 2012 | EVENT | 0.93+ |
ECS | ORGANIZATION | 0.93+ |
hundred percent | QUANTITY | 0.91+ |
Triceda | ORGANIZATION | 0.9+ |
Apache | TITLE | 0.9+ |
firs | QUANTITY | 0.9+ |
Paducah | LOCATION | 0.89+ |
Greenplum | ORGANIZATION | 0.89+ |
single points | QUANTITY | 0.88+ |
day three | QUANTITY | 0.88+ |
NFS | TITLE | 0.87+ |
Wiki bond.org | OTHER | 0.87+ |
1400 | QUANTITY | 0.85+ |
Unix | TITLE | 0.85+ |
Wiki bonds | ORGANIZATION | 0.84+ |
Silicon angle | ORGANIZATION | 0.83+ |
Mapbox | ORGANIZATION | 0.78+ |
Apache | ORGANIZATION | 0.76+ |
MapReduce | ORGANIZATION | 0.75+ |
Kerberos | ORGANIZATION | 0.75+ |
first open | QUANTITY | 0.74+ |
Pam | TITLE | 0.73+ |
Matt bar | ORGANIZATION | 0.73+ |
Nazanin | ORGANIZATION | 0.61+ |
Cloudera | TITLE | 0.59+ |
moon | LOCATION | 0.58+ |
Cisco | ORGANIZATION | 0.54+ |
one | QUANTITY | 0.53+ |
days | QUANTITY | 0.52+ |
MapReduce | TITLE | 0.47+ |
Discussion about Walmart's Approach | Supercloud2
(upbeat electronic music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto. I'm John Furrier, with Dave Vellante. Again, all day wall-to-wall coverage, just had a great interview with Walmart, we've got a Next interview coming up, you're going to hear from Bob Muglia and Tristan Handy, two experts, both experienced entrepreneurs, executives in technology. We're here to break down what just happened with Walmart, and what's coming up with George Gilbert, former colleague, Wikibon analyst, Gartner Analyst, and now independent investor and expert. George, great to see you, I know you're following this space. Like you read about it, remember the first days when Dataverse came out, we were talking about them coming out of Berkeley? >> Dave: Snowflake. >> John: Snowflake. >> Dave: Snowflake In the early days. >> We, collectively, have been chronicling the data movement since 2010, you were part of our team, now you've got your nose to the grindstone, you're seeing the next wave. What's this all about? Walmart building their own super cloud, we got Bob Muglia talking about how these next wave of apps are coming. What are the super apps? What's the super cloud to you? >> Well, this key's off Dave's really interesting questions to Walmart, which was like, how are they building their supercloud? 'Cause it makes a concrete example. But what was most interesting about his description of the Walmart WCMP, I forgot what it stood for. >> Dave: Walmart Cloud Native Platform. >> Walmart, okay. He was describing where the logic could run in these stateless containers, and maybe eventually serverless functions. But that's just it, and that's the paradigm of microservices, where the logic is in this stateless thing, where you can shoot it, or it fails, and you can spin up another one, and you've lost nothing. >> That was their triplet model. >> Yeah, in fact, and that was what they were trying to move to, where these things move fluidly between data centers. >> But there's a but, right? Which is they're all stateless apps in the cloud. >> George: Yeah. >> And all their stateful apps are on-prem and VMs. >> Or the stateful part of the apps are in VMs. >> Okay. >> And so if they really want to lift their super cloud layer off of this different provider's infrastructure, they're going to need a much more advanced software platform that manages data. And that goes to the -- >> Muglia and Handy, that you and I did, that's coming up next. So the big takeaway there, George, was, I'll set it up and you can chime in, a new breed of data apps is emerging, and this highly decentralized infrastructure. And Tristan Handy of DBT Labs has a sort of a solution to begin the journey today, Muglia is working on something that's way out there, describe what you learned from it. >> Okay. So to talk about what the new data apps are, and then the platform to run them, I go back to the using what will probably be seen as one of the first data app examples, was Uber, where you're describing entities in the real world, riders, drivers, routes, city, like a city plan, these are all defined by data. And the data is described in a structure called a knowledge graph, for lack of a, no one's come up with a better term. But that means the tough, the stuff that Jack built, which was all stateless and sits above cloud vendors' infrastructure, it needs an entirely different type of software that's much, much harder to build. And the way Bob described it is, you're going to need an entirely new data management infrastructure to handle this. But where, you know, we had this really colorful interview where it was like Rock 'Em Sock 'Em, but they weren't really that much in opposition to each other, because Tristan is going to define this layer, starting with like business intelligence metrics, where you're defining things like bookings, billings, and revenue, in business terms, not in SQL terms -- >> Well, business terms, if I can interrupt, he said the one thing we haven't figured out how to APIify is KPIs that sit inside of a data warehouse, and that's essentially what he's doing. >> George: That's what he's doing, yes. >> Right. And so then you can now expose those APIs, those KPIs, that sit inside of a data warehouse, or a data lake, a data store, whatever, through APIs. >> George: And the difference -- >> So what does that do for you? >> Okay, so all of a sudden, instead of working at technical data terms, where you're dealing with tables and columns and rows, you're dealing instead with business entities, using the Uber example of drivers, riders, routes, you know, ETA prices. But you can define, DBT will be able to define those progressively in richer terms, today they're just doing things like bookings, billings, and revenue. But Bob's point was, today, the data warehouse that actually runs that stuff, whereas DBT defines it, the data warehouse that runs it, you can't do it with relational technology >> Dave: Relational totality, cashing architecture. >> SQL, you can't -- >> SQL caching architectures in memory, you can't do it, you've got to rethink down to the way the data lake is laid out on the disk or cache. Which by the way, Thomas Hazel, who's speaking later, he's the chief scientist and founder at Chaos Search, he says, "I've actually done this," basically leave it in an S3 bucket, and I'm going to query it, you know, with no caching. >> All right, so what I hear you saying then, tell me if I got this right, there are some some things that are inadequate in today's world, that's not compatible with the Supercloud wave. >> Yeah. >> Specifically how you're using storage, and data, and stateful. >> Yes. >> And then the software that makes it run, is that what you're saying? >> George: Yeah. >> There's one other thing you mentioned to me, it's like, when you're using a CRM system, a human is inputting data. >> George: Nothing happens till the human does something. >> Right, nothing happens until that data entry occurs. What you're talking about is a world that self forms, polling data from the transaction system, or the ERP system, and then builds a plan without human intervention. >> Yeah. Something in the real world happens, where the user says, "I want a ride." And then the software goes out and says, "Okay, we got to match a driver to the rider, we got to calculate how long it takes to get there, how long to deliver 'em." That's not driven by a form, other than the first person hitting a button and saying, "I want a ride." All the other stuff happens autonomously, driven by data and analytics. >> But my question was different, Dave, so I want to get specific, because this is where the startups are going to come in, this is the disruption. Snowflake is a data warehouse that's in the cloud, they call it a data cloud, they refactored it, they did it differently, the success, we all know it looks like. These areas where it's inadequate for the future are areas that'll probably be either disrupted, or refactored. What is that? >> That's what Muglia's contention is, that the DBT can start adding that layer where you define these business entities, they're like mini digital twins, you can define them, but the data warehouse isn't strong enough to actually manage and run them. And Muglia is behind a company that is rethinking the database, really in a fundamental way that hasn't been done in 40 or 50 years. It's the first, in his contention, the first real rethink of database technology in a fundamental way since the rise of the relational database 50 years ago. >> And I think you admit it's a real Hail Mary, I mean it's quite a long shot right? >> George: Yes. >> Huge potential. >> But they're pretty far along. >> Well, we've been talking on theCUBE for 12 years, and what, 10 years going to AWS Reinvent, Dave, that no one database will rule the world, Amazon kind of showed that with them. What's different, is it databases are changing, or you can have multiple databases, or? >> It's a good question. And the reason we've had multiple different types of databases, each one specialized for a different type of workload, but actually what Muglia is behind is a new engine that would essentially, you'll never get rid of the data warehouse, or the equivalent engine in like a Databricks datalake house, but it's a new engine that manages the thing that describes all the data and holds it together, and that's the new application platform. >> George, we have one minute left, I want to get real quick thought, you're an investor, and we know your history, and the folks watching, George's got a deep pedigree in investment data, and we can testify against that. If you're going to invest in a company right now, if you're a customer, I got to make a bet, what does success look like for me, what do I want walking through my door, and what do I want to send out? What companies do I want to look at? What's the kind of of vendor do I want to evaluate? Which ones do I want to send home? >> Well, the first thing a customer really has to do when they're thinking about next gen applications, all the people have told you guys, "we got to get our data in order," getting that data in order means building an integrated view of all your data landscape, which is data coming out of all your applications. It starts with the data model, so, today, you basically extract data from all your operational systems, put it in this one giant, central place, like a warehouse or lake house, but eventually you want this, whether you call it a fabric or a mesh, it's all the data that describes how everything hangs together as in one big knowledge graph. There's different ways to implement that. And that's the most critical thing, 'cause that describes your Uber landscape, your Uber platform. >> That's going to power the digital transformation, which will power the business transformation, which powers the business model, which allows the builders to build -- >> Yes. >> Coders to code. That's Supercloud application. >> Yeah. >> George, great stuff. Next interview you're going to see right here is Bob Muglia and Tristan Handy, they're going to unpack this new wave. Great segment, really worth unpacking and reading between the lines with George, and Dave Vellante, and those two great guests. And then we'll come back here for the studio for more of the live coverage of Supercloud 2. Thanks for watching. (upbeat electronic music)
SUMMARY :
remember the first days What's the super cloud to you? of the Walmart WCMP, I and that's the paradigm of microservices, and that was what they stateless apps in the cloud. And all their stateful of the apps are in VMs. And that goes to the -- Muglia and Handy, that you and I did, But that means the tough, he said the one thing we haven't And so then you can now the data warehouse that runs it, Dave: Relational totality, Which by the way, Thomas I hear you saying then, and data, and stateful. thing you mentioned to me, George: Nothing happens polling data from the transaction Something in the real world happens, that's in the cloud, that the DBT can start adding that layer Amazon kind of showed that with them. and that's the new application platform. and the folks watching, all the people have told you guys, Coders to code. for more of the live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Chaos Search | ORGANIZATION | 0.99+ |
Jack | PERSON | 0.99+ |
Tristan | PERSON | 0.99+ |
12 years | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
two experts | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Muglia | ORGANIZATION | 0.99+ |
one minute | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
two great guests | QUANTITY | 0.98+ |
Wikibon | ORGANIZATION | 0.98+ |
50 years | QUANTITY | 0.98+ |
John | PERSON | 0.98+ |
Rock 'Em Sock 'Em | TITLE | 0.98+ |
today | DATE | 0.98+ |
first person | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
S3 | COMMERCIAL_ITEM | 0.97+ |
50 years ago | DATE | 0.97+ |
2010 | DATE | 0.97+ |
Mary | PERSON | 0.96+ |
first days | QUANTITY | 0.96+ |
SQL | TITLE | 0.96+ |
one | QUANTITY | 0.95+ |
Supercloud wave | EVENT | 0.95+ |
each one | QUANTITY | 0.93+ |
DBT | ORGANIZATION | 0.91+ |
Supercloud | TITLE | 0.91+ |
Supercloud2 | TITLE | 0.91+ |
Supercloud 2 | ORGANIZATION | 0.89+ |
Snowflake | TITLE | 0.86+ |
Dataverse | ORGANIZATION | 0.83+ |
triplet | QUANTITY | 0.78+ |
Breaking Analysis: Supercloud2 Explores Cloud Practitioner Realities & the Future of Data Apps
>> Narrator: From theCUBE Studios in Palo Alto and Boston bringing you data-driven insights from theCUBE and ETR. This is breaking analysis with Dave Vellante >> Enterprise tech practitioners, like most of us they want to make their lives easier so they can focus on delivering more value to their businesses. And to do so, they want to tap best of breed services in the public cloud, but at the same time connect their on-prem intellectual property to emerging applications which drive top line revenue and bottom line profits. But creating a consistent experience across clouds and on-prem estates has been an elusive capability for most organizations, forcing trade-offs and injecting friction into the system. The need to create seamless experiences is clear and the technology industry is starting to respond with platforms, architectures, and visions of what we've called the Supercloud. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis we give you a preview of Supercloud 2, the second event of its kind that we've had on the topic. Yes, folks that's right Supercloud 2 is here. As of this recording, it's just about four days away 33 guests, 21 sessions, combining live discussions and fireside chats from theCUBE's Palo Alto Studio with prerecorded conversations on the future of cloud and data. You can register for free at supercloud.world. And we are super excited about the Supercloud 2 lineup of guests whereas Supercloud 22 in August, was all about refining the definition of Supercloud testing its technical feasibility and understanding various deployment models. Supercloud 2 features practitioners, technologists and analysts discussing what customers need with real-world examples of Supercloud and will expose thinking around a new breed of cross-cloud apps, data apps, if you will that change the way machines and humans interact with each other. Now the example we'd use if you think about applications today, say a CRM system, sales reps, what are they doing? They're entering data into opportunities they're choosing products they're importing contacts, et cetera. And sure the machine can then take all that data and spit out a forecast by rep, by region, by product, et cetera. But today's applications are largely about filling in forms and or codifying processes. In the future, the Supercloud community sees a new breed of applications emerging where data resides on different clouds, in different data storages, databases, Lakehouse, et cetera. And the machine uses AI to inspect the e-commerce system the inventory data, supply chain information and other systems, and puts together a plan without any human intervention whatsoever. Think about a system that orchestrates people, places and things like an Uber for business. So at Supercloud 2, you'll hear about this vision along with some of today's challenges facing practitioners. Zhamak Dehghani, the founder of Data Mesh is a headliner. Kit Colbert also is headlining. He laid out at the first Supercloud an initial architecture for what that's going to look like. That was last August. And he's going to present his most current thinking on the topic. Veronika Durgin of Sachs will be featured and talk about data sharing across clouds and you know what she needs in the future. One of the main highlights of Supercloud 2 is a dive into Walmart's Supercloud. Other featured practitioners include Western Union Ionis Pharmaceuticals, Warner Media. We've got deep, deep technology dives with folks like Bob Muglia, David Flynn Tristan Handy of DBT Labs, Nir Zuk, the founder of Palo Alto Networks focused on security. Thomas Hazel, who's going to talk about a new type of database for Supercloud. It's several analysts including Keith Townsend Maribel Lopez, George Gilbert, Sanjeev Mohan and so many more guests, we don't have time to list them all. They're all up on supercloud.world with a full agenda, so you can check that out. Now let's take a look at some of the things that we're exploring in more detail starting with the Walmart Cloud native platform, they call it WCNP. We definitely see this as a Supercloud and we dig into it with Jack Greenfield. He's the head of architecture at Walmart. Here's a quote from Jack. "WCNP is an implementation of Kubernetes for the Walmart ecosystem. We've taken Kubernetes off the shelf as open source." By the way, they do the same thing with OpenStack. "And we have integrated it with a number of foundational services that provide other aspects of our computational environment. Kubernetes off the shelf doesn't do everything." And so what Walmart chose to do, they took a do-it-yourself approach to build a Supercloud for a variety of reasons that Jack will explain, along with Walmart's so-called triplet architecture connecting on-prem, Azure and GCP. No surprise, there's no Amazon at Walmart for obvious reasons. And what they do is they create a common experience for devs across clouds. Jack is going to talk about how Walmart is evolving its Supercloud in the future. You don't want to miss that. Now, next, let's take a look at how Veronica Durgin of SAKS thinks about data sharing across clouds. Data sharing we think is a potential killer use case for Supercloud. In fact, let's hear it in Veronica's own words. Please play the clip. >> How do we talk to each other? And more importantly, how do we data share? You know, I work with data, you know this is what I do. So if you know I want to get data from a company that's using, say Google, how do we share it in a smooth way where it doesn't have to be this crazy I don't know, SFTP file moving? So that's where I think Supercloud comes to me in my mind, is like practical applications. How do we create that mesh, that network that we can easily share data with each other? >> Now data mesh is a possible architectural approach that will enable more facile data sharing and the monetization of data products. You'll hear Zhamak Dehghani live in studio talking about what standards are missing to make this vision a reality across the Supercloud. Now one of the other things that we're really excited about is digging deeper into the right approach for Supercloud adoption. And we're going to share a preview of a debate that's going on right now in the community. Bob Muglia, former CEO of Snowflake and Microsoft Exec was kind enough to spend some time looking at the community's supercloud definition and