Breaking Analysis: Databricks faces critical strategic decisions…here’s why
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.
SUMMARY :
bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Mike Olson | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Erik Bradley | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Sun Microsystems | ORGANIZATION | 0.99+ |
50 years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
60 years | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
Databricks' | ORGANIZATION | 0.99+ |
two places | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
M&A | ORGANIZATION | 0.99+ |
Frank Quattrone | PERSON | 0.99+ |
second element | QUANTITY | 0.99+ |
Daren Brabham | PERSON | 0.99+ |
TechAlpha Partners | ORGANIZATION | 0.99+ |
third element | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
50 year | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Closing Panel | Generative AI: Riding the Wave | AWS Startup Showcase S3 E1
(mellow music) >> Hello everyone, welcome to theCUBE's coverage of AWS Startup Showcase. This is the closing panel session on AI machine learning, the top startups generating generative AI on AWS. It's a great panel. This is going to be the experts talking about riding the wave in generative AI. We got Ankur Mehrotra, who's the director and general manager of AI and machine learning at AWS, and Clem Delangue, co-founder and CEO of Hugging Face, and Ori Goshen, who's the co-founder and CEO of AI21 Labs. Ori from Tel Aviv dialing in, and rest coming in here on theCUBE. Appreciate you coming on for this closing session for the Startup Showcase. >> Thanks for having us. >> Thank you for having us. >> Thank you. >> I'm super excited to have you all on. Hugging Face was recently in the news with the AWS relationship, so congratulations. Open source, open science, really driving the machine learning. And we got the AI21 Labs access to the LLMs, generating huge scale live applications, commercial applications, coming to the market, all powered by AWS. So everyone, congratulations on all your success, and thank you for headlining this panel. Let's get right into it. AWS is powering this wave here. We're seeing a lot of push here from applications. Ankur, set the table for us on the AI machine learning. It's not new, it's been goin' on for a while. Past three years have been significant advancements, but there's been a lot of work done in AI machine learning. Now it's released to the public. Everybody's super excited and now says, "Oh, the future's here!" It's kind of been going on for a while and baking. Now it's kind of coming out. What's your view here? Let's get it started. >> Yes, thank you. So, yeah, as you may be aware, Amazon has been in investing in machine learning research and development since quite some time now. And we've used machine learning to innovate and improve user experiences across different Amazon products, whether it's Alexa or Amazon.com. But we've also brought in our expertise to extend what we are doing in the space and add more generative AI technology to our AWS products and services, starting with CodeWhisperer, which is an AWS service that we announced a few months ago, which is, you can think of it as a coding companion as a service, which uses generative AI models underneath. And so this is a service that customers who have no machine learning expertise can just use. And we also are talking to customers, and we see a lot of excitement about generative AI, and customers who want to build these models themselves, who have the talent and the expertise and resources. For them, AWS has a number of different options and capabilities they can leverage, such as our custom silicon, such as Trainium and Inferentia, as well as distributed machine learning capabilities that we offer as part of SageMaker, which is an end-to-end machine learning development service. At the same time, many of our customers tell us that they're interested in not training and building these generative AI models from scratch, given they can be expensive and can require specialized talent and skills to build. And so for those customers, we are also making it super easy to bring in existing generative AI models into their machine learning development environment within SageMaker for them to use. So we recently announced our partnership with Hugging Face, where we are making it super easy for customers to bring in those models into their SageMaker development environment for fine tuning and deployment. And then we are also partnering with other proprietary model providers such as AI21 and others, where we making these generative AI models available within SageMaker for our customers to use. So our approach here is to really provide customers options and choices and help them accelerate their generative AI journey. >> Ankur, thank you for setting the table there. Clem and Ori, I want to get your take, because the riding the waves, the theme of this session, and to me being in California, I imagine the big surf, the big waves, the big talent out there. This is like alpha geeks, alpha coders, developers are really leaning into this. You're seeing massive uptake from the smartest people. Whether they're young or around, they're coming in with their kind of surfboards, (chuckles) if you will. These early adopters, they've been on this for a while; Now the waves are hitting. This is a big wave, everyone sees it. What are some of those early adopter devs doing? What are some of the use cases you're seeing right out of the gate? And what does this mean for the folks that are going to come in and get on this wave? Can you guys share your perspective on this? Because you're seeing the best talent now leaning into this. >> Yeah, absolutely. I mean, from Hugging Face vantage points, it's not even a a wave, it's a tidal wave, or maybe even the tide itself. Because actually what we are seeing is that AI and machine learning is not something that you add to your products. It's very much a new paradigm to do all technology. It's this idea that we had in the past 15, 20 years, one way to build software and to build technology, which was writing a million lines of code, very rule-based, and then you get your product. Now what we are seeing is that every single product, every single feature, every single company is starting to adopt AI to build the next generation of technology. And that works both to make the existing use cases better, if you think of search, if you think of social network, if you think of SaaS, but also it's creating completely new capabilities that weren't possible with the previous paradigm. Now AI can generate text, it can generate image, it can describe your image, it can do so many new things that weren't possible before. >> It's going to really make the developers really productive, right? I mean, you're seeing the developer uptake strong, right? >> Yes, we have over 15,000 companies using Hugging Face now, and it keeps accelerating. I really think that maybe in like three, five years, there's not going to be any company not using AI. It's going to be really kind of the default to build all technology. >> Ori, weigh in on this. APIs, the cloud. Now I'm a developer, I want to have live applications, I want the commercial applications on this. What's your take? Weigh in here. >> Yeah, first, I absolutely agree. I mean, we're in the midst of a technology shift here. I think not a lot of people realize how big this is going to be. Just the number of possibilities is endless, and I think hard to imagine. And I don't think it's just the use cases. I think we can think of it as two separate categories. We'll see companies and products enhancing their offerings with these new AI capabilities, but we'll also see new companies that are AI first, that kind of reimagine certain experiences. They build something that wasn't possible before. And that's why I think it's actually extremely exciting times. And maybe more philosophically, I think now these large language models and large transformer based models are helping us people to express our thoughts and kind of making the bridge from our thinking to a creative digital asset in a speed we've never imagined before. I can write something down and get a piece of text, or an image, or a code. So I'll start by saying it's hard to imagine all the possibilities right now, but it's certainly big. And if I had to bet, I would say it's probably at least as big as the mobile revolution we've seen in the last 20 years. >> Yeah, this is the biggest. I mean, it's been compared to the Enlightenment Age. I saw the Wall Street Journal had a recent story on this. We've been saying that this is probably going to be bigger than all inflection points combined in the tech industry, given what transformation is coming. I guess I want to ask you guys, on the early adopters, we've been hearing on these interviews and throughout the industry that there's already a set of big companies, a set of companies out there that have a lot of data and they're already there, they're kind of tinkering. Kind of reminds me of the old hyper scaler days where they were building their own scale, and they're eatin' glass, spittin' nails out, you know, they're hardcore. Then you got everybody else kind of saying board level, "Hey team, how do I leverage this?" How do you see those two things coming together? You got the fast followers coming in behind the early adopters. What's it like for the second wave coming in? What are those conversations for those developers like? >> I mean, I think for me, the important switch for companies is to change their mindset from being kind of like a traditional software company to being an AI or machine learning company. And that means investing, hiring machine learning engineers, machine learning scientists, infrastructure in members who are working on how to put these models in production, team members who are able to optimize models, specialized models, customized models for the company's specific use cases. So it's really changing this mindset of how you build technology and optimize your company building around that. Things are moving so fast that I think now it's kind of like too late for low hanging fruits or small, small adjustments. I think it's important to realize that if you want to be good at that, and if you really want to surf this wave, you need massive investments. If there are like some surfers listening with this analogy of the wave, right, when there are waves, it's not enough just to stand and make a little bit of adjustments. You need to position yourself aggressively, paddle like crazy, and that's how you get into the waves. So that's what companies, in my opinion, need to do right now. >> Ori, what's your take on the generative models out there? We hear a lot about foundation models. What's your experience running end-to-end applications for large foundation models? Any insights you can share with the app developers out there who are looking to get in? >> Yeah, I think first of all, it's start create an economy, where it probably doesn't make sense for every company to create their own foundation models. You can basically start by using an existing foundation model, either open source or a proprietary one, and start deploying it for your needs. And then comes the second round when you are starting the optimization process. You bootstrap, whether it's a demo, or a small feature, or introducing new capability within your product, and then start collecting data. That data, and particularly the human feedback data, helps you to constantly improve the model, so you create this data flywheel. And I think we're now entering an era where customers have a lot of different choice of how they want to start their generative AI endeavor. And it's a good thing that there's a variety of choices. And the really amazing thing here is that every industry, any company you speak with, it could be something very traditional like industrial or financial, medical, really any company. I think peoples now start to imagine what are the possibilities, and seriously think what's their strategy for adopting this generative AI technology. And I think in that sense, the foundation model actually enabled this to become scalable. So the barrier to entry became lower; Now the adoption could actually accelerate. >> There's a lot of integration aspects here in this new wave that's a little bit different. Before it was like very monolithic, hardcore, very brittle. A lot more integration, you see a lot more data coming together. I have to ask you guys, as developers come in and grow, I mean, when I went to college and you were a software engineer, I mean, I got a degree in computer science, and software engineering, that's all you did was code, (chuckles) you coded. Now, isn't it like everyone's a machine learning engineer at this point? Because that will be ultimately the science. So, (chuckles) you got open source, you got open software, you got the communities. Swami called you guys the GitHub of machine learning, Hugging Face is the GitHub of machine learning, mainly because that's where people are going to code. So this is essentially, machine learning is computer science. What's your reaction to that? >> Yes, my co-founder Julien at Hugging Face have been having this thing for quite a while now, for over three years, which was saying that actually software engineering as we know it today is a subset of machine learning, instead of the other way around. People would call us crazy a few years ago when we're seeing that. But now we are realizing that you can actually code with machine learning. So machine learning is generating code. And we are starting to see that every software engineer can leverage machine learning through open models, through APIs, through different technology stack. So yeah, it's not crazy anymore to think that maybe in a few years, there's going to be more people doing AI and machine learning. However you call it, right? Maybe you'll still call them software engineers, maybe you'll call them machine learning engineers. But there might be more of these people in a couple of years than there is software engineers today. >> I bring this up as more tongue in cheek as well, because Ankur, infrastructure's co is what made Cloud great, right? That's kind of the DevOps movement. But here the shift is so massive, there will be a game-changing philosophy around coding. Machine learning as code, you're starting to see CodeWhisperer, you guys have had coding companions for a while on AWS. So this is a paradigm shift. How is the cloud playing into this for you guys? Because to me, I've been riffing on some interviews where it's like, okay, you got the cloud going next level. This is an example of that, where there is a DevOps-like moment happening with machine learning, whether you call it coding or whatever. It's writing code on its own. Can you guys comment on what this means on top of the cloud? What comes out of the scale? What comes out of the benefit here? >> Absolutely, so- >> Well first- >> Oh, go ahead. >> Yeah, so I think as far as scale is concerned, I think customers are really relying on cloud to make sure that the applications that they build can scale along with the needs of their business. But there's another aspect to it, which is that until a few years ago, John, what we saw was that machine learning was a data scientist heavy activity. They were data scientists who were taking the data and training models. And then as machine learning found its way more and more into production and actual usage, we saw the MLOps become a thing, and MLOps engineers become more involved into the process. And then we now are seeing, as machine learning is being used to solve more business critical problems, we're seeing even legal and compliance teams get involved. We are seeing business stakeholders more engaged. So, more and more machine learning is becoming an activity that's not just performed by data scientists, but is performed by a team and a group of people with different skills. And for them, we as AWS are focused on providing the best tools and services for these different personas to be able to do their job and really complete that end-to-end machine learning story. So that's where, whether it's tools related to MLOps or even for folks who cannot code or don't know any machine learning. For example, we launched SageMaker Canvas as a tool last year, which is a UI-based tool which data analysts and business analysts can use to build machine learning models. So overall, the spectrum in terms of persona and who can get involved in the machine learning process is expanding, and the cloud is playing a big role in that process. >> Ori, Clem, can you guys weigh in too? 'Cause this is just another abstraction layer of scale. What's it mean for you guys as you look forward to your customers and the use cases that you're enabling? >> Yes, I think what's important is that the AI companies and providers and the cloud kind of work together. That's how you make a seamless experience and you actually reduce the barrier to entry for this technology. So that's what we've been super happy to do with AWS for the past few years. We actually announced not too long ago that we are doubling down on our partnership with AWS. We're excited to have many, many customers on our shared product, the Hugging Face deep learning container on SageMaker. And we are working really closely with the Inferentia team and the Trainium team to release some more exciting stuff in the coming weeks and coming months. So I think when you have an ecosystem and a system where the AWS and the AI providers, AI startups can work hand in hand, it's to the benefit of the customers and the companies, because it makes it orders of magnitude easier for them to adopt this new paradigm to build technology AI. >> Ori, this is a scale on reasoning too. The data's out there and making sense out of it, making it reason, getting comprehension, having it make decisions is next, isn't it? And you need scale for that. >> Yes. Just a comment about the infrastructure side. So I think really the purpose is to streamline and make these technologies much more accessible. And I think we'll see, I predict that we'll see in the next few years more and more tooling that make this technology much more simple to consume. And I think it plays a very important role. There's so many aspects, like the monitoring the models and their kind of outputs they produce, and kind of containing and running them in a production environment. There's so much there to build on, the infrastructure side will play a very significant role. >> All right, that's awesome stuff. I'd love to change gears a little bit and get a little philosophy here around AI and how it's going to transform, if you guys don't mind. There's been a lot of conversations around, on theCUBE here as well as in some industry areas, where it's like, okay, all the heavy lifting is automated away with machine learning and AI, the complexity, there's some efficiencies, it's horizontal and scalable across all industries. Ankur, good point there. Everyone's going to use it for something. And a lot of stuff gets brought to the table with large language models and other things. But the key ingredient will be proprietary data or human input, or some sort of AI whisperer kind of role, or prompt engineering, people are saying. So with that being said, some are saying it's automating intelligence. And that creativity will be unleashed from this. If the heavy lifting goes away and AI can fill the void, that shifts the value to the intellect or the input. And so that means data's got to come together, interact, fuse, and understand each other. This is kind of new. I mean, old school AI was, okay, got a big model, I provisioned it long time, very expensive. Now it's all free flowing. Can you guys comment on where you see this going with this freeform, data flowing everywhere, heavy lifting, and then specialization? >> Yeah, I think- >> Go ahead. >> Yeah, I think, so what we are seeing with these large language models or generative models is that they're really good at creating stuff. But I think it's also important to recognize their limitations. They're not as good at reasoning and logic. And I think now we're seeing great enthusiasm, I think, which is justified. And the next phase would be how to make these systems more reliable. How to inject more reasoning capabilities into these models, or augment with other mechanisms that actually perform more reasoning so we can achieve more reliable results. And we can count on these models to perform for critical tasks, whether it's medical tasks, legal tasks. We really want to kind of offload a lot of the intelligence to these systems. And then we'll have to get back, we'll have to make sure these are reliable, we'll have to make sure we get some sort of explainability that we can understand the process behind the generated results that we received. So I think this is kind of the next phase of systems that are based on these generated models. >> Clem, what's your view on this? Obviously you're at open community, open source has been around, it's been a great track record, proven model. I'm assuming creativity's going to come out of the woodwork, and if we can automate open source contribution, and relationships, and onboarding more developers, there's going to be unleashing of creativity. >> Yes, it's been so exciting on the open source front. We all know Bert, Bloom, GPT-J, T5, Stable Diffusion, that work up. The previous or the current generation of open source models that are on Hugging Face. It has been accelerating in the past few months. So I'm super excited about ControlNet right now that is really having a lot of impact, which is kind of like a way to control the generation of images. Super excited about Flan UL2, which is like a new model that has been recently released and is open source. So yeah, it's really fun to see the ecosystem coming together. Open source has been the basis for traditional software, with like open source programming languages, of course, but also all the great open source that we've gotten over the years. So we're happy to see that the same thing is happening for machine learning and AI, and hopefully can help a lot of companies reduce a little bit the barrier to entry. So yeah, it's going to be exciting to see how it evolves in the next few years in that respect. >> I think the developer productivity angle that's been talked about a lot in the industry will be accelerated significantly. I think security will be enhanced by this. I think in general, applications are going to transform at a radical rate, accelerated, incredible rate. So I think it's not a big wave, it's the water, right? I mean, (chuckles) it's the new thing. My final question for you guys, if you don't mind, I'd love to get each of you to answer the question I'm going to ask you, which is, a lot of conversations around data. Data infrastructure's obviously involved in this. And the common thread that I'm hearing is that every company that looks at this is asking themselves, if we don't rebuild our company, start thinking about rebuilding our business model around AI, we might be dinosaurs, we might be extinct. And it reminds me that scene in Moneyball when, at the end, it's like, if we're not building the model around your model, every company will be out of business. What's your advice to companies out there that are having those kind of moments where it's like, okay, this is real, this is next gen, this is happening. I better start thinking and putting into motion plans to refactor my business, 'cause it's happening, business transformation is happening on the cloud. This kind of puts an exclamation point on, with the AI, as a next step function. Big increase in value. So it's an opportunity for leaders. Ankur, we'll start with you. What's your advice for folks out there thinking about this? Do they put their toe in the water? Do they jump right into the deep end? What's your advice? >> Yeah, John, so we talk to a lot of customers, and customers are excited about what's happening in the space, but they often ask us like, "Hey, where do we start?" So we always advise our customers to do a lot of proof of concepts, understand where they can drive the biggest ROI. And then also leverage existing tools and services to move fast and scale, and try and not reinvent the wheel where it doesn't need to be. That's basically our advice to customers. >> Get it. Ori, what's your advice to folks who are scratching their head going, "I better jump in here. "How do I get started?" What's your advice? >> So I actually think that need to think about it really economically. Both on the opportunity side and the challenges. So there's a lot of opportunities for many companies to actually gain revenue upside by building these new generative features and capabilities. On the other hand, of course, this would probably affect the cogs, and incorporating these capabilities could probably affect the cogs. So I think we really need to think carefully about both of these sides, and also understand clearly if this is a project or an F word towards cost reduction, then the ROI is pretty clear, or revenue amplifier, where there's, again, a lot of different opportunities. So I think once you think about this in a structured way, I think, and map the different initiatives, then it's probably a good way to start and a good way to start thinking about these endeavors. >> Awesome. Clem, what's your take on this? What's your advice, folks out there? >> Yes, all of these are very good advice already. Something that you said before, John, that I disagreed a little bit, a lot of people are talking about the data mode and proprietary data. Actually, when you look at some of the organizations that have been building the best models, they don't have specialized or unique access to data. So I'm not sure that's so important today. I think what's important for companies, and it's been the same for the previous generation of technology, is their ability to build better technology faster than others. And in this new paradigm, that means being able to build machine learning faster than others, and better. So that's how, in my opinion, you should approach this. And kind of like how can you evolve your company, your teams, your products, so that you are able in the long run to build machine learning better and faster than your competitors. And if you manage to put yourself in that situation, then that's when you'll be able to differentiate yourself to really kind of be impactful and get results. That's really hard to do. It's something really different, because machine learning and AI is a different paradigm than traditional software. So this is going to be challenging, but I think if you manage to nail that, then the future is going to be very interesting for your company. >> That's a great point. Thanks for calling that out. I think this all reminds me of the cloud days early on. If you went to the cloud early, you took advantage of it when the pandemic hit. If you weren't native in the cloud, you got hamstrung by that, you were flatfooted. So just get in there. (laughs) Get in the cloud, get into AI, you're going to be good. Thanks for for calling that. Final parting comments, what's your most exciting thing going on right now for you guys? Ori, Clem, what's the most exciting thing on your plate right now that you'd like to share with folks? >> I mean, for me it's just the diversity of use cases and really creative ways of companies leveraging this technology. Every day I speak with about two, three customers, and I'm continuously being surprised by the creative ideas. And the future is really exciting of what can be achieved here. And also I'm amazed by the pace that things move in this industry. It's just, there's not at dull moment. So, definitely exciting times. >> Clem, what are you most excited about right now? >> For me, it's all the new open source models that have been released in the past few weeks, and that they'll keep being released in the next few weeks. I'm also super excited about more and more companies getting into this capability of chaining different models and different APIs. I think that's a very, very interesting development, because it creates new capabilities, new possibilities, new functionalities that weren't possible before. You can plug an API with an open source embedding model, with like a no-geo transcription model. So that's also very exciting. This capability of having more interoperable machine learning will also, I think, open a lot of interesting things in the future. >> Clem, congratulations on your success at Hugging Face. Please pass that on to your team. Ori, congratulations on your success, and continue to, just day one. I mean, it's just the beginning. It's not even scratching the service. Ankur, I'll give you the last word. What are you excited for at AWS? More cloud goodness coming here with AI. Give you the final word. >> Yeah, so as both Clem and Ori said, I think the research in the space is moving really, really fast, so we are excited about that. But we are also excited to see the speed at which enterprises and other AWS customers are applying machine learning to solve real business problems, and the kind of results they're seeing. So when they come back to us and tell us the kind of improvement in their business metrics and overall customer experience that they're driving and they're seeing real business results, that's what keeps us going and inspires us to continue inventing on their behalf. >> Gentlemen, thank you so much for this awesome high impact panel. Ankur, Clem, Ori, congratulations on all your success. We'll see you around. Thanks for coming on. Generative AI, riding the wave, it's a tidal wave, it's the water, it's all happening. All great stuff. This is season three, episode one of AWS Startup Showcase closing panel. This is the AI ML episode, the top startups building generative AI on AWS. I'm John Furrier, your host. Thanks for watching. (mellow music)
SUMMARY :
This is the closing panel I'm super excited to have you all on. is to really provide and to me being in California, and then you get your product. kind of the default APIs, the cloud. and kind of making the I saw the Wall Street Journal I think it's important to realize that the app developers out there So the barrier to entry became lower; I have to ask you guys, instead of the other way around. That's kind of the DevOps movement. and the cloud is playing a and the use cases that you're enabling? the barrier to entry And you need scale for that. in the next few years and AI can fill the void, a lot of the intelligence and if we can automate reduce a little bit the barrier to entry. I'd love to get each of you drive the biggest ROI. to folks who are scratching So I think once you think Clem, what's your take on this? and it's been the same of the cloud days early on. And also I'm amazed by the pace in the past few weeks, Please pass that on to your team. and the kind of results they're seeing. This is the AI ML episode,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ankur Mehrotra | PERSON | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Clem | PERSON | 0.99+ |
Ori Goshen | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Ori | PERSON | 0.99+ |
Clem Delangue | PERSON | 0.99+ |
Hugging Face | ORGANIZATION | 0.99+ |
Julien | PERSON | 0.99+ |
Ankur | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Ankur | ORGANIZATION | 0.99+ |
second round | QUANTITY | 0.99+ |
AI21 Labs | ORGANIZATION | 0.99+ |
two separate categories | QUANTITY | 0.99+ |
Amazon.com | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
over 15,000 companies | QUANTITY | 0.98+ |
Both | QUANTITY | 0.98+ |
five years | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
over three years | QUANTITY | 0.98+ |
three customers | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
Trainium | ORGANIZATION | 0.98+ |
today | DATE | 0.98+ |
Alexa | TITLE | 0.98+ |
Stable Diffusion | ORGANIZATION | 0.97+ |
Swami | PERSON | 0.97+ |
Inferentia | ORGANIZATION | 0.96+ |
GPT-J | ORGANIZATION | 0.96+ |
SageMaker | TITLE | 0.96+ |
AI21 Labs | ORGANIZATION | 0.95+ |
Riding the Wave | TITLE | 0.95+ |
ControlNet | ORGANIZATION | 0.94+ |
one way | QUANTITY | 0.94+ |
a million lines | QUANTITY | 0.93+ |
Startup Showcase | EVENT | 0.92+ |
few months ago | DATE | 0.92+ |
second wave | EVENT | 0.91+ |
theCUBE | ORGANIZATION | 0.91+ |
few years ago | DATE | 0.91+ |
CodeWhisperer | TITLE | 0.9+ |
AI21 | ORGANIZATION | 0.89+ |
Jay Marshall, Neural Magic | AWS Startup Showcase S3E1
(upbeat music) >> Hello, everyone, and welcome to theCUBE's presentation of the "AWS Startup Showcase." This is season three, episode one. The focus of this episode is AI/ML: Top Startups Building Foundational Models, Infrastructure, and AI. It's great topics, super-relevant, and it's part of our ongoing coverage of startups in the AWS ecosystem. I'm your host, John Furrier, with theCUBE. Today, we're excited to be joined by Jay Marshall, VP of Business Development at Neural Magic. Jay, thanks for coming on theCUBE. >> Hey, John, thanks so much. Thanks for having us. >> We had a great CUBE conversation with you guys. This is very much about the company focuses. It's a feature presentation for the "Startup Showcase," and the machine learning at scale is the topic, but in general, it's more, (laughs) and we should call it "Machine Learning and AI: How to Get Started," because everybody is retooling their business. Companies that aren't retooling their business right now with AI first will be out of business, in my opinion. You're seeing massive shift. This is really truly the beginning of the next-gen machine learning AI trend. It's really seeing ChatGPT. Everyone sees that. That went mainstream. But this is just the beginning. This is scratching the surface of this next-generation AI with machine learning powering it, and with all the goodness of cloud, cloud scale, and how horizontally scalable it is. The resources are there. You got the Edge. Everything's perfect for AI 'cause data infrastructure's exploding in value. AI is just the applications. This is a super topic, so what do you guys see in this general area of opportunities right now in the headlines? And I'm sure you guys' phone must be ringing off the hook, metaphorically speaking, or emails and meetings and Zooms. What's going on over there at Neural Magic? >> No, absolutely, and you pretty much nailed most of it. I think that, you know, my background, we've seen for the last 20-plus years. Even just getting enterprise applications kind of built and delivered at scale, obviously, amazing things with AWS and the cloud to help accelerate that. And we just kind of figured out in the last five or so years how to do that productively and efficiently, kind of from an operations perspective. Got development and operations teams. We even came up with DevOps, right? But now, we kind of have this new kind of persona and new workload that developers have to talk to, and then it has to be deployed on those ITOps solutions. And so you pretty much nailed it. Folks are saying, "Well, how do I do this?" These big, generational models or foundational models, as we're calling them, they're great, but enterprises want to do that with their data, on their infrastructure, at scale, at the edge. So for us, yeah, we're helping enterprises accelerate that through optimizing models and then delivering them at scale in a more cost-effective fashion. >> Yeah, and I think one of the things, the benefits of OpenAI we saw, was not only is it open source, then you got also other models that are more proprietary, is that it shows the world that this is really happening, right? It's a whole nother level, and there's also new landscape kind of maps coming out. You got the generative AI, and you got the foundational models, large LLMs. Where do you guys fit into the landscape? Because you guys are in the middle of this. How do you talk to customers when they say, "I'm going down this road. I need help. I'm going to stand this up." This new AI infrastructure and applications, where do you guys fit in the landscape? >> Right, and really, the answer is both. I think today, when it comes to a lot of what for some folks would still be considered kind of cutting edge around computer vision and natural language processing, a lot of our optimization tools and our runtime are based around most of the common computer vision and natural language processing models. So your YOLOs, your BERTs, you know, your DistilBERTs and what have you, so we work to help optimize those, again, who've gotten great performance and great value for customers trying to get those into production. But when you get into the LLMs, and you mentioned some of the open source components there, our research teams have kind of been right in the trenches with those. So kind of the GPT open source equivalent being OPT, being able to actually take, you know, a multi-$100 billion parameter model and sparsify that or optimize that down, shaving away a ton of parameters, and being able to run it on smaller infrastructure. So I think the evolution here, you know, all this stuff came out in the last six months in terms of being turned loose into the wild, but we're staying in the trenches with folks so that we can help optimize those as well and not require, again, the heavy compute, the heavy cost, the heavy power consumption as those models evolve as well. So we're staying right in with everybody while they're being built, but trying to get folks into production today with things that help with business value today. >> Jay, I really appreciate you coming on theCUBE, and before we came on camera, you said you just were on a customer call. I know you got a lot of activity. What specific things are you helping enterprises solve? What kind of problems? Take us through the spectrum from the beginning, people jumping in the deep end of the pool, some people kind of coming in, starting out slow. What are the scale? Can you scope the kind of use cases and problems that are emerging that people are calling you for? >> Absolutely, so I think if I break it down to kind of, like, your startup, or I maybe call 'em AI native to kind of steal from cloud native years ago, that group, it's pretty much, you know, part and parcel for how that group already runs. So if you have a data science team and an ML engineering team, you're building models, you're training models, you're deploying models. You're seeing firsthand the expense of starting to try to do that at scale. So it's really just a pure operational efficiency play. They kind of speak natively to our tools, which we're doing in the open source. So it's really helping, again, with the optimization of the models they've built, and then, again, giving them an alternative to expensive proprietary hardware accelerators to have to run them. Now, on the enterprise side, it varies, right? You have some kind of AI native folks there that already have these teams, but you also have kind of, like, AI curious, right? Like, they want to do it, but they don't really know where to start, and so for there, we actually have an open source toolkit that can help you get into this optimization, and then again, that runtime, that inferencing runtime, purpose-built for CPUs. It allows you to not have to worry, again, about do I have a hardware accelerator available? How do I integrate that into my application stack? If I don't already know how to build this into my infrastructure, does my ITOps teams, do they know how to do this, and what does that runway look like? How do I cost for this? How do I plan for this? When it's just x86 compute, we've been doing that for a while, right? So it obviously still requires more, but at least it's a little bit more predictable. >> It's funny you mentioned AI native. You know, born in the cloud was a phrase that was out there. Now, you have startups that are born in AI companies. So I think you have this kind of cloud kind of vibe going on. You have lift and shift was a big discussion. Then you had cloud native, kind of in the cloud, kind of making it all work. Is there a existing set of things? People will throw on this hat, and then what's the difference between AI native and kind of providing it to existing stuff? 'Cause we're a lot of people take some of these tools and apply it to either existing stuff almost, and it's not really a lift and shift, but it's kind of like bolting on AI to something else, and then starting with AI first or native AI. >> Absolutely. It's a- >> How would you- >> It's a great question. I think that probably, where I'd probably pull back to kind of allow kind of retail-type scenarios where, you know, for five, seven, nine years or more even, a lot of these folks already have data science teams, you know? I mean, they've been doing this for quite some time. The difference is the introduction of these neural networks and deep learning, right? Those kinds of models are just a little bit of a paradigm shift. So, you know, I obviously was trying to be fun with the term AI native, but I think it's more folks that kind of came up in that neural network world, so it's a little bit more second nature, whereas I think for maybe some traditional data scientists starting to get into neural networks, you have the complexity there and the training overhead, and a lot of the aspects of getting a model finely tuned and hyperparameterization and all of these aspects of it. It just adds a layer of complexity that they're just not as used to dealing with. And so our goal is to help make that easy, and then of course, make it easier to run anywhere that you have just kind of standard infrastructure. >> Well, the other point I'd bring out, and I'd love to get your reaction to, is not only is that a neural network team, people who have been focused on that, but also, if you look at some of the DataOps lately, AIOps markets, a lot of data engineering, a lot of scale, folks who have been kind of, like, in that data tsunami cloud world are seeing, they kind of been in this, right? They're, like, been experiencing that. >> No doubt. I think it's funny the data lake concept, right? And you got data oceans now. Like, the metaphors just keep growing on us, but where it is valuable in terms of trying to shift the mindset, I've always kind of been a fan of some of the naming shift. I know with AWS, they always talk about purpose-built databases. And I always liked that because, you know, you don't have one database that can do everything. Even ones that say they can, like, you still have to do implementation detail differences. So sitting back and saying, "What is my use case, and then which database will I use it for?" I think it's kind of similar here. And when you're building those data teams, if you don't have folks that are doing data engineering, kind of that data harvesting, free processing, you got to do all that before a model's even going to care about it. So yeah, it's definitely a central piece of this as well, and again, whether or not you're going to be AI negative as you're making your way to kind of, you know, on that journey, you know, data's definitely a huge component of it. >> Yeah, you would have loved our Supercloud event we had. Talk about naming and, you know, around data meshes was talked about a lot. You're starting to see the control plane layers of data. I think that was the beginning of what I saw as that data infrastructure shift, to be horizontally scalable. So I have to ask you, with Neural Magic, when your customers and the people that are prospects for you guys, they're probably asking a lot of questions because I think the general thing that we see is, "How do I get started? Which GPU do I use?" I mean, there's a lot of things that are kind of, I won't say technical or targeted towards people who are living in that world, but, like, as the mainstream enterprises come in, they're going to need a playbook. What do you guys see, what do you guys offer your clients when they come in, and what do you recommend? >> Absolutely, and I think where we hook in specifically tends to be on the training side. So again, I've built a model. Now, I want to really optimize that model. And then on the runtime side when you want to deploy it, you know, we run that optimized model. And so that's where we're able to provide. We even have a labs offering in terms of being able to pair up our engineering teams with a customer's engineering teams, and we can actually help with most of that pipeline. So even if it is something where you have a dataset and you want some help in picking a model, you want some help training it, you want some help deploying that, we can actually help there as well. You know, there's also a great partner ecosystem out there, like a lot of folks even in the "Startup Showcase" here, that extend beyond into kind of your earlier comment around data engineering or downstream ITOps or the all-up MLOps umbrella. So we can absolutely engage with our labs, and then, of course, you know, again, partners, which are always kind of key to this. So you are spot on. I think what's happened with the kind of this, they talk about a hockey stick. This is almost like a flat wall now with the rate of innovation right now in this space. And so we do have a lot of folks wanting to go straight from curious to native. And so that's definitely where the partner ecosystem comes in so hard 'cause there just isn't anybody or any teams out there that, I literally do from, "Here's my blank database, and I want an API that does all the stuff," right? Like, that's a big chunk, but we can definitely help with the model to delivery piece. >> Well, you guys are obviously a featured company in this space. Talk about the expertise. A lot of companies are like, I won't say faking it till they make it. You can't really fake security. You can't really fake AI, right? So there's going to be a learning curve. They'll be a few startups who'll come out of the gate early. You guys are one of 'em. Talk about what you guys have as expertise as a company, why you're successful, and what problems do you solve for customers? >> No, appreciate that. Yeah, we actually, we love to tell the story of our founder, Nir Shavit. So he's a 20-year professor at MIT. Actually, he was doing a lot of work on kind of multicore processing before there were even physical multicores, and actually even did a stint in computational neurobiology in the 2010s, and the impetus for this whole technology, has a great talk on YouTube about it, where he talks about the fact that his work there, he kind of realized that the way neural networks encode and how they're executed by kind of ramming data layer by layer through these kind of HPC-style platforms, actually was not analogous to how the human brain actually works. So we're on one side, we're building neural networks, and we're trying to emulate neurons. We're not really executing them that way. So our team, which one of the co-founders, also an ex-MIT, that was kind of the birth of why can't we leverage this super-performance CPU platform, which has those really fat, fast caches attached to each core, and actually start to find a way to break that model down in a way that I can execute things in parallel, not having to do them sequentially? So it is a lot of amazing, like, talks and stuff that show kind of the magic, if you will, a part of the pun of Neural Magic, but that's kind of the foundational layer of all the engineering that we do here. And in terms of how we're able to bring it to reality for customers, I'll give one customer quote where it's a large retailer, and it's a people-counting application. So a very common application. And that customer's actually been able to show literally double the amount of cameras being run with the same amount of compute. So for a one-to-one perspective, two-to-one, business leaders usually like that math, right? So we're able to show pure cost savings, but even performance-wise, you know, we have some of the common models like your ResNets and your YOLOs, where we can actually even perform better than hardware-accelerated solutions. So we're trying to do, I need to just dumb it down to better, faster, cheaper, but from a commodity perspective, that's where we're accelerating. >> That's not a bad business model. Make things easier to use, faster, and reduce the steps it takes to do stuff. So, you know, that's always going to be a good market. Now, you guys have DeepSparse, which we've talked about on our CUBE conversation prior to this interview, delivers ML models through the software so the hardware allows for a decoupling, right? >> Yep. >> Which is going to drive probably a cost advantage. Also, it's also probably from a deployment standpoint it must be easier. Can you share the benefits? Is it a cost side? Is it more of a deployment? What are the benefits of the DeepSparse when you guys decouple the software from the hardware on the ML models? >> No you actually, you hit 'em both 'cause that really is primarily the value. Because ultimately, again, we're so early. And I came from this world in a prior life where I'm doing Java development, WebSphere, WebLogic, Tomcat open source, right? When we were trying to do innovation, we had innovation buckets, 'cause everybody wanted to be on the web and have their app and a browser, right? We got all the money we needed to build something and show, hey, look at the thing on the web, right? But when you had to get in production, that was the challenge. So to what you're speaking to here, in this situation, we're able to show we're just a Python package. So whether you just install it on the operating system itself, or we also have a containerized version you can drop on any container orchestration platform, so ECS or EKS on AWS. And so you get all the auto-scaling features. So when you think about that kind of a world where you have everything from real-time inferencing to kind of after hours batch processing inferencing, the fact that you can auto scale that hardware up and down and it's CPU based, so you're paying by the minute instead of maybe paying by the hour at a lower cost shelf, it does everything from pure cost to, again, I can have my standard IT team say, "Hey, here's the Kubernetes in the container," and it just runs on the infrastructure we're already managing. So yeah, operational, cost and again, and many times even performance. (audio warbles) CPUs if I want to. >> Yeah, so that's easier on the deployment too. And you don't have this kind of, you know, blank check kind of situation where you don't know what's on the backend on the cost side. >> Exactly. >> And you control the actual hardware and you can manage that supply chain. >> And keep in mind, exactly. Because the other thing that sometimes gets lost in the conversation, depending on where a customer is, some of these workloads, like, you know, you and I remember a world where even like the roundtrip to the cloud and back was a problem for folks, right? We're used to extremely low latency. And some of these workloads absolutely also adhere to that. But there's some workloads where the latency isn't as important. And we actually even provide the tuning. Now, if we're giving you five milliseconds of latency and you don't need that, you can tune that back. So less CPU, lower cost. Now, throughput and other things come into play. But that's the kind of configurability and flexibility we give for operations. >> All right, so why should I call you if I'm a customer or prospect Neural Magic, what problem do I have or when do I know I need you guys? When do I call you in and what does my environment look like? When do I know? What are some of the signals that would tell me that I need Neural Magic? >> No, absolutely. So I think in general, any neural network, you know, the process I mentioned before called sparcification, it's, you know, an optimization process that we specialize in. Any neural network, you know, can be sparcified. So I think if it's a deep-learning neural network type model. If you're trying to get AI into production, you have cost concerns even performance-wise. I certainly hate to be too generic and say, "Hey, we'll talk to everybody." But really in this world right now, if it's a neural network, it's something where you're trying to get into production, you know, we are definitely offering, you know, kind of an at-scale performant deployable solution for deep learning models. >> So neural network you would define as what? Just devices that are connected that need to know about each other? What's the state-of-the-art current definition of neural network for customers that may think they have a neural network or might not know they have a neural network architecture? What is that definition for neural network? >> That's a great question. So basically, machine learning models that fall under this kind of category, you hear about transformers a lot, or I mentioned about YOLO, the YOLO family of computer vision models, or natural language processing models like BERT. If you have a data science team or even developers, some even regular, I used to call myself a nine to five developer 'cause I worked in the enterprise, right? So like, hey, we found a new open source framework, you know, I used to use Spring back in the day and I had to go figure it out. There's developers that are pulling these models down and they're figuring out how to get 'em into production, okay? So I think all of those kinds of situations, you know, if it's a machine learning model of the deep learning variety that's, you know, really specifically where we shine. >> Okay, so let me pretend I'm a customer for a minute. I have all these videos, like all these transcripts, I have all these people that we've interviewed, CUBE alumnis, and I say to my team, "Let's AI-ify, sparcify theCUBE." >> Yep. >> What do I do? I mean, do I just like, my developers got to get involved and they're going to be like, "Well, how do I upload it to the cloud? Do I use a GPU?" So there's a thought process. And I think a lot of companies are going through that example of let's get on this AI, how can it help our business? >> Absolutely. >> What does that progression look like? Take me through that example. I mean, I made up theCUBE example up, but we do have a lot of data. We have large data models and we have people and connect to the internet and so we kind of seem like there's a neural network. I think every company might have a neural network in place. >> Well, and I was going to say, I think in general, you all probably do represent even the standard enterprise more than most. 'Cause even the enterprise is going to have a ton of video content, a ton of text content. So I think it's a great example. So I think that that kind of sea or I'll even go ahead and use that term data lake again, of data that you have, you're probably going to want to be setting up kind of machine learning pipelines that are going to be doing all of the pre-processing from kind of the raw data to kind of prepare it into the format that say a YOLO would actually use or let's say BERT for natural language processing. So you have all these transcripts, right? So we would do a pre-processing path where we would create that into the file format that BERT, the machine learning model would know how to train off of. So that's kind of all the pre-processing steps. And then for training itself, we actually enable what's called sparse transfer learning. So that's transfer learning is a very popular method of doing training with existing models. So we would be able to retrain that BERT model with your transcript data that we have now done the pre-processing with to get it into the proper format. And now we have a BERT natural language processing model that's been trained on your data. And now we can deploy that onto DeepSparse runtime so that now you can ask that model whatever questions, or I should say pass, you're not going to ask it those kinds of questions ChatGPT, although we can do that too. But you're going to pass text through the BERT model and it's going to give you answers back. It could be things like sentiment analysis or text classification. You just call the model, and now when you pass text through it, you get the answers better, faster or cheaper. I'll use that reference again. >> Okay, we can create a CUBE bot to give us questions on the fly from the the AI bot, you know, from our previous guests. >> Well, and I will tell you using that as an example. So I had mentioned OPT before, kind of the open source version of ChatGPT. So, you know, typically that requires multiple GPUs to run. So our research team, I may have mentioned earlier, we've been able to sparcify that over 50% already and run it on only a single GPU. And so in that situation, you could train OPT with that corpus of data and do exactly what you say. Actually we could use Alexa, we could use Alexa to actually respond back with voice. How about that? We'll do an API call and we'll actually have an interactive Alexa-enabled bot. >> Okay, we're going to be a customer, let's put it on the list. But this is a great example of what you guys call software delivered AI, a topic we chatted about on theCUBE conversation. This really means this is a developer opportunity. This really is the convergence of the data growth, the restructuring, how data is going to be horizontally scalable, meets developers. So this is an AI developer model going on right now, which is kind of unique. >> It is, John, I will tell you what's interesting. And again, folks don't always think of it this way, you know, the AI magical goodness is now getting pushed in the middle where the developers and IT are operating. And so it again, that paradigm, although for some folks seem obvious, again, if you've been around for 20 years, that whole all that plumbing is a thing, right? And so what we basically help with is when you deploy the DeepSparse runtime, we have a very rich API footprint. And so the developers can call the API, ITOps can run it, or to your point, it's developer friendly enough that you could actually deploy our off-the-shelf models. We have something called the SparseZoo where we actually publish pre-optimized or pre-sparcified models. And so developers could literally grab those right off the shelf with the training they've already had and just put 'em right into their applications and deploy them as containers. So yeah, we enable that for sure as well. >> It's interesting, DevOps was infrastructure as code and we had a last season, a series on data as code, which we kind of coined. This is data as code. This is a whole nother level of opportunity where developers just want to have programmable data and apps with AI. This is a whole new- >> Absolutely. >> Well, absolutely great, great stuff. Our news team at SiliconANGLE and theCUBE said you guys had a little bit of a launch announcement you wanted to make here on the "AWS Startup Showcase." So Jay, you have something that you want to launch here? >> Yes, and thank you John for teeing me up. So I'm going to try to put this in like, you know, the vein of like an AWS, like main stage keynote launch, okay? So we're going to try this out. So, you know, a lot of our product has obviously been built on top of x86. I've been sharing that the past 15 minutes or so. And with that, you know, we're seeing a lot of acceleration for folks wanting to run on commodity infrastructure. But we've had customers and prospects and partners tell us that, you know, ARM and all of its kind of variance are very compelling, both cost performance-wise and also obviously with Edge. And wanted to know if there was anything we could do from a runtime perspective with ARM. And so we got the work and, you know, it's a hard problem to solve 'cause the instructions set for ARM is very different than the instruction set for x86, and our deep tensor column technology has to be able to work with that lower level instruction spec. But working really hard, the engineering team's been at it and we are happy to announce here at the "AWS Startup Showcase," that DeepSparse inference now has, or inference runtime now has support for AWS Graviton instances. So it's no longer just x86, it is also ARM and that obviously also opens up the door to Edge and further out the stack so that optimize once run anywhere, we're not going to open up. So it is an early access. So if you go to neuralmagic.com/graviton, you can sign up for early access, but we're excited to now get into the ARM side of the fence as well on top of Graviton. >> That's awesome. Our news team is going to jump on that news. We'll get it right up. We get a little scoop here on the "Startup Showcase." Jay Marshall, great job. That really highlights the flexibility that you guys have when you decouple the software from the hardware. And again, we're seeing open source driving a lot more in AI ops now with with machine learning and AI. So to me, that makes a lot of sense. And congratulations on that announcement. Final minute or so we have left, give a summary of what you guys are all about. Put a plug in for the company, what you guys are looking to do. I'm sure you're probably hiring like crazy. Take the last few minutes to give a plug for the company and give a summary. >> No, I appreciate that so much. So yeah, joining us out neuralmagic.com, you know, part of what we didn't spend a lot of time here, our optimization tools, we are doing all of that in the open source. It's called SparseML and I mentioned SparseZoo briefly. So we really want the data scientists community and ML engineering community to join us out there. And again, the DeepSparse runtime, it's actually free to use for trial purposes and for personal use. So you can actually run all this on your own laptop or on an AWS instance of your choice. We are now live in the AWS marketplace. So push button, deploy, come try us out and reach out to us on neuralmagic.com. And again, sign up for the Graviton early access. >> All right, Jay Marshall, Vice President of Business Development Neural Magic here, talking about performant, cost effective machine learning at scale. This is season three, episode one, focusing on foundational models as far as building data infrastructure and AI, AI native. I'm John Furrier with theCUBE. Thanks for watching. (bright upbeat music)
