Image Title

Search Results for first CUBE:

Emilia A'Bell Platform9


 

(Gentle music) >> Hello and welcome to the Cube here in Palo Alto, California. I'm John Furrier here, joined by Platform nine, Amelia Bell the Chief Revenue Officer, really digging into the conversation around Kubernetes Cloud native and the journey this next generation cloud. Amelia, thanks for coming in and joining me today. >> Thank you, thank you. Great pleasure to be here. >> So, CRO, chief Revenue Officer. So you're mainly in charge of serving the customers, making sure they're they're happy with the solution you guys have. >> That's right. >> And this market must be pretty exciting. >> Oh, it's very exciting and we are seeing a lot of new use cases coming up all the time. So part of my job is to obtain new customers but then of course, service our existing customers and then there's a constant evolution. Nothing is standing still right now. >> We've had all your co-founders on, on the show here and we've kind of talked about the trends and where you guys have come from, where you guys are going now. And it's interesting, if you look at the cloud native market, the scale is still huge. You seeing now this next wave of AI coming on, which I call that's the real web three in my mind in terms of like the next experiences really still points to data infrastructure scale. These next gen apps are coming. And so that's being built on the previous generation of DevSecOps. >> Right >> And so a lot of enterprises are having to grow up really, really fast >> Right. >> And figure out, okay, I got to have scale I got large scale data, I got horizontal scalability I got to apply machine learning now the new software engineering practice. And then, oh, by the way I got the Kubernetes clusters I got to manage >> Right. >> I got what's containers weather, the security problems. This is a really complicated but important area of build out right now in the marketplace. >> Right. What are you seeing? >> So it's, it's really important that the infrastructure is not the hindrance in these cases. And we, one of our customers is in fact a large AI company and we, I met with them yesterday and asked them, you know, why are you giving that to us? You've got really smart engineers. They can run and create the infrastructure, you know in a custom way that you want it. And they said, we've got to be core to our business. There's plenty of work to do just on delivering the AI capabilities, and there's plenty of work to do. We can't get bogged down in the infrastructure. We don't want to have people running the engine we want them driving the car. We want them creating value on top of that. so they can't have the infrastructure being the bottleneck for them. >> It's interesting, the AI companies, that's their value proposition to their customers is that they don't want the technical talent. >> Right. >> Working on, you know, non-differentiated heavy lifting things. >> Right. >> And automate those and scale it up. Can you talk about the problem that you guys are solving? Because there's a lot going on here. >> Yeah. >> You can look at all aspects of the DevOps scale. There's a lot of little problems, some big problems. What are you guys focusing on? What's the bullseye for Platform known? >> Okay, so the bullseye is that Kubernetes infrastructure is really hard, right? It's really hard to create and run. So we introduce a time to market efficiency, let's get this up and running and let's get you into production and and producing results for your customers fast. But at the same time, let's reduce your cost and complexity and increase reliability. So, >> And what are some of the things that they're having problems with that are breaking? Is it more of updates on code? Is it size of the, I mean clusters they have, what what is it more operational? What are the, what are some of the things that are that kind of get them to call you guys up? What's the main thing? >> It's the operations. It's all operations. So what, what happens is that if you have a look at Kubernetes platform it's made up of many, many components. And that's where it gets complex. It's not just Kubernetes. There's load balances, networking, there's observability. All these things have to operate together. And all the piece parts have to be upgraded and maintained. The integrations need to work, you need to have probes into the system to predict where problems can be coming. So the operational part of it is complex. So you need to be observing not only your clusters in the health of the clusters and the nodes and so on but the health of the platform itself. >> We're going to get Peter Frey in on here after I talk about some of the technical issues on deployments. But what's the, what's the big decision for the customer? Because there's kind of, there's two schools of thought. One is, I'm going to build my own and have my team build it or I'm going to go with a partner >> Right. >> Say platform nine, what's the trade offs there? Because it seems to me that, that there's a there's a certain area of where it's core competency but I can outsource it or partner with it and, and work with platform nine versus trying to take it all on internally >> Right. >> Of which requires more costs. So there's a, there's a line where you kind of like figure out that customers have to figure out that, that piece >> Right >> What do, what's your view on that? Because I'm hearing that more people are saying, hey I want to, I want to focus my people on solutions. The app side, not so much the ops >> Right. >> What's the trade off? How do you talk about? >> It's a really interesting question because most companies think they have two options. It's either a DIY option and they love that engineers love playing with the new and on the latest. And then they think the other option is going to cloud, public cloud and have it semi managed by them. And you get very different out of those. So in the DIY you get flexibility coz you get to choose your infrastructure but then you've got all the complexities of the DIY piece. You've got to not only choose all your components but you've got to keep them working. Now if you go to public cloud option, you lose flexibility because a lot of those choices are made for you but you gain agility because quite frankly it's really easy to spin up clusters. So what we are, is that in the middle we bring the agility and the flexibility because we bring the control plane that allows you to spin up clusters and and lifecycle manage them very quickly. So the agility's there but you can do it on the infrastructure of your choice. And in the DIY culture, one of the hardest things to do actually is to convince them they don't have to do it themselves. They can focus on higher value activities, which are more focused on delivering outcomes to their customers. >> So you provide the solution that allows them to feel like they're billing it themselves. >> Correct. >> And get these scale and speed and the efficiencies of the op side. So it's kind of the best of both worlds. It's not a full outsource. >> Right, right. >> You're bringing them in to make their jobs easier >> Right, That's right. So they get choices. >> Yeah. >> We, we, they get choices on how they build it and then we run and operate it for them. But they, they have all the observability. The benefit is that if we are managing their operations and most of our customers choose the managed operations piece of it, then they don't. If something goes wrong, we fix that and they, they they get told, oh, by the way, you had a problem. We've dealt with it. But in the other model is they've got to create all that observability themselves and they've got to get ahead of the issues themselves, and then they've got to raise tickets to whoever they need to raise tickets to. Whereas we have things like auto ticket generation and so on where, look, just drive the car let us worry about the engine and all of that. Let us deal with that. And you can choose whatever you want about the engine but let us manage it for you. So >> What do you, what do you say to folks out there that are may have a need for platform nine? What's the signals inside their company that they should be calling you guys up and, and leaning in with platform nine? >> Right. >> Is it more sprawl on on clusters? Is it more errors? Is it more tickets? Is it more hassle? What are some of the signs? If someone's watching this say, hey I have, I have an issue with this. >> I would say, if there's operational inefficiencies you can't get things to market fast enough because you are building this and it's just taking too long you're spending way too much time operationally on the infrastructure, then you are, you are not using your resources where they should best be used. And, and that is delivering services to the customer. >> Ed me Hora on for International Women's Day. And she was talking about how they love to solve complex problems on the engineering team at Platform nine. It's going to get pretty complex with the edge emerging >> Indeed >> and cloud native on-premises distributed computing. >> Indeed. >> essentially is what it is. That's kind of the core DNA of the team. >> Yeah. >> What, how does that translate to the customers? Because IT seems to be, okay, I have virtual machines were great, now I got to scale up and and convert over a transform to containers, Kubernetes >> Right. >> And then large scale app, app applications. >> Right, so when it comes to Edge it gets complex pretty fast because it's highly distributed. So how do you have standardization and governance across all the different edge locations? So what we bring into play is an ability to, um, at each edge, location eh, provision from bare metal up all the way up to the application. So let's say you have thousands of stores and you want to modernize those stores, you know rather than having a server being sent somewhere to have an image loaded up and then sent that and then you've got to send a technical guide to the store and you've got to implement it all there. Forget all that. That's just, that's just a ridiculous waste of time. So what we've done is we've created the ability where the server can just be sent to the store. You can get your barista or your chef just to plug it in, right? You don't need to send any technical person over there. As long as we have access to it, we get access to it and we provision the whole thing from bare metal up and then we can maintain it according to the standards that are needed and upgrade accordingly. And that gives standardization across all your stores or edge locations or 5G towers or whatever it is, distribution centers. And we can create nice governance and good standardization which allows them to innovate fast as well. >> So this is a real opportunity for you guys. >> Yeah. >> This is an advantage from your expertise. >> Yes. >> The edge piece, dropping in a box, self-provisioning. >> That's right. So yeah. >> Can people do that? What's the, >> No, actually it, it's, it's very difficult to do. I I, from my understanding, we're the only people that can provision it from bare metal up, right? So if anyone has a different story, I'd love to hear about that. But that's my understanding today. >> That's a good value purpose. So talk about the value of the customer. What kind of scope do you got? Can you scope some of the customer environments you have from >> Sure. >> From, you know, small to the large, how give us an idea of the order of magnitude of the >> Yeah, so, so small customers may have 20 clusters or something like that. 20 nodes, I beg your pardon. Our large customers, like we're we are scaling one particular distributed environment from 2200 nodes to 10,000 nodes by the end of this year and 26,000 nodes next year. We have another customer that's scaling up to 10,000 nodes this year as well. So we have some very large scale, but some smaller ones too. And we're, we're happy to work with either end. >> Okay, so pretend I'm a customer. I'm really, I got pain and Kubernetes like I want to, I can't hire enough people. I want to have my all focus. What's the pitch? >> Okay. So skill shortage is something that that everyone is facing right now. And if, if you've got skill shortage it's going to be really hard to hire if you are competing against really, you know, high salary you know, offering companies that are out there. So the pitch is, let us do it for you. We have, we have a team of excellent probably the best Kubernetes engineers on the planet. We will create your environment for you. We will get it up and running. We will allow you to, you know, run your applica, just consume the platform, we'll run it for you. We'll have SLAs and up times guaranteed and you can just focus on delivering the software and the value needed to your customers. >> What are some of the testimonials that you get from people? Just anecdotally, what do they say? Oh my god, you guys save. >> Yeah. >> Our butts. >> Yeah. >> This is amazing. We just shipped our code out much faster. >> Yeah. >> What are some of the things that you hear? >> So, so the number one thing I hear is it just works right? It's, we don't have to worry about it, it just works. So that, that's a really great feedback that we get. The other thing I hear is if we do have issues that your team are amazing, they they fix things, they're proactive, you know, they're we really enjoy working with you. So from, from that perspective, that's great. But the other side of it is we hear things like if we were to do that ourselves we would've taken six to 12 months to build that. And you guys have just saved us six to 12 months. The other thing that we hear is with the same two engineers we started on, you know, a hundred nodes we're now running thousands of nodes. We have not had to increase the size of the team and expand and scale exponentially. >> Awesome. What's next for you guys? What's on your, your plate? >> Yeah. >> With CRO, what's some of the goals you have? >> Yeah, so growth of course as a CRO, you don't get away from that. We've got some very exciting, actually, initiatives coming up. One of the things that we are seeing a lot of demand for and is, is in the area of virtualization bringing virtual machine, virtual virtual containers, sorry I'm saying that all wrong. Bringing virtual machine, the virtual machines onto the cloud native infrastructure using Kubernetes technology. So that provides a, an excellent stepping stone for those guys who are in the virtualization world. And they can't move to containers, they can't refactor their applications and workloads fast enough. So just bring your virtual machine and put it onto the container infrastructure. So we're seeing a lot of demand for that, because it provides an excellent stepping stone. Why not use Kubernetes to orchestrate virtual the virtual world? And then we've got some really interesting cost optimization. >> So a lot of migration kind of thinking around VMs and >> Oh, tremendous. The, the VM world is just massively bigger than the container world right now. So you can't ignore that. So we are providing basically the evolution, the the journey for the customers to utilize the greatest of technologies without having to do that in a, in a in a way that just breaks the bank and they can't get there fast enough. So we provide those stepping stones for them. Yeah. >> Amelia thank you for coming on. Sharing. >> Thank you. >> The update on platform nine. Congratulations on your big accounts you have and >> thank you. >> And the world could get more complex, which Means >> indeed >> have more customers. >> Thank you, thank you John. Appreciate that. Thank you. >> I'm John Furry. You're watching Platform nine and the Cube Conversations here. Thanks for watching. (gentle music)

Published Date : Mar 10 2023

SUMMARY :

and the journey this Great pleasure to be here. mainly in charge of serving the customers, And this market must and we are seeing a lot and where you guys have come from, I got the Kubernetes of build out right now in the marketplace. What are you seeing? that the infrastructure is not It's interesting, the AI Working on, you know, that you guys are solving? aspects of the DevOps scale. Okay, so the bullseye is into the system to predict of the technical issues out that customers have to The app side, not so much the ops So in the DIY you get flexibility So you provide the solution of the best of both worlds. So they get choices. get ahead of the issues are some of the signs? on the infrastructure, complex problems on the engineering team and cloud native on-premises is. That's kind of the core And then large scale So let's say you have thousands of stores opportunity for you guys. from your expertise. in a box, self-provisioning. So yeah. different story, I'd love to So talk about the value of the customer. by the end of this year What's the pitch? and the value needed to your customers. What are some of the testimonials This is amazing. of the team and expand What's next for you guys? and is, is in the area of virtualization So you can't ignore Amelia thank you for coming on. big accounts you have and Thank you. and the Cube Conversations here.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmeliaPERSON

0.99+

Amelia BellPERSON

0.99+

JohnPERSON

0.99+

sixQUANTITY

0.99+

John FurrierPERSON

0.99+

yesterdayDATE

0.99+

Emilia A'BellPERSON

0.99+

John FurryPERSON

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

Peter FreyPERSON

0.99+

12 monthsQUANTITY

0.99+

International Women's DayEVENT

0.99+

two engineersQUANTITY

0.99+

two optionsQUANTITY

0.99+

20 clustersQUANTITY

0.99+

next yearDATE

0.99+

two schoolsQUANTITY

0.99+

oneQUANTITY

0.99+

OneQUANTITY

0.99+

this yearDATE

0.98+

todayDATE

0.98+

20 nodesQUANTITY

0.97+

each edgeQUANTITY

0.96+

KubernetesORGANIZATION

0.96+

thousands of storesQUANTITY

0.93+

end of this yearDATE

0.93+

2200 nodesQUANTITY

0.93+

CubeORGANIZATION

0.93+

10,000 nodesQUANTITY

0.93+

KubernetesTITLE

0.92+

both worldsQUANTITY

0.91+

up to 10,000 nodesQUANTITY

0.88+

thousands of nodesQUANTITY

0.87+

EdgeTITLE

0.84+

26,000 nodesQUANTITY

0.81+

Ed me HoraPERSON

0.8+

Platform nineTITLE

0.75+

hundred nodesQUANTITY

0.69+

DevSecOpsTITLE

0.68+

Platform nineORGANIZATION

0.68+

one thingQUANTITY

0.62+

waveEVENT

0.57+

Chief Revenue OfficerPERSON

0.57+

nineQUANTITY

0.56+

CROPERSON

0.54+

threeQUANTITY

0.53+

nineOTHER

0.52+

DevOpsTITLE

0.5+

nextEVENT

0.49+

platform nineOTHER

0.49+

CubeTITLE

0.39+

Jay Marshall, Neural Magic | AWS Startup Showcase S3E1


 

(upbeat music) >> Hello, everyone, and welcome to theCUBE's presentation of the "AWS Startup Showcase." This is season three, episode one. The focus of this episode is AI/ML: Top Startups Building Foundational Models, Infrastructure, and AI. It's great topics, super-relevant, and it's part of our ongoing coverage of startups in the AWS ecosystem. I'm your host, John Furrier, with theCUBE. Today, we're excited to be joined by Jay Marshall, VP of Business Development at Neural Magic. Jay, thanks for coming on theCUBE. >> Hey, John, thanks so much. Thanks for having us. >> We had a great CUBE conversation with you guys. This is very much about the company focuses. It's a feature presentation for the "Startup Showcase," and the machine learning at scale is the topic, but in general, it's more, (laughs) and we should call it "Machine Learning and AI: How to Get Started," because everybody is retooling their business. Companies that aren't retooling their business right now with AI first will be out of business, in my opinion. You're seeing massive shift. This is really truly the beginning of the next-gen machine learning AI trend. It's really seeing ChatGPT. Everyone sees that. That went mainstream. But this is just the beginning. This is scratching the surface of this next-generation AI with machine learning powering it, and with all the goodness of cloud, cloud scale, and how horizontally scalable it is. The resources are there. You got the Edge. Everything's perfect for AI 'cause data infrastructure's exploding in value. AI is just the applications. This is a super topic, so what do you guys see in this general area of opportunities right now in the headlines? And I'm sure you guys' phone must be ringing off the hook, metaphorically speaking, or emails and meetings and Zooms. What's going on over there at Neural Magic? >> No, absolutely, and you pretty much nailed most of it. I think that, you know, my background, we've seen for the last 20-plus years. Even just getting enterprise applications kind of built and delivered at scale, obviously, amazing things with AWS and the cloud to help accelerate that. And we just kind of figured out in the last five or so years how to do that productively and efficiently, kind of from an operations perspective. Got development and operations teams. We even came up with DevOps, right? But now, we kind of have this new kind of persona and new workload that developers have to talk to, and then it has to be deployed on those ITOps solutions. And so you pretty much nailed it. Folks are saying, "Well, how do I do this?" These big, generational models or foundational models, as we're calling them, they're great, but enterprises want to do that with their data, on their infrastructure, at scale, at the edge. So for us, yeah, we're helping enterprises accelerate that through optimizing models and then delivering them at scale in a more cost-effective fashion. >> Yeah, and I think one of the things, the benefits of OpenAI we saw, was not only is it open source, then you got also other models that are more proprietary, is that it shows the world that this is really happening, right? It's a whole nother level, and there's also new landscape kind of maps coming out. You got the generative AI, and you got the foundational models, large LLMs. Where do you guys fit into the landscape? Because you guys are in the middle of this. How do you talk to customers when they say, "I'm going down this road. I need help. I'm going to stand this up." This new AI infrastructure and applications, where do you guys fit in the landscape? >> Right, and really, the answer is both. I think today, when it comes to a lot of what for some folks would still be considered kind of cutting edge around computer vision and natural language processing, a lot of our optimization tools and our runtime are based around most of the common computer vision and natural language processing models. So your YOLOs, your BERTs, you know, your DistilBERTs and what have you, so we work to help optimize those, again, who've gotten great performance and great value for customers trying to get those into production. But when you get into the LLMs, and you mentioned some of the open source components there, our research teams have kind of been right in the trenches with those. So kind of the GPT open source equivalent being OPT, being able to actually take, you know, a multi-$100 billion parameter model and sparsify that or optimize that down, shaving away a ton of parameters, and being able to run it on smaller infrastructure. So I think the evolution here, you know, all this stuff came out in the last six months in terms of being turned loose into the wild, but we're staying in the trenches with folks so that we can help optimize those as well and not require, again, the heavy compute, the heavy cost, the heavy power consumption as those models evolve as well. So we're staying right in with everybody while they're being built, but trying to get folks into production today with things that help with business value today. >> Jay, I really appreciate you coming on theCUBE, and before we came on camera, you said you just were on a customer call. I know you got a lot of activity. What specific things are you helping enterprises solve? What kind of problems? Take us through the spectrum from the beginning, people jumping in the deep end of the pool, some people kind of coming in, starting out slow. What are the scale? Can you scope the kind of use cases and problems that are emerging that people are calling you for? >> Absolutely, so I think if I break it down to kind of, like, your startup, or I maybe call 'em AI native to kind of steal from cloud native years ago, that group, it's pretty much, you know, part and parcel for how that group already runs. So if you have a data science team and an ML engineering team, you're building models, you're training models, you're deploying models. You're seeing firsthand the expense of starting to try to do that at scale. So it's really just a pure operational efficiency play. They kind of speak natively to our tools, which we're doing in the open source. So it's really helping, again, with the optimization of the models they've built, and then, again, giving them an alternative to expensive proprietary hardware accelerators to have to run them. Now, on the enterprise side, it varies, right? You have some kind of AI native folks there that already have these teams, but you also have kind of, like, AI curious, right? Like, they want to do it, but they don't really know where to start, and so for there, we actually have an open source toolkit that can help you get into this optimization, and then again, that runtime, that inferencing runtime, purpose-built for CPUs. It allows you to not have to worry, again, about do I have a hardware accelerator available? How do I integrate that into my application stack? If I don't already know how to build this into my infrastructure, does my ITOps teams, do they know how to do this, and what does that runway look like? How do I cost for this? How do I plan for this? When it's just x86 compute, we've been doing that for a while, right? So it obviously still requires more, but at least it's a little bit more predictable. >> It's funny you mentioned AI native. You know, born in the cloud was a phrase that was out there. Now, you have startups that are born in AI companies. So I think you have this kind of cloud kind of vibe going on. You have lift and shift was a big discussion. Then you had cloud native, kind of in the cloud, kind of making it all work. Is there a existing set of things? People will throw on this hat, and then what's the difference between AI native and kind of providing it to existing stuff? 'Cause we're a lot of people take some of these tools and apply it to either existing stuff almost, and it's not really a lift and shift, but it's kind of like bolting on AI to something else, and then starting with AI first or native AI. >> Absolutely. It's a- >> How would you- >> It's a great question. I think that probably, where I'd probably pull back to kind of allow kind of retail-type scenarios where, you know, for five, seven, nine years or more even, a lot of these folks already have data science teams, you know? I mean, they've been doing this for quite some time. The difference is the introduction of these neural networks and deep learning, right? Those kinds of models are just a little bit of a paradigm shift. So, you know, I obviously was trying to be fun with the term AI native, but I think it's more folks that kind of came up in that neural network world, so it's a little bit more second nature, whereas I think for maybe some traditional data scientists starting to get into neural networks, you have the complexity there and the training overhead, and a lot of the aspects of getting a model finely tuned and hyperparameterization and all of these aspects of it. It just adds a layer of complexity that they're just not as used to dealing with. And so our goal is to help make that easy, and then of course, make it easier to run anywhere that you have just kind of standard infrastructure. >> Well, the other point I'd bring out, and I'd love to get your reaction to, is not only is that a neural network team, people who have been focused on that, but also, if you look at some of the DataOps lately, AIOps markets, a lot of data engineering, a lot of scale, folks who have been kind of, like, in that data tsunami cloud world are seeing, they kind of been in this, right? They're, like, been experiencing that. >> No doubt. I think it's funny the data lake concept, right? And you got data oceans now. Like, the metaphors just keep growing on us, but where it is valuable in terms of trying to shift the mindset, I've always kind of been a fan of some of the naming shift. I know with AWS, they always talk about purpose-built databases. And I always liked that because, you know, you don't have one database that can do everything. Even ones that say they can, like, you still have to do implementation detail differences. So sitting back and saying, "What is my use case, and then which database will I use it for?" I think it's kind of similar here. And when you're building those data teams, if you don't have folks that are doing data engineering, kind of that data harvesting, free processing, you got to do all that before a model's even going to care about it. So yeah, it's definitely a central piece of this as well, and again, whether or not you're going to be AI negative as you're making your way to kind of, you know, on that journey, you know, data's definitely a huge component of it. >> Yeah, you would have loved our Supercloud event we had. Talk about naming and, you know, around data meshes was talked about a lot. You're starting to see the control plane layers of data. I think that was the beginning of what I saw as that data infrastructure shift, to be horizontally scalable. So I have to ask you, with Neural Magic, when your customers and the people that are prospects for you guys, they're probably asking a lot of questions because I think the general thing that we see is, "How do I get started? Which GPU do I use?" I mean, there's a lot of things that are kind of, I won't say technical or targeted towards people who are living in that world, but, like, as the mainstream enterprises come in, they're going to need a playbook. What do you guys see, what do you guys offer your clients when they come in, and what do you recommend? >> Absolutely, and I think where we hook in specifically tends to be on the training side. So again, I've built a model. Now, I want to really optimize that model. And then on the runtime side when you want to deploy it, you know, we run that optimized model. And so that's where we're able to provide. We even have a labs offering in terms of being able to pair up our engineering teams with a customer's engineering teams, and we can actually help with most of that pipeline. So even if it is something where you have a dataset and you want some help in picking a model, you want some help training it, you want some help deploying that, we can actually help there as well. You know, there's also a great partner ecosystem out there, like a lot of folks even in the "Startup Showcase" here, that extend beyond into kind of your earlier comment around data engineering or downstream ITOps or the all-up MLOps umbrella. So we can absolutely engage with our labs, and then, of course, you know, again, partners, which are always kind of key to this. So you are spot on. I think what's happened with the kind of this, they talk about a hockey stick. This is almost like a flat wall now with the rate of innovation right now in this space. And so we do have a lot of folks wanting to go straight from curious to native. And so that's definitely where the partner ecosystem comes in so hard 'cause there just isn't anybody or any teams out there that, I literally do from, "Here's my blank database, and I want an API that does all the stuff," right? Like, that's a big chunk, but we can definitely help with the model to delivery piece. >> Well, you guys are obviously a featured company in this space. Talk about the expertise. A lot of companies are like, I won't say faking it till they make it. You can't really fake security. You can't really fake AI, right? So there's going to be a learning curve. They'll be a few startups who'll come out of the gate early. You guys are one of 'em. Talk about what you guys have as expertise as a company, why you're successful, and what problems do you solve for customers? >> No, appreciate that. Yeah, we actually, we love to tell the story of our founder, Nir Shavit. So he's a 20-year professor at MIT. Actually, he was doing a lot of work on kind of multicore processing before there were even physical multicores, and actually even did a stint in computational neurobiology in the 2010s, and the impetus for this whole technology, has a great talk on YouTube about it, where he talks about the fact that his work there, he kind of realized that the way neural networks encode and how they're executed by kind of ramming data layer by layer through these kind of HPC-style platforms, actually was not analogous to how the human brain actually works. So we're on one side, we're building neural networks, and we're trying to emulate neurons. We're not really executing them that way. So our team, which one of the co-founders, also an ex-MIT, that was kind of the birth of why can't we leverage this super-performance CPU platform, which has those really fat, fast caches attached to each core, and actually start to find a way to break that model down in a way that I can execute things in parallel, not having to do them sequentially? So it is a lot of amazing, like, talks and stuff that show kind of the magic, if you will, a part of the pun of Neural Magic, but that's kind of the foundational layer of all the engineering that we do here. And in terms of how we're able to bring it to reality for customers, I'll give one customer quote where it's a large retailer, and it's a people-counting application. So a very common application. And that customer's actually been able to show literally double the amount of cameras being run with the same amount of compute. So for a one-to-one perspective, two-to-one, business leaders usually like that math, right? So we're able to show pure cost savings, but even performance-wise, you know, we have some of the common models like your ResNets and your YOLOs, where we can actually even perform better than hardware-accelerated solutions. So we're trying to do, I need to just dumb it down to better, faster, cheaper, but from a commodity perspective, that's where we're accelerating. >> That's not a bad business model. Make things easier to use, faster, and reduce the steps it takes to do stuff. So, you know, that's always going to be a good market. Now, you guys have DeepSparse, which we've talked about on our CUBE conversation prior to this interview, delivers ML models through the software so the hardware allows for a decoupling, right? >> Yep. >> Which is going to drive probably a cost advantage. Also, it's also probably from a deployment standpoint it must be easier. Can you share the benefits? Is it a cost side? Is it more of a deployment? What are the benefits of the DeepSparse when you guys decouple the software from the hardware on the ML models? >> No you actually, you hit 'em both 'cause that really is primarily the value. Because ultimately, again, we're so early. And I came from this world in a prior life where I'm doing Java development, WebSphere, WebLogic, Tomcat open source, right? When we were trying to do innovation, we had innovation buckets, 'cause everybody wanted to be on the web and have their app and a browser, right? We got all the money we needed to build something and show, hey, look at the thing on the web, right? But when you had to get in production, that was the challenge. So to what you're speaking to here, in this situation, we're able to show we're just a Python package. So whether you just install it on the operating system itself, or we also have a containerized version you can drop on any container orchestration platform, so ECS or EKS on AWS. And so you get all the auto-scaling features. So when you think about that kind of a world where you have everything from real-time inferencing to kind of after hours batch processing inferencing, the fact that you can auto scale that hardware up and down and it's CPU based, so you're paying by the minute instead of maybe paying by the hour at a lower cost shelf, it does everything from pure cost to, again, I can have my standard IT team say, "Hey, here's the Kubernetes in the container," and it just runs on the infrastructure we're already managing. So yeah, operational, cost and again, and many times even performance. (audio warbles) CPUs if I want to. >> Yeah, so that's easier on the deployment too. And you don't have this kind of, you know, blank check kind of situation where you don't know what's on the backend on the cost side. >> Exactly. >> And you control the actual hardware and you can manage that supply chain. >> And keep in mind, exactly. Because the other thing that sometimes gets lost in the conversation, depending on where a customer is, some of these workloads, like, you know, you and I remember a world where even like the roundtrip to the cloud and back was a problem for folks, right? We're used to extremely low latency. And some of these workloads absolutely also adhere to that. But there's some workloads where the latency isn't as important. And we actually even provide the tuning. Now, if we're giving you five milliseconds of latency and you don't need that, you can tune that back. So less CPU, lower cost. Now, throughput and other things come into play. But that's the kind of configurability and flexibility we give for operations. >> All right, so why should I call you if I'm a customer or prospect Neural Magic, what problem do I have or when do I know I need you guys? When do I call you in and what does my environment look like? When do I know? What are some of the signals that would tell me that I need Neural Magic? >> No, absolutely. So I think in general, any neural network, you know, the process I mentioned before called sparcification, it's, you know, an optimization process that we specialize in. Any neural network, you know, can be sparcified. So I think if it's a deep-learning neural network type model. If you're trying to get AI into production, you have cost concerns even performance-wise. I certainly hate to be too generic and say, "Hey, we'll talk to everybody." But really in this world right now, if it's a neural network, it's something where you're trying to get into production, you know, we are definitely offering, you know, kind of an at-scale performant deployable solution for deep learning models. >> So neural network you would define as what? Just devices that are connected that need to know about each other? What's the state-of-the-art current definition of neural network for customers that may think they have a neural network or might not know they have a neural network architecture? What is that definition for neural network? >> That's a great question. So basically, machine learning models that fall under this kind of category, you hear about transformers a lot, or I mentioned about YOLO, the YOLO family of computer vision models, or natural language processing models like BERT. If you have a data science team or even developers, some even regular, I used to call myself a nine to five developer 'cause I worked in the enterprise, right? So like, hey, we found a new open source framework, you know, I used to use Spring back in the day and I had to go figure it out. There's developers that are pulling these models down and they're figuring out how to get 'em into production, okay? So I think all of those kinds of situations, you know, if it's a machine learning model of the deep learning variety that's, you know, really specifically where we shine. >> Okay, so let me pretend I'm a customer for a minute. I have all these videos, like all these transcripts, I have all these people that we've interviewed, CUBE alumnis, and I say to my team, "Let's AI-ify, sparcify theCUBE." >> Yep. >> What do I do? I mean, do I just like, my developers got to get involved and they're going to be like, "Well, how do I upload it to the cloud? Do I use a GPU?" So there's a thought process. And I think a lot of companies are going through that example of let's get on this AI, how can it help our business? >> Absolutely. >> What does that progression look like? Take me through that example. I mean, I made up theCUBE example up, but we do have a lot of data. We have large data models and we have people and connect to the internet and so we kind of seem like there's a neural network. I think every company might have a neural network in place. >> Well, and I was going to say, I think in general, you all probably do represent even the standard enterprise more than most. 'Cause even the enterprise is going to have a ton of video content, a ton of text content. So I think it's a great example. So I think that that kind of sea or I'll even go ahead and use that term data lake again, of data that you have, you're probably going to want to be setting up kind of machine learning pipelines that are going to be doing all of the pre-processing from kind of the raw data to kind of prepare it into the format that say a YOLO would actually use or let's say BERT for natural language processing. So you have all these transcripts, right? So we would do a pre-processing path where we would create that into the file format that BERT, the machine learning model would know how to train off of. So that's kind of all the pre-processing steps. And then for training itself, we actually enable what's called sparse transfer learning. So that's transfer learning is a very popular method of doing training with existing models. So we would be able to retrain that BERT model with your transcript data that we have now done the pre-processing with to get it into the proper format. And now we have a BERT natural language processing model that's been trained on your data. And now we can deploy that onto DeepSparse runtime so that now you can ask that model whatever questions, or I should say pass, you're not going to ask it those kinds of questions ChatGPT, although we can do that too. But you're going to pass text through the BERT model and it's going to give you answers back. It could be things like sentiment analysis or text classification. You just call the model, and now when you pass text through it, you get the answers better, faster or cheaper. I'll use that reference again. >> Okay, we can create a CUBE bot to give us questions on the fly from the the AI bot, you know, from our previous guests. >> Well, and I will tell you using that as an example. So I had mentioned OPT before, kind of the open source version of ChatGPT. So, you know, typically that requires multiple GPUs to run. So our research team, I may have mentioned earlier, we've been able to sparcify that over 50% already and run it on only a single GPU. And so in that situation, you could train OPT with that corpus of data and do exactly what you say. Actually we could use Alexa, we could use Alexa to actually respond back with voice. How about that? We'll do an API call and we'll actually have an interactive Alexa-enabled bot. >> Okay, we're going to be a customer, let's put it on the list. But this is a great example of what you guys call software delivered AI, a topic we chatted about on theCUBE conversation. This really means this is a developer opportunity. This really is the convergence of the data growth, the restructuring, how data is going to be horizontally scalable, meets developers. So this is an AI developer model going on right now, which is kind of unique. >> It is, John, I will tell you what's interesting. And again, folks don't always think of it this way, you know, the AI magical goodness is now getting pushed in the middle where the developers and IT are operating. And so it again, that paradigm, although for some folks seem obvious, again, if you've been around for 20 years, that whole all that plumbing is a thing, right? And so what we basically help with is when you deploy the DeepSparse runtime, we have a very rich API footprint. And so the developers can call the API, ITOps can run it, or to your point, it's developer friendly enough that you could actually deploy our off-the-shelf models. We have something called the SparseZoo where we actually publish pre-optimized or pre-sparcified models. And so developers could literally grab those right off the shelf with the training they've already had and just put 'em right into their applications and deploy them as containers. So yeah, we enable that for sure as well. >> It's interesting, DevOps was infrastructure as code and we had a last season, a series on data as code, which we kind of coined. This is data as code. This is a whole nother level of opportunity where developers just want to have programmable data and apps with AI. This is a whole new- >> Absolutely. >> Well, absolutely great, great stuff. Our news team at SiliconANGLE and theCUBE said you guys had a little bit of a launch announcement you wanted to make here on the "AWS Startup Showcase." So Jay, you have something that you want to launch here? >> Yes, and thank you John for teeing me up. So I'm going to try to put this in like, you know, the vein of like an AWS, like main stage keynote launch, okay? So we're going to try this out. So, you know, a lot of our product has obviously been built on top of x86. I've been sharing that the past 15 minutes or so. And with that, you know, we're seeing a lot of acceleration for folks wanting to run on commodity infrastructure. But we've had customers and prospects and partners tell us that, you know, ARM and all of its kind of variance are very compelling, both cost performance-wise and also obviously with Edge. And wanted to know if there was anything we could do from a runtime perspective with ARM. And so we got the work and, you know, it's a hard problem to solve 'cause the instructions set for ARM is very different than the instruction set for x86, and our deep tensor column technology has to be able to work with that lower level instruction spec. But working really hard, the engineering team's been at it and we are happy to announce here at the "AWS Startup Showcase," that DeepSparse inference now has, or inference runtime now has support for AWS Graviton instances. So it's no longer just x86, it is also ARM and that obviously also opens up the door to Edge and further out the stack so that optimize once run anywhere, we're not going to open up. So it is an early access. So if you go to neuralmagic.com/graviton, you can sign up for early access, but we're excited to now get into the ARM side of the fence as well on top of Graviton. >> That's awesome. Our news team is going to jump on that news. We'll get it right up. We get a little scoop here on the "Startup Showcase." Jay Marshall, great job. That really highlights the flexibility that you guys have when you decouple the software from the hardware. And again, we're seeing open source driving a lot more in AI ops now with with machine learning and AI. So to me, that makes a lot of sense. And congratulations on that announcement. Final minute or so we have left, give a summary of what you guys are all about. Put a plug in for the company, what you guys are looking to do. I'm sure you're probably hiring like crazy. Take the last few minutes to give a plug for the company and give a summary. >> No, I appreciate that so much. So yeah, joining us out neuralmagic.com, you know, part of what we didn't spend a lot of time here, our optimization tools, we are doing all of that in the open source. It's called SparseML and I mentioned SparseZoo briefly. So we really want the data scientists community and ML engineering community to join us out there. And again, the DeepSparse runtime, it's actually free to use for trial purposes and for personal use. So you can actually run all this on your own laptop or on an AWS instance of your choice. We are now live in the AWS marketplace. So push button, deploy, come try us out and reach out to us on neuralmagic.com. And again, sign up for the Graviton early access. >> All right, Jay Marshall, Vice President of Business Development Neural Magic here, talking about performant, cost effective machine learning at scale. This is season three, episode one, focusing on foundational models as far as building data infrastructure and AI, AI native. I'm John Furrier with theCUBE. Thanks for watching. (bright upbeat music)