he felt that it needed to be simplified. So in near real time he came up with the following definition that we're showing here. I'll read it. "A Supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers." So not only did Bob simplify the initial definition he's stressed that the Supercloud is a platform versus an architecture implying that the platform provider eg Snowflake, VMware, Databricks, Cohesity, et cetera is responsible for determining the architecture. Now interestingly in the shared Google doc that the working group uses to collaborate on the supercloud de definition, Dr. Nelu Mihai who is actually building a Supercloud responded as follows to Bob's assertion "We need to avoid creating many Supercloud platforms with their own architectures. If we do that, then we create other proprietary clouds on top of existing ones. We need to define an architecture of how Supercloud interfaces with all other clouds. What is the information model? What is the execution model and how users will interact with Supercloud?" What does this seemingly nuanced point tell us and why does it matter? Well, history suggests that de facto standards will emerge more quickly to resolve real world practitioner problems and catch on more quickly than consensus-based architectures and standards-based architectures. But in the long run, the ladder may serve customers better. So we'll be exploring this topic in more detail in Supercloud 2, and of course we'd love to hear what you think platform, architecture, both? Now one of the real technical gurus that we'll have in studio at Supercloud two is David Flynn. He's one of the people behind the the movement that enabled enterprise flash adoption, that craze. And he did that with Fusion IO and he is now working on a system to enable read write data access to any user in any application in any data center or on any cloud anywhere. So think of this company as a Supercloud enabler. Allow me to share an excerpt from a conversation David Flore and I had with David Flynn last year. He as well gave a lot of thought to the Supercloud definition and was really helpful with an opinionated point of view. He said something to us that was, we thought relevant. "What is the operating system for a decentralized cloud? The main two functions of an operating system or an operating environment are one the process scheduler and two, the file system. The strongest argument for supercloud is made when you go down to the platform layer and talk about it as an operating environment on which you can run all forms of applications." So a couple of implications here that will be exploring with David Flynn in studio. First we're inferring from his comment that he's in the platform camp where the platform owner is responsible for the architecture and there are obviously trade-offs there and benefits but we'll have to clarify that with him. And second, he's basically saying, you kill the concept the further you move up the stack. So the weak, the further you move the stack the weaker the supercloud argument becomes because it's just becoming SaaS. Now this is something we're going to explore to better understand is thinking on this, but also whether the existing notion of SaaS is changing and whether or not a new breed of Supercloud apps will emerge. Which brings us to this really interesting fellow that George Gilbert and I RIFed with ahead of Supercloud two. Tristan Handy, he's the founder and CEO of DBT Labs and he has a highly opinionated and technical mind. Here's what he said, "One of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse inside of your data lake. These are core concepts that the business should be able to create applications around very easily. In fact, that's not the case because it involves a lot of data engineering pipeline and other work to make these available. So if you really want to make it easy to create these data experiences for users you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes and they don't need to." A lot of implications to this statement that will explore at Supercloud two versus Jamma Dani's data mesh comes into play here with her critique of hyper specialized data pipeline experts with little or no domain knowledge. Also the need for simplified self-service infrastructure which Kit Colbert is likely going to touch upon. Veronica Durgin of SAKS and her ideal state for data shearing along with Harveer Singh of Western Union. They got to deal with 200 locations around the world in data privacy issues, data sovereignty how do you share data safely? Same with Nick Taylor of Ionis Pharmaceutical. And not to blow your mind but Thomas Hazel and Bob Muglia deposit that to make data apps a reality across the Supercloud you have to rethink everything. You can't just let in memory databases and caching architectures take care of everything in a brute force manner. Rather you have to get down to really detailed levels even things like how data is laid out on disk, ie flash and think about rewriting applications for the Supercloud and the MLAI era. All of this and more at Supercloud two which wouldn't be complete without some data. So we pinged our friends from ETR Eric Bradley and Darren Bramberm to see if they had any data on Supercloud that we could tap. And so we're going to be analyzing a number of the players as well at Supercloud two. Now, many of you are familiar with this graphic here we show some of the players involved in delivering or enabling Supercloud-like capabilities. On the Y axis is spending momentum and on the horizontal accesses market presence or pervasiveness in the data. So netscore versus what they call overlap or end in the data. And the table insert shows how the dots are plotted now not to steal ETR's thunder but the first point is you really can't have supercloud without the hyperscale cloud platforms which is shown on this graphic. But the exciting aspect of Supercloud is the opportunity to build value on top of that hyperscale infrastructure. Snowflake here continues to show strong spending velocity as those Databricks, Hashi, Rubrik. VMware Tanzu, which we all put under the magnifying glass after the Broadcom announcements, is also showing momentum. Unfortunately due to a scheduling conflict we weren't able to get Red Hat on the program but they're clearly a player here. And we've put Cohesity and Veeam on the chart as well because backup is a likely use case across clouds and on-premises. And now one other call out that we drill down on at Supercloud two is CloudFlare, which actually uses the term supercloud maybe in a different way. They look at Supercloud really as you know, serverless on steroids. And so the data brains at ETR will have more to say on this topic at Supercloud two along with many others. Okay, so why should you attend Supercloud two? What's in it for me kind of thing? So first of all, if you're a practitioner and you want to understand what the possibilities are for doing cross-cloud services for monetizing data how your peers are doing data sharing, how some of your peers are actually building out a Supercloud you're going to get real world input from practitioners. If you're a technologist, you're trying to figure out various ways to solve problems around data, data sharing, cross-cloud service deployment there's going to be a number of deep technology experts that are going to share how they're doing it. We're also going to drill down with Walmart into a practical example of Supercloud with some other examples of how practitioners are dealing with cross-cloud complexity. Some of them, by the way, are kind of thrown up their hands and saying, Hey, we're going mono cloud. And we'll talk about the potential implications and dangers and risks of doing that. And also some of the benefits. You know, there's a question, right? Is Supercloud the same wine new bottle or is it truly something different that can drive substantive business value? So look, go to Supercloud.world it's January 17th at 9:00 AM Pacific. You can register for free and participate directly in the program. Okay, that's a wrap. I want to give a shout out to the Supercloud supporters. VMware has been a great partner as our anchor sponsor Chaos Search Proximo, and Alura as well. For contributing to the effort I want to thank Alex Myerson who's on production and manages the podcast. Ken Schiffman is his supporting cast as well. Kristen Martin and Cheryl Knight to help get the word out on social media and at our newsletters. And Rob Ho is our editor-in-chief over at Silicon Angle. Thank you all. Remember, these episodes are all available as podcast. Wherever you listen we really appreciate the support that you've given. We just saw some stats from from Buzz Sprout, we hit the top 25% we're almost at 400,000 downloads last year. So really appreciate your participation. All you got to do is search Breaking Analysis podcast and you'll find those I publish each week on wikibon.com and siliconangle.com. Or if you want to get ahold of me you can email me directly at David.Vellante@siliconangle.com or dm me DVellante or comment on our LinkedIn post. I want you to check out etr.ai. They've got the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights, powered by ETR. Thanks for watching. We'll see you next week at Supercloud two or next time on breaking analysis. (light music)
SUMMARY :
with Dave Vellante of the things that we're So if you know I want to get data and on the horizontal
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Bob Muglia | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Veronica | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Nick Taylor | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Veronica Durgin | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Warner Media | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Veronika Durgin | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ionis Pharmaceutical | ORGANIZATION | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
David Flore | PERSON | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Bob | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
21 sessions | QUANTITY | 0.99+ |
Darren Bramberm | PERSON | 0.99+ |
33 guests | QUANTITY | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Harveer Singh | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
200 locations | QUANTITY | 0.99+ |
August | DATE | 0.99+ |
Keith Townsend | PERSON | 0.99+ |
Data Mesh | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
David.Vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.98+ |
Silicon Angle | ORGANIZATION | 0.98+ |
ETR | ORGANIZATION | 0.98+ |
Eric Bradley | PERSON | 0.98+ |
two | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Sachs | ORGANIZATION | 0.98+ |
SAKS | ORGANIZATION | 0.98+ |
Supercloud | EVENT | 0.98+ |
last August | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
Juan Loaiza, Oracle | Building the Mission Critical Supercloud
(upbeat music) >> Welcome back to Supercloud two where we're gathering a number of industry luminaries to discuss the future of cloud services. And we'll be focusing on various real world practitioners today, their challenges, their opportunities with an emphasis on data, self-service infrastructure and how organizations are evolving their data and cloud strategies to prepare for that next era of digital innovation. And we really believe that support for multiple cloud estates is a first step of any Supercloud. And in that regard Oracle surprise some folks with its Azure collaboration the Oracle database and exit database services. And to discuss the challenges of developing a mission critical Supercloud we welcome Juan Loaiza, who's the executive vice president of Mission Critical Database Technologies at Oracle. Juan, you're many time CUBE alums so welcome back to the show. Great to see you. >> Great to see you, and happy to be here with you. >> Yeah, thank you. So a lot of people felt that Oracle was resistant to multicloud strategies and preferred to really have everything run just on the Oracle cloud infrastructure, OCI and maybe that was a misperception maybe you guys were misunderstood or maybe you had to change your heart. Take us through the decision to support multiple cloud platforms >> Now we've supported multiple cloud platforms for many years, so I think that was probably a misperception. Oracle database, we partnered up with Amazon very early on in their cloud when they had kind of the the first cloud out there. And we had Oracle database running on their cloud. We have backup, we have a lot of stuff running. So, yeah, part of the philosophy of Oracle has always been we partner with every platform. We're very open we started with SQL and APIs. As we develop new technologies we push them into the SQL standard. So that's always been part of the ecosystem at Oracle. That's how we think we get an advantage by being more open. I think if we try to create this isolated little world it actually hurts us and hurts customers. So for us it's a win-win to be open across the clouds. >> So Supercloud is this concept that we put forth to describe a platform or some people think it's an architecture if you have an opinion, and I'd love to hear it but it provides a programmatically consistent set of services that hosted on heterogeneous cloud providers. And so we look at the Oracle database service for Azure as fitting within this definition. In your view, is this accurate? >> Yeah, I would broaden it. I'd see a little bit more than that. We just think that services should be available from everywhere, right? So, I mean, it's a little bit like if you go back to the pre-internet world, there was things like AOL and CompuServe and those were kind of islands. And if you were on AOL, you really didn't have access to anything on CompuServe and vice versa. And the cloud world has evolved a little bit like that. And we just think that's the wrong model. They shouldn't these clouds are part of the world and they need to be interconnected like all the rest of the world. It's been a long time with telephones internet, everything, everything's interconnected. Everything should work seamlessly together. So that's how we believe if you're running in one cloud and you're running let's say an application, one cloud you want to use a service from another cloud should be completely simple to do that. It shouldn't be, I can only use what's in AOL or CompuServe or whatever else. It should not be isolated. >> Well, we got a long way to go before that Nirvana exists but one example is the Oracle database service with Azure. So what exactly does that service provide? I'm interested in how consistent the service experience is across clouds. Did you create a purpose-built PaaS layer to achieve this common experience? Or is it off the shelf Terraform? Is there unique value in the PaaS layer? Let's dig into some of those questions. I know I just threw six at you. >> Yeah, I mean, so what this is, is what we're trying to do is very simple. Which is, for example, starting with the Oracle database we want to make that seamless to use from anywhere you're running. Whether it's on-prem, on some other cloud, anywhere else you should be able to seamlessly use the Oracle database and it should look like the internet. There's no friction. There's not a lot of hoops you got to jump just because you're trying to use a database that isn't local to you. So it's pretty straightforward. And in terms of things like Azure, it's not easy to do because all these clouds have a lot of kind of very unique technologies. So what we've done is at Oracle is we've said, "Okay we're going to make Oracle database look exactly like if it was running on Azure." That means we'll use the Azure security systems, the identity management systems, the networking, there's things like monitoring and management. So we'll push all these technologies. For example, when we have monitoring event or we have alerts we'll push those into the Azure console. So as a user, it looks to you exactly as if that Oracle database was running inside Azure. Also, the networking is a big challenge across these clouds. So we've basically made that whole thing seamless. So we create the super high bandwidth network between Azure and Oracle. We make sure that's extremely low latency, under two milliseconds round trip. It's all within the local metro region. So it's very fast, very high bandwidth, very low latency. And we take care establishing the links and making sure that it's secure and all that kind of stuff. So at a high level, it looks to you like the database is--even the look and feel of the screens. It's the Azure colors, it's the Azure buttons it's the Azure layout of the screens so it looks like you're running there and we take care of all the technical details underlying that which there's a lot which has taken a lot of work to make it work seamlessly. >> In the magic of that abstraction. Juan, does it happen at the PaaS layer? Could you take us inside that a little bit? Is there intelligence in there that helps you deal with latency or are there any kind of purpose-built functions for this service? >> You could think of it as... I mean it happens at a lot of different layers. It happens at the identity management layer, it happens at the networking layer, it happens at the database layer, it happens at the monitoring layer, at the management layer. So all those things have been integrated. So it's not one thing that you just go and do. You have to integrate all these different services together. You can access files in Azure from the Oracle database. Again, that's completely seamless. You, it's just like if it was local to our cloud you get your Azure files in your kind of S3 equivalent. So yeah, the, it's not one thing. There's a whole lot of pieces to the ecosystem. And what we've done is we've worked on each piece separately to make sure that it's completely seamless and transparent so you don't have to think about it, it just works. >> So you kind of answered my next question which is one of the technical hurdles. It sounds like the technical hurdles are that integration across the entire stack. That's the sort of architecture that you've built. What was the catalyst for this service? >> Yeah, the catalyst is just fulfilling our vision of an open cloud world. It's really like I said, Oracle, from the very beginning has been believed in open standards. Customers should be able to have choice customers should be able to use whatever they want from wherever they want. And we saw that, you know in the new world of cloud that had broken down everybody had their own authentication system management system, monitoring system networking system, configuration system. And it became very difficult. There was a lot of friction to using services across cloud. So we said, "Well, okay we can fix that." It's work, it's significant amount of work but we know how to do it and let's just go do it and make it easy for customers. >> So given Oracle is really your main focus is on mission critical workloads. You talked about this low latency network, I mean but you still have physical distances, so how are you managing that latency? What's the experience been for customers across Azure and OCI? >> Yeah, so it, it's a good point. I mean, latency can be an issue. So the good thing about clouds is we have a lot of cloud data centers. We have dozens and dozens of cloud data centers around the world. And Azure has dozens and dozens of cloud data centers. And in most cases, they're in the same metro region because there's kind of natural metro regions within each country that you want to put your cloud data centers in. So most of our data centers are actually very