SUMMARY :
of the "AWS Startup Showcase." Thanks for having us. and the machine learning and the cloud to help accelerate that. and you got the foundational So kind of the GPT open deep end of the pool, that group, it's pretty much, you know, So I think you have this kind It's a- and a lot of the aspects of and I'd love to get your reaction to, And I always liked that because, you know, that are prospects for you guys, and you want some help in picking a model, Talk about what you guys have that show kind of the magic, if you will, and reduce the steps it takes to do stuff. when you guys decouple the the fact that you can auto And you don't have this kind of, you know, the actual hardware and you and you don't need that, neural network, you know, of situations, you know, CUBE alumnis, and I say to my team, and they're going to be like, and connect to the internet and it's going to give you answers back. you know, from our previous guests. and do exactly what you say. of what you guys call enough that you could actually and we had a last season, that you want to launch here? And so we got the work and, you know, flexibility that you guys have So you can actually run Vice President of Business
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jay | PERSON | 0.99+ |
Jay Marshall | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
Nir Shavit | PERSON | 0.99+ |
20-year | QUANTITY | 0.99+ |
Alexa | TITLE | 0.99+ |
2010s | DATE | 0.99+ |
seven | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
each core | QUANTITY | 0.99+ |
Neural Magic | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
nine years | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
BERT | TITLE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
ChatGPT | TITLE | 0.98+ |
20 years | QUANTITY | 0.98+ |
over 50% | QUANTITY | 0.97+ |
second nature | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
ARM | ORGANIZATION | 0.96+ |
one | QUANTITY | 0.95+ |
DeepSparse | TITLE | 0.94+ |
neuralmagic.com/graviton | OTHER | 0.94+ |
SiliconANGLE | ORGANIZATION | 0.94+ |
WebSphere | TITLE | 0.94+ |
nine | QUANTITY | 0.94+ |
first | QUANTITY | 0.93+ |
Startup Showcase | EVENT | 0.93+ |
five milliseconds | QUANTITY | 0.92+ |
AWS Startup Showcase | EVENT | 0.91+ |
two | QUANTITY | 0.9+ |
YOLO | ORGANIZATION | 0.89+ |
CUBE | ORGANIZATION | 0.88+ |
OPT | TITLE | 0.88+ |
last six months | DATE | 0.88+ |
season three | QUANTITY | 0.86+ |
double | QUANTITY | 0.86+ |
one customer | QUANTITY | 0.86+ |
Supercloud | EVENT | 0.86+ |
one side | QUANTITY | 0.85+ |
Vice | PERSON | 0.85+ |
x86 | OTHER | 0.83+ |
AI/ML: Top Startups Building Foundational Models | TITLE | 0.82+ |
ECS | TITLE | 0.81+ |
$100 billion | QUANTITY | 0.81+ |
DevOps | TITLE | 0.81+ |
WebLogic | TITLE | 0.8+ |
EKS | TITLE | 0.8+ |
a minute | QUANTITY | 0.8+ |
neuralmagic.com | OTHER | 0.79+ |
Luis Ceze & Anna Connolly, OctoML | AWS Startup Showcase S3 E1
(soft music) >> Hello, everyone. Welcome to theCUBE's presentation of the AWS Startup Showcase. AI and Machine Learning: Top Startups Building Foundational Model Infrastructure. This is season 3, episode 1 of the ongoing series covering the exciting stuff from the AWS ecosystem, talking about machine learning and AI. I'm your host, John Furrier and today we are excited to be joined by Luis Ceze who's the CEO of OctoML and Anna Connolly, VP of customer success and experience OctoML. Great to have you on again, Luis. Anna, thanks for coming on. Appreciate it. >> Thank you, John. It's great to be here. >> Thanks for having us. >> I love the company. We had a CUBE conversation about this. You guys are really addressing how to run foundational models faster for less. And this is like the key theme. But before we get into it, this is a hot trend, but let's explain what you guys do. Can you set the narrative of what the company's about, why it was founded, what's your North Star and your mission? >> Yeah, so John, our mission is to make AI sustainable and accessible for everyone. And what we offer customers is, you know, a way of taking their models into production in the most efficient way possible by automating the process of getting a model and optimizing it for a variety of hardware and making cost-effective. So better, faster, cheaper model deployment. >> You know, the big trend here is AI. Everyone's seeing the ChatGPT, kind of the shot heard around the world. The BingAI and this fiasco and the ongoing experimentation. People are into it, and I think the business impact is clear. I haven't seen this in all of my career in the technology industry of this kind of inflection point. And every senior leader I talk to is rethinking about how to rebuild their business with AI because now the large language models have come in, these foundational models are here, they can see value in their data. This is a 10 year journey in the big data world. Now it's impacting that, and everyone's rebuilding their company around this idea of being AI first 'cause they see ways to eliminate things and make things more efficient. And so now they telling 'em to go do it. And they're like, what do we do? So what do you guys think? Can you explain what is this wave of AI and why is it happening, why now, and what should people pay attention to? What does it mean to them? >> Yeah, I mean, it's pretty clear by now that AI can do amazing things that captures people's imaginations. And also now can show things that are really impactful in businesses, right? So what people have the opportunity to do today is to either train their own model that adds value to their business or find open models out there that can do very valuable things to them. So the next step really is how do you take that model and put it into production in a cost-effective way so that the business can actually get value out of it, right? >> Anna, what's your take? Because customers are there, you're there to make 'em successful, you got the new secret weapon for their business. >> Yeah, I think we just see a lot of companies struggle to get from a trained model into a model that is deployed in a cost-effective way that actually makes sense for the application they're building. I think that's a huge challenge we see today, kind of across the board across all of our customers. >> Well, I see this, everyone asking the same question. I have data, I want to get value out of it. I got to get these big models, I got to train it. What's it going to cost? So I think there's a reality of, okay, I got to do it. Then no one has any visibility on what it costs. When they get into it, this is going to break the bank. So I have to ask you guys, the cost of training these models is on everyone's mind. OctoML, your company's focus on the cost side of it as well as the efficiency side of running these models in production. Why are the production costs such a concern and where specifically are people looking at it and why did it get here? >> Yeah, so training costs get a lot of attention because normally a large number, but we shouldn't forget that it's a large, typically one time upfront cost that customers pay. But, you know, when the model is put into production, the cost grows directly with model usage and you actually want your model to be used because it's adding value, right? So, you know, the question that a customer faces is, you know, they have a model, they have a trained model and now what? So how much would it cost to run in production, right? And now without the big wave in generative AI, which rightfully is getting a lot of attention because of the amazing things that it can do. It's important for us to keep in mind that generative AI models like ChatGPT are huge, expensive energy hogs. They cost a lot to run, right? And given that model usage growth directly, model cost grows directly with usage, what you want to do is make sure that once you put a model into production, you have the best cost structure possible so that you're not surprised when it's gets popular, right? So let me give you an example. So if you have a model that costs, say 1 to $2 million to train, but then it costs about one to two cents per session to use it, right? So if you have a million active users, even if they use just once a day, it's 10 to $20,000 a day to operate that model in production. And that very, very quickly, you know, get beyond what you paid to train it. >> Anna, these aren't small numbers, and it's cost to train and cost to operate, it kind of reminds me of when the cloud came around and the data center versus cloud options. Like, wait a minute, one, it costs a ton of cash to deploy, and then running it. This is kind of a similar dynamic. What are you seeing? >> Yeah, absolutely. I think we are going to see increasingly the cost and production outpacing the costs and training by a lot. I mean, people talk about training costs now because that's what they're confronting now because people are so focused on getting models performant enough to even use in an application. And now that we have them and they're that capable, we're really going to start to see production costs go up a lot. >> Yeah, Luis, if you don't mind, I know this might be a little bit of a tangent, but, you know, training's super important. I get that. That's what people are doing now, but then there's the deployment side of production. Where do people get caught up and miss the boat or misconfigure? What's the gotcha? Where's the trip wire or so to speak? Where do people mess up on the cost side? What do they do? Is it they don't think about it, they tie it to proprietary hardware? What's the issue? >> Yeah, several things, right? So without getting really technical, which, you know, I might get into, you know, you have to understand relationship between performance, you know, both in terms of latency and throughput and cost, right? So reducing latency is important because you improve responsiveness of the model. But it's really important to keep in mind that it often leads diminishing returns. Below a certain latency, making it faster won't make a measurable difference in experience, but it's going to cost a lot more. So understanding that is important. Now, if you care more about throughputs, which is the time it takes for you to, you know, units per period of time, you care about time to solution, we should think about this throughput per dollar. And understand what you want is the highest throughput per dollar, which may come at the cost of higher latency, which you're not going to care about, right? So, and the reality here, John, is that, you know, humans and especially folks in this space want to have the latest and greatest hardware. And often they commit a lot of money to get access to them and have to commit upfront before they understand the needs that their models have, right? So common mistake here, one is not spending time to understand what you really need, and then two, over-committing and using more hardware than you actually need. And not giving yourself enough freedom to get your workload to move around to the more cost-effective choice, right? So this is just a metaphoric choice. And then another thing that's important here too is making a model run faster on the hardware directly translates to lower cost, right? So, but it takes a lot of engineers, you need to think of ways of producing very efficient versions of your model for the target hardware that you're going to use. >> Anna, what's the customer angle here? Because price performance has been around for a long time, people get that, but now latency and throughput, that's key because we're starting to see this in apps. I mean, there's an end user piece. I even seeing it on the infrastructure side where they're taking a heavy lifting away from operational costs. So you got, you know, application specific to the user and/or top of the stack, and then you got actually being used in operations where they want both. >> Yeah, absolutely. Maybe I can illustrate this with a quick story with the customer that we had recently been working with. So this customer is planning to run kind of a transformer based model for tech generation at super high scale on Nvidia T4 GPU, so kind of a commodity GPU. And the scale was so high that they would've been paying hundreds of thousands of dollars in cloud costs per year just to serve this model alone. You know, one of many models in their application stack. So we worked with this team to optimize our model and then benchmark across several possible targets. So that matching the hardware that Luis was just talking about, including the newer kind of Nvidia A10 GPUs. And what they found during this process was pretty interesting. First, the team was able to shave a quarter of their spend just by using better optimization techniques on the T4, the older hardware. But actually moving to a newer GPU would allow them to serve this model in a sub two milliseconds latency, so super fast, which was able to unlock an entirely new kind of user experience. So they were able to kind of change the value they're delivering in their application just because they were able to move to this new hardware easily. So they ultimately decided to plan their deployment on the more expensive A10 because of this, but because of the hardware specific optimizations that we helped them with, they managed to even, you know, bring costs down from what they had originally planned. And so if you extend this kind of example to everything that's happening with generative AI, I think the story we just talked about was super relevant, but the scale can be even higher, you know, it can be tenfold that. We were recently conducting kind of this internal study using GPT-J as a proxy to illustrate the experience of just a company trying to use one of these large language models with an example scenario of creating a chatbot to help job seekers prepare for interviews. So if you imagine kind of a conservative usage scenario where the model generates just 3000 words per user per day, which is, you know, pretty conservative for how people are interacting with these models. It costs 5 cents a session and if you're a company and your app goes viral, so from, you know, beginning of the year there's nobody, at the end of the year there's a million daily active active users in that year alone, going from zero to a million. You'll be spending about $6 million a year, which is pretty unmanageable. That's crazy, right? >> Yeah. >> For a company or a product that's just launching. So I think, you know, for us we see the real way to make these kind of advancements accessible and sustainable, as we said is to bring down cost to serve using these techniques. >> That's a great story and I think that illustrates this idea that deployment cost can vary from situation to situation, from model to model and that the efficiency is so strong with this new wave, it eliminates heavy lifting, creates more efficiency, automates intellect. I mean, this is the trend, this is radical, this is going to increase. So the cost could go from nominal to millions, literally, potentially. So, this is what customers are doing. Yeah, that's a great story. What makes sense on a financial, is there a cost of ownership? Is there a pattern for best practice for training? What do you guys advise cuz this is a lot of time and money involved in all potential, you know, good scenarios of upside. But you can get over your skis as they say, and be successful and be out of business if you don't manage it. I mean, that's what people are talking about, right? >> Yeah, absolutely. I think, you know, we see kind of three main vectors to reduce cost. I think one is make your deployment process easier overall, so that your engineering effort to even get your app running goes down. Two, would be get more from the compute you're already paying for, you're already paying, you know, for your instances in the cloud, but can you do more with that? And then three would be shop around for lower cost hardware to match your use case. So on the first one, I think making the deployment easier overall, there's a lot of manual work that goes into benchmarking, optimizing and packaging models for deployment. And because the performance of machine learning models can be really hardware dependent, you have to go through this process for each target you want to consider running your model on. And this is hard, you know, we see that every day. But for teams who want to incorporate some of these large language models into their applications, it might be desirable because licensing a model from a large vendor like OpenAI can leave you, you know, over provision, kind of paying for capabilities you don't need in your application or can lock you into them and you lose flexibility. So we have a customer whose team actually prepares models for deployment in a SaaS application that many of us use every day. And they told us recently that without kind of an automated benchmarking and experimentation platform, they were spending several days each to benchmark a single model on a single hardware type. So this is really, you know, manually intensive and then getting more from the compute you're already paying for. We do see customers who leave money on the table by running models that haven't been optimized specifically for the hardware target they're using, like Luis was mentioning. And for some teams they just don't have the time to go through an optimization process and for others they might lack kind of specialized expertise and this is something we can bring. And then on shopping around for different hardware types, we really see a huge variation in model performance across hardware, not just CPU vs. GPU, which is, you know, what people normally think of. But across CPU vendors themselves, high memory instances and across cloud providers even. So the best strategy here is for teams to really be able to, we say, look before you leap by running real world benchmarking and not just simulations or predictions to find the best software, hardware combination for their workload. >> Yeah. You guys sound like you have a very impressive customer base deploying large language models. Where would you categorize your current customer base? And as you look out, as you guys are growing, you have new customers coming in, take me through the progression. Take me through the profile of some of your customers you have now, size, are they hyperscalers, are they big app folks, are they kicking the tires? And then as people are out there scratching heads, I got to get in this game, what's their psychology like? Are they coming in with specific problems or do they have specific orientation point of view about what they want to do? Can you share some data around what you're seeing? >> Yeah, I think, you know, we have customers that kind of range across the spectrum of sophistication from teams that basically don't have MLOps expertise in their company at all. And so they're really looking for us to kind of give a full service, how should I do everything from, you know, optimization, find the hardware, prepare for deployment. And then we have teams that, you know, maybe already have their serving and hosting infrastructure up and ready and they already have models in production and they're really just looking to, you know, take the extra juice out of the hardware and just do really specific on that optimization piece. I think one place where we're doing a lot more work now is kind of in the developer tooling, you know, model selection space. And that's kind of an area that we're creating more tools for, particularly within the PyTorch ecosystem to bring kind of this power earlier in the development cycle so that as people are grabbing a model off the shelf, they can, you know, see how it might perform and use that to inform their development process. >> Luis, what's the big, I like this idea of picking the models because isn't that like going to the market and picking the best model for your data? It's like, you know, it's like, isn't there a certain approaches? What's your view on this? 'Cause this is where everyone, I think it's going to be a land rush for this and I want to get your thoughts. >> For sure, yeah. So, you know, I guess I'll start with saying the one main takeaway that we got from the GPT-J study is that, you know, having a different understanding of what your model's compute and memory requirements are, very quickly, early on helps with the much smarter AI model deployments, right? So, and in fact, you know, Anna just touched on this, but I want to, you know, make sure that it's clear that OctoML is putting that power into user's hands right now. So in partnership with AWS, we are launching this new PyTorch native profiler that allows you with a single, you know, one line, you know, code decorator allows you to see how your code runs on a variety of different hardware after accelerations. So it gives you very clear, you know, data on how you should think about your model deployments. And this ties back to choices of models. So like, if you have a set of choices that are equally good of models in terms of functionality and you want to understand after acceleration how are you going to deploy, how much they're going to cost or what are the options using a automated process of making a decision is really, really useful. And in fact, so I think these events can get early access to this by signing up for the Octopods, you know, this is exclusive group for insiders here, so you can go to OctoML.ai/pods to sign up. >> So that Octopod, is that a program? What is that, is that access to code? Is that a beta, what is that? Explain, take a minute and explain Octopod. >> I think the Octopod would be a group of people who is interested in experiencing this functionality. So it is the friends and users of OctoML that would be the Octopod. And then yes, after you sign up, we would provide you essentially the tool in code form for you to try out in your own. I mean, part of the benefit of this is that it happens in your own local environment and you're in control of everything kind of within the workflow that developers are already using to create and begin putting these models into their applications. So it would all be within your control. >> Got it. I think the big question I have for you is when do you, when does that one of your customers know they need to call you? What's their environment look like? What are they struggling with? What are the conversations they might be having on their side of the fence? If anyone's watching this, they're like, "Hey, you know what, I've got my team, we have a lot of data. Do we have our own language model or do I use someone else's?" There's a lot of this, I will say discovery going on around what to do, what path to take, what does that customer look like, if someone's listening, when do they know to call you guys, OctoML? >> Well, I mean the most obvious one is that you have a significant spend on AI/ML, come and talk to us, you know, putting AIML into production. So that's the clear one. In fact, just this morning I was talking to someone who is in life sciences space and is having, you know, 15 to $20 million a year cloud related to AI/ML deployment is a clear, it's a pretty clear match right there, right? So that's on the cost side. But I also want to emphasize something that Anna said earlier that, you know, the hardware and software complexity involved in putting model into production is really high. So we've been able to abstract that away, offering a clean automation flow enables one, to experiment early on, you know, how models would run and get them to production. And then two, once they are into production, gives you an automated flow to continuously updating your model and taking advantage of all this acceleration and ability to run the model on the right hardware. So anyways, let's say one then is cost, you know, you have significant cost and then two, you have an automation needs. And Anna please compliment that. >> Yeah, Anna you can please- >> Yeah, I think that's exactly right. Maybe the other time is when you are expecting a big scale up in serving your application, right? You're launching a new feature, you expect to get a lot of usage or, and you want to kind of anticipate maybe your CTO, your CIO, whoever pays your cloud bills is going to come after you, right? And so they want to know, you know, what's the return on putting this model essentially into my application stack? Am I going to, is the usage going to match what I'm paying for it? And then you can understand that. >> So you guys have a lot of the early adopters, they got big data teams, they're pushed in the production, they want to get a little QA, test the waters, understand, use your technology to figure it out. Is there any cases where people have gone into production, they have to pull it out? It's like the old lemon laws with your car, you buy a car and oh my god, it's not the way I wanted it. I mean, I can imagine the early people through the wall, so to speak, in the wave here are going to be bloody in the sense that they've gone in and tried stuff and get stuck with huge bills. Are you seeing that? Are people pulling stuff out of production and redeploying? Or I can imagine that if I had a bad deployment, I'd want to refactor that or actually replatform that. Do you see that too? >> Definitely after a sticker shock, yes, your customers will come and make sure that, you know, the sticker shock won't happen again. >> Yeah. >> But then there's another more thorough aspect here that I think we likely touched on, be worth elaborating a bit more is just how are you going to scale in a way that's feasible depending on the allocation that you get, right? So as we mentioned several times here, you know, model deployment is so hardware dependent and so complex that you tend to get a model for a hardware choice and then you want to scale that specific type of instance. But what if, when you want to scale because suddenly luckily got popular and, you know, you want to scale it up and then you don't have that instance anymore. So how do you live with whatever you have at that moment is something that we see customers needing as well. You know, so in fact, ideally what we want is customers to not think about what kind of specific instances they want. What they want is to know what their models need. Say, they know the SLA and then find a set of hybrid targets and instances that hit the SLA whenever they're also scaling, they're going to scale with more freedom, right? Instead of having to wait for AWS to give them more specific allocation for a specific instance. What if you could live with other types of hardware and scale up in a more free way, right? So that's another thing that we see customers, you know, like they need more freedom to be able to scale with whatever is available. >> Anna, you touched on this with the business model impact to that 6 million cost, if that goes out of control, there's a business model aspect and there's a technical operation aspect to the cost side too. You want to be mindful of riding the wave in a good way, but not getting over your skis. So that brings up the point around, you know, confidence, right? And teamwork. Because if you're in production, there's probably a team behind it. Talk about the team aspect of your customers. I mean, they're dedicated, they go put stuff into production, they're developers, there're data. What's in it for them? Are they getting better, are they in the beach, you know, reading the book. Are they, you know, are there easy street for them? What's the customer benefit to the teams? >> Yeah, absolutely. With just a few clicks of a button, you're in production, right? That's the dream. So yeah, I mean I think that, you know, we illustrated it before a little bit. I think the automated kind of benchmarking and optimization process, like when you think about the effort it takes to get that data by hand, which is what people are doing today, they just don't do it. So they're making decisions without the best information because it's, you know, there just isn't the bandwidth to get the information that they need to make the best decision and then know exactly how to deploy it. So I think it's actually bringing kind of a new insight and capability to these teams that they didn't have before. And then maybe another aspect on the team side is that it's making the hand-off of the models from the data science teams to the model deployment teams more seamless. So we have, you know, we have seen in the past that this kind of transition point is the place where there are a lot of hiccups, right? The data science team will give a model to the production team and it'll be too slow for the application or it'll be too expensive to run and it has to go back and be changed and kind of this loop. And so, you know, with the PyTorch profiler that Luis was talking about, and then also, you know, the other ways we do optimization that kind of prevents that hand-off problem from happening. >> Luis and Anna, you guys have a great company. Final couple minutes left. Talk about the company, the people there, what's the culture like, you know, if Intel has Moore's law, which is, you know, doubling the performance in few years, what's the culture like there? Is it, you know, more throughput, better pricing? Explain what's going on with the company and put a plug in. Luis, we'll start with you. >> Yeah, absolutely. I'm extremely proud of the team that we built here. You know, we have a people first culture, you know, very, very collaborative and folks, we all have a shared mission here of making AI more accessible and sustainable. We have a very diverse team in terms of backgrounds and life stories, you know, to do what we do here, we need a team that has expertise in software engineering, in machine learning, in computer architecture. Even though we don't build chips, we need to understand how they work, right? So, and then, you know, the fact that we have this, this very really, really varied set of backgrounds makes the environment, you know, it's say very exciting to learn more about, you know, assistance end-to-end. But also makes it for a very interesting, you know, work environment, right? So people have different backgrounds, different stories. Some of them went to grad school, others, you know, were in intelligence agencies and now are working here, you know. So we have a really interesting set of people and, you know, life is too short not to work with interesting humans. You know, that's something that I like to think about, you know. >> I'm sure your off-site meetings are a lot of fun, people talking about computer architectures, silicon advances, the next GPU, the big data models coming in. Anna, what's your take? What's the culture like? What's the company vibe and what are you guys looking to do? What's the customer success pattern? What's up? >> Yeah, absolutely. I mean, I, you know, second all of the great things that Luis just said about the team. I think one that I, an additional one that I'd really like to underscore is kind of this customer obsession, to use a term you all know well. And focus on the end users and really making the experiences that we're bringing to our user who are developers really, you know, useful and valuable for them. And so I think, you know, all of these tools that we're trying to put in the hands of users, the industry and the market is changing so rapidly that our products across the board, you know, all of the companies that, you know, are part of the showcase today, we're all evolving them so quickly and we can only do that kind of really hand in glove with our users. So that would be another thing I'd emphasize. >> I think the change dynamic, the power dynamics of this industry is just the beginning. I'm very bullish that this is going to be probably one of the biggest inflection points in history of the computer industry because of all the dynamics of the confluence of all the forces, which you mentioned some of them, I mean PC, you know, interoperability within internetworking and you got, you know, the web and then mobile. Now we have this, I mean, I wouldn't even put social media even in the close to this. Like, this is like, changes user experience, changes infrastructure. There's going to be massive accelerations in performance on the hardware side from AWS's of the world and cloud and you got the edge and more data. This is really what big data was going to look like. This is the beginning. Final question, what do you guys see going forward in the future? >> Well, it's undeniable that machine learning and AI models are becoming an integral part of an interesting application today, right? So, and the clear trends here are, you know, more and more competitional needs for these models because they're only getting more and more powerful. And then two, you know, seeing the complexity of the infrastructure where they run, you know, just considering the cloud, there's like a wide variety of choices there, right? So being able to live with that and making the most out of it in a way that does not require, you know, an impossible to find team is something that's pretty clear. So the need for automation, abstracting with the complexity is definitely here. And we are seeing this, you know, trends are that you also see models starting to move to the edge as well. So it's clear that we're seeing, we are going to live in a world where there's no large models living in the cloud. And then, you know, edge models that talk to these models in the cloud to form, you know, an end-to-end truly intelligent application. >> Anna? >> Yeah, I think, you know, our, Luis said it at the beginning. Our vision is to make AI sustainable and accessible. And I think as this technology just expands in every company and every team, that's going to happen kind of on its own. And we're here to help support that. And I think you can't do that without tools like those like OctoML. >> I think it's going to be an error of massive invention, creativity, a lot of the format heavy lifting is going to allow the talented people to automate their intellect. I mean, this is really kind of what we see going on. And Luis, thank you so much. Anna, thanks for coming on this segment. Thanks for coming on theCUBE and being part of the AWS Startup Showcase. I'm John Furrier, your host. Thanks for watching. (upbeat music)
SUMMARY :
Great to have you on again, Luis. It's great to be here. but let's explain what you guys do. And what we offer customers is, you know, So what do you guys think? so that the business you got the new secret kind of across the board So I have to ask you guys, And that very, very quickly, you know, and the data center versus cloud options. And now that we have them but, you know, training's super important. John, is that, you know, humans and then you got actually managed to even, you know, So I think, you know, for us we see in all potential, you know, And this is hard, you know, And as you look out, as And then we have teams that, you know, and picking the best model for your data? from the GPT-J study is that, you know, What is that, is that access to code? And then yes, after you sign up, to call you guys, OctoML? come and talk to us, you know, And so they want to know, you know, So you guys have a lot make sure that, you know, we see customers, you know, What's the customer benefit to the teams? and then also, you know, what's the culture like, you know, So, and then, you know, and what are you guys looking to do? all of the companies that, you know, I mean PC, you know, in the cloud to form, you know, And I think you can't And Luis, thank you so much.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Anna | PERSON | 0.99+ |
Anna Connolly | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Luis | PERSON | 0.99+ |
Luis Ceze | PERSON | 0.99+ |
John | PERSON | 0.99+ |
1 | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
15 | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
10 year | QUANTITY | 0.99+ |
6 million | QUANTITY | 0.99+ |
zero | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
OctoML | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
millions | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Two | QUANTITY | 0.99+ |
$2 million | QUANTITY | 0.98+ |
3000 words | QUANTITY | 0.98+ |
one line | QUANTITY | 0.98+ |
A10 | COMMERCIAL_ITEM | 0.98+ |
OctoML | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
three main vectors | QUANTITY | 0.97+ |
hundreds of thousands of dollars | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
CUBE | ORGANIZATION | 0.97+ |
T4 | COMMERCIAL_ITEM | 0.97+ |
one time | QUANTITY | 0.97+ |
first one | QUANTITY | 0.96+ |
two cents | QUANTITY | 0.96+ |
GPT-J | ORGANIZATION | 0.96+ |
single model | QUANTITY | 0.95+ |
a minute | QUANTITY | 0.95+ |
about $6 million a year | QUANTITY | 0.95+ |
once a day | QUANTITY | 0.95+ |
$20,000 a day | QUANTITY | 0.95+ |
a million | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.93+ |
Octopod | TITLE | 0.93+ |
this morning | DATE | 0.93+ |
first culture | QUANTITY | 0.92+ |
$20 million a year | QUANTITY | 0.92+ |
AWS Startup Showcase | EVENT | 0.9+ |
North Star | ORGANIZATION | 0.9+ |
Opening Panel | Generative AI: Hype or Reality | AWS Startup Showcase S3 E1
(light airy music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase, AI and machine learning. "Top Startups Building Generative AI on AWS." This is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about AI machine learning. We have three great guests Bratin Saha, VP, Vice President of Machine Learning and AI Services at Amazon Web Services. Tom Mason, the CTO of Stability AI, and Aidan Gomez, CEO and co-founder of Cohere. Two practitioners doing startups and AWS. Gentlemen, thank you for opening up this session, this episode. Thanks for coming on. >> Thank you. >> Thank you. >> Thank you. >> So the topic is hype versus reality. So I think we're all on the reality is great, hype is great, but the reality's here. I want to get into it. Generative AI's got all the momentum, it's going mainstream, it's kind of come out of the behind the ropes, it's now mainstream. We saw the success of ChatGPT, opens up everyone's eyes, but there's so much more going on. Let's jump in and get your early perspectives on what should people be talking about right now? What are you guys working on? We'll start with AWS. What's the big focus right now for you guys as you come into this market that's highly active, highly hyped up, but people see value right out of the gate? >> You know, we have been working on generative AI for some time. In fact, last year we released Code Whisperer, which is about using generative AI for software development and a number of customers are using it and getting real value out of it. So generative AI is now something that's mainstream that can be used by enterprise users. And we have also been partnering with a number of other companies. So, you know, stability.ai, we've been partnering with them a lot. We want to be partnering with other companies as well. In seeing how we do three things, you know, first is providing the most efficient infrastructure for generative AI. And that is where, you know, things like Trainium, things like Inferentia, things like SageMaker come in. And then next is the set of models and then the third is the kind of applications like Code Whisperer and so on. So, you know, it's early days yet, but clearly there's a lot of amazing capabilities that will come out and something that, you know, our customers are starting to pay a lot of attention to. >> Tom, talk about your company and what your focus is and why the Amazon Web Services relationship's important for you? >> So yeah, we're primarily committed to making incredible open source foundation models and obviously stable effusions been our kind of first big model there, which we trained all on AWS. We've been working with them over the last year and a half to develop, obviously a big cluster, and bring all that compute to training these models at scale, which has been a really successful partnership. And we're excited to take it further this year as we develop commercial strategy of the business and build out, you know, the ability for enterprise customers to come and get all the value from these models that we think they can get. So we're really excited about the future. We got hugely exciting pipeline for this year with new modalities and video models and wonderful things and trying to solve images for once and for all and get the kind of general value and value proposition correct for customers. So it's a really exciting time and very honored to be part of it. >> It's great to see some of your customers doing so well out there. Congratulations to your team. Appreciate that. Aidan, let's get into what you guys do. What does Cohere do? What are you excited about right now? >> Yeah, so Cohere builds large language models, which are the backbone of applications like ChatGPT and GPT-3. We're extremely focused on solving the issues with adoption for enterprise. So it's great that you can make a super flashy demo for consumers, but it takes a lot to actually get it into billion user products and large global enterprises. So about six months ago, we released our command models, which are some of the best that exist for large language models. And in December, we released our multilingual text understanding models and that's on over a hundred different languages and it's trained on, you know, authentic data directly from native speakers. And so we're super excited to continue pushing this into enterprise and solving those barriers for adoption, making this transformation a reality. >> Just real quick, while I got you there on the new products coming out. Where are we in the progress? People see some of the new stuff out there right now. There's so much more headroom. Can you just scope out in your mind what that looks like? Like from a headroom standpoint? Okay, we see ChatGPT. "Oh yeah, it writes my papers for me, does some homework for me." I mean okay, yawn, maybe people say that, (Aidan chuckles) people excited or people are blown away. I mean, it's helped theCUBE out, it helps me, you know, feed up a little bit from my write-ups but it's not always perfect. >> Yeah, at the moment it's like a writing assistant, right? And it's still super early in the technologies trajectory. I think it's fascinating and it's interesting but its impact is still really limited. I think in the next year, like within the next eight months, we're going to see some major changes. You've already seen the very first hints of that with stuff like Bing Chat, where you augment these dialogue models with an external knowledge base. So now the models can be kept up to date to the millisecond, right? Because they can search the web and they can see events that happened a millisecond ago. But that's still limited in the sense that when you ask the question, what can these models actually do? Well they can just write text back at you. That's the extent of what they can do. And so the real project, the real effort, that I think we're all working towards is actually taking action. So what happens when you give these models the ability to use tools, to use APIs? What can they do when they can actually affect change out in the real world, beyond just streaming text back at the user? I think that's the really exciting piece. >> Okay, so I wanted to tee that up early in the segment 'cause I want to get into the customer applications. We're seeing early adopters come in, using the technology because they have a lot of data, they have a lot of large language model opportunities and then there's a big fast follower wave coming behind it. I call that the people who are going to jump in the pool early and get into it. They might not be advanced. Can you guys share what customer applications are being used with large language and vision models today and how they're using it to transform on the early adopter side, and how is that a tell sign of what's to come? >> You know, one of the things we have been seeing both with the text models that Aidan talked about as well as the vision models that stability.ai does, Tom, is customers are really using it to change the way you interact with information. You know, one example of a customer that we have, is someone who's kind of using that to query customer conversations and ask questions like, you know, "What was the customer issue? How did we solve it?" And trying to get those kinds of insights that was previously much harder to do. And then of course software is a big area. You know, generating software, making that, you know, just deploying it in production. Those have been really big areas that we have seen customers start to do. You know, looking at documentation, like instead of you know, searching for stuff and so on, you know, you just have an interactive way, in which you can just look at the documentation for a product. You know, all of this goes to where we need to take the technology. One of which is, you know, the models have to be there but they have to work reliably in a production setting at scale, with privacy, with security, and you know, making sure all of this is happening, is going to be really key. That is what, you know, we at AWS are looking to do, which is work with partners like stability and others and in the open source and really take all of these and make them available at scale to customers, where they work reliably. >> Tom, Aidan, what's your thoughts on this? Where are customers landing on this first use cases or set of low-hanging fruit use cases or applications? >> Yeah, so I think like the first group of adopters that really found product market fit were the copywriting companies. So one great example of that is HyperWrite. Another one is Jasper. And so for Cohere, that's the tip of the iceberg, like there's a very long tail of usage from a bunch of different applications. HyperWrite is one of our customers, they help beat writer's block by drafting blog posts, emails, and marketing copy. We also have a global audio streaming platform, which is using us the power of search engine that can comb through podcast transcripts, in a bunch of different languages. Then a global apparel brand, which is using us to transform how they interact with their customers through a virtual assistant, two dozen global news outlets who are using us for news summarization. So really like, these large language models, they can be deployed all over the place into every single industry sector, language is everywhere. It's hard to think of any company on Earth that doesn't use language. So it's, very, very- >> We're doing it right now. We got the language coming in. >> Exactly. >> We'll transcribe this puppy. All right. Tom, on your side, what do you see the- >> Yeah, we're seeing some amazing applications of it and you know, I guess that's partly been, because of the growth in the open source community and some of these applications have come from there that are then triggering this secondary wave of innovation, which is coming a lot from, you know, controllability and explainability of the model. But we've got companies like, you know, Jasper, which Aidan mentioned, who are using stable diffusion for image generation in block creation, content creation. We've got Lensa, you know, which exploded, and is built on top of stable diffusion for fine tuning so people can bring themselves and their pets and you know, everything into the models. So we've now got fine tuned stable diffusion at scale, which is democratized, you know, that process, which is really fun to see your Lensa, you know, exploded. You know, I think it was the largest growing app in the App Store at one point. And lots of other examples like NightCafe and Lexica and Playground. So seeing lots of cool applications. >> So much applications, we'll probably be a customer for all you guys. We'll definitely talk after. But the challenges are there for people adopting, they want to get into what you guys see as the challenges that turn into opportunities. How do you see the customers adopting generative AI applications? For example, we have massive amounts of transcripts, timed up to all the videos. I don't even know what to do. Do I just, do I code my API there. So, everyone has this problem, every vertical has these use cases. What are the challenges for people getting into this and adopting these applications? Is it figuring out what to do first? Or is it a technical setup? Do they stand up stuff, they just go to Amazon? What do you guys see as the challenges? >> I think, you know, the first thing is coming up with where you think you're going to reimagine your customer experience by using generative AI. You know, we talked about Ada, and Tom talked about a number of these ones and you know, you pick up one or two of these, to get that robust. And then once you have them, you know, we have models and we'll have more models on AWS, these large language models that Aidan was talking about. Then you go in and start using these models and testing them out and seeing whether they fit in use case or not. In many situations, like you said, John, our customers want to say, "You know, I know you've trained these models on a lot of publicly available data, but I want to be able to customize it for my use cases. Because, you know, there's some knowledge that I have created and I want to be able to use that." And then in many cases, and I think Aidan mentioned this. You know, you need these models to be up to date. Like you can't have it staying. And in those cases, you augmented with a knowledge base, you know you have to make sure that these models are not hallucinating. And so you need to be able to do the right kind of responsible AI checks. So, you know, you start with a particular use case, and there are a lot of them. Then, you know, you can come to AWS, and then look at one of the many models we have and you know, we are going to have more models for other modalities as well. And then, you know, play around with the models. We have a playground kind of thing where you can test these models on some data and then you can probably, you will probably want to bring your own data, customize it to your own needs, do some of the testing to make sure that the model is giving the right output and then just deploy it. And you know, we have a lot of tools. >> Yeah. >> To make this easy for our customers. >> How should people think about large language models? Because do they think about it as something that they tap into with their IP or their data? Or is it a large language model that they apply into their system? Is the interface that way? What's the interaction look like? >> In many situations, you can use these models out of the box. But in typical, in most of the other situations, you will want to customize it with your own data or with your own expectations. So the typical use case would be, you know, these are models are exposed through APIs. So the typical use case would be, you know you're using these APIs a little bit for testing and getting familiar and then there will be an API that will allow you to train this model further on your data. So you use that AI, you know, make sure you augmented the knowledge base. So then you use those APIs to customize the model and then just deploy it in an application. You know, like Tom was mentioning, a number of companies that are using these models. So once you have it, then you know, you again, use an endpoint API and use it in an application. >> All right, I love the example. I want to ask Tom and Aidan, because like most my experience with Amazon Web Service in 2007, I would stand up in EC2, put my code on there, play around, if it didn't work out, I'd shut it down. Is that a similar dynamic we're going to see with the machine learning where developers just kind of log in and stand up infrastructure and play around and then have a cloud-like experience? >> So I can go first. So I mean, we obviously, with AWS working really closely with the SageMaker team, do fantastic platform there for ML training and inference. And you know, going back to your point earlier, you know, where the data is, is hugely important for companies. Many companies bringing their models to their data in AWS on-premise for them is hugely important. Having the models to be, you know, open sources, makes them explainable and transparent to the adopters of those models. So, you know, we are really excited to work with the SageMaker team over the coming year to bring companies to that platform and make the most of our models. >> Aidan, what's your take on developers? Do they just need to have a team in place, if we want to interface with you guys? Let's say, can they start learning? What do they got to do to set up? >> Yeah, so I think for Cohere, our product makes it much, much easier to people, for people to get started and start building, it solves a lot of the productionization problems. But of course with SageMaker, like Tom was saying, I think that lowers a barrier even further because it solves problems like data privacy. So I want to underline what Bratin was saying earlier around when you're fine tuning or when you're using these models, you don't want your data being incorporated into someone else's model. You don't want it being used for training elsewhere. And so the ability to solve for enterprises, that data privacy and that security guarantee has been hugely important for Cohere, and that's very easy to do through SageMaker. >> Yeah. >> But the barriers for using this technology are coming down super quickly. And so for developers, it's just becoming completely intuitive. I love this, there's this quote from Andrej Karpathy. He was saying like, "It really wasn't on my 2022 list of things to happen that English would become, you know, the most popular programming language." And so the barrier is coming down- >> Yeah. >> Super quickly and it's exciting to see. >> It's going to be awesome for all the companies here, and then we'll do more, we're probably going to see explosion of startups, already seeing that, the maps, ecosystem maps, the landscape maps are happening. So this is happening and I'm convinced it's not yesterday's chat bot, it's not yesterday's AI Ops. It's a whole another ballgame. So I have to ask you guys for the final question before we kick off the company's showcasing here. How do you guys gauge success of generative AI applications? Is there a lens to look through and say, okay, how do I see success? It could be just getting a win or is it a bigger picture? Bratin we'll start with you. How do you gauge success for generative AI? >> You know, ultimately it's about bringing business value to our customers. And making sure that those customers are able to reimagine their experiences by using generative AI. Now the way to get their ease, of course to deploy those models in a safe, effective manner, and ensuring that all of the robustness and the security guarantees and the privacy guarantees are all there. And we want to make sure that this transitions from something that's great demos to actual at scale products, which means making them work reliably all of the time not just some of the time. >> Tom, what's your gauge for success? >> Look, I think this, we're seeing a completely new form of ways to interact with data, to make data intelligent, and directly to bring in new revenue streams into business. So if businesses can use our models to leverage that and generate completely new revenue streams and ultimately bring incredible new value to their customers, then that's fantastic. And we hope we can power that revolution. >> Aidan, what's your take? >> Yeah, reiterating Bratin and Tom's point, I think that value in the enterprise and value in market is like a huge, you know, it's the goal that we're striving towards. I also think that, you know, the value to consumers and actual users and the transformation of the surface area of technology to create experiences like ChatGPT that are magical and it's the first time in human history we've been able to talk to something compelling that's not a human. I think that in itself is just extraordinary and so exciting to see. >> It really brings up a whole another category of markets. B2B, B2C, it's B2D, business to developer. Because I think this is kind of the big trend the consumers have to win. The developers coding the apps, it's a whole another sea change. Reminds me everyone use the "Moneyball" movie as example during the big data wave. Then you know, the value of data. There's a scene in "Moneyball" at the end, where Billy Beane's getting the offer from the Red Sox, then the owner says to the Red Sox, "If every team's not rebuilding their teams based upon your model, there'll be dinosaurs." I think that's the same with AI here. Every company will have to need to think about their business model and how they operate with AI. So it'll be a great run. >> Completely Agree >> It'll be a great run. >> Yeah. >> Aidan, Tom, thank you so much for sharing about your experiences at your companies and congratulations on your success and it's just the beginning. And Bratin, thanks for coming on representing AWS. And thank you, appreciate for what you do. Thank you. >> Thank you, John. Thank you, Aidan. >> Thank you John. >> Thanks so much. >> Okay, let's kick off season three, episode one. I'm John Furrier, your host. Thanks for watching. (light airy music)