Published Date : Mar 9 2023

SUMMARY :

of the "AWS Startup Showcase." Thanks for having us. and the machine learning and the cloud to help accelerate that. and you got the foundational So kind of the GPT open deep end of the pool, that group, it's pretty much, you know, So I think you have this kind It's a- and a lot of the aspects of and I'd love to get your reaction to, And I always liked that because, you know, that are prospects for you guys, and you want some help in picking a model, Talk about what you guys have that show kind of the magic, if you will, and reduce the steps it takes to do stuff. when you guys decouple the the fact that you can auto And you don't have this kind of, you know, the actual hardware and you and you don't need that, neural network, you know, of situations, you know, CUBE alumnis, and I say to my team, and they're going to be like, and connect to the internet and it's going to give you answers back. you know, from our previous guests. and do exactly what you say. of what you guys call enough that you could actually and we had a last season, that you want to launch here? And so we got the work and, you know, flexibility that you guys have So you can actually run Vice President of Business

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JayPERSON

0.99+

Jay MarshallPERSON

0.99+

John FurrierPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

fiveQUANTITY

0.99+

Nir ShavitPERSON

0.99+

20-yearQUANTITY

0.99+

AlexaTITLE

0.99+

2010sDATE

0.99+

sevenQUANTITY

0.99+

PythonTITLE

0.99+

MITORGANIZATION

0.99+

each coreQUANTITY

0.99+

Neural MagicORGANIZATION

0.99+

JavaTITLE

0.99+

YouTubeORGANIZATION

0.99+

TodayDATE

0.99+

nine yearsQUANTITY

0.98+

bothQUANTITY

0.98+

BERTTITLE

0.98+

theCUBEORGANIZATION

0.98+

ChatGPTTITLE

0.98+

20 yearsQUANTITY

0.98+

over 50%QUANTITY

0.97+

second natureQUANTITY

0.96+

todayDATE

0.96+

ARMORGANIZATION

0.96+

oneQUANTITY

0.95+

DeepSparseTITLE

0.94+

neuralmagic.com/gravitonOTHER

0.94+

SiliconANGLEORGANIZATION

0.94+

WebSphereTITLE

0.94+

nineQUANTITY

0.94+

firstQUANTITY

0.93+

Startup ShowcaseEVENT

0.93+

five millisecondsQUANTITY

0.92+

AWS Startup ShowcaseEVENT

0.91+

twoQUANTITY

0.9+

YOLOORGANIZATION

0.89+

CUBEORGANIZATION

0.88+

OPTTITLE

0.88+

last six monthsDATE

0.88+

season threeQUANTITY

0.86+

doubleQUANTITY

0.86+

one customerQUANTITY

0.86+

SupercloudEVENT

0.86+

one sideQUANTITY

0.85+

VicePERSON

0.85+

x86OTHER

0.83+

AI/ML: Top Startups Building Foundational ModelsTITLE

0.82+

ECSTITLE

0.81+

$100 billionQUANTITY

0.81+

DevOpsTITLE

0.81+

WebLogicTITLE

0.8+

EKSTITLE

0.8+

a minuteQUANTITY

0.8+

neuralmagic.comOTHER

0.79+

Luis Ceze & Anna Connolly, OctoML | AWS Startup Showcase S3 E1


 

(soft music) >> Hello, everyone. Welcome to theCUBE's presentation of the AWS Startup Showcase. AI and Machine Learning: Top Startups Building Foundational Model Infrastructure. This is season 3, episode 1 of the ongoing series covering the exciting stuff from the AWS ecosystem, talking about machine learning and AI. I'm your host, John Furrier and today we are excited to be joined by Luis Ceze who's the CEO of OctoML and Anna Connolly, VP of customer success and experience OctoML. Great to have you on again, Luis. Anna, thanks for coming on. Appreciate it. >> Thank you, John. It's great to be here. >> Thanks for having us. >> I love the company. We had a CUBE conversation about this. You guys are really addressing how to run foundational models faster for less. And this is like the key theme. But before we get into it, this is a hot trend, but let's explain what you guys do. Can you set the narrative of what the company's about, why it was founded, what's your North Star and your mission? >> Yeah, so John, our mission is to make AI sustainable and accessible for everyone. And what we offer customers is, you know, a way of taking their models into production in the most efficient way possible by automating the process of getting a model and optimizing it for a variety of hardware and making cost-effective. So better, faster, cheaper model deployment. >> You know, the big trend here is AI. Everyone's seeing the ChatGPT, kind of the shot heard around the world. The BingAI and this fiasco and the ongoing experimentation. People are into it, and I think the business impact is clear. I haven't seen this in all of my career in the technology industry of this kind of inflection point. And every senior leader I talk to is rethinking about how to rebuild their business with AI because now the large language models have come in, these foundational models are here, they can see value in their data. This is a 10 year journey in the big data world. Now it's impacting that, and everyone's rebuilding their company around this idea of being AI first 'cause they see ways to eliminate things and make things more efficient. And so now they telling 'em to go do it. And they're like, what do we do? So what do you guys think? Can you explain what is this wave of AI and why is it happening, why now, and what should people pay attention to? What does it mean to them? >> Yeah, I mean, it's pretty clear by now that AI can do amazing things that captures people's imaginations. And also now can show things that are really impactful in businesses, right? So what people have the opportunity to do today is to either train their own model that adds value to their business or find open models out there that can do very valuable things to them. So the next step really is how do you take that model and put it into production in a cost-effective way so that the business can actually get value out of it, right? >> Anna, what's your take? Because customers are there, you're there to make 'em successful, you got the new secret weapon for their business. >> Yeah, I think we just see a lot of companies struggle to get from a trained model into a model that is deployed in a cost-effective way that actually makes sense for the application they're building. I think that's a huge challenge we see today, kind of across the board across all of our customers. >> Well, I see this, everyone asking the same question. I have data, I want to get value out of it. I got to get these big models, I got to train it. What's it going to cost? So I think there's a reality of, okay, I got to do it. Then no one has any visibility on what it costs. When they get into it, this is going to break the bank. So I have to ask you guys, the cost of training these models is on everyone's mind. OctoML, your company's focus on the cost side of it as well as the efficiency side of running these models in production. Why are the production costs such a concern and where specifically are people looking at it and why did it get here? >> Yeah, so training costs get a lot of attention because normally a large number, but we shouldn't forget that it's a large, typically one time upfront cost that customers pay. But, you know, when the model is put into production, the cost grows directly with model usage and you actually want your model to be used because it's adding value, right? So, you know, the question that a customer faces is, you know, they have a model, they have a trained model and now what? So how much would it cost to run in production, right? And now without the big wave in generative AI, which rightfully is getting a lot of attention because of the amazing things that it can do. It's important for us to keep in mind that generative AI models like ChatGPT are huge, expensive energy hogs. They cost a lot to run, right? And given that model usage growth directly, model cost grows directly with usage, what you want to do is make sure that once you put a model into production, you have the best cost structure possible so that you're not surprised when it's gets popular, right? So let me give you an example. So if you have a model that costs, say 1 to $2 million to train, but then it costs about one to two cents per session to use it, right? So if you have a million active users, even if they use just once a day, it's 10 to $20,000 a day to operate that model in production. And that very, very quickly, you know, get beyond what you paid to train it. >> Anna, these aren't small numbers, and it's cost to train and cost to operate, it kind of reminds me of when the cloud came around and the data center versus cloud options. Like, wait a minute, one, it costs a ton of cash to deploy, and then running it. This is kind of a similar dynamic. What are you seeing? >> Yeah, absolutely. I think we are going to see increasingly the cost and production outpacing the costs and training by a lot. I mean, people talk about training costs now because that's what they're confronting now because people are so focused on getting models performant enough to even use in an application. And now that we have them and they're that capable, we're really going to start to see production costs go up a lot. >> Yeah, Luis, if you don't mind, I know this might be a little bit of a tangent, but, you know, training's super important. I get that. That's what people are doing now, but then there's the deployment side of production. Where do people get caught up and miss the boat or misconfigure? What's the gotcha? Where's the trip wire or so to speak? Where do people mess up on the cost side? What do they do? Is it they don't think about it, they tie it to proprietary hardware? What's the issue? >> Yeah, several things, right? So without getting really technical, which, you know, I might get into, you know, you have to understand relationship between performance, you know, both in terms of latency and throughput and cost, right? So reducing latency is important because you improve responsiveness of the model. But it's really important to keep in mind that it often leads diminishing returns. Below a certain latency, making it faster won't make a measurable difference in experience, but it's going to cost a lot more. So understanding that is important. Now, if you care more about throughputs, which is the time it takes for you to, you know, units per period of time, you care about time to solution, we should think about this throughput per dollar. And understand what you want is the highest throughput per dollar, which may come at the cost of higher latency, which you're not going to care about, right? So, and the reality here, John, is that, you know, humans and especially folks in this space want to have the latest and greatest hardware. And often they commit a lot of money to get access to them and have to commit upfront before they understand the needs that their models have, right? So common mistake here, one is not spending time to understand what you really need, and then two, over-committing and using more hardware than you actually need. And not giving yourself enough freedom to get your workload to move around to the more cost-effective choice, right? So this is just a metaphoric choice. And then another thing that's important here too is making a model run faster on the hardware directly translates to lower cost, right? So, but it takes a lot of engineers, you need to think of ways of producing very efficient versions of your model for the target hardware that you're going to use. >> Anna, what's the customer angle here? Because price performance has been around for a long time, people get that, but now latency and throughput, that's key because we're starting to see this in apps. I mean, there's an end user piece. I even seeing it on the infrastructure side where they're taking a heavy lifting away from operational costs. So you got, you know, application specific to the user and/or top of the stack, and then you got actually being used in operations where they want both. >> Yeah, absolutely. Maybe I can illustrate this with a quick story with the customer that we had recently been working with. So this customer is planning to run kind of a transformer based model for tech generation at super high scale on Nvidia T4 GPU, so kind of a commodity GPU. And the scale was so high that they would've been paying hundreds of thousands of dollars in cloud costs per year just to serve this model alone. You know, one of many models in their application stack. So we worked with this team to optimize our model and then benchmark across several possible targets. So that matching the hardware that Luis was just talking about, including the newer kind of Nvidia A10 GPUs. And what they found during this process was pretty interesting. First, the team was able to shave a quarter of their spend just by using better optimization techniques on the T4, the older hardware. But actually moving to a newer GPU would allow them to serve this model in a sub two milliseconds latency, so super fast, which was able to unlock an entirely new kind of user experience. So they were able to kind of change the value they're delivering in their application just because they were able to move to this new hardware easily. So they ultimately decided to plan their deployment on the more expensive A10 because of this, but because of the hardware specific optimizations that we helped them with, they managed to even, you know, bring costs down from what they had originally planned. And so if you extend this kind of example to everything that's happening with generative AI, I think the story we just talked about was super relevant, but the scale can be even higher, you know, it can be tenfold that. We were recently conducting kind of this internal study using GPT-J as a proxy to illustrate the experience of just a company trying to use one of these large language models with an example scenario of creating a chatbot to help job seekers prepare for interviews. So if you imagine kind of a conservative usage scenario where the model generates just 3000 words per user per day, which is, you know, pretty conservative for how people are interacting with these models. It costs 5 cents a session and if you're a company and your app goes viral, so from, you know, beginning of the year there's nobody, at the end of the year there's a million daily active active users in that year alone, going from zero to a million. You'll be spending about $6 million a year, which is pretty unmanageable. That's crazy, right? >> Yeah. >> For a company or a product that's just launching. So I think, you know, for us we see the real way to make these kind of advancements accessible and sustainable, as we said is to bring down cost to serve using these techniques. >> That's a great story and I think that illustrates this idea that deployment cost can vary from situation to situation, from model to model and that the efficiency is so strong with this new wave, it eliminates heavy lifting, creates more efficiency, automates intellect. I mean, this is the trend, this is radical, this is going to increase. So the cost could go from nominal to millions, literally, potentially. So, this is what customers are doing. Yeah, that's a great story. What makes sense on a financial, is there a cost of ownership? Is there a pattern for best practice for training? What do you guys advise cuz this is a lot of time and money involved in all potential, you know, good scenarios of upside. But you can get over your skis as they say, and be successful and be out of business if you don't manage it. I mean, that's what people are talking about, right? >> Yeah, absolutely. I think, you know, we see kind of three main vectors to reduce cost. I think one is make your deployment process easier overall, so that your engineering effort to even get your app running goes down. Two, would be get more from the compute you're already paying for, you're already paying, you know, for your instances in the cloud, but can you do more with that? And then three would be shop around for lower cost hardware to match your use case. So on the first one, I think making the deployment easier overall, there's a lot of manual work that goes into benchmarking, optimizing and packaging models for deployment. And because the performance of machine learning models can be really hardware dependent, you have to go through this process for each target you want to consider running your model on. And this is hard, you know, we see that every day. But for teams who want to incorporate some of these large language models into their applications, it might be desirable because licensing a model from a large vendor like OpenAI can leave you, you know, over provision, kind of paying for capabilities you don't need in your application or can lock you into them and you lose flexibility. So we have a customer whose team actually prepares models for deployment in a SaaS application that many of us use every day. And they told us recently that without kind of an automated benchmarking and experimentation platform, they were spending several days each to benchmark a single model on a single hardware type. So this is really, you know, manually intensive and then getting more from the compute you're already paying for. We do see customers who leave money on the table by running models that haven't been optimized specifically for the hardware target they're using, like Luis was mentioning. And for some teams they just don't have the time to go through an optimization process and for others they might lack kind of specialized expertise and this is something we can bring. And then on shopping around for different hardware types, we really see a huge variation in model performance across hardware, not just CPU vs. GPU, which is, you know, what people normally think of. But across CPU vendors themselves, high memory instances and across cloud providers even. So the best strategy here is for teams to really be able to, we say, look before you leap by running real world benchmarking and not just simulations or predictions to find the best software, hardware combination for their workload. >> Yeah. You guys sound like you have a very impressive customer base deploying large language models. Where would you categorize your current customer base? And as you look out, as you guys are growing, you have new customers coming in, take me through the progression. Take me through the profile of some of your customers you have now, size, are they hyperscalers, are they big app folks, are they kicking the tires? And then as people are out there scratching heads, I got to get in this game, what's their psychology like? Are they coming in with specific problems or do they have specific orientation point of view about what they want to do? Can you share some data around what you're seeing? >> Yeah, I think, you know, we have customers that kind of range across the spectrum of sophistication from teams that basically don't have MLOps expertise in their company at all. And so they're really looking for us to kind of give a full service, how should I do everything from, you know, optimization, find the hardware, prepare for deployment. And then we have teams that, you know, maybe already have their serving and hosting infrastructure up and ready and they already have models in production and they're really just looking to, you know, take the extra juice out of the hardware and just do really specific on that optimization piece. I think one place where we're doing a lot more work now is kind of in the developer tooling, you know, model selection space. And that's kind of an area that we're creating more tools for, particularly within the PyTorch ecosystem to bring kind of this power earlier in the development cycle so that as people are grabbing a model off the shelf, they can, you know, see how it might perform and use that to inform their development process. >> Luis, what's the big, I like this idea of picking the models because isn't that like going to the market and picking the best model for your data? It's like, you know, it's like, isn't there a certain approaches? What's your view on this? 'Cause this is where everyone, I think it's going to be a land rush for this and I want to get your thoughts. >> For sure, yeah. So, you know, I guess I'll start with saying the one main takeaway that we got from the GPT-J study is that, you know, having a different understanding of what your model's compute and memory requirements are, very quickly, early on helps with the much smarter AI model deployments, right? So, and in fact, you know, Anna just touched on this, but I want to, you know, make sure that it's clear that OctoML is putting that power into user's hands right now. So in partnership with AWS, we are launching this new PyTorch native profiler that allows you with a single, you know, one line, you know, code decorator allows you to see how your code runs on a variety of different hardware after accelerations. So it gives you very clear, you know, data on how you should think about your model deployments. And this ties back to choices of models. So like, if you have a set of choices that are equally good of models in terms of functionality and you want to understand after acceleration how are you going to deploy, how much they're going to cost or what are the options using a automated process of making a decision is really, really useful. And in fact, so I think these events can get early access to this by signing up for the Octopods, you know, this is exclusive group for insiders here, so you can go to OctoML.ai/pods to sign up. >> So that Octopod, is that a program? What is that, is that access to code? Is that a beta, what is that? Explain, take a minute and explain Octopod. >> I think the Octopod would be a group of people who is interested in experiencing this functionality. So it is the friends and users of OctoML that would be the Octopod. And then yes, after you sign up, we would provide you essentially the tool in code form for you to try out in your own. I mean, part of the benefit of this is that it happens in your own local environment and you're in control of everything kind of within the workflow that developers are already using to create and begin putting these models into their applications. So it would all be within your control. >> Got it. I think the big question I have for you is when do you, when does that one of your customers know they need to call you? What's their environment look like? What are they struggling with? What are the conversations they might be having on their side of the fence? If anyone's watching this, they're like, "Hey, you know what, I've got my team, we have a lot of data. Do we have our own language model or do I use someone else's?" There's a lot of this, I will say discovery going on around what to do, what path to take, what does that customer look like, if someone's listening, when do they know to call you guys, OctoML? >> Well, I mean the most obvious one is that you have a significant spend on AI/ML, come and talk to us, you know, putting AIML into production. So that's the clear one. In fact, just this morning I was talking to someone who is in life sciences space and is having, you know, 15 to $20 million a year cloud related to AI/ML deployment is a clear, it's a pretty clear match right there, right? So that's on the cost side. But I also want to emphasize something that Anna said earlier that, you know, the hardware and software complexity involved in putting model into production is really high. So we've been able to abstract that away, offering a clean automation flow enables one, to experiment early on, you know, how models would run and get them to production. And then two, once they are into production, gives you an automated flow to continuously updating your model and taking advantage of all this acceleration and ability to run the model on the right hardware. So anyways, let's say one then is cost, you know, you have significant cost and then two, you have an automation needs. And Anna please compliment that. >> Yeah, Anna you can please- >> Yeah, I think that's exactly right. Maybe the other time is when you are expecting a big scale up in serving your application, right? You're launching a new feature, you expect to get a lot of usage or, and you want to kind of anticipate maybe your CTO, your CIO, whoever pays your cloud bills is going to come after you, right? And so they want to know, you know, what's the return on putting this model essentially into my application stack? Am I going to, is the usage going to match what I'm paying for it? And then you can understand that. >> So you guys have a lot of the early adopters, they got big data teams, they're pushed in the production, they want to get a little QA, test the waters, understand, use your technology to figure it out. Is there any cases where people have gone into production, they have to pull it out? It's like the old lemon laws with your car, you buy a car and oh my god, it's not the way I wanted it. I mean, I can imagine the early people through the wall, so to speak, in the wave here are going to be bloody in the sense that they've gone in and tried stuff and get stuck with huge bills. Are you seeing that? Are people pulling stuff out of production and redeploying? Or I can imagine that if I had a bad deployment, I'd want to refactor that or actually replatform that. Do you see that too? >> Definitely after a sticker shock, yes, your customers will come and make sure that, you know, the sticker shock won't happen again. >> Yeah. >> But then there's another more thorough aspect here that I think we likely touched on, be worth elaborating a bit more is just how are you going to scale in a way that's feasible depending on the allocation that you get, right? So as we mentioned several times here, you know, model deployment is so hardware dependent and so complex that you tend to get a model for a hardware choice and then you want to scale that specific type of instance. But what if, when you want to scale because suddenly luckily got popular and, you know, you want to scale it up and then you don't have that instance anymore. So how do you live with whatever you have at that moment is something that we see customers needing as well. You know, so in fact, ideally what we want is customers to not think about what kind of specific instances they want. What they want is to know what their models need. Say, they know the SLA and then find a set of hybrid targets and instances that hit the SLA whenever they're also scaling, they're going to scale with more freedom, right? Instead of having to wait for AWS to give them more specific allocation for a specific instance. What if you could live with other types of hardware and scale up in a more free way, right? So that's another thing that we see customers, you know, like they need more freedom to be able to scale with whatever is available. >> Anna, you touched on this with the business model impact to that 6 million cost, if that goes out of control, there's a business model aspect and there's a technical operation aspect to the cost side too. You want to be mindful of riding the wave in a good way, but not getting over your skis. So that brings up the point around, you know, confidence, right? And teamwork. Because if you're in production, there's probably a team behind it. Talk about the team aspect of your customers. I mean, they're dedicated, they go put stuff into production, they're developers, there're data. What's in it for them? Are they getting better, are they in the beach, you know, reading the book. Are they, you know, are there easy street for them? What's the customer benefit to the teams? >> Yeah, absolutely. With just a few clicks of a button, you're in production, right? That's the dream. So yeah, I mean I think that, you know, we illustrated it before a little bit. I think the automated kind of benchmarking and optimization process, like when you think about the effort it takes to get that data by hand, which is what people are doing today, they just don't do it. So they're making decisions without the best information because it's, you know, there just isn't the bandwidth to get the information that they need to make the best decision and then know exactly how to deploy it. So I think it's actually bringing kind of a new insight and capability to these teams that they didn't have before. And then maybe another aspect on the team side is that it's making the hand-off of the models from the data science teams to the model deployment teams more seamless. So we have, you know, we have seen in the past that this kind of transition point is the place where there are a lot of hiccups, right? The data science team will give a model to the production team and it'll be too slow for the application or it'll be too expensive to run and it has to go back and be changed and kind of this loop. And so, you know, with the PyTorch profiler that Luis was talking about, and then also, you know, the other ways we do optimization that kind of prevents that hand-off problem from happening. >> Luis and Anna, you guys have a great company. Final couple minutes left. Talk about the company, the people there, what's the culture like, you know, if Intel has Moore's law, which is, you know, doubling the performance in few years, what's the culture like there? Is it, you know, more throughput, better pricing? Explain what's going on with the company and put a plug in. Luis, we'll start with you. >> Yeah, absolutely. I'm extremely proud of the team that we built here. You know, we have a people first culture, you know, very, very collaborative and folks, we all have a shared mission here of making AI more accessible and sustainable. We have a very diverse team in terms of backgrounds and life stories, you know, to do what we do here, we need a team that has expertise in software engineering, in machine learning, in computer architecture. Even though we don't build chips, we need to understand how they work, right? So, and then, you know, the fact that we have this, this very really, really varied set of backgrounds makes the environment, you know, it's say very exciting to learn more about, you know, assistance end-to-end. But also makes it for a very interesting, you know, work environment, right? So people have different backgrounds, different stories. Some of them went to grad school, others, you know, were in intelligence agencies and now are working here, you know. So we have a really interesting set of people and, you know, life is too short not to work with interesting humans. You know, that's something that I like to think about, you know. >> I'm sure your off-site meetings are a lot of fun, people talking about computer architectures, silicon advances, the next GPU, the big data models coming in. Anna, what's your take? What's the culture like? What's the company vibe and what are you guys looking to do? What's the customer success pattern? What's up? >> Yeah, absolutely. I mean, I, you know, second all of the great things that Luis just said about the team. I think one that I, an additional one that I'd really like to underscore is kind of this customer obsession, to use a term you all know well. And focus on the end users and really making the experiences that we're bringing to our user who are developers really, you know, useful and valuable for them. And so I think, you know, all of these tools that we're trying to put in the hands of users, the industry and the market is changing so rapidly that our products across the board, you know, all of the companies that, you know, are part of the showcase today, we're all evolving them so quickly and we can only do that kind of really hand in glove with our users. So that would be another thing I'd emphasize. >> I think the change dynamic, the power dynamics of this industry is just the beginning. I'm very bullish that this is going to be probably one of the biggest inflection points in history of the computer industry because of all the dynamics of the confluence of all the forces, which you mentioned some of them, I mean PC, you know, interoperability within internetworking and you got, you know, the web and then mobile. Now we have this, I mean, I wouldn't even put social media even in the close to this. Like, this is like, changes user experience, changes infrastructure. There's going to be massive accelerations in performance on the hardware side from AWS's of the world and cloud and you got the edge and more data. This is really what big data was going to look like. This is the beginning. Final question, what do you guys see going forward in the future? >> Well, it's undeniable that machine learning and AI models are becoming an integral part of an interesting application today, right? So, and the clear trends here are, you know, more and more competitional needs for these models because they're only getting more and more powerful. And then two, you know, seeing the complexity of the infrastructure where they run, you know, just considering the cloud, there's like a wide variety of choices there, right? So being able to live with that and making the most out of it in a way that does not require, you know, an impossible to find team is something that's pretty clear. So the need for automation, abstracting with the complexity is definitely here. And we are seeing this, you know, trends are that you also see models starting to move to the edge as well. So it's clear that we're seeing, we are going to live in a world where there's no large models living in the cloud. And then, you know, edge models that talk to these models in the cloud to form, you know, an end-to-end truly intelligent application. >> Anna? >> Yeah, I think, you know, our, Luis said it at the beginning. Our vision is to make AI sustainable and accessible. And I think as this technology just expands in every company and every team, that's going to happen kind of on its own. And we're here to help support that. And I think you can't do that without tools like those like OctoML. >> I think it's going to be an error of massive invention, creativity, a lot of the format heavy lifting is going to allow the talented people to automate their intellect. I mean, this is really kind of what we see going on. And Luis, thank you so much. Anna, thanks for coming on this segment. Thanks for coming on theCUBE and being part of the AWS Startup Showcase. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 9 2023