close to the Azure data centers. There's the kind of northern Virginia, there's London, there's Tokyo I mean, there's natural places where everybody puts their data centers Seoul et cetera. And so that's the real key. So that allows us to put a very high bandwidth and low latency network. The real problems with latency come when you're trying to go along physical distance. If you're trying to connect, you know across the Pacific or you know across the country or something like that, then you can get in trouble with latency within the same metro region. It's extremely fast. It tends to be around one, you know the highest two millisecond that's roundtrip through all the routers and connections and gateways and everything else. With everything taken into consideration, what we guarantee is it's always less than two millisecond which is a very low latency time. So that tends to not be a problem because it's extremely low latency. >> I was going to ask you less than two milliseconds. So, earlier in the program we had Jack Greenfield who runs architecture for Walmart, and he was explaining what we call their Supercloud, and it's runs across Azure, GCP, and they're on-prem. They have this thing called the triplet model. So my question to you is, are you in situations where you guaranteeing that less than two milliseconds do you have situations where you're bringing, you know Exadata Cloud, a customer on-prem to achieve that? Or is this just across clouds? >> Yeah, in this case, we're talking public cloud data center to public cloud data center. >> Oh okay. >> So add your public cloud data center to Oracle Public Cloud data center. They're in the same metro region. We set up the connections, we do all the technology to make it seamless. And from a customer point of view they don't really see the network. Also, remember that SQL is actually designed to have very low bandwidth and latency requirements. So it is a language. So you don't go to the database and say do this one little thing for me. You send it a SQL statement that can actually access lots of data while in the database. So the real latency requirement of a SQL database is within the database. So I need to access all that data fast. So I need very fast access to storage very fast access across node. That's what exit data gives you. But you send one request and that request can do a huge amount of work and then return one answer. And that's kind of the design point of SQL. So SQL is inherently low bandwidth requirements, it was used back in the eighties when we used to have 10 megabit networks and the the biggest companies in the world ran back then. So right now we're talking over hundred hundreds of gigabits. So it's really not much of a challenge. When you're designed to run on 10 megabit to say, okay I'm going to give you 10,000 times what you were designed for it's really, it's a pretty low hurdle jump. >> What about the deployment models? How do you handle this? Is it a single global instance across clouds or do you sort of instantiate in each you got exudate in Azure and exudates in OCI? What's the deployment model look like? >> It's pretty straightforward. So customer decides where they want to run their application and database. So there's natural places where people go. If you're in Tokyo, you're going to choose the local Tokyo data centers for both, you know Microsoft and Oracle. If you're in London, you're going to do that. If you're in California you're going to choose maybe San Jose, something like that. So a customer just chooses. We both have data centers in that metro region. So they create their service on Azure and then they go to our console which looks just like an Azure console and say all right create me a database. And then we choose the closest Oracle data center which is generally a few miles away, and then it it all gets created. So from a customer point of view, it's very straightforward. >> I'm always in awe about how simple you make things sound. All right what about security? You talked a little bit before about identity access how you sort of abstracting the Azure capabilities away so that you've simplified it for your customers but are there any other specific security things that you need to do? How much did you have to abstract the underlying primitives of Azure or OCI to present that common experience to customers? >> Yeah, so there's really two big things. One is the identity management. Like my name is X on Azure and I have this set of privileges. Oracle has its own identity management system, right? So what we didn't want is that you have to kind of like bridge these things yourself. It's a giant pain to do that. So we actually what we call federate across these identity managements. So you put your credentials into Azure and then they automatically get to use the exact same credentials and identity in the Oracle cloud. So again, you don't have to think about it, it just works. And then the second part is that the whole bridging the network. So within a cloud you generally have virtual network that's private to your company. And so at Oracle, we bridge the private network that you created in, for example, Azure to the private network that we create for you in Oracle. So it is still a private network without you having to do a whole bunch of work. So it's just like if you were in your own data center other people can't get into your network. So it's secured at the network level, it's secured at the identity management, and encryption level. And again we did a lot of work to make that seamless for customers and they don't have to worry about it because we did the work. That's really as simple as it gets. >> That's what's Supercloud's supposed to be all about. Alright, we were talking earlier about sort of the misperception around multicloud, your view of Open I think, which is you run the Oracle database, wherever the customer wants to run it. So you got this database service across OCI and Azure customers today, they run Oracle database in AWS. You got heat wave, MySQL, heat wave that you announced on AWS, Google touts a bare metal offering where you can run Oracle on GCP. Do you see a day when you extend an OCI Azure like situation across multiple clouds? Would that bring benefits to customers or will the world of database generally remain largely fenced with maybe a few exceptions like what you're doing with OCI and Azure? I'm particularly interested in your thoughts on egress fees as maybe one of the reasons that there is a barrier to this happening and why maybe these stove pipes, exist today and in the future. What are your thoughts on that? >> Yeah, we're very open to working with everyone else out there. Like I said, we've always been, big believers in customers should have choice and you should be able to run wherever you want. So that's been kind of a founding principle of Oracle. We have the Azure, we did a partnership with them, we're open to doing other partnerships and you're going to see other things coming down the pipe on the topic of egress. Yeah, the large egress fees, it's pretty obvious what goes on with that. Various vendors like to have large egress fees because they want to keep things kind of locked into their cloud. So it's not a very customer friendly thing to do. And I think everybody recognizes that it's really trying to kind of course or put a lot of friction on moving data out of a particular cloud. And that's not what we do. We have very, very low egress fees. So we don't really do that and we don't think anybody else should do that. But I think customers at the end of the day, will win that battle. They're going to have to go back to their vendor and say, well I have choice in clouds and if you're going to impose these limits on me, maybe I'll make a different choice. So that's ultimately how these things get resolved. >> So do you think other cloud providers are going to take a page out of what you're doing with Azure and provide similar solutions? >> Yeah, well I think customers want, I mean, I've talked to a lot of customers, this is what they want, right? I mean, there's really no doubt no customer wants to be locked into a single ecosystem. There's nobody out there that wants that. And as the competition, when they start seeing an open ecosystem evolving they're going to be like, okay, I'd rather go there than the closed ecosystem, and that's going to put pressure on the closed ecosystems. So that's the nature of competition. That's what ultimately will tip the balance on these things. >> So Juan, even though you have this capability of distributing a workload across multiple clouds as in our Supercloud premise it's still something that's relatively new. It's a big decision that maybe many people might consider somewhat of a risk. So I'm curious who's driving the decisions for your initial customers? What do they want to get out of it? What's the decision point there? >> Yeah, I mean, this is generally driven by customers that want a specific technology in a cloud. I think the risk, I haven't seen a lot of people worry too much about the risk. Everybody involved in this is a very well known, very reputable firm. I mean, Oracle's been around for 40 years. We run most of the world's largest companies. I think customers understand we're not going to build a solution that's going to put their technology and their business at risk. And the same thing with Azure and others. So I don't see customers too worried about this is a risky move because it's really not. And you know, everybody understands networking at the end the day networking works. I mean, how does the internet work? It's a known quantity. It's not like it's some brand new invention. What we're really doing is breaking down the barriers to interconnecting things. Automating 'em, making 'em easy. So there's not a whole lot of risk here for customers. And like I said, every single customer in the world loves an open ecosystem. It's just not a question. If you go to a customer would you rather put your technology or your business to run on a closed ecosystem or an open system? It's kind of not even worth asking a question. It's a no-brainer. >> All right, so we got to go. My last question. What do you think of the term "Supercloud"? You think it'll stick? >> We'll see. There's a lot of terms out there and it's always fun to see which terms stick. It's a cool term. I like it, but the decision makers are actually the public, what sticks and what doesn't. It's very hard to predict. >> Yeah well, it's been a lot of fun having you on, Juan. Really appreciate your time and always good to see you. >> All right, Dave, thanks a lot. It's always fun to talk to you. >> You bet. All right, keep it right there. More Supercloud two content from theCUBE Community Dave Vellante for John Furrier. We'll be right back. (upbeat music)
SUMMARY :
and cloud strategies to prepare happy to be here with you. just on the Oracle cloud of the ecosystem at Oracle. and I'd love to hear it And the cloud world has Or is it off the shelf Terraform? So at a high level, it looks to you Juan, does it happen at the PaaS layer? it happens at the database layer, So you kind of And we saw that, you know What's the experience been for customers across the Pacific or you know So my question to you is, to public cloud data center. So the real latency requirement and then they go to our console the Azure capabilities away So it's secured at the network level, So you got this database We have the Azure, we did So that's the nature of competition. What's the decision point there? down the barriers to the term "Supercloud"? and it's always fun to and always good to see you. It's always fun to talk to you. Vellante for John Furrier.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Microsoft | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Juan Loaiza | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
San Jose | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Tokyo | LOCATION | 0.99+ |
Juan | PERSON | 0.99+ |
London | LOCATION | 0.99+ |
six | QUANTITY | 0.99+ |
10,000 times | QUANTITY | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
second part | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
less than two millisecond | QUANTITY | 0.99+ |
less than two milliseconds | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
10 megabit | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
AOL | ORGANIZATION | 0.98+ |
each piece | QUANTITY | 0.98+ |
MySQL | TITLE | 0.98+ |
first cloud | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
each country | QUANTITY | 0.98+ |
John Furrier | PERSON | 0.98+ |
two big things | QUANTITY | 0.98+ |
under two milliseconds | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
northern Virginia | LOCATION | 0.98+ |
CompuServe | ORGANIZATION | 0.97+ |
first step | QUANTITY | 0.97+ |
Mission Critical Database Technologies | ORGANIZATION | 0.97+ |
one request | QUANTITY | 0.97+ |
Seoul | LOCATION | 0.97+ |
Azure | TITLE | 0.97+ |
each | QUANTITY | 0.97+ |
two millisecond | QUANTITY | 0.97+ |
Azure | ORGANIZATION | 0.96+ |
one cloud | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
cloud data centers | QUANTITY | 0.95+ |
one answer | QUANTITY | 0.95+ |
Supercloud | ORGANIZATION | 0.94+ |
Nikesh Arora, Palo Alto Networks | Palo Alto Networks Ignite22
Upbeat music plays >> Voice Over: TheCUBE presents Ignite 22, brought to you by Palo Alto Networks. >> Good morning everyone. Welcome to theCUBE. Lisa Martin here with Dave Vellante. We are live at Palo Alto Networks Ignite. This is the 10th annual Ignite. There's about 3,000 people here, excited to really see where this powerhouse organization is taking security. Dave, it's great to be here. Our first time covering Ignite. People are ready to be back. They.. and security is top. It's a board level conversation. >> It is the other Ignite, I like to call it cuz of course there's another big company has a conference name Ignite, so I'm really excited to be here. Palo Alto Networks, a company we've covered for a number of years, as we just wrote in our recent breaking analysis, we've called them the gold standard but it's not just our opinion, we've backed it up with data. The company's on track. We think to do close to 7 billion in revenue by 2023. That's double it's 2020 revenue. You can measure it with execution, market cap M and A prowess. I'm super excited to have the CEO here. >> We have the CEO here, Nikesh Arora joins us from Palo Alto Networks. Nikesh, great to have you on theCube. Thank you for joining us. >> Well thank you very much for having me Lisa and Dave >> Lisa: It was great to see your keynote this morning. You said that, you know fundamentally security is a data problem. Well these days every company has to be a data company. Grocery stores, gas stations, car dealers. How is Palo Alto networks making customers, these data companies, more secure? >> Well Lisa, you know, (coughs) I've only done cybersecurity for about four, four and a half years so when I came to the industry I was amazed to see how security is so reactive as opposed to proactive. We should be able to stop bad threats, right? as they're happening. But I think a lot of threats get through because we don't have the right infrastructure and the right tooling and right products in there. So I think we've been working hard for the last four and a half years to turn it around so we can have consistent data flow across an enterprise and then mine that data for threats and anomalous behavior and try and protect our customers. >> You know the problem, I wrote this, this weekend, the problem in cybersecurity is well understood, you put up that Optiv graph and it's like 8,000 companies >> Yes >> and I think you mentioned your keynote on average, you know 30 to 40 tools, maybe 50, at least 20, >> Yes. >> from the folks that I talked to. So, okay, great, but actually solving that problem is not trivial. To be a consolidator, I mean, everybody wants to consolidate tools. So in your three to four years and security as you well know, it's, you can't fake security. It's a really, really challenging topic. So when you joined Palo Alto Networks and you heard that strategy, I know you guys have been thinking about this for some time, what did you see as the challenges to actually executing on that and how is it that you've been able to sort of get through that knot hole. >> So Dave, you know, it's interesting if you look at the history of cybersecurity, I call them the flavor of the decade, a flare, you know a new threat vector gets created, very large market gets created, a solution comes through, people flock, you get four or five companies will chase that opportunity, and then they become leaders in that space whether it's firewalls or endpoints or identity. And then people stick to their swim lane. The problem is that's a very product centric approach to security. It's not a customer-centric approach. The customer wants a more secure enterprise. They don't want to solve 20 different solutions.. problems with 20 different point solutions. But that's kind of how the industry's grown up, and it's been impossible for a large security company in one category, to actually have a substantive presence in the next category. Now what we've been able to do in the last four and a half years is, you know, from our firewall base we had resources, we had intellectual capability from a security perspective and we had cash. So we used that to pay off our technical debt. We acquired a bunch of companies, we created capability. In the last three years, four years we've created three incremental businesses which are all on track to hit a billion dollars the next 12 to 18 months. >> Yeah, so it's interesting on Twitter last night we had a little conversation about acquirers and who was a good, who was not so good. It was, there was Oracle, they came up actually very high, they'd done pretty, pretty good Job, VMware was on the list, IBM, Cisco, ServiceNow. And if you look at IBM and Cisco's strategy, they tend to be very services heavy, >> Mm >> right? How is it that you have been able to, you mentioned get rid of your technical debt, you invested in that. I wonder if you could, was it the, the Cloud, even though a lot of the Cloud was your own Cloud, was that a difference in terms of your ability to integrate? Because so many companies have tried it in the past. Oracle I think has done a good job, but it took 'em 10 to 12 years, you know, to, to get there. What was the sort of secret sauce? Is it culture, is it just great engineering? >> Dave it's a.. thank you for that. I think, look, it's, it's a mix of everything. First and foremost, you know, there are certain categories we didn't play in so there was nothing to integrate. We built a capability in a category in automation. We didn't have a product, we acquired a company. It's a net new capability in instant response. We didn't have a capability. It was net new capability. So there was, there was, other than integrating culturally and into the organization into our core to market processes there was no technical integration needed. Most of our technical integration was needed in our Cloud platform, which we bought five or six companies, we integrated then we just bought one recently called cyber security as well, which is going to get integrated in the Cloud platform. >> Dave: Yeah. >> And the thing is like, the Cloud platform is net new in the industry. We.. nobody's created a Cloud security platform yet, so we're working hard to create it because we don't want to replicate the mistakes of the past, that were made in enterprise security, in Cloud security. So it's a combination of cultural integration it's a combination of