SUMMARY :
of the AWS Startup Showcase, of the behind the ropes, and something that, you know, and build out, you know, Aidan, let's get into what you guys do. and it's trained on, you know, it helps me, you know, the ability to use tools, to use APIs? I call that the people and you know, making sure the first group of adopters We got the language coming in. Tom, on your side, what do you see the- and you know, everything into the models. they want to get into what you guys see and you know, you pick for our customers. then you know, you again, All right, I love the example. and make the most of our models. And so the ability to And so the barrier is coming down- and it's exciting to see. So I have to ask you guys and ensuring that all of the robustness and directly to bring in new and it's the first time in human history the consumers have to win. and it's just the beginning. I'm John Furrier, your host.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
Tom Mason | PERSON | 0.99+ |
Aidan | PERSON | 0.99+ |
Red Sox | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andrej Karpathy | PERSON | 0.99+ |
Bratin Saha | PERSON | 0.99+ |
December | DATE | 0.99+ |
2007 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Aidan Gomez | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Billy Beane | PERSON | 0.99+ |
Bratin | PERSON | 0.99+ |
Moneyball | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
Ada | PERSON | 0.99+ |
last year | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
yesterday | DATE | 0.99+ |
Two practitioners | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
ChatGPT | TITLE | 0.99+ |
next year | DATE | 0.99+ |
Code Whisperer | TITLE | 0.99+ |
third | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
App Store | TITLE | 0.99+ |
first time | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Inferentia | TITLE | 0.98+ |
EC2 | TITLE | 0.98+ |
GPT-3 | TITLE | 0.98+ |
both | QUANTITY | 0.98+ |
Lensa | TITLE | 0.98+ |
SageMaker | ORGANIZATION | 0.98+ |
three things | QUANTITY | 0.97+ |
Cohere | ORGANIZATION | 0.96+ |
over a hundred different languages | QUANTITY | 0.96+ |
English | OTHER | 0.96+ |
one example | QUANTITY | 0.96+ |
about six months ago | DATE | 0.96+ |
One | QUANTITY | 0.96+ |
first use | QUANTITY | 0.96+ |
SageMaker | TITLE | 0.96+ |
Bing Chat | TITLE | 0.95+ |
one point | QUANTITY | 0.95+ |
Trainium | TITLE | 0.95+ |
Lexica | TITLE | 0.94+ |
Playground | TITLE | 0.94+ |
three great guests | QUANTITY | 0.93+ |
HyperWrite | TITLE | 0.92+ |
John Kreisa, Couchbase | MWC Barcelona 2023
>> Narrator: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music intro) (logo background tingles) >> Hi everybody, welcome back to day three of MWC23, my name is Dave Vellante and we're here live at the Theater of Barcelona, Lisa Martin, David Nicholson, John Furrier's in our studio in Palo Alto. Lot of buzz at the show, the Mobile World Daily Today, front page, Netflix chief hits back in fair share row, Greg Peters, the co-CEO of Netflix, talking about how, "Hey, you guys want to tax us, the telcos want to tax us, well, maybe you should help us pay for some of the content. Your margins are higher, you have a monopoly, you know, we're delivering all this value, you're bundling Netflix in, from a lot of ISPs so hold on, you know, pump the brakes on that tax," so that's the big news. Lockheed Martin, FOSS issues, AI guidelines, says, "AI's not going to take over your job anytime soon." Although I would say, your job's going to be AI-powered for the next five years. We're going to talk about data, we've been talking about the disaggregation of the telco stack, part of that stack is a data layer. John Kreisa is here, the CMO of Couchbase, John, you know, we've talked about all week, the disaggregation of the telco stacks, they got, you know, Silicon and operating systems that are, you know, real time OS, highly reliable, you know, compute infrastructure all the way up through a telemetry stack, et cetera. And that's a proprietary block that's really exploding, it's like the big bang, like we saw in the enterprise 20 years ago and we haven't had much discussion about that data layer, sort of that horizontal data layer, that's the market you play in. You know, Couchbase obviously has a lot of telco customers- >> John: That's right. >> We've seen, you know, Snowflake and others launch telco businesses. What are you seeing when you talk to customers at the show? What are they doing with that data layer? >> Yeah, so they're building applications to drive and power unique experiences for their users, but of course, it all starts with where the data is. So they're building mobile applications where they're stretching it out to the edge and you have to move the data to the edge, you have to have that capability to deliver that highly interactive experience to their customers or for their own internal use cases out to that edge, so seeing a lot of that with Couchbase and with our customers in telco. >> So what do the telcos want to do with data? I mean, they've got the telemetry data- >> John: Yeah. >> Now they frequently complain about the over-the-top providers that have used that data, again like Netflix, to identify customer demand for content and they're mopping that up in a big way, you know, certainly Amazon and shopping Google and ads, you know, they're all using that network. But what do the telcos do today and what do they want to do in the future? They're all talking about monetization, how do they monetize that data? >> Yeah, well, by taking that data, there's insight to be had, right? So by usage patterns and what's happening, just as you said, so they can deliver a better experience. It's all about getting that edge, if you will, on their competition and so taking that data, using it in a smart way, gives them that edge to deliver a better service and then grow their business. >> We're seeing a lot of action at the edge and, you know, the edge can be a Home Depot or a Lowe's store, but it also could be the far edge, could be a, you know, an oil drilling, an oil rig, it could be a racetrack, you know, certainly hospitals and certain, you know, situations. So let's think about that edge, where there's maybe not a lot of connectivity, there might be private networks going in, in the future- >> John: That's right. >> Private 5G networks. What's the data flow look like there? Do you guys have any customers doing those types of use cases? >> Yeah, absolutely. >> And what are they doing with the data? >> Yeah, absolutely, we've got customers all across, so telco and transportation, all kinds of service delivery and healthcare, for example, we've got customers who are delivering healthcare out at the edge where they have a remote location, they're able to deliver healthcare, but as you said, there's not always connectivity, so they need to have the applications, need to continue to run and then sync back once they have that connectivity. So it's really having the ability to deliver a service, reliably and then know that that will be synced back to some central server when they have connectivity- >> So the processing might occur where the data- >> Compute at the edge. >> How do you sync back? What is that technology? >> Yeah, so there's, so within, so Couchbase and Couchbase's case, we have an autonomous sync capability that brings it back to the cloud once they get back to whether it's a private network that they want to run over, or if they're doing it over a public, you know, wifi network, once it determines that there's connectivity and, it can be peer-to-peer sync, so different edge apps communicating with each other and then ultimately communicating back to a central server. >> I mean, the other theme here, of course, I call it the software-defined telco, right? But you got to have, you got to run on something, got to have hardware. So you see companies like AWS putting Outposts, out to the edge, Outposts, you know, doesn't really run a lot of database to mind, I mean, it runs RDS, you know, maybe they're going to eventually work with companies like... I mean, you're a partner of AWS- >> John: We are. >> Right? So do you see that kind of cloud infrastructure that's moving to the edge? Do you see that as an opportunity for companies like Couchbase? >> Yeah, we do. We see customers wanting to push more and more of that compute out to the edge and so partnering with AWS gives us that opportunity and we are certified on Outpost and- >> Oh, you are? >> We are, yeah. >> Okay. >> Absolutely. >> When did that, go down? >> That was last year, but probably early last year- >> So I can run Couchbase at the edge, on Outpost? >> Yeah, that's right. >> I mean, you know, Outpost adoption has been slow, we've reported on that, but are you seeing any traction there? Are you seeing any nibbles? >> Starting to see some interest, yeah, absolutely. And again, it has to be for the right use case, but again, for service delivery, things like healthcare and in transportation, you know, they're starting to see where they want to have that compute, be very close to where the actions happen. >> And you can run on, in the data center, right? >> That's right. >> You can run in the cloud, you know, you see HPE with GreenLake, you see Dell with Apex, that's essentially their Outposts. >> Yeah. >> They're saying, "Hey, we're going to take our whole infrastructure and make it as a service." >> Yeah, yeah. >> Right? And so you can participate in those environments- >> We do. >> And then so you've got now, you know, we call it supercloud, you've got the on-prem, you've got the, you can run in the public cloud, you can run at the edge and you want that consistent experience- >> That's right. >> You know, from a data layer- >> That's right. >> So is that really the strategy for a data company is taking or should be taking, that horizontal layer across all those use cases? >> You do need to think holistically about it, because you need to be able to deliver as a, you know, as a provider, wherever the customer wants to be able to consume that application. So you do have to think about any of the public clouds or private networks and all the way to the edge. >> What's different John, about the telco business versus the traditional enterprise? >> Well, I mean, there's scale, I mean, one thing they're dealing with, particularly for end user-facing apps, you're dealing at a very very high scale and the expectation that you're going to deliver a very interactive experience. So I'd say one thing in particular that we are focusing on, is making sure we deliver that highly interactive experience but it's the scale of the number of users and customers that they have, and the expectation that your application's always going to work. >> Speaking of applications, I mean, it seems like that's where the innovation is going to come from. We saw yesterday, GSMA announced, I think eight APIs telco APIs, you know, we were talking on theCUBE, one of the analysts was like, "Eight, that's nothing," you know, "What do these guys know about developers?" But you know, as Daniel Royston said, "Eight's better than zero." >> Right? >> So okay, so we're starting there, but the point being, it's all about the apps, that's where the innovation's going to come from- >> That's right. >> So what are you seeing there, in terms of building on top of the data app? >> Right, well you have to provide, I mean, have to provide the APIs and the access because it is really, the rubber meets the road, with the developers and giving them the ability to create those really rich applications where they want and create the experiences and innovate and change the way that they're giving those experiences. >> Yeah, so what's your relationship with developers at Couchbase? >> John: Yeah. >> I mean, talk about that a little bit- >> Yeah, yeah, so we have a great relationship with developers, something we've been investing more and more in, in terms of things like developer relations teams and community, Couchbase started in open source, continue to be based on open source projects and of course, those are very developer centric. So we provide all the consistent APIs for developers to create those applications, whether it's something on Couchbase Lite, which is our kind of edge-based database, or how they can sync that data back and we actually automate a lot of that syncing which is a very difficult developer task which lends them to one of the developer- >> What I'm trying to figure out is, what's the telco developer look like? Is that a developer that comes from the enterprise and somebody comes from the blockchain world, or AI or, you know, there really doesn't seem to be a lot of developer talk here, but there's a huge opportunity. >> Yeah, yeah. >> And, you know, I feel like, the telcos kind of remind me of, you know, a traditional legacy company trying to get into the developer world, you know, even Oracle, okay, they bought Sun, they got Java, so I guess they have developers, but you know, IBM for years tried with Bluemix, they had to end up buying Red Hat, really, and that gave them the developer community. >> Yep. >> EMC used to have a thing called EMC Code, which was a, you know, good effort, but eh. And then, you know, VMware always trying to do that, but, so as you move up the stack obviously, you have greater developer affinity. Where do you think the telco developer's going to come from? How's that going to evolve? >> Yeah, it's interesting, and I think they're... To kind of get to your first question, I think they're fairly traditional enterprise developers and when we break that down, we look at it in terms of what the developer persona is, are they a front-end developer? Like they're writing that front-end app, they don't care so much about the infrastructure behind or are they a full stack developer and they're really involved in the entire application development lifecycle? Or are they living at the backend and they're really wanting to just focus in on that data layer? So we lend towards all of those different personas and we think about them in terms of the APIs that we create, so that's really what the developers are for telcos is, there's a combination of those front-end and full stack developers and so for them to continue to innovate they need to appeal to those developers and that's technology, like Couchbase, is what helps them do that. >> Yeah and you think about the Apples, you know, the app store model or Apple sort of says, "Okay, here's a developer kit, go create." >> John: Yeah. >> "And then if it's successful, you're going to be successful and we're going to take a vig," okay, good model. >> John: Yeah. >> I think I'm hearing, and maybe I misunderstood this, but I think it was the CEO or chairman of Ericsson on the day one keynotes, was saying, "We are going to monetize the, essentially the telemetry data, you know, through APIs, we're going to charge for that," you know, maybe that's not the best approach, I don't know, I think there's got to be some innovation on top. >> John: Yeah. >> Now maybe some of these greenfield telcos are going to do like, you take like a dish networks, what they're doing, they're really trying to drive development layers. So I think it's like this wild west open, you know, community that's got to be formed and right now it's very unclear to me, do you have any insights there? >> I think it is more, like you said, Wild West, I think there's no emerging standard per se for across those different company types and sort of different pieces of the industry. So consequently, it does need to form some more standards in order to really help it grow and I think you're right, you have to have the right APIs and the right access in order to properly monetize, you have to attract those developers or you're not going to be able to monetize properly. >> Do you think that if, in thinking about your business and you know, you've always sold to telcos, but now it's like there's this transformation going on in telcos, will that become an increasingly larger piece of your business or maybe even a more important piece of your business? Or it's kind of be steady state because it's such a slow moving industry? >> No, it is a big and increasing piece of our business, I think telcos like other enterprises, want to continue to innovate and so they look to, you know, technologies like, Couchbase document database that allows them to have more flexibility and deliver the speed that they need to deliver those kinds of applications. So we see a lot of migration off of traditional legacy infrastructure in order to build that new age interface and new age experience that they want to deliver. >> A lot of buzz in Silicon Valley about open AI and Chat GPT- >> Yeah. >> You know, what's your take on all that? >> Yeah, we're looking at it, I think it's exciting technology, I think there's a lot of applications that are kind of, a little, sort of innovate traditional interfaces, so for example, you can train Chat GPT to create code, sample code for Couchbase, right? You can go and get it to give you that sample app which gets you a headstart or you can actually get it to do a better job of, you know, sorting through your documentation, like Chat GPT can do a better job of helping you get access. So it improves the experience overall for developers, so we're excited about, you know, what the prospect of that is. >> So you're playing around with it, like everybody is- >> Yeah. >> And potentially- >> Looking at use cases- >> Ways tO integrate, yeah. >> Hundred percent. >> So are we. John, thanks for coming on theCUBE. Always great to see you, my friend. >> Great, thanks very much. >> All right, you're welcome. All right, keep it right there, theCUBE will be back live from Barcelona at the theater. SiliconANGLE's continuous coverage of MWC23. Go to siliconangle.com for all the news, theCUBE.net is where all the videos are, keep it right there. (cheerful upbeat music outro)
SUMMARY :
that drive human progress. that's the market you play in. We've seen, you know, and you have to move the data to the edge, you know, certainly Amazon that edge, if you will, it could be a racetrack, you know, Do you guys have any customers the applications, need to over a public, you know, out to the edge, Outposts, you know, of that compute out to the edge in transportation, you know, You can run in the cloud, you know, and make it as a service." to deliver as a, you know, and the expectation that But you know, as Daniel Royston said, and change the way that they're continue to be based on open or AI or, you know, there developer world, you know, And then, you know, VMware and so for them to continue to innovate about the Apples, you know, and we're going to take data, you know, through APIs, are going to do like, you and the right access in and so they look to, you know, so we're excited about, you know, yeah. Always great to see you, Go to siliconangle.com for all the news,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Greg Peters | PERSON | 0.99+ |
Daniel Royston | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ericsson | ORGANIZATION | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
John Kreisa | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
GSMA | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
Lowe | ORGANIZATION | 0.99+ |
first question | QUANTITY | 0.99+ |
Lockheed Martin | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Oracle | ORGANIZATION | 0.99+ |
telcos | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
Eight | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Chat GPT | TITLE | 0.99+ |
Hundred percent | QUANTITY | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
telco | ORGANIZATION | 0.98+ |
Couchbase | ORGANIZATION | 0.98+ |
John Furrier | PERSON | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
Apex | ORGANIZATION | 0.98+ |
Home Depot | ORGANIZATION | 0.98+ |
early last year | DATE | 0.98+ |
Barcelona | LOCATION | 0.98+ |
20 years ago | DATE | 0.98+ |
MWC23 | EVENT | 0.97+ |
Bluemix | ORGANIZATION | 0.96+ |
Sun | ORGANIZATION | 0.96+ |
SiliconANGLE | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
GreenLake | ORGANIZATION | 0.94+ |
Apples | ORGANIZATION | 0.94+ |
Snowflake | ORGANIZATION | 0.93+ |
Outpost | ORGANIZATION | 0.93+ |
VMware | ORGANIZATION | 0.93+ |
zero | QUANTITY | 0.93+ |
EMC | ORGANIZATION | 0.91+ |
day three | QUANTITY | 0.9+ |
today | DATE | 0.89+ |
Mobile World Daily Today | TITLE | 0.88+ |
Wild West | ORGANIZATION | 0.88+ |
theCUBE.net | OTHER | 0.87+ |
app store | TITLE | 0.86+ |
one thing | QUANTITY | 0.86+ |
EMC Code | TITLE | 0.86+ |
Couchbase | TITLE | 0.85+ |
Jeetu Patel, Cisco | MWC Barcelona 2023
>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (bright upbeat music plays) >> Welcome back to Barcelona, everybody. You're watching theCUBE's coverage of MWC '23, my name is Dave Vellante. Just left a meeting with the CEO of Cisco, Chuck Robbins, to meet with Jeetu Patel, who's our Executive Vice President and General Manager of security and collaboration at Cisco. Good to see you. >> You never leave a meeting with Chuck Robbins to meet with Jeetu Patel. >> Well, I did. >> That's a bad idea. >> Walked right out. I said, hey, I got an interview to do, right? So, and I'm excited about this. Thanks so much for coming on. >> Thank you for having me. It's a pleasure. >> So, I mean you run such an important part of the business. I mean, obviously the collaboration business but also security. So many changes going on in the security market. Maybe we could start there. I mean, there hasn't been a ton of security talk here Jeetu, because I think it's almost assumed. It was 45 minutes into the keynote yesterday before anybody even mentioned security. >> Huh. >> Right? And so, but it's the most important topic in the enterprise IT world. And obviously is important here. So why is it you think that it's not the first topic that people mention. >> You know, it's a complicated subject area and it's intimidating. And actually that's one of the things that the industry screwed up on. Where we need to simplify security so it actually gets to be relatable for every person on the planet. But, if you think about what's happening in security, it's not just important for business it's critical infrastructure that if you had a breach, you know lives are cost now. Because hospitals could go down, your water supply could go down, your electricity could go down. And so it's one of these things that we have to take pretty seriously. And, it's 51% of all breaches happen because of negligence, not because of malicious intent. >> It's that low. Interesting. I always- >> Someone else told me the same thing, that they though it'd be higher, yeah. >> I always say bad user behavior is going to trump good security every time. >> Every single time. >> You can't beat it. But, you know, it's funny- >> Jeetu: Every single time. >> Back, the earlier part of last decade, you could see that security was becoming a board level issue. It became, it was on the agenda every quarter. And, I remember doing some research at the time, and I asked, I was interviewing Robert Gates, former Defense Secretary, and I asked him, yeah, but we're getting attacked but don't we have the best offense? Can't we have the best technology? He said, yeah but we have so much critical infrastructure the risks to United States are higher. So we have to be careful about how we use security as an offensive weapon, you know? And now you're seeing the future of war involves security and what's going on in Ukraine. It's a whole different ballgame. >> It is, and the scales always tip towards the adversary, not towards the defender, because you have to be right every single time. They have to be right once. >> Yeah. And, to the other point, about bad user behavior. It's going now beyond the board level, to it's everybody's responsibility. >> That's right. >> And everybody's sort of aware of it, everybody's been hacked. And, that's where it being such a complicated topic is problematic. >> It is, and it's actually, what got us this far will not get us to where we need to get to if we don't simplify security radically. You know? The experience has to be almost invisible. And what used to be the case was sophistication had to get to a certain level, for efficacy to go up. But now, that sophistication has turned to complexity. And there's an inverse relationship between complexity and efficacy. So the simpler you make security, the more effective it gets. And so I'll give you an example. We have this great kind of innovation we've done around passwordless, right? Everyone hates passwords. You shouldn't have passwords in 2023. But, when you get to passwordless security, not only do you reduce a whole lot of friction for the user, you actually make the system safer. And that's what you need to do, is you have to make it simpler while making it more effective. And, I think that's what the future is going to hold. >> Yeah, and CISOs tell me that they're, you know zero trust before the pandemic was like, yeah, yeah zero trust. And now it's like a mandate. >> Yeah. >> Every CISO you talk to says, yes we're implementing a zero trust architecture. And a big part of that is that, if they can confirm zero trust, they can get to market a lot faster with revenue generating or critical projects. And many projects as we know are being pushed back, >> Yeah. >> you know? 'Cause of the macro. But, projects that drive revenue and value they want to accelerate, and a zero trust confirmation allows people to rubber stamp it and go faster. >> And the whole concept of zero trust is least privileged access, right? But what we want to make sure that we get to is continuous assessment of least privileged access, not just a one time at login. >> Dave: 'Cause things change so frequently. >> So, for example, if you happen to be someone that's logged into the system and now you start doing some anomalous behavior that doesn't sound like Dave, we want to be able to intercept, not just do it at the time that you're authenticating Dave to come in. >> So you guys got a good business. I mentioned the macro before. >> Yeah. >> The big theme is consolidating redundant vendors. So a company with a portfolio like Cisco's obviously has an advantage there. You know, you guys had great earnings. Palo Alto is another company that can consolidate. Tom Gillis, great pickup. Guy's amazing, you know? >> Love Tom. >> Great respect. Just had a little webinar session with him, where he was geeking out with the analyst and so- >> Yeah, yeah. >> Learned a lot there. Now you guys have some news, at the event event with Mercedes? >> We do. >> Take us through that, and I want to get your take on hybrid work and what's happening there. But what's going on with Mercedes? >> Yeah so look, it all actually stems from the hybrid work story, which is the future is going to be hybrid, people are going to work in mixed mode. Sometimes you'll be in the office, sometimes at home, sometimes somewhere in the middle. One of the places that people are working more and more from is their cars. And connected cars are getting to be a reality. And in fact, cars sometimes become an extension of your home office. And many a times I have found myself in a parking lot, because I didn't have enough time to get home and I was in a parking lot taking a conference call. And so we've made that section easier, because we have now partnered with Mercedes. And they aren't the first partner, but they're a very important partner where we are going to have Webex available, through the connected car, natively in Mercedes. >> Ah, okay. So I could take a call, I can do it all the time. I find good service, pull over, got to take the meeting. >> Yeah. >> I don't want to be driving. I got to concentrate. >> That's right. >> You know, or sometimes, I'll have the picture on and it's not good. >> That's right. >> Okay, so it'll be through the console, and all through the internet? >> It'll be through the console. And many people ask me like, how's safety going to work over that? Because you don't want to do video calls while you're driving. Exactly right. So when you're driving, the video automatically turns off. And you'll have audio going on, just like a conference call. But the moment you stop and put it in park, you can have video turned on. >> Now, of course the whole hybrid work trend, we, seems like a long time ago but it doesn't, you know? And it's really changed the security dynamic as well, didn't it? >> It has, it has. >> I mean, immediately you had to go protect new endpoints. And those changes, I felt at the time, were permanent. And I think it's still the case, but there's an equilibrium now happening. People as they come back to the office, you see a number of companies are mandating back to work. Maybe the central offices, or the headquarters, were underfunded. So what's going on out there in terms of that balance? >> Well firstly, there's no unanimous consensus on the way that the future is going to be, except that it's going to be hybrid. And the reason I say that is some companies mandate two days a week, some companies mandate five days a week, some companies don't mandate at all. Some companies are completely remote. But whatever way you go, you want to make sure that regardless of where you're working from, people can have an inclusive experience. You know? And, when they have that experience, you want to be able to work from a managed device or an unmanaged device, from a corporate network or from a Starbucks, from on the road or stationary. And whenever you do any of those things, we want to make sure that security is always handled, and you don't have to worry about that. And so the way that we say it is the company that created the VPN, which is Cisco, is the one that's going to kill it. Because what we'll do is we'll make it simple enough so that you don't, you as a user, never have to worry about what connection you're going to use to dial in to what app. You will have one, seamless way to dial into any application, public application, private application, or directly to the internet. >> Yeah, I got a love, hate with my VPN. I mean, it's protecting me, but it's in the way a lot. >> It's going to be simple as ever. >> Do you have kids? >> I do, I have a 12 year old daughter. >> Okay, so not quite high school age yet. She will be shortly. >> No, but she's already, I'm not looking forward to high school days, because she has a very, very strong sense of debate and she wins 90% of the arguments. >> So when my kids were that age, I've got four kids, but the local high school banned Wikipedia, they can't use Wikipedia for research. Many colleges, I presume high schools as well, they're banning Chat GPT, can't use it. Now at the same time, I saw recently on Medium a Wharton school professor said he's mandating Chat GPT to teach his students how to prompt in progressively more sophisticated prompts, because the future is interacting with machines. You know, they say in five years we're all going to be interacting in some way, shape, or form with AI. Maybe we already are. What's the intersection between AI and security? >> So a couple very, very consequential things. So firstly on Chat GPT, the next generation skill is going to be to learn how to go out and have the right questions to ask, which is the prompt revolution that we see going on right now. But if you think about what's happening in security, and there's a few areas which are, firstly 3,500 hundred vendors in this space. On average, most companies have 50 to 70 vendors in security. Not a single vendor owns more than 10% of the market. You take out a couple vendors, no one owns more than 5%. Highly fractured market. That's a problem. Because it's untenable for companies to go out and manage 70 policy engines. And going out and making sure that there's no contention. So as you move forward, one of the things that Chat GPT will be really good for is it's fundamentally going to change user experiences, for how software gets built. Because rather than it being point and click, it's going to be I'm going to provide an instruction and it's going to tell me what to do in natural language. Imagine Dave, when you joined a company if someone said, hey give Dave all the permissions that he needs as a direct report to Chuck. And instantly you would get all of the permissions. And it would actually show up in a screen that says, do you approve? And if you hit approve, you're done. The interfaces of the future will get more natural language kind of dominated. The other area that you'll see is the sophistication of attacks and the surface area of attacks is increasing quite exponentially. And we no longer can handle this with human scale. You have to handle it in machine scale. So detecting breaches, making sure that you can effectively and quickly respond in real time to the breaches, and remediate those breaches, is all going to happen through AI and machine learning. >> So, I agree. I mean, just like Amazon turned the data center into an API, I think we're now going to be interfacing with technology through human language. >> That's right. >> I mean I think it's a really interesting point you're making. Now, from a security standpoint as well, I mean, the state of the art today in my email is be careful, this person's outside your organization. I'm like, yeah I know. So it's a good warning sign, but it's really not automated in any way. So two part question. One is, can AI help? You know, with the phishing, obviously it can, but the bad guys have AI too. >> Yeah. >> And they're probably going to be smarter than I am about using it. >> Yeah, and by the way, Talos is our kind of threat detection and response >> Yes. >> kind of engine. And, they had a great kind of piece that came out recently where they talked about this, where Chat GPT, there is going to be more sophistication of the folks that are the bad actors, the adversaries in using Chat GPT to have more sophisticated phishing attacks. But today it's not something that is fundamentally something that we can't handle just yet. But you still need to do the basic hygiene. That's more important. Over time, what you will see is attacks will get more bespoke. And in order, they'll get more sophisticated. And, you will need to have better mechanisms to know that this was actually not a human being writing that to you, but it was actually a machine pretending to be a human being writing something to you. And that you'll have to be more clever about it. >> Oh interesting. >> And so, you will see attacks get more bespoke and we'll have to get smarter and smarter about it. >> The other thing I wanted to ask you before we close is you're right on. I mean you take the top security vendors and they got a single digit market share. And it's like it's untenable for organizations, just far too many tools. We have a partner at ETR, they do quarterly survey research and one of the things they do is survey emerging technology companies. And when we look at in the security sector just the number of emerging technology companies that are focused on cybersecurity is as many as there are out there already. And so, there's got to be consolidation. Maybe that's through M & A. I mean, what do you think happens? Are company's going to go out of business? There's going to be a lot of M & A? You've seen a lot of companies go private. You know, the big PE companies are sucking up all these security companies and may be ready to spit 'em out and go back public. How do you see the landscape? You guys are obviously an inquisitive company. What are your thoughts on that? >> I think there will be a little bit of everything. But the biggest change that you'll see is a shift that's going to happen with an integrated platform, rather than point solution vendors. So what's going to happen is the market's going to consolidate towards very few, less than a half a dozen, integrated platforms. We believe Cisco is going to be one. Microsoft will be one. There'll be others over there. But these, this platform will essentially be able to provide a unified kind of policy engine across a multitude of different services to protect multiple different entities within the organization. And, what we found is that platform will also be something that'll provide, through APIs, the ability for third parties to be able to get their technology incorporated in, and their telemetry ingested. So we certainly intend to do that. We don't believe, we are not arrogant enough to think that every single new innovation will be built by us. When there's someone else who has built that, we want to make sure that we can ingest that telemetry as well, because the real enemy is not the competitor. The real enemy is the adversary. And we all have to get together, so that we can keep humanity safe. >> Do you think there's been enough collaboration in the industry? I mean- >> Jeetu: Not nearly enough. >> We've seen companies, security companies try to monetize private data before, instead of maybe sharing it with competitors. And so I think the industry can do better there. >> Well I think the industry can do better. And we have this concept called the security poverty line. And the security poverty line is the companies that fall below the security poverty line don't have either the influence or the resources or the know how to keep themselves safe. And when they go unsafe, everyone else that communicates with them also gets that exposure. So it is in our collective interest for all of us to make sure that we come together. And, even if Palo Alto might be a competitor of ours, we want to make sure that we invite them to say, let's make sure that we can actually exchange telemetry between our companies. And we'll continue to do that with as many companies that are out there, because actually that's better for the market, that's better for the world. >> The enemy of the enemy is my friend, kind of thing. >> That's right. >> Now, as it relates to, because you're right. I mean I, I see companies coming up, oh, we do IOT security. I'm like, okay, but what about cloud security? Do you that too? Oh no, that's somebody else. But, so that's another stove pipe. >> That's a huge, huge advantage of coming with someone like Cisco. Because we actually have the entire spectrum, and the broadest portfolio in the industry of anyone else. From the user, to the device, to the network, to the applications, we provide the entire end-to-end story for security, which then has the least amount of cracks that you can actually go out and penetrate through. The biggest challenges that happen in security is you've got way too many policy engines with way too much contention between the policies from these different systems. And eventually there's a collision course. Whereas with us, you've actually got a broad portfolio that operates as one platform. >> We were talking about the cloud guys earlier. You mentioned Microsoft. They're obviously a big competitor in the security space. >> Jeetu: But also a great partner. >> So that's right. To my opinion, the cloud has been awesome as a first line of defense if you will. But the shared responsibility model it's different for each cloud, right? So, do you feel that those guys are working together or will work together to actually improve? 'Cause I don't see that yet. >> Yeah so if you think about, this is where we feel like we have a structural advantage in this, because what does a company like Cisco become in the future? I think as the world goes multicloud and hybrid cloud, what'll end up happening is there needs to be a way, today all the CSPs provide everything from storage to computer network, to security, in their own stack. If we can abstract networking and security above them, so that we can acquire and steer any and all traffic with our service providers and steer it to any of those CSPs, and make sure that the security policy transcends those clouds, you would actually be able to have the public cloud economics without the public cloud lock-in. >> That's what we call super cloud Jeetu. It's securing the super cloud. >> Yeah. >> Hey, thanks so much for coming to theCUBE. >> Thank you for having me. >> Really appreciate you coming on our editorial program. >> Such a pleasure. >> All right, great to see you again. >> Cheers. >> All right, keep it right there. Dave Vellante with David Nicholson and Lisa Martin. We'll be back, right after this short break from MWC '23 live, in the Fira, in Barcelona. (bright music resumes) (music fades out)
SUMMARY :
that drive human progress. Chuck Robbins, to meet with Jeetu Patel, meet with Jeetu Patel. interview to do, right? Thank you for having I mean, obviously the And so, but it's the most important topic And actually that's one of the things It's that low. Someone else is going to trump good But, you know, it's funny- the risks to United States are higher. It is, and the scales always It's going now beyond the board level, And everybody's So the simpler you make security, Yeah, and CISOs tell me that they're, And a big part of that is that, 'Cause of the macro. And the whole concept of zero trust Dave: 'Cause things change so not just do it at the time I mentioned the macro before. You know, you guys had great earnings. geeking out with the analyst and so- at the event event with Mercedes? But what's going on with Mercedes? One of the places that people I can do it all the time. I got to concentrate. the picture on and it's not good. But the moment you stop or the headquarters, were underfunded. is the one that's going to kill it. but it's in the way a lot. Okay, so not quite high school age yet. to high school days, because she has because the future is and have the right questions to ask, I mean, just like Amazon I mean, the state of the going to be smarter than folks that are the bad actors, you will see attacks get more bespoke And so, there's got to be consolidation. is the market's going to And so I think the industry or the know how to keep themselves safe. The enemy of the enemy is my friend, Do you that too? and the broadest portfolio in competitor in the security space. But the shared responsibility model and make sure that the security policy It's securing the super cloud. to theCUBE. Really appreciate you coming great to see you again. the Fira, in Barcelona.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeetu Patel | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Mercedes | ORGANIZATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Tom Gillis | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Robert Gates | PERSON | 0.99+ |
50 | QUANTITY | 0.99+ |
Chuck | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Starbucks | ORGANIZATION | 0.99+ |
Chuck Robbins | PERSON | 0.99+ |
51% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
more than 10% | QUANTITY | 0.99+ |
45 minutes | QUANTITY | 0.99+ |
two part | QUANTITY | 0.99+ |
one time | QUANTITY | 0.99+ |
four kids | QUANTITY | 0.99+ |
Jeetu | PERSON | 0.99+ |
five years | QUANTITY | 0.99+ |
less than a half a dozen | QUANTITY | 0.99+ |
first topic | QUANTITY | 0.99+ |
3,500 hundred vendors | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
two days a week | QUANTITY | 0.99+ |
70 vendors | QUANTITY | 0.99+ |
first partner | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
five days a week | QUANTITY | 0.98+ |
Ukraine | LOCATION | 0.98+ |
one platform | QUANTITY | 0.98+ |
12 year old | QUANTITY | 0.98+ |
more than 5% | QUANTITY | 0.98+ |
each cloud | QUANTITY | 0.98+ |
MWC '23 | EVENT | 0.98+ |
first line | QUANTITY | 0.98+ |
pandemic | EVENT | 0.97+ |
Chat GPT | TITLE | 0.96+ |
one | QUANTITY | 0.96+ |
last decade | DATE | 0.96+ |
Fira | LOCATION | 0.95+ |
single vendor | QUANTITY | 0.95+ |
Chat GPT | TITLE | 0.92+ |
Webex | ORGANIZATION | 0.92+ |
firstly | QUANTITY | 0.91+ |
70 policy engines | QUANTITY | 0.89+ |
zero trust | QUANTITY | 0.87+ |
couple vendors | QUANTITY | 0.86+ |
Alto | LOCATION | 0.86+ |
United States | LOCATION | 0.84+ |
theCUBE | ORGANIZATION | 0.82+ |
single time | QUANTITY | 0.82+ |
M & A. | ORGANIZATION | 0.82+ |
cloud | ORGANIZATION | 0.8+ |
Srinivas Mukkamala & David Shepherd | Ivanti
(gentle music) >> Announcer: "theCube's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) (logo whooshing) >> Hey, everyone, welcome back to "theCube's" coverage of day one, MWC23 live from Barcelona, Lisa Martin here with Dave Vellante. Dave, we've got some great conversations so far This is the biggest, most packed show I've been to in years. About 80,000 people here so far. >> Yeah, down from its peak of 108, but still pretty good. You know, a lot of folks from China come to this show, but with the COVID situation in China, that's impacted the attendance, but still quite amazing. >> Amazing for sure. We're going to be talking about trends and mobility, and all sorts of great things. We have a couple of guests joining us for the first time on "theCUBE." Please welcome Dr. Srinivas Mukkamala or Sri, chief product officer at Ivanti. And Dave Shepherd, VP Ivanti. Guys, welcome to "theCUBE." Great to have you here. >> Thank you. >> So, day one of the conference, Sri, we'll go to you first. Talk about some of the trends that you're seeing in mobility. Obviously, the conference renamed from Mobile World Congress to MWC mobility being part of it, but what are some of the big trends? >> It's interesting, right? I mean, I was catching up with Dave. The first thing is from the keynotes, it took 45 minutes to talk about security. I mean, it's quite interesting when you look at the shore floor. We're talking about Edge, we're talking about 5G, the whole evolution. And there's also the concept of are we going into the Cloud? Are we coming back from the Cloud, back to the Edge? They're really two different things. Edge is all decentralized while you recompute. And one thing I observed here is they're talking about near real-time reality. When you look at automobiles, when you look at medical, when you look at robotics, you can't have things processed in the Cloud. It'll be too late. Because you got to make millisecond-based stations. That's a big trend for me. When I look at staff... Okay, the compute it takes to process in the Cloud versus what needs to happen on-prem, on device, is going to revolutionize the way we think about mobility. >> Revolutionize. David, what are some of the things that you're saying? Do you concur? >> Yeah, 100%. I mean, look, just reading some of the press recently, they're predicting 22 billion IoT devices by 2024. Everything Sri just talked about there. It's growing exponentially. You know, problems we have today are a snapshot. We're probably in the slowest place we are today. Everything's just going to get faster and faster and faster. So it's a, yeah, 100% concur with that. >> You know, Sri, on your point, so Jose Maria Alvarez, the CEO of Telefonica, said there are three pillars of the future of telco, low latency, programmable networks, and Cloud and Edge. So, as to your point, Cloud and low latency haven't gone hand in hand. But the Cloud guys are saying, "All right, we're going to bring the Cloud to the Edge." That's sort of an interesting dynamic. We're going to bypass them. We heard somebody, another speaker say, "You know, Cloud can't do it alone." You know? (chuckles) And so, it's like these worlds need each other in a way, don't they? >> Definitely right. So that's a fantastic way to look at it. The Cloud guys can say, "We're going to come closer to where the computer is." And if you really take a look at it with data localization, where are we going to put the Cloud in, right? I mean, so the data sovereignty becomes a very interesting thing. The localization becomes a very interesting thing. And when it comes to security, it gets completely different. I mean, we talked about moving everything to a centralized compute, really have massive processing, and give you the addition back wherever you are. Whereas when you're localized, I have to process everything within the local environment. So there's already a conflict right there. How are we going to address that? >> Yeah. So another statement, I think, it was the CEO of Ericsson, he was kind of talking about how the OTT guys have heard, "We can't let that happen again. And we're going to find new ways to charge for the network." Basically, he's talking about monetizing the API access. But I'm interested in what you're hearing from customers, right? 'Cause our mindset is, what value you're going to give to customers that they're going to pay for, versus, "I got this data I'm going to charge developers for." But what are you hearing from customers? >> It's amazing, Dave, the way you're looking at it, right? So if we take a look at what we were used to perpetual, and we said we're going to move to a subscription, right? I mean, everybody talks about subscription economy. Telcos on the other hand, had subscription economy for a long time, right? They were always based on usage, right? It's a usage economy. But today, we are basically realizing on compute. We haven't even started charging for compute. If you go to AWS, go to Azure, go to GCP, they still don't quite charge you for actual compute, right? It's kind of, they're still leaning on it. So think about API-based, we're going to break the bank. What people don't realize is, we do millions of API calls for any high transaction environment. A consumer can't afford that. What people don't realize is... I don't know how you're going to monetize. Even if you charge a cent a call, that is still going to be hundreds and thousands of dollars a day. And that's where, if you look at what you call low-code no-code motion? You see a plethora of companies being built on that. They're saying, "Hey, you don't have to write code. I'll give you authentication as a service. What that means is, Every single time you call my API to authenticate a user, I'm going to charge you." So just imagine how many times we authenticate on a single day. You're talking a few dozen times. And if I have to pay every single time I authenticate... >> Real friction in the marketplace, David. >> Yeah, and I tell you what. It's a big topic, right? And it's a topic that we haven't had to deal with at the Edge before, and we hear it probably daily really, complexity. The complexity's growing all the time. That means that we need to start to get insight, visibility. You know? I think a part of... Something that came out of the EU actually this week, stated, you know, there's a cyber attack every 11 seconds. That's fast, right? 2016, that was 40 seconds. So actually that speed I talked about earlier, everything Sri says that's coming down to the Edge, we want to embrace the Edge and that is the way we're going to move. But customers are mindful of the complexity that's involved in that. And that, you know, lens thought to how are we going to deal with those complexities. >> I was just going to ask you, how are you planning to deal with those complexities? You mentioned one ransomware attack every 11 seconds. That's down considerably from just a few years ago. Ransomware is a household word. It's no longer, "Are we going to get attacked?" It's when, it's to what extent, it's how much. So how is Ivanti helping customers deal with some of the complexities, and the changes in the security landscape? >> Yeah. Shall I start on that one first? Yeah, look, we want to give all our customers and perspective customers full visibility of their environment. You know, devices that are attached to the environment. Where are they? What are they doing? How often are we going to look for those devices? Not only when we find those devices. What applications are they running? Are those applications secure? How are we going to manage those applications moving forward? And overall, wrapping it round, what kind of service are we going to do? What processes are we going to put in place? To Sri's point, the low-code no-code angle. How do we build processes that protect our organization? But probably a point where I'll pass to Sri in a moment is how do we add a level of automation to that? How do we add a level of intelligence that doesn't always require a human to be fixing or remediating a problem? >> To Sri, you mentioned... You're right, the keynote, it took 45 minutes before it even mentioned security. And I suppose it's because they've historically, had this hardened stack. Everything's controlled and it's a safe environment. And now that's changing. So what would you add? >> You know, great point, right? If you look at telcos, they're used to a perimeter-based network. >> Yep. >> I mean, that's what we are. Boxed, we knew our perimeter. Today, our perimeter is extended to our home, everywhere work, right? >> Yeah- >> We don't have a definition of a perimeter. Your browser is the new perimeter. And a good example, segueing to that, what we have seen is horizontal-based security. What we haven't seen is verticalization, especially in mobile. We haven't seen vertical mobile security solutions, right? Yes, you hear a little bit about automobile, you hear a little bit about healthcare, but what we haven't seen is, what about food sector? What about the frontline in food? What about supply chain? What security are we really doing? And I'll give you a simple example. You brought up ransomware. Last night, Dole was attacked with ransomware. We have seen the beef producer colonial pipeline. Now, if we have seen agritech being hit, what does it mean? We are starting to hit humanity. If you can't really put food on the table, you're starting to really disrupt the supply chain, right? In a massive way. So you got to start thinking about that. Why is Dole related to mobility? Think about that. They don't carry service and computers. What they carry is mobile devices. that's where the supply chain works. And then that's where you have to start thinking about it. And the evolution of ransomware, rather than a single-trick pony, you see them using multiple vulnerabilities. And Pegasus was the best example. Spyware across all politicians, right? And CEOs. It is six or seven vulnerabilities put together that actually was constructed to do an attack. >> Yeah. How does AI kind of change this? Where does it fit in? The attackers are going to have AI, but we could use AI to defend. But attackers are always ahead, right? (chuckles) So what's your... Do you have a point of view on that? 