SUMMARY :

Great to have you on again, Luis. It's great to be here. but let's explain what you guys do. And what we offer customers is, you know, So what do you guys think? so that the business you got the new secret kind of across the board So I have to ask you guys, And that very, very quickly, you know, and the data center versus cloud options. And now that we have them but, you know, training's super important. John, is that, you know, humans and then you got actually managed to even, you know, So I think, you know, for us we see in all potential, you know, And this is hard, you know, And as you look out, as And then we have teams that, you know, and picking the best model for your data? from the GPT-J study is that, you know, What is that, is that access to code? And then yes, after you sign up, to call you guys, OctoML? come and talk to us, you know, And so they want to know, you know, So you guys have a lot make sure that, you know, we see customers, you know, What's the customer benefit to the teams? and then also, you know, what's the culture like, you know, So, and then, you know, and what are you guys looking to do? all of the companies that, you know, I mean PC, you know, in the cloud to form, you know, And I think you can't And Luis, thank you so much.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AnnaPERSON

0.99+

Anna ConnollyPERSON

0.99+

John FurrierPERSON

0.99+

LuisPERSON

0.99+

Luis CezePERSON

0.99+

JohnPERSON

0.99+

1QUANTITY

0.99+

10QUANTITY

0.99+

15QUANTITY

0.99+

AWSORGANIZATION

0.99+

10 yearQUANTITY

0.99+

6 millionQUANTITY

0.99+

zeroQUANTITY

0.99+

IntelORGANIZATION

0.99+

threeQUANTITY

0.99+

NvidiaORGANIZATION

0.99+

FirstQUANTITY

0.99+

OctoMLORGANIZATION

0.99+

twoQUANTITY

0.99+

millionsQUANTITY

0.99+

todayDATE

0.99+

TwoQUANTITY

0.99+

$2 millionQUANTITY

0.98+

3000 wordsQUANTITY

0.98+

one lineQUANTITY

0.98+

A10COMMERCIAL_ITEM

0.98+

OctoMLTITLE

0.98+

oneQUANTITY

0.98+

three main vectorsQUANTITY

0.97+

hundreds of thousands of dollarsQUANTITY

0.97+

bothQUANTITY

0.97+

CUBEORGANIZATION

0.97+

T4COMMERCIAL_ITEM

0.97+

one timeQUANTITY

0.97+

first oneQUANTITY

0.96+

two centsQUANTITY

0.96+

GPT-JORGANIZATION

0.96+

single modelQUANTITY

0.95+

a minuteQUANTITY

0.95+

about $6 million a yearQUANTITY

0.95+

once a dayQUANTITY

0.95+

$20,000 a dayQUANTITY

0.95+

a millionQUANTITY

0.94+

theCUBEORGANIZATION

0.93+

OctopodTITLE

0.93+

this morningDATE

0.93+

first cultureQUANTITY

0.92+

$20 million a yearQUANTITY

0.92+

AWS Startup ShowcaseEVENT

0.9+

North StarORGANIZATION

0.9+

Gabriela de Queiroz, Microsoft | WiDS 2023


 

(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)

Published Date : Mar 8 2023

SUMMARY :

but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Tracy YuanPERSON

0.99+

Megan SmithPERSON

0.99+

Gabriela de QueirozPERSON

0.99+

Susan WojcickiPERSON

0.99+

GabrielaPERSON

0.99+

Lisa MartinPERSON

0.99+

BrazilLOCATION

0.99+

2015DATE

0.99+

2012DATE

0.99+

San FranciscoLOCATION

0.99+

San FranciscoLOCATION

0.99+

TracyPERSON

0.99+

ObamaPERSON

0.99+

LisaPERSON

0.99+

Mira MuratiPERSON

0.99+

MicrosoftORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

UberORGANIZATION

0.99+

27.6QUANTITY

0.99+

twoQUANTITY

0.99+

30QUANTITY

0.99+

40QUANTITY

0.99+

15 languagesQUANTITY

0.99+

R LadiesORGANIZATION

0.99+

two tutorialsQUANTITY

0.99+

AnitabORGANIZATION

0.99+

10 peopleQUANTITY

0.99+

oneQUANTITY

0.99+

YouTubeORGANIZATION

0.99+

todayDATE

0.99+

55 plus countriesQUANTITY

0.99+

first partQUANTITY

0.99+

more than 200 citiesQUANTITY

0.99+

firstQUANTITY

0.98+

nineQUANTITY

0.98+

SQLTITLE

0.98+

theCUBEORGANIZATION

0.98+

WIDS 23EVENT

0.98+

Stanford UniversityORGANIZATION

0.98+

2017DATE

0.98+

CUBEORGANIZATION

0.97+

StanfordLOCATION

0.97+

Women in Data ScienceTITLE

0.97+

around 25%QUANTITY

0.96+

DisneylandLOCATION

0.96+

EnglishOTHER

0.96+

one mentorQUANTITY

0.96+

Women in Data Science ConferenceEVENT

0.96+

once a yearQUANTITY

0.95+

WIDSORGANIZATION

0.92+

this morningDATE

0.91+

Meetup.comORGANIZATION

0.91+

FacebookORGANIZATION

0.9+

HadoopTITLE

0.89+

WiDS 2023EVENT

0.88+

Anitab.orgORGANIZATION

0.87+

ChatJTPTITLE

0.86+

OneQUANTITY

0.86+

one dayQUANTITY

0.85+

ChatGPTTITLE

0.84+

pandemicEVENT

0.81+

Fast CompanyORGANIZATION

0.78+

CTOPERSON

0.76+

OpenORGANIZATION

0.76+

Shir Meir Lador, Intuit | WiDS 2023


 

(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.

Published Date : Mar 8 2023

SUMMARY :

Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Hannah FreitagPERSON

0.99+

Lisa MartinPERSON

0.99+

Marianna TesselPERSON

0.99+

IsraelLOCATION

0.99+

BangaloreLOCATION

0.99+

27.6%QUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

MargaretPERSON

0.99+

Shir Meir LadorPERSON

0.99+

HannahPERSON

0.99+

Bay AreaLOCATION

0.99+

IntuitORGANIZATION

0.99+

Tel AvivLOCATION

0.99+

last weekDATE

0.99+

UberORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

JanuaryDATE

0.99+

ShirPERSON

0.99+

20 submissionQUANTITY

0.99+

50QUANTITY

0.99+

TracyPERSON

0.99+

2030DATE

0.99+

100QUANTITY

0.99+

35%QUANTITY

0.99+

50%QUANTITY

0.99+

yesterdayDATE

0.99+

2015DATE

0.99+

fiveQUANTITY

0.99+

this yearDATE

0.99+

next weekDATE

0.99+

bothQUANTITY

0.99+

2022DATE

0.99+

sixth conferenceQUANTITY

0.99+

IntuitsORGANIZATION

0.99+

todayDATE

0.99+

OpenAIORGANIZATION

0.99+

This yearDATE

0.99+

StanfordORGANIZATION

0.98+

oneQUANTITY

0.98+

WiDSEVENT

0.98+

2018DATE

0.98+

over 200 submissionsQUANTITY

0.98+

Eighth Annual Women In Data ScienceEVENT

0.98+

eighth Annual Women in Data Science ConferenceEVENT

0.98+

theCUBEORGANIZATION

0.98+

TurboTaxTITLE

0.98+

OneQUANTITY

0.98+

over 50%QUANTITY

0.98+

over 35%QUANTITY

0.97+

five and a half years ago backDATE

0.97+

Stanford UniversityORGANIZATION

0.97+

first timeQUANTITY

0.97+

NetflixORGANIZATION

0.96+

one womanQUANTITY

0.96+

Mobile World CongressEVENT

0.94+

one thingQUANTITY

0.94+

AnitaB.orgORGANIZATION

0.93+

25%QUANTITY

0.92+

PyData MeetupsEVENT

0.9+

Gayatree Ganu, Meta | WiDS 2023


 

(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.

Published Date : Mar 8 2023

SUMMARY :

in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Susan WojcickiPERSON

0.99+

Lisa MartinPERSON

0.99+

HannahPERSON

0.99+

Mira MuratiPERSON

0.99+

CaliforniaLOCATION

0.99+

TracyPERSON

0.99+

FacebookORGANIZATION

0.99+

Hannah FreitagPERSON

0.99+

Sheryl SandbergPERSON

0.99+

10QUANTITY

0.99+

GayatreePERSON

0.99+

$100 millionQUANTITY

0.99+

JeffPERSON

0.99+

27.6%QUANTITY

0.99+

60%QUANTITY

0.99+

TahoeLOCATION

0.99+

threeQUANTITY

0.99+

SherylPERSON

0.99+

oneQUANTITY

0.99+

Palo AltoLOCATION

0.99+

2022DATE

0.99+

OneQUANTITY

0.99+

IndiaLOCATION

0.99+

200 millionQUANTITY

0.99+

six monthsQUANTITY

0.99+

sixQUANTITY

0.99+

MetaORGANIZATION

0.99+

10 thingsQUANTITY

0.99+

iPhoneCOMMERCIAL_ITEM

0.99+

two spousesQUANTITY

0.99+

Engagement EcosystemORGANIZATION

0.99+

10 millionQUANTITY

0.99+

yesterdayDATE

0.99+

todayDATE

0.99+

last weekDATE

0.99+

25QUANTITY

0.99+

Mumbai, IndiaLOCATION

0.99+

YouTubeORGANIZATION

0.99+

JohnPERSON

0.99+

fourQUANTITY

0.99+

two examplesQUANTITY

0.99+

UberORGANIZATION

0.99+

DavePERSON

0.99+

over 12 yearsQUANTITY

0.98+

firstQUANTITY

0.98+

two thingsQUANTITY

0.98+

200 million businessesQUANTITY

0.98+

StanfordORGANIZATION

0.98+

bothQUANTITY

0.98+

InstagramORGANIZATION

0.98+

Women in Data Science 2023TITLE

0.98+

WhatsAppORGANIZATION

0.98+

Gayatree GanuPERSON

0.98+

ChatGPTORGANIZATION

0.98+

second monthQUANTITY

0.97+

nadb.orgORGANIZATION

0.97+

sixth gradeQUANTITY

0.97+

first guestQUANTITY

0.97+

'22DATE

0.97+

Madhura Maskasky, Platform9 | International Women's Day


 

(bright upbeat music) >> Hello and welcome to theCUBE's coverage of International Women's Day. I'm your host, John Furrier here in Palo Alto, California Studio and remoting is a great guest CUBE alumni, co-founder, technical co-founder and she's also the VP of Product at Platform9 Systems. It's a company pioneering Kubernetes infrastructure, been doing it for a long, long time. Madhura Maskasky, thanks for coming on theCUBE. Appreciate you. Thanks for coming on. >> Thank you for having me. Always exciting. >> So I always... I love interviewing you for many reasons. One, you're super smart, but also you're a co-founder, a technical co-founder, so entrepreneur, VP of product. It's hard to do startups. (John laughs) Okay, so everyone who started a company knows how hard it is. It really is and the rewarding too when you're successful. So I want to get your thoughts on what's it like being an entrepreneur, women in tech, some things you've done along the way. Let's get started. How did you get into your career in tech and what made you want to start a company? >> Yeah, so , you know, I got into tech long, long before I decided to start a company. And back when I got in tech it was very clear to me as a direction for my career that I'm never going to start a business. I was very explicit about that because my father was an entrepreneur and I'd seen how rough the journey can be. And then my brother was also and is an entrepreneur. And I think with both of them I'd seen the ups and downs and I had decided to myself and shared with my family that I really want a very well-structured sort of job at a large company type of path for my career. I think the tech path, tech was interesting to me, not because I was interested in programming, et cetera at that time, to be honest. When I picked computer science as a major for myself, it was because most of what you would consider, I guess most of the cool students were picking that as a major, let's just say that. And it sounded very interesting and cool. A lot of people were doing it and that was sort of the top, top choice for people and I decided to follow along. But I did discover after I picked computer science as my major, I remember when I started learning C++ the first time when I got exposure to it, it was just like a light bulb clicking in my head. I just absolutely loved the language, the lower level nature, the power of it, and what you can do with it, the algorithms. So I think it ended up being a really good fit for me. >> Yeah, so it clicked for you. You tried it, it was all the cool kids were doing it. I mean, I can relate, I did the same thing. Next big thing is computer science, you got to be in there, got to be smart. And then you get hooked on it. >> Yeah, exactly. >> What was the next level? Did you find any blockers in your way? Obviously male dominated, it must have been a lot of... How many females were in your class? What was the ratio at that time? >> Yeah, so the ratio was was pretty, pretty, I would say bleak when it comes to women to men. I think computer science at that time was still probably better compared to some of the other majors like mechanical engineering where I remember I had one friend, she was the single girl in an entire class of about at least 120, 130 students or so. So ratio was better for us. I think there were maybe 20, 25 girls in our class. It was a large class and maybe the number of men were maybe three X or four X number of women. So relatively better. Yeah. >> How about the job when you got into the structured big company? How did that go? >> Yeah, so, you know, I think that was a pretty smooth path I would say after, you know, you graduated from undergrad to grad school and then when I got into Oracle first and VMware, I think both companies had the ratios were still, you know, pretty off. And I think they still are to a very large extent in this industry, but I think this industry in my experience does a fantastic job of, you know, bringing everybody and kind of embracing them and treating them at the same level. That was definitely my experience. And so that makes it very easy for self-confidence, for setting up a path for yourself to thrive. So that was it. >> Okay, so you got an undergraduate degree, okay, in computer science and a master's from Stanford in databases and distributed systems. >> That's right. >> So two degrees. Was that part of your pathway or you just decided, "I want to go right into school?" Did it go right after each other? How did that work out? >> Yeah, so when I went into school, undergrad there was no special major and I didn't quite know if I liked a particular subject or set of subjects or not. Even through grad school, first year it wasn't clear to me, but I think in second year I did start realizing that in general I was a fan of backend systems. I was never a front-end person. The backend distributed systems really were of interest to me because there's a lot of complex problems to solve, and especially databases and large scale distributed systems design in the context of database systems, you know, really started becoming a topic of interest for me. And I think luckily enough at Stanford there were just fantastic professors like Mendel Rosenblum who offered operating system class there, then started VMware and later on I was able to join the company and I took his class while at school and it was one of the most fantastic classes I've ever taken. So they really had and probably I think still do a fantastic curriculum when it comes to distributor systems. And I think that probably helped stoke that interest. >> How do you talk to the younger girls out there in elementary school and through? What's the advice as they start to get into computer science, which is changing and still evolving? There's backend, there's front-end, there's AI, there's data science, there's no code, low code, there's cloud. What's your advice when they say what's the playbook? >> Yeah, so I think two things I always say, and I share this with anybody who's looking to get into computer science or engineering for that matter, right? I think one is that it's, you know, it's important to not worry about what that end specialization's going to be, whether it's AI or databases or backend or front-end. It does naturally evolve and you lend yourself to a path where you will understand, you know, which systems, which aspect you like better. But it's very critical to start with getting the fundamentals well, right? Meaning all of the key coursework around algorithm, systems design, architecture, networking, operating system. I think it is just so crucial to understand those well, even though at times you make question is this ever going to be relevant and useful to me later on in my career? It really does end up helping in ways beyond, you know, you can describe. It makes you a much better engineer. So I think that is the most important aspect of, you know, I would think any engineering stream, but definitely true for computer science. Because there's also been a trend more recently, I think, which I'm not a big fan of, of sort of limited scoped learning, which is you decide early on that you're going to be, let's say a front-end engineer, which is fine, you know. Understanding that is great, but if you... I don't think is ideal to let that limit the scope of your learning when you are an undergrad phrase or grad school. Because later on it comes back to sort of bite you in terms of you not being able to completely understand how the systems work. >> It's a systems kind of thinking. You got to have that mindset of, especially now with cloud, you got distributed systems paradigm going to the edge. You got 5G, Mobile World Congress recently happened, you got now all kinds of IOT devices out there, IP of devices at the edge. Distributed computing is only getting more distributed. >> That's right. Yeah, that's exactly right. But the other thing is also happens... That happens in computer science is that the abstraction layers keep raising things up and up and up. Where even if you're operating at a language like Java, which you know, during some of my times of programming there was a period when it was popular, it already abstracts you so far away from the underlying system. So it can become very easier if you're doing, you know, Java script or UI programming that you really have no understanding of what's happening behind the scenes. And I think that can be pretty difficult. >> Yeah. It's easy to lean in and rely too heavily on the abstractions. I want to get your thoughts on blockers. In your career, have you had situations where it's like, "Oh, you're a woman, okay seat at the table, sit on the side." Or maybe people misunderstood your role. How did you deal with that? Did you have any of that? >> Yeah. So, you know, I think... So there's something really kind of personal to me, which I like to share a few times, which I think I believe in pretty strongly. And which is for me, sort of my personal growth began at a very early phase because my dad and he passed away in 2012, but throughout the time when I was growing up, I was his special little girl. And every little thing that I did could be a simple test. You know, not very meaningful but the genuine pride and pleasure that he felt out of me getting great scores in those tests sort of et cetera, and that I could see that in him, and then I wanted to please him. And through him, I think I build that confidence in myself that I am good at things and I can do good. And I think that just set the building blocks for me for the rest of my life, right? So, I believe very strongly that, you know, yes, there are occasions of unfair treatment and et cetera, but for the most part, it comes from within. And if you are able to be a confident person who is kind of leveled and understands and believes in your capabilities, then for the most part, the right things happen around you. So, I believe very strongly in that kind of grounding and in finding a source to get that for yourself. And I think that many women suffer from the biggest challenge, which is not having enough self-confidence. And I've even, you know, with everything that I said, I've myself felt that, experienced that a few times. And then there's a methodical way to get around it. There's processes to, you know, explain to yourself that that's actually not true. That's a fake feeling. So, you know, I think that is the most important aspect for women. >> I love that. Get the confidence. Find the source for the confidence. We've also been hearing about curiosity and building, you mentioned engineering earlier, love that term. Engineering something, like building something. Curiosity, engineering, confidence. This brings me to my next question for you. What do you think the key skills and qualities are needed to succeed in a technical role? And how do you develop to maintain those skills over time? >> Yeah, so I think that it is so critical that you love that technology that you are part of. It is just so important. I mean, I remember as an example, at one point with one of my buddies before we started Platform9, one of my buddies, he's also a fantastic computer scientists from VMware and he loves video games. And so he said, "Hey, why don't we try to, you know, hack up a video game and see if we can take it somewhere?" And so, it sounded cool to me. And then so we started doing things, but you know, something I realized very quickly is that I as a person, I absolutely hate video games. I've never liked them. I don't think that's ever going to change. And so I was miserable. You know, I was trying to understand what's going on, how to build these systems, but I was not enjoying it. So, I'm glad that I decided to not pursue that. So it is just so important that you enjoy whatever aspect of technology that you decide to associate yourself with. I think that takes away 80, 90% of the work. And then I think it's important to inculcate a level of discipline that you are not going to get sort of... You're not going to get jaded or, you know, continue with happy path when doing the same things over and over again, but you're not necessarily challenging yourself, or pushing yourself, or putting yourself in uncomfortable situation. I think a combination of those typically I think works pretty well in any technical career. >> That's a great advice there. I think trying things when you're younger, or even just for play to understand whether you abandon that path is just as important as finding a good path because at least you know that skews the value in favor of the choices. Kind of like math probability. So, great call out there. So I have to ask you the next question, which is, how do you keep up to date given all the changes? You're in the middle of a world where you've seen personal change in the past 10 years from OpenStack to now. Remember those days when I first interviewed you at OpenStack, I think it was 2012 or something like that. Maybe 10 years ago. So much changed. How do you keep up with technologies in your field and resources that you rely on for personal development? >> Yeah, so I think when it comes to, you know, the field and what we are doing for example, I think one of the most important aspect and you know I am product manager and this is something I insist that all the other product managers in our team also do, is that you have to spend 50% of your time talking to prospects, customers, leads, and through those conversations they do a huge favor to you in that they make you aware of the other things that they're keeping an eye on as long as you're doing the right job of asking the right questions and not just, you know, listening in. So I think that to me ends up being one of the biggest sources where you get tidbits of information, new things, et cetera, and then you pursue. To me, that has worked to be a very effective source. And then the second is, you know, reading and keeping up with all of the publications. You guys, you know, create a lot of great material, you interview a lot of people, making sure you are watching those for us you know, and see there's a ton of activities, new projects keeps coming along every few months. So keeping up with that, listening to podcasts around those topics, all of that helps. But I think the first one I think goes in a big way in terms of being aware of what matters to your customers. >> Awesome. Let me ask you a question. What's the most rewarding aspect of your job right now? >> So, I think there are many. So I think I love... I've come to realize that I love, you know, the high that you get out of being an entrepreneur independent of, you know, there's... In terms of success and failure, there's always ups and downs as an entrepreneur, right? But there is this... There's something really alluring about being able to, you know, define, you know, path of your products and in a way that can potentially impact, you know, a number of companies that'll consume your products, employees that work with you. So that is, I think to me, always been the most satisfying path, is what kept me going. I think that is probably first and foremost. And then the projects. You know, there's always new exciting things that we are working on. Even just today, there are certain projects we are working on that I'm super excited about. So I think it's those two things. >> So now we didn't get into how you started. You said you didn't want to do a startup and you got the big company. Your dad, your brother were entrepreneurs. How did you get into it? >> Yeah, so, you know, it was kind of surprising to me as well, but I think I reached a point of VMware after spending about eight years or so where I definitely packed hold and I could have pushed myself by switching to a completely different company or a different organization within VMware. And I was trying all of those paths, interviewed at different companies, et cetera, but nothing felt different enough. And then I think I was very, very fortunate in that my co-founders, Sirish Raghuram, Roopak Parikh, you know, Bich, you've met them, they were kind of all at the same journey in their careers independently at the same time. And so we would all eat lunch together at VMware 'cause we were on the same team and then we just started brainstorming on different ideas during lunchtime. And that's kind of how... And we did that almost for a year. So by the time that the year long period went by, at the end it felt like the most logical, natural next step to leave our job and to, you know, to start off something together. But I think I wouldn't have done that had it not been for my co-founders. >> So you had comfort with the team as you knew each other at VMware, but you were kind of a little early, (laughing) you had a vision. It's kind of playing out now. How do you feel right now as the wave is hitting? Distributed computing, microservices, Kubernetes, I mean, stuff you guys did and were doing. I mean, it didn't play out exactly, but directionally you were right on the line there. How do you feel? >> Yeah. You know, I think that's kind of the challenge and the fun part with the startup journey, right? Which is you can never predict how things are going to go. When we kicked off we thought that OpenStack is going to really take over infrastructure management space and things kind of went differently, but things are going that way now with Kubernetes and distributed infrastructure. And so I think it's been interesting and in every path that you take that does end up not being successful teaches you so much more, right? So I think it's been a very interesting journey. >> Yeah, and I think the cloud, certainly AWS hit that growth right at 2013 through '17, kind of sucked all the oxygen out. But now as it reverts back to this abstraction layer essentially makes things look like private clouds, but they're just essentially DevOps. It's cloud operations, kind of the same thing. >> Yeah, absolutely. And then with the edge things are becoming way more distributed where having a single large cloud provider is becoming even less relevant in that space and having kind of the central SaaS based management model, which is what we pioneered, like you said, we were ahead of the game at that time, is becoming sort of the most obvious choice now. >> Now you look back at your role at Stanford, distributed systems, again, they have world class program there, neural networks, you name it. It's really, really awesome. As well as Cal Berkeley, there was in debates with each other, who's better? But that's a separate interview. Now you got the edge, what are some of the distributed computing challenges right now with now the distributed edge coming online, industrial 5G, data? What do you see as some of the key areas to solve from a problem statement standpoint with edge and as cloud goes on-premises to essentially data center at the edge, apps coming over the top AI enabled. What's your take on that? >> Yeah, so I think... And there's different flavors of edge and the one that we focus on is, you know, what we call thick edge, which is you have this problem of managing thousands of as we call it micro data centers, rather than managing maybe few tens or hundreds of large data centers where the problem just completely shifts on its head, right? And I think it is still an unsolved problem today where whether you are a retailer or a telecommunications vendor, et cetera, managing your footprints of tens of thousands of stores as a retailer is solved in a very archaic way today because the tool set, the traditional management tooling that's designed to manage, let's say your data centers is not quite, you know, it gets retrofitted to manage these environments and it's kind of (indistinct), you know, round hole kind of situation. So I think the top most challenges are being able to manage this large footprint of micro data centers in the most effective way, right? Where you have latency solved, you have the issue of a small footprint of resources at thousands of locations, and how do you fit in your containerized or virtualized or other workloads in the most effective way? To have that solved, you know, you need to have the security aspects around these environments. So there's a number of challenges that kind of go hand-in-hand, like what is the most effective storage which, you know, can still be deployed in that compact environment? And then cost becomes a related point. >> Costs are huge 'cause if you move data, you're going to have cost. If you move compute, it's not as much. If you have an operating system concept, is the data and state or stateless? These are huge problems. This is an operating system, don't you think? >> Yeah, yeah, absolutely. It's a distributed operating system where it's multiple layers, you know, of ways of solving that problem just in the context of data like you said having an intermediate caching layer so that you know, you still do just in time processing at those edge locations and then send some data back and that's where you can incorporate some AI or other technologies, et cetera. So, you know, just data itself is a multi-layer problem there. >> Well, it's great to have you on this program. Advice final question for you, for the folks watching technical degrees, most people are finding out in elementary school, in middle school, a lot more robotics programs, a lot more tech exposure, you know, not just in Silicon Valley, but all around, you're starting to see that. What's your advice for young girls and people who are getting either coming into the workforce re-skilled as they get enter, it's easy to enter now as they stay in and how do they stay in? What's your advice? >> Yeah, so, you know, I think it's the same goal. I have two little daughters and it's the same principle I try to follow with them, which is I want to give them as much exposure as possible without me having any predefined ideas about what you know, they should pursue. But it's I think that exposure that you need to find for yourself one way or the other, because you really never know. Like, you know, my husband landed into computer science through a very, very meandering path, and then he discovered later in his career that it's the absolute calling for him. It's something he's very good at, right? But so... You know, it's... You know, the reason why he thinks he didn't pick that path early is because he didn't quite have that exposure. So it's that exposure to various things, even things you think that you may not be interested in is the most important aspect. And then things just naturally lend themselves. >> Find your calling, superpower, strengths. Know what you don't want to do. (John chuckles) >> Yeah, exactly. >> Great advice. Thank you so much for coming on and contributing to our program for International Women's Day. Great to see you in this context. We'll see you on theCUBE. We'll talk more about Platform9 when we go KubeCon or some other time. But thank you for sharing your personal perspective and experiences for our audience. Thank you. >> Fantastic. Thanks for having me, John. Always great. >> This is theCUBE's coverage of International Women's Day, I'm John Furrier. We're talking to the leaders in the industry, from developers to the boardroom and everything in between and getting the stories out there making an impact. Thanks for watching. (bright upbeat music)