technical integration. The two things we do differently I think, than most people in the industry is look, we have no pride of, you know of innovations. Like, if somebody else has done it, we respect it and we'll acquire it, but we always want to acquire number one or number two in their category. I don't want number three or four. There's three or four for a reason and there still leaves one or two out there to compete with. So we've always acquired one or two, one. And the second thing, which is as important is most of these companies are in the early stage of development. So it's very important for the founding team to be around. So we spend a lot of time making sure they stick around. We actually make our people work for them. My principle is, listen, if they beat us in the open market with all our resources and our people, then they deserve to run this as opposed to us. So most of our new product categories are run by founders of companies required. >> So a little bit of Jack Welch, a little bit of Franks Lubens is a, you know always deference to the founders. But go ahead Lisa. >> Speaking of cultural transformation, you were mentioning your keynote this morning, there's been a significant workforce transformation at Palo Alto Networks. >> Yeah >> Talk a little bit about that, cause that's a big challenge, for many organizations to achieve. Sounds like you've done it pretty well. >> Well you know, my old boss, Eric Schmidt, used to say, 'revenue solves all known problems'. Which kind of, you know, it is a part joking, part true, but you know as Dave mentioned, we've doubled or two and a half time the revenues in the last four and a half years. That allows you to grow, that allows you to increase headcount. So we've gone from four and a half thousand people to 14,000 people. Good news is that's 9,500 people are net new to the company. So you can hire a whole new set of people who have new skills, new capabilities and there's some attrition four and a half thousand, some part of that turns over in four and a half years, so we effectively have 80% net new people, and the people we have, who are there from before, are amazing because they've built a phenomenal firewall business. So it's kind of been right sized across the board. It's very hard to do this if you're not growing. So you got to focus on growing. >> Dave: It's like winning in sports. So speaking of firewalls, I got to ask you does self-driving cars need brakes? So if I got a shout out to my friend Zeus Cararvela so like that's his line about why you need firewalls, right? >> Nikesh: Yes. >> I mean you mentioned it in your keynote today. You said it's the number one question that you get. >> and I don't get it why P industry observers don't go back and say that's, this is ridiculous. The network traffic is doubling or tripling. (clears throat) In fact, I gave an interesting example. We shut down our data centers, as I said, we are all on Google Cloud and Amazon Cloud and then, you know our internal team comes in, we'd want a bigger firewall. I'm like, why do you want a bigger firewall? We shut down our data centers as well. The traffic coming in and out of our campus is doubled. We need a bigger firewall. So you still need a firewall even if you're in the Cloud. >> So I'm going to come back to >> Nikesh: (coughs) >> the M and A strategy. My question is, can you be both best of breed and develop a comprehensive suite number.. part one and part one A of that is do you even have to, because generally sweets win out over best of breed. But what, how do you, how do you respond? >> Well, you know, this is this age old debate and people get trapped in that, I think in my mind, and let me try and expand the analogy which I tried to do up in my keynote. You know, let's assume that Oracle, Microsoft, Dynamics and Salesforce did not exist, okay? And you were running a large company of 50,000 people and your job was to manage the customer process which easier to understand than security. And I said, okay, guess what? I have a quoting system and a lead system but the lead system doesn't talk to my coding system. So I get leads, but I don't know who those customers. And I write codes for a whole new set of customers and I have a customer database. Then when they come as purchase orders, I have a new database with all the customers who've bought something from me, and then when I go get them licensing I have a new database and when I go have customer support, I have a fifth database and there are customers in all five databases. You'll say Nikesh you're crazy, you should have one customer database, otherwise you're never going to be able to make this work. But security is the same problem. >> Dave: Mm I should.. I need consistency in data from suit to nuts. If it's in Cloud, if you're writing code, I need to understand the security flaws before they go into deployment, before they go into production. We for somehow ridiculously have bought security like IT. Now the difference between IT and security is, IT is required to talk to each other, so a Dell server and HP server work very similarly but a Palo Alto firewall and a Checkpoint firewall Fortnight firewall work formally differently. And then how that transitions into endpoints is a whole different ball game. So you need consistency in data, as Lisa was saying earlier, it's a data problem. You need consistency as you traverse to the enterprise. And that's why that's the number one need. Now, when you say best of breed, (coughs) best of breed, if it's fine, if it's a specific problem that you're trying to solve. But if you're trying to make sure that's the data flow that happens, you need both best of breed, you know, technology that stops things and need integration on data. So what we are trying to do is we're trying to give people best to breed solutions in the categories they want because otherwise they won't buy us. But we're also trying to make sure we stitch the data. >> But that definition of best of breed is a little bit of nuance than different in security is what I'm hearing because that consistency >> Nikesh: (coughs) Yes, >> across products. What about across Cloud? You mentioned Google and Amazon. >> Yeah so that's great question. >> Dave: Are you building the security super Cloud, I call it, above the Cloud? >> It's, it's not, it's, less so a super Cloud, It's more like Switzerland and I used to work at Google for 10 years, not a secret. And we used to sell advertising and we decided to go into pub into display ads or publishing, right. Now we had no publishing platform so we had to be good at everybody else's publishing platform >> Dave: Mm >> but we never were able to search ads for everybody else because we only focus on our own platform. So part of it is when the Cloud guys they're busy solving security for their Cloud. Google is not doing anything about Amazon Cloud or Microsoft Cloud, Microsoft's Azure, right? AWS is not doing anything about Google Cloud or Azure. So what we do is we don't have a Cloud. Our job in providing Cloud securities, be Switzerland make sure it works consistently across every Cloud. Now if you try to replicate what we offer Prisma Cloud, by using AWS, Azure and GCP, you'd have to first of all, have three panes of glass for all three of them. But even within them they have four panes of glass for the capabilities we offer. So you could end up with 12 different interfaces to manage a development process, we give you one. Now you tell me which is better. >> Dave: Sounds like a super Cloud to me Lisa (laughing) >> He's big on super Cloud >> Uber Cloud, there you >> Hey I like that, Uber Cloud. Well, so I want to understand Nikesh, what's realistic. You mentioned in your keynote Dave, brought it up that the average organization has 30 to 50 tools, security tools. >> Nikesh: Yes, yes >> On their network. What is realistic for from a consolidation perspective where Palo Alto can come in and say, let me make this consistent and simple for you. >> Well, I'll give you your own example, right? (clears throat) We're probably sub 10 substantively, right? There may be small things here and there we do. But on a substantive protecting the enterprise perspective you be should be down to eight or 10 vendors, and that is not perfect but it's a lot better than 50, >> Lisa: Right? >> because don't forget 50 tools means you have to have capability to understand what those 50 tools are doing. You have to have the capability to upgrade them on a constant basis, learn about their new capabilities. And I just can't imagine why customers have two sets of firewalls right. Now you got to learn both the files on how to deploy both them. That's silly because that's why we need 7 million more people. You need people to understand, so all these tools, who work for companies. If you had less tools, we need less people. >> Do you think, you know I wrote about this as well, that the security industry is anomalous and that the leader has, you know, single digit, low single digit >> Yes >> market shares. Do you think that you can change that? >> Well, you know, when I started that was exactly the observation I had Dave, which you highlighted in your article. We were the largest by revenue, by small margin. And we were one and half percent of the industry. Now we're closer to three, three to four percent and we're still at, you know, like you said, going to be around $7 billion. So I see a path for us to double from here and then double from there, and hopefully as we keep doubling and some point in time, you know, I'd like to get to double digits to start with. >> One of the things that I think has to happen is this has to grow dramatically, the ecosystem. I wonder if you could talk about the ecosystem and your strategy there. >> Well, you know, it's a matter of perspective. I think we have to get more penetrated in our largest customers. So we have, you know, 1800 of the top 2000 customers in the world are Palo Alto customers. But we're not fully penetrated with all our capabilities and the same customers set, so yes the ecosystem needs to grow, but the pandemic has taught us the ecosystem can grow wherever they are without having to come to Vegas. Which I don't think is a bad thing to be honest. So the ecosystem is growing. You are seeing new players come to the ecosystem. Five years ago you didn't see a lot of systems integrators and security. You didn't see security offshoots of telecom companies. You didn't see the Optivs, the WWTs, the (indistinct) of the world (coughs) make a concerted shift towards consolidation or services and all that is happening >> Dave: Mm >> as we speak today in the audience you will find people from Google, Amazon Microsoft are sitting in the audience. People from telecom companies are sitting in the audience. These people weren't there five years ago. So you are seeing >> Dave: Mm >> the ecosystem's adapting. They're, they want to be front and center of solving the customer's problem around security and they want to consolidate capability, they need. They don't want to go work with a hundred vendors because you know, it's like, it's hard. >> And the global system integrators are key. I always say they like to eat at the trough and there's a lot of money in security. >> Yes. >> Dave: (laughs) >> Well speaking of the ecosystem, you had Thomas Curry and Google Cloud CEO in your fireside chat in the keynote. Talk a little bit about how Google Cloud plus Palo Alto Networks, the Zero Trust Partnership and what it's enable customers to achieve. >> Lisa, that's a great question. (clears his throat) Thank you for bringing it up. Look, you know the, one of the most fundamental shifts that is happening is obviously the shift to the Cloud. Now when that shift fully, sort of, takes shape you will realize if your network has changed and you're delivering everything to the Cloud you need to go figure out how to bring the traffic to the Cloud. You don't have to bring it back to your data center you can bring it straight to the Cloud. So in that context, you know we use Google Cloud and Amazon Cloud, to be able to carry our traffic. We're going from a product company to a services company in addition, right? Cuz when we go from firewalls to SASE we're not carrying your traffic. When we carry our traffic, we need to make sure we have underlying capability which is world class. We think GCP and AWS and Azure run some of the biggest and best networks in the world. So our partnership with Google is such that we use their public Cloud, we sit on top of their Cloud, they give us increased enhanced functionality so that our customers SASE traffic gets delivered in priority anywhere in the world. They give us tooling to make sure that there's high reliability. So you know, we partner, they have Beyond Corp which is their version of Zero Trust which allows you to take unmanaged devices with browsers. We have SASE, which allows you to have managed devices. So the combination gives our collective customers the ability for Zero Trust. >> Do you feel like there has to be more collaboration within the ecosystem, the security, you know, landscape even amongst competitors? I mean I think about Google acquires Mandiant. You guys have Unit 42. Should and will, like, Wendy Whitmore and maybe they already are, Kevin Mandia talk more and share more data. If security's a data problem is all this data >> Nikesh: Yeah look I think the industry shares threat data, both in private organizations as well as public and private context, so that's not a problem. You know the challenge with too much collaboration in security is you never know. Like you know, the moment you start sharing your stuff at third parties, you go out of Secure Zone. >> Lisa: Mm >> Our biggest challenge is, you know, I can't trust a third party competitor partner product. I have to treat it with as much suspicion as anything else out there because the only way I can deliver Zero Trust is to not trust anything. So collaboration in Zero Trust are a bit of odds with each other. >> Sounds like another problem you can solve >> (laughs) >> Nikesh last question for you. >> Yes >> Favorite customer or example that you think really articulates the value of what Palo Alto was delivering? >> Look you know, it's a great question, Lisa. I had this seminal conversation with a customer and I explained all those things we were talking about and the customer said to me, great, okay so what do I need to do? I said, fun, you got to trust me because you know, we are on a journey, because in the past, customers have had to take the onus on themselves of integrating everything because they weren't sure a small startup will be independent, be bought by another cybersecurity company or a large cybersecurity company won't get gobbled up and split into pieces by private equity because every one of the cybersecurity companies have had a shelf life. So you know, our aspiration is to be the evergreen cybersecurity company. We will always be around and we will always tackle innovation and be on the front line. So the customer understood what we're doing. Over the last three years we've been working on a transformation journey with them. We're trying to bring them, or we have brought them along the path of Zero Trust and we're trying to work with them to deliver this notion of reducing their meantime to remediate from days to minutes. Now that's an outcome based approach that's a partnership based approach and we'd like, love to have more and more customers of that kind. I think we weren't ready to be honest as a company four and a half years ago, but I think today we're ready. Hence my keynote was called The Perfect Storm. I think we're at the right time in the industry with the right capabilities and the right ecosystem to be able to deliver what the industry needs. >> The perfect storm, partners, customers, investors, employees. Nikesh, it's been such a pleasure having you on theCUBE. Thank you for coming to talk to Dave and me right after your keynote. We appreciate that and we look forward to two days of great coverage from your executives, your customers, and your partners. Thank you. >> Well, thank you for having me, Lisa and Dave and thank you >> Dave: Pleasure >> for what you guys do for our industry. >> Our pleasure. For Nikesh Arora and Dave Vellante, I'm Lisa Martin, you're watching theCUBE live at MGM Grand Hotel in Las Vegas, Palo Alto Ignite 22. Stick around Dave and I will be joined by our next guest in just a minute. (cheerful music plays out)
SUMMARY :
brought to you by Palo Alto Networks. Dave, it's great to be here. I like to call it cuz Nikesh, great to have you on theCube. You said that, you know and the right tooling and and you heard that strategy, So Dave, you know, it's interesting And if you look at IBM How is it that you have been able to, First and foremost, you know, of, you know of innovations. Lubens is a, you know you were mentioning your for many organizations to achieve. and the people we have, So speaking of firewalls, I got to ask you I mean you mentioned and then, you know our that is do you even have to, Well, you know, this So you need consistency in data, and Amazon. so that's great question. and we decided to go process, we give you one. that the average organization and simple for you. Well, I'll give you You have to have the Do you think that you can change that? and some point in time, you know, I wonder if you could So we have, you know, 1800 in the audience you will find because you know, it's like, it's hard. And the global system and Google Cloud CEO in your So in that context, you security, you know, landscape Like you know, the moment I have to treat it with as much suspicion for you. and the customer said to me, great, okay Thank you for coming Arora and Dave Vellante,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cisco | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
Eric Schmidt | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Dell | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Kevin Mandia | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
80% | QUANTITY | 0.99+ |
HP | ORGANIZATION | 0.99+ |
2020 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
9,500 people | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
six companies | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Vegas | LOCATION | 0.99+ |
four and a half years | QUANTITY | 0.99+ |
14,000 people | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Wendy Whitmore | PERSON | 0.99+ |
50,000 people | QUANTITY | 0.99+ |
Jack Welch | PERSON | 0.99+ |
10 vendors | QUANTITY | 0.99+ |
Five years ago | DATE | 0.99+ |
Thomas Curry | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
50 tools | QUANTITY | 0.99+ |
1800 | QUANTITY | 0.99+ |
Zero Trust | ORGANIZATION | 0.99+ |
Salesforce | ORGANIZATION | 0.99+ |
12 different interfaces | QUANTITY | 0.99+ |
Snehal Antani, Horizon3.ai | AWS Startup Showcase S2 E4 | Cybersecurity