'Cause everybody's crazy about ChatGPT, right? The banks have all banned it. Certain universities in the United States have banned it. Another one's forcing his students to learn how to use ChatGPT to prompt it. It's all over the place. You have a point of view on this? >> So definitely, Dave, it's a great point. First, we all have to have our own generative AI. I mean, I look at it as your digital assistant, right? So when you had calculators, you can't function without a calculator today. It's not harmful. It's not going to take you away from doing multiplication, right? So we'll still teach arithmetic in school. You'll still use your calculator. So to me, AI will become an integral part. That's one beautiful thing I've seen on the short floor. Every little thing there is a AI-based solution I've seen, right? So ChatGPT is well played from multiple perspective. I would rather up level it and say, generated AI is the way to go. So there are three things. There is human intense triaging, where humans keep doing easy work, minimal work. You can use ML and AI to do that. There is human designing that you need to do. That's when you need to use AI. >> But, I would say this, in the Enterprise, that the quality of the AI has to be better than what we've seen so far out of ChatGPT, even though I love ChatGPT, it's amazing. But what we've seen from being... It's got to be... Is it true that... Don't you think it has to be cleaner, more accurate? It can't make up stuff. If I'm going to be automating my network with AI. >> I'll answer that question. It comes down to three fundamentals. The reason ChatGPT is giving addresses, it's not trained on the latest data. So for any AI and ML method, you got to look at three things. It's your data, it's your domain expertise, who is training it, and your data model. In ChatGPT, it's older data, it's biased to the people that trained it, right? >> Mm-hmm. >> And then, the data model is it's going to spit out what it's trained on. That's a precursor of any GPT, right? It's pre-trained transformation. >> So if we narrow that, right? Train it better for the specific use case, that AI has huge potential. >> You flip that to what the Enterprise customers talk about to us is, insight is invaluable. >> Right. >> But then too much insight too quickly all the time means we go remediation crazy. So we haven't got enough humans to be fixing all the problems. Sri's point with the ChatGPT data, some of that data we are looking at there could be old. So we're trying to triage something that may still be an issue, but it might have been superseded by something else as well. So that's my overriding when I'm talking to customers and we talk ChatGPT, it's in the news all the time. It's very topical. >> It's fun. >> It is. I even said to my 13-year-old son yesterday, your homework's out a date. 'Cause I knew he was doing some summary stuff on ChatGPT. So a little wind up that's out of date just to make that emphasis around the model. And that's where we, with our Neurons platform Ivanti, that's what we want to give the customers all the time, which is the real-time snapshot. So they can make a priority or a decision based on what that information is telling them. >> And we've kind of learned, I think, over the last couple of years, that access to real-time data, real-time AI, is no longer nice to have. It's a massive competitive advantage for organizations, but it's going to enable the on-demand, everything that we expect in our consumer lives, in our business lives. This is going to be table stakes for organizations, I think, in every industry going forward. >> Yeah. >> But assumes 5G, right? Is going to actually happen and somebody's going to- >> Going to absolutely. >> Somebody's going to make some money off it at some point. When are they going to make money off of 5G, do you think? (all laughing) >> No. And then you asked a very good question, Dave. I want to answer that question. Will bad guys use AI? >> Yeah. Yeah. >> Offensive AI is a very big thing. We have to pay attention to it. It's got to create an asymmetric war. If you look at the president of the United States, he said, "If somebody's going to attack us on cyber, we are going to retaliate." For the first time, US is willing to launch a cyber war. What that really means is, we're going to use AI for offensive reasons as well. And we as citizens have to pay attention to that. And that's where I'm worried about, right? AI bias, whether it's data, or domain expertise, or algorithmic bias, is going to be a big thing. And offensive AI is something everybody have to pay attention to. >> To your point, Sri, earlier about critical infrastructure getting hacked, I had this conversation with Dr. Robert Gates several years ago, and I said, "Yeah, but don't we have the best offensive, you know, technology in cyber?" And he said, "Yeah, but we got the most to lose too." >> Yeah, 100%. >> We're the wealthiest nation of the United States. The wealthiest is. So you got to be careful. But to your point, the president of the United States saying, "We'll retaliate," right? Not necessarily start the war, but who started it? >> But that's the thing, right? Attribution is the hardest part. And then you talked about a very interesting thing, rich nations, right? There's emerging nations. There are nations left behind. One thing I've seen on the show floor today is, digital inequality. Digital poverty is a big thing. While we have this amazing technology, 90% of the world doesn't have access to this. >> Right. >> What we have done is we have created an inequality across, and especially in mobility and cyber, if this technology doesn't reach to the last mile, which is emerging nations, I think we are creating a crater back again and putting societies a few miles back. >> And at much greater risk. >> 100%, right? >> Yeah. >> Because those are the guys. In cyber, all you need is a laptop and a brain to attack. >> Yeah. Yeah. >> If I don't have it, that's where the civil war is going to start again. >> Yeah. What are some of the things in our last minute or so, guys, David, we'll start with you and then Sri go to you, that you're looking forward to at this MWC? The theme is velocity. We're talking about so much transformation and evolution in the telecom industry. What are you excited to hear and learn in the next couple of days? >> Just getting a complete picture. One is actually being out after the last couple of years, so you learn a lot. But just walking around and seeing, from my perspective, some vendor names that I haven't seen before, but seeing what they're doing and bringing to the market. But I think goes back to the point made earlier around APIs and integration. Everybody's talking about how can we kind of do this together in a way. So integrations, those smart things is what I'm kind of looking for as well, and how we plug into that as well. >> Excellent, and Sri? >> So for us, there is a lot to offer, right? So while I'm enjoying what I'm seeing here, I'm seeing at an opportunity. We have an amazing portfolio of what we can do. We are into mobile device management. We are the last (indistinct) company. When people find problems, somebody has to go remediators. We are the world's largest patch management company. And what I'm finding is, yes, all these people are embedding software, pumping it like nobody's business. As you find one ability, somebody has to go fix them, and we want to be the (indistinct) company. We had the last smile. And I find an amazing opportunity, not only we can do device management, but do mobile threat defense and give them a risk prioritization on what needs to be remediated, and manage all that in our ITSM. So I look at this as an amazing, amazing opportunity. >> Right. >> Which is exponential than what I've seen before. >> So last question then. Speaking of opportunities, Sri, for you, what are some of the things that customers can go to? Obviously, you guys talk to customers all the time. In terms of learning what Ivanti is going to enable them to do, to take advantage of these opportunities. Any webinars, any events coming up that we want people to know about? >> Absolutely, ivanti.com is the best place to go because we keep everything there. Of course, "theCUBE" interview. >> Of course. >> You should definitely watch that. (all laughing) No. So we have quite a few industry events we do. And especially there's a lot of learning. And we just raised the ransomware report that actually talks about ransomware from a global index perspective. So one thing what we have done is, rather than just looking at vulnerabilities, we showed them the weaknesses that led to the vulnerabilities, and how attackers are using them. And we even talked about DHS, how behind they are in disseminating the information and how it's actually being used by nation states. >> Wow. >> And we did cover mobility as a part of that as well. So there's a quite a bit we did in our report and it actually came out very well. >> I have to check that out. Ransomware is such a fascinating topic. Guys, thank you so much for joining Dave and me on the program today, sharing what's going on at Ivanti, the changes that you're seeing in mobile, and the opportunities that are there for your customers. We appreciate your time. >> Thank you >> Thank you. >> Yes. Thanks, guys. >> Thanks, guys. >> For our guests and for Dave Vellante, I'm Lisa Martin. You're watching "theCUBE" live from MWC23 in Barcelona. As you know, "theCUBE" is the leader in live tech coverage. Dave and I will be right back with our next guest. (gentle upbeat music)
SUMMARY :
that drive human progress. This is the biggest, most packed from China come to this show, Great to have you here. Talk about some of the trends is going to revolutionize the Do you concur? Everything's just going to get bring the Cloud to the Edge." I have to process everything that they're going to pay for, And if I have to pay every the marketplace, David. to how are we going to deal going to get attacked?" of automation to that? So what would you add? If you look at telcos, extended to our home, And a good example, segueing to that, The attackers are going to have AI, It's not going to take you away the AI has to be better it's biased to the people the data model is it's going to So if we narrow that, right? You flip that to what to be fixing all the problems. I even said to my This is going to be table stakes When are they going to make No. And then you asked We have to pay attention to it. got the most to lose too." But to your point, have access to this. reach to the last mile, laptop and a brain to attack. is going to start again. What are some of the things in But I think goes back to a lot to offer, right? than what I've seen before. to customers all the time. is the best place to go that led to the vulnerabilities, And we did cover mobility I have to check that out. As you know, "theCUBE" is the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Shepherd | PERSON | 0.99+ |
Jose Maria Alvarez | PERSON | 0.99+ |
Ericsson | ORGANIZATION | 0.99+ |
David Shepherd | PERSON | 0.99+ |
six | QUANTITY | 0.99+ |
Telefonica | ORGANIZATION | 0.99+ |
Srinivas Mukkamala | PERSON | 0.99+ |
40 seconds | QUANTITY | 0.99+ |
China | LOCATION | 0.99+ |
45 minutes | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
2024 | DATE | 0.99+ |
United States | LOCATION | 0.99+ |
2016 | DATE | 0.99+ |
90% | QUANTITY | 0.99+ |
ChatGPT | TITLE | 0.99+ |
Robert Gates | PERSON | 0.99+ |
First | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Sri | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
today | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
millions | QUANTITY | 0.99+ |
this week | DATE | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Telcos | ORGANIZATION | 0.99+ |
US | ORGANIZATION | 0.99+ |
Last night | DATE | 0.98+ |
Today | DATE | 0.98+ |
Sri | PERSON | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
one | QUANTITY | 0.98+ |
Edge | ORGANIZATION | 0.98+ |
three things | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
Dr. | PERSON | 0.98+ |
108 | QUANTITY | 0.98+ |
telco | ORGANIZATION | 0.98+ |
several years ago | DATE | 0.97+ |
first | QUANTITY | 0.97+ |
MWC | EVENT | 0.96+ |
hundreds and thousands of dollars a day | QUANTITY | 0.96+ |
MWC23 | EVENT | 0.96+ |
About 80,000 people | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
13-year-old | QUANTITY | 0.95+ |
theCUBE | TITLE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
two different things | QUANTITY | 0.94+ |
day one | QUANTITY | 0.93+ |
Ivanti | PERSON | 0.92+ |
seven vulnerabilities | QUANTITY | 0.91+ |
VP | PERSON | 0.91+ |
president | PERSON | 0.9+ |
three pillars | QUANTITY | 0.89+ |
first thing | QUANTITY | 0.89+ |
SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI
(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)
SUMMARY :
I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ed Alban | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Ed Albanese | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five seconds | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Ed | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
10 good questions | QUANTITY | 0.99+ |
Swami | PERSON | 0.99+ |
15 different possibilities | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Vectara | ORGANIZATION | 0.99+ |
Amr Awadallah | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Cloudera | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
end of 2019 | DATE | 0.99+ |
yesterday | DATE | 0.98+ |
Big Data | ORGANIZATION | 0.98+ |
40 million users | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
two great guests | QUANTITY | 0.98+ |
12 plus years | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
five dollar | QUANTITY | 0.98+ |
Netscape | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first inning | QUANTITY | 0.98+ |
Amr | PERSON | 0.97+ |
two schools | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
10 years ago | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
first day | QUANTITY | 0.96+ |
three | DATE | 0.96+ |
chatGPT | TITLE | 0.96+ |
first places | QUANTITY | 0.95+ |
Bing | ORGANIZATION | 0.95+ |
Notion | TITLE | 0.95+ |
first thing | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
Beyond the Buzz | TITLE | 0.94+ |
Sati Natel | PERSON | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
one location | QUANTITY | 0.93+ |
three years ago | DATE | 0.93+ |
single application | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
first platform | QUANTITY | 0.91+ |
five years old | QUANTITY | 0.91+ |
SiliconANGLE News | AWS Responds to OpenAI with Hugging Face Expanded Partnership
(upbeat music) >> Hello everyone. Welcome to Silicon Angle news breaking story here. Amazon Web Services, expanding their relationship with Hugging Face, breaking news here on Silicon Angle. I'm John Furrier, Silicon Angle reporter, founder and also co-host of theCUBE. And I have with me Swami from Amazon Web Services, vice president of database analytics machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on, taking the time. >> Hey John, pleasure to be here. >> We've had many conversations on theCUBE over the years. We've watched Amazon really move fast into the large data modeling. You SageMaker became a very smashing success. Obviously you've been on this for a while, now with Chat GPT, open AI, a lot of buzz going mainstream, takes it from behind the curtain, inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment I think in the industry. I want to get your perspective because your news with Hugging Face, I think is a is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware application centric, more programmable, more API access. What's the big news about with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah, first of all, they're very excited to announce our expanded collaboration with Hugging Face because with this partnership, our goal, as you all know, I mean Hugging Face I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS will be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this we can accelerate the training, fine tuning, and deployment of these large language models and vision models from Hugging Face in the cloud. So, and the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these Chat GPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models. They need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale, so And unlike search, web search style applications where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where a Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale. I'll deep dive on it and by training teaming up on the SageMaker front now the time it takes to build these models and fine tune them as also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the, to the time savings and the cost savings as well on the on the training and inference. It's a huge issue. But before we get into that, just how long have you guys been working with Hugging Face? I know this is a previous relationship. This is an expansion of that relationship. Can you comment on the what's different about what's happened before and then now? >> Yeah, so Hugging Face, we have had an great relationship in the past few years as well where they have actually made their models available to run on AWS in a fashion, even inspect their Bloom project was something many of our customers even used. Bloom Project for context is their open source project, which builds a GPT three style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation of this generative AI model, building on their highly successful Bloom project as well. And the nice thing is now by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way. Now for instance, tier 1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs and Forex more higher throughput. Now these models, especially as they train that next generation generated AI model, it is going to be not only more accessible to all the developers who use it in open. So it'll be a lot cheaper as well. And that's what makes this moment really exciting because yeah, we can't democratize AI unless we make it broadly accessible and cost efficient, and easy to program and use as well. >> Okay, thanks Swami. We really appreciate. Swami's a Cube alumni, but also vice President, database analyst machine learning web services breaking down the Hugging Face announcement. Obviously the relationship he called it the GitHub of machine learning. This is the beginning of what we will see, a continuing competitive battle with Microsoft. Microsoft launching OpenAI. Amazon's been doing it for years. They got Alexa, they know what they're doing. It's going to be very interesting to see how this all plays out. You're watching Silicon Angle News, breaking here. I'm John Furrier, host of the Cube. Thanks for watching. (ethereal music)
SUMMARY :
And I have with me Swami into the large data modeling. the time it takes to build these models and the cost savings as well on the and easy to program and use as well. I'm John Furrier, host of the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon Web Services | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Swami | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
millions | QUANTITY | 0.99+ |
GitHub | ORGANIZATION | 0.98+ |
Alexa | TITLE | 0.98+ |
Inferentia | ORGANIZATION | 0.97+ |
Silicon Angle | ORGANIZATION | 0.97+ |
Trainium | ORGANIZATION | 0.97+ |
Hugging Face | ORGANIZATION | 0.96+ |
one | QUANTITY | 0.95+ |
up to 60% | QUANTITY | 0.95+ |
up to 50% | QUANTITY | 0.95+ |
Cube | ORGANIZATION | 0.94+ |
Hugging Face | TITLE | 0.94+ |
Chat GPT | TITLE | 0.86+ |
Bloom | PERSON | 0.84+ |
OpenAI | TITLE | 0.83+ |
theCUBE | ORGANIZATION | 0.77+ |
Chat GPT | TITLE | 0.76+ |
1 | OTHER | 0.75+ |
Silicon Angle News | TITLE | 0.74+ |
Face | TITLE | 0.73+ |
Bloom | TITLE | 0.72+ |
developers | QUANTITY | 0.7+ |
Trainium | TITLE | 0.7+ |
Silicon Angle | ORGANIZATION | 0.64+ |
past few years | DATE | 0.63+ |
Bloom | ORGANIZATION | 0.56+ |
SiliconANGLE News | TITLE | 0.55+ |
SageMaker | TITLE | 0.53+ |
tier | QUANTITY | 0.52+ |
Hugging | ORGANIZATION | 0.49+ |
Silicon | ORGANIZATION | 0.48+ |
Angle | LOCATION | 0.47+ |
SiliconANGLE News | Swami Sivasubramanian Extended Version
(bright upbeat music) >> Hello, everyone. Welcome to SiliconANGLE News breaking story here. Amazon Web Services expanding their relationship with Hugging Face, breaking news here on SiliconANGLE. I'm John Furrier, SiliconANGLE reporter, founder, and also co-host of theCUBE. And I have with me, Swami, from Amazon Web Services, vice president of database, analytics, machine learning with AWS. Swami, great to have you on for this breaking news segment on AWS's big news. Thanks for coming on and taking the time. >> Hey, John, pleasure to be here. >> You know- >> Looking forward to it. >> We've had many conversations on theCUBE over the years, we've watched Amazon really move fast into the large data modeling, SageMaker became a very smashing success, obviously you've been on this for a while. Now with ChatGPT OpenAI, a lot of buzz going mainstream, takes it from behind the curtain inside the ropes, if you will, in the industry to a mainstream. And so this is a big moment, I think, in the industry, I want to get your perspective, because your news with Hugging Face, I think is another tell sign that we're about to tip over into a new accelerated growth around making AI now application aware, application centric, more programmable, more API access. What's the big news about, with AWS Hugging Face, you know, what's going on with this announcement? >> Yeah. First of all, they're very excited to announce our expanded collaboration with Hugging Face, because with this partnership, our goal, as you all know, I mean, Hugging Face, I consider them like the GitHub for machine learning. And with this partnership, Hugging Face and AWS, we'll be able to democratize AI for a broad range of developers, not just specific deep AI startups. And now with this, we can accelerate the training, fine tuning and deployment of these large language models, and vision models from Hugging Face in the cloud. And the broader context, when you step back and see what customer problem we are trying to solve with this announcement, essentially if you see these foundational models, are used to now create like a huge number of applications, suggest like tech summarization, question answering, or search image generation, creative, other things. And these are all stuff we are seeing in the likes of these ChatGPT style applications. But there is a broad range of enterprise use cases that we don't even talk about. And it's because these kind of transformative, generative AI capabilities and models are not available to, I mean, millions of developers. And because either training these elements from scratch can be very expensive or time consuming and need deep expertise, or more importantly, they don't need these generic models, they need them to be fine tuned for the specific use cases. And one of the biggest complaints we hear is that these models, when they try to use it for real production use cases, they are incredibly expensive to train and incredibly expensive to run inference on, to use it at a production scale. So, and unlike web search style applications, where the margins can be really huge, here in production use cases and enterprises, you want efficiency at scale. That's where Hugging Face and AWS share our mission. And by integrating with Trainium and Inferentia, we're able to handle the cost efficient training and inference at scale, I'll deep dive on it. And by teaming up on the SageMaker front, now the time it takes to build these models and fine tune them is also coming down. So that's what makes this partnership very unique as well. So I'm very excited. >> I want to get into the time savings and the cost savings as well on the training and inference, it's a huge issue, but before we get into that, just how long have you guys been working with Hugging Face? I know there's a previous relationship, this is an expansion of that relationship, can you comment on what's different about what's happened before and then now? >> Yeah. So, Hugging Face, we have had a great relationship in the past few years as well, where they have actually made their models available to run on AWS, you know, fashion. Even in fact, their Bloom Project was something many of our customers even used. Bloom Project, for context, is their open source project which builds a GPT-3 style model. And now with this expanded collaboration, now Hugging Face selected AWS for that next generation office generative AI model, building on their highly successful Bloom Project as well. And the nice thing is, now, by direct integration with Trainium and Inferentia, where you get cost savings in a really significant way, now, for instance, Trn1 can provide up to 50% cost to train savings, and Inferentia can deliver up to 60% better costs, and four x more higher throughput than (indistinct). Now, these models, especially as they train that next generation generative AI models, it is going to be, not only more accessible to all the developers, who use it in open, so it'll be a lot cheaper as well. And that's what makes this moment really exciting, because we can't democratize AI unless we make it broadly accessible and cost efficient and easy to program and use as well. >> Yeah. >> So very exciting. >> I'll get into the SageMaker and CodeWhisperer angle in a second, but you hit on some good points there. One, accessibility, which is, I call the democratization, which is getting this in the hands of developers, and/or AI to develop, we'll get into that in a second. So, access to coding and Git reasoning is a whole nother wave. But the three things I know you've been working on, I want to put in the buckets here and comment, one, I know you've, over the years, been working on saving time to train, that's a big point, you mentioned some of those stats, also cost, 'cause now cost is an equation on, you know, bundling whether you're uncoupling with hardware and software, that's a big issue. Where do I find the GPUs? Where's the horsepower cost? And then also sustainability. You've mentioned that in the past, is there a sustainability angle here? Can you talk about those three things, time, cost, and sustainability? >> Certainly. So if you look at it from the AWS perspective, we have been supporting customers doing machine learning for the past years. Just for broader context, Amazon has been doing ML the past two decades right from the early days of ML powered recommendation to actually also supporting all kinds of generative AI applications. If you look at even generative AI application within Amazon, Amazon search, when you go search for a product and so forth, we have a team called MFi within Amazon search that helps bring these large language models into creating highly accurate search results. And these are created with models, really large models with tens of billions of parameters, scales to thousands of training jobs every month and trained on large model of hardware. And this is an example of a really good large language foundation model application running at production scale, and also, of course, Alexa, which uses a large generator model as well. And they actually even had a research paper that showed that they are more, and do better in accuracy than other systems like GPT-3 and whatnot. So, and we also touched on things like CodeWhisperer, which uses generative AI to improve developer productivity, but in a responsible manner, because 40% of some of the studies show 40% of this generated code had serious security flaws in it. This is where we didn't just do generative AI, we combined with automated reasoning capabilities, which is a very, very useful technique to identify these issues and couple them so that it produces highly secure code as well. Now, all these learnings taught us few things, and which is what you put in these three buckets. And yeah, like more than 100,000 customers using ML and AI services, including leading startups in the generative AI space, like stability AI, AI21 Labs, or Hugging Face, or even Alexa, for that matter. They care about, I put them in three dimension, one is around cost, which we touched on with Trainium and Inferentia, where we actually, the Trainium, you provide to 50% better cost savings, but the other aspect is, Trainium is a lot more power efficient as well compared to traditional one. And Inferentia is also better in terms of throughput, when it comes to what it is capable of. Like it is able to deliver up to three x higher compute performance and four x higher throughput, compared to it's previous generation, and it is extremely cost efficient and power efficient as well. >> Well. >> Now, the second element that really is important is in a day, developers deeply value the time it takes to build these models, and they don't want to build models from scratch. And this is where SageMaker, which is, even going to Kaggle uses, this is what it is, number one, enterprise ML platform. What it did to traditional machine learning, where tens of thousands of customers use StageMaker today, including the ones I mentioned, is that what used to take like months to build these models have dropped down to now a matter of days, if not less. Now, a generative AI, the cost of building these models, if you look at the landscape, the model parameter size had jumped by more than thousand X in the past three years, thousand x. And that means the training is like a really big distributed systems problem. How do you actually scale these model training? How do you actually ensure that you utilize these efficiently? Because these machines are very expensive, let alone they consume a lot of power. So, this is where SageMaker capability to build, automatically train, tune, and deploy models really concern this, especially with this distributor training infrastructure, and those are some of the reasons why some of the leading generative AI startups are actually leveraging it, because they do not want a giant infrastructure team, which is constantly tuning and fine tuning, and keeping these clusters alive. >> It sounds like a lot like what startups are doing with the cloud early days, no data center, you move to the cloud. So, this is the trend we're seeing, right? You guys are making it easier for developers with Hugging Face, I get that. I love that GitHub for machine learning, large language models are complex and expensive to build, but not anymore, you got Trainium and Inferentia, developers can get faster time to value, but then you got the transformers data sets, token libraries, all that optimized for generator. This is a perfect storm for startups. Jon Turow, a former AWS person, who used to work, I think for you, is now a VC at Madrona Venture, he and I were talking about the generator AI landscape, it's exploding with startups. Every alpha entrepreneur out there is seeing this as the next frontier, that's the 20 mile stairs, next 10 years is going to be huge. What is the big thing that's happened? 'Cause some people were saying, the founder of Yquem said, "Oh, the start ups won't be real, because they don't all have AI experience." John Markoff, former New York Times writer told me that, AI, there's so much work done, this is going to explode, accelerate really fast, because it's almost like it's been waiting for this moment. What's your reaction? >> I actually think there is going to be an explosion of startups, not because they need to be AI startups, but now finally AI is really accessible or going to be accessible, so that they can create remarkable applications, either for enterprises or for disrupting actually how customer service is being done or how creative tools are being built. And I mean, this is going to change in many ways. When we think about generative AI, we always like to think of how it generates like school homework or arts or music or whatnot, but when you look at it on the practical side, generative AI is being actually used across various industries. I'll give an example of like Autodesk. Autodesk is a customer who runs an AWS and SageMaker. They already have an offering that enables generated design, where designers can generate many structural designs for products, whereby you give a specific set of constraints and they actually can generate a structure accordingly. And we see similar kind of trend across various industries, where it can be around creative media editing or various others. I have the strong sense that literally, in the next few years, just like now, conventional machine learning is embedded in every application, every mobile app that we see, it is pervasive, and we don't even think twice about it, same way, like almost all apps are built on cloud. Generative AI is going to be part of every startup, and they are going to create remarkable experiences without needing actually, these deep generative AI scientists. But you won't get that until you actually make these models accessible. And I also don't think one model is going to rule the world, then you want these developers to have access to broad range of models. Just like, go back to the early days of deep learning. Everybody thought it is going to be one framework that will rule the world, and it has been changing, from Caffe to TensorFlow to PyTorch to various other things. And I have a suspicion, we had to enable developers where they are, so. >> You know, Dave Vellante and I have been riffing on this concept called super cloud, and a lot of people have co-opted to be multicloud, but we really were getting at this whole next layer on top of say, AWS. You guys are the most comprehensive cloud, you guys are a super cloud, and even Adam and I are talking about ISVs evolving to ecosystem partners. I mean, your top customers have ecosystems building on top of it. This feels like a whole nother AWS. How are you guys leveraging the history of AWS, which by the way, had the same trajectory, startups came in, they didn't want to provision a data center, the heavy lifting, all the things that have made Amazon successful culturally. And day one thinking is, provide the heavy lifting, undifferentiated heavy lifting, and make it faster for developers to program code. AI's got the same thing. How are you guys taking this to the next level, because now, this is an opportunity for the competition to change the game and take it over? This is, I'm sure, a conversation, you guys have a lot of things going on in AWS that makes you unique. What's the internal and external positioning around how you take it to the next level? >> I mean, so I agree with you that generative AI has a very, very strong potential in terms of what it can enable in terms of next generation application. But this is where Amazon's experience and expertise in putting these foundation models to work internally really has helped us quite a bit. If you look at it, like amazon.com search is like a very, very important application in terms of what is the customer impact on number of customers who use that application openly, and the amount of dollar impact it does for an organization. And we have been doing it silently for a while now. And the same thing is true for like Alexa too, which actually not only uses it for natural language understanding other city, even national leverages is set for creating stories and various other examples. And now, our approach to it from AWS is we actually look at it as in terms of the same three tiers like we did in machine learning, because when you look at generative AI, we genuinely see three sets of customers. One is, like really deep technical expert practitioner startups. These are the startups that are creating the next generation models like the likes of stability AIs or Hugging Face with Bloom or AI21. And they generally want to build their own models, and they want the best price performance of their infrastructure for training and inference. That's where our investments in silicon and hardware and networking innovations, where Trainium and Inferentia really plays a big role. And we can nearly do that, and that is one. The second middle tier is where I do think developers don't want to spend time building their own models, let alone, they actually want the model to be useful to that data. They don't need their models to create like high school homeworks or various other things. What they generally want is, hey, I had this data from my enterprises that I want to fine tune and make it really work only for this, and make it work remarkable, can be for tech summarization, to generate a report, or it can be for better Q&A, and so forth. This is where we are. Our investments in the middle tier with SageMaker, and our partnership with Hugging Face and AI21 and co here are all going to very meaningful. And you'll see us investing, I mean, you already talked about CodeWhisperer, which is an open preview, but we are also partnering with a whole lot of top ISVs, and you'll see more on this front to enable the next wave of generated AI apps too, because this is an area where we do think lot of innovation is yet to be done. It's like day one for us in this space, and we want to enable that huge ecosystem to flourish. >> You know, one of the things Dave Vellante and I were talking about in our first podcast we just did on Friday, we're going to do weekly, is we highlighted the AI ChatGPT example as a horizontal use case, because everyone loves it, people are using it in all their different verticals, and horizontal scalable cloud plays perfectly into it. So I have to ask you, as you look at what AWS is going to bring to the table, a lot's changed over the past 13 years with AWS, a lot more services are available, how should someone rebuild or re-platform and refactor their application of business with AI, with AWS? What are some of the tools that you see and recommend? Is it Serverless, is it SageMaker, CodeWhisperer? What do you think's going to shine brightly within the AWS stack, if you will, or service list, that's going to be part of this? As you mentioned, CodeWhisperer and SageMaker, what else should people be looking at as they start tinkering and getting all these benefits, and scale up their ups? >> You know, if we were a startup, first, I would really work backwards from the customer problem I try to solve, and pick and choose, bar, I don't need to deal with the undifferentiated heavy lifting, so. And that's where the answer is going to change. If you look at it then, the answer is not going to be like a one size fits all, so you need a very strong, I mean, granted on the compute front, if you can actually completely accurate it, so unless, I will always recommend it, instead of running compute for running your ups, because it takes care of all the undifferentiated heavy lifting, but on the data, and that's where we provide a whole variety of databases, right from like relational data, or non-relational, or dynamo, and so forth. And of course, we also have a deep analytical stack, where data directly flows from our relational databases into data lakes and data virus. And you can get value along with partnership with various analytical providers. The area where I do think fundamentally things are changing on what people can do is like, with CodeWhisperer, I was literally trying to actually program a code on sending a message through Twilio, and I was going to pull up to read a documentation, and in my ID, I was actually saying like, let's try sending a message to Twilio, or let's actually update a Route 53 error code. All I had to do was type in just a comment, and it actually started generating the sub-routine. And it is going to be a huge time saver, if I were a developer. And the goal is for us not to actually do it just for AWS developers, and not to just generate the code, but make sure the code is actually highly secure and follows the best practices. So, it's not always about machine learning, it's augmenting with automated reasoning as well. And generative AI is going to be changing, and not just in how people write code, but also how it actually gets built and used as well. You'll see a lot more stuff coming on this front. >> Swami, thank you for your time. I know you're super busy. Thank you for sharing on the news and giving commentary. Again, I think this is a AWS moment and industry moment, heavy lifting, accelerated value, agility. AIOps is going to be probably redefined here. Thanks for sharing your commentary. And we'll see you next time, I'm looking forward to doing more follow up on this. It's going to be a big wave. Thanks. >> Okay. Thanks again, John, always a pleasure. >> Okay. This is SiliconANGLE's breaking news commentary. I'm John Furrier with SiliconANGLE News, as well as host of theCUBE. Swami, who's a leader in AWS, has been on theCUBE multiple times. We've been tracking the growth of how Amazon's journey has just been exploding past five years, in particular, past three. You heard the numbers, great performance, great reviews. This is a watershed moment, I think, for the industry, and it's going to be a lot of fun for the next 10 years. Thanks for watching. (bright music)
SUMMARY :
Swami, great to have you on inside the ropes, if you And one of the biggest complaints we hear and easy to program and use as well. I call the democratization, the Trainium, you provide And that means the training What is the big thing that's happened? and they are going to create this to the next level, and the amount of dollar impact that's going to be part of this? And generative AI is going to be changing, AIOps is going to be John, always a pleasure. and it's going to be a lot
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Swami | PERSON | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Jon Turow | PERSON | 0.99+ |
John Markoff | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
Autodesk | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Madrona Venture | ORGANIZATION | 0.99+ |
20 mile | QUANTITY | 0.99+ |
Hugging Face | ORGANIZATION | 0.99+ |
Friday | DATE | 0.99+ |
second element | QUANTITY | 0.99+ |
more than 100,000 customers | QUANTITY | 0.99+ |
AI21 | ORGANIZATION | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
first podcast | QUANTITY | 0.99+ |
three tiers | QUANTITY | 0.98+ |
SiliconANGLE | ORGANIZATION | 0.98+ |
twice | QUANTITY | 0.98+ |
Bloom Project | TITLE | 0.98+ |
one | QUANTITY | 0.98+ |
SageMaker | ORGANIZATION | 0.98+ |
Hugging Face | TITLE | 0.98+ |
Alexa | TITLE | 0.98+ |
first | QUANTITY | 0.98+ |
GitHub | ORGANIZATION | 0.98+ |
one model | QUANTITY | 0.98+ |
up to 50% | QUANTITY | 0.97+ |
ChatGPT | TITLE | 0.97+ |
First | QUANTITY | 0.97+ |
more than thousand X | QUANTITY | 0.97+ |
amazon.com | ORGANIZATION | 0.96+ |
tens of billions | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
up to 60% | QUANTITY | 0.96+ |
one framework | QUANTITY | 0.96+ |
Yquem | ORGANIZATION | 0.94+ |
three things | QUANTITY | 0.94+ |
Inferentia | ORGANIZATION | 0.94+ |
CodeWhisperer | TITLE | 0.93+ |
four | QUANTITY | 0.92+ |
three sets | QUANTITY | 0.92+ |
three | QUANTITY | 0.92+ |
Twilio | ORGANIZATION | 0.92+ |
Welcome to Supercloud2
(bright upbeat melody) >> Hello everyone, welcome back to Supercloud2. I'm John Furrier, my co-host Dave Vellante, here at theCUBE in Palo Alto, California, for our live stage performance all day for Supercloud2. Unpacking this next generation movement in cloud computing. Dave, Supercloud1 was in August. We had great response and acceleration of that momentum. We had some haters too. We had some folks out there throwing shade on this. But at the same time, a lot of leaders came out of the woodwork, a lot of practitioners. And this Supercloud2 event I think will expose and illustrate some of the examples of what's happening in the industry and more importantly, kind of where it's going. >> Well it's great to be back in our studios in Palo Alto, John. Seems like just yesterday was August 9th, where the community was really refining the definition of Super Cloud. We were identifying the essential characteristics, with some of the leading technologists in Silicon Valley. We were digging into the deployment models. Whereas this Supercloud, Supercloud2 is really taking a practitioner view. We're going to hear from Walmart today. They've built a Supercloud. They called it the Walmart Cloud native platform. We're going to hear from other data practitioners, like Saks. We're going to hear from Western Union. They've got 200 locations around the world, how they're dealing with data sovereignty. And of course we've got some local technologists and practitioners coming in, analysts, consultants, theCUBE community. I'm really excited to be here. >> And we've got some great keynotes from executives at VMware. We're going to expose some of the things that they're working on around cross cloud services, which leads into multicloud. I think the practitioner angle highlights my favorite part of this program, 'cause you're starting to see the builders, a term coined by Andy Jassy, early days of AWS. That builder movement has been continuing to go. And you're seeing the enterprise, global enterprises adopt this builder mentality with Cloud Native. This is going to power the next generation global economy. And I think the role of the cloud computing vendors like AWS, Azure, Google, Alibaba are going to be the source engine of innovation. And what gets built on top of and with the clouds will be a big significant market value for all businesses and their business models. So I think the market wants the supercloud, the business models are pointing to Supercloud. The technology needs supercloud. And society, from an economic standpoint and from a use case standpoint, needs supercloud. You're seeing it today. Everyone's talking about chat GPT. This is an example of what will come out of this next generation and it's just getting started. So to me, you're either on the supercloud side of the camp or you're on the old school, hugging onto the old school mentality of wait a minute, that's cloud computing. So I think if you're not on the super cloud wave, you're going to be driftwood. And that's a term coined by Pat Gelsinger. And this is really the reality. Are you on the super cloud side? Or are you on the old huggin' the old model? And that's going to be a determinant. And you're going to see who's going to be the players on that, Dave. This is going to be a real big year. >> Everybody's heard the phrase follow the money. Well, my philosophy is follow the data. And that's a big part of what Supercloud2 is, because the data is where the money is across the clouds. And people want more simplicity, or greater simplicity across the clouds. So it's really, there's two forces here. You've got the ecosystem that's saying, hey the hyperscalers, they've done a great job but there's problems that they're not solving. So we're going to lean in and solve those problems. At the same time, you have the practitioners saying we have multicloud, we have to deal with this, help us. It's got to be simpler. Because we want to share data across clouds. We want to build data products, we want to monetize and drive revenue and cut costs. >> This is the key thing. The builder movement is hitting a wall, and that wall will be broken down because the business models of the companies themselves are demanding that the value from the data with security has to be embedded. So I think you're going to see a big year this next year or so where the builders will accelerate through this next generation, supercloud wave, will be a builder's wave for business. And I think that's going to be the nuance here. And all the people that are on the side of Supercloud are all pro-business, pro-technology. The ones that aren't are like, wait a minute I used to do things differently. They're stuck. And so I think this is going to be a question of are we stuck? Are builders accelerating? Will the business models develop around it? That's digital transformation. At the end of the day, the market's speaking, Dave. The market wants more. Chat GPT, you're seeing AI starting to flourish, powered by data. It's unstoppable, supercloud's unstoppable. >> One of our headliners today is Zhamak Dehghani, the creator of Data Mesh. We've got some news around her. She's going to be live in studio. Super excited about that. Kit Colbert in Supercloud, the first Supercloud in last August, laid out an initial architecture for Supercloud. He's going to advance that today, tell us what's changed, and really dig into and really talk about the meat on the bone, if you will. And we've got some other technologists that are coming in saying, Hey, is it a platform? Is it an architecture? What's the right model here? So we're going to debate that a little bit today. >> And before we close, I'll just say look at the guests, look at the talk tracks. You're seeing a diversity of startups doing cloud networking, you're seeing big practitioners building their own thing, being builders for business value and business model advantages. And you got companies like VMware, who have been on the wave of virtualization. So the, everyone who's involved in super cloud, they're seeing it, they're on the front lines. They're seeing the trend. They are riding that wave. And they have, they're bringing data to the table. So to me, you look at who's involved and you judge it that way. To me, that's the way I look at this. And because we're making it open, Supercloud is going to continue to be debated. But more importantly, the results are going to come in. The market supports it, the business needs it, tech's there, and will it happen? So I think the builders movement, Dave, is going to be big to watch. And then ultimately how that business transformation kicks in, and I think those are the two variables that I would watch on Supercloud. >> Our mission has always been around free content, giving back to the community. So I really want to thank our sponsors today. We've had a great partnership with VMware, who's not only contributed some financial support, but also great content. Alkira, ChaosSearch, prosimo, all phenomenal, allowing us to achieve our mission of serving our audiences and really trying to give more than we take from. >> Free content, that's our mission. Dave, great to kick it off. Kickin' off Supercloud2 all day, we've got some great programs here. We've got VMware coming up next. We have Victoria Viering, who's been on before. He's got a great vision for cross cloud service. We're getting also a keynote with Kit Colbert, who's going to lay out the fragmentation and the benefits that that solves, from solvent fragmentation and silos, breaking down the silos and bringing multicloud future to the table via Super Cloud. So stay with us. We'll be right back after this short break. (bright upbeat music) (music fades)
SUMMARY :
and illustrate some of the examples We're going to hear from Walmart today. And that's going to be a determinant. At the same time, you And so I think this is going to the meat on the bone, if you will. Dave, is going to be big to watch. giving back to the community. and the benefits that that solves,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Silicon Valley | LOCATION | 0.99+ |
August | DATE | 0.99+ |
Victoria Viering | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
200 locations | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
two forces | QUANTITY | 0.99+ |
last August | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
two variables | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
supercloud | ORGANIZATION | 0.98+ |
Azure | ORGANIZATION | 0.97+ |
ChaosSearch | ORGANIZATION | 0.95+ |
super cloud wave | EVENT | 0.94+ |
Supercloud1 | EVENT | 0.94+ |
Super Cloud | TITLE | 0.93+ |
Alkira | PERSON | 0.83+ |
Palo Alto, John | LOCATION | 0.83+ |
this next year | DATE | 0.81+ |
Data Mesh | ORGANIZATION | 0.8+ |
supercloud wave | EVENT | 0.79+ |
wave of | EVENT | 0.79+ |
Western Union | LOCATION | 0.78+ |
Saks | ORGANIZATION | 0.76+ |
GPT | ORGANIZATION | 0.73+ |
Supercloud2 | ORGANIZATION | 0.72+ |
Cloud Native | TITLE | 0.69+ |
Supercloud | TITLE | 0.67+ |
Supercloud2 | COMMERCIAL_ITEM | 0.66+ |
multicloud | ORGANIZATION | 0.57+ |
Supercloud | COMMERCIAL_ITEM | 0.53+ |
Supercloud2 | TITLE | 0.53+ |
theCUBE | ORGANIZATION | 0.51+ |
super cloud | TITLE | 0.51+ |
Cloud | TITLE | 0.41+ |
Opher Kahane, Sonoma Ventures | CloudNativeSecurityCon 23