Published Date : Mar 7 2023

SUMMARY :

and she's also the VP of Thank you for having me. I love interviewing you for many reasons. Yeah, so , you know, And then you get hooked on it. Did you find any blockers in your way? I think there were maybe I would say after, you know, Okay, so you got an pathway or you just decided, systems, you know, How do you talk to the I think one is that it's, you know, you got now all kinds of that you really have no How did you deal with that? And I've even, you know, And how do you develop to a level of discipline that you So I have to ask you the And then the second is, you know, reading Let me ask you a question. that I love, you know, and you got the big company. Yeah, so, you know, I mean, stuff you guys did and were doing. Which is you can never predict kind of the same thing. which is what we pioneered, like you said, Now you look back at your and how do you fit in your Costs are huge 'cause if you move data, just in the context of data like you said a lot more tech exposure, you know, Yeah, so, you know, I Know what you don't want to do. Great to see you in this context. Thanks for having me, John. and getting the stories

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Madhura MaskaskyPERSON

0.99+

John FurrierPERSON

0.99+

2012DATE

0.99+

20QUANTITY

0.99+

2013DATE

0.99+

Mendel RosenblumPERSON

0.99+

Sirish RaghuramPERSON

0.99+

JohnPERSON

0.99+

50%QUANTITY

0.99+

AWSORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

Roopak ParikhPERSON

0.99+

Platform9 SystemsORGANIZATION

0.99+

International Women's DayEVENT

0.99+

JavaTITLE

0.99+

OpenStackORGANIZATION

0.99+

StanfordORGANIZATION

0.99+

bothQUANTITY

0.99+

CUBEORGANIZATION

0.99+

second yearQUANTITY

0.99+

two thingsQUANTITY

0.99+

thousandsQUANTITY

0.99+

both companiesQUANTITY

0.99+

C++TITLE

0.99+

10 years agoDATE

0.99+

'17DATE

0.99+

todayDATE

0.98+

KubeConEVENT

0.98+

two little daughtersQUANTITY

0.98+

firstQUANTITY

0.98+

threeQUANTITY

0.98+

25 girlsQUANTITY

0.98+

oneQUANTITY

0.98+

first yearQUANTITY

0.98+

Cal BerkeleyORGANIZATION

0.98+

BichPERSON

0.98+

two thingsQUANTITY

0.98+

fourQUANTITY

0.98+

two degreesQUANTITY

0.98+

single girlQUANTITY

0.98+

OneQUANTITY

0.98+

secondQUANTITY

0.98+

about eight yearsQUANTITY

0.98+

singleQUANTITY

0.97+

OracleORGANIZATION

0.97+

first timeQUANTITY

0.97+

one friendQUANTITY

0.96+

5GORGANIZATION

0.96+

one pointQUANTITY

0.94+

first oneQUANTITY

0.94+

theCUBEORGANIZATION

0.94+

tensQUANTITY

0.92+

a yearQUANTITY

0.91+

tens of thousands of storesQUANTITY

0.89+

Palo Alto, California StudioLOCATION

0.88+

Platform9ORGANIZATION

0.88+

KubernetesORGANIZATION

0.86+

about at least 120QUANTITY

0.85+

Mobile World CongressEVENT

0.82+

130 studentsQUANTITY

0.82+

hundreds of large data centersQUANTITY

0.8+

80, 90%QUANTITY

0.79+

VMwareTITLE

0.73+

past 10 yearsDATE

0.72+

Nancy Wang & Kate Watts | International Women's Day


 

>> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE been profiling the leaders in the technology world, women in technology from developers to the boardroom, everything in between. We have two great guests promoting in from Malaysia. Nancy Wang is the general manager, also CUBE alumni from AWS Data Protection, and founder and board chair of Advancing Women in Tech, awit.org. And of course Kate Watts who's the executive director of Advancing Women in Tech.org. So it's awit.org. Nancy, Kate, thanks for coming all the way across remotely from Malaysia. >> Of course, we're coming to you as fast as our internet bandwidth will allow us. And you know, I'm just thrilled today that you get to see a whole nother aspect of my life, right? Because typically we talk about AWS, and here we're talking about a topic near and dear to my heart. >> Well, Nancy, I love the fact that you're spending a lot of time taking the empowerment to go out and help the industries and helping with the advancement of women in tech. Kate, the executive director it's a 501C3, it's nonprofit, dedicating to accelerating the careers of women in groups in tech. Can you talk about the organization? >> Yes, I can. So Advancing Women in Tech was founded in 2017 in order to fix some of the pathway problems that we're seeing on the rise to leadership in the industry. And so we specifically focus on supporting mid-level women in technical roles, get into higher positions. We do that in a few different ways through mentorship programs through building technical skills and by connecting people to a supportive community. So you have your peer network and then a vertical sort of relationships to help you navigate the next steps in your career. So to date we've served about 40,000 individuals globally and we're just looking to expand our reach and impact and be able to better support women in the industry. >> Nancy, talk about the creation, the origination story. How'd this all come together? Obviously the momentum, everyone in the industry's been focused on this for a long time. Where did AWIT come from? Advancing Women in Technology, that's the acronym. Advancing Women in Technology.org, where'd it come from? What's the origination story? >> Yeah, so AWIT really originated from this desire that I had, to Kate's point around, well if you look around right and you know, don't take my word for it, right? Look at stats, look at news reports, or just frankly go on your LinkedIn and see how many women in underrepresented groups are in senior technical leadership roles right out in the companies whose names we all know. And so that was my case back in 2016. And so when I first got the idea and back then I was actually at Google, just another large tech company in the valley, right? It was about how do we get more role models, how we get more, for example, women into leadership roles so they can bring up the next generation, right? And so this is actually part of a longer speech that I'm about to give on Wednesday and part of the US State Department speaker program. In fact, that's why Kate and I are here in Malaysia right now is working with over 200 women entrepreneurs from all over in Southeast Asia, including Malaysia Philippines, Vietnam, Borneo, you know, so many countries where having more women entrepreneurs can help raise the GDP right, and that fits within our overall mission of getting more women into top leadership roles in tech. >> You know, I was talking about Teresa Carlson she came on the program as well for this year this next season we're going to do. And she mentioned the decision between the US progress and international. And she's saying as much as it's still bad numbers, it's worse than outside the United States and needs to get better. Can you comment on the global aspect? You brought that up. I think it's super important to highlight that it's just not one area, it's a global evolution. >> Absolutely, so let me start, and I'd love to actually have Kate talk about our current programs and all of the international groups that we're working with. So as Teresa aptly mentioned there is so much work to be done not just outside the US and North Americas where typically tech nonprofits will focus, but rather if you think about the one to end model, right? For example when I was doing the product market fit workshop for the US State Department I had women dialing in from rice fields, right? So let me just pause there for a moment. They were holding their cell phones up near towers near trees just so that they can get a few minutes of time with me to do a workshop and how to accelerate their business. So if you don't call that the desire to propel oneself or accelerate oneself, not sure what is, right. And so it's really that passion that drove me to spend the next week and a half here working with local entrepreneurs working with policy makers so we can take advantage and really leverage that passion that people have, right? To accelerate more business globally. And so that's why, you know Kate will be leading our contingent with the United Nations Women Group, right? That is focused on women's economic empowerment because that's super important, right? One aspect can be sure, getting more directors, you know vice presidents into companies like Google and Amazon. But another is also how do you encourage more women around the world to start businesses, right? To reach economic and freedom independence, right? To overcome some of the maybe social barriers to becoming a leader in their own country. >> Yes, and if I think about our own programs and our model of being very intentional about supporting the learning development and skills of women and members of underrepresented groups we focused very much on providing global access to a number of our programs. For instance, our product management certification on Coursera or engineering management our upcoming women founders accelerator. We provide both access that you can get from anywhere. And then also very intentional programming that connects people into the networks to be able to further their networks and what they've learned through the skills online, so. >> Yeah, and something Kate just told me recently is these courses that Kate's mentioning, right? She was instrumental in working with the American Council on Education and so that our learners can actually get up to six college credits for taking these courses on product management engineering management, on cloud product management. And most recently we had our first organic one of our very first organic testimonials was from a woman's tech bootcamp in Nigeria, right? So if you think about the worldwide impact of these upskilling courses where frankly in the US we might take for granted right around the world as I mentioned, there are women dialing in from rice patties from other, you know, for example, outside the, you know corporate buildings in order to access this content. >> Can you think about the idea of, oh sorry, go ahead. >> Go ahead, no, go ahead Kate. >> I was going to say, if you can't see it, you can't become it. And so we are very intentional about ensuring that we have we're spotlighting the expertise of women and we are broadcasting that everywhere so that anybody coming up can gain the skills and the networks to be able to succeed in this industry. >> We'll make sure we get those links so we can promote them. Obviously we feel the same way getting the word out. I think a couple things I'd like to ask you guys cause I think you hit a great point. One is the economic advantage the numbers prove that diverse teams perform better number one, that's clear. So good point there. But I want to get your thoughts on the entrepreneurial equation. You mentioned founders and startups and there's also different makeups in different countries. It's not like the big corporations sometimes it's smaller business in certain areas the different cultures have different business sizes and business types. How do you guys see that factoring in outside the United States, say the big tech companies? Okay, yeah. The easy lower the access to get in education than stay with them, in other countries is it the same or is it more diverse in terms of business? >> So what really actually got us started with the US State Department was around our work with women founders. And I love for Kate to actually share her experience working with AWS startups in that capacity. But frankly, you know, we looked at the content and the mentor programs that were providing women who wanted to be executives, you know, quickly realize a lot of those same skills such as finding customers, right? Scaling your product and building channels can also apply to women founders, not just executives. And so early supporters of our efforts from firms such as Moderna up in Seattle, Emergence Ventures, Decibel Ventures in, you know, the Bay Area and a few others that we're working with right now. Right, they believed in the mission and really helped us scale out what is now our existing platform and offerings for women founders. >> Those are great firms by the way. And they also are very founder friendly and also understand the global workforce. I mean, that's a whole nother dimension. Okay, what's your reaction to all that? >> Yes, we have been very intentional about taking the product expertise and the learnings of women and in our network, we first worked with AWS startups to support the development of the curriculum for the recent accelerator for women founders that was held last spring. And so we're able to support 25 founders and also brought in the expertise of about 20 or 30 women from Advancing Women in Tech to be able to be the lead instructors and mentors for that. And so we have really realized that with this network and this individual sort of focus on product expertise building strong teams, we can take that information and bring it to folks everywhere. And so there is very much the intentionality of allowing founders allowing individuals to take the lessons and bring it to their individual circumstances and the cultures in which they are operating. But the product sense is a skill that we can support the development of and we're proud to do so. >> That's awesome. Nancy, I want to ask you some never really talk about data storage and AWS cloud greatness and goodness, here's different and you also work full-time at AWS and you're the founder or the chairman of this great organization. How do you balance both and do you get, they're getting behind you on this, Amazon is getting behind you on this. >> Well, as I say it's always easier to negotiate on the way in. But jokes aside, I have to say the leadership has been tremendously supportive. If you think about, for example, my leaders Wayne Duso who's also been on the show multiple times, Bill Vaas who's also been on the show multiple times, you know they're both founders and also operators entrepreneurs at heart. So they understand that it is important, right? For all of us, it's really incumbent on all of us who are in positions to do so, to create a pathway for more people to be in leadership roles for more people to be successful entrepreneurs. So, no, I mean if you just looked at LinkedIn they're always uploading my vote so they reach to more audiences. And frankly they're rooting for us back home in the US while we're in Malaysia this week. >> That's awesome. And I think that's a good culture to have that empowerment and I think that's very healthy. What's next for you guys? What's on the agenda? Take us through the activities. I know that you got a ton of things happening. You got your event out there, which is why you're out there. There's a bunch of other activities. I think you guys call it the Advancing Women in Tech week. >> Yes, this week we are having a week of programming that you can check out at Advancing Women in Tech.org. That is spotlighting the expertise of a number of women in our space. So it is three days of programming Tuesday, Wednesday and Thursday if you are in the US so the seventh through the ninth, but available globally. We are also going to be in New York next week for the event at the UN and are looking to continue to support our mentorship programs and also our work supporting women founders throughout the year. >> All right. I have to ask you guys if you don't mind get a little market data so you can share with us here at theCUBE. What are you hearing this year that's different in the conversation space around the topics, the interests? Obviously I've seen massive amounts of global acceleration around conversations, more video, things like this more stories are scaling, a lot more LinkedIn activity. It just seems like it's a lot different this year. Can you guys share any kind of current trends you're seeing relative to the conversations and topics being discussed across the the community? >> Well, I think from a needle moving perspective, right? I think due to the efforts of wonderful organizations including the Q for spotlighting all of these awesome women, right? Trailblazing women and the nonprofits the government entities that we work with there's definitely more emphasis on creating access and creating pathways. So that's probably one thing that you're seeing is more women, more investors posting about their activities. Number two, from a global trend perspective, right? The rise of women in security. I noticed that on your agenda today, you had Lena Smart who's a good friend of mine chief information security officer at MongoDB, right? She and I are actually quite involved in helping founders especially early stage founders in the security space. And so globally from a pure technical perspective, right? There's right more increasing regulations around data privacy, data sovereignty, right? For example, India's in a few weeks about to get their first data protection regulation there locally. So all of that is giving rise to yet another wave of opportunity and we want women founders uniquely positioned to take advantage of that opportunity. >> I love it. Kate, reaction to that? I mean founders, more pathways it sounds like a neural network, it sounds like AI enabled. >> Yes, and speaking of AI, with the rise of that we are also hearing from many community members the importance of continuing to build their skills upskill learn to be able to keep up with the latest trends. There's a lot of people wondering what does this mean for my own career? And so they're turning to organizations like Advancing Women in Tech to find communities to both learn the latest information, but also build their networks so that they are able to move forward regardless of what the industry does. >> I love the work you guys are doing. It's so impressive. I think the economic angle is new it's more amplified this year. It's always kind of been there and continues to be. What do you guys hope for by next year this time what do you hope to see different from a needle moving perspective, to use your word Nancy, for next year? What's the visual output in your mind? >> I want to see real effort made towards 50-50 representation in all tech leadership roles. And I'd like to see that happen by 2050. >> Kate, anything on your end? >> I love that. I'm going to go a little bit more touchy-feely. I want everybody in our space to understand that the skills that they build and that the networks they have carry with them regardless of wherever they go. And so to be able to really lean in and learn and continue to develop the career that you want to have. So whether that be at a large organization or within your own business, that you've got the potential to move forward on that within you. >> Nancy, Kate, thank you so much for your contribution. I'll give you the final word. Put a plug in for the organization. What are you guys looking for? Any kind of PSA you want to share with the folks watching? >> Absolutely, so if you're in a position to be a mentor, join as a mentor, right? Help elevate and accelerate the next generation of women leaders. If you're an investor help us invest in more women started companies, right? Women founded startups and lastly, if you are women looking to accelerate your career, come join our community. We have resources, we have mentors and who we have investors who are willing to come in on the ground floor and help you accelerate your business. >> Great work. Thank you so much for participating in our International Women's Day 23 program and we'd look to keep this going quarterly. We'll see you next year, next time. Thanks for coming on. Appreciate it. >> Thanks so much John. >> Thank you. >> Okay, women leaders here. >> Nancy: Thanks for having us >> All over the world, coming together for a great celebration but really highlighting the accomplishments, the pathways the investment, the mentoring, everything in between. It's theCUBE. Bring as much as we can. I'm John Furrier, your host. Thanks for watching.

Published Date : Mar 7 2023

SUMMARY :

in the technology world, that you get to see a whole nother aspect of time taking the empowerment to go on the rise to leadership in the industry. in the industry's been focused of the US State Department And she mentioned the decision and all of the international into the networks to be able to further in the US we might take for Can you think about the and the networks to be able The easy lower the access to get and the mentor programs Those are great firms by the way. and also brought in the or the chairman of this in the US while we're I know that you got a of programming that you can check I have to ask you guys if you don't mind founders in the security space. Kate, reaction to that? of continuing to build their skills I love the work you guys are doing. And I'd like to see that happen by 2050. and that the networks Any kind of PSA you want to and accelerate the next Thank you so much for participating All over the world,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
KatePERSON

0.99+

NancyPERSON

0.99+

TeresaPERSON

0.99+

Bill VaasPERSON

0.99+

AmazonORGANIZATION

0.99+

Teresa CarlsonPERSON

0.99+

JohnPERSON

0.99+

MalaysiaLOCATION

0.99+

Kate WattsPERSON

0.99+

NigeriaLOCATION

0.99+

Nancy WangPERSON

0.99+

Wayne DusoPERSON

0.99+

AWSORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

ModernaORGANIZATION

0.99+

WednesdayDATE

0.99+

American Council on EducationORGANIZATION

0.99+

John FurrierPERSON

0.99+

Lena SmartPERSON

0.99+

2017DATE

0.99+

VietnamLOCATION

0.99+

BorneoLOCATION

0.99+

Emergence VenturesORGANIZATION

0.99+

New YorkLOCATION

0.99+

2016DATE

0.99+

United Nations Women GroupORGANIZATION

0.99+

Decibel VenturesORGANIZATION

0.99+

USLOCATION

0.99+

United StatesLOCATION

0.99+

Southeast AsiaLOCATION

0.99+

LinkedInORGANIZATION

0.99+

2050DATE

0.99+

MongoDBORGANIZATION

0.99+

US State DepartmentORGANIZATION

0.99+

next yearDATE

0.99+

International Women's DayEVENT

0.99+

25 foundersQUANTITY

0.99+

SeattleLOCATION

0.99+

North AmericasLOCATION

0.99+

AWS Data ProtectionORGANIZATION

0.99+

CUBEORGANIZATION

0.99+

three daysQUANTITY

0.99+

seventhQUANTITY

0.99+

Bay AreaLOCATION

0.99+

bothQUANTITY

0.99+

todayDATE

0.99+

next weekDATE

0.99+

30 womenQUANTITY

0.98+

One aspectQUANTITY

0.98+

ThursdayDATE

0.98+

this yearDATE

0.98+

about 40,000 individualsQUANTITY

0.98+

this yearDATE

0.98+

last springDATE

0.98+

this weekDATE

0.98+

TuesdayDATE

0.98+

Teresa Carlson, Flexport | International Women's Day


 

(upbeat intro music) >> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm your host, John Furrier, here in Palo Alto, California. Got a special remote guest coming in. Teresa Carlson, President and Chief Commercial Officer at Flexport, theCUBE alumni, one of the first, let me go back to 2013, Teresa, former AWS. Great to see you. Thanks for coming on. >> Oh my gosh, almost 10 years. That is unbelievable. It's hard to believe so many years of theCUBE. I love it. >> It's been such a great honor to interview you and follow your career. You've had quite the impressive run, executive level woman in tech. You've done such an amazing job, not only in your career, but also helping other women. So I want to give you props to that before we get started. Thank you. >> Thank you, John. I, it's my, it's been my honor and privilege. >> Let's talk about Flexport. Tell us about your new role there and what it's all about. >> Well, I love it. I'm back working with another Amazonian, Dave Clark, who is our CEO of Flexport, and we are about 3,000 people strong globally in over 90 countries. We actually even have, we're represented in over 160 cities and with local governments and places around the world, which I think is super exciting. We have over 100 network partners and growing, and we are about empowering the global supply chain and trade and doing it in a very disruptive way with the use of platform technology that allows our customers to really have visibility and insight to what's going on. And it's a lot of fun. I'm learning new things, but there's a lot of technology in this as well, so I feel right at home. >> You quite have a knack from mastering growth, technology, and building out companies. So congratulations, and scaling them up too with the systems and processes. So I want to get into that. Let's get into your personal background. Then I want to get into the work you've done and are doing for empowering women in tech. What was your journey about, how did it all start? Like, I know you had a, you know, bumped into it, you went Microsoft, AWS. Take us through your career, how you got into tech, how it all happened. >> Well, I do like to give a shout out, John, to my roots and heritage, which was a speech and language pathologist. So I did start out in healthcare right out of, you know, university. I had an undergraduate and a master's degree. And I do tell everyone now, looking back at my career, I think it was super helpful for me because I learned a lot about human communication, and it has done me very well over the years to really try to understand what environments I'm in and what kind of individuals around the world culturally. So I'm really blessed that I had that opportunity to work in healthcare, and by the way, a shout out to all of our healthcare workers that has helped us get through almost three years of COVID and flu and neurovirus and everything else. So started out there and then kind of almost accidentally got into technology. My first small company I worked for was a company called Keyfile Corporation, which did workflow and document management out of Nashua, New Hampshire. And they were a Microsoft goal partner. And that is actually how I got into big tech world. We ran on exchange, for everybody who knows that term exchange, and we were a large small partner, but large in the world of exchange. And those were the days when you would, the late nineties, you would go and be in the same room with Bill Gates and Steve Ballmer. And I really fell in love with Microsoft back then. I thought to myself, wow, if I could work for a big tech company, I got to hear Bill on stage about saving, he would talk about saving the world. And guess what my next step was? I actually got a job at Microsoft, took a pay cut and a job downgrade. I tell this story all the time. Took like three downgrades in my role. I had been a SVP and went to a manager, and it's one of the best moves I ever made. And I shared that because I really didn't know the world of big tech, and I had to start from the ground up and relearn it. I did that, I just really loved that job. I was at Microsoft from 2000 to 2010, where I eventually ran all of the U.S. federal government business, which was a multi-billion dollar business. And then I had the great privilege of meeting an amazing man, Andy Jassy, who I thought was just unbelievable in his insights and knowledge and openness to understanding new markets. And we talked about government and how government needed the same great technology as every startup. And that led to me going to work for Andy in 2010 and starting up our worldwide public sector business. And I pinch myself some days because we went from two people, no offices, to the time I left we had over 10,000 people, billions in revenue, and 172 countries and had done really amazing work. I think changing the way public sector and government globally really thought about their use of technology and Cloud computing in general. And that kind of has been my career. You know, I was there till 2020, 21 and then did a small stint at Splunk, a small stint back at Microsoft doing a couple projects for Microsoft with CEO, Satya Nadella, who is also an another amazing CEO and leader. And then Dave called me, and I'm at Flexport, so I couldn't be more honored, John. I've just had such an amazing career working with amazing individuals. >> Yeah, I got to say the Amazon One well-documented, certainly by theCUBE and our coverage. We watched you rise and scale that thing. And like I said at a time, this will when we look back as a historic run because of the build out. I mean as a zero to massive billions at a historic time where government was transforming, I would say Microsoft had a good run there with Fed, but it was already established stuff. Federal business was like, you know, blocking and tackling. The Amazon was pure build out. So I have to ask you, what was your big learnings? Because one, you're a Seattle big tech company kind of entrepreneurial in the sense of you got, here's some working capital seed finance and go build that thing, and you're in DC and you're a woman. What did you learn? >> I learned that you really have to have a lot of grit. You, my mom and dad, these are kind of more southern roots words, but stick with itness, you know. you can't give up and no's not in your vocabulary. I found no is just another way to get to yes. That you have to figure out what are all the questions people are going to ask you. I learned to be very patient, and I think one of the things John, for us was our secret sauce was we said to ourselves, if we're going to do something super transformative and truly disruptive, like Cloud computing, which the government really had not utilized, we had to be patient. We had to answer all their questions, and we could not judge in any way what they were thinking because if we couldn't answer all those questions and prove out the capabilities of Cloud computing, we were not going to accomplish our goals. And I do give so much credit to all my colleagues there from everybody like Steve Schmidt who was there, who's still there, who's the CISO, and Charlie Bell and Peter DeSantis and the entire team there that just really helped build that business out. Without them, you know, we would've just, it was a team effort. And I think that's the thing I loved about it was it was not just sales, it was product, it was development, it was data center operations, it was legal, finance. Everybody really worked as a team and we were on board that we had to make a lot of changes in the government relations team. We had to go into Capitol Hill. We had to talk to them about the changes that were required and really get them to understand why Cloud computing could be such a transformative game changer for the way government operates globally. >> Well, I think the whole world and the tech world can appreciate your work and thank you later because you broke down those walls asking those questions. So great stuff. Now I got to say, you're in kind of a similar role at Flexport. Again, transformative supply chain, not new. Computing wasn't new when before Cloud came. Supply chain, not a new concept, is undergoing radical change and transformation. Online, software supply chain, hardware supply chain, supply chain in general, shipping. This is a big part of our economy and how life is working. Similar kind of thing going on, build out, growth, scale. >> It is, it's very much like that, John, I would say, it's, it's kind of a, the model with freight forwarding and supply chain is fairly, it's not as, there's a lot of technology utilized in this global supply chain world, but it's not integrated. You don't have a common operating picture of what you're doing in your global supply chain. You don't have easy access to the information and visibility. And that's really, you know, I was at a conference last week in LA, and it was, the themes were so similar about transparency, access to data and information, being able to act quickly, drive change, know what was happening. I was like, wow, this sounds familiar. Data, AI, machine learning, visibility, common operating picture. So it is very much the same kind of themes that you heard even with government. I do believe it's an industry that is going through transformation and Flexport has been a group that's come in and said, look, we have this amazing idea, number one to give access to everyone. We want every small business to every large business to every government around the world to be able to trade their goods, think about supply chain logistics in a very different way with information they need and want at their fingertips. So that's kind of thing one, but to apply that technology in a way that's very usable across all systems from an integration perspective. So it's kind of exciting. I used to tell this story years ago, John, and I don't think Michael Dell would mind that I tell this story. One of our first customers when I was at Keyfile Corporation was we did workflow and document management, and Dell was one of our customers. And I remember going out to visit them, and they had runners and they would run around, you know, they would run around the floor and do their orders, right, to get all those computers out the door. And when I think of global trade, in my mind I still see runners, you know, running around and I think that's moved to a very digital, right, world that all this stuff, you don't need people doing this. You have machines doing this now, and you have access to the information, and you know, we still have issues resulting from COVID where we have either an under-abundance or an over-abundance of our supply chain. We still have clogs in our shipping, in the shipping yards around the world. So we, and the ports, so we need to also, we still have some clearing to do. And that's the reason technology is important and will continue to be very important in this world of global trade. >> Yeah, great, great impact for change. I got to ask you about Flexport's inclusion, diversity, and equity programs. What do you got going on there? That's been a big conversation in the industry around keeping a focus on not making one way more than the other, but clearly every company, if they don't have a strong program, will be at a disadvantage. That's well reported by McKinsey and other top consultants, diverse workforces, inclusive, equitable, all perform better. What's Flexport's strategy and how are you guys supporting that in the workplace? >> Well, let me just start by saying really at the core of who I am, since the day I've started understanding that as an individual and a female leader, that I could have an impact. That the words I used, the actions I took, the information that I pulled together and had knowledge of could be meaningful. And I think each and every one of us is responsible to do what we can to make our workplace and the world a more diverse and inclusive place to live and work. And I've always enjoyed kind of the thought that, that I could help empower women around the world in the tech industry. Now I'm hoping to do my little part, John, in that in the supply chain and global trade business. And I would tell you at Flexport we have some amazing women. I'm so excited to get to know all. I've not been there that long yet, but I'm getting to know we have some, we have a very diverse leadership team between men and women at Dave's level. I have some unbelievable women on my team directly that I'm getting to know more, and I'm so impressed with what they're doing. And this is a very, you know, while this industry is different than the world I live in day to day, it's also has a lot of common themes to it. So, you know, for us, we're trying to approach every day by saying, let's make sure both our interviewing cycles, the jobs we feel, how we recruit people, how we put people out there on the platforms, that we have diversity and inclusion and all of that every day. And I can tell you from the top, from Dave and all of our leaders, we just had an offsite and we had a big conversation about this is something. It's a drum beat that we have to think about and live by every day and really check ourselves on a regular basis. But I do think there's so much more room for women in the world to do great things. And one of the, one of the areas, as you know very well, we lost a lot of women during COVID, who just left the workforce again. So we kind of went back unfortunately. So we have to now move forward and make sure that we are giving women the opportunity to have great jobs, have the flexibility they need as they build a family, and have a workplace environment that is trusted for them to come into every day. >> There's now clear visibility, at least in today's world, not withstanding some of the setbacks from COVID, that a young girl can look out in a company and see a path from entry level to the boardroom. That's a big change. A lot than even going back 10, 15, 20 years ago. What's your advice to the folks out there that are paying it forward? You see a lot of executive leaderships have a seat at the table. The board still underrepresented by most numbers, but at least you have now kind of this solidarity at the top, but a lot of people doing a lot more now than I've seen at the next levels down. So now you have this leveled approach. Is that something that you're seeing more of? And credit compare and contrast that to 20 years ago when you were, you know, rising through the ranks? What's different? >> Well, one of the main things, and I honestly do not think about it too much, but there were really no women. There were none. When I showed up in the meetings, I literally, it was me or not me at the table, but at the seat behind the table. The women just weren't in the room, and there were so many more barriers that we had to push through, and that has changed a lot. I mean globally that has changed a lot in the U.S. You know, if you look at just our U.S. House of Representatives and our U.S. Senate, we now have the increasing number of women. Even at leadership levels, you're seeing that change. You have a lot more women on boards than we ever thought we would ever represent. While we are not there, more female CEOs that I get an opportunity to see and talk to. Women starting companies, they do not see the barriers. And I will share, John, globally in the U.S. one of the things that I still see that we have that many other countries don't have, which I'm very proud of, women in the U.S. have a spirit about them that they just don't see the barriers in the same way. They believe that they can accomplish anything. I have two sons, I don't have daughters. I have nieces, and I'm hoping someday to have granddaughters. But I know that a lot of my friends who have granddaughters today talk about the boldness, the fortitude, that they believe that there's nothing they can't accomplish. And I think that's what what we have to instill in every little girl out there, that they can accomplish anything they want to. The world is theirs, and we need to not just do that in the U.S., but around the world. And it was always the thing that struck me when I did all my travels at AWS and now with Flexport, I'm traveling again quite a bit, is just the differences you see in the cultures around the world. And I remember even in the Middle East, how I started seeing it change. You've heard me talk a lot on this program about the fact in both Saudi and Bahrain, over 60% of the tech workers were females and most of them held the the hardest jobs, the security, the architecture, the engineering. But many of them did not hold leadership roles. And that is what we've got to change too. To your point, the middle, we want it to get bigger, but the top, we need to get bigger. We need to make sure women globally have opportunities to hold the most precious leadership roles and demonstrate their capabilities at the very top. But that's changed. And I would say the biggest difference is when we show up, we're actually evaluated properly for those kind of roles. We have a ways to go. But again, that part is really changing. >> Can you share, Teresa, first of all, that's great work you've done and I wan to give you props of that as well and all the work you do. I know you champion a lot of, you know, causes in in this area. One question that comes up a lot, I would love to get your opinion 'cause I think you can contribute heavily here is mentoring and sponsorship is huge, comes up all the time. What advice would you share to folks out there who were, I won't say apprehensive, but maybe nervous about how to do the networking and sponsorship and mentoring? It's not just mentoring, it's sponsorship too. What's your best practice? What advice would you give for the best way to handle that? >> Well yeah, and for the women out there, I would say on the mentorship side, I still see mentorship. Like, I don't think you can ever stop having mentorship. And I like to look at my mentors in different parts of my life because if you want to be a well-rounded person, you may have parts of your life every day that you think I'm doing a great job here and I definitely would like to do better there. Whether it's your spiritual life, your physical life, your work life, you know, your leisure life. But I mean there's, and there's parts of my leadership world that I still seek advice from as I try to do new things even in this world. And I tried some new things in between roles. I went out and asked the people that I respected the most. So I just would say for sure have different mentorships and don't be afraid to have that diversity. But if you have mentorships, the second important thing is show up with a real agenda and questions. Don't waste people's time. I'm very sensitive today. If you're, if you want a mentor, you show up and you use your time super effectively and be prepared for that. Sponsorship is a very different thing. And I don't believe we actually do that still in companies. We worked, thank goodness for my great HR team. When I was at AWS, we worked on a few sponsorship programs where for diversity in general, where we would nominate individuals in the company that we felt that weren't, that had a lot of opportunity for growth, but they just weren't getting a seat at the table. And we brought 'em to the table. And we actually kind of had a Chatham House rules where when they came into the meetings, they had a sponsor, not a mentor. They had a sponsor that was with them the full 18 months of this program. We would bring 'em into executive meetings. They would read docs, they could ask questions. We wanted them to be able to open up and ask crazy questions without, you know, feeling wow, I just couldn't answer this question in a normal environment or setting. And then we tried to make sure once they got through the program that we found jobs and support and other special projects that they could go do. But they still had that sponsor and that group of individuals that they'd gone through the program with, John, that they could keep going back to. And I remember sitting there and they asked me what I wanted to get out of the program, and I said two things. I want you to leave this program and say to yourself, I would've never had that experience if I hadn't gone through this program. I learned so much in 18 months. It would probably taken me five years to learn. And that it helped them in their career. The second thing I told them is I wanted them to go out and recruit individuals that look like them. I said, we need diversity, and unless you all feel that we are in an inclusive environment sponsoring all types of individuals to be part of this company, we're not going to get the job done. And they said, okay. And you know, but it was really one, it was very much about them. That we took a group of individuals that had high potential and a very diverse with diverse backgrounds, held 'em up, taught 'em things that gave them access. And two, selfishly I said, I want more of you in my business. Please help me. And I think those kind of things are helpful, and you have to be thoughtful about these kind of programs. And to me that's more sponsorship. I still have people reach out to me from years ago, you know, Microsoft saying, you were so good with me, can you give me a reference now? Can you talk to me about what I should be doing? And I try to, I'm not pray 100%, some things pray fall through the cracks, but I always try to make the time to talk to those individuals because for me, I am where I am today because I got some of the best advice from people like Don Byrne and Linda Zecker and Andy Jassy, who were very honest and upfront with me about my career. >> Awesome. Well, you got a passion for empowering women in tech, paying it forward, but you're quite accomplished and that's why we're so glad to have you on the program here. President and Chief Commercial Officer at Flexport. Obviously storied career and your other jobs, specifically Amazon I think, is historic in my mind. This next chapter looks like it's looking good right now. Final question for you, for the few minutes you have left. Tell us what you're up to at Flexport. What's your goals as President, Chief Commercial Officer? What are you trying to accomplish? Share a little bit, what's on your mind with your current job? >> Well, you kind of said it earlier. I think if I look at my own superpowers, I love customers, I love partners. I get my energy, John, from those interactions. So one is to come in and really help us build even a better world class enterprise global sales and marketing team. Really listen to our customers, think about how we interact with them, build the best executive programs we can, think about new ways that we can offer services to them and create new services. One of my favorite things about my career is I think if you're a business leader, it's your job to come back around and tell your product group and your services org what you're hearing from customers. That's how you can be so much more impactful, that you listen, you learn, and you deliver. So that's one big job. The second job for me, which I am so excited about, is that I have an amazing group called flexport.org under me. And flexport.org is doing amazing things around the world to help those in need. We just announced this new funding program for Tech for Refugees, which brings assistance to millions of people in Ukraine, Pakistan, the horn of Africa, and those who are affected by earthquakes. We just took supplies into Turkey and Syria, and Flexport, recently in fact, just did sent three air shipments to Turkey and Syria for these. And I think we did over a hundred trekking shipments to get earthquake relief. And as you can imagine, it was not easy to get into Syria. But you know, we're very active in the Ukraine, and we are, our goal for flexport.org, John, is to continue to work with our commercial customers and team up with them when they're trying to get supplies in to do that in a very cost effective, easy way, as quickly as we can. So that not-for-profit side of me that I'm so, I'm so happy. And you know, Ryan Peterson, who was our founder, this was his brainchild, and he's really taken this to the next level. So I'm honored to be able to pick that up and look for new ways to have impact around the world. And you know, I've always found that I think if you do things right with a company, you can have a beautiful combination of commercial-ity and giving. And I think Flexport does it in such an amazing and unique way. >> Well, the impact that they have with their system and their technology with logistics and shipping and supply chain is a channel for societal change. And I think that's a huge gift that you have that under your purview. So looking forward to finding out more about flexport.org. I can only imagine all the exciting things around sustainability, and we just had Mobile World Congress for Big Cube Broadcast, 5Gs right around the corner. I'm sure that's going to have a huge impact to your business. >> Well, for sure. And just on gas emissions, that's another thing that we are tracking gas, greenhouse gas emissions. And in fact we've already reduced more than 300,000 tons and supported over 600 organizations doing that. So that's a thing we're also trying to make sure that we're being climate aware and ensuring that we are doing the best job we can at that as well. And that was another thing I was honored to be able to do when we were at AWS, is to really cut out greenhouse gas emissions and really go global with our climate initiatives. >> Well Teresa, it's great to have you on. Security, data, 5G, sustainability, business transformation, AI all coming together to change the game. You're in another hot seat, hot roll, big wave. >> Well, John, it's an honor, and just thank you again for doing this and having women on and really representing us in a big way as we celebrate International Women's Day. >> I really appreciate it, it's super important. And these videos have impact, so we're going to do a lot more. And I appreciate your leadership to the industry and thank you so much for taking the time to contribute to our effort. Thank you, Teresa. >> Thank you. Thanks everybody. >> Teresa Carlson, the President and Chief Commercial Officer of Flexport. I'm John Furrier, host of theCUBE. This is International Women's Day broadcast. Thanks for watching. (upbeat outro music)