(upbeat music) >> Hello and welcome to theCUBE's presentation of the AWS Startup Showcase. This is season two, episode four of the ongoing series covering the exciting hot startups from the AWS ecosystem. Here we're talking about cybersecurity in this episode. I'm your host, John Furrier here we're excited to have CUBE alumni who's back Snehal Antani who's the CEO and co-founder of Horizon3.ai talking about exploitable weaknesses and vulnerabilities with autonomous pen testing. Snehal, it's great to see you. Thanks for coming back. >> Likewise, John. I think it's been about five years since you and I were on the stage together. And I've missed it, but I'm glad to see you again. >> Well, before we get into the showcase about your new startup, that's extremely successful, amazing margins, great product. You have a unique journey. We talked about this prior to you doing the journey, but you have a great story. You left the startup world to go into the startup, like world of self defense, public defense, NSA. What group did you go to in the public sector became a private partner. >> My background, I'm a software engineer by education and trade. I started my career at IBM. I was a CIO at GE Capital, and I think we met once when I was there and I became the CTO of Splunk. And we spent a lot of time together when I was at Splunk. And at the end of 2017, I decided to take a break from industry and really kind of solve problems that I cared deeply about and solve problems that mattered. So I left industry and joined the US Special Operations Community and spent about four years in US Special Operations, where I grew more personally and professionally than in anything I'd ever done in my career. And exited that time, met my co-founder in special ops. And then as he retired from the air force, we started Horizon3. >> So there's really, I want to bring that up one, 'cause it's fascinating that not a lot of people in Silicon Valley and tech would do that. So thanks for the service. And I know everyone who's out there in the public sector knows that this is a really important time for the tactical edge in our military, a lot of things going on around the world. So thanks for the service and a great journey. But there's a storyline with the company you're running now that you started. I know you get the jacket on there. I noticed get a little military vibe to it. Cybersecurity, I mean, every company's on their own now. They have to build their own militia. There is no government supporting companies anymore. There's no militia. No one's on the shores of our country defending the citizens and the companies, they got to offend for themselves. So every company has to have their own military. >> In many ways, you don't see anti-aircraft rocket launchers on top of the JP Morgan building in New York City because they rely on the government for air defense. But in cyber it's very different. Every company is on their own to defend for themselves. And what's interesting is this blend. If you look at the Ukraine, Russia war, as an example, a thousand companies have decided to withdraw from the Russian economy and those thousand companies we should expect to be in the ire of the Russian government and their proxies at some point. And so it's not just those companies, but their suppliers, their distributors. And it's no longer about cyber attack for extortion through ransomware, but rather cyber attack for punishment and retaliation for leaving. Those companies are on their own to defend themselves. There's no government that is dedicated to supporting them. So yeah, the reality is that cybersecurity, it's the burden of the organization. And also your attack surface has expanded to not just be your footprint, but if an adversary wants to punish you for leaving their economy, they can get, if you're in agriculture, they could disrupt your ability to farm or they could get all your fruit to spoil at the border 'cause they disrupted your distributors and so on. So I think the entire world is going to change over the next 18 to 24 months. And I think this idea of cybersecurity is going to become truly a national problem and a problem that breaks down any corporate barriers that we see in previously. >> What are some of the things that inspired you to start this company? And I loved your approach of thinking about the customer, your customer, as defending themselves in context to threats, really leaning into it, being ready and able to defend. Horizon3 has a lot of that kind of military thinking for the good of the company. What's the motivation? Why this company? Why now? What's the value proposition? >> So there's two parts to why the company and why now. The first part was what my observation, when I left industry realm or my military background is watching "Jack Ryan" and "Tropic Thunder" and I didn't come from the military world. And so when I entered the special operations community, step one was to keep my mouth shut, learn, listen, and really observe and understand what made that community so impressive. And obviously the people and it's not about them being fast runners or great shooters or awesome swimmers, but rather there are learn-it-alls that can solve any problem as a team under pressure, which is the exact culture you want to have in any startup, early stage companies are learn-it-alls that can solve any problem under pressure as a team. So I had this immediate advantage when we started Horizon3, where a third of Horizon3 employees came from that special operations community. So one is this awesome talent. But the second part that, I remember this quote from a special operations commander that said we use live rounds in training because if we used fake rounds or rubber bullets, everyone would act like metal of honor winners. And the whole idea there is you train like you fight, you build that muscle memory for crisis and response and so on upfront. So when you're in the thick of it, you already know how to react. And this aligns to a pain I had in industry. I had no idea I was secure until the bad guy showed up. I had no idea if I was fixing the right vulnerabilities, logging the right data in Splunk, or if my CrowdStrike EDR platform was configured correctly, I had to wait for the bad guys to show up. I didn't know if my people knew how to respond to an incident. So what I wanted to do was proactively verify my security posture, proactively harden my systems. I needed to do that by continuously pen testing myself or continuously testing my security posture. And there just wasn't any way to do that where an IT admin or a network engineer could in three clicks have the power of a 20 year pen testing expert. And that was really what we set out to do, not build a autonomous pen testing platform for security people, build it so that anybody can quickly test their security posture and then use the output to fix problems that truly matter. >> So the value preposition, if I get this right is, there's a lot of companies out there doing pen tests. And I know I hate pen tests. They're like, cause you do DevOps, it changes you got to do another pen test. So it makes sense to do autonomous pen testing. So congratulations on seeing that that's obvious to that, but a lot of other have consulting tied to it. Which seems like you need to train someone and you guys taking a different approach. >> Yeah, we actually, as a company have zero consulting, zero professional services. And the whole idea is that build a true software as a service offering where an intern, in fact, we've got a video of a nine year old that in three clicks can run pen tests against themselves. And because of that, you can wire pen tests into your DevOps tool chain. You can run multiple pen tests today. In fact, I've got customers running 40, 50 pen tests a month against their organization. And that what that does is completely lowers the barrier of entry for being able to verify your posture. If you have consulting on average, when I was a CIO, it was at least a three month lead time to schedule consultants to show up and then they'd show up, they'd embarrass the security team, they'd make everyone look bad, 'cause they're going to get in, leave behind a report. And that report was almost identical to what they found last year because the older that report, the one the date itself gets stale, the context changes and so on. And then eventually you just don't even bother fixing it. Or if you fix a problem, you don't have the skills to verify that has been fixed. So I think that consulting led model was acceptable when you viewed security as a compliance checkbox, where once a year was sufficient to meet your like PCI requirements. But if you're really operating with a wartime mindset and you actually need to harden and secure your environment, you've got to be running pen test regularly against your organization from different perspectives, inside, outside, from the cloud, from work, from home environments and everything in between. >> So for the CISOs out there, for the CSOs and the CXOs, what's the pitch to them because I see your jacket that says Horizon3 AI, trust but verify. But this trust is, but is canceled out, just as verify. What's the product that you guys are offering the service. Describe what it is and why they should look at it. >> Yeah, sure. So one, when I back when I was the CIO, don't tell me we're secure in PowerPoint. Show me we're secure right now. Show me we're secure again tomorrow. And then show me we're secure again next week because my environment is constantly changing and the adversary always has a vote and they're always evolving. And this whole idea of show me we're secure. Don't trust that your security tools are working, verify that they can detect and respond and stifle an attack and then verify tomorrow, verify next week. That's the big mind shift. Now what we do is-- >> John: How do they respond to that by the way? Like they don't believe you at first or what's the story. >> I think, there's actually a very bifurcated response. There are still a decent chunk of CIOs and CSOs that have a security is a compliance checkbox mindset. So my attitude with them is I'm not going to convince you. You believe it's a checkbox. I'll just wait for you to get breached and sell to your replacement, 'cause you'll get fired. And in the meantime, I spend all my energy with those that actually care about proactively securing and hardening their environments. >> That's true. People do get fired. Can you give an example of what you're saying about this environment being ready, proving that you're secure today, tomorrow and a few weeks out. Give me an example. >> Of, yeah, I'll give you actually a customer example. There was a healthcare organization and they had about 5,000 hosts in their environment and they did everything right. They had Fortinet as their EDR platform. They had user behavior analytics in place that they had purchased and tuned. And when they ran a pen test self-service, our product node zero immediately started to discover every host on the network. It then fingerprinted all those hosts and found it was able to get code execution on three machines. So it got code execution, dumped credentials, laterally maneuvered, and became a domain administrator, which in IT, if an attacker becomes a domain admin, they've got keys to the kingdom. So at first the question was, how did the node zero pen test become domain admin? How'd they get code execution, Fortinet should have detected and stopped it. Well, it turned out Fortinet was misconfigured on three boxes out of 5,000. And these guys had no idea and it's just automation that went wrong and so on. And now they would've only known they had misconfigured their EDR platform on three hosts if the attacker had showed up. The second question though was, why didn't they catch the lateral movement? Which all their marketing brochures say they're supposed to catch. And it turned out that that customer purchased the wrong Fortinet modules. One again, they had no idea. They thought they were doing the right thing. So don't trust just installing your tools is good enough. You've got to exercise and verify them. We've got tons of stories from patches that didn't actually apply to being able to find the AWS admin credentials on a local file system. And then using that to log in and take over the cloud. In fact, I gave this talk at Black Hat on war stories from running 10,000 pen tests. And that's just the reality is, you don't know that these tools and processes are working for you until the bad guys have shown. >> The velocities there. You can accelerate through logs, you know from the days you've been there. This is now the threat. Being, I won't say lazy, but just not careful or just not thinking. >> Well, I'll do an example. We have a lot of customers that are Horizon3 customers and Splunk customers. And what you'll see their behavior is, is they'll have Horizon3 up on one screen. And every single attacker command executed with its timestamp is up on that screen. And then look at Splunk and say, hey, we were able to dump vCenter credentials from VMware products at this time on this host, what did Splunk see or what didn't they see? Why were no logs generated? And it turns out that they had some logging blind spots. So what they'll actually do is run us to almost like stimulate the defensive tools and then see what did the tools catch? What did they miss? What are those blind spots and how do they fix it. >> So your price called node zero. You mentioned that. Is that specifically a suite, a tool, a platform. How do people consume and engage with you guys? >> So the way that we work, the whole product is designed to be self-service. So once again, while we have a sales team, the whole intent is you don't need to have to talk to a sales rep to start using the product, you can log in right now, go to Horizon3.ai, you can run a trial log in with your Google ID, your LinkedIn ID, start running pen test against your home or against your network against this organization right now, without talking to anybody. The whole idea is self-service, run a pen test in three clicks and give you the power of that 20 year pen testing expert. And then what'll happen is node zero will execute and then it'll provide to you a full report of here are all of the different paths or attack paths or sequences where we are able to become an admin in your environment. And then for every attack path, here is the path or the kill chain, the proof of exploitation for every step along the way. Here's exactly what you've got to do to fix it. And then once you've fixed it, here's how you verify that you've truly fixed the problem. And this whole aha moment is run us to find problems. You fix them, rerun us to verify that the problem has been fixed. >> Talk about the company, how many people do you have and get some stats? >> Yeah, so we started writing code in January of 2020, right before the pandemic hit. And then about 10 months later at the end of 2020, we launched the first version of the product. We've been in the market for now about two and a half years total from start of the company till present. We've got 130 employees. We've got more customers than we do employees, which is really cool. And instead our customers shift from running one pen test a year to 40, 50 pen test. >> John: And it's full SaaS. >> The whole product is full SaaS. So no consulting, no pro serve. You run as often as you-- >> Who's downloading, who's buying the product. >> What's amazing is, we have customers in almost every section or sector now. So we're not overly rotated towards like healthcare or financial services. We've got state and local education or K through 12 education, state and local government, a number of healthcare companies, financial services, manufacturing. We've got organizations that large enterprises. >> John: Security's diverse. >> It's very diverse. >> I mean, ransomware must be a big driver. I mean, is that something that you're seeing a lot. >> It is. And the thing about ransomware is, if you peel back the outcome of ransomware, which is extortion, at the end of the day, what ransomware organizations or criminals or APTs will do is they'll find out who all your employees are online. They will then figure out if you've got 7,000 employees, all it takes is one of them to have a bad password. And then attackers are going to credential spray to find that one person with a bad password or whose Netflix password that's on the dark web is also their same password to log in here, 'cause most people reuse. And then from there they're going to most likely in your organization, the domain user, when you log in, like you probably have local admin on your laptop. If you're a windows machine and I've got local admin on your laptop, I'm going to be able to dump credentials, get the admin credentials and then start to laterally maneuver. Attackers don't have to hack in using zero days like you see in the movies, often they're logging in with valid user IDs and passwords that they've found and collected from somewhere else. And then they make that, they maneuver by making a low plus a low equal a high. And the other thing in financial services, we spend all of our time fixing critical vulnerabilities, attackers know that. So they've adapted to finding ways to chain together, low priority vulnerabilities and misconfigurations and dangerous defaults to become admin. So while we've over rotated towards just fixing the highs and the criticals attackers have adapted. And once again they have a vote, they're always evolving their tactics. >> And how do you prevent that from happening? >> So we actually apply those same tactics. Rarely do we actually need a CVE to compromise your environment. We will harvest credentials, just like an attacker. We will find misconfigurations and dangerous defaults, just like an attacker. We will combine those together. We'll make use of exploitable vulnerabilities as appropriate and use that to compromise your environment. So the tactics that, in many ways we've built a digital weapon and the tactics we apply are the exact same tactics that are applied by the adversary. >> So you guys basically simulate hacking. >> We actually do the hacking. Simulate means there's a fakeness to it. >> So you guys do hack. >> We actually compromise. >> Like sneakers the movie, those sneakers movie for the old folks like me. >> And in fact that was my inspiration. I've had this idea for over a decade now, which is I want to be able to look at anything that laptop, this Wi-Fi network, gear in hospital or a truck driving by and know, I can figure out how to gain initial access, rip that environment apart and be able to opponent. >> Okay, Chuck, he's not allowed in the studio anymore. (laughs) No, seriously. Some people are exposed. I mean, some companies don't have anything. But there's always passwords or so most people have that argument. Well, there's nothing to protect here. Not a lot of sensitive data. How do you respond to that? Do you see that being kind of putting the head in the sand or? >> Yeah, it's actually, it's less, there's not sensitive data, but more we've installed or applied multifactor authentication, attackers can't get in now. Well MFA only applies or does not apply to lower level protocols. So I can find a user ID password, log in through SMB, which isn't protected by multifactor authentication and still upon your environment. So unfortunately I think as a security industry, we've become very good at giving a false sense of security to organizations. >> John: Compliance drives that behavior. >> Compliance drives that. And what we need. Back to don't tell me we're secure, show me, we've got to, I think, change that to a trust but verify, but get rid of the trust piece of it, just to verify. >> Okay, we got a lot of CISOs and CSOs watching this showcase, looking at the hot startups, what's the message to the executives there. Do they want to become more leaning in more hawkish if you will, to use the military term on security? I mean, I heard one CISO say, security first then compliance 'cause compliance can make you complacent and then you're unsecure at that point. >> I actually say that. I agree. One definitely security is different and more important than being compliant. I think there's another emerging concept, which is I'd rather be defensible than secure. What I mean by that is security is a point in time state. I am secure right