(uplifting music) >> Hello, welcome back to theCUBE's coverage of CloudNativeSecurityCon, the inaugural event, in Seattle. I'm John Furrier, host of theCUBE, here in the Palo Alto Studios. We're calling it theCUBE Center. It's kind of like our Sports Center for tech. It's kind of remote coverage. We've been doing this now for a few years. We're going to amp it up this year as more events are remote, and happening all around the world. So, we're going to continue the coverage with this segment focusing on the data stack, entrepreneurial opportunities around all things security, and as, obviously, data's involved. And our next guest is a friend of theCUBE, and CUBE alumni from 2013, entrepreneur himself, turned, now, venture capitalist angel investor, with his own firm, Opher Kahane, Managing Director, Sonoma Ventures. Formerly the founder of Origami, sold to Intuit a few years back. Focusing now on having a lot of fun, angel investing on boards, focusing on data-driven applications, and stacks around that, and all the stuff going on in, really, in the wheelhouse for what's going on around security data. Opher, great to see you. Thanks for coming on. >> My pleasure. Great to be back. It's been a while. >> So you're kind of on Easy Street now. You did the entrepreneurial venture, you've worked hard. We were on together in 2013 when theCUBE just started. XCEL Partners had an event in Stanford, XCEL, and they had all the features there. We interviewed Satya Nadella, who was just a manager at Microsoft at that time, he was there. He's now the CEO of Microsoft. >> Yeah, he was. >> A lot's changed in nine years. But congratulations on your venture you sold, and you got an exit there, and now you're doing a lot of investments. I'd love to get your take, because this is really the biggest change I've seen in the past 12 years, around an inflection point around a lot of converging forces. Data, which, big data, 10 years ago, was a big part of your career, but now it's accelerated, with cloud scale. You're seeing people building scale on top of other clouds, and becoming their own cloud. You're seeing data being a big part of it. Cybersecurity kind of has not really changed much, but it's the most important thing everyone's talking about. So, developers are involved, data's involved, a lot of entrepreneurial opportunities. So I'd love to get your take on how you see the current situation, as it relates to what's gone on in the past five years or so. What's the big story? >> So, a lot of big stories, but I think a lot of it has to do with a promise of making value from data, whether it's for cybersecurity, for Fintech, for DevOps, for RevTech startups and companies. There's a lot of challenges in actually driving and monetizing the value from data with velocity. Historically, the challenge has been more around, "How do I store data at massive scale?" And then you had the big data infrastructure company, like Cloudera, and MapR, and others, deal with it from a scale perspective, from a storage perspective. Then you had a whole layer of companies that evolved to deal with, "How do I index massive scales of data, for quick querying, and federated access, et cetera?" But now that a lot of those underlying problems, if you will, have been solved, to a certain extent, although they're always being stretched, given the scale of data, and its utility is becoming more and more massive, in particular with AI use cases being very prominent right now, the next level is how to actually make value from the data. How do I manage the full lifecycle of data in complex environments, with complex organizations, complex use cases? And having seen this from the inside, with Origami Logic, as we dealt with a lot of large corporations, and post-acquisition by Intuit, and a lot of the startups I'm involved with, it's clear that we're now onto that next step. And you have fundamental new paradigms, such as data mesh, that attempt to address that complexity, and responsibly scaling access, and democratizing access in the value monetization from data, across large organizations. You have a slew of startups that are evolving to help the entire lifecycle of data, from the data engineering side of it, to the data analytics side of it, to the AI use cases side of it. And it feels like the early days, to a certain extent, of the revolution that we've seen in transition from traditional databases, to data warehouses, to cloud-based data processing, and big data. It feels like we're at the genesis of that next wave. And it's super, super exciting, for me at least, as someone who's sitting more in the coach seat, rather than being on the pitch, and building startups, helping folks as they go through those motions. >> So that's awesome. I want to get into some of these data infrastructure dynamics you mentioned, but before that, talk to the audience around what you're working on now. You've been a successful entrepreneur, you're focused on angel investing, so, super-early seed stage. What kind of deals are you looking at? What's interesting to you? What is Sonoma Ventures looking for, and what are some of the entrepreneurial dynamics that you're seeing right now, from a startup standpoint? >> Cool, so, at a macro level, this is a little bit of background of my history, because it shapes very heavily what it is that I'm looking at. So, I've been very fortunate with entrepreneurial career. I founded three startups. All three of them are successful. Final two were sold, the first one merged and went public. And my third career has been about data, moving data, passing data, processing data, generating insights from it. And, at this phase, I wanted to really evolve from just going and building startup number four, from going through the same motions again. A 10 year adventure, I'm a little bit too old for that, I guess. But the next best thing is to sit from a point whereby I can be more elevated in where I'm dealing with, and broaden the variety of startups I'm focused on, rather than just do your own thing, and just go very, very deep into it. Now, what specifically am I focused on at Sonoma Ventures? So, basically, looking at what I refer to as a data-driven application stack. Anything from the low-level data infrastructure and cloud infrastructure, that helps any persona in the data universe maximize value for data, from their particular point of view, for their particular role, whether it's data analysts, data scientists, data engineers, cloud engineers, DevOps folks, et cetera. All the way up to the application layer, in applications that are very data-heavy. And what are very typical data-heavy applications? FinTech, cyber, Web3, revenue technologies, and product and DevOps. So these are the areas we're focused on. I have almost 23 or 24 startups in the portfolio that span all these different areas. And this is in terms of the aperture. Now, typically, focus on pre-seed, seed. Sometimes a little bit later stage, but this is the primary focus. And it's really about partnering with entrepreneurs, and helping them make, if you will, original mistakes, avoid the mistakes I made. >> Yeah. >> And take it to the next level, whatever the milestone they're driving with. So I'm very, very hands-on with many of those startups. Now, what is it that's happening right now, initially, and why is it so exciting? So, on one hand, you have this scaling of data and its complexity, yet lagging value creation from it, across those different personas we've touched on. So that's one fundamental opportunity which is secular. The other one, which is more a cyclic situation, is the fact that we're going through a down cycle in tech, as is very evident in the public markets, and everything we're hearing about funding going slower and lower, terms shifting more into the hands of typical VCs versus entrepreneur-friendly market, and so on and so forth. And a very significant amount of layoffs. Now, when you combine these two trends together, you're observing a very interesting thing, that a lot of folks, really bright folks, who have sold a startup to a company, or have been in the guts of the large startup, or a large corporation, have, hands-on, experienced all those challenges we've spoken about earlier, in turf, maximizing value from data, irrespective of their role, in a specific angle, or vantage point they have on those challenges. So, for many of them, it's an opportunity to, "Now, let me now start a startup. I've been laid off, maybe, or my company's stock isn't doing as well as it used to, as a large corporation. Now I have an opportunity to actually go and take my entrepreneurial passion, and apply it to a product and experience as part of this larger company." >> Yeah. >> And you see a slew of folks who are emerging with these great ideas. So it's a very, very exciting period of time to innovate. >> It's interesting, a lot of people look at, I mean, I look at Snowflake as an example of a company that refactored data warehouses. They just basically took data warehouse, and put it on the cloud, and called it a data cloud. That, to me, was compelling. They didn't pay any CapEx. They rode Amazon's wave there. So, a similar thing going on with data. You mentioned this, and I see it as an enabling opportunity. So whether it's cybersecurity, FinTech, whatever vertical, you have an enablement. Now, you mentioned data infrastructure. It's a super exciting area, as there's so many stacks emerging. We got an analytics stack, there's real-time stacks, there's data lakes, AI stack, foundational models. So, you're seeing an explosion of stacks, different tools probably will emerge. So, how do you look at that, as a seasoned entrepreneur, now investor? Is that a good thing? Is that just more of the market? 'Cause it just seems like more and more kind of decomposed stacks targeted at use cases seems to be a trend. >> Yeah. >> And how do you vet that, is it? >> So it's a great observation, and if you take a step back and look at the evolution of technology over the last 30 years, maybe longer, you always see these cycles of expansion, fragmentation, contraction, expansion, contraction. Go decentralize, go centralize, go decentralize, go centralize, as manifested in different types of technology paradigms. From client server, to storage, to microservices, to et cetera, et cetera. So I think we're going through another big bang, to a certain extent, whereby end up with more specialized data stacks for specific use cases, as you need performance, the data models, the tooling to best adapt to the particular task at hand, and the particular personas at hand. As the needs of the data analysts are quite different from the needs of an NL engineer, it's quite different from the needs of the data engineer. And what happens is, when you end up with these siloed stacks, you end up with new fragmentation, and new gaps that need to be filled with a new layer of innovation. And I suspect that, in part, that's what we're seeing right now, in terms of the next wave of data innovation. Whether it's in a service of FinTech use cases, or cyber use cases, or other, is a set of tools that end up having to try and stitch together those elements and bridge between them. So I see that as a fantastic gap to innovate around. I see, also, a fundamental need in creating a common data language, and common data management processes and governance across those different personas, because ultimately, the same underlying data these folks need, albeit in different mediums, different access models, different velocities, et cetera, the subject matter, if you will, the underlying raw data, and some of the taxonomies right on top of it, do need to be consistent. So, once again, a great opportunity to innovate, whether it's about semantic layers, whether it's about data mesh, whether it's about CICD tools for data engineers, and so on and so forth. >> I got to ask you, first of all, I see you have a friend you brought into the interview. You have a dog in the background who made a little cameo appearance. And that's awesome. Sitting right next to you, making sure everything's going well. On the AI thing, 'cause I think that's the hot trend here. >> Yeah. >> You're starting to see, that ChatGPT's got everyone excited, because it's kind of that first time you see kind of next-gen functionality, large-language models, where you can bring data in, and it integrates well. So, to me, I think, connecting the dots, this kind of speaks to the beginning of what will be a trend of really blending of data stacks together, or blending of models. And so, as more data modeling emerges, you start to have this AI stack kind of situation, where you have things out there that you can compose. It's almost very developer-friendly, conceptually. This is kind of new, but kind of the same concept's been working on with Google and others. How do you see this emerging, as an investor? What are some of the things that you're excited about, around the ChatGPT kind of things that's happening? 'Cause it brings it mainstream. Again, a million downloads, fastest applications get a million downloads, even among all the successes. So it's obviously hit a nerve. People are talking about it. What's your take on that? >> Yeah, so, I think that's a great point, and clearly, it feels like an iPhone moment, right, to the industry, in this case, AI, and lots of applications. And I think there's, at a high level, probably three different layers of innovation. One is on top of those platforms. What use cases can one bring to the table that would drive on top of a ChatGPT-like service? Whereby, the startup, the company, can bring some unique datasets to infuse and add value on top of it, by custom-focusing it and purpose-building it for a particular use case or particular vertical. Whether it's applying it to customer service, in a particular vertical, applying it to, I don't know, marketing content creation, and so on and so forth. That's one category. And I do know that, as one of my startups is in Y Combinator, this season, winter '23, they're saying that a very large chunk of the YC companies in this cycle are about GPT use cases. So we'll see a flurry of that. The next layer, the one below that, is those who actually provide those platforms, whether it's ChatGPT, whatever will emerge from the partnership with Microsoft, and any competitive players that emerge from other startups, or from the big cloud providers, whether it's Facebook, if they ever get into this, and Google, which clearly will, as they need to, to survive around search. The third layer is the enabling layer. As you're going to have more and more of those different large-language models and use case running on top of it, the underlying layers, all the way down to cloud infrastructure, the data infrastructure, and the entire set of tools and systems, that take raw data, and massage it into useful, labeled, contextualized features and data to feed the models, the AI models, whether it's during training, or during inference stages, in production. Personally, my focus is more on the infrastructure than on the application use cases. And I believe that there's going to be a massive amount of innovation opportunity around that, to reach cost-effective, quality, fair models that are deployed easily and maintained easily, or at least with as little pain as possible, at scale. So there are startups that are dealing with it, in various areas. Some are about focusing on labeling automation, some about fairness, about, speaking about cyber, protecting models from threats through data and other issues with it, and so on and so forth. And I believe that this will be, too, a big driver for massive innovation, the infrastructure layer. >> Awesome, and I love how you mentioned the iPhone moment. I call it the browser moment, 'cause it felt that way for me, personally. >> Yep. >> But I think, from a business model standpoint, there is that iPhone shift. It's not the BlackBerry. It's a whole 'nother thing. And I like that. But I do have to ask you, because this is interesting. You mentioned iPhone. iPhone's mostly proprietary. So, in these machine learning foundational models, >> Yeah. >> you're starting to see proprietary hardware, bolt-on, acceleration, bundled together, for faster uptake. And now you got open source emerging, as two things. It's almost iPhone-Android situation happening. >> Yeah. >> So what's your view on that? Because there's pros and cons for either one. You're seeing a lot of these machine learning laws are very proprietary, but they work, and do you care, right? >> Yeah. >> And then you got open source, which is like, "Okay, let's get some upsource code, and let people verify it, and then build with that." Is it a balance? >> Yes, I think- >> Is it mutually exclusive? What's your view? >> I think it's going to be, markets will drive the proportion of both, and I think, for a certain use case, you'll end up with more proprietary offerings. With certain use cases, I guess the fundamental infrastructure for ChatGPT-like, let's say, large-language models and all the use cases running on top of it, that's likely going to be more platform-oriented and open source, and will allow innovation. Think of it as the equivalent of iPhone apps or Android apps running on top of those platforms, as in AI apps. So we'll have a lot of that. Now, when you start going a little bit more into the guts, the lower layers, then it's clear that, for performance reasons, in particular, for certain use cases, we'll end up with more proprietary offerings, whether it's advanced silicon, such as some of the silicon that emerged from entrepreneurs who have left Google, around TensorFlow, and all the silicon that powers that. You'll see a lot of innovation in that area as well. It hopefully intends to improve the cost efficiency of running large AI-oriented workloads, both in inference and in learning stages. >> I got to ask you, because this has come up a lot around Azure and Microsoft. Microsoft, pretty good move getting into the ChatGPT >> Yep. >> and the open AI, because I was talking to someone who's a hardcore Amazon developer, and they said, they swore they would never use Azure, right? One of those types. And they're spinning up Azure servers to get access to the API. So, the developers are flocking, as you mentioned. The YC class is all doing large data things, because you can now program with data, which is amazing, which is amazing. So, what's your take on, I know you got to be kind of neutral 'cause you're an investor, but you got, Amazon has to respond, Google, essentially, did all the work, so they have to have a solution. So, I'm expecting Google to have something very compelling, but Microsoft, right now, is going to just, might run the table on developers, this new wave of data developers. What's your take on the cloud responses to this? What's Amazon, what do you think AWS is going to do? What should Google be doing? What's your take? >> So, each of them is coming from a slightly different angle, of course. I'll say, Google, I think, has massive assets in the AI space, and their underlying cloud platform, I think, has been designed to support such complicated workloads, but they have yet to go as far as opening it up the same way ChatGPT is now in that Microsoft partnership, and Azure. Good question regarding Amazon. AWS has had a significant investment in AI-related infrastructure. Seeing it through my startups, through other lens as well. How will they respond to that higher layer, above and beyond the low level, if you will, AI-enabling apparatuses? How do they elevate to at least one or two layers above, and get to the same ChatGPT layer, good question. Is there an acquisition that will make sense for them to accelerate it, maybe. Is there an in-house development that they can reapply from a different domain towards that, possibly. But I do suspect we'll end up with acquisitions as the arms race around the next level of cloud wars emerges, and it's going to be no longer just about the basic tooling for basic cloud-based applications, and the infrastructure, and the cost management, but rather, faster time to deliver AI in data-heavy applications. Once again, each one of those cloud suppliers, their vendor is coming with different assets, and different pros and cons. All of them will need to just elevate the level of the fight, if you will, in this case, to the AI layer. >> It's going to be very interesting, the different stacks on the data infrastructure, like I mentioned, analytics, data lake, AI, all happening. It's going to be interesting to see how this turns into this AI cloud, like data clouds, data operating systems. So, super fascinating area. Opher, thank you for coming on and sharing your expertise with us. Great to see you, and congratulations on the work. I'll give you the final word here. Give a plugin for what you're looking for for startup seats, pre-seeds. What's the kind of profile that gets your attention, from a seed, pre-seed candidate or entrepreneur? >> Cool, first of all, it's my pleasure. Enjoy our chats, as always. Hopefully the next one's not going to be in nine years. As to what I'm looking for, ideally, smart data entrepreneurs, who have come from a particular domain problem, or problem domain, that they understand, they felt it in their own 10 fingers, or millions of neurons in their brains, and they figured out a way to solve it. Whether it's a data infrastructure play, a cloud infrastructure play, or a very, very smart application that takes advantage of data at scale. These are the things I'm looking for. >> One final, final question I have to ask you, because you're a seasoned entrepreneur, and now coach. What's different about the current entrepreneurial environment right now, vis-a-vis, the past decade? What's new? Is it different, highly accelerated? What advice do you give entrepreneurs out there who are putting together their plan? Obviously, a global resource pool now of engineering. It might not be yesterday's formula for success to putting a venture together to get to that product-market fit. What's new and different, and what's your advice to the folks out there about what's different about the current environment for being an entrepreneur? >> Fantastic, so I think it's a great question. So I think there's a few axes of difference, compared to, let's say, five years ago, 10 years ago, 15 years ago. First and foremost, given the amount of infrastructure out there, the amount of open-source technologies, amount of developer toolkits and frameworks, trying to develop an application, at least at the application layer, is much faster than ever. So, it's faster and cheaper, to the most part, unless you're building very fundamental, core, deep tech, where you still have a big technology challenge to deal with. And absent that, the challenge shifts more to how do you manage my resources, to product-market fit, how are you integrating the GTM lens, the go-to-market lens, as early as possible in the product-market fit cycle, such that you reach from pre-seed to seed, from seed to A, from A to B, with an optimal amount of velocity, and a minimal amount of resources. One big difference, specifically as of, let's say, beginning of this year, late last year, is that money is no longer free for entrepreneurs, which means that you need to operate and build startup in an environment with a lot more constraints. And in my mind, some of the best startups that have ever been built, and some of the big market-changing, generational-changing, if you will, technology startups, in their respective industry verticals, have actually emerged from these times. And these tend to be the smartest, best startups that emerge because they operate with a lot less money. Money is not as available for them, which means that they need to make tough decisions, and make verticals every day. What you don't need to do, you can kick the cow down the road. When you have plenty of money, and it cushions for a lot of mistakes, you don't have that cushion. And hopefully we'll end up with companies with a more agile, more, if you will, resilience, and better cultures in making those tough decisions that startups need to make every day. Which is why I'm super, super excited to see the next batch of amazing unicorns, true unicorns, not just valuation, market rising with the water type unicorns that emerged from this particular era, which we're in the beginning of. And very much enjoy working with entrepreneurs during this difficult time, the times we're in. >> The next 24 months will be the next wave, like you said, best time to do a company. Remember, Airbnb's pitch was, "We'll rent cots in apartments, and sell cereal." Boy, a lot of people passed on that deal, in that last down market, that turned out to be a game-changer. So the crazy ideas might not be that bad. So it's all about the entrepreneurs, and >> 100%. >> this is a big wave, and it's certainly happening. Opher, thank you for sharing. Obviously, data is going to change all the markets. Refactoring, security, FinTech, user experience, applications are going to be changed by data, data operating system. Thanks for coming on, and thanks for sharing. Appreciate it. >> My pleasure. Have a good one. >> Okay, more coverage for the CloudNativeSecurityCon inaugural event. Data will be the key for cybersecurity. theCUBE's coverage continues after this break. (uplifting music)
SUMMARY :
and happening all around the world. Great to be back. He's now the CEO in the past five years or so. and a lot of the startups What kind of deals are you looking at? and broaden the variety of and apply it to a product and experience And you see a slew of folks and put it on the cloud, and new gaps that need to be filled You have a dog in the background but kind of the same and the entire set of tools and systems, I call it the browser moment, But I do have to ask you, And now you got open source and do you care, right? and then build with that." and all the use cases I got to ask you, because and the open AI, and it's going to be no longer What's the kind of profile These are the things I'm looking for. about the current environment and some of the big market-changing, So it's all about the entrepreneurs, and to change all the markets. Have a good one. for the CloudNativeSecurityCon
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Satya Nadella | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
2013 | DATE | 0.99+ |
Opher | PERSON | 0.99+ |
CapEx | ORGANIZATION | 0.99+ |
Seattle | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Sonoma Ventures | ORGANIZATION | 0.99+ |
BlackBerry | ORGANIZATION | 0.99+ |
10 fingers | QUANTITY | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
nine years | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Origami Logic | ORGANIZATION | 0.99+ |
Origami | ORGANIZATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
RevTech | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
Opher Kahane | PERSON | 0.99+ |
CloudNativeSecurityCon | EVENT | 0.99+ |
Palo Alto Studios | LOCATION | 0.99+ |
yesterday | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
third layer | QUANTITY | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
two layers | QUANTITY | 0.98+ |
Android | TITLE | 0.98+ |
third career | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
MapR | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
one category | QUANTITY | 0.98+ |
late last year | DATE | 0.98+ |
millions of neurons | QUANTITY | 0.98+ |
a million downloads | QUANTITY | 0.98+ |
three startups | QUANTITY | 0.98+ |
10 years ago | DATE | 0.97+ |
Fintech | ORGANIZATION | 0.97+ |
winter '23 | DATE | 0.97+ |
first one | QUANTITY | 0.97+ |
this year | DATE | 0.97+ |
Stanford | LOCATION | 0.97+ |
Cloudera | ORGANIZATION | 0.97+ |
theCUBE Center | ORGANIZATION | 0.96+ |
five years ago | DATE | 0.96+ |
10 year | QUANTITY | 0.96+ |
ChatGPT | TITLE | 0.96+ |
three | QUANTITY | 0.95+ |
first time | QUANTITY | 0.95+ |
XCEL Partners | ORGANIZATION | 0.95+ |
15 years ago | DATE | 0.94+ |
24 startups | QUANTITY | 0.93+ |
Jon Turow, Madrona Venture Group | CloudNativeSecurityCon 23
(upbeat music) >> Hello and welcome back to theCUBE. We're here in Palo Alto, California. I'm your host, John Furrier with a special guest here in the studio. As part of our Cloud Native SecurityCon Coverage we had an opportunity to bring in Jon Turow who is the partner at Madrona Venture Partners formerly with AWS and to talk about machine learning, foundational models, and how the future of AI is going to be impacted by some of the innovation around what's going on in the industry. ChatGPT has taken the world by storm. A million downloads, fastest to the million downloads there. Before some were saying it's just a gimmick. Others saying it's a game changer. Jon's here to break it down, and great to have you on. Thanks for coming in. >> Thanks John. Glad to be here. >> Thanks for coming on. So first of all, I'm glad you're here. First of all, because two things. One, you were formerly with AWS, got a lot of experience running projects at AWS. Now a partner at Madrona, a great firm doing great deals, and they had this future at modern application kind of thesis. Now you are putting out some content recently around foundational models. You're deep into computer vision. You were the IoT general manager at AWS among other things, Greengrass. So you know a lot about data. You know a lot about some of this automation, some of the edge stuff. You've been in the middle of all these kind of areas that now seem to be the next wave coming. So I wanted to ask you what your thoughts are of how the machine learning and this new automation wave is coming in, this AI tools are coming out. Is it a platform? Is it going to be smarter? What feeds AI? What's your take on this whole foundational big movement into AI? What's your general reaction to all this? >> So, thanks, Jon, again for having me here. Really excited to talk about these things. AI has been coming for a long time. It's been kind of the next big thing. Always just over the horizon for quite some time. And we've seen really compelling applications in generations before and until now. Amazon and AWS have introduced a lot of them. My firm, Madrona Venture Group has invested in some of those early players as well. But what we're seeing now is something categorically different. That's really exciting and feels like a durable change. And I can try and explain what that is. We have these really large models that are useful in a general way. They can be applied to a lot of different tasks beyond the specific task that the designers envisioned. That makes them more flexible, that makes them more useful for building applications than what we've seen before. And so that, we can talk about the depths of it, but in a nutshell, that's why I think people are really excited. >> And I think one of the things that you wrote about that jumped out at me is that this seems to be this moment where there's been a multiple decades of nerds and computer scientists and programmers and data thinkers around waiting for AI to blossom. And it's like they're scratching that itch. Every year is going to be, and it's like the bottleneck's always been compute power. And we've seen other areas, genome sequencing, all kinds of high computation things where required high forms computing. But now there's no real bottleneck to compute. You got cloud. And so you're starting to see the emergence of a massive acceleration of where AI's been and where it needs to be going. Now, it's almost like it's got a reboot. It's almost a renaissance in the AI community with a whole nother macro environmental things happening. Cloud, younger generation, applications proliferate from mobile to cloud native. It's the perfect storm for this kind of moment to switch over. Am I overreading that? Is that right? >> You're right. And it's been cooking for a cycle or two. And let me try and explain why that is. We have cloud and AWS launch in whatever it was, 2006, and offered more compute to more people than really was possible before. Initially that was about taking existing applications and running them more easily in a bigger scale. But in that period of time what's also become possible is new kinds of computation that really weren't practical or even possible without that vast amount of compute. And so one result that came of that is something called the transformer AI model architecture. And Google came out with that, published a paper in 2017. And what that says is, with a transformer model you can actually train an arbitrarily large amount of data into a model, and see what happens. That's what Google demonstrated in 2017. The what happens is the really exciting part because when you do that, what you start to see, when models exceed a certain size that we had never really seen before all of a sudden they get what we call emerging capabilities of complex reasoning and reasoning outside a domain and reasoning with data. The kinds of things that people describe as spooky when they play with something like ChatGPT. That's the underlying term. We don't as an industry quite know why it happens or how it happens, but we can measure that it does. So cloud enables new kinds of math and science. New kinds of math and science allow new kinds of experimentation. And that experimentation has led to this new generation of models. >> So one of the debates we had on theCUBE at our Supercloud event last month was, what's the barriers to entry for say OpenAI, for instance? Obviously, I weighed in aggressively and said, "The barriers for getting into cloud are high because all the CapEx." And Howie Xu formerly VMware, now at ZScaler, he's an AI machine learning guy. He was like, "Well, you can spend $100 million and replicate it." I saw a quote that set up for 180,000 I can get this other package. What's the barriers to entry? Is ChatGPT or OpenAI, does it have sustainability? Is it easy to get into? What is the market like for AI? I mean, because a lot of entrepreneurs are jumping in. I mean, I just read a story today. San Francisco's got more inbound migration because of the AI action happening, Seattle's booming, Boston with MIT's been working on neural networks for generations. That's what we've found the answer. Get off the neural network, Boston jump on the AI bus. So there's total excitement for this. People are enthusiastic around this area. >> You can think of an iPhone versus Android tension that's happening today. In the iPhone world, there are proprietary models from OpenAI who you might consider as the leader. There's Cohere, there's AI21, there's Anthropic, Google's going to have their own, and a few others. These are proprietary models that developers can build on top of, get started really quickly. They're measured to have the highest accuracy and the highest performance today. That's the proprietary side. On the other side, there is an open source part of the world. These are a proliferation of model architectures that developers and practitioners can take off the shelf and train themselves. Typically found in Hugging face. What people seem to think is that the accuracy and performance of the open source models is something like 18 to 20 months behind the accuracy and performance of the proprietary models. But on the other hand, there's infinite flexibility for teams that are capable enough. So you're going to see teams choose sides based on whether they want speed or flexibility. >> That's interesting. And that brings up a point I was talking to a startup and the debate was, do you abstract away from the hardware and be software-defined or software-led on the AI side and let the hardware side just extremely accelerate on its own, 'cause it's flywheel? So again, back to proprietary, that's with hardware kind of bundled in, bolted on. Is it accelerator or is it bolted on or is it part of it? So to me, I think that the big struggle in understanding this is that which one will end up being right. I mean, is it a beta max versus VHS kind of thing going on? Or iPhone, Android, I mean iPhone makes a lot of sense, but if you're Apple, but is there an Apple moment in the machine learning? >> In proprietary models, here does seem to be a jump ball. That there's going to be a virtuous flywheel that emerges that, for example, all these excitement about ChatGPT. What's really exciting about it is it's really easy to use. The technology isn't so different from what we've seen before even from OpenAI. You mentioned a million users in a short period of time, all providing training data for OpenAI that makes their underlying models, their next generation even better. So it's not unreasonable to guess that there's going to be power laws that emerge on the proprietary side. What I think history has shown is that iPhone, Android, Windows, Linux, there seems to be gravity towards this yin and yang. And my guess, and what other people seem to think is going to be the case is that we're going to continue to see these two poles of AI. >> So let's get into the relationship with data because I've been emerging myself with ChatGPT, fascinated by the ease of use, yes, but also the fidelity of how you query it. And I felt like when I was doing writing SQL back in the eighties and nineties where SQL was emerging. You had to be really a guru at the SQL to get the answers you wanted. It seems like the querying into ChatGPT is a good thing if you know how to talk to it. Labeling whether your input is and it does a great job if you feed it right. If you ask a generic questions like Google. It's like a Google search. It gives you great format, sounds credible, but the facts are kind of wrong. >> That's right. >> That's where general consensus is coming on. So what does that mean? That means people are on one hand saying, "Ah, it's bullshit 'cause it's wrong." But I look at, I'm like, "Wow, that's that's compelling." 'Cause if you feed it the right data, so now we're in the data modeling here, so the role of data's going to be critical. Is there a data operating system emerging? Because if this thing continues to go the way it's going you can almost imagine as you would look at companies to invest in. Who's going to be right on this? What's going to scale? What's sustainable? What could build a durable company? It might not look what like what people think it is. I mean, I remember when Google started everyone thought it was the worst search engine because it wasn't a portal. But it was the best organic search on the planet became successful. So I'm trying to figure out like, okay, how do you read this? How do you read the tea leaves? >> Yeah. There are a few different ways that companies can differentiate themselves. Teams with galactic capabilities to take an open source model and then change the architecture and retrain and go down to the silicon. They can do things that might not have been possible for other teams to do. There's a company that that we're proud to be investors in called RunwayML that provides video accelerated, sorry, AI accelerated video editing capabilities. They were used in everything, everywhere all at once and some others. In order to build RunwayML, they needed a vision of what the future was going to look like and they needed to make deep contributions to the science that was going to enable all that. But not every team has those capabilities, maybe nor should they. So as far as how other teams are going to differentiate there's a couple of things that they can do. One is called prompt engineering where they shape on behalf of their own users exactly how the prompt to get fed to the underlying model. It's not clear whether that's going to be a durable problem or whether like Google, we consumers are going to start to get more intuitive about this. That's one. The second is what's called information retrieval. How can I get information about the world outside, information from a database or a data store or whatever service into these models so they can reason about them. And the third is, this is going to sound funny, but attribution. Just like you would do in a news report or an academic paper. If you can state where your facts are coming from, the downstream consumer or the human being who has to use that information actually is going to be able to make better sense of it and rely better on it. So that's prompt engineering, that's retrieval, and that's attribution. >> So that brings me to my next point I want to dig in on is the foundational model stack that you published. And I'll start by saying that with ChatGPT, if you take out the naysayers who are like throwing cold water on it about being a gimmick or whatever, and then you got the other side, I would call the alpha nerds who are like they can see, "Wow, this is amazing." This is truly NextGen. This isn't yesterday's chatbot nonsense. They're like, they're all over it. It's that everybody's using it right now in every vertical. I heard someone using it for security logs. I heard a data center, hardware vendor using it for pushing out appsec review updates. I mean, I've heard corner cases. We're using it for theCUBE to put our metadata in. So there's a horizontal use case of value. So to me that tells me it's a market there. So when you have horizontal scalability in the use case you're going to have a stack. So you publish this stack and it has an application at the top, applications like Jasper out there. You're seeing ChatGPT. But you go after the bottom, you got silicon, cloud, foundational model operations, the foundational models themselves, tooling, sources, actions. Where'd you get this from? How'd you put this together? Did you just work backwards from the startups or was there a thesis behind this? Could you share your thoughts behind this foundational model stack? >> Sure. Well, I'm a recovering product manager and my job that I think about as a product manager is who is my customer and what problem he wants to solve. And so to put myself in the mindset of an application developer and a founder who is actually my customer as a partner at Madrona, I think about what technology and resources does she need to be really powerful, to be able to take a brilliant idea, and actually bring that to life. And if you spend time with that community, which I do and I've met with hundreds of founders now who are trying to do exactly this, you can see that the stack is emerging. In fact, we first drew it in, not in January 2023, but October 2022. And if you look at the difference between the October '22 and January '23 stacks you're going to see that holes in the stack that we identified in October around tooling and around foundation model ops and the rest are organically starting to get filled because of how much demand from the developers at the top of the stack. >> If you look at the young generation coming out and even some of the analysts, I was just reading an analyst report on who's following the whole data stacks area, Databricks, Snowflake, there's variety of analytics, realtime AI, data's hot. There's a lot of engineers coming out that were either data scientists or I would call data platform engineering folks are becoming very key resources in this area. What's the skillset emerging and what's the mindset of that entrepreneur that sees the opportunity? How does these startups come together? Is there a pattern in the formation? Is there a pattern in the competency or proficiency around the talent behind these ventures? >> Yes. I would say there's two groups. The first is a very distinct pattern, John. For the past 10 years or a little more we've seen a pattern of democratization of ML where more and more people had access to this powerful science and technology. And since about 2017, with the rise of the transformer architecture in these foundation models, that pattern has reversed. All of a sudden what has become broader access is now shrinking to a pretty small group of scientists who can actually train and manipulate the architectures of these models themselves. So that's one. And what that means is the teams who can do that have huge ability to make the future happen in ways that other people don't have access to yet. That's one. The second is there is a broader population of people who by definition has even more collective imagination 'cause there's even more people who sees what should be possible and can use things like the proprietary models, like the OpenAI models that are available off the shelf and try to create something that maybe nobody has seen before. And when they do that, Jasper AI is a great example of that. Jasper AI is a company that creates marketing copy automatically with generative models such as GPT-3. They do that and it's really useful and it's almost fun for a marketer to use that. But there are going to be questions of how they can defend that against someone else who has access to the same technology. It's a different population of founders who has to find other sources of differentiation without being able to go all the way down to the the silicon and the science. >> Yeah, and it's going to be also opportunity recognition is one thing. Building a viable venture product market fit. You got competition. And so when things get crowded you got to have some differentiation. I think that's going to be the key. And that's where I was trying to figure out and I think data with scale I think are big ones. Where's the vulnerability in the stack in terms of gaps? Where's the white space? I shouldn't say vulnerability. I should say where's the opportunity, where's the white space in the stack that you see opportunities for entrepreneurs to attack? >> I would say there's two. At the application level, there is almost infinite opportunity, John, because almost every kind of application is about to be reimagined or disrupted with a new generation that takes advantage of this really powerful new technology. And so if there is a kind of application in almost any vertical, it's hard to rule something out. Almost any vertical that a founder wishes she had created the original app in, well, now it's her time. So that's one. The second is, if you look at the tooling layer that we discussed, tooling is a really powerful way that you can provide more flexibility to app developers to get more differentiation for themselves. And the tooling layer is still forming. This is the interface between the models themselves and the applications. Tools that help bring in data, as you mentioned, connect to external actions, bring context across multiple calls, chain together multiple models. These kinds of things, there's huge opportunity there. >> Well, Jon, I really appreciate you coming in. I had a couple more questions, but I will take a minute to read some of your bios for the audience and we'll get into, I won't embarrass you, but I want to set the context. You said you were recovering product manager, 10 plus years at AWS. Obviously, recovering from AWS, which is a whole nother dimension of recovering. In all seriousness, I talked to Andy Jassy around that time and Dr. Matt Wood and it was about that time when AI was just getting on the radar when they started. So you guys started seeing the wave coming in early on. So I remember at that time as Amazon was starting to grow significantly and even just stock price and overall growth. From a tech perspective, it was pretty clear what was coming, so you were there when this tsunami hit. >> Jon: That's right. >> And you had a front row seat building tech, you were led the product teams for Computer Vision AI, Textract, AI intelligence for document processing, recognition for image and video analysis. You wrote the business product plan for AWS IoT and Greengrass, which we've covered a lot in theCUBE, which extends out to the whole edge thing. So you know a lot about AI/ML, edge computing, IOT, messaging, which I call the law of small numbers that scale become big. This is a big new thing. So as a former AWS leader who's been there and at Madrona, what's your investment thesis as you start to peruse the landscape and talk to entrepreneurs as you got the stack? What's the big picture? What are you looking for? What's the thesis? How do you see this next five years emerging? >> Five years is a really long time given some of this science is only six months out. I'll start with some, no pun intended, some foundational things. And we can talk about some implications of the technology. The basics are the same as they've always been. We want, what I like to call customers with their hair on fire. So they have problems, so urgent they'll buy half a product. The joke is if your hair is on fire you might want a bucket of cold water, but you'll take a tennis racket and you'll beat yourself over the head to put the fire out. You want those customers 'cause they'll meet you more than halfway. And when you find them, you can obsess about them and you can get better every day. So we want customers with their hair on fire. We want founders who have empathy for those customers, understand what is going to be required to serve them really well, and have what I like to call founder-market fit to be able to build the products that those customers are going to need. >> And because that's a good strategy from an emerging, not yet fully baked out requirements definition. >> Jon: That's right. >> Enough where directionally they're leaning in, more than in, they're part of the product development process. >> That's right. And when you're doing early stage development, which is where I personally spend a lot of my time at the seed and A and a little bit beyond that stage often that's going to be what you have to go on because the future is going to be so complex that you can't see the curves beyond it. But if you have customers with their hair on fire and talented founders who have the capability to serve those customers, that's got me interested. >> So if I'm an entrepreneur, I walk in and say, "I have customers that have their hair on fire." What kind of checks do you write? What's the kind of the average you're seeing for seed and series? Probably seed, seed rounds and series As. >> It can depend. I have seen seed rounds of double digit million dollars. I have seen seed rounds much smaller than that. It really depends on what is going to be the right thing for these founders to prove out the hypothesis that they're testing that says, "Look, we have this customer with her hair on fire. We think we can build at least a tennis racket that she can use to start beating herself over the head and put the fire out. And then we're going to have something really interesting that we can scale up from there and we can make the future happen. >> So it sounds like your advice to founders is go out and find some customers, show them a product, don't obsess over full completion, get some sort of vibe on fit and go from there. >> Yeah, and I think by the time founders come to me they may not have a product, they may not have a deck, but if they have a customer with her hair on fire, then I'm really interested. >> Well, I always love the professional services angle on these markets. You go in and you get some business and you understand it. Walk away if you don't like it, but you see the hair on fire, then you go in product mode. >> That's right. >> All Right, Jon, thank you for coming on theCUBE. Really appreciate you stopping by the studio and good luck on your investments. Great to see you. >> You too. >> Thanks for coming on. >> Thank you, Jon. >> CUBE coverage here at Palo Alto. I'm John Furrier, your host. More coverage with CUBE Conversations after this break. (upbeat music)
SUMMARY :
and great to have you on. that now seem to be the next wave coming. It's been kind of the next big thing. is that this seems to be this moment and offered more compute to more people What's the barriers to entry? is that the accuracy and the debate was, do you that there's going to be power laws but also the fidelity of how you query it. going to be critical. exactly how the prompt to get So that brings me to my next point and actually bring that to life. and even some of the analysts, But there are going to be questions Yeah, and it's going to be and the applications. the radar when they started. and talk to entrepreneurs the head to put the fire out. And because that's a good of the product development process. that you can't see the curves beyond it. What kind of checks do you write? and put the fire out. to founders is go out time founders come to me and you understand it. stopping by the studio More coverage with CUBE
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amazon | ORGANIZATION | 0.99+ |
Jon | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
January 2023 | DATE | 0.99+ |
Jon Turow | PERSON | 0.99+ |
October | DATE | 0.99+ |
18 | QUANTITY | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
10 plus years | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
ORGANIZATION | 0.99+ | |
two | QUANTITY | 0.99+ |
October 2022 | DATE | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Madrona | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Madrona Venture Partners | ORGANIZATION | 0.99+ |
January '23 | DATE | 0.99+ |
two groups | QUANTITY | 0.99+ |
Matt Wood | PERSON | 0.99+ |
Madrona Venture Group | ORGANIZATION | 0.99+ |
180,000 | QUANTITY | 0.99+ |
October '22 | DATE | 0.99+ |
Jasper | TITLE | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
six months | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
million downloads | QUANTITY | 0.99+ |
Five years | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
last month | DATE | 0.99+ |
two poles | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Howie Xu | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
third | QUANTITY | 0.99+ |
20 months | QUANTITY | 0.99+ |
Greengrass | ORGANIZATION | 0.99+ |
Madrona Venture Group | ORGANIZATION | 0.98+ |
second | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
Supercloud | EVENT | 0.98+ |
RunwayML | TITLE | 0.98+ |
San Francisco | LOCATION | 0.98+ |
ZScaler | ORGANIZATION | 0.98+ |
yesterday | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
First | QUANTITY | 0.97+ |
CapEx | ORGANIZATION | 0.97+ |
eighties | DATE | 0.97+ |
ChatGPT | TITLE | 0.96+ |
Dr. | PERSON | 0.96+ |
Michael Foster, Red Hat | CloudNativeSecurityCon 23