Published Date : Mar 6 2023

SUMMARY :

and Chief Commercial Officer It's hard to believe so honor to interview you I, it's my, it's been Tell us about your new role and insight to what's going on. and are doing for And that led to me going in the sense of you got, I learned that you really Now I got to say, you're in kind of And I remember going out to visit them, I got to ask you about And I would tell you at Flexport to 20 years ago when you were, you know, And I remember even in the Middle East, I know you champion a lot of, you know, And I like to look at my to have you on the program here. And I think we did over a I can only imagine all the exciting things And that was another thing I Well Teresa, it's great to have you on. and just thank you again for and thank you so much for taking the time Thank you. and Chief Commercial Officer of Flexport.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Satya NadellaPERSON

0.99+

Jeremy BurtonPERSON

0.99+

DavePERSON

0.99+

CiscoORGANIZATION

0.99+

Teresa CarlsonPERSON

0.99+

Dave VellantePERSON

0.99+

Dave VallentePERSON

0.99+

Ryan PetersonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Andy JassyPERSON

0.99+

TeresaPERSON

0.99+

JohnPERSON

0.99+

Linda ZeckerPERSON

0.99+

AmazonORGANIZATION

0.99+

MikePERSON

0.99+

John FurrierPERSON

0.99+

Steve BallmerPERSON

0.99+

CanadaLOCATION

0.99+

GoogleORGANIZATION

0.99+

AWSORGANIZATION

0.99+

FlexportORGANIZATION

0.99+

Dave ClarkPERSON

0.99+

Mike FrancoPERSON

0.99+

Stu MinimanPERSON

0.99+

2010DATE

0.99+

SyriaLOCATION

0.99+

HallmarkORGANIZATION

0.99+

UkraineLOCATION

0.99+

Don ByrnePERSON

0.99+

Keyfile CorporationORGANIZATION

0.99+

Steve SchmidtPERSON

0.99+

DellORGANIZATION

0.99+

five yearsQUANTITY

0.99+

Dave StanfordPERSON

0.99+

TurkeyLOCATION

0.99+

BostonLOCATION

0.99+

JuneDATE

0.99+

Middle EastLOCATION

0.99+

second jobQUANTITY

0.99+

Michael DellPERSON

0.99+

dozensQUANTITY

0.99+

2013DATE

0.99+

MayDATE

0.99+

2019DATE

0.99+

LALOCATION

0.99+

Amazon Web ServicesORGANIZATION

0.99+

100%QUANTITY

0.99+

Lena Smart & Tara Hernandez, MongoDB | International Women's Day


 

(upbeat music) >> Hello and welcome to theCube's coverage of International Women's Day. I'm John Furrier, your host of "theCUBE." We've got great two remote guests coming into our Palo Alto Studios, some tech athletes, as we say, people that've been in the trenches, years of experience, Lena Smart, CISO at MongoDB, Cube alumni, and Tara Hernandez, VP of Developer Productivity at MongoDB as well. Thanks for coming in to this program and supporting our efforts today. Thanks so much. >> Thanks for having us. >> Yeah, everyone talk about the journey in tech, where it all started. Before we get there, talk about what you guys are doing at MongoDB specifically. MongoDB is kind of gone the next level as a platform. You have your own ecosystem, lot of developers, very technical crowd, but it's changing the business transformation. What do you guys do at Mongo? We'll start with you, Lena. >> So I'm the CISO, so all security goes through me. I like to say, well, I don't like to say, I'm described as the ones throat to choke. So anything to do with security basically starts and ends with me. We do have a fantastic Cloud engineering security team and a product security team, and they don't report directly to me, but obviously we have very close relationships. I like to keep that kind of church and state separate and I know I've spoken about that before. And we just recently set up a physical security team with an amazing gentleman who left the FBI and he came to join us after 26 years for the agency. So, really starting to look at the physical aspects of what we offer as well. >> I interviewed a CISO the other day and she said, "Every day is day zero for me." Kind of goofing on the Amazon Day one thing, but Tara, go ahead. Tara, go ahead. What's your role there, developer productivity? What are you focusing on? >> Sure. Developer productivity is kind of the latest description for things that we've described over the years as, you know, DevOps oriented engineering or platform engineering or build and release engineering development infrastructure. It's all part and parcel, which is how do we actually get our code from developer to customer, you know, and all the mechanics that go into that. It's been something I discovered from my first job way back in the early '90s at Borland. And the art has just evolved enormously ever since, so. >> Yeah, this is a very great conversation both of you guys, right in the middle of all the action and data infrastructures changing, exploding, and involving big time AI and data tsunami and security never stops. Well, let's get into, we'll talk about that later, but let's get into what motivated you guys to pursue a career in tech and what were some of the challenges that you faced along the way? >> I'll go first. The fact of the matter was I intended to be a double major in history and literature when I went off to university, but I was informed that I had to do a math or a science degree or else the university would not be paid for. At the time, UC Santa Cruz had a policy that called Open Access Computing. This is, you know, the late '80s, early '90s. And anybody at the university could get an email account and that was unusual at the time if you were, those of us who remember, you used to have to pay for that CompuServe or AOL or, there's another one, I forget what it was called, but if a student at Santa Cruz could have an email account. And because of that email account, I met people who were computer science majors and I'm like, "Okay, I'll try that." That seems good. And it was a little bit of a struggle for me, a lot I won't lie, but I can't complain with how it ended up. And certainly once I found my niche, which was development infrastructure, I found my true love and I've been doing it for almost 30 years now. >> Awesome. Great story. Can't wait to ask a few questions on that. We'll go back to that late '80s, early '90s. Lena, your journey, how you got into it. >> So slightly different start. I did not go to university. I had to leave school when I was 16, got a job, had to help support my family. Worked a bunch of various jobs till I was about 21 and then computers became more, I think, I wouldn't say they were ubiquitous, but they were certainly out there. And I'd also been saving up every penny I could earn to buy my own computer and bought an Amstrad 1640, 20 meg hard drive. It rocked. And kind of took that apart, put it back together again, and thought that could be money in this. And so basically just teaching myself about computers any job that I got. 'Cause most of my jobs were like clerical work and secretary at that point. But any job that had a computer in front of that, I would make it my business to go find the guy who did computing 'cause it was always a guy. And I would say, you know, I want to learn how these work. Let, you know, show me. And, you know, I would take my lunch hour and after work and anytime I could with these people and they were very kind with their time and I just kept learning, so yep. >> Yeah, those early days remind me of the inflection point we're going through now. This major C change coming. Back then, if you had a computer, you had to kind of be your own internal engineer to fix things. Remember back on the systems revolution, late '80s, Tara, when, you know, your career started, those were major inflection points. Now we're seeing a similar wave right now, security, infrastructure. It feels like it's going to a whole nother level. At Mongo, you guys certainly see this as well, with this AI surge coming in. A lot more action is coming in. And so there's a lot of parallels between these inflection points. How do you guys see this next wave of change? Obviously, the AI stuff's blowing everyone away. Oh, new user interface. It's been called the browser moment, the mobile iPhone moment, kind of for this generation. There's a lot of people out there who are watching that are young in their careers, what's your take on this? How would you talk to those folks around how important this wave is? >> It, you know, it's funny, I've been having this conversation quite a bit recently in part because, you know, to me AI in a lot of ways is very similar to, you know, back in the '90s when we were talking about bringing in the worldwide web to the forefront of the world, right. And we tended to think in terms of all the optimistic benefits that would come of it. You know, free passing of information, availability to anyone, anywhere. You just needed an internet connection, which back then of course meant a modem. >> John: Not everyone had though. >> Exactly. But what we found in the subsequent years is that human beings are what they are and we bring ourselves to whatever platforms that are there, right. And so, you know, as much as it was amazing to have this freely available HTML based internet experience, it also meant that the negatives came to the forefront quite quickly. And there were ramifications of that. And so to me, when I look at AI, we're already seeing the ramifications to that. Yes, are there these amazing, optimistic, wonderful things that can be done? Yes. >> Yeah. >> But we're also human and the bad stuff's going to come out too. And how do we- >> Yeah. >> How do we as an industry, as a community, you know, understand and mitigate those ramifications so that we can benefit more from the positive than the negative. So it is interesting that it comes kind of full circle in really interesting ways. >> Yeah. The underbelly takes place first, gets it in the early adopter mode. Normally industries with, you know, money involved arbitrage, no standards. But we've seen this movie before. Is there hope, Lena, that we can have a more secure environment? >> I would hope so. (Lena laughs) Although depressingly, we've been in this well for 30 years now and we're, at the end of the day, still telling people not to click links on emails. So yeah, that kind of still keeps me awake at night a wee bit. The whole thing about AI, I mean, it's, obviously I am not an expert by any stretch of the imagination in AI. I did read (indistinct) book recently about AI and that was kind of interesting. And I'm just trying to teach myself as much as I can about it to the extent of even buying the "Dummies Guide to AI." Just because, it's actually not a dummies guide. It's actually fairly interesting, but I'm always thinking about it from a security standpoint. So it's kind of my worst nightmare and the best thing that could ever happen in the same dream. You know, you've got this technology where I can ask it a question and you know, it spits out generally a reasonable answer. And my team are working on with Mark Porter our CTO and his team on almost like an incubation of AI link. What would it look like from MongoDB? What's the legal ramifications? 'Cause there will be legal ramifications even though it's the wild, wild west just now, I think. Regulation's going to catch up to us pretty quickly, I would think. >> John: Yeah, yeah. >> And so I think, you know, as long as companies have a seat at the table and governments perhaps don't become too dictatorial over this, then hopefully we'll be in a good place. But we'll see. I think it's a really interest, there's that curse, we're living in interesting times. I think that's where we are. >> It's interesting just to stay on this tech trend for a minute. The standards bodies are different now. Back in the old days there were, you know, IEEE standards, ITF standards. >> Tara: TPC. >> The developers are the new standard. I mean, now you're seeing open source completely different where it was in the '90s to here beginning, that was gen one, some say gen two, but I say gen one, now we're exploding with open source. You have kind of developers setting the standards. If developers like it in droves, it becomes defacto, which then kind of rolls into implementation. >> Yeah, I mean I think if you don't have developer input, and this is why I love working with Tara and her team so much is 'cause they get it. If we don't have input from developers, it's not going to get used. There's going to be ways of of working around it, especially when it comes to security. If they don't, you know, if you're a developer and you're sat at your screen and you don't want to do that particular thing, you're going to find a way around it. You're a smart person. >> Yeah. >> So. >> Developers on the front lines now versus, even back in the '90s, they're like, "Okay, consider the dev's, got a QA team." Everything was Waterfall, now it's Cloud, and developers are on the front lines of everything. Tara, I mean, this is where the standards are being met. What's your reaction to that? >> Well, I think it's outstanding. I mean, you know, like I was at Netscape and part of the crowd that released the browser as open source and we founded mozilla.org, right. And that was, you know, in many ways kind of the birth of the modern open source movement beyond what we used to have, what was basically free software foundation was sort of the only game in town. And I think it is so incredibly valuable. I want to emphasize, you know, and pile onto what Lena was saying, it's not just that the developers are having input on a sort of company by company basis. Open source to me is like a checks and balance, where it allows us as a broader community to be able to agree on and enforce certain standards in order to try and keep the technology platforms as accessible as possible. I think Kubernetes is a great example of that, right. If we didn't have Kubernetes, that would've really changed the nature of how we think about container orchestration. But even before that, Linux, right. Linux allowed us as an industry to end the Unix Wars and as someone who was on the front lines of that as well and having to support 42 different operating systems with our product, you know, that was a huge win. And it allowed us to stop arguing about operating systems and start arguing about software or not arguing, but developing it in positive ways. So with, you know, with Kubernetes, with container orchestration, we all agree, okay, that's just how we're going to orchestrate. Now we can build up this huge ecosystem, everybody gets taken along, right. And now it changes the game for what we're defining as business differentials, right. And so when we talk about crypto, that's a little bit harder, but certainly with AI, right, you know, what are the checks and balances that as an industry and as the developers around this, that we can in, you know, enforce to make sure that no one company or no one body is able to overly control how these things are managed, how it's defined. And I think that is only for the benefit in the industry as a whole, particularly when we think about the only other option is it gets regulated in ways that do not involve the people who actually know the details of what they're talking about. >> Regulated and or thrown away or bankrupt or- >> Driven underground. >> Yeah. >> Which would be even worse actually. >> Yeah, that's a really interesting, the checks and balances. I love that call out. And I was just talking with another interview part of the series around women being represented in the 51% ratio. Software is for everybody. So that we believe that open source movement around the collective intelligence of the participants in the industry and independent of gender, this is going to be the next wave. You're starting to see these videos really have impact because there are a lot more leaders now at the table in companies developing software systems and with AI, the aperture increases for applications. And this is the new dynamic. What's your guys view on this dynamic? How does this go forward in a positive way? Is there a certain trajectory you see? For women in the industry? >> I mean, I think some of the states are trying to, again, from the government angle, some of the states are trying to force women into the boardroom, for example, California, which can be no bad thing, but I don't know, sometimes I feel a bit iffy about all this kind of forced- >> John: Yeah. >> You know, making, I don't even know how to say it properly so you can cut this part of the interview. (John laughs) >> Tara: Well, and I think that they're >> I'll say it's not organic. >> No, and I think they're already pulling it out, right. It's already been challenged so they're in the process- >> Well, this is the open source angle, Tara, you are getting at it. The change agent is open, right? So to me, the history of the proven model is openness drives transparency drives progress. >> No, it's- >> If you believe that to be true, this could have another impact. >> Yeah, it's so interesting, right. Because if you look at McKinsey Consulting or Boston Consulting or some of the other, I'm blocking on all of the names. There has been a decade or more of research that shows that a non homogeneous employee base, be it gender or ethnicity or whatever, generates more revenue, right? There's dollar signs that can be attached to this, but it's not enough for all companies to want to invest in that way. And it's not enough for all, you know, venture firms or investment firms to grant that seed money or do those seed rounds. I think it's getting better very slowly, but socialization is a much harder thing to overcome over time. Particularly, when you're not just talking about one country like the United States in our case, but around the world. You know, tech centers now exist all over the world, including places that even 10 years ago we might not have expected like Nairobi, right. Which I think is amazing, but you have to factor in the cultural implications of that as well, right. So yes, the openness is important and we have, it's important that we have those voices, but I don't think it's a panacea solution, right. It's just one more piece. I think honestly that one of the most important opportunities has been with Cloud computing and Cloud's been around for a while. So why would I say that? It's because if you think about like everybody holds up the Steve Jobs, Steve Wozniak, back in the '70s, or Sergey and Larry for Google, you know, you had to have access to enough credit card limit to go to Fry's and buy your servers and then access to somebody like Susan Wojcicki to borrow the garage or whatever. But there was still a certain amount of upfrontness that you had to be able to commit to, whereas now, and we've, I think, seen a really good evidence of this being able to lease server resources by the second and have development platforms that you can do on your phone. I mean, for a while I think Africa, that the majority of development happened on mobile devices because there wasn't a sufficient supply chain of laptops yet. And that's no longer true now as far as I know. But like the power that that enables for people who would otherwise be underrepresented in our industry instantly opens it up, right? And so to me that's I think probably the biggest opportunity that we've seen from an industry on how to make more availability in underrepresented representation for entrepreneurship. >> Yeah. >> Something like AI, I think that's actually going to take us backwards if we're not careful. >> Yeah. >> Because of we're reinforcing that socialization. >> Well, also the bias. A lot of people commenting on the biases of the large language inherently built in are also problem. Lena, I want you to weigh on this too, because I think the skills question comes up here and I've been advocating that you don't need the pedigree, college pedigree, to get into a certain jobs, you mentioned Cloud computing. I mean, it's been around for you think a long time, but not really, really think about it. The ability to level up, okay, if you're going to join something new and half the jobs in cybersecurity are created in the past year, right? So, you have this what used to be a barrier, your degree, your pedigree, your certification would take years, would be a blocker. Now that's gone. >> Lena: Yeah, it's the opposite. >> That's, in fact, psychology. >> I think so, but the people who I, by and large, who I interview for jobs, they have, I think security people and also I work with our compliance folks and I can't forget them, but let's talk about security just now. I've always found a particular kind of mindset with security folks. We're very curious, not very good at following rules a lot of the time, and we'd love to teach others. I mean, that's one of the big things stem from the start of my career. People were always interested in teaching and I was interested in learning. So it was perfect. And I think also having, you know, strong women leaders at MongoDB allows other underrepresented groups to actually apply to the company 'cause they see that we're kind of talking the talk. And that's been important. I think it's really important. You know, you've got Tara and I on here today. There's obviously other senior women at MongoDB that you can talk to as well. There's a bunch of us. There's not a whole ton of us, but there's a bunch of us. And it's good. It's definitely growing. I've been there for four years now and I've seen a growth in women in senior leadership positions. And I think having that kind of track record of getting really good quality underrepresented candidates to not just interview, but come and join us, it's seen. And it's seen in the industry and people take notice and they're like, "Oh, okay, well if that person's working, you know, if Tara Hernandez is working there, I'm going to apply for that." And that in itself I think can really, you know, reap the rewards. But it's getting started. It's like how do you get your first strong female into that position or your first strong underrepresented person into that position? It's hard. I get it. If it was easy, we would've sold already. >> It's like anything. I want to see people like me, my friends in there. Am I going to be alone? Am I going to be of a group? It's a group psychology. Why wouldn't? So getting it out there is key. Is there skills that you think that people should pay attention to? One's come up as curiosity, learning. What are some of the best practices for folks trying to get into the tech field or that's in the tech field and advancing through? What advice are you guys- >> I mean, yeah, definitely, what I say to my team is within my budget, we try and give every at least one training course a year. And there's so much free stuff out there as well. But, you know, keep learning. And even if it's not right in your wheelhouse, don't pick about it. Don't, you know, take a look at what else could be out there that could interest you and then go for it. You know, what does it take you few minutes each night to read a book on something that might change your entire career? You know, be enthusiastic about the opportunities out there. And there's so many opportunities in security. Just so many. >> Tara, what's your advice for folks out there? Tons of stuff to taste, taste test, try things. >> Absolutely. I mean, I always say, you know, my primary qualifications for people, I'm looking for them to be smart and motivated, right. Because the industry changes so quickly. What we're doing now versus what we did even last year versus five years ago, you know, is completely different though themes are certainly the same. You know, we still have to code and we still have to compile that code or package the code and ship the code so, you know, how well can we adapt to these new things instead of creating floppy disks, which was my first job. Five and a quarters, even. The big ones. >> That's old school, OG. There it is. Well done. >> And now it's, you know, containers, you know, (indistinct) image containers. And so, you know, I've gotten a lot of really great success hiring boot campers, you know, career transitioners. Because they bring a lot experience in addition to the technical skills. I think the most important thing is to experiment and figuring out what do you like, because, you know, maybe you are really into security or maybe you're really into like deep level coding and you want to go back, you know, try to go to school to get a degree where you would actually want that level of learning. Or maybe you're a front end engineer, you want to be full stacked. Like there's so many different things, data science, right. Maybe you want to go learn R right. You know, I think it's like figure out what you like because once you find that, that in turn is going to energize you 'cause you're going to feel motivated. I think the worst thing you could do is try to force yourself to learn something that you really could not care less about. That's just the worst. You're going in handicapped. >> Yeah and there's choices now versus when we were breaking into the business. It was like, okay, you software engineer. They call it software engineering, that's all it was. You were that or you were in sales. Like, you know, some sort of systems engineer or sales and now it's,- >> I had never heard of my job when I was in school, right. I didn't even know it was a possibility. But there's so many different types of technical roles, you know, absolutely. >> It's so exciting. I wish I was young again. >> One of the- >> Me too. (Lena laughs) >> I don't. I like the age I am. So one of the things that I did to kind of harness that curiosity is we've set up a security champions programs. About 120, I guess, volunteers globally. And these are people from all different backgrounds and all genders, diversity groups, underrepresented groups, we feel are now represented within this champions program. And people basically give up about an hour or two of their time each week, with their supervisors permission, and we basically teach them different things about security. And we've now had seven full-time people move from different areas within MongoDB into my team as a result of that program. So, you know, monetarily and time, yeah, saved us both. But also we're showing people that there is a path, you know, if you start off in Tara's team, for example, doing X, you join the champions program, you're like, "You know, I'd really like to get into red teaming. That would be so cool." If it fits, then we make that happen. And that has been really important for me, especially to give, you know, the women in the underrepresented groups within MongoDB just that window into something they might never have seen otherwise. >> That's a great common fit is fit matters. Also that getting access to what you fit is also access to either mentoring or sponsorship or some sort of, at least some navigation. Like what's out there and not being afraid to like, you know, just ask. >> Yeah, we just actually kicked off our big mentor program last week, so I'm the executive sponsor of that. I know Tara is part of it, which is fantastic. >> We'll put a plug in for it. Go ahead. >> Yeah, no, it's amazing. There's, gosh, I don't even know the numbers anymore, but there's a lot of people involved in this and so much so that we've had to set up mentoring groups rather than one-on-one. And I think it was 45% of the mentors are actually male, which is quite incredible for a program called Mentor Her. And then what we want to do in the future is actually create a program called Mentor Them so that it's not, you know, not just on the female and so that we can live other groups represented and, you know, kind of break down those groups a wee bit more and have some more granularity in the offering. >> Tara, talk about mentoring and sponsorship. Open source has been there for a long time. People help each other. It's community-oriented. What's your view of how to work with mentors and sponsors if someone's moving through ranks? >> You know, one of the things that was really interesting, unfortunately, in some of the earliest open source communities is there was a lot of pervasive misogyny to be perfectly honest. >> Yeah. >> And one of the important adaptations that we made as an open source community was the idea, an introduction of code of conducts. And so when I'm talking to women who are thinking about expanding their skills, I encourage them to join open source communities to have opportunity, even if they're not getting paid for it, you know, to develop their skills to work with people to get those code reviews, right. I'm like, "Whatever you join, make sure they have a code of conduct and a good leadership team. It's very important." And there are plenty, right. And then that idea has come into, you know, conferences now. So now conferences have codes of contact, if there are any good, and maybe not all of them, but most of them, right. And the ideas of expanding that idea of intentional healthy culture. >> John: Yeah. >> As a business goal and business differentiator. I mean, I won't lie, when I was recruited to come to MongoDB, the culture that I was able to discern through talking to people, in addition to seeing that there was actually women in senior leadership roles like Lena, like Kayla Nelson, that was a huge win. And so it just builds on momentum. And so now, you know, those of us who are in that are now representing. And so that kind of reinforces, but it's all ties together, right. As the open source world goes, particularly for a company like MongoDB, which has an open source product, you know, and our community builds. You know, it's a good thing to be mindful of for us, how we interact with the community and you know, because that could also become an opportunity for recruiting. >> John: Yeah. >> Right. So we, in addition to people who might become advocates on Mongo's behalf in their own company as a solution for themselves, so. >> You guys had great successful company and great leadership there. I mean, I can't tell you how many times someone's told me "MongoDB doesn't scale. It's going to be dead next year." I mean, I was going back 10 years. It's like, just keeps getting better and better. You guys do a great job. So it's so fun to see the success of developers. Really appreciate you guys coming on the program. Final question, what are you guys excited about to end the segment? We'll give you guys the last word. Lena will start with you and Tara, you can wrap us up. What are you excited about? >> I'm excited to see what this year brings. I think with ChatGPT and its copycats, I think it'll be a very interesting year when it comes to AI and always in the lookout for the authentic deep fakes that we see coming out. So just trying to make people aware that this is a real thing. It's not just pretend. And then of course, our old friend ransomware, let's see where that's going to go. >> John: Yeah. >> And let's see where we get to and just genuine hygiene and housekeeping when it comes to security. >> Excellent. Tara. >> Ah, well for us, you know, we're always constantly trying to up our game from a security perspective in the software development life cycle. But also, you know, what can we do? You know, one interesting application of AI that maybe Google doesn't like to talk about is it is really cool as an addendum to search and you know, how we might incorporate that as far as our learning environment and developer productivity, and how can we enable our developers to be more efficient, productive in their day-to-day work. So, I don't know, there's all kinds of opportunities that we're looking at for how we might improve that process here at MongoDB and then maybe be able to share it with the world. One of the things I love about working at MongoDB is we get to use our own products, right. And so being able to have this interesting document database in order to put information and then maybe apply some sort of AI to get it out again, is something that we may well be looking at, if not this year, then certainly in the coming year. >> Awesome. Lena Smart, the chief information security officer. Tara Hernandez, vice president developer of productivity from MongoDB. Thank you so much for sharing here on International Women's Day. We're going to do this quarterly every year. We're going to do it and then we're going to do quarterly updates. Thank you so much for being part of this program. >> Thank you. >> Thanks for having us. >> Okay, this is theCube's coverage of International Women's Day. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 6 2023