now. I may not be secure tomorrow 'cause something's changed. But if I'm defensible, then what I have is that muscle memory to detect, respondent and stifle an attack. And that's what's more important. Can I detect you? How long did it take me to detect you? Can I stifle you from achieving your objective? How long did it take me to stifle you? What did you use to get in to gain access? How long did that sit in my environment? How long did it take me to fix it? So on and so forth. But I think it's being defensible and being able to rapidly adapt to changing tactics by the adversary is more important. >> This is the evolution of how the red line never moved. You got the adversaries in our networks and our banks. Now they hang out and they wait. So everyone thinks they're secure. But when they start getting hacked, they're not really in a position to defend, the alarms go off. Where's the playbook. Team springs into action. I mean, you kind of get the visual there, but this is really the issue being defensible means having your own essentially military for your company. >> Being defensible, I think has two pieces. One is you've got to have this culture and process in place of training like you fight because you want to build that incident response muscle memory ahead of time. You don't want to have to learn how to respond to an incident in the middle of the incident. So that is that proactively verifying your posture and continuous pen testing is critical there. The second part is the actual fundamentals in place so you can detect and stifle as appropriate. And also being able to do that. When you are continuously verifying your posture, you need to verify your entire posture, not just your test systems, which is what most people do. But you have to be able to safely pen test your production systems, your cloud environments, your perimeter. You've got to assume that the bad guys are going to get in, once they're in, what can they do? So don't just say that my perimeter's secure and I'm good to go. It's the soft squishy center that attackers are going to get into. And from there, can you detect them and can you stop them? >> Snehal, take me through the use. You got to be sold on this, I love this topic. Alright, pen test. Is it, what am I buying? Just pen test as a service. You mentioned dark web. Are you actually buying credentials online on behalf of the customer? What is the product? What am I buying if I'm the CISO from Horizon3? What's the service? What's the product, be specific. >> So very specifically and one just principles. The first principle is when I was a buyer, I hated being nickled and dimed buyer vendors, which was, I had to buy 15 different modules in order to achieve an objective. Just give me one line item, make it super easy to buy and don't nickel and dime me. Because I've spent time as a buyer that very much has permeated throughout the company. So there is a single skew from Horizon3. It is an annual subscription based on how big your environment is. And it is inclusive of on-prem internal pen tests, external pen tests, cloud attacks, work from home attacks, our ability to harvest credentials from the dark web and from open source sources. Being able to crack those credentials, compromise. All of that is included as a singles skew. All you get as a CISO is a singles skew, annual subscription, and you can run as many pen tests as you want. Some customers still stick to, maybe one pen test a quarter, but most customers shift when they realize there's no limit, we don't nickel and dime. They can run 10, 20, 30, 40 a month. >> Well, it's not nickel and dime in the sense that, it's more like dollars and hundreds because they know what to expect if it's classic cloud consumption. They kind of know what their environment, can people try it. Let's just say I have a huge environment, I have a cloud, I have an on-premise private cloud. Can I dabble and set parameters around pricing? >> Yes you can. So one is you can dabble and set perimeter around scope, which is like manufacturing does this, do not touch the production line that's on at the moment. We've got a hospital that says every time they run a pen test, any machine that's actually connected to a patient must be excluded. So you can actually set the parameters for what's in scope and what's out of scope up front, most again we're designed to be safe to run against production so you can set the parameters for scope. You can set the parameters for cost if you want. But our recommendation is I'd rather figure out what you can afford and let you test everything in your environment than try to squeeze every penny from you by only making you buy what can afford as a smaller-- >> So the variable ratio, if you will is, how much they spend is the size of their environment and usage. >> Just size of the environment. >> So it could be a big ticket item for a CISO then. >> It could, if you're really large, but for the most part-- >> What's large? >> I mean, if you were Walmart, well, let me back up. What I heard is global 10 companies spend anywhere from 50 to a hundred million dollars a year on security testing. So they're already spending a ton of money, but they're spending it on consultants that show up maybe a couple of times a year. They don't have, humans can't scale to test a million hosts in your environment. And so you're already spending that money, spend a fraction of that and use us and run as much as you want. And that's really what it comes down to. >> John: All right. So what's the response from customers? >> What's really interesting is there are three use cases. The first is that SOC manager that is using us to verify that their security tools are actually working. So their Splunk environment is logging the right data. It's integrating properly with CrowdStrike, it's integrating properly with their active directory services and their password policies. So the SOC manager is using us to verify the effectiveness of their security controls. The second use case is the IT director that is using us to proactively harden their systems. Did they install VMware correctly? Did they install their Cisco gear correctly? Are they patching right? And then the third are for the companies that are lucky to have their own internal pen test and red teams where they use us like a force multiplier. So if you've got 10 people on your red team and you still have a million IPs or hosts in your environment, you still don't have enough people for that coverage. So they'll use us to do recon at scale and attack at scale and let the humans focus on the really juicy hard stuff that humans are successful at. >> Love the product. Again, I'm trying to think about how I engage on the test. Is there pilots? Is there a demo version? >> There's a free trials. So we do 30 day free trials. The output can actually be used to meet your SOC 2 requirements. So in many ways you can just use us to get a free SOC 2 pen test report right now, if you want. Go to the website, log in for a free trial, you can log into your Google ID or your LinkedIn ID, run a pen test against your organization and use that to answer your PCI segmentation test requirements, your SOC 2 requirements, but you will be hooked. You will want to run us more often. And you'll get a Horizon3 tattoo. >> The first hits free as they say in the drug business. >> Yeah. >> I mean, so you're seeing that kind of response then, trial converts. >> It's exactly. In fact, we have a very well defined aha moment, which is you run us to find, you fix, you run us to verify, we have 100% technical win rate when our customers hit a find, fix, verify cycle, then it's about budget and urgency. But 100% technical win rate because of that aha moment, 'cause people realize, holy crap, I don't have to wait six months to verify that my problems have actually been fixed. I can just come in, click, verify, rerun the entire pen test or rerun a very specific part of it on what I just patched my environment. >> Congratulations, great stuff. You're here part of the AWS Startup Showcase. So I have to ask, what's the relationship with AWS, you're on their cloud. What kind of actions going on there? Is there secret sauce on there? What's going on? >> So one is we are AWS customers ourselves, our brains command and control infrastructure. All of our analytics are all running on AWS. It's amazing, when we run a pen test, we are able to use AWS and we'll spin up a virtual private cloud just for that pen test. It's completely ephemeral, it's all Lambda functions and graph analytics and other techniques. When the pen test ends, you can delete, there's a single use Docker container that gets deleted from your environment so you have nothing on-prem to deal with and the entire virtual private cloud tears itself down. So at any given moment, if we're running 50 pen tests or a hundred pen tests, self-service, there's a hundred virtual private clouds being managed in AWS that are spinning up, running and tearing down. It's an absolutely amazing underlying platform for us to make use of. Two is that many customers that have hybrid environments. So they've got a cloud infrastructure, an Office 365 infrastructure and an on-prem infrastructure. We are a single attack platform that can test all of that together. No one else can do it. And so the AWS customers that are especially AWS hybrid customers are the ones that we do really well targeting. >> Got it. And that's awesome. And that's the benefit of cloud? >> Absolutely. And the AWS marketplace. What's absolutely amazing is the competitive advantage being part of the marketplace has for us, because the simple thing is my customers, if they already have dedicated cloud spend, they can use their approved cloud spend to pay for Horizon3 through the marketplace. So you don't have to, if you already have that budget dedicated, you can use that through the marketplace. The other is you've already got the vendor processes in place, you can purchase through your existing AWS account. So what I love about the AWS company is one, the infrastructure we use for our own pen test, two, the marketplace, and then three, the customers that span that hybrid cloud environment. That's right in our strike zone. >> Awesome. Well, congratulations. And thanks for being part of the showcase and I'm sure your product is going to do very, very well. It's very built for what people want. Self-service get in, get the value quickly. >> No agents to install, no consultants to hire. safe to run against production. It's what I wanted. >> Great to see you and congratulations and what a great story. And we're going to keep following you. Thanks for coming on. >> Snehal: Phenomenal. Thank you, John. >> This is the AWS Startup Showcase. I'm John John Furrier, your host. This is season two, episode four on cybersecurity. Thanks for watching. (upbeat music)
SUMMARY :
of the AWS Startup Showcase. I'm glad to see you again. to you doing the journey, and I became the CTO of Splunk. and the companies, they got over the next 18 to 24 months. And I loved your approach of and "Tropic Thunder" and I didn't come from the military world. So the value preposition, And the whole idea is that build a true What's the product that you and the adversary always has a vote Like they don't believe you and sell to your replacement, Can you give an example And that's just the reality is, This is now the threat. the defensive tools and engage with you guys? the whole intent is you We've been in the market for now about So no consulting, no pro serve. who's buying the product. So we're not overly rotated I mean, is that something and the criticals attackers have adapted. and the tactics we apply We actually do the hacking. Like sneakers the movie, and be able to opponent. kind of putting the head in the sand or? and still upon your environment. that to a trust but verify, looking at the hot startups, and being able to rapidly This is the evolution of and I'm good to go. What is the product? and you can run as many and dime in the sense that, So you can actually set the So the variable ratio, if you will is, So it could be a big and run as much as you want. So what's the response from customers? and let the humans focus on about how I engage on the test. So in many ways you can just use us they say in the drug business. I mean, so you're seeing I don't have to wait six months to verify So I have to ask, what's When the pen test ends, you can delete, And that's the benefit of cloud? And the AWS marketplace. And thanks for being part of the showcase no consultants to hire. Great to see you and congratulations This is the AWS Startup Showcase.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Walmart | ORGANIZATION | 0.99+ |
40 | QUANTITY | 0.99+ |
Snehal | PERSON | 0.99+ |
January of 2020 | DATE | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Chuck | PERSON | 0.99+ |
Snehal Antani | PERSON | 0.99+ |
two parts | QUANTITY | 0.99+ |
two pieces | QUANTITY | 0.99+ |
30 day | QUANTITY | 0.99+ |
Tropic Thunder | TITLE | 0.99+ |
100% | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
20 year | QUANTITY | 0.99+ |
second question | QUANTITY | 0.99+ |
GE Capital | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
130 employees | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
10 people | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
7,000 employees | QUANTITY | 0.99+ |
PowerPoint | TITLE | 0.99+ |
third | QUANTITY | 0.99+ |
Splunk | ORGANIZATION | 0.99+ |
10 companies | QUANTITY | 0.99+ |
5,000 | QUANTITY | 0.99+ |
second part | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
end of 2020 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
one | QUANTITY | 0.99+ |
15 different modules | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Two | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
first part | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
first version | QUANTITY | 0.99+ |
Horizon3 | ORGANIZATION | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
three machines | QUANTITY | 0.99+ |
CrowdStrike | TITLE | 0.98+ |
first principle | QUANTITY | 0.98+ |
one screen | QUANTITY | 0.98+ |
three | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
thousand companies | QUANTITY | 0.98+ |
SOC 2 | TITLE | 0.98+ |
Jack Ryan | TITLE | 0.98+ |
one line item | QUANTITY | 0.98+ |
about two and a half years | QUANTITY | 0.98+ |
two | QUANTITY | 0.98+ |
three use cases | QUANTITY | 0.98+ |
zero days | QUANTITY | 0.98+ |
hundreds | QUANTITY | 0.98+ |
about four years | QUANTITY | 0.98+ |
Ryan Gill, Open Meta | Monaco Crypto Summit 2022
[Music] hello everyone welcome back to the live coverage here in monaco for the monaco crypto summit i'm john furrier host of thecube uh we have a great great guest lineup here already in nine interviews small gathering of the influencers and the people making it happen powered by digital bits sponsored by digital bits presented by digital bits of course a lot happening around decentralization web 3 the metaverse we've got a a powerhouse influencer on the qb ryan gills the founder of openmeta been in the issue for a while ryan great to see you thanks for coming on great to be here thank you you know one of the things that we were observing earlier conversations is you have young and old coming together the best and brightest right now in the front line it's been there for a couple years you know get some hype cycles going on but that's normal in these early growth markets but still true north star is in play that is democratize remove the intermediaries create immutable power to the people the same kind of theme has been drum beating on now come the metaverse wave which is the nfts now the meta verses you know at the beginning of this next wave yeah this is where we're at right now what are you working on tell us what's what's open meta working on yeah i mean so there is a reason for all of this right i think we go through all these different cycles and there's an economic incentive engine and it's designed in because people really like making money but there's a deeper reason for it all and the words the buzzwords the terms they change based off of different cycles this one is a metaverse i just saw it a little early you know so i recognized the importance of an open metaverse probably in 2017 and really decided to dedicate 10 years to that um so we're very early into that decade and we're starting to see more of a movement building and uh you know i've catalyzed a lot of that from from the beginning and making sure that while everything moves to a closed corporate side of things there's also an equal bottom-up approach which i think is just more important and more interesting well first of all i want to give you a lot of props for seeing it early and recognizing the impact and potential collateral damage of not not having open and i was joking earlier about the facebook little snafu with the the exercise app and ftc getting involved and you know i kind of common new york times guy comment online like hey i remember aol wanted to monopolize dial up internet and look the open web obviously changed all that they went to sign an extinction not the same comparable here but you know everyone wants to have their own little walled guard and they feel comfortable first-party data the data business so balancing the benefit of data and all the ip that could come into whether it's a visualization or platform it has to be open without open then you're going to have fragmentation you're going to have all kinds of perverse incentives how does the metaverse continue with such big players like meta themselves x that new name for facebook you know big bully tons of cash you know looking to you know get their sins forgiven um so to speak i mean you got google probably will come in apple's right around the corner amazon you get the whales out there how do is it proprietary is walled garden the new proprietary how do you view all that because it's it's still early and so there's a lot of change can happen well it's an interesting story that's really playing out in three acts right we had the first act which was really truly open right there was this idea that the internet is for the end user this is all just networking and then web 2 came and we got a lot of really great business models from it and it got closed up you know and now as we enter this sort of third act we have the opportunity to learn from both of those right and so i think web 3 needs to go back to the values of web one with the lessons in hindsight of web 2. and all of the winners from web 2 are clearly going to want to keep winning in web 3. so you can probably guess every single company and corporation on earth will move into this i think most governments will move into it as well and um but they're not the ones that are leading it the ones that are leading it are are just it's a culture of people it's a movement that's building and accumulating over time you know it's weird it's uh the whole web 2 thing is the history is interesting because you know when i started my podcasting company in 2004 there's only like three of us you know the dave weiner me evan williams and jack dorsey and we thought and the blogging just was getting going and the dream was democratization at the time mainstream media was the enemy and then now blogs are media so and then all sudden it like maybe it was the 2008 area with the that recession it stopped and then like facebook came in obviously twitter was formed from the death of odio podcasting company so the moment in time in history was a glimmic glimmer of hope well we went under my company went under we all went under but then that ended and then you had the era of twitter facebook