(lively music) >> Welcome back to our coverage of Cloud Native Security Con. I'm Dave Vellante, here in our Boston studio. We're connecting today, throughout the day, with Palo Alto on the ground in Seattle. And right now I'm here with Michael Foster with Red Hat. He's on the ground in Seattle. We're going to discuss the trends and containers and security and everything that's going on at the show in Seattle. Michael, good to see you, thanks for coming on. >> Good to see you, thanks for having me on. >> Lot of market momentum for Red Hat. The IBM earnings call the other day, announced OpenShift is a billion-dollar ARR. So it's quite a milestone, and it's not often, you know. It's hard enough to become a billion-dollar software company and then to have actually a billion-dollar product alongside. So congratulations on that. And let's start with the event. What's the buzz at the event? People talking about shift left, obviously supply chain security is a big topic. We've heard a little bit about or quite a bit about AI. What are you hearing on the ground? >> Yeah, so the last event I was at that I got to see you at was three months ago, with CubeCon and the talk was supply chain security. Nothing has really changed on that front, although I do think that the conversation, let's say with the tech companies versus what customers are actually looking at, is slightly different just based on the market. And, like you said, thank you for the shout-out to a billion-dollar OpenShift, and ACS is certainly excited to be part of that. We are seeing more of a consolidation, I think, especially in security. The money's still flowing into security, but people want to know what they're running. We've allowed, had some tremendous growth in the last couple years and now it's okay. Let's get a hold of the containers, the clusters that we're running, let's make sure everything's configured. They want to start implementing policies effectively and really get a feel for what's going on across all their workloads, especially with the bigger companies. I think bigger companies allow some flexibility in the security applications that they can deploy. They can have different groups that manage different ones, but in the mid to low market, you're seeing a lot of consolidation, a lot of companies that want basically one security tool to manage them all, so to speak. And I think that the features need to somewhat accommodate that. We talk supply chain, I think most people continue to care about network security, vulnerability management, shifting left and enabling developers. That's the general trend I see. Still really need to get some hands on demos and see some people that I haven't seen in a while. >> So a couple things on, 'cause, I mean, we talk about the macroeconomic climate all the time. We do a lot of survey data with our partners at ETR, and their recent data shows that in terms of cost savings, for those who are actually cutting their budgets, they're looking to consolidate redundant vendors. So, that's one form of consolidation. The other theme, of course, is there's so many tools out in the security market that consolidating tools is something that can help simplify, but then at the same time, you see opportunities open up, like IOT security. And so, you have companies that are starting up to just do that. So, there's like these countervailing trends. I often wonder, Michael, will this ever end? It's like the universe growing and tooling, what are your thoughts? >> I mean, I completely agree. It's hard to balance trying to grow the company in a time like this, at the same time while trying to secure it all, right? So you're seeing the consolidation but some of these applications and platforms need to make some promises to say, "Hey, we're going to move into this space." Right, so when you have like Red Hat who wants to come out with edge devices and help manage the IOT devices, well then, you have a security platform that can help you do that, that's built in. Then the messaging's easy. When you're trying to do that across different cloud providers and move into IOT, it becomes a little bit more challenging. And so I think that, and don't take my word for this, some of those IOT startups, you might see some purchasing in the next couple years in order to facilitate those cloud platforms to be able to expand into that area. To me it makes sense, but I don't want to hypothesize too much from the start. >> But I do, we just did our predictions post and as a security we put up the chart of candidates, and there's like dozens, and dozens, and dozens. Some that are very well funded, but I mean, you've seen some down, I mean, down rounds everywhere, but these many companies have raised over a billion dollars and it's like uh-oh, okay, so they're probably okay, maybe. But a lot of smaller firms, I mean there's just, there's too many tools in the marketplace, but it seems like there is misalignment there, you know, kind of a mismatch between, you know, what customers would like to have happen and what actually happens in the marketplace. And that just underscores, I think, the complexities in security. So I guess my question is, you know, how do you look at Cloud Native Security, and what's different from traditional security approaches? >> Okay, I mean, that's a great question, and it's something that we've been talking to customers for the last five years about. And, really, it's just a change in mindset. Containers are supposed to unleash developer speed, and if you don't have a security tool to help do that, then you're basically going to inhibit developers in some form or another. I think managing that, while also giving your security teams the ability to tell the message of we are being more secure. You know, we're limiting vulnerabilities in our cluster. We are seeing progress because containers, you know, have a shorter life cycle and there is security and speed. Having that conversation with the C-suites is a little different, especially when how they might be used to virtual machines and managing it through that. I mean, if it works, it works from a developer's standpoint. You're not taking advantage of those containers and the developer's speed, so that's the difference. Now doing that and then first challenge is making that pitch. The second challenge is making that pitch to then scale it, so you can get onboard your developers and get your containers up and running, but then as you bring in new groups, as you move over to Kubernetes or you get into more container workloads, how do you onboard your teams? How do you scale? And I tend to see a general trend of a big investment needed for about two years to make that container shift. And then the security tools come in and really blossom because once that core separation of responsibilities happens in the organization, then the security tools are able to accelerate the developer workflow and not inhibit it. >> You know, I'm glad you mentioned, you know, separation of responsibilities. We go to a lot of shows, as you know, with theCUBE, and many of them are cloud shows. And in the one hand, Cloud has, you know, obviously made the world, you know, more interesting and better in so many different ways and even security, but it's like new layers are forming. You got the cloud, you got the shared responsibility model, so the cloud is like the first line of defense. And then you got the CISO who is relying heavily on devs to, you know, the whole shift left thing. So we're asking developers to do a lot and then you're kind of behind them. I guess you have audit is like the last line of defense, but my question to you is how can software developers really ensure that cloud native tools that they're using are secure? What steps can they take to improve security and specifically what's Red Hat doing in that area? >> Yeah, well I think there's, I would actually move away from that being the developer responsibility. I think the job is the operators' and the security people. The tools to give them the ability to see. The vulnerabilities they're introducing. Let's say signing their images, actually verifying that the images that's thrown in the cloud, are the ones that they built, that can all be done and it can be done open source. So we have a DevSecOps validated pattern that Red Hat's pushed out, and it's all open source tools in the cloud native space. And you can sign your builds and verify them at runtime and make sure that you're doing that all for free as one option. But in general, I would say that the hope is that you give the developer the information to make responsible choices and that there's a dialogue between your security and operations and developer teams but security, we should not be pushing that on developer. And so I think with ACS and our tool, the goal is to get in and say, "Let's set some reasonable policies, have a conversation, let's get a security liaison." Let's say in the developer team so that we can make some changes over time. And the more we can automate that and the more we can build and have that conversation, the better that you'll, I don't say the more security clusters but I think that the more you're on your path of securing your environment. >> How much talk is there at the event about kind of recent high profile incidents? We heard, you know, Log4j, of course, was mentioned in the Keynote. Somebody, you know, I think yelled out from the audience, "We're still dealing with that." But when you think about these, you know, incidents when looking back, what lessons do you think we've learned from these events? >> Oh, I mean, I think that I would say, if you have an approach where you're managing your containers, managing the age and using containers to accelerate, so let's say no images that are older than 90 days, for example, you're going to avoid a lot of these issues. And so I think people that are still dealing with that aspect haven't set up the proper, let's say, disclosure between teams and update strategy and so on. So I don't want to, I think the Log4j, if it's still around, you know, something's missing there but in general you want to be able to respond quickly and to do that and need the tools and policies to be able to tell people how to fix that issue. I mean, the Log4j fix was seven days after, so your developers should have been well aware of that. Your security team should have been sending the messages out. And I remember even fielding all the calls, all the fires that we had to put out when that happened. But yeah. >> I thought Brian Behlendorf's, you know, talk this morning was interesting 'cause he was making an attempt to say, "Hey, here's some things that you might not be thinking about that are likely to occur." And I wonder if you could, you know, comment on them and give us your thoughts as to how the industry generally, maybe Red Hat specifically, are thinking about dealing with them. He mentioned ChatGPT or other GPT to automate Spear phishing. He said the identity problem is still not fixed. Then he talked about free riders sniffing repos essentially for known vulnerabilities that are slow to fix. He talked about regulations that might restrict shipping code. So these are things that, you know, essentially, we can, they're on the radar, but you know, we're kind of putting out, you know, yesterday's fire. What are your thoughts on those sort of potential issues that we're facing and how are you guys thinking about it? >> Yeah, that's a great question, and I think it's twofold. One, it's brought up in front of a lot of security leaders in the space for them to be aware of it because security, it's a constant battle, constant war that's being fought. ChatGPT lowers the barrier of entry for a lot of them, say, would-be hackers or people like that to understand systems and create, let's say, simple manifests to leverage Kubernetes or leverage a misconfiguration. So as the barrier drops, we as a security team in security, let's say group organization, need to be able to respond and have our own tools to be able to combat that, and we do. So a lot of it is just making sure that we shore up our barriers and that people are aware of these threats. The harder part I think is educating the public and that's why you tend to see maybe the supply chain trend be a little bit ahead of the implementation. I think they're still, for example, like S-bombs and signing an attestation. I think that's still, you know, a year, two years, away from becoming, let's say commonplace, especially in something like a production environment. Again, so, you know, stay bleeding edge, and then make sure that you're aware of these issues and we'll be constantly coming to these calls and filling you in on what we're doing and make sure that we're up to speed. >> Yeah, so I'm hearing from folks like yourself that the, you know, you think of the future of Cloud Native Security. We're going to see continued emphasis on, you know, better integration of security into the DevSecOps. You're pointing out it's really, you know, the ops piece, that runtime that we really need to shore up. You can't just put it on the shoulders of the devs. And, you know, using security focused tools and best practices. Of course you hear a lot about that and the continued drive toward automation. My question is, you know, automation, machine learning, how, where are we in that maturity cycle? How much of that is being adopted? Sometimes folks are, you know, they embrace automation but it brings, you know, unknown, unintended consequences. Are folks embracing that heavily? Are there risks associated around that, or are we kind of through that knothole in your view? >> Yeah, that's a great question. I would compare it to something like a smart home. You know, we sort of hit a wall. You can automate so much, but it has to actually be useful to your teams. So when we're going and deploying ACS and using a cloud service, like one, you know, you want something that's a service that you can easily set up. And then the other thing is you want to start in inform mode. So you can't just automate everything, even if you're doing runtime enforcement, you need to make sure that's very, very targeted to exactly what you want and then you have to be checking it because people start new workloads and people get onboarded every week or month. So it's finding that balance between policies where you can inform the developer and the operations teams and that they give them the information to act. And that worst case you can step in as a security team to stop it, you know, during the onboarding of our ACS cloud service. We have an early access program and I get on-calls, and it's not even security team, it's the operations team. It starts with the security product, you know, and sometimes it's just, "Hey, how do I, you know, set this policy so my developers will find this vulnerability like a Log4Shell and I just want to send 'em an email, right?" And these are, you know, they have the tools and they can do that. And so it's nice to see the operations take on some security. They can automate it because maybe you have a NetSec security team that doesn't know Kubernetes or containers as well. So that shared responsibility is really useful. And then just again, making that automation targeted, even though runtime enforcement is a constant thing that we talk about, the amount that we see it in the wild where people are properly setting up admission controllers and it's acting. It's, again, very targeted. Databases, cubits x, things that are basically we all know is a no-go in production. >> Thank you for that. My last question, I want to go to the, you know, the hardest part and 'cause you're talking to customers all the time and you guys are working on the hardest problems in the world. What is the hardest aspect of securing, I'm going to come back to the software supply chain, hardest aspect of securing the software supply chain from the perspective of a security pro, software engineer, developer, DevSecOps Pro, and then this part b of that is, is how are you attacking that specifically as Red Hat? >> Sure, so as a developer, it's managing vulnerabilities with updates. As an operations team, it's keeping all the cluster, because you have a bunch of different teams working in the same environment, let's say, from a security team. It's getting people to listen to you because there are a lot of things that need to be secured. And just communicating that and getting it actionable data to the people to make the decisions as hard from a C-suite. It's getting the buy-in because it's really hard to justify the dollars and cents of security when security is constantly having to have these conversations with developers. So for ACS, you know, we want to be able to give the developer those tools. We also want to build the dashboards and reporting so that people can see their vulnerabilities drop down over time. And also that they're able to respond to it quickly because really that's where the dollars and cents are made in the product. It's that a Log4Shell comes out. You get immediately notified when the feeds are updated and you have a policy in action that you can respond to it. So I can go to my CISOs and say, "Hey look, we're limiting vulnerabilities." And when this came out, the developers stopped it in production and we were able to update it with the next release. Right, like that's your bread and butter. That's the story that you want to tell. Again, it's a harder story to tell, but it's easy when you have the information to be able to justify the money that you're spending on your security tools. Hopefully that answered your question. >> It does. That was awesome. I mean, you got data, you got communication, you got the people, obviously there's skillsets, you have of course, tooling and technology is a big part of that. Michael, really appreciate you coming on the program, sharing what's happening on the ground in Seattle and can't wait to have you back. >> Yeah. Awesome. Thanks again for having me. >> Yeah, our pleasure. All right. Thanks for watching our coverage of the Cloud Native Security Con. I'm Dave Vellante. I'm in our Boston studio. We're connecting to Palo Alto. We're connecting on the ground in Seattle. Keep it right there for more coverage. Be right back. (lively music)
SUMMARY :
He's on the ground in Seattle. Good to see you, and it's not often, you know. but in the mid to low market, And so, you have companies that can help you do kind of a mismatch between, you know, and if you don't have a And in the one hand, Cloud has, you know, that and the more we can build We heard, you know, Log4j, of course, but in general you want to that you might not be in the space for them to be but it brings, you know, as a security team to stop it, you know, to go to the, you know, That's the story that you want to tell. and can't wait to have you back. Thanks again for having me. of the Cloud Native Security Con.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Seattle | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Michael Foster | PERSON | 0.99+ |
Brian Behlendorf | PERSON | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
dozens | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
second challenge | QUANTITY | 0.99+ |
two years | QUANTITY | 0.99+ |
first challenge | QUANTITY | 0.99+ |
ACS | ORGANIZATION | 0.99+ |
billion-dollar | QUANTITY | 0.99+ |
GPT | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
three months ago | DATE | 0.98+ |
today | DATE | 0.98+ |
one option | QUANTITY | 0.98+ |
Cloud Native Security Con. | EVENT | 0.97+ |
a year | QUANTITY | 0.97+ |
over a billion dollars | QUANTITY | 0.97+ |
one form | QUANTITY | 0.97+ |
NetSec | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
about two years | QUANTITY | 0.96+ |
this morning | DATE | 0.96+ |
ChatGPT | ORGANIZATION | 0.96+ |
older than 90 days | QUANTITY | 0.94+ |
OpenShift | ORGANIZATION | 0.93+ |
one security tool | QUANTITY | 0.92+ |
Spear | PERSON | 0.89+ |
Kubernetes | TITLE | 0.87+ |
first line | QUANTITY | 0.86+ |
last couple years | DATE | 0.85+ |
seven days | DATE | 0.85+ |
Log4j | PERSON | 0.84+ |
Log4Shell | TITLE | 0.82+ |
last five years | DATE | 0.82+ |
one | QUANTITY | 0.79+ |
Cloud | TITLE | 0.77+ |
DevSecOps | TITLE | 0.77+ |
CubeCon | EVENT | 0.76+ |
CloudNativeSecurityCon 23 | EVENT | 0.75+ |
twofold | QUANTITY | 0.72+ |
theCUBE | ORGANIZATION | 0.71+ |
next couple years | DATE | 0.67+ |
couple | QUANTITY | 0.66+ |
DevSecOps Pro | TITLE | 0.59+ |
Cloud Native | TITLE | 0.59+ |
Log4j | TITLE | 0.35+ |
Breaking Analysis: ChatGPT Won't Give OpenAI First Mover Advantage
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> OpenAI The company, and ChatGPT have taken the world by storm. Microsoft reportedly is investing an additional 10 billion dollars into the company. But in our view, while the hype around ChatGPT is justified, we don't believe OpenAI will lock up the market with its first mover advantage. Rather, we believe that success in this market will be directly proportional to the quality and quantity of data that a technology company has at its disposal, and the compute power that it could deploy to run its system. Hello and welcome to this week's Wikibon CUBE insights, powered by ETR. In this Breaking Analysis, we unpack the excitement around ChatGPT, and debate the premise that the company's early entry into the space may not confer winner take all advantage to OpenAI. And to do so, we welcome CUBE collaborator, alum, Sarbjeet Johal, (chuckles) and John Furrier, co-host of the Cube. Great to see you Sarbjeet, John. Really appreciate you guys coming to the program. >> Great to be on. >> Okay, so what is ChatGPT? Well, actually we asked ChatGPT, what is ChatGPT? So here's what it said. ChatGPT is a state-of-the-art language model developed by OpenAI that can generate human-like text. It could be fine tuned for a variety of language tasks, such as conversation, summarization, and language translation. So I asked it, give it to me in 50 words or less. How did it do? Anything to add? >> Yeah, think it did good. It's large language model, like previous models, but it started applying the transformers sort of mechanism to focus on what prompt you have given it to itself. And then also the what answer it gave you in the first, sort of, one sentence or two sentences, and then introspect on itself, like what I have already said to you. And so just work on that. So it it's self sort of focus if you will. It does, the transformers help the large language models to do that. >> So to your point, it's a large language model, and GPT stands for generative pre-trained transformer. >> And if you put the definition back up there again, if you put it back up on the screen, let's see it back up. Okay, it actually missed the large, word large. So one of the problems with ChatGPT, it's not always accurate. It's actually a large language model, and it says state of the art language model. And if you look at Google, Google has dominated AI for many times and they're well known as being the best at this. And apparently Google has their own large language model, LLM, in play and have been holding it back to release because of backlash on the accuracy. Like just in that example you showed is a great point. They got almost right, but they missed the key word. >> You know what's funny about that John, is I had previously asked it in my prompt to give me it in less than a hundred words, and it was too long, I said I was too long for Breaking Analysis, and there it went into the fact that it's a large language model. So it largely, it gave me a really different answer the, for both times. So, but it's still pretty amazing for those of you who haven't played with it yet. And one of the best examples that I saw was Ben Charrington from This Week In ML AI podcast. And I stumbled on this thanks to Brian Gracely, who was listening to one of his Cloudcasts. Basically what Ben did is he took, he prompted ChatGPT to interview ChatGPT, and he simply gave the system the prompts, and then he ran the questions and answers into this avatar builder and sped it up 2X so it didn't sound like a machine. And voila, it was amazing. So John is ChatGPT going to take over as a cube host? >> Well, I was thinking, we get the questions in advance sometimes from PR people. We should actually just plug it in ChatGPT, add it to our notes, and saying, "Is this good enough for you? Let's ask the real question." So I think, you know, I think there's a lot of heavy lifting that gets done. I think the ChatGPT is a phenomenal revolution. I think it highlights the use case. Like that example we showed earlier. It gets most of it right. So it's directionally correct and it feels like it's an answer, but it's not a hundred percent accurate. And I think that's where people are seeing value in it. Writing marketing, copy, brainstorming, guest list, gift list for somebody. Write me some lyrics to a song. Give me a thesis about healthcare policy in the United States. It'll do a bang up job, and then you got to go in and you can massage it. So we're going to do three quarters of the work. That's why plagiarism and schools are kind of freaking out. And that's why Microsoft put 10 billion in, because why wouldn't this be a feature of Word, or the OS to help it do stuff on behalf of the user. So linguistically it's a beautiful thing. You can input a string and get a good answer. It's not a search result. >> And we're going to get your take on on Microsoft and, but it kind of levels the playing- but ChatGPT writes better than I do, Sarbjeet, and I know you have some good examples too. You mentioned the Reed Hastings example. >> Yeah, I was listening to Reed Hastings fireside chat with ChatGPT, and the answers were coming as sort of voice, in the voice format. And it was amazing what, he was having very sort of philosophy kind of talk with the ChatGPT, the longer sentences, like he was going on, like, just like we are talking, he was talking for like almost two minutes and then ChatGPT was answering. It was not one sentence question, and then a lot of answers from ChatGPT and yeah, you're right. I, this is our ability. I've been thinking deep about this since yesterday, we talked about, like, we want to do this segment. The data is fed into the data model. It can be the current data as well, but I think that, like, models like ChatGPT, other companies will have those too. They can, they're democratizing the intelligence, but they're not creating intelligence yet, definitely yet I can say that. They will give you all the finite answers. Like, okay, how do you do this for loop in Java, versus, you know, C sharp, and as a programmer you can do that, in, but they can't tell you that, how to write a new algorithm or write a new search algorithm for you. They cannot create a secretive code for you to- >> Not yet. >> Have competitive advantage. >> Not yet, not yet. >> but you- >> Can Google do that today? >> No one really can. The reasoning side of the data is, we talked about at our Supercloud event, with Zhamak Dehghani who's was CEO of, now of Nextdata. This next wave of data intelligence is going to come from entrepreneurs that are probably cross discipline, computer science and some other discipline. But they're going to be new things, for example, data, metadata, and data. It's hard to do reasoning like a human being, so that needs more data to train itself. So I think the first gen of this training module for the large language model they have is a corpus of text. Lot of that's why blog posts are, but the facts are wrong and sometimes out of context, because that contextual reasoning takes time, it takes intelligence. So machines need to become intelligent, and so therefore they need to be trained. So you're going to start to see, I think, a lot of acceleration on training the data sets. And again, it's only as good as the data you can get. And again, proprietary data sets will be a huge winner. Anyone who's got a large corpus of content, proprietary content like theCUBE or SiliconANGLE as a publisher will benefit from this. Large FinTech companies, anyone with large proprietary data will probably be a big winner on this generative AI wave, because it just, it will eat that up, and turn that back into something better. So I think there's going to be a lot of interesting things to look at here. And certainly productivity's going to be off the charts for vanilla and the internet is going to get swarmed with vanilla content. So if you're in the content business, and you're an original content producer of any kind, you're going to be not vanilla, so you're going to be better. So I think there's so much at play Dave (indistinct). >> I think the playing field has been risen, so we- >> Risen and leveled? >> Yeah, and leveled to certain extent. So it's now like that few people as consumers, as consumers of AI, we will have a advantage and others cannot have that advantage. So it will be democratized. That's, I'm sure about that. But if you take the example of calculator, when the calculator came in, and a lot of people are, "Oh, people can't do math anymore because calculator is there." right? So it's a similar sort of moment, just like a calculator for the next level. But, again- >> I see it more like open source, Sarbjeet, because like if you think about what ChatGPT's doing, you do a query and it comes from somewhere the value of a post from ChatGPT is just a reuse of AI. The original content accent will be come from a human. So if I lay out a paragraph from ChatGPT, did some heavy lifting on some facts, I check the facts, save me about maybe- >> Yeah, it's productive. >> An hour writing, and then I write a killer two, three sentences of, like, sharp original thinking or critical analysis. I then took that body of work, open source content, and then laid something on top of it. >> And Sarbjeet's example is a good one, because like if the calculator kids don't do math as well anymore, the slide rule, remember we had slide rules as kids, remember we first started using Waze, you know, we were this minority and you had an advantage over other drivers. Now Waze is like, you know, social traffic, you know, navigation, everybody had, you know- >> All the back roads are crowded. >> They're car crowded. (group laughs) Exactly. All right, let's, let's move on. What about this notion that futurist Ray Amara put forth and really Amara's Law that we're showing here, it's, the law is we, you know, "We tend to overestimate the effect of technology in the short run and underestimate it in the long run." Is that the case, do you think, with ChatGPT? What do you think Sarbjeet? >> I think that's true actually. There's a lot of, >> We don't debate this. >> There's a lot of awe, like when people see the results from ChatGPT, they say what, what the heck? Like, it can do this? But then if you use it more and more and more, and I ask the set of similar question, not the same question, and it gives you like same answer. It's like reading from the same bucket of text in, the interior read (indistinct) where the ChatGPT, you will see that in some couple of segments. It's very, it sounds so boring that the ChatGPT is coming out the same two sentences every time. So it is kind of good, but it's not as good as people think it is right now. But we will have, go through this, you know, hype sort of cycle and get realistic with it. And then in the long term, I think it's a great thing in the short term, it's not something which will (indistinct) >> What's your counter point? You're saying it's not. >> I, no I think the question was, it's hyped up in the short term and not it's underestimated long term. That's what I think what he said, quote. >> Yes, yeah. That's what he said. >> Okay, I think that's wrong with this, because this is a unique, ChatGPT is a unique kind of impact and it's very generational. People have been comparing it, I have been comparing to the internet, like the web, web browser Mosaic and Netscape, right, Navigator. I mean, I clearly still remember the days seeing Navigator for the first time, wow. And there weren't not many sites you could go to, everyone typed in, you know, cars.com, you know. >> That (indistinct) wasn't that overestimated, the overhyped at the beginning and underestimated. >> No, it was, it was underestimated long run, people thought. >> But that Amara's law. >> That's what is. >> No, they said overestimated? >> Overestimated near term underestimated- overhyped near term, underestimated long term. I got, right I mean? >> Well, I, yeah okay, so I would then agree, okay then- >> We were off the charts about the internet in the early days, and it actually exceeded our expectations. >> Well there were people who were, like, poo-pooing it early on. So when the browser came out, people were like, "Oh, the web's a toy for kids." I mean, in 1995 the web was a joke, right? So '96, you had online populations growing, so you had structural changes going on around the browser, internet population. And then that replaced other things, direct mail, other business activities that were once analog then went to the web, kind of read only as you, as we always talk about. So I think that's a moment where the hype long term, the smart money, and the smart industry experts all get the long term. And in this case, there's more poo-pooing in the short term. "Ah, it's not a big deal, it's just AI." I've heard many people poo-pooing ChatGPT, and a lot of smart people saying, "No this is next gen, this is different and it's only going to get better." So I think people are estimating a big long game on this one. >> So you're saying it's bifurcated. There's those who say- >> Yes. >> Okay, all right, let's get to the heart of the premise, and possibly the debate for today's episode. Will OpenAI's early entry into the market confer sustainable competitive advantage for the company. And if you look at the history of tech, the technology industry, it's kind of littered with first mover failures. Altair, IBM, Tandy, Commodore, they and Apple even, they were really early in the PC game. They took a backseat to Dell who came in the scene years later with a better business model. Netscape, you were just talking about, was all the rage in Silicon Valley, with the first browser, drove up all the housing prices out here. AltaVista was the first search engine to really, you know, index full text. >> Owned by Dell, I mean DEC. >> Owned by Digital. >> Yeah, Digital Equipment >> Compaq bought it. And of course as an aside, Digital, they wanted to showcase their hardware, right? Their super computer stuff. And then so Friendster and MySpace, they came before Facebook. The iPhone certainly wasn't the first mobile device. So lots of failed examples, but there are some recent successes like AWS and cloud. >> You could say smartphone. So I mean. >> Well I know, and you can, we can parse this so we'll debate it. Now Twitter, you could argue, had first mover advantage. You kind of gave me that one John. Bitcoin and crypto clearly had first mover advantage, and sustaining that. Guys, will OpenAI make it to the list on the right with ChatGPT, what do you think? >> I think categorically as a company, it probably won't, but as a category, I think what they're doing will, so OpenAI as a company, they get funding, there's power dynamics involved. Microsoft put a billion dollars in early on, then they just pony it up. Now they're reporting 10 billion more. So, like, if the browsers, Microsoft had competitive advantage over Netscape, and used monopoly power, and convicted by the Department of Justice for killing Netscape with their monopoly, Netscape should have had won that battle, but Microsoft killed it. In this case, Microsoft's not killing it, they're buying into it. So I think the embrace extend Microsoft power here makes OpenAI vulnerable for that one vendor solution. So the AI as a company might not make the list, but the category of what this is, large language model AI, is probably will be on the right hand side. >> Okay, we're going to come back to the government intervention and maybe do some comparisons, but what are your thoughts on this premise here? That, it will basically set- put forth the premise that it, that ChatGPT, its early entry into the market will not confer competitive advantage to >> For OpenAI. >> To Open- Yeah, do you agree with that? >> I agree with that actually. It, because Google has been at it, and they have been holding back, as John said because of the scrutiny from the Fed, right, so- >> And privacy too. >> And the privacy and the accuracy as well. But I think Sam Altman and the company on those guys, right? They have put this in a hasty way out there, you know, because it makes mistakes, and there are a lot of questions around the, sort of, where the content is coming from. You saw that as your example, it just stole the content, and without your permission, you know? >> Yeah. So as quick this aside- >> And it codes on people's behalf and the, those codes are wrong. So there's a lot of, sort of, false information it's putting out there. So it's a very vulnerable thing to do what Sam Altman- >> So even though it'll get better, others will compete. >> So look, just side note, a term which Reid Hoffman used a little bit. Like he said, it's experimental launch, like, you know, it's- >> It's pretty damn good. >> It is clever because according to Sam- >> It's more than clever. It's good. >> It's awesome, if you haven't used it. I mean you write- you read what it writes and you go, "This thing writes so well, it writes so much better than you." >> The human emotion drives that too. I think that's a big thing. But- >> I Want to add one more- >> Make your last point. >> Last one. Okay. So, but he's still holding back. He's conducting quite a few interviews. If you want to get the gist of it, there's an interview with StrictlyVC interview from yesterday with Sam Altman. Listen to that one it's an eye opening what they want- where they want to take it. But my last one I want to make it on this point is that Satya Nadella yesterday did an interview with Wall Street Journal. I think he was doing- >> You were not impressed. >> I was not impressed because he was pushing it too much. So Sam Altman's holding back so there's less backlash. >> Got 10 billion reasons to push. >> I think he's almost- >> Microsoft just laid off 10000 people. Hey ChatGPT, find me a job. You know like. (group laughs) >> He's overselling it to an extent that I think it will backfire on Microsoft. And he's over promising a lot of stuff right now, I think. I don't know why he's very jittery about all these things. And he did the same thing during Ignite as well. So he said, "Oh, this AI will write code for you and this and that." Like you called him out- >> The hyperbole- >> During your- >> from Satya Nadella, he's got a lot of hyperbole. (group talks over each other) >> All right, Let's, go ahead. >> Well, can I weigh in on the whole- >> Yeah, sure. >> Microsoft thing on whether OpenAI, here's the take on this. I think it's more like the browser moment to me, because I could relate to that experience with ChatG, personally, emotionally, when I saw that, and I remember vividly- >> You mean that aha moment (indistinct). >> Like this is obviously the future. Anything else in the old world is dead, website's going to be everywhere. It was just instant dot connection for me. And a lot of other smart people who saw this. Lot of people by the way, didn't see it. Someone said the web's a toy. At the company I was worked for at the time, Hewlett Packard, they like, they could have been in, they had invented HTML, and so like all this stuff was, like, they just passed, the web was just being passed over. But at that time, the browser got better, more websites came on board. So the structural advantage there was online web usage was growing, online user population. So that was growing exponentially with the rise of the Netscape browser. So OpenAI could stay on the right side of your list as durable, if they leverage the category that they're creating, can get the scale. And if they can get the scale, just like Twitter, that failed so many times that they still hung around. So it was a product that was always successful, right? So I mean, it should have- >> You're right, it was terrible, we kept coming back. >> The fail whale, but it still grew. So OpenAI has that moment. They could do it if Microsoft doesn't meddle too much with too much power as a vendor. They could be the Netscape Navigator, without the anti-competitive behavior of somebody else. So to me, they have the pole position. So they have an opportunity. So if not, if they don't execute, then there's opportunity. There's not a lot of barriers to entry, vis-a-vis say the CapEx of say a cloud company like AWS. You can't replicate that, Many have tried, but I think you can replicate OpenAI. >> And we're going to talk about that. Okay, so real quick, I want to bring in some ETR data. This isn't an ETR heavy segment, only because this so new, you know, they haven't coverage yet, but they do cover AI. So basically what we're seeing here is a slide on the vertical axis's net score, which is a measure of spending momentum, and in the horizontal axis's is presence in the dataset. Think of it as, like, market presence. And in the insert right there, you can see how the dots are plotted, the two columns. And so, but the key point here that we want to make, there's a bunch of companies on the left, is he like, you know, DataRobot and C3 AI and some others, but the big whales, Google, AWS, Microsoft, are really dominant in this market. So that's really the key takeaway that, can we- >> I notice IBM is way low. >> Yeah, IBM's low, and actually bring that back up and you, but then you see Oracle who actually is injecting. So I guess that's the other point is, you're not necessarily going to go buy AI, and you know, build your own AI, you're going to, it's going to be there and, it, Salesforce is going to embed it into its platform, the SaaS companies, and you're going to purchase AI. You're not necessarily going to build it. But some companies obviously are. >> I mean to quote IBM's general manager Rob Thomas, "You can't have AI with IA." information architecture and David Flynn- >> You can't Have AI without IA >> without, you can't have AI without IA. You can't have, if you have an Information Architecture, you then can power AI. Yesterday David Flynn, with Hammersmith, was on our Supercloud. He was pointing out that the relationship of storage, where you store things, also impacts the data and stressablity, and Zhamak from Nextdata, she was pointing out that same thing. So the data problem factors into all this too, Dave. >> So you got the big cloud and internet giants, they're all poised to go after this opportunity. Microsoft is investing up to 10 billion. Google's code red, which was, you know, the headline in the New York Times. Of course Apple is there and several alternatives in the market today. Guys like Chinchilla, Bloom, and there's a company Jasper and several others, and then Lena Khan looms large and the government's around the world, EU, US, China, all taking notice before the market really is coalesced around a single player. You know, John, you mentioned Netscape, they kind of really, the US government was way late to that game. It was kind of game over. And Netscape, I remember Barksdale was like, "Eh, we're going to be selling software in the enterprise anyway." and then, pshew, the company just dissipated. So, but it looks like the US government, especially with Lena Khan, they're changing the definition of antitrust and what the cause is to go after people, and they're really much more aggressive. It's only what, two years ago that (indistinct). >> Yeah, the problem I have with the federal oversight is this, they're always like late to the game, and they're slow to catch up. So in other words, they're working on stuff that should have been solved a year and a half, two years ago around some of the social networks hiding behind some of the rules around open web back in the days, and I think- >> But they're like 15 years late to that. >> Yeah, and now they got this new thing on top of it. So like, I just worry about them getting their fingers. >> But there's only two years, you know, OpenAI. >> No, but the thing (indistinct). >> No, they're still fighting other battles. But the problem with government is that they're going to label Big Tech as like a evil thing like Pharma, it's like smoke- >> You know Lena Khan wants to kill Big Tech, there's no question. >> So I think Big Tech is getting a very seriously bad rap. And I think anything that the government does that shades darkness on tech, is politically motivated in most cases. You can almost look at everything, and my 80 20 rule is in play here. 80% of the government activity around tech is bullshit, it's politically motivated, and the 20% is probably relevant, but off the mark and not organized. >> Well market forces have always been the determining factor of success. The governments, you know, have been pretty much failed. I mean you look at IBM's antitrust, that, what did that do? The market ultimately beat them. You look at Microsoft back in the day, right? Windows 95 was peaking, the government came in. But you know, like you said, they missed the web, right, and >> so they were hanging on- >> There's nobody in government >> to Windows. >> that actually knows- >> And so, you, I think you're right. It's market forces that are going to determine this. But Sarbjeet, what do you make of Microsoft's big bet here, you weren't impressed with with Nadella. How do you think, where are they going to apply it? Is this going to be a Hail Mary for Bing, or is it going to be applied elsewhere? What do you think. >> They are saying that they will, sort of, weave this into their products, office products, productivity and also to write code as well, developer productivity as well. That's a big play for them. But coming back to your antitrust sort of comments, right? I believe the, your comment was like, oh, fed was late 10 years or 15 years earlier, but now they're two years. But things are moving very fast now as compared to they used to move. >> So two years is like 10 Years. >> Yeah, two years is like 10 years. Just want to make that point. (Dave laughs) This thing is going like wildfire. Any new tech which comes in that I think they're going against distribution channels. Lina Khan has commented time and again that the marketplace model is that she wants to have some grip on. Cloud marketplaces are a kind of monopolistic kind of way. >> I don't, I don't see this, I don't see a Chat AI. >> You told me it's not Bing, you had an interesting comment. >> No, no. First of all, this is great from Microsoft. If you're Microsoft- >> Why? >> Because Microsoft doesn't have the AI chops that Google has, right? Google is got so much core competency on how they run their search, how they run their backends, their cloud, even though they don't get a lot of cloud market share in the enterprise, they got a kick ass cloud cause they needed one. >> Totally. >> They've invented SRE. I mean Google's development and engineering chops are off the scales, right? Amazon's got some good chops, but Google's got like 10 times more chops than AWS in my opinion. Cloud's a whole different story. Microsoft gets AI, they get a playbook, they get a product they can render into, the not only Bing, productivity software, helping people write papers, PowerPoint, also don't forget the cloud AI can super help. We had this conversation on our Supercloud event, where AI's going to do a lot of the heavy lifting around understanding observability and managing service meshes, to managing microservices, to turning on and off applications, and or maybe writing code in real time. So there's a plethora of use cases for Microsoft to deploy this. combined with their R and D budgets, they can then turbocharge more research, build on it. So I think this gives them a car in the game, Google may have pole position with AI, but this puts Microsoft right in the game, and they already have a lot of stuff going on. But this just, I mean everything gets lifted up. Security, cloud, productivity suite, everything. >> What's under the hood at Google, and why aren't they talking about it? I mean they got to be freaked out about this. No? Or do they have kind of a magic bullet? >> I think they have the, they have the chops definitely. Magic bullet, I don't know where they are, as compared to the ChatGPT 3 or 4 models. Like they, but if you look at the online sort of activity and the videos put out there from Google folks, Google technology folks, that's account you should look at if you are looking there, they have put all these distinctions what ChatGPT 3 has used, they have been talking about for a while as well. So it's not like it's a secret thing that you cannot replicate. As you said earlier, like in the beginning of this segment, that anybody who has more data and the capacity to process that data, which Google has both, I think they will win this. >> Obviously living in Palo Alto where the Google founders are, and Google's headquarters next town over we have- >> We're so close to them. We have inside information on some of the thinking and that hasn't been reported by any outlet yet. And that is, is that, from what I'm hearing from my sources, is Google has it, they don't want to release it for many reasons. One is it might screw up their search monopoly, one, two, they're worried about the accuracy, 'cause Google will get sued. 'Cause a lot of people are jamming on this ChatGPT as, "Oh it does everything for me." when it's clearly not a hundred percent accurate all the time. >> So Lina Kahn is looming, and so Google's like be careful. >> Yeah so Google's just like, this is the third, could be a third rail. >> But the first thing you said is a concern. >> Well no. >> The disruptive (indistinct) >> What they will do is do a Waymo kind of thing, where they spin out a separate company. >> They're doing that. >> The discussions happening, they're going to spin out the separate company and put it over there, and saying, "This is AI, got search over there, don't touch that search, 'cause that's where all the revenue is." (chuckles) >> So, okay, so that's how they deal with the Clay Christensen dilemma. What's the business model here? I mean it's not advertising, right? Is it to charge you for a query? What, how do you make money at this? >> It's a good question, I mean my thinking is, first of all, it's cool to type stuff in and see a paper get written, or write a blog post, or gimme a marketing slogan for this or that or write some code. I think the API side of the business will be critical. And I think Howie Xu, I know you're going to reference some of his comments yesterday on Supercloud, I think this brings a whole 'nother user interface into technology consumption. I think the business model, not yet clear, but it will probably be some sort of either API and developer environment or just a straight up free consumer product, with some sort of freemium backend thing for business. >> And he was saying too, it's natural language is the way in which you're going to interact with these systems. >> I think it's APIs, it's APIs, APIs, APIs, because these people who are cooking up these models, and it takes a lot of compute power to train these and to, for inference as well. Somebody did the analysis on the how many cents a Google search costs to Google, and how many cents the ChatGPT query costs. It's, you know, 100x or something on that. You can take a look at that. >> A 100x on which side? >> You're saying two orders of magnitude more expensive for ChatGPT >> Much more, yeah. >> Than for Google. >> It's very expensive. >> So Google's got the data, they got the infrastructure and they got, you're saying they got the cost (indistinct) >> No actually it's a simple query as well, but they are trying to put together the answers, and they're going through a lot more data versus index data already, you know. >> Let me clarify, you're saying that Google's version of ChatGPT is more efficient? >> No, I'm, I'm saying Google search results. >> Ah, search results. >> What are used to today, but cheaper. >> But that, does that, is that going to confer advantage to Google's large language (indistinct)? >> It will, because there were deep science (indistinct). >> Google, I don't think Google search is doing a large language model on their search, it's keyword search. You know, what's the weather in Santa Cruz? Or how, what's the weather going to be? Or you know, how do I find this? Now they have done a smart job of doing some things with those queries, auto complete, re direct navigation. But it's, it's not entity. It's not like, "Hey, what's Dave Vellante thinking this week in Breaking Analysis?" ChatGPT might get that, because it'll get your Breaking Analysis, it'll synthesize it. There'll be some, maybe some clips. It'll be like, you know, I mean. >> Well I got to tell you, I asked ChatGPT to, like, I said, I'm going to enter a transcript of a discussion I had with Nir Zuk, the CTO of Palo Alto Networks, And I want you to write a 750 word blog. I never input the transcript. It wrote a 750 word blog. It attributed quotes to him, and it just pulled a bunch of stuff that, and said, okay, here it is. It talked about Supercloud, it defined Supercloud. >> It's made, it makes you- >> Wow, But it was a big lie. It was fraudulent, but still, blew me away. >> Again, vanilla content and non accurate content. So we are going to see a surge of misinformation on steroids, but I call it the vanilla content. Wow, that's just so boring, (indistinct). >> There's so many dangers. >> Make your point, cause we got to, almost out of time. >> Okay, so the consumption, like how do you consume this thing. As humans, we are consuming it and we are, like, getting a nicely, like, surprisingly shocked, you know, wow, that's cool. It's going to increase productivity and all that stuff, right? And on the danger side as well, the bad actors can take hold of it and create fake content and we have the fake sort of intelligence, if you go out there. So that's one thing. The second thing is, we are as humans are consuming this as language. Like we read that, we listen to it, whatever format we consume that is, but the ultimate usage of that will be when the machines can take that output from likes of ChatGPT, and do actions based on that. The robots can work, the robot can paint your house, we were talking about, right? Right now we can't do that. >> Data apps. >> So the data has to be ingested by the machines. It has to be digestible by the machines. And the machines cannot digest unorganized data right now, we will get better on the ingestion side as well. So we are getting better. >> Data, reasoning, insights, and action. >> I like that mall, paint my house. >> So, okay- >> By the way, that means drones that'll come in. Spray painting your house. >> Hey, it wasn't too long ago that robots couldn't climb stairs, as I like to point out. Okay, and of course it's no surprise the venture capitalists are lining up to eat at the trough, as I'd like to say. Let's hear, you'd referenced this earlier, John, let's hear what AI expert Howie Xu said at the Supercloud event, about what it takes to clone ChatGPT. Please, play the clip. >> So one of the VCs actually asked me the other day, right? "Hey, how much money do I need to spend, invest to get a, you know, another shot to the openAI sort of the level." You know, I did a (indistinct) >> Line up. >> A hundred million dollar is the order of magnitude that I came up with, right? You know, not a billion, not 10 million, right? So a hundred- >> Guys a hundred million dollars, that's an astoundingly low figure. What do you make of it? >> I was in an interview with, I was interviewing, I think he said hundred million or so, but in the hundreds of millions, not a billion right? >> You were trying to get him up, you were like "Hundreds of millions." >> Well I think, I- >> He's like, eh, not 10, not a billion. >> Well first of all, Howie Xu's an expert machine learning. He's at Zscaler, he's a machine learning AI guy. But he comes from VMware, he's got his technology pedigrees really off the chart. Great friend of theCUBE and kind of like a CUBE analyst for us. And he's smart. He's right. I think the barriers to entry from a dollar standpoint are lower than say the CapEx required to compete with AWS. Clearly, the CapEx spending to build all the tech for the run a cloud. >> And you don't need a huge sales force. >> And in some case apps too, it's the same thing. But I think it's not that hard. >> But am I right about that? You don't need a huge sales force either. It's, what, you know >> If the product's good, it will sell, this is a new era. The better mouse trap will win. This is the new economics in software, right? So- >> Because you look at the amount of money Lacework, and Snyk, Snowflake, Databrooks. Look at the amount of money they've raised. I mean it's like a billion dollars before they get to IPO or more. 'Cause they need promotion, they need go to market. You don't need (indistinct) >> OpenAI's been working on this for multiple five years plus it's, hasn't, wasn't born yesterday. Took a lot of years to get going. And Sam is depositioning all the success, because he's trying to manage expectations, To your point Sarbjeet, earlier. It's like, yeah, he's trying to "Whoa, whoa, settle down everybody, (Dave laughs) it's not that great." because he doesn't want to fall into that, you know, hero and then get taken down, so. >> It may take a 100 million or 150 or 200 million to train the model. But to, for the inference to, yeah to for the inference machine, It will take a lot more, I believe. >> Give it, so imagine, >> Because- >> Go ahead, sorry. >> Go ahead. But because it consumes a lot more compute cycles and it's certain level of storage and everything, right, which they already have. So I think to compute is different. To frame the model is a different cost. But to run the business is different, because I think 100 million can go into just fighting the Fed. >> Well there's a flywheel too. >> Oh that's (indistinct) >> (indistinct) >> We are running the business, right? >> It's an interesting number, but it's also kind of, like, context to it. So here, a hundred million spend it, you get there, but you got to factor in the fact that the ways companies win these days is critical mass scale, hitting a flywheel. If they can keep that flywheel of the value that they got going on and get better, you can almost imagine a marketplace where, hey, we have proprietary data, we're SiliconANGLE in theCUBE. We have proprietary content, CUBE videos, transcripts. Well wouldn't it be great if someone in a marketplace could sell a module for us, right? We buy that, Amazon's thing and things like that. So if they can get a marketplace going where you can apply to data sets that may be proprietary, you can start to see this become bigger. And so I think the key barriers to entry is going to be success. I'll give you an example, Reddit. Reddit is successful and it's hard to copy, not because of the software. >> They built the moat. >> Because you can, buy Reddit open source software and try To compete. >> They built the moat with their community. >> Their community, their scale, their user expectation. Twitter, we referenced earlier, that thing should have gone under the first two years, but there was such a great emotional product. People would tolerate the fail whale. And then, you know, well that was a whole 'nother thing. >> Then a plane landed in (John laughs) the Hudson and it was over. >> I think verticals, a lot of verticals will build applications using these models like for lawyers, for doctors, for scientists, for content creators, for- >> So you'll have many hundreds of millions of dollars investments that are going to be seeping out. If, all right, we got to wrap, if you had to put odds on it that that OpenAI is going to be the leader, maybe not a winner take all leader, but like you look at like Amazon and cloud, they're not winner take all, these aren't necessarily winner take all markets. It's not necessarily a zero sum game, but let's call it winner take most. What odds would you give that open AI 10 years from now will be in that position. >> If I'm 0 to 10 kind of thing? >> Yeah, it's like horse race, 3 to 1, 2 to 1, even money, 10 to 1, 50 to 1. >> Maybe 2 to 1, >> 2 to 1, that's pretty low odds. That's basically saying they're the favorite, they're the front runner. Would you agree with that? >> I'd say 4 to 1. >> Yeah, I was going to say I'm like a 5 to 1, 7 to 1 type of person, 'cause I'm a skeptic with, you know, there's so much competition, but- >> I think they're definitely the leader. I mean you got to say, I mean. >> Oh there's no question. There's no question about it. >> The question is can they execute? >> They're not Friendster, is what you're saying. >> They're not Friendster and they're more like Twitter and Reddit where they have momentum. If they can execute on the product side, and if they don't stumble on that, they will continue to have the lead. >> If they say stay neutral, as Sam is, has been saying, that, hey, Microsoft is one of our partners, if you look at their company model, how they have structured the company, then they're going to pay back to the investors, like Microsoft is the biggest one, up to certain, like by certain number of years, they're going to pay back from all the money they make, and after that, they're going to give the money back to the public, to the, I don't know who they give it to, like non-profit or something. (indistinct) >> Okay, the odds are dropping. (group talks over each other) That's a good point though >> Actually they might have done that to fend off the criticism of this. But it's really interesting to see the model they have adopted. >> The wildcard in all this, My last word on this is that, if there's a developer shift in how developers and data can come together again, we have conferences around the future of data, Supercloud and meshs versus, you know, how the data world, coding with data, how that evolves will also dictate, 'cause a wild card could be a shift in the landscape around how developers are using either machine learning or AI like techniques to code into their apps, so. >> That's fantastic insight. I can't thank you enough for your time, on the heels of Supercloud 2, really appreciate it. All right, thanks to John and Sarbjeet for the outstanding conversation today. Special thanks to the Palo Alto studio team. My goodness, Anderson, this great backdrop. You guys got it all out here, I'm jealous. And Noah, really appreciate it, Chuck, Andrew Frick and Cameron, Andrew Frick switching, Cameron on the video lake, great job. And Alex Myerson, he's on production, manages the podcast for us, Ken Schiffman as well. Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters. Rob Hof is our editor-in-chief over at SiliconANGLE, does some great editing, thanks to all. Remember, all these episodes are available as podcasts. All you got to do is search Breaking Analysis podcast, wherever you listen. Publish each week on wikibon.com and siliconangle.com. Want to get in touch, email me directly, david.vellante@siliconangle.com or DM me at dvellante, or comment on our LinkedIn post. And by all means, check out etr.ai. They got really great survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, We'll see you next time on Breaking Analysis. (electronic music)
SUMMARY :
bringing you data-driven and ChatGPT have taken the world by storm. So I asked it, give it to the large language models to do that. So to your point, it's So one of the problems with ChatGPT, and he simply gave the system the prompts, or the OS to help it do but it kind of levels the playing- and the answers were coming as the data you can get. Yeah, and leveled to certain extent. I check the facts, save me about maybe- and then I write a killer because like if the it's, the law is we, you know, I think that's true and I ask the set of similar question, What's your counter point? and not it's underestimated long term. That's what he said. for the first time, wow. the overhyped at the No, it was, it was I got, right I mean? the internet in the early days, and it's only going to get better." So you're saying it's bifurcated. and possibly the debate the first mobile device. So I mean. on the right with ChatGPT, and convicted by the Department of Justice the scrutiny from the Fed, right, so- And the privacy and thing to do what Sam Altman- So even though it'll get like, you know, it's- It's more than clever. I mean you write- I think that's a big thing. I think he was doing- I was not impressed because You know like. And he did the same thing he's got a lot of hyperbole. the browser moment to me, So OpenAI could stay on the right side You're right, it was terrible, They could be the Netscape Navigator, and in the horizontal axis's So I guess that's the other point is, I mean to quote IBM's So the data problem factors and the government's around the world, and they're slow to catch up. Yeah, and now they got years, you know, OpenAI. But the problem with government to kill Big Tech, and the 20% is probably relevant, back in the day, right? are they going to apply it? and also to write code as well, that the marketplace I don't, I don't see you had an interesting comment. No, no. First of all, the AI chops that Google has, right? are off the scales, right? I mean they got to be and the capacity to process that data, on some of the thinking So Lina Kahn is looming, and this is the third, could be a third rail. But the first thing What they will do out the separate company Is it to charge you for a query? it's cool to type stuff in natural language is the way and how many cents the and they're going through Google search results. It will, because there were It'll be like, you know, I mean. I never input the transcript. Wow, But it was a big lie. but I call it the vanilla content. Make your point, cause we And on the danger side as well, So the data By the way, that means at the Supercloud event, So one of the VCs actually What do you make of it? you were like "Hundreds of millions." not 10, not a billion. Clearly, the CapEx spending to build all But I think it's not that hard. It's, what, you know This is the new economics Look at the amount of And Sam is depositioning all the success, or 150 or 200 million to train the model. So I think to compute is different. not because of the software. Because you can, buy They built the moat And then, you know, well that the Hudson and it was over. that are going to be seeping out. Yeah, it's like horse race, 3 to 1, 2 to 1, that's pretty low odds. I mean you got to say, I mean. Oh there's no question. is what you're saying. and if they don't stumble on that, the money back to the public, to the, Okay, the odds are dropping. the model they have adopted. Supercloud and meshs versus, you know, on the heels of Supercloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Sarbjeet | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