SUMMARY :

Thanks for coming in to this program MongoDB is kind of gone the I'm described as the ones throat to choke. Kind of goofing on the you know, and all the challenges that you faced the time if you were, We'll go back to that you know, I want to learn how these work. Tara, when, you know, your career started, you know, to me AI in a lot And so, you know, and the bad stuff's going to come out too. you know, understand you know, money involved and you know, it spits out And so I think, you know, you know, IEEE standards, ITF standards. The developers are the new standard. and you don't want to do and developers are on the And that was, you know, in many ways of the participants I don't even know how to say it properly No, and I think they're of the proven model is If you believe that that you can do on your phone. going to take us backwards Because of we're and half the jobs in cybersecurity And I think also having, you know, I going to be of a group? You know, what does it take you Tons of stuff to taste, you know, my primary There it is. And now it's, you know, containers, Like, you know, some sort you know, absolutely. I (Lena laughs) especially to give, you know, Also that getting access to so I'm the executive sponsor of that. We'll put a plug in for it. and so that we can live to work with mentors You know, one of the things And one of the important and you know, because So we, in addition to people and Tara, you can wrap us up. and always in the lookout for it comes to security. addendum to search and you know, We're going to do it and then we're I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Susan WojcickiPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

JimPERSON

0.99+

JasonPERSON

0.99+

Tara HernandezPERSON

0.99+

David FloyerPERSON

0.99+

DavePERSON

0.99+

Lena SmartPERSON

0.99+

John TroyerPERSON

0.99+

Mark PorterPERSON

0.99+

MellanoxORGANIZATION

0.99+

Kevin DeierlingPERSON

0.99+

Marty LansPERSON

0.99+

TaraPERSON

0.99+

JohnPERSON

0.99+

AWSORGANIZATION

0.99+

Jim JacksonPERSON

0.99+

Jason NewtonPERSON

0.99+

IBMORGANIZATION

0.99+

Daniel HernandezPERSON

0.99+

Dave WinokurPERSON

0.99+

DanielPERSON

0.99+

LenaPERSON

0.99+

Meg WhitmanPERSON

0.99+

TelcoORGANIZATION

0.99+

Julie SweetPERSON

0.99+

MartyPERSON

0.99+

Yaron HavivPERSON

0.99+

AmazonORGANIZATION

0.99+

Western DigitalORGANIZATION

0.99+

Kayla NelsonPERSON

0.99+

Mike PiechPERSON

0.99+

JeffPERSON

0.99+

Dave VolantePERSON

0.99+

John WallsPERSON

0.99+

Keith TownsendPERSON

0.99+

fiveQUANTITY

0.99+

IrelandLOCATION

0.99+

AntonioPERSON

0.99+

Daniel LauryPERSON

0.99+

Jeff FrickPERSON

0.99+

MicrosoftORGANIZATION

0.99+

sixQUANTITY

0.99+

Todd KerryPERSON

0.99+

John FurrierPERSON

0.99+

$20QUANTITY

0.99+

MikePERSON

0.99+

January 30thDATE

0.99+

MegPERSON

0.99+

Mark LittlePERSON

0.99+

Luke CerneyPERSON

0.99+

PeterPERSON

0.99+

Jeff BasilPERSON

0.99+

Stu MinimanPERSON

0.99+

DanPERSON

0.99+

10QUANTITY

0.99+

AllanPERSON

0.99+

40 gigQUANTITY

0.99+

Rachel Skaff, AWS | International Women's Day


 

(gentle music) >> Hello, and welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. I've got a great guest here, CUBE alumni and very impressive, inspiring, Rachel Mushahwar Skaff, who's a managing director and general manager at AWS. Rachel, great to see you. Thanks for coming on. >> Thank you so much. It's always a pleasure to be here. You all make such a tremendous impact with reporting out what's happening in the tech space, and frankly, investing in topics like this, so thank you. >> It's our pleasure. Your career has been really impressive. You worked at Intel for almost a decade, and that company is very tech, very focused on Moore's law, cadence of technology power in the industry. Now at AWS, powering next-generation cloud. What inspired you to get into tech? How did you get here and how have you approached your career journey, because it's quite a track record? >> Wow, how long do we have? (Rachel and John laugh) >> John: We can go as long as you want. (laughs) It's great. >> You know, all joking aside, I think at the end of the day, it's about this simple statement. If you don't get goosebumps every single morning that you're waking up to do your job, it's not good enough. And that's a bit about how I've made all of the different career transitions that I have. You know, everything from building out data centers around the world, to leading network and engineering teams, to leading applications teams, to going and working for, you know, the largest semiconductor in the world, and now at AWS, every single one of those opportunities gave me goosebumps. And I was really focused on how do I surround myself with humans that are better than I am, smarter than I am, companies that plan in decades, but live in moments, companies that invest in their employees and create like artists? And frankly, for me, being part of a company where people know that life is finite, but they want to make an infinite impact, that's a bit about my career journey in a nutshell. >> Yeah. What's interesting is that, you know, over the years, a lot's changed, and a theme that we're hearing from leaders now that are heading up large teams and running companies, they have, you know, they have 20-plus years of experience under their belt and they look back and they say, "Wow, "things have changed and it's changing faster now, "hopefully faster to get change." But they all talk about confidence and they talk about curiosity and building. When did you know that this was going to be something that you got the goosebumps? And were there blockers in your way and how did you handle that? (Rachel laughs) >> There's always blockers in our way, and I think a lot of people don't actually talk about the blockers. I think they make it sound like, hey, I had this plan from day one, and every decision I've made has been perfect. And for me, I'll tell you, right, there are moments in your life that mark a differentiation and those moments that you realize nothing will be the same. And time is kind of divided into two parts, right, before this moment and after this moment. And that's everything from, before I had kids, that's a pretty big moment in people's lives, to after I had kids, and how do you work through some of those opportunities? Before I got married, before I got divorced. Before I went to this company, after I left this company. And I think the key for all of those is just having an insatiable curiosity around how do you continue to do better, create better and make better? And I'll tell you, those blockers, they exist. Coming back from maternity leave, hard. Coming back from a medical leave, hard. Coming back from caring for a sick parent or a sick friend, hard. But all of those things start to help craft who you are as a human being, not as a leader, but as a human being, and allows you to have some empathy with the people that you surround yourself with, right? And for me, it's, (sighs) you can think about these blockers in one of two ways. You can think about it as, you know, every single time that you're tempted to react in the same way to a blocker, you can be a prisoner of your past, or you can change how you react and be a pioneer of the future. It's not a blocker when you think about it in those terms. >> Mindset matters, and that's really a great point. You brought up something that's interesting, I want to bring this up. Some of the challenges in different stages of our lives. You know, one thing that's come out of this set of interviews, this, of day and in conversations is, that I haven't heard before, is the result of COVID, working at home brought empathy about people's personal lives to the table. That came up in a couple interviews. What's your reaction to that? Because that highlights that we're human, to your point of view. >> It does. It does. And I'm so thankful that you don't ask about balance because that is a pet peeve of mine, because there is no such thing as balance. If you're in perfect balance, you are not moving and you're not changing. But when you think about, you know, the impact of COVID and how the world has changed since that, it has allowed all of us to really think about, you know, what do we want to do versus what do we have to do? And I think so many times, in both our professional lives and our personal lives, we get caught up in doing what we think we have to do to get ahead versus taking a step back and saying, "Hey, what do I want to do? "And how do I become a, you know, "a better human?" And many times, John, I'm asked, "Hey, "how do you define success or achievement?" And, you know, my answer is really, for me, the greatest results that I've achieved, both personally and professionally, is when I eliminate the word success and balance from my vocabulary, and replace them with two words: What's my contribution and what's my impact? Those things make a difference, regardless of gender. And I'll tell you, none of it is easy, ever. I think all of us have been broken, we've been stretched, we've been burnt out. But I also think what we have to talk about as leaders in the industry is how we've also found endurance and resilience. And when we felt unsteady, we've continued to go forward, right? When we can't decide, the best answer is do what's uncomfortable. And all of those things really stemmed from a part of what happened with COVID. >> Yeah, yeah, I love the uncomfortable and the balance highlight. You mentioned being off balance. That means you're growing, you're not standing still. I want to get your thoughts on this because one thing that has come out again this year, and last year as well, is having a team with you when you do it. So if you're off balance and you're going to stretch, if you have a good team with you, that's where people help each other. Not just pick them up, but like maybe get 'em back on track again. So, but if you're solo, you fall, (laughs) you fall harder. So what's your reaction to that? 'Cause this has come up, and this comes up in team building, workforce formation, goal setting, contribution. What's your reaction to that? >> So my reaction to that that is pretty simple. Nobody gets there on their own at all, right? Passion and ambition can only take you so far. You've got to have people and teams that are supporting you. And here's the funny thing about people, and frankly, about being a leader that I think is really important: People don't follow for you. People follow for who you help them become. Think about that for a second. And when you think about all the amazing things that companies and teams are able to do, it's because of those people. And it's because you have leaders that are out there, inspiring them to take what they believe is impossible and turn it into the possible. That's the power of teams. >> Can you give an example of your approach on how you do that? How do you build your teams? How do you grow them? How do you lead them effectively and also make 'em inclusive, diverse and equitable? >> Whew. I'll give you a great example of some work that we're doing at AWS. This year at re:Invent, for the first time in its history, we've launched an initiative with theCUBE called Women of the Cloud. And part of Women of the Cloud is highlighting the business impact that so many of our partners, our customers and our employees have had on the social, on the economic and on the financials of many companies. They just haven't had the opportunity to tell their story. And at Amazon, right, it is absolutely integral to us to highlight those examples and continue to extend that ethos to our partners and our customers. And I think one of the things that I shared with you at re:Invent was, you know, as U2's Bono put it, (John laughs) "We'll build it better than we did before "and we are the people "that we've been waiting for." So if we're not out there, advocating and highlighting all the amazing things that other women are doing in the ecosystem, who will? >> Well, I've got to say, I want to give you props for that program. Not only was it groundbreaking, it's still running strong. And I saw some things on LinkedIn that were really impressive in its network effect. And I met at least half a dozen new people I never would have met before through some of that content interaction and engagement. And this is like the power of the current world. I mean, getting the voices out there creates momentum. And it's good for Amazon. It's not just personal brand building for my next job or whatever, you know, reason. It's sharing and it's attracting others, and it's causing people to connect and meet each other in that world. So it's still going strong. (laughs) And this program we did last year was part of Rachel Thornton, who's now at MessageBird, and Mary Camarata. They were the sponsors for this International Women's Day. They're not there anymore, so we decided we're going to do it again because the impact is so significant. We had the Amazon Education group on. It's amazing and it's free, and we've got to get the word out. I mean, talk about leveling up fast. You get in and you get trained and get certified, and there's a zillion jobs out (laughs) there in cloud, right, and partners. So this kind of leadership is really important. What was the key learnings that you've taken away and how do you extend this opportunity to nurture the talent out there in the field? Because when you throw the content out there from great leaders and practitioners and developers, it attracts other people. >> It does. It does. So look, I think there's two types of people, people that are focused on being and people who are focused on doing. And let me give you an example, right? When we think about labels of, hey, Rachel's a female executive who launched Women of the Cloud, that label really limits me. I'd rather just be a great executive. Or, hey, there's a great entrepreneur. Let's not be a great entrepreneur. Just go build something and sell it. And that's part of this whole Women of the cloud, is I don't want people focused on what their label is. I want people sharing their stories about what they're doing, and that's where the lasting impact happens, right? I think about something that my grandmother used to tell me, and she used to tell me, "Rachel, how successful "you are, doesn't matter. "The lasting impact that you have "is your legacy in this very finite time "that you have on Earth. "Leave a legacy." And that's what Women of the Cloud is about. So that people can start to say, "Oh, geez, "I didn't know that that was possible. "I didn't think about my career in that way." And, you know, all of those different types of stories that you're hearing out there. >> And I want to highlight something you said. We had another Amazonian on the program for this day earlier and she coined a term, 'cause inside Amazon, you have common language. One of them is bar raising. Raise the bar, that's an Amazonian (Rachel laughs) term. It means contribute and improve and raise the bar of capability. She said, "Bar raising is gender neutral. "The bar is a bar." And I'm like, wow, that was amazing. Now, that means your contribution angle there highlights that. What's the biggest challenge to get that mindset set in culture, in these- >> Oh. >> 'Cause it's that simple, contribution is neutral. >> It absolutely is neutral, but it's like I said earlier, I think so many times, people are focused on success and being a great leader versus what's the contribution I'm making and how am I doing as a leader, you know? And when it comes to a lot of the leadership principles that Amazon has, including bar raising, which means insisting on the highest standards, and then those standards continue to raise every single time. And what that is all about is having all of our employees figure out, how do I get better every single day, right? That's what it's about. It's not about being better than the peer next to you. It's about how do I become a better leader, a better human being than I was yesterday? >> Awesome. >> You know, I read this really cute quote and I think it really resonates. "You meditate to upgrade your software "and you work out to upgrade your hardware." And while it's important that we're all ourselves at work, we can't deny that a lot of times, ourselves still need that meditation or that workout. >> Well, I hope I don't have any zero days in my software out there, so, but I'm going to definitely work on that. I love that quote. I'm going to use that. Thank you very much. That was awesome. I got to ask you, I know you're really passionate about, and we've talked about this, around, so you're a great leader but you're also focused on what's behind you in the generation, pipelining women leaders, okay? Seats at the table, mentoring and sponsorship. What can we do to build a strong pipeline of leaders in technology and business? And where do you see the biggest opportunity to nurture the talent in these fields? >> Hmm, you know, that's great, great question. And, you know, I just read a "Forbes" article by another Amazonian, Tanuja Randery, who talked about, you know, some really interesting stats. And one of the stats that she shared was, you know, by 2030, less than 25% of tech specialists will be female, less than 25%. That's only a 6% growth from where we are in 2023, so in seven years. That's alarming. So we've really got to figure out what are the kinds of things that we're going to go do from an Amazon perspective to impact that? And one of the obvious starting points is showcasing tech careers to girls and young women, and talking openly about what a technology career looks like. So specifically at Amazon, we've got an AWS Git IT program that helps schools and educators bring in tech role models to show them what potential careers look like in tech. I think that's one great way that we can help build the pipeline, but once we get the pipeline, we also have to figure out how we don't let that pipeline leak. Meaning how do we keep women and, you know, young women on their tech career? And I think big part of that, John, is really talking about how hard it is, but it's also greater than you can ever imagine. And letting them see executives that are very authentic and will talk about, geez, you know, the challenges of COVID were a time of crisis and accelerated change, and here's what it meant to me personally and here's what we were able to solve professionally. These younger generations are all about social impact, they're about economic impact and they're about financial impact. And if we're not talking about all three of those, both from how AWS is leading from the front, but how its executives are also taking that into their personal lives, they're not going to want to go into tech. >> Yeah, and I think one of the things you mentioned there about getting people that get IT, good call out there, but also, Amazon's going to train 30 million people, put hundreds of millions of dollars into education. And not only are they making it easier to get in to get trained, but once you're in, even savvy folks that are in there still have to accelerate. And there's more ways to level up, more things are happening, but there's a big trend around people changing careers either in their late 20s, early 30s, or even those moments you talk about, where it's before and after, even later in the careers, 40s, 50s. Leaders like, well, good experience, good training, who were in another discipline who re-skilled. So you have, you know, more certifications coming in. So there's still other pivot points in the pipeline. It's not just down here. And that, I find that interesting. Are you seeing that same leadership opportunities coming in where someone can come into tech older? >> Absolutely. You know, we've got some amazing programs, like Amazon Returnity, that really focuses on how do we get other, you know, how do we get women that have taken some time off of work to get back into the workforce? And here's the other thing about switching careers. If I look back on my career, I started out as a civil engineer, heavy highway construction. And now I lead a sales team at the largest cloud company in the world. And there were, you know, twists and turns around there. I've always focused on how do we change and how do we continue to evolve? So it's not just focused on, you know, young women in the pipeline. It's focused on all gender and all diverse types throughout their career, and making sure that we're providing an inclusive environment for them to bring in their unique skillsets. >> Yeah, a building has good steel. It's well structured. Roads have great foundations. You know, you got the builder in you there. >> Yes. >> So I have to ask you, what's on your mind as a tech athlete, as an executive at AWS? You know, you got your huge team, big goals, the economy's got a little bit of a headwind, but still, cloud's transforming, edge is exploding. What's your outlook as you look out in the tech landscape these days and how are you thinking about it? What your plans? Can you share a little bit about what's on your mind? >> Sure. So, geez, there's so many trends that are top of mind right now. Everything from zero trust to artificial intelligence to security. We have more access to data now than ever before. So the opportunities are limitless when we think about how we can apply technology to solve some really difficult customer problems, right? Innovation sometimes feels like it's happening at a rapid pace. And I also say, you know, there are years when nothing happens, and then there's years when centuries happen. And I feel like we're kind of in those years where centuries are happening. Cloud technologies are refining sports as we know them now. There's a surge of innovation in smart energy. Everyone's supply chain is looking to transform. Custom silicon is going mainstream. And frankly, AWS's customers and partners are expecting us to come to them with a point of view on trends and on opportunities. And that's what differentiates us. (John laughs) That's what gives me goosebumps- >> I was just going to ask you that. Does that give you goosebumps? How could you not love technology with that excitement? I mean, AI, throw in AI, too. I just talked to Swami, who heads up the AI and database, and we just talked about the past 24 months, the change. And that is a century moment happening. The large language models, computer vision, more compute. Compute's booming than ever before. Who thought that was going to happen, is still happening? Massive change. So, I mean, if you're in tech, how can you not love tech? >> I know, even if you're not in tech, I think you've got to start to love tech because it gives you access to things you've never had before. And frankly, right, change is the only constant. And if you don't like change, you're going to like being irrelevant even less than you like change. So we've got to be nimble, we've got to adapt. And here's the great thing, once we figure it out, it changes all over again. And it's not something that's easy for any of us to operate. It's hard, right? It's hard learning new technology, it's hard figuring out what do I do next? But here's the secret. I think it's hard because we're doing it right. It's not hard because we're doing it wrong. It's just hard to be human and it's hard to figure out how we apply all this different technology in a way that positively impacts us, you know, economically, financially, environmentally and socially. >> And everyone's different, too. So you got to live those (mumbles). I want to get one more question in before we, my last question, which is about you and your impact. When you talk to your team, your sales, you got a large sales team, North America. And Tanuja, who you mentioned, is in EMEA, we're going to speak with her as well. You guys lead the front lines, helping customers, but also delivering the revenue to the company, which has been fantastic, by the way. So what's your message to the troops and the team out there? When you say, "Take that hill," like what is the motivational pitch, in a few sentences? What's the main North Star message in today's marketplace when you're doing that big team meeting? >> I don't know if it's just limited to a team meeting. I think this is a universal message, and the universal message for me is find your edge, whatever that may be. Whether it is the edge of what you know about artificial intelligence and neural networks or it's the edge of how do we migrate our applications to the cloud more quickly. Or it's the edge of, oh, my gosh, how do I be a better parent and still be great at work, right? Find your edge, and then sharpen it. Go to the brink of what you think is possible, and then force yourself to jump. Get involved. The world is run by the people that show up, professionally and personally. (John laughs) So show up and get started. >> Yeah as Steve Jobs once said, "The future "that everyone looks at was created "by people no smarter than you." And I love that quote. That's really there. Final question for you. I know we're tight on time, but I want to get this in. When you think about your impact on your company, AWS, and the industry, what's something you want people to remember? >> Oh, geez. I think what I want people to remember the most is it's not about what you've said, and this is a Maya Angelou quote. "It's not about what you've said to people "or what you've done, "it's about how you've made them feel." And we can all think back on leaders or we can all think back on personal moments in our lives where we felt like we belonged, where we felt like we did something amazing, where we felt loved. And those are the moments that sit with us for the rest of our lives. I want people to remember how they felt when they were part of something bigger. I want people to belong. It shouldn't be uncommon to talk about feelings at work. So I want people to feel. >> Rachel, thank you for your time. I know you're really busy and we stretched you a little bit there. Thank you so much for contributing to this wonderful day of great leaders sharing their stories. And you're an inspiration. Thanks for everything you do. We appreciate you. >> Thank you. And let's go do some more Women of the Cloud videos. >> We (laughs) got more coming. Bring those stories on. Back up the story truck. We're ready to go. Thanks so much. >> That's good. >> Thank you. >> Okay, this is theCUBE's coverage of International Women's Day. It's not just going to be March 8th. That's the big celebration day. It's going to be every quarter, more stories coming. Stay tuned at siliconangle.com and thecube.net here, with bringing all the stories. I'm John Furrier, your host. Thanks for watching. (gentle music)

Published Date : Mar 6 2023

SUMMARY :

and very impressive, inspiring, Thank you so much. and how have you approached long as you want. to going and working for, you know, and how did you handle that? and how do you work through Some of the challenges in And I'm so thankful that you don't ask and the balance highlight. And it's because you have leaders that I shared with you at re:Invent and how do you extend this opportunity And let me give you an example, right? and raise the bar of capability. contribution is neutral. than the peer next to you. "and you work out to And where do you see And one of the stats that she shared the things you mentioned there And there were, you know, twists You know, you got the and how are you thinking about it? And I also say, you know, I was just going to ask you that. And if you don't like change, And Tanuja, who you mentioned, is in EMEA, of what you know about And I love that quote. And we can all think back on leaders Rachel, thank you for your time. Women of the Cloud videos. We're ready to go. It's not just going to be March 8th.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
TelcoORGANIZATION

0.99+

RachelPERSON

0.99+

Tim CookPERSON

0.99+

Jeff FrickPERSON

0.99+

TelcosORGANIZATION

0.99+

Tanuja RanderyPERSON

0.99+

Rachel ThorntonPERSON

0.99+

AmazonORGANIZATION

0.99+

NayakiPERSON

0.99+

SanjayPERSON

0.99+

Peter BurrisPERSON

0.99+

2014DATE

0.99+

FordORGANIZATION

0.99+

TanujaPERSON

0.99+

Rachel SkaffPERSON

0.99+

Todd SkidmorePERSON

0.99+

NokiaORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

JohnPERSON

0.99+

AustraliaLOCATION

0.99+

FacebookORGANIZATION

0.99+

Bob StefanskiPERSON

0.99+

Steve JobsPERSON

0.99+

Tom JoycePERSON

0.99+

Lisa MartinPERSON

0.99+

Laura CooneyPERSON

0.99+

John FurrierPERSON

0.99+

ToddPERSON

0.99+

AWSORGANIZATION

0.99+

2011DATE

0.99+

Mary CamarataPERSON

0.99+

Meg WhitmanPERSON

0.99+

IBMORGANIZATION

0.99+

TeslaORGANIZATION

0.99+

BlackberryORGANIZATION

0.99+

Coca-ColaORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

Sanjay SrivastavaPERSON

0.99+

Silicon ValleyLOCATION

0.99+

BMC SoftwareORGANIZATION

0.99+

U.S.LOCATION

0.99+

SiriTITLE

0.99+

BMCORGANIZATION

0.99+

HPORGANIZATION

0.99+

MotorolaORGANIZATION

0.99+

JeffPERSON

0.99+

SamsungORGANIZATION

0.99+

Mihir ShuklaPERSON

0.99+

2023DATE

0.99+

Nayaki NayyarPERSON

0.99+

AppleORGANIZATION

0.99+

Rachel Mushahwar SkaffPERSON

0.99+

6%QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Share A CokeORGANIZATION

0.99+

Krista Satterthwaite | International Women's Day


 