linkedin reddit was still around so it kind of stopped where did it where did it pick up was it the ethereum bitcoin and ethereum brought that back where'd the open come back well it's a generational thing if you if you go back to like you know apple as a startup they were trying to take down ibm right it was always there's always the bigger thing that was that we we're trying to sort of unbundle or unpackage because they have too much power they have too much influence and now you know facebook and apple and these big tech companies they are that on on the planet and they're doing it bigger than it's ever been done but when they were startups they existed to try to take that from a bigger company so i think you know it's not an it's not a fact that like facebook or zuckerberg is is the villain here it's just the fact that we're reaching peak centralization anything past this point it becomes more and more unhealthy right and an open metaverse is just a way to build a solution instead of more of a problem and i think if we do just allow corporations to build and own them on the metaverse these problems will get bigger and larger more significant they will touch more people on earth and we know what that looks like so why not try something different so what's the playbook what's the current architecture of the open meta verse that you see and how do people get involved is there protocols to be developed is there new things that are needed how does the architecture layout take us through that your mindset vision on that and then how can people get involved yeah so the the entity structure of what i do is a company called crucible out of the uk um but i i found out very quickly that just a purely for-profit closed company a commercial company won't achieve this objective there's limitations to that so i run a dao as well out of switzerland it's called open meta we actually we named it this six months before facebook changed their name and so this is just the track we're on right and what we develop is a protocol uh we believe that the internet built by game developers is how you define the metaverse and that protocol is in the dao it is in the dow it's that's crucial crucible protocol open meta okay you can think of crucible as labs okay no we're building we're building everything so incubator kind of r d kind of thing exactly yeah and i'm making the choice to develop things and open them up create public goods out of them harness things that are more of a bottom-up approach you know and what we're developing is the emergence protocol which is basically defining the interface between the wallets and the game engines right so you have unity and unreal which all the game developers are sort of building with and we have built software that drops into those game engines to map ownership between the wallet and the experience in the game so integration layer basically between the wallet kind of how stripe is viewed from a software developer's campaign exactly but done on open rails and being done for a skill set of world building that is coming and game developers are the best suited for this world building and i like to own what i built yeah i don't like other people to own what i build and i think there's an entire generation that's that's really how do you feel about the owning and sharing component is that where you see the scale coming into play here i can own it and scale it through the relationship of the open rails yeah i mean i think the truth is that the open metaverse will be a smaller network than even one corporate virtual world for a while because these companies have billions of people right yeah every room you've ever been in on earth people are using two or three of facebook's products right they just have that adoption but they don't have trust they don't have passion they don't have the movement that you see in web3 they don't have the talent the level of creative talent those people care about owning what they create on the on what can someone get involved with question is that developer is that a sponsor what do people do to get involved with do you and your team and to make it bigger i mean it shouldn't be too small so if this tracks you can assume it gets bigger if you care about an open metaverse you have a seat at the table if you become a member of the dao you have a voice at the table you can make decisions with us we are building developing technology that can be used openly so if you're a game developer and you use unity or unreal we will open the beta this month later and then we move directly into what's called a game jam so a global hackathon for game developers where we just go through a giant exploration of what is possible i mean you think about gaming i always said the early adopters of all technology and the old web one was porn and that was because they were they were agnostic of vendor pitches or whatever is it made money they've worked we don't tell them we've always been first we don't tolerate vaporware gaming is now the new area where it is so the audience doesn't want vapor they want it to work they want technology to be solid they want community so it's now the new arbiter so gaming is the pretext to metaverse clearly gaming is swallowing all of media and probably most of the world and this game mechanics under the hood and all kinds of underlying stuff now how does that shape the developer community so like take the classic software developer may not be a game developer how do they translate over you seeing crossover from the software developers that are out there to be game developers what's your take on that it's an interesting question because i come to a lot of these events and the entire web 3 movement is web developers it's in the name yeah right and we have a whole wave of exploration and nfts being sold of people who really love games they're they're players they're gamers and they're fans of games but they are not in the skill set of game development this is a whole discipline yeah it's a whole expertise right you have to understand ik retargeting rigging bone meshes and mapping of all of that stuff and environment building and rendering and all these things it's it's a stacked skill set and we haven't gone through any exploration yet with them that is the next cycle that we're going to and that's what i've spent the last three or four years preparing for yeah and getting the low code is going to be good i was saying earlier to the young gun we had on his name was um oscar belly he's argo versus he's 25 years old he's like he made a quote i'm too old to get into esports like 22 old 25 come on i'd love to be in esports i was commenting that there could be someone sitting next to us in the metaverse here on tv on our digital tv program in the future that's going to be possible the first party citizenship between physical experience absolutely and meta versus these cameras all are a layer in which you can blend the two yeah so that that's that's going to be coming sooner and it's really more of the innovation around these engines to make it look real and have someone actually moving their body not like a stick figure yes or a lego block this is where most people have overlooked because what you have is you have two worlds you have web 3 web developers who see this opportunity and are really going for it and then you have game developers who are resistant to it for the most part they have not acclimated to this but the game developers are more of the keys to it because they understand how to build worlds yeah they do they understand how to build they know what success looks like they know what success looks like if you if you talk about the metaverse with anyone the most you'll hear is ready player one yeah maybe snow crash but those things feel like games yeah right so the metaverse and gaming are so why are game developers um like holding back is because they're like ah it's too not ready yet i'm two more elite or is it more this is you know this is an episode on its own yeah um i'm actually a part of a documentary if you go to youtube and you say why gamers hate nfts there's a two-part documentary about an hour long that robin schmidt from the defiant did and it's really a very good deep dive into this but i think we're just in a moment in time right now if you remember henry ford when he he produced the car everybody wanted faster horses yeah they didn't understand the cultural shift that was happening they just wanted an incremental improvement right and you can't say that right now because it sounds arrogant but i do believe that this is a moment in time and i think once we get through this cultural shift it will be much more clear why it's important it's not pure speculation yeah it's not clout it's not purely money there's something happening that's important for humanity yeah and if we don't do it openly it will be more of a problem yeah i totally agree with you on that silent impact is number one and people some people just don't see it because it's around the corner visionaries do like yourselves we do my objective over the next say three to six months is to identify which game developers see the value in web 3 and are leaning into it because we've built technology that solves interoperability between engines mapping ownership from wallets all the sort of blueprints that are needed in order for a game developer to build this way we've developed that we just need to identify where are they right because the loudest voices are the ones that are pushing back against this yeah and if you're not on twitter you don't see how many people really see this opportunity and i talked to epic and unity and nvidia and they all agree that this is where the future is going but the one question mark is who wants it where are they you know it's interesting i talked to lauren besel earlier she's from the music background we were talking about open source and how music i found that is not open it's proprietary i was talking about when i was in college i used to deal software you'd be like what do you mean deal well at t source code was proprietary and that started the linux movement in the 80s that became a systems revolution and then open source then just started to accelerate now people like it's free software is like not a big deal everyone knows it's what it was never proprietary but we were fighting the big proprietary code bases you mentioned that earlier is there a proprietary thing for music well not really because it's licensed rights right so in the metaverse who's the proprietary is it the walled garden is the is it is it the gamers so is it the consoles is it the investment that these gaming companies have in the software itself so i find that that open source vibe is very much circulating around your world actually open maps in the word open but open source software has a trajectory you know foundations contributors community building same kind of mindset music not so much because no one's it's not direct comparable but i think here it's interesting the gaming culture could be that that proprietary ibm the the state the playstation the xbox you know if you dive into the modding community right the modding community has sort of been this like gray area of of gaming and they will modify games that already exist but they do it with the values of open source they do it with composability and there's been a few breakthroughs counter-strike is a mod right some of the largest games of all time came from mods of other games look at quake had a comeback i played first multiplayer doom when it came out in the 90s and that was all mod based exactly yeah quake and quake was better but you know i remember the first time on a 1.5 cable mode and playing with my friends remember vividly now the graphics weren't that good but that was mod it's mod so then you go i mean and then you go into these other subcultures like dungeons and dragons which was considered to be such a nerdy thing but it's just a deeply human thing it's a narrative building collective experience like these are all the bottom-up type approaches modding uh world building so you're going to connect so i'm just kind of thinking out loud here you're going to connect the open concept of source with open meta bring game developers and software drills together create a fabric of a baseline somewhat somewhat collected platform tooling and components and let it just sell form see what happens better self form that's your imposing composability is much faster yeah than a closed system and you got what are your current building blocks you have now you have the wallet and you have so we built an sdk on both unity and unreal okay as a part of a system that is a protocol that plugs into those two engines and we have an inventory service we have an avatar system we basically kind of leaned into this idea of a persona being the next step after a pfp so so folks that are out there girls and boys who are sitting there playing games they could build their own game on this thing absolutely this is the opportunity for them entrepreneurs to circumvent the system and go directly with open meta and build their own open environment like i said before i i like to own the things i built i've had that entrepreneurial lesson but i don't think in the future you should be so okay with other companies or other intermediaries owning you and what you build i think i mean opportunity to build value yeah and i think i think your point the mod culture is not so much going to be the answer it's what that was like the the the the dynamic of modding yes is developing yes and then therefore you get the benefit of sovereign identity yeah you get the benefit of unbanking that's not the way we market this but those are benefits that come along with it and it allows you to live a different life and may the better product win yeah i mean that's what you're enabling yeah ryan thanks so much for coming on real final question what's going on here why are we here in monaco what's going on this is the inaugural event presented by digital bits why are we here monaco crypto summit i'm here uh some friends of mine brittany kaiser and and lauren bissell invited me here yeah i've known al for for a number of years and i'm just here to support awesome congratulations and uh we'll keep in touch we'll follow up on the open meta great story we love it thanks for coming on okay cube coverage continues here live in monaco i'm john furrier and all the action here on the monaco crypto summit love the dame come back next year it'll be great back with more coverage to wrap up here on the ground then the yacht club event we're going to go right there as well that's in a few hours so we're going to be right back [Music] you
SUMMARY :
the nfts now the meta verses you know at
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ryan Gill | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
2004 | DATE | 0.99+ |
amazon | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
brittany kaiser | PERSON | 0.99+ |
apple | ORGANIZATION | 0.99+ |
25 | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
lauren besel | PERSON | 0.99+ |
john furrier | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
two engines | QUANTITY | 0.99+ |
two-part | QUANTITY | 0.99+ |
ryan | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
both | QUANTITY | 0.99+ |
first act | QUANTITY | 0.99+ |
lauren bissell | PERSON | 0.99+ |
uk | LOCATION | 0.98+ |
billions of people | QUANTITY | 0.98+ |
2008 | DATE | 0.98+ |
six months | QUANTITY | 0.98+ |
evan williams | PERSON | 0.98+ |
first time | QUANTITY | 0.98+ |
xbox | COMMERCIAL_ITEM | 0.98+ |
switzerland | LOCATION | 0.98+ |
jack dorsey | PERSON | 0.97+ |
next year | DATE | 0.97+ |
nine interviews | QUANTITY | 0.97+ |
ORGANIZATION | 0.96+ | |
openmeta | ORGANIZATION | 0.96+ |
playstation | COMMERCIAL_ITEM | 0.96+ |
ryan gills | PERSON | 0.95+ |
ORGANIZATION | 0.95+ | |
hours | QUANTITY | 0.95+ |
this month later | DATE | 0.95+ |
one | QUANTITY | 0.94+ |
third act | QUANTITY | 0.94+ |
one question | QUANTITY | 0.94+ |
Monaco Crypto Summit 2022 | EVENT | 0.94+ |
nvidia | ORGANIZATION | 0.94+ |
monaco | EVENT | 0.94+ |
youtube | ORGANIZATION | 0.94+ |
ORGANIZATION | 0.93+ | |
earth | LOCATION | 0.93+ |
first | QUANTITY | 0.93+ |
henry ford | PERSON | 0.92+ |
four years | QUANTITY | 0.92+ |
zuckerberg | ORGANIZATION | 0.91+ |
25 years old | QUANTITY | 0.91+ |
first party | QUANTITY | 0.89+ |
new york | LOCATION | 0.89+ |
robin schmidt | PERSON | 0.89+ |
80s | DATE | 0.87+ |
90s | DATE | 0.83+ |
epic | ORGANIZATION | 0.82+ |
both unity | QUANTITY | 0.82+ |
oscar belly | PERSON | 0.81+ |
an hour long | QUANTITY | 0.81+ |
two worlds | QUANTITY | 0.79+ |
three acts | QUANTITY | 0.77+ |
1.5 | QUANTITY | 0.76+ |
summit | EVENT | 0.75+ |
six months before | DATE | 0.75+ |
number one | QUANTITY | 0.75+ |
quake | TITLE | 0.75+ |
first multiplayer | QUANTITY | 0.73+ |
a number of years | QUANTITY | 0.73+ |
every single company | QUANTITY | 0.73+ |
22 old | QUANTITY | 0.71+ |
monaco crypto summit | EVENT | 0.68+ |
next | EVENT | 0.67+ |
player one | QUANTITY | 0.65+ |
tons | QUANTITY | 0.64+ |
things | QUANTITY | 0.63+ |
a couple years | QUANTITY | 0.63+ |
about | QUANTITY | 0.62+ |
Video Exclusive: Sales Impact Academy Secures $22M In New Funding