Lina Khan | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Reid Hoffman | PERSON | 0.99+ |
Alex Myerson | PERSON | 0.99+ |
Lena Khan | PERSON | 0.99+ |
Sam Altman | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Rob Thomas | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
David Flynn | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Noah | PERSON | 0.99+ |
Ray Amara | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
150 | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Chuck | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Howie Xu | PERSON | 0.99+ |
Anderson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Hewlett Packard | ORGANIZATION | 0.99+ |
Santa Cruz | LOCATION | 0.99+ |
1995 | DATE | 0.99+ |
Lina Kahn | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
50 words | QUANTITY | 0.99+ |
Hundreds of millions | QUANTITY | 0.99+ |
Compaq | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
two sentences | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
hundreds of millions | QUANTITY | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
Cameron | PERSON | 0.99+ |
100 million | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
one sentence | QUANTITY | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Clay Christensen | PERSON | 0.99+ |
Sarbjeet Johal | PERSON | 0.99+ |
Netscape | ORGANIZATION | 0.99+ |
Bob Muglia, George Gilbert & Tristan Handy | How Supercloud will Support a new Class of Data Apps
(upbeat music) >> Hello, everybody. This is Dave Vellante. Welcome back to Supercloud2, where we're exploring the intersection of data analytics and the future of cloud. In this segment, we're going to look at how the Supercloud will support a new class of applications, not just work that runs on multiple clouds, but rather a new breed of apps that can orchestrate things in the real world. Think Uber for many types of businesses. These applications, they're not about codifying forms or business processes. They're about orchestrating people, places, and things in a business ecosystem. And I'm pleased to welcome my colleague and friend, George Gilbert, former Gartner Analyst, Wiki Bond market analyst, former equities analyst as my co-host. And we're thrilled to have Tristan Handy, who's the founder and CEO of DBT Labs and Bob Muglia, who's the former President of Microsoft's Enterprise business and former CEO of Snowflake. Welcome all, gentlemen. Thank you for coming on the program. >> Good to be here. >> Thanks for having us. >> Hey, look, I'm going to start actually with the SuperCloud because both Tristan and Bob, you've read the definition. Thank you for doing that. And Bob, you have some really good input, some thoughts on maybe some of the drawbacks and how we can advance this. So what are your thoughts in reading that definition around SuperCloud? >> Well, I thought first of all that you did a very good job of laying out all of the characteristics of it and helping to define it overall. But I do think it can be tightened a bit, and I think it's helpful to do it in as short a way as possible. And so in the last day I've spent a little time thinking about how to take it and write a crisp definition. And here's my go at it. This is one day old, so gimme a break if it's going to change. And of course we have to follow the industry, and so that, and whatever the industry decides, but let's give this a try. So in the way I think you're defining it, what I would say is a SuperCloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. >> Boom. Nice. Okay, great. I'm going to go back and read the script on that one and tighten that up a bit. Thank you for spending the time thinking about that. Tristan, would you add anything to that or what are your thoughts on the whole SuperCloud concept? >> So as I read through this, I fully realize that we need a word for this thing because I have experienced the inability to talk about it as well. But for many of us who have been living in the Confluence, Snowflake, you know, this world of like new infrastructure, this seems fairly uncontroversial. Like I read through this, and I'm just like, yeah, this is like the world I've been living in for years now. And I noticed that you called out Snowflake for being an example of this, but I think that there are like many folks, myself included, for whom this world like fully exists today. >> Yeah, I think that's a fair, I dunno if it's criticism, but people observe, well, what's the big deal here? It's just kind of what we're living in today. It reminds me of, you know, Tim Burns Lee saying, well, this is what the internet was supposed to be. It was supposed to be Web 2.0, so maybe this is what multi-cloud was supposed to be. Let's turn our attention to apps. Bob first and then go to Tristan. Bob, what are data apps to you? When people talk about data products, is that what they mean? Are we talking about something more, different? What are data apps to you? >> Well, to understand data apps, it's useful to contrast them to something, and I just use the simple term people apps. I know that's a little bit awkward, but it's clear. And almost everything we work with, almost every application that we're familiar with, be it email or Salesforce or any consumer app, those are applications that are targeted at responding to people. You know, in contrast, a data application reacts to changes in data and uses some set of analytic services to autonomously take action. So where applications that we're familiar with respond to people, data apps respond to changes in data. And they both do something, but they do it for different reasons. >> Got it. You know, George, you and I were talking about, you know, it comes back to SuperCloud, broad definition, narrow definition. Tristan, how do you see it? Do you see it the same way? Do you have a different take on data apps? >> Oh, geez. This is like a conversation that I don't know has an end. It's like been, I write a substack, and there's like this little community of people who all write substack. We argue with each other about these kinds of things. Like, you know, as many different takes on this question as you can find, but the way that I think about it is that data products are atomic units of functionality that are fundamentally data driven in nature. So a data product can be as simple as an interactive dashboard that is like actually had design thinking put into it and serves a particular user group and has like actually gone through kind of a product development life cycle. And then a data app or data application is a kind of cohesive end-to-end experience that often encompasses like many different data products. So from my perspective there, this is very, very related to the way that these things are produced, the kinds of experiences that they're provided, that like data innovates every product that we've been building in, you know, software engineering for, you know, as long as there have been computers. >> You know, Jamak Dagani oftentimes uses the, you know, she doesn't name Spotify, but I think it's Spotify as that kind of example she uses. But I wonder if we can maybe try to take some examples. If you take, like George, if you take a CRM system today, you're inputting leads, you got opportunities, it's driven by humans, they're really inputting the data, and then you got this system that kind of orchestrates the business process, like runs a forecast. But in this data driven future, are we talking about the app itself pulling data in and automatically looking at data from the transaction systems, the call center, the supply chain and then actually building a plan? George, is that how you see it? >> I go back to the example of Uber, may not be the most sophisticated data app that we build now, but it was like one of the first where you do have users interacting with their devices as riders trying to call a car or driver. But the app then looks at the location of all the drivers in proximity, and it matches a driver to a rider. It calculates an ETA to the rider. It calculates an ETA then to the destination, and it calculates a price. Those are all activities that are done sort of autonomously that don't require a human to type something into a form. The application is using changes in data to calculate an analytic product and then to operationalize that, to assign the driver to, you know, calculate a price. Those are, that's an example of what I would think of as a data app. And my question then I guess for Tristan is if we don't have all the pieces in place for sort of mainstream companies to build those sorts of apps easily yet, like how would we get started? What's the role of a semantic layer in making that easier for mainstream companies to build? And how do we get started, you know, say with metrics? How does that, how does that take us down that path? >> So what we've seen in the past, I dunno, decade or so, is that one of the most successful business models in infrastructure is taking hard things and rolling 'em up behind APIs. You take messaging, you take payments, and you all of a sudden increase the capability of kind of your median application developer. And you say, you know, previously you were spending all your time being focused on how do you accept credit cards, how do you send SMS payments, and now you can focus on your business logic, and just create the thing. One of, interestingly, one of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse, inside of your data lake. These are core concepts that, you know, you would imagine that the business would be able to create applications around very easily, but in fact that's not the case. It's actually quite challenging to, and involves a lot of data engineering pipeline and all this work to make these available. And so if you really want to make it very easy to create some of these data experiences for users, you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes, and they don't need to. >> So how rich can that API layer grow if you start with metric definitions that you've defined? And DBT has, you know, the metric, the dimensions, the time grain, things like that, that's a well scoped sort of API that people can work within. How much can you extend that to say non-calculated business rules or governance information like data reliability rules, things like that, or even, you know, features for an AIML feature store. In other words, it starts, you started pragmatically, but how far can you grow? >> Bob is waiting with bated breath to answer this question. I'm, just really quickly, I think that we as a company and DBT as a product tend to be very pragmatic. We try to release the simplest possible version of a thing, get it out there, and see if people use it. But the idea that, the concept of a metric is really just a first landing pad. The really, there is a physical manifestation of the data and then there's a logical manifestation of the data. And what we're trying to do here is make it very easy to access the logical manifestation of the data, and metric is a way to look at that. Maybe an entity, a customer, a user is another way to look at that. And I'm sure that there will be more kind of logical structures as well. >> So, Bob, chime in on this. You know, what's your thoughts on the right architecture behind this, and how do we get there? >> Yeah, well first of all, I think one of the ways we get there is by what companies like DBT Labs and Tristan is doing, which is incrementally taking and building on the modern data stack and extending that to add a semantic layer that describes the data. Now the way I tend to think about this is a fairly major shift in the way we think about writing applications, which is today a code first approach to moving to a world that is model driven. And I think that's what the big change will be is that where today we think about data, we think about writing code, and we use that to produce APIs as Tristan said, which encapsulates those things together in some form of services that are useful for organizations. And that idea of that encapsulation is never going to go away. It's very, that concept of an API is incredibly useful and will exist well into the future. But what I think will happen is that in the next 10 years, we're going to move to a world where organizations are defining models first of their data, but then ultimately of their business process, their entire business process. Now the concept of a model driven world is a very old concept. I mean, I first started thinking about this and playing around with some early model driven tools, probably before Tristan was born in the early 1980s. And those tools didn't work because the semantics associated with executing the model were too complex to be written in anything other than a procedural language. We're now reaching a time where that is changing, and you see it everywhere. You see it first of all in the world of machine learning and machine learning models, which are taking over more and more of what applications are doing. And I think that's an incredibly important step. And learned models are an important part of what people will do. But if you look at the world today, I will claim that we've always been modeling. Modeling has existed in computers since there have been integrated circuits and any form of computers. But what we do is what I would call implicit modeling, which means that it's the model is written on a whiteboard. It's in a bunch of Slack messages. It's on a set of napkins in conversations that happen and during Zoom. That's where the model gets defined today. It's implicit. There is one in the system. It is hard coded inside application logic that exists across many applications with humans being the glue that connects those models together. And really there is no central place you can go to understand the full attributes of the business, all of the business rules, all of the business logic, the business data. That's going to change in the next 10 years. And we'll start to have a world where we can define models about what we're doing. Now in the short run, the most important models to build are data models and to describe all of the attributes of the data and their relationships. And that's work that DBT Labs is doing. A number of other companies are doing that. We're taking steps along that way with catalogs. People are trying to build more complete ontologies associated with that. The underlying infrastructure is still super, super nascent. But what I think we'll see is this infrastructure that exists today that's building learned models in the form of machine learning programs. You know, some of these incredible machine learning programs in foundation models like GPT and DALL-E and all of the things that are happening in these global scale models, but also all of that needs to get applied to the domains that are appropriate for a business. And I think we'll see the infrastructure developing for that, that can take this concept of learned models and put it together with more explicitly defined models. And this is where the concept of knowledge graphs come in and then the technology that underlies that to actually implement and execute that, which I believe are relational knowledge graphs. >> Oh, oh wow. There's a lot to unpack there. So let me ask the Colombo question, Tristan, we've been making fun of your youth. We're just, we're just jealous. Colombo, I'll explain it offline maybe. >> I watch Colombo. >> Okay. All right, good. So but today if you think about the application stack and the data stack, which is largely an analytics pipeline. They're separate. Do they, those worlds, do they have to come together in order to achieve Bob's vision? When I talk to practitioners about that, they're like, well, I don't want to complexify the application stack cause the data stack today is so, you know, hard to manage. But but do those worlds have to come together? And you know, through that model, I guess abstraction or translation that Bob was just describing, how do you guys think about that? Who wants to take that? >> I think it's inevitable that data and AI are going to become closer together? I think that the infrastructure there has been moving in that direction for a long time. Whether you want to use the Lakehouse portmanteau or not. There's also, there's a next generation of data tech that is still in the like early stage of being developed. There's a company that I love that is essentially Cross Cloud Lambda, and it's just a wonderful abstraction for computing. So I think that, you know, people have been predicting that these worlds are going to come together for awhile. A16Z wrote a great post on this back in I think 2020, predicting this, and I've been predicting this since since 2020. But what's not clear is the timeline, but I think that this is still just as inevitable as it's been. >> Who's that that does Cross Cloud? >> Let me follow up on. >> Who's that, Tristan, that does Cross Cloud Lambda? Can you name names? >> Oh, they're called Modal Labs. >> Modal Labs, yeah, of course. All right, go ahead, George. >> Let me ask about this vision of trying to put the semantics or the code that represents the business with the data. It gets us to a world that's sort of more data centric, where data's not locked inside or behind the APIs of different applications so that we don't have silos. But at the same time, Bob, I've heard you talk about building the semantics gradually on top of, into a knowledge graph that maybe grows out of a data catalog. And the vision of getting to that point, essentially the enterprise's metadata and then the semantics you're going to add onto it are really stored in something that's separate from the underlying operational and analytic data. So at the same time then why couldn't we gradually build semantics beyond the metric definitions that DBT has today? In other words, you build more and more of the semantics in some layer that DBT defines and that sits above the data management layer, but any requests for data have to go through the DBT layer. Is that a workable alternative? Or where, what type of limitations would you face? >> Well, I think that it is the way the world will evolve is to start with the modern data stack and, you know, which is operational applications going through a data pipeline into some form of data lake, data warehouse, the Lakehouse, whatever you want to call it. And then, you know, this wide variety of analytics services that are built together. To the point that Tristan made about machine learning and data coming together, you see that in every major data cloud provider. Snowflake certainly now supports Python and Java. Databricks is of course building their data warehouse. Certainly Google, Microsoft and Amazon are doing very, very similar things in terms of building complete solutions that bring together an analytics stack that typically supports languages like Python together with the data stack and the data warehouse. I mean, all of those things are going to evolve, and they're not going to go away because that infrastructure is relatively new. It's just being deployed by companies, and it solves the problem of working with petabytes of data if you need to work with petabytes of data, and nothing will do that for a long time. What's missing is a layer that understands and can model the semantics of all of this. And if you need to, if you want to model all, if you want to talk about all the semantics of even data, you need to think about all of the relationships. You need to think about how these things connect together. And unfortunately, there really is no platform today. None of our existing platforms are ultimately sufficient for this. It was interesting, I was just talking to a customer yesterday, you know, a large financial organization that is building out these semantic layers. They're further along than many companies are. And you know, I asked what they're building it on, and you know, it's not surprising they're using a, they're using combinations of some form of search together with, you know, textual based search together with a document oriented database. In this case it was Cosmos. And that really is kind of the state of the art right now. And yet those products were not built for this. They don't really, they can't manage the complicated relationships that are required. They can't issue the queries that are required. And so a new generation of database needs to be developed. And fortunately, you know, that is happening. The world is developing a new set of relational algorithms that will be able to work with hundreds of different relations. If you look at a SQL database like Snowflake or a big query, you know, you get tens of different joins coming together, and that query is going to take a really long time. Well, fortunately, technology is evolving, and it's possible with new join algorithms, worst case, optimal join algorithms they're called, where you can join hundreds of different relations together and run semantic queries that you simply couldn't run. Now that technology is nascent, but it's really important, and I think that will be a requirement to have this semantically reach its full potential. In the meantime, Tristan can do a lot of great things by building up on what he's got today and solve some problems that are very real. But in the long run I think we'll see a new set of databases to support these models. >> So Tristan, you got to respond to that, right? You got to, so take the example of Snowflake. We know it doesn't deal well with complex joins, but they're, they've got big aspirations. They're building an ecosystem to really solve some of these problems. Tristan, you guys are part of that ecosystem, and others, but please, your thoughts on what Bob just shared. >> Bob, I'm curious if, I would have no idea what you were talking about except that you introduced me to somebody who gave me a demo of a thing and do you not want to go there right now? >> No, I can talk about it. I mean, we can talk about it. Look, the company I've been working with is Relational AI, and they're doing this work to actually first of all work across the industry with academics and research, you know, across many, many different, over 20 different research institutions across the world to develop this new set of algorithms. They're all fully published, just like SQL, the underlying algorithms that are used by SQL databases are. If you look today, every single SQL database uses a similar set of relational algorithms underneath that. And those algorithms actually go back to system R and what IBM developed in the 1970s. We're just, there's an opportunity for us to build something new that allows you to take, for example, instead of taking data and grouping it together in tables, treat all data as individual relations, you know, a key and a set of values and then be able to perform purely relational operations on it. If you go back to what, to Codd, and what he wrote, he defined two things. He defined a relational calculus and relational algebra. And essentially SQL is a query language that is translated by the query processor into relational algebra. But however, the calculus of SQL is not even close to the full semantics of the relational mathematics. And it's possible to have systems that can do everything and that can store all of the attributes of the data model or ultimately the business model in a form that is much more natural to work with. >> So here's like my short answer to this. I think that we're dealing in different time scales. I think that there is actually a tremendous amount of work to do in the semantic layer using the kind of technology that we have on the ground today. And I think that there's, I don't know, let's say five years of like really solid work that there is to do for the entire industry, if not more. But the wonderful thing about DBT is that it's independent of what the compute substrate is beneath it. And so if we develop new platforms, new capabilities to describe semantic models in more fine grain detail, more procedural, then we're going to support that too. And so I'm excited about all of it. >> Yeah, so interpreting that short answer, you're basically saying, cause Bob was just kind of pointing to you as incremental, but you're saying, yeah, okay, we're applying it for incremental use cases today, but we can accommodate a much broader set of examples in the future. Is that correct, Tristan? >> I think you're using the word incremental as if it's not good, but I think that incremental is great. We have always been about applying incremental improvement on top of what exists today, but allowing practitioners to like use different workflows to actually make use of that technology. So yeah, yeah, we are a very incremental company. We're going to continue being that way. >> Well, I think Bob was using incremental as a pejorative. I mean, I, but to your point, a lot. >> No, I don't think so. I want to stop that. No, I don't think it's pejorative at all. I think incremental, incremental is usually the most successful path. >> Yes, of course. >> In my experience. >> We agree, we agree on that. >> Having tried many, many moonshot things in my Microsoft days, I can tell you that being incremental is a good thing. And I'm a very big believer that that's the way the world's going to go. I just think that there is a need for us to build something new and that ultimately that will be the solution. Now you can argue whether it's two years, three years, five years, or 10 years, but I'd be shocked if it didn't happen in 10 years. >> Yeah, so we all agree that incremental is less disruptive. Boom, but Tristan, you're, I think I'm inferring that you believe you have the architecture to accommodate Bob's vision, and then Bob, and I'm inferring from Bob's comments that maybe you don't think that's the case, but please. >> No, no, no. I think that, so Bob, let me put words into your mouth and you tell me if you disagree, DBT is completely useless in a world where a large scale cloud data warehouse doesn't exist. We were not able to bring the power of Python to our users until these platforms started supporting Python. Like DBT is a layer on top of large scale computing platforms. And to the extent that those platforms extend their functionality to bring more capabilities, we will also service those capabilities. >> Let me try and bridge the two. >> Yeah, yeah, so Bob, Bob, Bob, do you concur with what Tristan just said? >> Absolutely, I mean there's nothing to argue with in what Tristan just said. >> I wanted. >> And it's what he's doing. It'll continue to, I believe he'll continue to do it, and I think it's a very good thing for the industry. You know, I'm just simply saying that on top of that, I would like to provide Tristan and all of those who are following similar paths to him with a new type of database that can actually solve these problems in a much more architected way. And when I talk about Cosmos with something like Mongo or Cosmos together with Elastic, you're using Elastic as the join engine, okay. That's the purpose of it. It becomes a poor man's join engine. And I kind of go, I know there's a better answer than that. I know there is, but that's kind of where we are state of the art right now. >> George, we got to wrap it. So give us the last word here. Go ahead, George. >> Okay, I just, I think there's a way to tie together what Tristan and Bob are both talking about, and I want them to validate it, which is for five years we're going to be adding or some number of years more and more semantics to the operational and analytic data that we have, starting with metric definitions. My question is for Bob, as DBT accumulates more and more of those semantics for different enterprises, can that layer not run on top of a relational knowledge graph? And what would we lose by not having, by having the knowledge graph store sort of the joins, all the complex relationships among the data, but having the semantics in the DBT layer? >> Well, I think this, okay, I think first of all that DBT will be an environment where many of these semantics are defined. The question we're asking is how are they stored and how are they processed? And what I predict will happen is that over time, as companies like DBT begin to build more and more richness into their semantic layer, they will begin to experience challenges that customers want to run queries, they want to ask questions, they want to use this for things where the underlying infrastructure becomes an obstacle. I mean, this has happened in always in the history, right? I mean, you see major advances in computer science when the data model changes. And I think we're on the verge of a very significant change in the way data is stored and structured, or at least metadata is stored and structured. Again, I'm not saying that anytime in the next 10 years, SQL is going to go away. In fact, more SQL will be written in the future than has been written in the past. And those platforms will mature to become the engines, the slicer dicers of data. I mean that's what they are today. They're incredibly powerful at working with large amounts of data, and that infrastructure is maturing very rapidly. What is not maturing is the infrastructure to handle all of the metadata and the semantics that that requires. And that's where I say knowledge graphs are what I believe will be the solution to that. >> But Tristan, bring us home here. It sounds like, let me put pause at this, is that whatever happens in the future, we're going to leverage the vast system that has become cloud that we're talking about a supercloud, sort of where data lives irrespective of physical location. We're going to have to tap that data. It's not necessarily going to be in one place, but give us your final thoughts, please. >> 100% agree. I think that the data is going to live everywhere. It is the responsibility for both the metadata systems and the data processing engines themselves to make sure that we can join data across cloud providers, that we can join data across different physical regions and that we as practitioners are going to kind of start forgetting about details like that. And we're going to start thinking more about how we want to arrange our teams, how does the tooling that we use support our team structures? And that's when data mesh I think really starts to get very, very critical as a concept. >> Guys, great conversation. It was really awesome to have you. I can't thank you enough for spending time with us. Really appreciate it. >> Thanks a lot. >> All right. This is Dave Vellante for George Gilbert, John Furrier, and the entire Cube community. Keep it right there for more content. You're watching SuperCloud2. (upbeat music)
SUMMARY :
and the future of cloud. And Bob, you have some really and I think it's helpful to do it I'm going to go back and And I noticed that you is that what they mean? that we're familiar with, you know, it comes back to SuperCloud, is that data products are George, is that how you see it? that don't require a human to is that one of the most And DBT has, you know, the And I'm sure that there will be more on the right architecture is that in the next 10 years, So let me ask the Colombo and the data stack, which is that is still in the like Modal Labs, yeah, of course. and that sits above the and that query is going to So Tristan, you got to and that can store all of the that there is to do for the pointing to you as incremental, but allowing practitioners to I mean, I, but to your point, a lot. the most successful path. that that's the way the that you believe you have the architecture and you tell me if you disagree, there's nothing to argue with And I kind of go, I know there's George, we got to wrap it. and more of those semantics and the semantics that that requires. is that whatever happens in the future, and that we as practitioners I can't thank you enough John Furrier, and the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tristan | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
John | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Steve Mullaney | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Charles | PERSON | 0.99+ |
Mike Dooley | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Mike Wolf | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Merim | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Brian | PERSON | 0.99+ |
Brian Rossi | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Chris Wegmann | PERSON | 0.99+ |
Whole Foods | ORGANIZATION | 0.99+ |
Eric | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Jamak Dagani | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Caterpillar | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Josh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Jerome | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Lori MacVittie | PERSON | 0.99+ |
2007 | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
10 | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Peter McKee | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Eric Herzog | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Mike | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tanuja Randery | PERSON | 0.99+ |
Jonathan Seckler, Dell & Cal Al-Dhubaib, Pandata | VMware Explore 2022
(gentle music) >> Welcome back to theCUBE's virtual program, covering VMware Explorer, 2022. The first time since 2019 that the VMware ecosystem is gathered in person. But in the post isolation economy, hybrid is the new format, cube plus digital, we call it. And so we're really happy to welcome Cal Al-Dhubaib who's the founder and CEO and AI strategist of Pandata. And Jonathan Seckler back in theCUBE, the senior director of product marketing at Dell Technologies. Guys, great to see you, thanks for coming on. >> Yeah, thanks a lot for having us. >> Yeah, thank you >> Cal, Pandata, cool name, what's it all about? >> Thanks for asking. Really excited to share our story. I'm a data scientist by training and I'm based here in Cleveland, Ohio. And Pandata is a company that helps organizations design and develop machine learning and AI technology. And when I started this here in Cleveland six years ago, I had people react to me with, what? So we help demystify AI and make it practical. And we specifically focus on trustworthy AI. So we work a lot in regulated industries like healthcare. And we help organizations navigate the complexities of building machine learning and AI technology when data's hard to work with, when there's risk on the potential outcomes, or high cost in the consequences. And that's what we do every day. >> Yeah, yeah timing is great given all the focus on privacy and what you're seeing with big tech and public policy, so we're going to get into that. Jonathan, I understand you guys got some hard news. What's your story around AI and AutoML? Share that with us. >> Yeah, thanks. So having the opportunity to speak with Cal today is really important because one of the hardest things that we find that our customers have is making that transition of experimenting with AI to making it really useful in real life. >> What is the tech underneath that? Are we talking VxRail here? Are you're talking servers? What do you got? >> Yeah, absolutely. So the Dell validated design for AI is a reference framework that is based on the optimized set of hardware for a given outcome. That includes it could be VxRail, VMware, vSphere and Nvidia GPUs and Nvidia software to make all of that happen. And for today, what we're working with is H2O.ai's solution to develop automatic machine learning. So take just that one more step to make it easier for customers to bring AI into production. >> Cool. >> So it's a full stack of software that includes automated machine learning, it includes NVIDIA's AI enterprise for deployment and development, and it's all built on an engineering validated set of hardware, including servers and storage and whatever else you need >> AI out of the box, I don't have to worry about cobbling it all together. >> Exactly. >> Cal, I want to come back to this trusted AI notion. A lot of people don't trust AI just by the very nature of it. I think about, okay, well how does it know it's a cat? And then you can never explain, it says black box. And so I'm like, what are they do with my data? And you mentioned healthcare, financial services, the government, they know everything about me. I just had to get a real ID and Massachusetts, I had to give all my data away. I don't trust it. So what is trusted AI? >> Well, so let me take a step back and talk about sobering statistics. There's a lot of different sources that report on this, but anywhere you look, you'll hear somewhere between 80 to 90% of AI projects fail to yield a return. That's pretty scary, that's a disappointing industry. And why is that? AI is hard. Versus traditional software, you're programming rules hard and fast. If I click this button, I expect A, B, C to happen. And we're talking about recognizing and reacting to patterns. It's not, will it be wrong? It's, when it's wrong, how wrong will it be? And what are it cost to accept related to that? So zooming back in on this lens of trustworthy AI, much of the last 10 years the development in AI has looked like this. Let's get the data, let's race to build the warehouses, okay we did that, no problem. Next was race to build the algorithms. Can we build more sophisticated models? Can we work with things like documents and images? And it used to be the exclusive domain of deep tech companies. You'd have to have teams of teams building the software, building the infrastructure, working on very specific components in this pipeline. And now we have this explosion of technologies, very much like what Jonathan was talking about with validated designs. So it removes the complexities of the infrastructure, it removes the complexities of being able to access the right data. And we have a ton of modeling capabilities and tools out there, so we can build a lot of things. Now, this is when we start to encounter risk in machine learning and AI. If you think about the models that are being used to replicate or learn from language like GPT-3 to create new content, it's training data set is everything that's on the internet. And if you haven't been on the internet recently, it's not all good. So how do you go about building technology to recognize specific patterns, pick up patterns that are desirable, and avoid unintended consequences? And no one's immune to this. So the discipline of trustworthy AI is building models that are easier to interrogate, that are useful for humans, and that minimize the risk of unintended consequences. >> I would add too, one of the good things about the Pandata solution is how it tries to enforce fairness and transparency in the models. We've done some studies recently with IDC, where we've tried to compare leaders in AI technology versus those who are just getting started. And I have to say, one of the biggest differences between a leader in AI and the rest of us is often that the leaders have a policy in place to deal with the risks and the ethics of using data through some kind of machine oriented model. And it's a really important part of making AI usable for the masses. >> You certainly hear a lot about, AI ultimately, there's algorithms which are built by humans. Although of course, there's algorithms to build algorithms, we know that today. >> Right, exactly. >> But humans are biased, there's inherent bias, and so this is a big problem. Obviously Dell, you have a giant observation space in terms of customers. But I wonder, Cal, if you can share with us how you're working with your customers at Pandata? What kind of customers are you working with? What are they asking? What problems are they asking you to solve? And how does it manifest itself? >> So when I like to talk about AI and where it's useful, it usually has to do with taking a repetitive task that humans are tasked with, but they're starting to act more like machines than humans. There's not much creativity in the process, it's handling something that's fairly routine, and it ends up being a bottleneck to scaling. And just a year ago even, we'd have to start approaching our clients with conversations around trustworthy AI, and now they're starting to approach us. Really example, this actually just happened earlier today, we're partnering with one of our clients that basically scans medical claims from insurance providers. And what they're trying to do is identify members that qualify for certain government subsidies. And this isn't as straightforward as it seems because there's a lot of complexities in how the rules are implemented, how judges look at these cases. Long story short, we help them build machine learning to identify these patients that qualify. And a question that comes up, and that we're starting to hear from the insurance companies they serve is how do you go about making sure that your decisions are fair and you're not selecting certain groups of individuals over others to get this assistance? And so clients are starting to wise up to that and ask questions. Other things that we've done include identifying potential private health information that's contained in medical images so that you can create curated research data sets. We've helped organizations identify anomalies in cybersecurity logs. And go from an exploration space of billions of eventual events to what are the top 100 that I should look at today? And so it's all about, how do you find these routine processes that humans are bottlenecked from getting to, we're starting to act more like machines and insert a little bit of outer recognition intelligence to get them to spend more time on the creative side. >> Can you talk a little bit more about how? A lot of people talk about augmented AI. AI is amazing. My daughter the other day was, I'm sure as an AI expert, you've seen it, where the machine actually creates standup comedy which it's so hilarious because it is and it isn't. Some of the jokes are actually really funny. Some of them are so funny 'cause they're not funny and they're weird. So it really underscored the gap. And so how do you do it? Is it augmented? Is it you're focusing on the mundane things that you want to take humans out of the loop? Explain how. >> So there's this great Wall Street Journal article by Jennifer Strong that she published I think four years ago now. And she says, "For AI to become more useful, it needs to become more boring." And I really truly believe in that. So you hear about these cutting edge use cases. And there's certainly some room for these generative AI applications inspiring new designs, inspiring new approaches. But the reality is, most successful use cases that we encounter in our business have to do with augmenting human decisions. How do you make arriving at a decision easier? How do you prioritize from millions of options, hundreds of thousands of options down to three or four that a human can then take the last stretch and really consider or think about? So a really cool story, I've been playing around with DALL.E 2. And for those of you who haven't heard, it's this algorithm that can create images from props. And they're just painting I really wish I had bought when I was in Paris a few years ago. And I gave it a description, skyline of the Sacre-Coeur Church in Montmartre with pink and white hues. And it came up with a handful of examples that I can now go take to an artist and say paint me this. So at the end of the day, automation, it's not really, yes, there's certain applications where you really are truly getting to that automated AI in action. But in my experience, most of the use cases have to do with using AI to make humans more effective, more creative, more valuable. >> I'd also add, I think Cal, is that the opportunity to make AI real here is to automate these things and simplify the languages so that can get what we call citizen data scientists out there. I say ordinary, ordinary employees or people who are at the front line of making these decisions, working with the data directly. We've done this with customers who have done this on farms, where the growers are able to use AI to monitor and to manage the yield of crops. I think some of the other examples that you had mentioned just recently Cal I think are great. The other examples is where you can make this technology available to anyone. And maybe that's part of the message of making it boring, it's making it so simple that any of us can use it. >> I love that. John Furrier likes to say that traditionally in IT, we solve complexity with more complexity. So anything that simplifies things is goodness. So how do you use automated machine learning at Pandata? Where does that fit in here? >> So really excited that the connection here through H2O that Jonathan had mentioned earlier. So H2O.ai is one of the leading AutoML platforms. And what's really cool is if you think about the traditional way you would approach machine learning, is you need to have data scientists. These patterns might exist in documents or images or boring old spreadsheets. And the way you'd approach this is, okay, get these expensive data scientists, and 80% of what they do is clean up the data. And I'm yet to encounter a situation where there isn't cleaning data. Now, I'll get through the cleaning up the data step, you actually have to consider, all right, am I working with language? Am I working with financial forecasts? What are the statistical modeling approaches I want to use? And there's a lot of creativity involved in that. And you have to set up a whole experiment, and that takes a lot of time and effort. And then you might test one, two or three models because you know to use those or those are the go to for this type of problem. And you see which one performs best and you iterate from there. The AutoML framework basically allows you to cut through all of that. It can reduce the amount of time you're spending on those steps to 1/10 of the time. You're able to very quickly profile data, understand anomalies, understand what data you want to work with, what data you don't want to work with. And then when it comes to the modeling steps, instead of iterating through three or four AutoML is throwing the whole kitchen sink at it. Anything that's appropriate to the task, maybe you're trying to predict a category or label something, maybe you're trying to predict a value like a financial forecast or even generate test. And it tests all of the models that it has at its disposal that are appropriate to the task and says, here are the top 10. You can use features like let me make this more explainable, let me make the model more accurate. I don't necessarily care about interrogating the results because the risk here is low, I want to a model that predicts things with a higher accuracy. So you can use these dials instead of having to approach it from a development perspective. You can approach it from more of an experimental mindset. So you still need that expertise, you still need to understand what you're looking at, but it makes it really quick. And so you're not spending all that expensive data science time cleaning up data. >> Makes sense. Last question, so Cal, obviously you guys go deep into AI, Jonathan Dell works with every customer on the planet, all sizes, all industries. So what are you hearing and doing with customers that are best practices that you can share for people that want to get into it, that are concerned about AI, they want to simplify it? What would you tell them? Go ahead, Cal. >> Okay, you go first, Cal. >> And Jonathan, you're going to bring us home. >> Sure. >> This sounds good. So as far as where people get scared, I see two sides of it. One, our data's not clean enough, not enough quality, I'm going to stay away from this. So one, I combat that with, you've got to experiment, you got to iterate, And that's the only way your data's going to improve. Two, there's organizations that worry too much about managing the risk. We don't have the data science expertise that can help us uncover potential biases we have. We are now entering a new stage of AI development and machine learning development, And I use those terms interchangeably anymore. I know some folks will differentiate between them. But machine learning is the discipline driving most of the advances. The toolkits that we have at our disposal to quickly profile and manage and mitigate against the risk that data can bring to the table is really giving organizations more comfort, should give organizations more comfort to start to build mission critical applications. The thing that I would encourage organizations to look for, is organizations that put trustworthy AI, ethical AI first as a consideration, not as an afterthought or not as a we're going to sweep this on the carpet. When you're intentional with that, when you bring that up front and you make it a part of your design, it sets you up for success. And we saw this when GDPR changed the IT world a few years ago. Organizations that built for privacy first to begin with, adapting to GDPR was relatively straightforward. Organizations that made that an afterthought or had that as an afterthought, it was a huge lift, a huge cost to adapt and adjust to those changes. >> Great example. All right, John, I said bring us home, put a bow on this. >> Last bit. So I think beyond the mechanics of how to make a AI better and more workable, one of the big challenges with the AI is this concern that you're going to isolate and spend too much effort and dollars on the infrastructure itself. And that's one of the benefits that Dell brings to the table here with validated designs. Is that our AI validated design is built on a VMware vSphere architecture. So your backup, your migration, all of the management and the operational tools that IT is most comfortable with can be used to maintain and develop and deploy artificial intelligence projects without having to create unique infrastructure, unique stacks of hardware, and then which potentially isolates the data, potentially makes things unavailable to the rest of the organization. So when you run it all in a VMware environment, that means you can put it in the cloud, you can put it in your data center. Just really makes it easier for IT to build AI into their everyday process >> Silo busting. All right, guys, thanks Cal, John. I really appreciate you guys coming on theCUBE. >> Yeah, it's been a great time, thanks. >> All right. And thank you for watching theCUBE's coverage of VMware Explorer, 2022. Keep it right there for more action from the show floor with myself, Dave Velante, John Furrier, Lisa Martin and David Nicholson, keep it right there. (gentle music)
SUMMARY :
that the VMware ecosystem I had people react to me with, what? given all the focus on privacy So having the opportunity that is based on the I don't have to worry about And then you can never and that minimize the risk And I have to say, one of algorithms to build algorithms, And how does it manifest itself? so that you can create And so how do you do it? that I can now go take to an the opportunity to make AI real here So how do you use automated And it tests all of the models that are best practices that you can share going to bring us home. And that's the only way your All right, John, I said bring And that's one of the benefits I really appreciate you And thank you for watching
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jonathan | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Jennifer Strong | PERSON | 0.99+ |
Jonathan Seckler | PERSON | 0.99+ |
Dave Velante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
David Nicholson | PERSON | 0.99+ |
Cleveland | LOCATION | 0.99+ |
Paris | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Jonath | PERSON | 0.99+ |
Jonathan Dell | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Pandata | ORGANIZATION | 0.99+ |
NVIDIA | ORGANIZATION | 0.99+ |
two sides | QUANTITY | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
billions | QUANTITY | 0.99+ |
Cleveland, Ohio | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
six years ago | DATE | 0.99+ |
four | QUANTITY | 0.99+ |
Montmartre | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
GDPR | TITLE | 0.99+ |
a year ago | DATE | 0.99+ |
2022 | DATE | 0.99+ |
Cal Al-Dhubaib | PERSON | 0.98+ |
today | DATE | 0.98+ |
Cal | PERSON | 0.98+ |
2019 | DATE | 0.98+ |
first time | QUANTITY | 0.98+ |
VxRail | TITLE | 0.98+ |
first | QUANTITY | 0.97+ |
Massachusetts | LOCATION | 0.97+ |
millions of options | QUANTITY | 0.97+ |
AutoML | TITLE | 0.97+ |
three models | QUANTITY | 0.97+ |
four years ago | DATE | 0.97+ |
80 | QUANTITY | 0.96+ |
IDC | ORGANIZATION | 0.96+ |
90% | QUANTITY | 0.96+ |
DALL.E 2 | TITLE | 0.96+ |
1/10 | QUANTITY | 0.95+ |
VMware Explorer | TITLE | 0.93+ |
Sacre-Coeur Church | LOCATION | 0.92+ |
earlier today | DATE | 0.91+ |
theCUBE | ORGANIZATION | 0.9+ |
H2O.ai | TITLE | 0.9+ |
Pandata | PERSON | 0.9+ |
hundreds of thousands of options | QUANTITY | 0.87+ |
10 | QUANTITY | 0.86+ |
VMware vSphere | TITLE | 0.84+ |
few years ago | DATE | 0.83+ |
H2O | TITLE | 0.83+ |
GPT | TITLE | 0.82+ |
VMware | ORGANIZATION | 0.8+ |
Al-Dhubaib | PERSON | 0.8+ |
100 | QUANTITY | 0.79+ |
Predictions 2022: Top Analysts See the Future of Data