(upbeat music) >> Hello, welcome to the Cube's coverage of International Women's Day 2023. I'm John Furrier, host of the CUBE series of profiles around leaders in the tech industry sharing their stories, advice, best practices, what they're doing in their jobs their vision of the future, and more importantly, passing it on and encouraging more and more networking and telling the stories that matter. Our next guest is a great executive leader talking about how to lead in challenging times. Krista Satterthwaite, who is Senior Vice President and GM of Mainstream Compute. Krista great to see you're Cube alumni. We've had you on before talking about compute power. And by the way, congratulations on your BPT and Black Professional Tech Network 2023 Black Tech Exec of the Year Award. >> Thank you very much. Appreciate it. And thanks for having me. >> I knew I liked you the first time we were doing interviews together. You were so smart and so on top of it. Thanks for coming on. >> No problem. >> All kidding aside, let's get into it. You know, one of the things that's coming out on these interviews is leadership is being showcased and there's a network effect happening in the industry and you're starting to see people look and hear stories that they may or may not have heard before or news stories are coming out. So, one of the things that's interesting is that also in the backdrop of post pandemic, there's been a turn in the industry a little bit, there's a little bit of headwind in certain areas, some tailwinds in cloud and other areas. Compute, your area is doing very well. It could be challenging. And as a leader, has the conversation changed? And where are you at right now in the network of folks you're working with? What's the mood? >> Yeah, so actually I, things are much better. Obviously we had a chip shortage last year. Things are much, much better. But I learned a lot when it came to going through challenging times and leadership. And I think when we talk to customers, a lot of 'em are in challenging situations. Sometimes it's budget, sometimes it's attracting and retaining talent and sometimes it's just demands because, it's really exciting that technology is behind everything. But that means the demands on IT are bigger than ever before. So what I find when it comes to challenging times is that there's really three qualities that are game changers when it comes to leading and challenging times. And the first one is positivity. People have to feel like there's a light at the end of the tunnel to make sure that, their attitudes stay up, that they stay working really really hard and they look to the leader for that. The second one is communication. And I read somewhere that communication is leadership. And we had a great example from our CEO Antonio Neri when the pandemic hit and everything shut down. He had an all employee meeting every week for a month and we have tens of thousands of employees. And then even after that month, we had 'em very regularly. But he wanted to make sure that everybody heard from, him his thoughts had all the updates, knew how their peers were doing, how we were helping customers. And I really learned a lot from that in terms of communicating and communicating more during tough times. And then I would say the third one is making sure that they are informed and they feel empowered. So I would say a leader who is able to do that really, really stands out in a challenging time. >> So how do you get yourself together? Obviously you the chip shortage everyone knows in the industry and for the folks not in the tech industry, it was an economic potential disaster, because you don't get the chips you need. You guys make servers and technology, chips power everything. If you miss a shipment, it could cause a lot of backlash. So Cisco had an earnings impact. It has impact to the business. When do you have that code red moment where it's like, okay, we have to kind of put the pause and go into emergency mode. And how do you handle that? >> Well, you know, it is funny 'cause when it, when we have challenges, I come to learn that people can look at challenges and hard work as a burden or a mission and they behave totally different. If they see it as a burden, then they're doing the bare minimum and they're pointing fingers and they're complaining and they're probably not getting a whole lot done. If they see it as a mission, then all of a sudden they're going above and beyond. They're working really hard, they're really partnering. And if it affects customers for HPE, obviously we, HPE is a very customer centric company, so everyone pays attention and tries to pitch in. But when it comes to a mission, I started thinking, what are the real ingredients for a mission? And I think it's important. I think it's, people feel like they can make an impact. And then I think the third one is that the goal is clear, even if the path isn't, 'cause you may have to pivot a lot if it's a challenge. And so when it came to the chip shortage, it was a mission. We wanted to make sure that we could ship to customers as quickly as possible. And it was a mission. Everybody pulled together. I learned how much our team could pull off and pull together through that challenge. >> And the consequences can be quantified in economics. So it's like the burn the boats example, you got to burn the boats, you're stuck. You got to figure out a solution. How does that change the demands on people? Because this is, okay, there's a mission it they're not, it's not normal. What are some of those new demands that arise during those times and how do you manage that? How do you be a leader? >> Yeah, so it's funny, I was reading this statement from James White who used to be the CEO of Jamba Juice. And he was talking about how he got that job. He said, "I think it was one thing I said that really convinced them that I was the right person." And what he said was something like, "I will get more out of people than nine out of 10 leaders on the planet." He said, "Because I will look at their strengths and their capabilities and I will play to their passions." and their capabilities and I will play their passions. and getting the most out people in difficult times, it is all about how much you can get out of people for their own sake and for the company's sake. >> That's great feedback. And to people watching who are early in their careers, leading is getting the best out of your team, attitude. Some of the things you mentioned. What advice would you give folks that are starting to get into the workforce, that are starting to get into that leadership track or might have a trajectory or even might have an innate ability that they know they have and they want to pursue that dream? >> Yeah so. >> What advice would you give them? >> Yeah, what I would say, I say this all the time that, for the first half of my career I was very job conscious, but I wasn't very career conscious. So I'd get in a role and I'd stay in that role for long periods of time and I'd do a good job, but I wasn't really very career conscious. And what I would say is, everybody says how important risk taking is. Well, risk taking can be a little bit of a scary word, right? Or term. And the way I see it is give it a shot and see what happens. You're interested in something, give it a shot and see what happens. It's kind of a less intimidating way of looking at risk because even though I was job conscious, and not career conscious, one thing I did when people asked me to take something on, hey Krista, would you like to take on more responsibility here? The answer was always yes, yes, yes, yes. So I said yes because I said, hey I'll give it a shot and see what happens. And that helped me tremendously because I felt like I am giving it a try. And the more you do that, the the better it is. >> It's great. >> And actually the the less scary it is because you do that, a few times and it goes well. It's like a muscle that builds. >> It's funny, a woman executive was on the program. I said, the word balance comes up a lot. And she stopped and said, "Let's just talk about balance for a second." And then she went contrarian and said, "It's about not being unbalanced. It's about being, taking a chance and being a little bit off balance to put yourself outside your comfort zone to try new things." And then she also came up and followed and said, "If you do that alone, you increase your risk. But if you do it with people, a team that you trust and you're authentic and you're vulnerable and you're communicating, that is the chemistry." And that was a really good point. What's your reaction? 'Cause you were talking about authentic conversations good communications with Antonio. How does someone get, feel, find that team and do you agree with it? And what was your, how would you react to that? >> Yes, I agree with that. And when it comes to being authentic, that's the magic and when someone isn't, if someone's not really being themselves, it's really funny because you can feel it, you can sense it. There's kind of a wall between you and them. And over time people won't be able to put their finger on it, but they'll feel a distance from you. But when you're authentic and you share who you are, what you find is you find things in common with other people. 'Cause you're sharing more of who you are and it's like, oh, I do that too. Oh, I'm interested in that too. And build the bonds between people and the authenticity. And that's what people crave. They want people to be authentic and people can tell when you're authentic and when you're not. >> Is managing and leading through a crisis a born talent or can you learn it? >> Oh, definitely learned. I think that we're born knowing nothing and I once read people are nurtured into greatness and I think that's true. So yeah, definitely learned. >> What are some examples that can come out of a tough time as folks may look at a crisis and be shy away from it? How do they lean into it? What advice would you give folks? How do you handle it? I mean, everyone's got different personality. Okay, they get to a position but stepping through that door. >> Yeah, well, I do this presentation called, "10 things I Wish I Knew Earlier in my Career." And one of those things is about the growth mindset and the growth mindset. There's a book called "Mindset" by Carol Dweck and the growth mindset is all about learning and not always having to know everything, but really the winning is in the learning. And so if you have a growth mindset it makes you feel better about everything because you can't lose. You're winning because you're learning. So when I've learned that, I started looking at things much differently. And when it comes to going through tough times, what I find is you're exercising muscles that you didn't even know you had, which makes you stronger when the crisis is over, obviously. And I also feel like you become a lot a much more creative when you're in challenging times. You're forced to do things that you hadn't had to do before. And it also bonds the team. It's almost like going through bootcamp together. When you go through a challenge together it bonds you for life. >> I mean, you could have bonding, could be trauma bonding or success bonding. People love to be on the success side because that's positive and that's really the key mindset. You're always winning if you have that attitude. And learnings is also positive. So it's not, it's never a failure unless you make it. >> That's right, exactly. As long as you learn from it. And that's the name of the game. So, learning is the goal. >> So I have to ask you, on your job now, you have a really big responsibility HPE compute and big division. What's the current mindset that you have right now in your career, where you're at? What are some of the things on your mind that you think about? We had other, other seniors leaders say, hey, you know I got the software as my brain and the hardware's my body. I like to keep software and hardware working together. What is your current state of your career and how you looking at it, what's next and what's going on in your mind right now? >> Yeah, so for me, I really want to make sure that for my team we're nurturing the next generation of leadership and that we're helping with career development and career growth. And people feel like they can grow their careers here. Luckily at HPE, we have a lot of people stay at HPE a long time, and even people who leave HPE a lot of times they come back because the culture's fantastic. So I just want to make sure I'm contributing to that culture and I'm bringing up the next generation of leaders. >> What's next for you? What are you looking at from a career personal standpoint? >> You know, it's funny, I, I love what I'm doing right now. I'm actually on a joint venture board with H3C, which is HPE Joint Venture Company. And so I'm really enjoying that and exploring more board service opportunities. >> You have a focus of good growth mindset, challenging through, managing through tough times. How do you stay focused on that North star? How do you keep the reinforcement of the mission? How do you nurture the team to greatness? >> Yeah, so I think it's a lot of clarity, providing a lot of clarity about what's important right now. And it goes back to some of the communication that I mentioned earlier, making sure that everybody knows where the North Star is, so everybody's focused on the same thing, because I feel like with the, I always felt like throughout my career I was set up for success if I had the right information, the right guidance and the right goals. And I try to make sure that I do that with my team. >> What are some of the things that you could share as we wrap up here for the folks watching, as the networks increase, as the stories start to unfold more and more on digital like we're doing here, what do you hope people walk away with? What's working, what needs work, and what is some things that people aren't talking about that should be discussed publicly? >> Do you mean from a career standpoint or? >> For career? For growing into tech and into leadership positions. >> Okay. >> Big migration tech is now a wide field. I mean, when I grew up, broke into the eighties, it was computer science, software engineering, and three degrees in engineering, right? >> I see huge swath of AI coming. So many technical careers. There's a lot more women. >> Yeah. And that's what's so exciting about being in a technical career, technical company, is that everything's always changing. There's always opportunity to learn something new. And frankly, you know, every company is in the business of technology right now, because they want to closer to their customers. Typically, they're using technology to do that. Everyone's digitally transforming. And so what I would say is that there's so much opportunity, keep your mind open, explore what interests you and keep learning because it's changing all the time. >> You know I was talking with Sue, former HP, she's on a lot of boards. The balance at the board level still needs a lot of work and the leaderships are getting better, but the board at the seats at the table needs work. Where do you see that transition for you in the future? Is that something on your mind? Maybe a board seat? You mentioned you're on a board with HPE, but maybe sitting on some other boards? Any, any? >> Yes, actually, actually, we actually have a program here at HPE called the Board Ready Now program that I'm a part of. And so HPE is very supportive of me exploring an independent board seat. And so they have some education and programming around that. And I know Sue well, she's awesome. And so yes, I'm looking into those opportunities right now. >> She advises do one no more than two. The day job. >> Yeah, I would only be doing one current job that I have. >> Well, kris, it was great to chat with you about these topics and leadership and challenging times. Great masterclass, great advice. As SVP and GM of mainstream compute for HPE, what's going on in your job these days? What's the most exciting thing happening? Share some of your work situations. >> Sure, so the most exciting thing happening right now is HPE Gen 11, which we just announced and started shipping, brings tremendous performance benefit, has an intuitive operating experience, a trusted security by design, and it's optimized to run workloads so much faster. So if anybody is interested, they should go check it out on hpe.com. >> And of course the CUBE will be at HPE Discover. We'll see you there. Any final wisdom you'd like to share as we wrap up the last minute here? >> Yeah, so I think the last thing I'll say is that when it comes to setting your sights, I think, expecting it, good things to happen usually happens when you believe you deserve it. So what happens is you believe you deserve it, then you expect it and you get it. And so sometimes that's about making sure you raise your thermostat to expect more. And I always talk about you don't have to raise it all up at once. You could do that incrementally and other people can set your thermostat too when they say, hey, you should be, you should get a level this high or that high, but raise your thermostat because what you expect is what you get. >> Krista, thank you so much for contributing to this program. We're going to do it quarterly. We're going to do getting more stories out there, so we'll have you back and if you know anyone with good stories, send them our way. And congratulations on your BPTN Tech Executive of the Year award for 2023. Congratulations, great prize there and great recognition for your hard work. >> Thank you so much, John, I appreciate it. >> Okay, this is the Cube's coverage of National Woodman's Day. I'm John Furrier, stories from the front lines, management ranks, developers, all there, global coverage of international events with theCUBE. Thanks for watching. (soft music)

Published Date : Mar 3 2023

SUMMARY :

And by the way, Thank you very much. I knew I liked you And where are you at right now And the first one is positivity. And how do you handle that? that the goal is clear, And the consequences can and for the company's sake. Some of the things you mentioned. And the more you do that, And actually the the less scary it is find that team and do you agree with it? and you share who you are, and I once read What advice would you give folks? And I also feel like you become a lot I mean, you could have And that's the name of the game. that you have right now of leadership and that we're helping And so I'm really enjoying that How do you nurture the team to greatness? of the communication For growing into tech and broke into the eighties, I see huge swath of AI coming. And frankly, you know, every company is Where do you see that transition And so they have some education She advises do one no more than two. one current job that I have. great to chat with you Sure, so the most exciting And of course the CUBE So what happens is you and if you know anyone with Thank you so much, from the front lines,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
NutanixORGANIZATION

0.99+

Western DigitalORGANIZATION

0.99+

JohnPERSON

0.99+

DavidPERSON

0.99+

KristaPERSON

0.99+

Bernie HannonPERSON

0.99+

Jeff FrickPERSON

0.99+

BerniePERSON

0.99+

H3CORGANIZATION

0.99+

CitrixORGANIZATION

0.99+

September of 2015DATE

0.99+

Dave TangPERSON

0.99+

Krista SatterthwaitePERSON

0.99+

SanDiskORGANIZATION

0.99+

MartinPERSON

0.99+

James WhitePERSON

0.99+

SuePERSON

0.99+

CiscoORGANIZATION

0.99+

Carol DweckPERSON

0.99+

Martin FinkPERSON

0.99+

JeffPERSON

0.99+

HPEORGANIZATION

0.99+

twoQUANTITY

0.99+

Stu MinimanPERSON

0.99+

DavePERSON

0.99+

Dave allantePERSON

0.99+

John FurrierPERSON

0.99+

RaghuPERSON

0.99+

Raghu NandanPERSON

0.99+

Palo AltoLOCATION

0.99+

threeQUANTITY

0.99+

Lee CaswellPERSON

0.99+

HPORGANIZATION

0.99+

Antonio NeriPERSON

0.99+

five yearsQUANTITY

0.99+

three-monthQUANTITY

0.99+

four-yearQUANTITY

0.99+

one minuteQUANTITY

0.99+

GaryPERSON

0.99+

AntonioPERSON

0.99+

Feb 2018DATE

0.99+

2023DATE

0.99+

seven dollarsQUANTITY

0.99+

three monthsQUANTITY

0.99+

Arm HoldingsORGANIZATION

0.99+

firstQUANTITY

0.99+

Sue Barsamian | International Women's Day


 

(upbeat music) >> Hi, everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE. As part of International Women's Day, we're featuring some of the leading women in business technology from developer to all types of titles and to the executive level. And one topic that's really important is called Getting a Seat at the Table, board makeup, having representation at corporate boards, private and public companies. It's been a big push. And former technology operating executive and corporate board member, she's a board machine Sue Barsamian, formerly with HPE, Hewlett Packard. Sue, great to see you. CUBE alumni, distinguished CUBE alumni. Thank you for coming on. >> Yes, I'm very proud of my CUBE alumni title. >> I'm sure it opens a lot of doors for you. (Sue laughing) We're psyched to have you on. This is a really important topic, and I want to get into the whole, as women advance up, and they're sitting on the boards, they can implement policy and there's governance. Obviously public companies have very strict oversight, and not strict, but like formal. Private boards have to operate, be nimble. They don't have to share all their results. But still, boards play an important role in the success of scaled up companies. So super important, that representation there is key. >> Yes. >> I want to get into that, but first, before we get started, how did you get into tech? How did it all start for you? >> Yeah, long time ago, I was an electrical engineering major. Came out in 1981 when, you know, opportunities for engineering, if you were kind, I went to Kansas State as an undergrad, and basically in those days you went to Texas and did semiconductors. You went to Atlanta and did communication satellites. You went to Boston or you went to Silicon Valley. And for me, that wasn't too hard a choice. I ended up going west and really, I guess what, embarked on a 40 year career in Silicon Valley and absolutely loved it. Largely software, but some time on the hardware side. Started out in networking, but largely software. And then, you know, four years ago transitioned to my next chapter, which is the corporate board director. And again, focused on technology software and cybersecurity boards. >> For the folks watching, we'll cut through another segment we can probably do about your operating career, but you rose through the ranks and became a senior operating executive at the biggest companies in the world. Hewlett Packard Enterprise, Hewlett Packard Enterprise and others. Very great career, okay. And so now you're kind of like, put that on pause, and you're moving on to the next chapter, which is being a board director. What inspired you to be a board director for multiple public companies and multiple private companies? Well, how many companies are you on? But what's the inspiration? What's the inspiration? First tell me how many board ships you're on, board seats you're on, and then what inspired you to become a board director? >> Yeah, so I'm on three public, and you are limited in terms of the number of publics that you can do to four. So I'm on three public, and I'm on four private from a tech perspective. And those range from, you know, a $4 billion in revenue public company down to a 35 person private company. So I've got the whole range. >> So you're like freelancing, I mean, what is it like? It's a full-time job, obviously. It's a lot of work involved. >> Yeah, yeah, it's. >> John: Why are you doing it? >> Well, you know, so I retired from being an operating executive after 37 years. And, but I loved, I mean, it's tough, right? It's tough these days, particularly with all the pressures out there in the market, not to mention the pandemic, et cetera. But I loved it. I loved working. I loved having a career, and I was ready to back off on, I would say the stresses of quarterly results and the stresses of international travel. You have so much of it. But I wasn't ready to back off from being involved and engaged and continuing to learn new things. I think this is why you come to tech, and for me, why I went to the valley to begin with was really that energy and that excitement, and it's like it's constantly reinventing itself. And I felt like that wasn't over for me. And I thought because I hadn't done boards before I retired from operating roles, I thought, you know, that would fill the bill. And it's honestly, it has exceeded expectations. >> In a good way. You feel good about where you're at and. >> Yeah. >> What you went in, what was the expectation going in and what surprised you? And were there people along the way that kind of gave you some pointers or don't do this, stay away from this. Take us through your experiences. >> Yeah, honestly, there is an amazing network of technology board directors, you know, in the US and specifically in the Valley. And we are all incredibly supportive. We have groups where we get together as board directors, and we talk about topics, and we share best practices and stories, and so I underestimated that, right? I thought I was going to, I thought I was going to enter this chapter where I would be largely giving back after 37 years. You've learned a little bit, right? What I underestimated was just the power of continuing to learn and being surrounded by so many amazing people. When, you know, when you do, you know, multiple boards, your learnings are just multiplied, right? Because you see not just one model, but you see many models. You see not just one problem, but many problems. Not just one opportunity, but many opportunities. And I underestimated how great that would be for me from a learning perspective and then your ability to share from one board to the other board because all of my boards are companies who are also quite close to each other, the executives collaborate. So that has turned out to be really exciting for me. >> So you had the stressful job. You rose to the top of the ranks, quarterly shot clock earnings, and it's hard charging. It's like, it's like, you know, being an athlete, as we say tech athlete. You're a tech athlete. Now you're taking that to the next level, which is now you're juggling multiple operational kind of things, but not with super pressure. But there's still a lot of responsibility. I know there's one board, you got compensation committee, I mean there's work involved. It's not like you're clipping coupons and having pizza. >> Yeah, no, it's real work. Believe me, it's real work. But I don't know how long it took me to not, to stop waking up and looking at my phone and thinking somebody was going to be dropping their forecast, right? Just that pressure of the number, and as a board member, obviously you are there to support and help guide the company and you feel, you know, you feel the pressure and the responsibility of what that role entails, but it's not the same as the frontline pressure every quarter. It's different. And so I did the first type. I loved it, you know. I'm loving this second type. >> You know, the retirement, it's always a cliche these days, but it's not really like what people think it is. It's not like getting a boat, going fishing or whatever. It's doing whatever you want to do, that's what retirement is. And you've chose to stay active. Your brain's being tested, and you're working it, having fun without all the stress. But it's enough, it's like going the gym. You're not hardcore workout, but you're working out with the brain. >> Yeah, no, for sure. It's just a different, it's just a different model. But the, you know, the level of conversations, the level of decisions, all of that is quite high. Which again, I like, yeah. >> Again, you really can't talk about some of the fun questions I want to ask, like what's the valuations like? How's the market, your headwinds? Is there tailwinds? >> Yes, yes, yes. It's an amazing, it's an amazing market right now with, as you know, counter indicators everywhere, right? Something's up, something's down, you know. Consumer spending's up, therefore interest rates go up and, you know, employment's down. And so or unemployment's down. And so it's hard. Actually, I really empathize with, you know, the, and have a great deal of respect for the CEOs and leadership teams of my board companies because, you know, I kind of retired from operating role, and then everybody else had to deal with running a company during a pandemic and then running a company through the great resignation, and then running a company through a downturn. You know, those are all tough things, and I have a ton of respect for any operating executive who's navigating through this and leading a company right now. >> I'd love to get your take on the board conversations at the end if we have more time, what the mood is, but I want to ask you about one more thing real quick before we go to the next topic is you're a retired operating executive. You have multiple boards, so you've got your hands full. I noticed there's a lot of amazing leaders, other female tech athletes joining boards, but they also have full-time jobs. >> Yeah. >> And so what's your advice? Cause I know there's a lot of networking, a lot of sharing going on. There's kind of a balance between how much you can contribute on the board versus doing the day job, but there's a real need for more women on boards, so yet there's a lot going on boards. What's the current state of the union if you will, state of the market relative to people in their careers and the stresses? >> Yeah. >> Cause you left one and jumped in all in there. >> Yeah. >> Some can't do that. They can't be on five boards, but they're on a few. What's the? >> Well, and you know, and if you're an operating executive, you wouldn't be on five boards, right? You would be on one or two. And so I spend a lot of time now bringing along the next wave of women and helping them both in their career but also to get a seat at the table on a board. And I'm very vocal about telling people not to do it the way I do it. There's no reason for it to be sequential. You can, you know, I thought I was so busy and was traveling all the time, and yes, all of that was true, but, and maybe I should say, you know, you can still fit in a board. And so, and what I see now is that your learnings are so exponential with outside perspective that I believe I would've been an even better operating executive had I done it earlier. I know I would've been an even better operating executive had I done it earlier. And so my advice is don't do it the way I did it. You know, it's worked out fine for me, but hindsight's 2020, I would. >> If you can go back and do a mulligan or a redo, what would you do? >> Yeah, I would get on a board earlier, full stop, yeah. >> Board, singular, plural? >> Well, I really, I don't think as an operating executive you can do, you could do one, maybe two. I wouldn't go beyond that, and I think that's fine. >> Yeah, totally makes sense. Okay, I got to ask you about your career. I know technical, you came in at that time in the market, I remember when I broke into the business, very male dominated, and then now it's much better. When you went through the ranks as a technical person, I know you had some blockers and definitely some, probably some people like, well, you know. We've seen that. How did you handle that? What were some of the key pivot points in your journey? And we've had a lot of women tell their stories here on theCUBE, candidly, like, hey, I was going to tell that professor, I'm going to sit in the front row. I'm going to, I'm getting two degrees, you know, robotics and aerospace. So, but they were challenged, even with the aspiration to do tech. I'm not saying that was something that you had, but like have you had experience like that, that you overcome? What were those key points and how did you handle them and how does that help people today? >> Yeah, you know, I have to say, you know, and not discounting that obviously this has been a journey for women, and there are a lot of things to overcome both in the workforce and also just balancing life honestly. And they're all real. There's also a story of incredible support, and you know, I'm the type of person where if somebody blocked me or didn't like me, I tended to just, you know, think it was me and like work harder and get around them, and I'm sure that some of that was potentially gender related. I didn't interpret it that way at the time. And I was lucky to have amazing mentors, many, many, many of whom were men, you know, because they were in the positions of power, and they made a huge difference on my career, huge. And I also had amazing female mentors, Meg Whitman, Ann Livermore at HPE, who you know well. So I had both, but you know, when I look back on the people who made a difference, there are as many men on the list as there are women. >> Yeah, and that's a learning there. Create those coalitions, not just one or the other. >> Yeah, yeah, yeah, absolutely. >> Well, I got to ask you about the, well, you brought up the pandemic. This has come up on some interviews this year, a little bit last year on the International Women's Day, but this year it's resonating, and I would never ask in an interview. I saw an interview once where a host asked a woman, how do you balance it all? And I was just like, no one asked men that. And so it's like, but with remote work, it's come up now the word empathy around people knowing each other's personal situation. In other words, when remote work happened, everybody went home. So we all got a glimpse of the backdrop. You got, you can see what their personal life was on Facebook. We were just commenting before we came on camera about that. So remote work really kind of opened up this personal side of everybody, men and women. >> Yeah. >> So I think this brings this new empathy kind of vibe or authentic self people call it. Is remote work an opportunity or a threat for advancement of women in tech? >> It's a much debated topic. I look at it as an opportunity for many of the reasons that you just said. First of all, let me say that when I was an operating executive and would try to create an environment on my team that was family supportive, I would do that equally for young or, you know, early to mid-career women as I did for early to mid-career men. And the reason is I needed those men, you know, chances are they had a working spouse at home, right? I needed them to be able to share the load. It's just as important to the women that companies give, you know, the partner, male or female, the partner support and the ability to share the love, right? So to me it's not just a woman thing. It's women and men, and I always tried to create the environment where it was okay to go to your soccer game. I knew you would be online later in the evening when the kids were in bed, and that was fine. And I think the pandemic has democratized that and made that, you know, made that kind of an everyday occurrence. >> Yeah the baby walks in. They're in the zoom call. The dog comes in. The leaf blower going on the outside the window. I've seen it all on theCUBE. >> Yeah, and people don't try to pretend anymore that like, you know, the house is clean, the dog's behaved, you know, I mean it's just, it's just real, and it's authentic, and I think that's healthy. >> Yeah. >> I do, you know, I also love, I also love the office, and you know, I've got a 31 year old and a soon to be 27 year old daughter, two daughters. And you know, they love going into the office, and I think about when I was their age, how just charged up I would get from being in the office. I also see how great it is for them to have a couple of days a week at home because you can get a few things done in between Zoom calls that you don't have to end up piling onto the weekend, and, you know, so I think it's a really healthy, I think it's a really healthy mix now. Most tech companies are not mandating five days in. Most tech companies are at two to three days in. I think that's a, I think that's a really good combination. >> It's interesting how people are changing their culture to get together more as groups and even events. I mean, while I got you, I might as well ask you, what's the board conversations around, you know, the old conferences? You know, before the pandemic, every company had like a user conference. Right, now it's like, well, do we really need to have that? Maybe we do smaller, and we do digital. Have you seen how companies are handling the in-person? Because there's where the relationships are really formed face-to-face, but not everyone's going to be going. But now certain it's clearly back to face-to-face. We're seeing that with theCUBE as you know. >> Yeah, yeah. >> But the numbers aren't coming back, and the numbers aren't that high, but the stakeholders. >> Yeah. >> And the numbers are actually higher if you count digital. >> Yeah, absolutely. But you know, also on digital there's fatigue from 100% digital, right? It's a hybrid. People don't want to be 100% digital anymore, but they also don't want to go back to the days when everybody got on a plane for every meeting, every call, every sales call. You know, I'm seeing a mix on user conferences. I would say two-thirds of my companies are back, but not at the expense level that they were on user conferences. We spend a lot of time getting updates on, cause nobody has put, interestingly enough, nobody has put T&E, travel and expense back to pre-pandemic levels. Nobody, so everybody's pulled back on number of trips. You know, marketing events are being very scrutinized, but I think very effective. We're doing a lot of, and, you know, these were part of the old model as well, like some things, some things just recycle, but you know, there's a lot of CIO and customer round tables in regional cities. You know, those are quite effective right now because people want some face-to-face, but they don't necessarily want to get on a plane and go to Las Vegas in order to do it. I mean, some of them are, you know, there are a lot of things back in Las Vegas. >> And think about the meetings that when you were an operating executive. You got to go to the sales kickoff, you got to go to this, go to that. There were mandatory face-to-faces that you had to go to, but there was a lot of travel that you probably could have done on Zoom. >> Oh, a lot, I mean. >> And then the productivity to the family impact too. Again, think about again, we're talking about the family and people's personal lives, right? So, you know, got to meet a customer. All right. Salesperson wants you to get in front of a customer, got to fly to New York, take a red eye, come on back. Like, I mean, that's gone. >> Yeah, and oh, by the way, the customer doesn't necessarily want to be in the office that day, so, you know, they may or may not be happy about that. So again, it's and not or, right? It's a mix. And I think it's great to see people back to some face-to-face. It's great to see marketing and events back to some face-to-face. It's also great to see that it hasn't gone back to the level it was. I think that's a really healthy dynamic. >> Well, I'll tell you that from our experience while we're on the topic, we'll move back to the International Women's Day is that the productivity of digital, this program we're doing is going to be streamed. We couldn't do this face-to-face because we had to have everyone fly to an event. We're going to do hundreds of stories that we couldn't have done. We're doing it remote. Because it's better to get the content than not have it. I mean it's offline, so, but it's not about getting people to the event and watch the screen for seven hours. It's pick your interview, and then engage. >> Yeah. >> So it's self-service. So we're seeing a lot, the new user experience kind of direct to consumer, and so I think there will be an, I think there's going to be a digital first class citizen with events, so that that matches up with the kind of experience, but the offline version. Face-to-face optimized for relationships, and that's where the recruiting gets done. That's where, you know, people can build these relationships with each other. >> Yeah, and it can be asynchronous. I think that's a real value proposition. It's a great point. >> Okay, I want to get, I want to get into the technology side of the education and re-skilling and those things. I remember in the 80s, computer science was software engineering. You learned like nine languages. You took some double E courses, one or two, and all the other kind of gut classes in school. Engineering, you had the four class disciplines and some offshoots of specialization. Now it's incredible the diversity of tracks in all engineering programs and computer science and outside of those departments. >> Yeah. >> Can you speak to the importance of STEM and the diversity in the technology industry and how this brings opportunity to lower the bar to get in and how people can stay in and grow and keep leveling up? >> Yeah, well look, we're constantly working on how to, how to help the incoming funnel. But then, you know, at a university level, I'm on the foundation board of Kansas State where I got my engineering degree. I was also Chairman of the National Action Council for Minorities in Engineering, which was all about diversity in STEM and how do you keep that pipeline going because honestly the US needs more tech resources than we have. And if you don't tap into the diversity of our entire workforce, we won't be able to fill that need. And so we focused a lot on both the funnel, right, that starts at the middle school level, particularly for girls, getting them in, you know, the situation of hands-on comfort level with coding, with robot building, you know, whatever gives them that confidence. And then keeping that going all the way into, you know, university program, and making sure that they don't attrit out, right? And so there's a number of initiatives, whether it's mentoring and support groups and financial aid to make sure that underrepresented minorities, women and other minorities, you know, get through the funnel and stay, you know, stay in. >> Got it. Now let me ask you, you said, I have two daughters. You have a family of girls too. Is there a vibe difference between the new generation and what's the trends that you're seeing in this next early wave? I mean, not maybe, I don't know how this is in middle school, but like as people start getting into their adult lives, college and beyond what's the current point of view, posture, makeup of the talent coming in? >> Yeah, yeah. >> Certain orientations, do you see any patterns? What's your observation? >> Yeah, it's interesting. So if I look at electrical engineering, my major, it's, and if I look at Kansas State, which spends a lot of time on this, and I think does a great job, but the diversity of that as a major has not changed dramatically since I was there in the early 80s. Where it has changed very significantly is computer science. There are many, many university and college programs around the country where, you know, it's 50/50 in computer science from a gender mix perspective, which is huge progress. Huge progress. And so, and to me that's, you know, I think CS is a fantastic degree for tech, regardless of what function you actually end up doing in these companies. I mean, I was an electrical engineer. I never did core electrical engineering work. I went right into sales and marketing and general management roles. So I think, I think a bunch of, you know, diverse CS graduates is a really, really good sign. And you know, we need to continue to push on that, but progress has been made. I think the, you know, it kind of goes back to the thing we were just talking about, which is the attrition of those, let's just talk about women, right? The attrition of those women once they got past early career and into mid-career then was a concern, right? And that goes back to, you know, just the inability to, you know, get it all done. And that I am hopeful is going to be better served now. >> Well, Sue, it's great to have you on. I know you're super busy. I appreciate you taking the time and contributing to our program on corporate board membership and some of your story and observations and opinions and analysis. Always great to have you and call you a contributor for theCUBE. You can jump on on one more board, be one of our board contributors for our analysts. (Sue laughing) >> I'm at capacity. (both laughing) >> Final, final word. What's the big seat at the table issue that's going well and areas that need to be improved? >> So I'll speak for my boards because they have made great progress in efficiency. You know, obviously with interest rates going up and the mix between growth and profitability changing in terms of what investors are looking for. Many, many companies have had to do a hard pivot from grow at all costs to healthy balance of growth and profit. And I'm very pleased with how my companies have made that pivot. And I think that is going to make much better companies as a result. I think diversity is something that has not been solved at the corporate level, and we need to keep working it. >> Awesome. Thank you for coming on theCUBE. CUBE alumni now contributor, on multiple boards, full-time job. Love the new challenge and chapter you're on, Sue. We'll be following, and we'll check in for more updates. And thank you for being a contributor on this program this year and this episode. We're going to be doing more of these quarterly, so we're going to move beyond once a year. >> That's great. (cross talking) It's always good to see you, John. >> Thank you. >> Thanks very much. >> Okay. >> Sue: Talk to you later. >> This is theCUBE coverage of IWD, International Women's Day 2023. I'm John Furrier, your host. Thanks for watching. (upbeat music)