(upbeat music) >> Every company needs great salespeople, it's one of the most lucrative professions out there. And there's plenty of wisdom and knowledge that's been gathered over the years about selling. We've heard it all, famous quotes from the greatest salespeople of our time, like Zig Ziglar and Jeffrey Gitomer, and Dale Carnegie and Jack Welch, and many others. Things like, "Each of us has only 24 hours in a day, "it's all about how we use our time." And, "You don't have to be great to start, "but you have to start to be great." And then I love this one, "People hate to be sold, but they love to buy." "There are no traffic jams on the extra mile, "make change before you have to." And the all time classic, "Put that coffee down. "Coffee is for closers." Thousands of pieces of sales advice are readily available in books, videos, on blogs and in podcasts, and many of these are free of charge. So why would entrepreneurs start a company to train salespeople? And how is it that sharp investors are pouring millions of dollars into this space? Hello everyone, and welcome to this Cube Video Exclusive, my name is Dave Vellante, and today we welcome Paul Fifield who's the co-founder and CEO of Sales Impact Academy who's going to answer these questions and share some exciting news on the startups. Paul, welcome to "The Cube" good to see you again. >> Yeah, good to see you again, Dave, great to be here. >> Hey, so before we get into the hard news, tell us a little bit about the Sales Impact Academy, why'd you start the company, maybe some of the fundamentals of this market, your total available market, who you're targeting, you know, what's the premise behind the company? >> Yeah sure. So I mean, I started the company, it was actually pretty organic in the way it began. I had a 10 year career as a CRO and it was, you know, had a couple of great hits with two companies, but it was a real struggle to basically, you know, operate as a CRO and learn your craft at the same time. And so when I left my last company, I kind of got out there, I wanted to kind of give back a little bit and I started doing some voluntary teaching in and around London, and I actually, one of the companies I started was in New York so I got schooled very much on a sort of US approach to how you build a modern you know, go to market and sales operation. Started going out there, doing some teaching, realized that so many people just didn't have a clue about how to build a scalable and predictable revenue function, and I kind of felt sorry for them. So I literally started doing some, you know, online classes myself, got my co-founder Alex to put curriculum together as well and we literally started just doing online classes, very live, very organic, just a Google Drive and some decks, and it really just blew up from there. >> That's amazing. I mean, so you've my, you know, tongue and cheek up front, but people might wonder, why do you need a platform 'cause there's so much free information out there? Is it to organize, is it a discipline thing? Explain that. >> Well, I think the way I sort of see this is that is that the lack of structured learning and education is actually one of the greatest educational travesties, I think, of the last 50 years, okay. Now sales and go to market is a huge global profession, right? Half the world's companies are B2B, so roughly that's a proxy for half the world's GDP, right? Which is $40 trillion of GDP. Now that 40 trillion rests on kind of the success of the growth and the sales functions of all those companies. Yet in its infinite wisdom, the global education system literally just ignored sales and go to market as a profession. Some universities are kind of catching up, but it's really too little too late. So what I sort of say to people, you imagine this Dave, right. You imagine if the way that law worked as a profession let's say, is that there's no law school, there's no law training, there's no even in work professional continuous professional development in law. The way that it works is you leave university, join a company, start practicing law and just use like YouTube just to maybe like, you know, where you're struggling, just use YouTube to like work out what's going on. The legal profession would be in absolute chaos. And that's what's happened in the sales and go to market profession, okay. What this profession desperately desperately needs is structured learning, good pedagogy, good well designed course and curriculum. And here's the other thing, right? Is the sort of paradox of infinite information is that just because all the information is out there, right, doesn't mean it's actually a good learning experience. Like, where do you find it? What's good? What's not good? And also the other thing I'd point out is that there is this kind of myth that all the information is out there on the internet. But actually what we do, and we'll come into it in a second is, the people teaching on our platform are the elite people from the industry. They haven't got time to do blog posts and just explain to people how they operate. They're going from company to company working at like, you know, working at these kind of elite companies. And they're the people that teach, and that information is not readily available and freely out there on the internet. >> Yeah, real opportunity, you made some great points there. I think business schools are finally starting to teach a little bit about public speaking and presenting, but nobody's teaching us how to sell. As Earl Nightingale says, "To some degree we're all salespeople, "selling our family on living the good life" or whatever. What movie we want to see tonight. But okay, let's get to the hard news. You got fresh funding of 22 million, tell us about that, congratulations. You know, the investors, what else can you share with us? >> Sure. Well, I mean, obviously, you know, immensely proud. We started from very sort of humble beginnings, as I said, we've now scaled very rapidly, we're a subscription business, we're a SaaS business. We'll come onto some of the growth metrics shortly, but just in a couple of years, you know, the last year which ended January, we grew 500% from year one, we're now well over 125 people, and I'm very, very, very honored, flattered, humbled that MIT, obviously one of those prestigious universities in the world, has taken a direct investment by their endowment fund, HubSpot Ventures. Another Boston great has also taken a direct investment as well. They actually began as a customer and loved what we were doing so much that they then decided to make an investment. Stage 2 Capital who invested in our seed round pretty much tripled down, played a huge role in helping us assemble MIT and HubSpot ventures as investors, and they continue to be an incredible VC giving us amazing, amazing support that their LP network of go to market leaders is second to none. And then Emerge Education, who is our pre-seed investor, they're actually based in London, also joined this round as well. >> Great, well actually, let's jump ahead. Let's talk about the metrics. I mean, if Stage Two is involved, they're hardcore. What can you share with us about, you know, everybody's chasing AR and NR and the like, what can you share with us? >> They are both pretty important. Well, I think from a headcount perspective, so as I mentioned our fiscal ends at the end of January, each year. We've gone from 25 to over 125 employees in that time. We've gone from 82 to 260 customers also in that time. And customers now include HubSpot, Gong, Klaviyo, GitHub, GT, Six Cents, so some really sort of major SaaS companies in the space. Our revenue's grown significantly with 5X. So 500% increase in revenue year over year, which is pretty fast, very proud of that. Our learning community has gone from over 3000 people to almost 15,000 professionals, and that makes us comfortably, the largest go to market learning community in the world. >> How did you decide when to scale? What were the sort of signals that said to you, "Okay, we're ready, "we have product market fit, "we can now scale the go to market." What were the signals there, Paul? >> Yeah. Well, I mean, I think for a very small team to achieve that level of growth in customers, to be kind of honest with you, like it's the pull that we're getting from the market. And I think the thing that has surprised me the most, perhaps in the last 12 months, is the pull we're getting from the enterprise. We're you know, I can't really announce, we've actually got a huge pilot with one of the largest companies actually in the world which is going fantastically well, our pipeline for enterprise customers is absolutely huge. But as you can imagine, if you've got distributed teams all over the world, we're living and working in this kind of hybrid world, how on earth do you kind of upscale all those people, right, that are, like I say, that are so distributed. It's impossible. Like in work, in the office delivery of training is pretty much dead, right? And so we sort of fill this really big pain, we solved this really, really big pain of how to effectively upskill people through this kind of live curriculum and this live teaching approach that we have. So I think for me, it's the pull that we're getting from the market really meant that you know, we have to double down. There is such a massive TAM, it is absolutely ridiculous. I mean, I think there are 20 million people just in sales and go to market in tech alone, right. And I mentioned to you earlier, half the world's companies effectively, you know, are B2B and therefore represent, you know, at its largest scope, our TAM. >> Excellent, thank you for that. Tell us more about the product and the platform. How's it work if I'm a customer, what type of investment do I have to make both financially? And what's my time commitment? How do you structure that? >> So the model is basically on a seat model. So roughly speaking, every seat's about a thousand dollars per year per rep. The lift is light. So we've got a very low onboarding, it's not a highly complex technical product, right? We've got a vast curriculum of learning that covers learning for, you know, SDRs, and the AEs, and CS reps, and leadership management training. We're developing curriculum for technical pre-sales, we're developing curriculum for revenue operations. And so it's very, very simple. We basically, it's a seat model, people literally just send us the seats and the details, we get people up and running in the platform, they start then enrolling and we have a customer success team that then plots out learning journeys and learning pathways for all of our customers. And actually what's starting to happen now, which is very, very exciting is that, you know, we're actually a key part of people's career development pathway. So to go from you know, SDR1 let's say to SDR2, you have to complete these three courses with Sales Impact Academy, and let's say, get 75% in your exam and it becomes a very powerful and simple way of developing career pathway. >> Yeah, so really detailed curriculum. So I was going to say, do I as a sales professional, do I pick and choose the things that are most relevant for me? Or are people actually going through a journey in career progression, or maybe both? >> Yeah, it's a mixture of both. We tend to see now, we're sort of starting to standardize, but really we're developing enough curriculum that over, let's say a 15 year period, you could start with us as an SDR and then end as a chief revenue officer, you know, running the entire function. This is the other thing about the crazy world of go to market. Very often, people are put into roles and it's sink or swim. There's no real learning that happens, there's no real development that happens before people take these big steps. And what this platform does so beautifully is is it equips people with the right skills and knowledge before they take that next step in their profession and in their career. And it just dramatically improves their chances of succeeding. >> Who are the trainers? Who's leading the classes, how do you find these guys, how do you structure? What are the content, you know, vectors, where's all that come from? >> Yeah. So the sort of secret source of what we do, beyond just the live instruction, beyond the significant amount of peer to peer learning that goes on, is that we go and source the absolute most elite people in go to market to teach, okay. Now I mentioned to you before, you've got these people that are going from like job to job at the very like the sort of peak of their careers, working for these incredible companies, it's that knowledge that we want to get access to, right. And so Stage 2 Capital is an incredible resource. The interesting thing about Stage 2 Capital as you know Dave, you know, run by Mark Roberge, who was on when we spoke last year and also Jay Po is all the LPs of Stage 2 Capital represent 3 to 400 of the most elite go to market professionals in the world. So, you know, about seven or eight of those are now on an advisory board. And so we have access to this incredible pool of talent. And so we know by consulting these amazing people who are the best people in certain aspects of go to market. We reach out to them and very often they're at a stage in their career where they're really kind of willing to give back, of course there are commercials around it as well, and there's lots of other benefits that we provide our teachers and our faculty, and what we call our coaches. But yeah, we source the very, very best people in the world to teach. >> Now, how does it work as a user of your service? Is it all on demand? Do you do live content or a combination? >> Yeah look, one of the big differentiators is this is a live delivery of learning, okay. Most learning online is typically done on demand, self-directed, and there's a ton of research. There's a great blog post on Andrew's recent site. A short time ago, which is talking about how the completion rates of on demand learning are somewhere between 3 and 6%. That is like, that's awful. >> Terrible. >> I was like why bother? However, we're seeing through that live instruction. So we teach two, one hour classes a week, that's it. We're upskilling very busy people, they're stressed, they've got targets. We have to be very, very cognizant of that. So we teach two, one hour classes a week. Typically, you know, Monday and a Wednesday, or a Tuesday and a Thursday. And that pace of learning is about right, it's kind of how humans learn as well. You know, short bursts of information, and then put that learning and those skills that you've acquired in class literally to work minutes after the class finishes. And so through that, and it sits in your calendar like a meeting, it doesn't feel overwhelming, you're learning together as a team as well. And all that combined, we see completion rates often in excess of 80% for our courses. >> Okay, so they block that time out- >> In the calendar, yeah. >> And they make an investment. Go ahead, please. >> Yeah yeah, exactly, sorry Dave. Yeah, yeah, exactly. So like, you know, we have course lengths. So one of our shorter courses are like four hours long over two weeks. And again, it's just literally in the calendar. We also teach what we call The Magic Learning Hour. And the magic learning hour is this one specific hour in the day that enables teams all over the western hemisphere to join the same class. And that magic learning hour is eight o'clock Pacific 11 o'clock Eastern, >> 4: 00 PM over in the UK, and 5:00 PM in the rest of Europe. And that one time in the day means that these enterprises have got teams all over the western hemisphere joining that class, learning together as a team, plus it's in the calendar and it's that approach is why we're seeing such high engagement and completion. >> That's very cool, the time zone thing. Now who's the target buyer? Are you selling only to sales teams? Can I as an individual purchase your service? >> Yeah, that's a good question. Currently it's a very much like a B2B motion. As I mentioned earlier on, we're getting an enormous pull from the enterprise, which is very exciting. You know, we have an enterprise segment, we have sort of more of a startup earlier stage segment, and then we have a mid-market segment that we call our sort of strategic, and that's typically and most of like venture backed, fast growth tech companies. So very much at the moment a B2B motion. We're launching our own technology platform in the early summer, and then later on this year we're going to be adding what's called PLG or a product led growth, so individuals can actually sign up to SIA. >> Yeah, I mean, I think you said $1,000 per year per rep, is that right? I mean, that's- >> Yeah. >> That's a small investment for an individual that wants to be part of, you know, this community and grow his or her career. So that's the growth plan? You go down market I would imagine, you talked about the western hemisphere, there's international opportunities maybe, local language. What's the growth plan? >> Yeah, I mean look, we've identified the magic learning hour for the middle east and APAC, which is eight o'clock in the morning in Istanbul, right. Is 5:00 PM in Auckland, it's quite fun trying to work out like what this optimum magic learning hour is. What's incredible is we teach in that time and that opens up the whole of the middle east and the whole of APAC, right, right down to Australia. And so once we're teaching the curriculum in those two slots, that means literally you can have teams in any country in the world, I think apart from Hawaii, you can actually access our live learning products in work time and that's incredibly powerful. So we have so many like axis of growth, we've got single users as I mentioned, but really Dave that's single users we'll be winning from the enterprise and that will represent pipeline that we could then potentially convert as well. And look, you make a very good point. You know, we've seen students are now leaving university with over $100,000 dollars in debt. We've got a massive, massive debt problem here in the US with student debt. You could absolutely sign up to our platform at let's say a hundred bucks a month, right. And probably within six months, gain enough knowledge and skill to walk into a $60,000 a year based salary job as an SDR, that's a huge entry level salary. And you could do that without even going to university. So there could be a time here where we become a really viable alternative to actually even going to university. >> I love it. The cost education going through the roof, it's out of reach for so many people. Paul, congratulations on the progress, the fresh funding. Great to have you back in "The Cube." We'd love to have you back and follow your ascendancy. I think great things ahead for you guys. >> Thank you very much, Dave. >> All right, and thank you for watching. This is Dave Vellante for "The Cube, we'll see you next time. (upbeat music)
SUMMARY :
And the all time classic, Yeah, good to see you again, Dave, and it was, you know, had Is it to organize, is in the sales and go to You know, the investors, but just in a couple of years, you know, AR and NR and the like, community in the world. "we can now scale the go to market." And I mentioned to you earlier, product and the platform. So to go from you know, the things that are most relevant for me? This is the other thing about Now I mentioned to you before, how the completion rates minutes after the class finishes. And they make an investment. And the magic learning hour and 5:00 PM in the rest of Europe. Are you selling only to sales teams? in the early summer, So that's the growth plan? and the whole of APAC, right, We'd love to have you back All right, and thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Paul Fifield | PERSON | 0.99+ |
Mark Roberge | PERSON | 0.99+ |
Paul | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
HubSpot | ORGANIZATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
Andrew | PERSON | 0.99+ |
Jeffrey Gitomer | PERSON | 0.99+ |
$1,000 | QUANTITY | 0.99+ |
London | LOCATION | 0.99+ |
500% | QUANTITY | 0.99+ |
Australia | LOCATION | 0.99+ |
Sales Impact Academy | ORGANIZATION | 0.99+ |
Istanbul | LOCATION | 0.99+ |
22 million | QUANTITY | 0.99+ |
New York | LOCATION | 0.99+ |
UK | LOCATION | 0.99+ |
Dave | PERSON | 0.99+ |
5:00 PM | DATE | 0.99+ |
10 year | QUANTITY | 0.99+ |
HubSpot Ventures | ORGANIZATION | 0.99+ |
40 trillion | QUANTITY | 0.99+ |
Jack Welch | PERSON | 0.99+ |
$40 trillion | QUANTITY | 0.99+ |
75% | QUANTITY | 0.99+ |
15 year | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Zig Ziglar | PERSON | 0.99+ |
Earl Nightingale | PERSON | 0.99+ |
82 | QUANTITY | 0.99+ |
Emerge Education | ORGANIZATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
Auckland | LOCATION | 0.99+ |
two slots | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
4: 00 PM | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
eight o'clock | DATE | 0.99+ |
$22M | QUANTITY | 0.99+ |
four hours | QUANTITY | 0.99+ |
Jay Po | PERSON | 0.99+ |
one time | QUANTITY | 0.99+ |
millions of dollars | QUANTITY | 0.99+ |
260 customers | QUANTITY | 0.99+ |
20 million people | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Hawaii | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
over 3000 people | QUANTITY | 0.99+ |
Alex | PERSON | 0.99+ |
Stage 2 Capital | ORGANIZATION | 0.99+ |
400 | QUANTITY | 0.99+ |
Each | QUANTITY | 0.99+ |
6% | QUANTITY | 0.98+ |
3 | QUANTITY | 0.98+ |
end of January | DATE | 0.98+ |
eight | QUANTITY | 0.98+ |
six months | QUANTITY | 0.98+ |
Monday | DATE | 0.98+ |
TAM | ORGANIZATION | 0.98+ |
Dale Carnegie | PERSON | 0.98+ |
tonight | DATE | 0.98+ |
Thousands of pieces | QUANTITY | 0.98+ |
one specific hour | QUANTITY | 0.98+ |
each year | QUANTITY | 0.98+ |
GitHub | ORGANIZATION | 0.97+ |
YouTube | ORGANIZATION | 0.97+ |
almost 15,000 professionals | QUANTITY | 0.97+ |
second | QUANTITY | 0.97+ |
over two weeks | QUANTITY | 0.97+ |
SDR1 | TITLE | 0.97+ |
5X | QUANTITY | 0.96+ |