(bright music) >> In the 2010s, organizations became keenly aware that data would become the key ingredient to driving competitive advantage, differentiation, and growth. But to this day, putting data to work remains a difficult challenge for many, if not most organizations. Now, as the cloud matures, it has become a game changer for data practitioners by making cheap storage and massive processing power readily accessible. We've also seen better tooling in the form of data workflows, streaming, machine intelligence, AI, developer tools, security, observability, automation, new databases and the like. These innovations they accelerate data proficiency, but at the same time, they add complexity for practitioners. Data lakes, data hubs, data warehouses, data marts, data fabrics, data meshes, data catalogs, data oceans are forming, they're evolving and exploding onto the scene. So in an effort to bring perspective to the sea of optionality, we've brought together the brightest minds in the data analyst community to discuss how data management is morphing and what practitioners should expect in 2022 and beyond. Hello everyone, my name is Dave Velannte with theCUBE, and I'd like to welcome you to a special Cube presentation, analysts predictions 2022: the future of data management. We've gathered six of the best analysts in data and data management who are going to present and discuss their top predictions and trends for 2022 in the first half of this decade. Let me introduce our six power panelists. Sanjeev Mohan is former Gartner Analyst and Principal at SanjMo. Tony Baer, principal at dbInsight, Carl Olofson is well-known Research Vice President with IDC, Dave Menninger is Senior Vice President and Research Director at Ventana Research, Brad Shimmin, Chief Analyst, AI Platforms, Analytics and Data Management at Omdia and Doug Henschen, Vice President and Principal Analyst at Constellation Research. Gentlemen, welcome to the program and thanks for coming on theCUBE today. >> Great to be here. >> Thank you. >> All right, here's the format we're going to use. I as moderator, I'm going to call on each analyst separately who then will deliver their prediction or mega trend, and then in the interest of time management and pace, two analysts will have the opportunity to comment. If we have more time, we'll elongate it, but let's get started right away. Sanjeev Mohan, please kick it off. You want to talk about governance, go ahead sir. >> Thank you Dave. I believe that data governance which we've been talking about for many years is now not only going to be mainstream, it's going to be table stakes. And all the things that you mentioned, you know, the data, ocean data lake, lake houses, data fabric, meshes, the common glue is metadata. If we don't understand what data we have and we are governing it, there is no way we can manage it. So we saw Informatica went public last year after a hiatus of six. I'm predicting that this year we see some more companies go public. My bet is on Culebra, most likely and maybe Alation we'll see go public this year. I'm also predicting that the scope of data governance is going to expand beyond just data. It's not just data and reports. We are going to see more transformations like spark jawsxxxxx, Python even Air Flow. We're going to see more of a streaming data. So from Kafka Schema Registry, for example. We will see AI models become part of this whole governance suite. So the governance suite is going to be very comprehensive, very detailed lineage, impact analysis, and then even expand into data quality. We already seen that happen with some of the tools where they are buying these smaller companies and bringing in data quality monitoring and integrating it with metadata management, data catalogs, also data access governance. So what we are going to see is that once the data governance platforms become the key entry point into these modern architectures, I'm predicting that the usage, the number of users of a data catalog is going to exceed that of a BI tool. That will take time and we already seen that trajectory. Right now if you look at BI tools, I would say there a hundred users to BI tool to one data catalog. And I see that evening out over a period of time and at some point data catalogs will really become the main way for us to access data. Data catalog will help us visualize data, but if we want to do more in-depth analysis, it'll be the jumping off point into the BI tool, the data science tool and that is the journey I see for the data governance products. >> Excellent, thank you. Some comments. Maybe Doug, a lot of things to weigh in on there, maybe you can comment. >> Yeah, Sanjeev I think you're spot on, a lot of the trends the one disagreement, I think it's really still far from mainstream. As you say, we've been talking about this for years, it's like God, motherhood, apple pie, everyone agrees it's important, but too few organizations are really practicing good governance because it's hard and because the incentives have been lacking. I think one thing that deserves mention in this context is ESG mandates and guidelines, these are environmental, social and governance, regs and guidelines. We've seen the environmental regs and guidelines and posts in industries, particularly the carbon-intensive industries. We've seen the social mandates, particularly diversity imposed on suppliers by companies that are leading on this topic. We've seen governance guidelines now being imposed by banks on investors. So these ESGs are presenting new carrots and sticks, and it's going to demand more solid data. It's going to demand more detailed reporting and solid reporting, tighter governance. But we're still far from mainstream adoption. We have a lot of, you know, best of breed niche players in the space. I think the signs that it's going to be more mainstream are starting with things like Azure Purview, Google Dataplex, the big cloud platform players seem to be upping the ante and starting to address governance. >> Excellent, thank you Doug. Brad, I wonder if you could chime in as well. >> Yeah, I would love to be a believer in data catalogs. But to Doug's point, I think that it's going to take some more pressure for that to happen. I recall metadata being something every enterprise thought they were going to get under control when we were working on service oriented architecture back in the nineties and that didn't happen quite the way we anticipated. And so to Sanjeev's point it's because it is really complex and really difficult to do. My hope is that, you know, we won't sort of, how do I put this? Fade out into this nebula of domain catalogs that are specific to individual use cases like Purview for getting data quality right or like data governance and cybersecurity. And instead we have some tooling that can actually be adaptive to gather metadata to create something. And I know its important to you, Sanjeev and that is this idea of observability. If you can get enough metadata without moving your data around, but understanding the entirety of a system that's running on this data, you can do a lot. So to help with the governance that Doug is talking about. >> So I just want to add that, data governance, like any other initiatives did not succeed even AI went into an AI window, but that's a different topic. But a lot of these things did not succeed because to your point, the incentives were not there. I remember when Sarbanes Oxley had come into the scene, if a bank did not do Sarbanes Oxley, they were very happy to a million dollar fine. That was like, you know, pocket change for them instead of doing the right thing. But I think the stakes are much higher now. With GDPR, the flood gates opened. Now, you know, California, you know, has CCPA but even CCPA is being outdated with CPRA, which is much more GDPR like. So we are very rapidly entering a space where pretty much every major country in the world is coming up with its own compliance regulatory requirements, data residents is becoming really important. And I think we are going to reach a stage where it won't be optional anymore. So whether we like it or not, and I think the reason data catalogs were not successful in the past is because we did not have the right focus on adoption. We were focused on features and these features were disconnected, very hard for business to adopt. These are built by IT people for IT departments to take a look at technical metadata, not business metadata. Today the tables have turned. CDOs are driving this initiative, regulatory compliances are beating down hard, so I think the time might be right. >> Yeah so guys, we have to move on here. But there's some real meat on the bone here, Sanjeev. I like the fact that you called out Culebra and Alation, so we can look back a year from now and say, okay, he made the call, he stuck it. And then the ratio of BI tools to data catalogs that's another sort of measurement that we can take even though with some skepticism there, that's something that we can watch. And I wonder if someday, if we'll have more metadata than data. But I want to move to Tony Baer, you want to talk about data mesh and speaking, you know, coming off of governance. I mean, wow, you know the whole concept of data mesh is, decentralized data, and then governance becomes, you know, a nightmare there, but take it away, Tony. >> We'll put this way, data mesh, you know, the idea at least as proposed by ThoughtWorks. You know, basically it was at least a couple of years ago and the press has been almost uniformly almost uncritical. A good reason for that is for all the problems that basically Sanjeev and Doug and Brad we're just speaking about, which is that we have all this data out there and we don't know what to do about it. Now, that's not a new problem. That was a problem we had in enterprise data warehouses, it was a problem when we had over DoOP data clusters, it's even more of a problem now that data is out in the cloud where the data is not only your data lake, is not only us three, it's all over the place. And it's also including streaming, which I know we'll be talking about later. So the data mesh was a response to that, the idea of that we need to bait, you know, who are the folks that really know best about governance? It's the domain experts. So it was basically data mesh was an architectural pattern and a process. My prediction for this year is that data mesh is going to hit cold heart reality. Because if you do a Google search, basically the published work, the articles on data mesh have been largely, you know, pretty uncritical so far. Basically loading and is basically being a very revolutionary new idea. I don't think it's that revolutionary because we've talked about ideas like this. Brad now you and I met years ago when we were talking about so and decentralizing all of us, but it was at the application level. Now we're talking about it at the data level. And now we have microservices. So there's this thought of have we managed if we're deconstructing apps in cloud native to microservices, why don't we think of data in the same way? My sense this year is that, you know, this has been a very active search if you look at Google search trends, is that now companies, like enterprise are going to look at this seriously. And as they look at it seriously, it's going to attract its first real hard scrutiny, it's going to attract its first backlash. That's not necessarily a bad thing. It means that it's being taken seriously. The reason why I think that you'll start to see basically the cold hearted light of day shine on data mesh is that it's still a work in progress. You know, this idea is basically a couple of years old and there's still some pretty major gaps. The biggest gap is in the area of federated governance. Now federated governance itself is not a new issue. Federated governance decision, we started figuring out like, how can we basically strike the balance between getting let's say between basically consistent enterprise policy, consistent enterprise governance, but yet the groups that understand the data and know how to basically, you know, that, you know, how do we basically sort of balance the two? There's a huge gap there in practice and knowledge. Also to a lesser extent, there's a technology gap which is basically in the self-service technologies that will help teams essentially govern data. You know, basically through the full life cycle, from develop, from selecting the data from, you know, building the pipelines from, you know, determining your access control, looking at quality, looking at basically whether the data is fresh or whether it's trending off course. So my prediction is that it will receive the first harsh scrutiny this year. You are going to see some organization and enterprises declare premature victory when they build some federated query implementations. You going to see vendors start with data mesh wash their products anybody in the data management space that they are going to say that where this basically a pipelining tool, whether it's basically ELT, whether it's a catalog or federated query tool, they will all going to get like, you know, basically promoting the fact of how they support this. Hopefully nobody's going to call themselves a data mesh tool because data mesh is not a technology. We're going to see one other thing come out of this. And this harks back to the metadata that Sanjeev was talking about and of the catalog just as he was talking about. Which is that there's going to be a new focus, every renewed focus on metadata. And I think that's going to spur interest in data fabrics. Now data fabrics are pretty vaguely defined, but if we just take the most elemental definition, which is a common metadata back plane, I think that if anybody is going to get serious about data mesh, they need to look at the data fabric because we all at the end of the day, need to speak, you know, need to read from the same sheet of music. >> So thank you Tony. Dave Menninger, I mean, one of the things that people like about data mesh is it pretty crisply articulate some of the flaws in today's organizational approaches to data. What are your thoughts on this? >> Well, I think we have to start by defining data mesh, right? The term is already getting corrupted, right? Tony said it's going to see the cold hard light of day. And there's a problem right now that there are a number of overlapping terms that are similar but not identical. So we've got data virtualization, data fabric, excuse me for a second. (clears throat) Sorry about that. Data virtualization, data fabric, data federation, right? So I think that it's not really clear what each vendor means by these terms. I see data mesh and data fabric becoming quite popular. I've interpreted data mesh as referring primarily to the governance aspects as originally intended and specified. But that's not the way I see vendors using it. I see vendors using it much more to mean data fabric and data virtualization. So I'm going to comment on the group of those things. I think the group of those things is going to happen. They're going to happen, they're going to become more robust. Our research suggests that a quarter of organizations are already using virtualized access to their data lakes and another half, so a total of three quarters will eventually be accessing their data lakes using some sort of virtualized access. Again, whether you define it as mesh or fabric or virtualization isn't really the point here. But this notion that there are different elements of data, metadata and governance within an organization that all need to be managed collectively. The interesting thing is when you look at the satisfaction rates of those organizations using virtualization versus those that are not, it's almost double, 68% of organizations, I'm sorry, 79% of organizations that were using virtualized access express satisfaction with their access to the data lake. Only 39% express satisfaction if they weren't using virtualized access. >> Oh thank you Dave. Sanjeev we just got about a couple of minutes on this topic, but I know you're speaking or maybe you've always spoken already on a panel with (indistinct) who sort of invented the concept. Governance obviously is a big sticking point, but what are your thoughts on this? You're on mute. (panelist chuckling) >> So my message to (indistinct) and to the community is as opposed to what they said, let's not define it. We spent a whole year defining it, there are four principles, domain, product, data infrastructure, and governance. Let's take it to the next level. I get a lot of questions on what is the difference between data fabric and data mesh? And I'm like I can't compare the two because data mesh is a business concept, data fabric is a data integration pattern. How do you compare the two? You have to bring data mesh a level down. So to Tony's point, I'm on a warpath in 2022 to take it down to what does a data product look like? How do we handle shared data across domains and governance? And I think we are going to see more of that in 2022, or is "operationalization" of data mesh. >> I think we could have a whole hour on this topic, couldn't we? Maybe we should do that. But let's corner. Let's move to Carl. So Carl, you're a database guy, you've been around that block for a while now, you want to talk about graph databases, bring it on. >> Oh yeah. Okay thanks. So I regard graph database as basically the next truly revolutionary database management technology. I'm looking forward for the graph database market, which of course we haven't defined yet. So obviously I have a little wiggle room in what I'm about to say. But this market will grow by about 600% over the next 10 years. Now, 10 years is a long time. But over the next five years, we expect to see gradual growth as people start to learn how to use it. The problem is not that it's not useful, its that people don't know how to use it. So let me explain before I go any further what a graph database is because some of the folks on the call may not know what it is. A graph database organizes data according to a mathematical structure called a graph. The graph has elements called nodes and edges. So a data element drops into a node, the nodes are connected by edges, the edges connect one node to another node. Combinations of edges create structures that you can analyze to determine how things are related. In some cases, the nodes and edges can have properties attached to them which add additional informative material that makes it richer, that's called a property graph. There are two principle use cases for graph databases. There's semantic property graphs, which are use to break down human language texts into the semantic structures. Then you can search it, organize it and answer complicated questions. A lot of AI is aimed at semantic graphs. Another kind is the property graph that I just mentioned, which has a dazzling number of use cases. I want to just point out as I talk about this, people are probably wondering, well, we have relation databases, isn't that good enough? So a relational database defines... It supports what I call definitional relationships. That means you define the relationships in a fixed structure. The database drops into that structure, there's a value, foreign key value, that relates one table to another and that value is fixed. You don't change it. If you change it, the database becomes unstable, it's not clear what you're looking at. In a graph database, the system is designed to handle change so that it can reflect the true state of the things that it's being used to track. So let me just give you some examples of use cases for this. They include entity resolution, data lineage, social media analysis, Customer 360, fraud prevention. There's cybersecurity, there's strong supply chain is a big one actually. There is explainable AI and this is going to become important too because a lot of people are adopting AI. But they want a system after the fact to say, how do the AI system come to that conclusion? How did it make that recommendation? Right now we don't have really good ways of tracking that. Machine learning in general, social network, I already mentioned that. And then we've got, oh gosh, we've got data governance, data compliance, risk management. We've got recommendation, we've got personalization, anti money laundering, that's another big one, identity and access management, network and IT operations is already becoming a key one where you actually have mapped out your operation, you know, whatever it is, your data center and you can track what's going on as things happen there, root cause analysis, fraud detection is a huge one. A number of major credit card companies use graph databases for fraud detection, risk analysis, tracking and tracing turn analysis, next best action, what if analysis, impact analysis, entity resolution and I would add one other thing or just a few other things to this list, metadata management. So Sanjeev, here you go, this is your engine. Because I was in metadata management for quite a while in my past life. And one of the things I found was that none of the data management technologies that were available to us could efficiently handle metadata because of the kinds of structures that result from it, but graphs can, okay? Graphs can do things like say, this term in this context means this, but in that context, it means that, okay? Things like that. And in fact, logistics management, supply chain. And also because it handles recursive relationships, by recursive relationships I mean objects that own other objects that are of the same type. You can do things like build materials, you know, so like parts explosion. Or you can do an HR analysis, who reports to whom, how many levels up the chain and that kind of thing. You can do that with relational databases, but yet it takes a lot of programming. In fact, you can do almost any of these things with relational databases, but the problem is, you have to program it. It's not supported in the database. And whenever you have to program something, that means you can't trace it, you can't define it. You can't publish it in terms of its functionality and it's really, really hard to maintain over time. >> Carl, thank you. I wonder if we could bring Brad in, I mean. Brad, I'm sitting here wondering, okay, is this incremental to the market? Is it disruptive and replacement? What are your thoughts on this phase? >> It's already disrupted the market. I mean, like Carl said, go to any bank and ask them are you using graph databases to get fraud detection under control? And they'll say, absolutely, that's the only way to solve this problem. And it is frankly. And it's the only way to solve a lot of the problems that Carl mentioned. And that is, I think it's Achilles heel in some ways. Because, you know, it's like finding the best way to cross the seven bridges of Koenigsberg. You know, it's always going to kind of be tied to those use cases because it's really special and it's really unique and because it's special and it's unique, it's still unfortunately kind of stands apart from the rest of the community that's building, let's say AI outcomes, as a great example here. Graph databases and AI, as Carl mentioned, are like chocolate and peanut butter. But technologically, you think don't know how to talk to one another, they're completely different. And you know, you can't just stand up SQL and query them. You've got to learn, know what is the Carl? Specter special. Yeah, thank you to, to actually get to the data in there. And if you're going to scale that data, that graph database, especially a property graph, if you're going to do something really complex, like try to understand you know, all of the metadata in your organization, you might just end up with, you know, a graph database winter like we had the AI winter simply because you run out of performance to make the thing happen. So, I think it's already disrupted, but we need to like treat it like a first-class citizen in the data analytics and AI community. We need to bring it into the fold. We need to equip it with the tools it needs to do the magic it does and to do it not just for specialized use cases, but for everything. 'Cause I'm with Carl. I think it's absolutely revolutionary. >> Brad identified the principal, Achilles' heel of the technology which is scaling. When these things get large and complex enough that they spill over what a single server can handle, you start to have difficulties because the relationships span things that have to be resolved over a network and then you get network latency and that slows the system down. So that's still a problem to be solved. >> Sanjeev, any quick thoughts on this? I mean, I think metadata on the word cloud is going to be the largest font, but what are your thoughts here? >> I want to (indistinct) So people don't associate me with only metadata, so I want to talk about something slightly different. dbengines.com has done an amazing job. I think almost everyone knows that they chronicle all the major databases that are in use today. In January of 2022, there are 381 databases on a ranked list of databases. The largest category is RDBMS. The second largest category is actually divided into two property graphs and IDF graphs. These two together make up the second largest number databases. So talking about Achilles heel, this is a problem. The problem is that there's so many graph databases to choose from. They come in different shapes and forms. To Brad's point, there's so many query languages in RDBMS, in SQL. I know the story, but here We've got cipher, we've got gremlin, we've got GQL and then we're proprietary languages. So I think there's a lot of disparity in this space. >> Well, excellent. All excellent points, Sanjeev, if I must say. And that is a problem that the languages need to be sorted and standardized. People need to have a roadmap as to what they can do with it. Because as you say, you can do so many things. And so many of those things are unrelated that you sort of say, well, what do we use this for? And I'm reminded of the saying I learned a bunch of years ago. And somebody said that the digital computer is the only tool man has ever device that has no particular purpose. (panelists chuckle) >> All right guys, we got to move on to Dave Menninger. We've heard about streaming. Your prediction is in that realm, so please take it away. >> Sure. So I like to say that historical databases are going to become a thing of the past. By that I don't mean that they're going to go away, that's not my point. I mean, we need historical databases, but streaming data is going to become the default way in which we operate with data. So in the next say three to five years, I would expect that data platforms and we're using the term data platforms to represent the evolution of databases and data lakes, that the data platforms will incorporate these streaming capabilities. We're going to process data as it streams into an organization and then it's going to roll off into historical database. So historical databases don't go away, but they become a thing of the past. They store the data that occurred previously. And as data is occurring, we're going to be processing it, we're going to be analyzing it, we're going to be acting on it. I mean we only ever ended up with historical databases because we were limited by the technology that was available to us. Data doesn't occur in patches. But we processed it in patches because that was the best we could do. And it wasn't bad and we've continued to improve and we've improved and we've improved. But streaming data today is still the exception. It's not the rule, right? There are projects within organizations that deal with streaming data. But it's not the default way in which we deal with data yet. And so that's my prediction is that this is going to change, we're going to have streaming data be the default way in which we deal with data and how you label it and what you call it. You know, maybe these databases and data platforms just evolved to be able to handle it. But we're going to deal with data in a different way. And our research shows that already, about half of the participants in our analytics and data benchmark research, are using streaming data. You know, another third are planning to use streaming technologies. So that gets us to about eight out of 10 organizations need to use this technology. And that doesn't mean they have to use it throughout the whole organization, but it's pretty widespread in its use today and has continued to grow. If you think about the consumerization of IT, we've all been conditioned to expect immediate access to information, immediate responsiveness. You know, we want to know if an item is on the shelf at our local retail store and we can go in and pick it up right now. You know, that's the world we live in and that's spilling over into the enterprise IT world We have to provide those same types of capabilities. So that's my prediction, historical databases become a thing of the past, streaming data becomes the default way in which we operate with data. >> All right thank you David. Well, so what say you, Carl, the guy who has followed historical databases for a long time? >> Well, one thing actually, every database is historical because as soon as you put data in it, it's now history. They'll no longer reflect the present state of things. But even if that history is only a millisecond old, it's still history. But I would say, I mean, I know you're trying to be a little bit provocative in saying this Dave 'cause you know, as well as I do that people still need to do their taxes, they still need to do accounting, they still need to run general ledger programs and things like that. That all involves historical data. That's not going to go away unless you want to go to jail. So you're going to have to deal with that. But as far as the leading edge functionality, I'm totally with you on that. And I'm just, you know, I'm just kind of wondering if this requires a change in the way that we perceive applications in order to truly be manifested and rethinking the way applications work. Saying that an application should respond instantly, as soon as the state of things changes. What do you say about that? >> I think that's true. I think we do have to think about things differently. It's not the way we designed systems in the past. We're seeing more and more systems designed that way. But again, it's not the default. And I agree 100% with you that we do need historical databases you know, that's clear. And even some of those historical databases will be used in conjunction with the streaming data, right? >> Absolutely. I mean, you know, let's take the data warehouse example where you're using the data warehouse as its context and the streaming data as the present and you're saying, here's the sequence of things that's happening right now. Have we seen that sequence before? And where? What does that pattern look like in past situations? And can we learn from that? >> So Tony Baer, I wonder if you could comment? I mean, when you think about, you know, real time inferencing at the edge, for instance, which is something that a lot of people talk about, a lot of what we're discussing here in this segment, it looks like it's got a great potential. What are your thoughts? >> Yeah, I mean, I think you nailed it right. You know, you hit it right on the head there. Which is that, what I'm seeing is that essentially. Then based on I'm going to split this one down the middle is that I don't see that basically streaming is the default. What I see is streaming and basically and transaction databases and analytics data, you know, data warehouses, data lakes whatever are converging. And what allows us technically to converge is cloud native architecture, where you can basically distribute things. So you can have a node here that's doing the real-time processing, that's also doing... And this is where it leads in or maybe doing some of that real time predictive analytics to take a look at, well look, we're looking at this customer journey what's happening with what the customer is doing right now and this is correlated with what other customers are doing. So the thing is that in the cloud, you can basically partition this and because of basically the speed of the infrastructure then you can basically bring these together and kind of orchestrate them sort of a loosely coupled manner. The other parts that the use cases are demanding, and this is part of it goes back to what Dave is saying. Is that, you know, when you look at Customer 360, when you look at let's say Smart Utility products, when you look at any type of operational problem, it has a real time component and it has an historical component. And having predictive and so like, you know, my sense here is that technically we can bring this together through the cloud. And I think the use case is that we can apply some real time sort of predictive analytics on these streams and feed this into the transactions so that when we make a decision in terms of what to do as a result of a transaction, we have this real-time input. >> Sanjeev, did you have a comment? >> Yeah, I was just going to say that to Dave's point, you know, we have to think of streaming very different because in the historical databases, we used to bring the data and store the data and then we used to run rules on top, aggregations and all. But in case of streaming, the mindset changes because the rules are normally the inference, all of that is fixed, but the data is constantly changing. So it's a completely reversed way of thinking and building applications on top of that. >> So Dave Menninger, there seem to be some disagreement about the default. What kind of timeframe are you thinking about? Is this end of decade it becomes the default? What would you pin? >> I think around, you know, between five to 10 years, I think this becomes the reality. >> I think its... >> It'll be more and more common between now and then, but it becomes the default. And I also want Sanjeev at some point, maybe in one of our subsequent conversations, we need to talk about governing streaming data. 'Cause that's a whole nother set of challenges. >> We've also talked about it rather in two dimensions, historical and streaming, and there's lots of low latency, micro batch, sub-second, that's not quite streaming, but in many cases its fast enough and we're seeing a lot of adoption of near real time, not quite real-time as good enough for many applications. (indistinct cross talk from panelists) >> Because nobody's really taking the hardware dimension (mumbles). >> That'll just happened, Carl. (panelists laughing) >> So near real time. But maybe before you lose the customer, however we define that, right? Okay, let's move on to Brad. Brad, you want to talk about automation, AI, the pipeline people feel like, hey, we can just automate everything. What's your prediction? >> Yeah I'm an AI aficionados so apologies in advance for that. But, you know, I think that we've been seeing automation play within AI for some time now. And it's helped us do a lot of things especially for practitioners that are building AI outcomes in the enterprise. It's helped them to fill skills gaps, it's helped them to speed development and it's helped them to actually make AI better. 'Cause it, you know, in some ways provide some swim lanes and for example, with technologies like AutoML can auto document and create that sort of transparency that we talked about a little bit earlier. But I think there's an interesting kind of conversion happening with this idea of automation. And that is that we've had the automation that started happening for practitioners, it's trying to move out side of the traditional bounds of things like I'm just trying to get my features, I'm just trying to pick the right algorithm, I'm just trying to build the right model and it's expanding across that full life cycle, building an AI outcome, to start at the very beginning of data and to then continue on to the end, which is this continuous delivery and continuous automation of that outcome to make sure it's right and it hasn't drifted and stuff like that. And because of that, because it's become kind of powerful, we're starting to actually see this weird thing happen where the practitioners are starting to converge with the users. And that is to say that, okay, if I'm in Tableau right now, I can stand up Salesforce Einstein Discovery, and it will automatically create a nice predictive algorithm for me given the data that I pull in. But what's starting to happen and we're seeing this from the companies that create business software, so Salesforce, Oracle, SAP, and others is that they're starting to actually use these same ideals and a lot of deep learning (chuckles) to basically stand up these out of the box flip-a-switch, and you've got an AI outcome at the ready for business users. And I am very much, you know, I think that's the way that it's going to go and what it means is that AI is slowly disappearing. And I don't think that's a bad thing. I think if anything, what we're going to see in 2022 and maybe into 2023 is this sort of rush to put this idea of disappearing AI into practice and have as many of these solutions in the enterprise as possible. You can see, like for example, SAP is going to roll out this quarter, this thing called adaptive recommendation services, which basically is a cold start AI outcome that can work across a whole bunch of different vertical markets and use cases. It's just a recommendation engine for whatever you needed to do in the line of business. So basically, you're an SAP user, you look up to turn on your software one day, you're a sales professional let's say, and suddenly you have a recommendation for customer churn. Boom! It's going, that's great. Well, I don't know, I think that's terrifying. In some ways I think it is the future that AI is going to disappear like that, but I'm absolutely terrified of it because I think that what it really does is it calls attention to a lot of the issues that we already see around AI, specific to this idea of what we like to call at Omdia, responsible AI. Which is, you know, how do you build an AI outcome that is free of bias, that is inclusive, that is fair, that is safe, that is secure, that its audible, et cetera, et cetera, et cetera, et cetera. I'd take a lot of work to do. And so if you imagine a customer that's just a Salesforce customer let's say, and they're turning on Einstein Discovery within their sales software, you need some guidance to make sure that when you flip that switch, that the outcome you're going to get is correct. And that's going to take some work. And so, I think we're going to see this move, let's roll this out and suddenly there's going to be a lot of problems, a lot of pushback that we're going to see. And some of that's going to come from GDPR and others that Sanjeev was mentioning earlier. A lot of it is going to come from internal CSR requirements within companies that are saying, "Hey, hey, whoa, hold up, we can't do this all at once. "Let's take the slow route, "let's make AI automated in a smart way." And that's going to take time. >> Yeah, so a couple of predictions there that I heard. AI simply disappear, it becomes invisible. Maybe if I can restate that. And then if I understand it correctly, Brad you're saying there's a backlash in the near term. You'd be able to say, oh, slow down. Let's automate what we can. Those attributes that you talked about are non trivial to achieve, is that why you're a bit of a skeptic? >> Yeah. I think that we don't have any sort of standards that companies can look to and understand. And we certainly, within these companies, especially those that haven't already stood up an internal data science team, they don't have the knowledge to understand when they flip that switch for an automated AI outcome that it's going to do what they think it's going to do. And so we need some sort of standard methodology and practice, best practices that every company that's going to consume this invisible AI can make use of them. And one of the things that you know, is sort of started that Google kicked off a few years back that's picking up some momentum and the companies I just mentioned are starting to use it is this idea of model cards where at least you have some transparency about what these things are doing. You know, so like for the SAP example, we know, for example, if it's convolutional neural network with a long, short term memory model that it's using, we know that it only works on Roman English and therefore me as a consumer can say, "Oh, well I know that I need to do this internationally. "So I should not just turn this on today." >> Thank you. Carl could you add anything, any context here? >> Yeah, we've talked about some of the things Brad mentioned here at IDC and our future of intelligence group regarding in particular, the moral and legal implications of having a fully automated, you know, AI driven system. Because we already know, and we've seen that AI systems are biased by the data that they get, right? So if they get data that pushes them in a certain direction, I think there was a story last week about an HR system that was recommending promotions for White people over Black people, because in the past, you know, White people were promoted and more productive than Black people, but it had no context as to why which is, you know, because they were being historically discriminated, Black people were being historically discriminated against, but the system doesn't know that. So, you know, you have to be aware of that. And I think that at the very least, there should be controls when a decision has either a moral or legal implication. When you really need a human judgment, it could lay out the options for you. But a person actually needs to authorize that action. And I also think that we always will have to be vigilant regarding the kind of data we use to train our systems to make sure that it doesn't introduce unintended biases. In some extent, they always will. So we'll always be chasing after them. But that's (indistinct). >> Absolutely Carl, yeah. I think that what you have to bear in mind as a consumer of AI is that it is a reflection of us and we are a very flawed species. And so if you look at all of the really fantastic, magical looking supermodels we see like GPT-3 and four, that's coming out, they're xenophobic and hateful because the people that the data that's built upon them and the algorithms and the people that build them are us. So AI is a reflection of us. We need to keep that in mind. >> Yeah, where the AI is biased 'cause humans are biased. All right, great. All right let's move on. Doug you mentioned mentioned, you know, lot of people that said that data lake, that term is not going to live on but here's to be, have some lakes here. You want to talk about lake house, bring it on. >> Yes, I do. My prediction is that lake house and this idea of a combined data warehouse and data lake platform is going to emerge as the dominant data management offering. I say offering that doesn't mean it's going to be the dominant thing that organizations have out there, but it's going to be the pro dominant vendor offering in 2022. Now heading into 2021, we already had Cloudera, Databricks, Microsoft, Snowflake as proponents, in 2021, SAP, Oracle, and several of all of these fabric virtualization/mesh vendors joined the bandwagon. The promise is that you have one platform that manages your structured, unstructured and semi-structured information. And it addresses both the BI analytics needs and the data science needs. The real promise there is simplicity and lower cost. But I think end users have to answer a few questions. The first is, does your organization really have a center of data gravity or is the data highly distributed? Multiple data warehouses, multiple data lakes, on premises, cloud. If it's very distributed and you'd have difficulty consolidating and that's not really a goal for you, then maybe that single platform is unrealistic and not likely to add value to you. You know, also the fabric and virtualization vendors, the mesh idea, that's where if you have this highly distributed situation, that might be a better path forward. The second question, if you are looking at one of these lake house offerings, you are looking at consolidating, simplifying, bringing together to a single platform. You have to make sure that it meets both the warehouse need and the data lake need. So you have vendors like Databricks, Microsoft with Azure Synapse. New really to the data warehouse space and they're having to prove that these data warehouse capabilities on their platforms can meet the scaling requirements, can meet the user and query concurrency requirements. Meet those tight SLS. And then on the other hand, you have the Oracle, SAP, Snowflake, the data warehouse folks coming into the data science world, and they have to prove that they can manage the unstructured information and meet the needs of the data scientists. I'm seeing a lot of the lake house offerings from the warehouse crowd, managing that unstructured information in columns and rows. And some of these vendors, Snowflake a particular is really relying on partners for the data science needs. So you really got to look at a lake house offering and make sure that it meets both the warehouse and the data lake requirement. >> Thank you Doug. Well Tony, if those two worlds are going to come together, as Doug was saying, the analytics and the data science world, does it need to be some kind of semantic layer in between? I don't know. Where are you in on this topic? >> (chuckles) Oh, didn't we talk about data fabrics before? Common metadata layer (chuckles). Actually, I'm almost tempted to say let's declare victory and go home. And that this has actually been going on for a while. I actually agree with, you know, much of what Doug is saying there. Which is that, I mean I remember as far back as I think it was like 2014, I was doing a study. I was still at Ovum, (indistinct) Omdia, looking at all these specialized databases that were coming up and seeing that, you know, there's overlap at the edges. But yet, there was still going to be a reason at the time that you would have, let's say a document database for JSON, you'd have a relational database for transactions and for data warehouse and you had basically something at that time that resembles a dupe for what we consider your data life. Fast forward and the thing is what I was seeing at the time is that you were saying they sort of blending at the edges. That was saying like about five to six years ago. And the lake house is essentially on the current manifestation of that idea. There is a dichotomy in terms of, you know, it's the old argument, do we centralize this all you know in a single place or do we virtualize? And I think it's always going to be a union yeah and there's never going to be a single silver bullet. I do see that there are also going to be questions and these are points that Doug raised. That you know, what do you need for your performance there, or for your free performance characteristics? Do you need for instance high concurrency? You need the ability to do some very sophisticated joins, or is your requirement more to be able to distribute and distribute our processing is, you know, as far as possible to get, you know, to essentially do a kind of a brute force approach. All these approaches are valid based on the use case. I just see that essentially that the lake house is the culmination of it's nothing. It's a relatively new term introduced by Databricks a couple of years ago. This is the culmination of basically what's been a long time trend. And what we see in the cloud is that as we start seeing data warehouses as a check box items say, "Hey, we can basically source data in cloud storage, in S3, "Azure Blob Store, you know, whatever, "as long as it's in certain formats, "like, you know parquet or CSP or something like that." I see that as becoming kind of a checkbox item. So to that extent, I think that the lake house, depending on how you define is already reality. And in some cases, maybe new terminology, but not a whole heck of a lot new under the sun. >> Yeah. And Dave Menninger, I mean a lot of these, thank you Tony, but a lot of this is going to come down to, you know, vendor marketing, right? Some people just kind of co-op the term, we talked about you know, data mesh washing, what are your thoughts on this? (laughing) >> Yeah, so I used the term data platform earlier. And part of the reason I use that term is that it's more vendor neutral. We've tried to sort of stay out of the vendor terminology patenting world, right? Whether the term lake houses, what sticks or not, the concept is certainly going to stick. And we have some data to back it up. About a quarter of organizations that are using data lakes today, already incorporate data warehouse functionality into it. So they consider their data lake house and data warehouse one in the same, about a quarter of organizations, a little less, but about a quarter of organizations feed the data lake from the data warehouse and about a quarter of organizations feed the data warehouse from the data lake. So it's pretty obvious that three quarters of organizations need to bring this stuff together, right? The need is there, the need is apparent. The technology is going to continue to converge. I like to talk about it, you know, you've got data lakes over here at one end, and I'm not going to talk about why people thought data lakes were a bad idea because they thought you just throw stuff in a server and you ignore it, right? That's not what a data lake is. So you've got data lake people over here and you've got database people over here, data warehouse people over here, database vendors are adding data lake capabilities and data lake vendors are adding data warehouse capabilities. So it's obvious that they're going to meet in the middle. I mean, I think it's like Tony says, I think we should declare victory and go home. >> As hell. So just a follow-up on that, so are you saying the specialized lake and the specialized warehouse, do they go away? I mean, Tony data mesh practitioners would say or advocates would say, well, they could all live. It's just a node on the mesh. But based on what Dave just said, are we gona see those all morphed together? >> Well, number one, as I was saying before, there's always going to be this sort of, you know, centrifugal force or this tug of war between do we centralize the data, do we virtualize? And the fact is I don't think that there's ever going to be any single answer. I think in terms of data mesh, data mesh has nothing to do with how you're physically implement the data. You could have a data mesh basically on a data warehouse. It's just that, you know, the difference being is that if we use the same physical data store, but everybody's logically you know, basically governing it differently, you know? Data mesh in space, it's not a technology, it's processes, it's governance process. So essentially, you know, I basically see that, you know, as I was saying before that this is basically the culmination of a long time trend we're essentially seeing a lot of blurring, but there are going to be cases where, for instance, if I need, let's say like, Upserve, I need like high concurrency or something like that. There are certain things that I'm not going to be able to get efficiently get out of a data lake. And, you know, I'm doing a system where I'm just doing really brute forcing very fast file scanning and that type of thing. So I think there always will be some delineations, but I would agree with Dave and with Doug, that we are seeing basically a confluence of requirements that we need to essentially have basically either the element, you know, the ability of a data lake and the data warehouse, these need to come together, so I think. >> I think what we're likely to see is organizations look for a converge platform that can handle both sides for their center of data gravity, the mesh and the fabric virtualization vendors, they're all on board with the idea of this converged platform and they're saying, "Hey, we'll handle all the edge cases "of the stuff that isn't in that center of data gravity "but that is off distributed in a cloud "or at a remote location." So you can have that single platform for the center of your data and then bring in virtualization, mesh, what have you, for reaching out to the distributed data. >> As Dave basically said, people are happy when they virtualized data. >> I think we have at this point, but to Dave Menninger's point, they are converging, Snowflake has introduced support for unstructured data. So obviously literally splitting here. Now what Databricks is saying is that "aha, but it's easy to go from data lake to data warehouse "than it is from databases to data lake." So I think we're getting into semantics, but we're already seeing these two converge. >> So take somebody like AWS has got what? 15 data stores. Are they're going to 15 converge data stores? This is going to be interesting to watch. All right, guys, I'm going to go down and list do like a one, I'm going to one word each and you guys, each of the analyst, if you would just add a very brief sort of course correction for me. So Sanjeev, I mean, governance is going to to be... Maybe it's the dog that wags the tail now. I mean, it's coming to the fore, all this ransomware stuff, which you really didn't talk much about security, but what's the one word in your prediction that you would leave us with on governance? >> It's going to be mainstream. >> Mainstream. Okay. Tony Baer, mesh washing is what I wrote down. That's what we're going to see in 2022, a little reality check, you want to add to that? >> Reality check, 'cause I hope that no vendor jumps the shark and close they're offering a data niche product. >> Yeah, let's hope that doesn't happen. If they do, we're going to call them out. Carl, I mean, graph databases, thank you for sharing some high growth metrics. I know it's early days, but magic is what I took away from that, so magic database. >> Yeah, I would actually, I've said this to people too. I kind of look at it as a Swiss Army knife of data because you can pretty much do anything you want with it. That doesn't mean you should. I mean, there's definitely the case that if you're managing things that are in fixed schematic relationship, probably a relation database is a better choice. There are times when the document database is a better choice. It can handle those things, but maybe not. It may not be the best choice for that use case. But for a great many, especially with the new emerging use cases I listed, it's the best choice. >> Thank you. And Dave Menninger, thank you by the way, for bringing the data in, I like how you supported all your comments with some data points. But streaming data becomes the sort of default paradigm, if you will, what would you add? >> Yeah, I would say think fast, right? That's the world we live in, you got to think fast. >> Think fast, love it. And Brad Shimmin, love it. I mean, on the one hand I was saying, okay, great. I'm afraid I might get disrupted by one of these internet giants who are AI experts. I'm going to be able to buy instead of build AI. But then again, you know, I've got some real issues. There's a potential backlash there. So give us your bumper sticker. >> I'm would say, going with Dave, think fast and also think slow to talk about the book that everyone talks about. I would say really that this is all about trust, trust in the idea of automation and a transparent and visible AI across the enterprise. And verify, verify before you do anything. >> And then Doug Henschen, I mean, I think the trend is your friend here on this prediction with lake house is really becoming dominant. I liked the way you set up that notion of, you know, the data warehouse folks coming at it from the analytics perspective and then you get the data science worlds coming together. I still feel as though there's this piece in the middle that we're missing, but your, your final thoughts will give you the (indistinct). >> I think the idea of consolidation and simplification always prevails. That's why the appeal of a single platform is going to be there. We've already seen that with, you know, DoOP platforms and moving toward cloud, moving toward object storage and object storage, becoming really the common storage point for whether it's a lake or a warehouse. And that second point, I think ESG mandates are going to come in alongside GDPR and things like that to up the ante for good governance. >> Yeah, thank you for calling that out. Okay folks, hey that's all the time that we have here, your experience and depth of understanding on these key issues on data and data management really on point and they were on display today. I want to thank you for your contributions. Really appreciate your time. >> Enjoyed it. >> Thank you. >> Thanks for having me. >> In addition to this video, we're going to be making available transcripts of the discussion. We're going to do clips of this as well we're going to put them out on social media. I'll write this up and publish the discussion on wikibon.com and siliconangle.com. No doubt, several of the analysts on the panel will take the opportunity to publish written content, social commentary or both. I want to thank the power panelists and thanks for watching this special CUBE presentation. This is Dave Vellante, be well and we'll see you next time. (bright music)
SUMMARY :
and I'd like to welcome you to I as moderator, I'm going to and that is the journey to weigh in on there, and it's going to demand more solid data. Brad, I wonder if you that are specific to individual use cases in the past is because we I like the fact that you the data from, you know, Dave Menninger, I mean, one of the things that all need to be managed collectively. Oh thank you Dave. and to the community I think we could have a after the fact to say, okay, is this incremental to the market? the magic it does and to do it and that slows the system down. I know the story, but And that is a problem that the languages move on to Dave Menninger. So in the next say three to five years, the guy who has followed that people still need to do their taxes, And I agree 100% with you and the streaming data as the I mean, when you think about, you know, and because of basically the all of that is fixed, but the it becomes the default? I think around, you know, but it becomes the default. and we're seeing a lot of taking the hardware dimension That'll just happened, Carl. Okay, let's move on to Brad. And that is to say that, Those attributes that you And one of the things that you know, Carl could you add in the past, you know, I think that what you have to bear in mind that term is not going to and the data science needs. and the data science world, You need the ability to do lot of these, thank you Tony, I like to talk about it, you know, It's just a node on the mesh. basically either the element, you know, So you can have that single they virtualized data. "aha, but it's easy to go from I mean, it's coming to the you want to add to that? I hope that no vendor Yeah, let's hope that doesn't happen. I've said this to people too. I like how you supported That's the world we live I mean, on the one hand I And verify, verify before you do anything. I liked the way you set up We've already seen that with, you know, the time that we have here, We're going to do clips of this as well
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Menninger | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Doug Henschen | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Brad Shimmin | PERSON | 0.99+ |
Doug | PERSON | 0.99+ |
Tony Baer | PERSON | 0.99+ |
Dave Velannte | PERSON | 0.99+ |
Tony | PERSON | 0.99+ |
Carl | PERSON | 0.99+ |
Brad | PERSON | 0.99+ |
Carl Olofson | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
2014 | DATE | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Ventana Research | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
January of 2022 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
381 databases | QUANTITY | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
Informatica | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Sanjeev | PERSON | 0.99+ |
2021 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Omdia | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
SanjMo | ORGANIZATION | 0.99+ |
79% | QUANTITY | 0.99+ |
second question | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
15 data stores | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
SAP | ORGANIZATION | 0.99+ |