Published Date : Mar 3 2023

SUMMARY :

Thank you for coming on. of my CUBE alumni title. We're psyched to have you on. And then, you know, four years ago and then what inspired you And those range from, you know, I mean, what is it like? I think this is why you come to tech, You feel good about where you're at and. that kind of gave you some directors, you know, in the US I know there's one board, you and you feel, you know, It's doing whatever you want to But the, you know, the right now with, as you know, but I want to ask you about of the union if you will, Cause you left one and but they're on a few. Well, and you know, Yeah, I would get on a executive you can do, Okay, I got to ask you about your career. have to say, you know, not just one or the other. Well, I got to ask you about the, So I think this brings and made that, you know, made that They're in the zoom call. that like, you know, the house is clean, I also love the office, and you know, around, you know, and the numbers aren't that And the numbers are actually But you know, also on that you had to go to, So, you know, got to meet a customer. that day, so, you know, is that the productivity of digital, That's where, you know, people Yeah, and it can be asynchronous. and all the other kind all the way into, you know, and what's the trends that you're seeing And so, and to me that's, you know, Well, Sue, it's great to have you on. I'm at capacity. that need to be improved? And I think that is going to And thank you for being a It's always good to see you, John. I'm John Furrier, your host.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Meg WhitmanPERSON

0.99+

Ann LivermorePERSON

0.99+

JohnPERSON

0.99+

John FurrierPERSON

0.99+

HPEORGANIZATION

0.99+

twoQUANTITY

0.99+

Hewlett Packard EnterpriseORGANIZATION

0.99+

Hewlett PackardORGANIZATION

0.99+

New YorkLOCATION

0.99+

Silicon ValleyLOCATION

0.99+

Sue BarsamianPERSON

0.99+

1981DATE

0.99+

TexasLOCATION

0.99+

40 yearQUANTITY

0.99+

oneQUANTITY

0.99+

100%QUANTITY

0.99+

31 yearQUANTITY

0.99+

National Action Council for Minorities in EngineeringORGANIZATION

0.99+

$4 billionQUANTITY

0.99+

35 personQUANTITY

0.99+

two daughtersQUANTITY

0.99+

Las VegasLOCATION

0.99+

five daysQUANTITY

0.99+

CUBEORGANIZATION

0.99+

SuePERSON

0.99+

International Women's DayEVENT

0.99+

USLOCATION

0.99+

FirstQUANTITY

0.99+

BostonLOCATION

0.99+

last yearDATE

0.99+

three daysQUANTITY

0.99+

AtlantaLOCATION

0.99+

hundredsQUANTITY

0.99+

seven hoursQUANTITY

0.99+

one problemQUANTITY

0.99+

one opportunityQUANTITY

0.99+

bothQUANTITY

0.99+

Kansas StateLOCATION

0.99+

this yearDATE

0.98+

one modelQUANTITY

0.98+

second typeQUANTITY

0.98+

80sDATE

0.98+

2020DATE

0.98+

two-thirdsQUANTITY

0.98+

one boardQUANTITY

0.98+

firstQUANTITY

0.98+

five boardsQUANTITY

0.98+

one topicQUANTITY

0.98+

first typeQUANTITY

0.97+

theCUBEORGANIZATION

0.97+

two degreesQUANTITY

0.97+

International Women's Day 2023EVENT

0.97+

50/50QUANTITY

0.96+

early 80sDATE

0.96+

four years agoDATE

0.96+

four classQUANTITY

0.95+

nine languagesQUANTITY

0.95+

pandemicEVENT

0.95+

FacebookORGANIZATION

0.93+

once a yearQUANTITY

0.92+

27 year oldQUANTITY

0.91+

todayDATE

0.88+

Joseph Nelson, Roboflow | Cube Conversation


 

(gentle music) >> Hello everyone. Welcome to this CUBE conversation here in Palo Alto, California. I'm John Furrier, host of theCUBE. We got a great remote guest coming in. Joseph Nelson, co-founder and CEO of RoboFlow hot startup in AI, computer vision. Really interesting topic in this wave of AI next gen hitting. Joseph, thanks for coming on this CUBE conversation. >> Thanks for having me. >> Yeah, I love the startup tsunami that's happening here in this wave. RoboFlow, you're in the middle of it. Exciting opportunities, you guys are in the cutting edge. I think computer vision's been talked about more as just as much as the large language models and these foundational models are merging. You're in the middle of it. What's it like right now as a startup and growing in this new wave hitting? >> It's kind of funny, it's, you know, I kind of describe it like sometimes you're in a garden of gnomes. It's like we feel like we've got this giant headstart with hundreds of thousands of people building with computer vision, training their own models, but that's a fraction of what it's going to be in six months, 12 months, 24 months. So, as you described it, a wave is a good way to think about it. And the wave is still building before it gets to its full size. So it's a ton of fun. >> Yeah, I think it's one of the most exciting areas in computer science. I wish I was in my twenties again, because I would be all over this. It's the intersection, there's so many disciplines, right? It's not just tech computer science, it's computer science, it's systems, it's software, it's data. There's so much aperture of things going on around your world. So, I mean, you got to be batting all the students away kind of trying to get hired in there, probably. I can only imagine you're hiring regiment. I'll ask that later, but first talk about what the company is that you're doing. How it's positioned, what's the market you're going after, and what's the origination story? How did you guys get here? How did you just say, hey, want to do this? What was the origination story? What do you do and how did you start the company? >> Yeah, yeah. I'll give you the what we do today and then I'll shift into the origin. RoboFlow builds tools for making the world programmable. Like anything that you see should be read write access if you think about it with a programmer's mind or legible. And computer vision is a technology that enables software to be added to these real world objects that we see. And so any sort of interface, any sort of object, any sort of scene, we can interact with it, we can make it more efficient, we can make it more entertaining by adding the ability for the tools that we use and the software that we write to understand those objects. And at RoboFlow, we've empowered a little over a hundred thousand developers, including those in half the Fortune 100 so far in that mission. Whether that's Walmart understanding the retail in their stores, Cardinal Health understanding the ways that they're helping their patients, or even electric vehicle manufacturers ensuring that they're making the right stuff at the right time. As you mentioned, it's early. Like I think maybe computer vision has touched one, maybe 2% of the whole economy and it'll be like everything in a very short period of time. And so we're focused on enabling that transformation. I think it's it, as far as I think about it, I've been fortunate to start companies before, start, sell these sorts of things. This is the last company I ever wanted to start and I think it will be, should we do it right, the world's largest in riding the wave of bringing together the disparate pieces of that technology. >> What was the motivating point of the formation? Was it, you know, you guys were hanging around? Was there some catalyst? What was the moment where it all kind of came together for you? >> You know what's funny is my co-founder, Brad and I, we were making computer vision apps for making board games more fun to play. So in 2017, Apple released AR kit, augmented reality kit for building augmented reality applications. And Brad and I are both sort of like hacker persona types. We feel like we don't really understand the technology until we build something with it and so we decided that we should make an app that if you point your phone at a Sudoku puzzle, it understands the state of the board and then it kind of magically fills in that experience with all the digits in real time, which totally ruins the game of Sudoku to be clear. But it also just creates this like aha moment of like, oh wow, like the ability for our pocket devices to understand and see the world as good or better than we can is possible. And so, you know, we actually did that as I mentioned in 2017, and the app went viral. It was, you know, top of some subreddits, top of Injure, Reddit, the hacker community as well as Product Hunt really liked it. So it actually won Product Hunt AR app of the year, which was the same year that the Tesla model three won the product of the year. So we joked that we share an award with Elon our shared (indistinct) But frankly, so that was 2017. RoboFlow wasn't incorporated as a business until 2019. And so, you know, when we made Magic Sudoku, I was running a different company at the time, Brad was running a different company at the time, and we kind of just put it out there and were excited by how many people liked it. And we assumed that other curious developers would see this inevitable future of, oh wow, you know. This is much more than just a pedestrian point your phone at a board game. This is everything can be seen and understood and rewritten in a different way. Things like, you know, maybe your fridge. Knowing what ingredients you have and suggesting recipes or auto ordering for you, or we were talking about some retail use cases of automated checkout. Like anything can be seen and observed and we presume that that would kick off a Cambrian explosion of applications. It didn't. So you fast forward to 2019, we said, well we might as well be the guys to start to tackle this sort of problem. And because of our success with board games before, we returned to making more board game solving applications. So we made one that solves Boggle, you know, the four by four word game, we made one that solves chess, you point your phone at a chess board and it understands the state of the board and then can make move recommendations. And each additional board game that we added, we realized that the tooling was really immature. The process of collecting images, knowing which images are actually going to be useful for improving model performance, training those models, deploying those models. And if we really wanted to make the world programmable, developers waiting for us to make an app for their thing of interest is a lot less efficient, less impactful than taking our tool chain and releasing that externally. And so, that's what RoboFlow became. RoboFlow became the internal tools that we used to make these game changing applications readily available. And as you know, when you give developers new tools, they create new billion dollar industries, let alone all sorts of fun hobbyist projects along the way. >> I love that story. Curious, inventive, little radical. Let's break the rules, see how we can push the envelope on the board games. That's how companies get started. It's a great story. I got to ask you, okay, what happens next? Now, okay, you realize this new tooling, but this is like how companies get built. Like they solve their own problem that they had 'cause they realized there's one, but then there has to be a market for it. So you actually guys knew that this was coming around the corner. So okay, you got your hacker mentality, you did that thing, you got the award and now you're like, okay, wow. Were you guys conscious of the wave coming? Was it one of those things where you said, look, if we do this, we solve our own problem, this will be big for everybody. Did you have that moment? Was that in 2019 or was that more of like, it kind of was obvious to you guys? >> Absolutely. I mean Brad puts this pretty effectively where he describes how we lived through the initial internet revolution, but we were kind of too young to really recognize and comprehend what was happening at the time. And then mobile happened and we were working on different companies that were not in the mobile space. And computer vision feels like the wave that we've caught. Like, this is a technology and capability that rewrites how we interact with the world, how everyone will interact with the world. And so we feel we've been kind of lucky this time, right place, right time of every enterprise will have the ability to improve their operations with computer vision. And so we've been very cognizant of the fact that computer vision is one of those groundbreaking technologies that every company will have as a part of their products and services and offerings, and we can provide the tooling to accelerate that future. >> Yeah, and the developer angle, by the way, I love that because I think, you know, as we've been saying in theCUBE all the time, developer's the new defacto standard bodies because what they adopt is pure, you know, meritocracy. And they pick the best. If it's sell service and it's good and it's got open source community around it, its all in. And they'll vote. They'll vote with their code and that is clear. Now I got to ask you, as you look at the market, we were just having this conversation on theCUBE in Barcelona at recent Mobile World Congress, now called MWC, around 5G versus wifi. And the debate was specifically computer vision, like facial recognition. We were talking about how the Cleveland Browns were using facial recognition for people coming into the stadium they were using it for ships in international ports. So the question was 5G versus wifi. My question is what infrastructure or what are the areas that need to be in place to make computer vision work? If you have developers building apps, apps got to run on stuff. So how do you sort that out in your mind? What's your reaction to that? >> A lot of the times when we see applications that need to run in real time and on video, they'll actually run at the edge without internet. And so a lot of our users will actually take their models and run it in a fully offline environment. Now to act on that information, you'll often need to have internet signal at some point 'cause you'll need to know how many people were in the stadium or what shipping crates are in my port at this point in time. You'll need to relay that information somewhere else, which will require connectivity. But actually using the model and creating the insights at the edge does not require internet. I mean we have users that deploy models on underwater submarines just as much as in outer space actually. And those are not very friendly environments to internet, let alone 5g. And so what you do is you use an edge device, like an Nvidia Jetson is common, mobile devices are common. Intel has some strong edge devices, the Movidius family of chips for example. And you use that compute that runs completely offline in real time to process those signals. Now again, what you do with those signals may require connectivity and that becomes a question of the problem you're solving of how soon you need to relay that information to another place. >> So, that's an architectural issue on the infrastructure. If you're a tactical edge war fighter for instance, you might want to have highly available and maybe high availability. I mean, these are words that mean something. You got storage, but it's not at the edge in real time. But you can trickle it back and pull it down. That's management. So that's more of a business by business decision or environment, right? >> That's right, that's right. Yeah. So I mean we can talk through some specifics. So for example, the RoboFlow actually powers the broadcaster that does the tennis ball tracking at Wimbledon. That runs completely at the edge in real time in, you know, technically to track the tennis ball and point the camera, you actually don't need internet. Now they do have internet of course to do the broadcasting and relay the signal and feeds and these sorts of things. And so that's a case where you have both edge deployment of running the model and high availability act on that model. We have other instances where customers will run their models on drones and the drone will go and do a flight and it'll say, you know, this many residential homes are in this given area, or this many cargo containers are in this given shipping yard. Or maybe we saw these environmental considerations of soil erosion along this riverbank. The model in that case can run on the drone during flight without internet, but then you only need internet once the drone lands and you're going to act on that information because for example, if you're doing like a study of soil erosion, you don't need to be real time. You just need to be able to process and make use of that information once the drone finishes its flight. >> Well I can imagine a zillion use cases. I heard of a use case interview at a company that does computer vision to help people see if anyone's jumping the fence on their company. Like, they know what a body looks like climbing a fence and they can spot it. Pretty easy use case compared to probably some of the other things, but this is the horizontal use cases, its so many use cases. So how do you guys talk to the marketplace when you say, hey, we have generative AI for commuter vision. You might know language models that's completely different animal because vision's like the world, right? So you got a lot more to do. What's the difference? How do you explain that to customers? What can I build and what's their reaction? >> Because we're such a developer centric company, developers are usually creative and show you the ways that they want to take advantage of new technologies. I mean, we've had people use things for identifying conveyor belt debris, doing gas leak detection, measuring the size of fish, airplane maintenance. We even had someone that like a hobby use case where they did like a specific sushi identifier. I dunno if you know this, but there's a specific type of whitefish that if you grew up in the western hemisphere and you eat it in the eastern hemisphere, you get very sick. And so there was someone that made an app that tells you if you happen to have that fish in the sushi that you're eating. But security camera analysis, transportation flows, plant disease detection, really, you know, smarter cities. We have people that are doing curb management identifying, and a lot of these use cases, the fantastic thing about building tools for developers is they're a creative bunch and they have these ideas that if you and I sat down for 15 minutes and said, let's guess every way computer vision can be used, we would need weeks to list all the example use cases. >> We'd miss everything. >> And we'd miss. And so having the community show us the ways that they're using computer vision is impactful. Now that said, there are of course commercial industries that have discovered the value and been able to be out of the gate. And that's where we have the Fortune 100 customers, like we do. Like the retail customers in the Walmart sector, healthcare providers like Medtronic, or vehicle manufacturers like Rivian who all have very difficult either supply chain, quality assurance, in stock, out of stock, anti-theft protection considerations that require successfully making sense of the real world. >> Let me ask you a question. This is maybe a little bit in the weeds, but it's more developer focused. What are some of the developer profiles that you're seeing right now in terms of low-hanging fruit applications? And can you talk about the academic impact? Because I imagine if I was in school right now, I'd be all over it. Are you seeing Master's thesis' being worked on with some of your stuff? Is the uptake in both areas of younger pre-graduates? And then inside the workforce, What are some of the devs like? Can you share just either what their makeup is, what they work on, give a little insight into the devs you're working with. >> Leading developers that want to be on state-of-the-art technology build with RoboFlow because they know they can use the best in class open source. They know that they can get the most out of their data. They know that they can deploy extremely quickly. That's true among students as you mentioned, just as much as as industries. So we welcome students and I mean, we have research grants that will regularly support for people to publish. I mean we actually have a channel inside our internal slack where every day, more student publications that cite building with RoboFlow pop up. And so, that helps inspire some of the use cases. Now what's interesting is that the use case is relatively, you know, useful or applicable for the business or the student. In other words, if a student does a thesis on how to do, we'll say like shingle damage detection from satellite imagery and they're just doing that as a master's thesis, in fact most insurance businesses would be interested in that sort of application. So, that's kind of how we see uptick and adoption both among researchers who want to be on the cutting edge and publish, both with RoboFlow and making use of open source tools in tandem with the tool that we provide, just as much as industry. And you know, I'm a big believer in the philosophy that kind of like what the hackers are doing nights and weekends, the Fortune 500 are doing in a pretty short order period of time and we're experiencing that transition. Computer vision used to be, you know, kind of like a PhD, multi-year investment endeavor. And now with some of the tooling that we're working on in open source technologies and the compute that's available, these science fiction ideas are possible in an afternoon. And so you have this idea of maybe doing asset management or the aerial observation of your shingles or things like this. You have a few hundred images and you can de-risk whether that's possible for your business today. So there's pretty broad-based adoption among both researchers that want to be on the state of the art, as much as companies that want to reduce the time to value. >> You know, Joseph, you guys and your partner have got a great front row seat, ground floor, presented creation wave here. I'm seeing a pattern emerging from all my conversations on theCUBE with founders that are successful, like yourselves, that there's two kind of real things going on. You got the enterprises grabbing the products and retrofitting into their legacy and rebuilding their business. And then you have startups coming out of the woodwork. Young, seeing greenfield or pick a specific niche or focus and making that the signature lever to move the market. >> That's right. >> So can you share your thoughts on the startup scene, other founders out there and talk about that? And then I have a couple questions for like the enterprises, the old school, the existing legacy. Little slower, but the startups are moving fast. What are some of the things you're seeing as startups are emerging in this field? >> I think you make a great point that independent of RoboFlow, very successful, especially developer focused businesses, kind of have three customer types. You have the startups and maybe like series A, series B startups that you're building a product as fast as you can to keep up with them, and they're really moving just as fast as as you are and pulling the product out at you for things that they need. The second segment that you have might be, call it SMB but not enterprise, who are able to purchase and aren't, you know, as fast of moving, but are stable and getting value and able to get to production. And then the third type is enterprise, and that's where you have typically larger contract value sizes, slower moving in terms of adoption and feedback for your product. And I think what you see is that successful companies balance having those three customer personas because you have the small startups, small fast moving upstarts that are discerning buyers who know the market and elect to build on tooling that is best in class. And so you basically kind of pass the smell test of companies who are quite discerning in their purchases, plus are moving so quick they're pulling their product out of you. Concurrently, you have a product that's enterprise ready to service the scalability, availability, and trust of enterprise buyers. And that's ultimately where a lot of companies will see tremendous commercial success. I mean I remember seeing the Twilio IPO, Uber being like a full 20% of their revenue, right? And so there's this very common pattern where you have the ability to find some of those upstarts that you make bets on, like the next Ubers of the world, the smaller companies that continue to get developed with the product and then the enterprise whom allows you to really fund the commercial success of the business, and validate the size of the opportunity in market that's being creative. >> It's interesting, there's so many things happening there. It's like, in a way it's a new category, but it's not a new category. It becomes a new category because of the capabilities, right? So, it's really interesting, 'cause that's what you're talking about is a category, creating. >> I think developer tools. So people often talk about B to B and B to C businesses. I think developer tools are in some ways a third way. I mean ultimately they're B to B, you're selling to other businesses and that's where your revenue's coming from. However, you look kind of like a B to C company in the ways that you measure product adoption and kind of go to market. In other words, you know, we're often tracking the leading indicators of commercial success in the form of usage, adoption, retention. Really consumer app, traditionally based metrics of how to know you're building the right stuff, and that's what product led growth companies do. And then you ultimately have commercial traction in a B to B way. And I think that that actually kind of looks like a third thing, right? Like you can do these sort of funny zany marketing examples that you might see historically from consumer businesses, but yet you ultimately make your money from the enterprise who has these de-risked high value problems you can solve for them. And I selfishly think that that's the best of both worlds because I don't have to be like Evan Spiegel, guessing the next consumer trend or maybe creating the next consumer trend and catching lightning in a bottle over and over again on the consumer side. But I still get to have fun in our marketing and make sort of fun, like we're launching the world's largest game of rock paper scissors being played with computer vision, right? Like that's sort of like a fun thing you can do, but then you can concurrently have the commercial validation and customers telling you the things that they need to be built for them next to solve commercial pain points for them. So I really do think that you're right by calling this a new category and it really is the best of both worlds. >> It's a great call out, it's a great call out. In fact, I always juggle with the VC. I'm like, it's so easy. Your job is so easy to pick the winners. What are you talking about its so easy? I go, just watch what the developers jump on. And it's not about who started, it could be someone in the dorm room to the boardroom person. You don't know because that B to C, the C, it's B to D you know? You know it's developer 'cause that's a human right? That's a consumer of the tool which influences the business that never was there before. So I think this direct business model evolution, whether it's media going direct or going direct to the developers rather than going to a gatekeeper, this is the reality. >> That's right. >> Well I got to ask you while we got some time left to describe, I want to get into this topic of multi-modality, okay? And can you describe what that means in computer vision? And what's the state of the growth of that portion of this piece? >> Multi modality refers to using multiple traditionally siloed problem types, meaning text, image, video, audio. So you could treat an audio problem as only processing audio signal. That is not multimodal, but you could use the audio signal at the same time as a video feed. Now you're talking about multi modality. In computer vision, multi modality is predominantly happening with images and text. And one of the biggest releases in this space is actually two years old now, was clip, contrastive language image pre-training, which took 400 million image text pairs and basically instead of previously when you do classification, you basically map every single image to a single class, right? Like here's a bunch of images of chairs, here's a bunch of images of dogs. What clip did is used, you can think about it like, the class for an image being the Instagram caption for the image. So it's not one single thing. And by training on understanding the corpora, you basically see which words, which concepts are associated with which pixels. And this opens up the aperture for the types of problems and generalizability of models. So what does this mean? This means that you can get to value more quickly from an existing trained model, or at least validate that what you want to tackle with a computer vision, you can get there more quickly. It also opens up the, I mean. Clip has been the bedrock of some of the generative image techniques that have come to bear, just as much as some of the LLMs. And increasingly we're going to see more and more of multi modality being a theme simply because at its core, you're including more context into what you're trying to understand about the world. I mean, in its most basic sense, you could ask yourself, if I have an image, can I know more about that image with just the pixels? Or if I have the image and the sound of when that image was captured or it had someone describe what they see in that image when the image was captured, which one's going to be able to get you more signal? And so multi modality helps expand the ability for us to understand signal processing. >> Awesome. And can you just real quick, define clip for the folks that don't know what that means? >> Yeah. Clip is a model architecture, it's an acronym for contrastive language image pre-training and like, you know, model architectures that have come before it captures the almost like, models are kind of like brands. So I guess it's a brand of a model where you've done these 400 million image text pairs to match up which visual concepts are associated with which text concepts. And there have been new releases of clip, just at bigger sizes of bigger encoding's, of longer strings of texture, or larger image windows. But it's been a really exciting advancement that OpenAI released in January, 2021. >> All right, well great stuff. We got a couple minutes left. Just I want to get into more of a company-specific question around culture. All startups have, you know, some sort of cultural vibe. You know, Intel has Moore's law doubles every whatever, six months. What's your culture like at RoboFlow? I mean, if you had to describe that culture, obviously love the hacking story, you and your partner with the games going number one on Product Hunt next to Elon and Tesla and then hey, we should start a company two years later. That's kind of like a curious, inventing, building, hard charging, but laid back. That's my take. How would you describe the culture? >> I think that you're right. The culture that we have is one of shipping, making things. So every week each team shares what they did for our customers on a weekly basis. And we have such a strong emphasis on being better week over week that those sorts of things compound. So one big emphasis in our culture is getting things done, shipping, doing things for our customers. The second is we're an incredibly transparent place to work. For example, how we think about giving decisions, where we're progressing against our goals, what problems are biggest and most important for the company is all open information for those that are inside the company to know and progress against. The third thing that I'd use to describe our culture is one that thrives with autonomy. So RoboFlow has a number of individuals who have founded companies before, some of which have sold their businesses for a hundred million plus upon exit. And the way that we've been able to attract talent like that is because the problems that we're tackling are so immense, yet individuals are able to charge at it with the way that they think is best. And this is what pairs well with transparency. If you have a strong sense of what the company's goals are, how we're progressing against it, and you have this ownership mentality of what can I do to change or drive progress against that given outcome, then you create a really healthy pairing of, okay cool, here's where the company's progressing. Here's where things are going really well, here's the places that we most need to improve and work on. And if you're inside that company as someone who has a preponderance to be a self-starter and even a history of building entire functions or companies yourself, then you're going to be a place where you can really thrive. You have the inputs of the things where we need to work on to progress the company's goals. And you have the background of someone that is just necessarily a fast moving and ambitious type of individual. So I think the best way to describe it is a transparent place with autonomy and an emphasis on getting things done. >> Getting shit done as they say. Getting stuff done. Great stuff. Hey, final question. Put a plug out there for the company. What are you going to hire? What's your pipeline look like for people? What jobs are open? I'm sure you got hiring all around. Give a quick plug for the company what you're looking for. >> I appreciate you asking. Basically you're either building the product or helping customers be successful with the product. So in the building product category, we have platform engineering roles, machine learning engineering roles, and we're solving some of the hardest and most impactful problems of bringing such a groundbreaking technology to the masses. And so it's a great place to be where you can kind of be your own user as an engineer. And then if you're enabling people to be successful with the products, I mean you're working in a place where there's already such a strong community around it and you can help shape, foster, cultivate, activate, and drive commercial success in that community. So those are roles that tend themselves to being those that build the product for developer advocacy, those that are account executives that are enabling our customers to realize commercial success, and even hybrid roles like we call it field engineering, where you are a technical resource to drive success within customer accounts. And so all this is listed on roboflow.com/careers. And one thing that I actually kind of want to mention John that's kind of novel about the thing that's working at RoboFlow. So there's been a lot of discussion around remote companies and there's been a lot of discussion around in-person companies and do you need to be in the office? And one thing that we've kind of recognized is you can actually chart a third way. You can create a third way which we call satellite, which basically means people can work from where they most like to work and there's clusters of people, regular onsite's. And at RoboFlow everyone gets, for example, $2,500 a year that they can use to spend on visiting coworkers. And so what's sort of organically happened is team numbers have started to pull together these resources and rent out like, lavish Airbnbs for like a week and then everyone kind of like descends in and works together for a week and makes and creates things. And we call this lighthouses because you know, a lighthouse kind of brings ships into harbor and we have an emphasis on shipping. >> Yeah, quality people that are creative and doers and builders. You give 'em some cash and let the self-governing begin, you know? And like, creativity goes through the roof. It's a great story. I think that sums up the culture right there, Joseph. Thanks for sharing that and thanks for this great conversation. I really appreciate it and it's very inspiring. Thanks for coming on. >> Yeah, thanks for having me, John. >> Joseph Nelson, co-founder and CEO of RoboFlow. Hot company, great culture in the right place in a hot area, computer vision. This is going to explode in value. The edge is exploding. More use cases, more development, and developers are driving the change. Check out RoboFlow. This is theCUBE. I'm John Furrier, your host. Thanks for watching. (gentle music)

Published Date : Mar 3 2023

SUMMARY :

Welcome to this CUBE conversation You're in the middle of it. And the wave is still building the company is that you're doing. maybe 2% of the whole economy And as you know, when you it kind of was obvious to you guys? cognizant of the fact that I love that because I think, you know, And so what you do is issue on the infrastructure. and the drone will go and the marketplace when you say, in the sushi that you're eating. And so having the And can you talk about the use case is relatively, you know, and making that the signature What are some of the things you're seeing and pulling the product out at you because of the capabilities, right? in the ways that you the C, it's B to D you know? And one of the biggest releases And can you just real quick, and like, you know, I mean, if you had to like that is because the problems Give a quick plug for the place to be where you can the self-governing begin, you know? and developers are driving the change.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
BradPERSON

0.99+

JosephPERSON

0.99+

Joseph NelsonPERSON

0.99+

January, 2021DATE

0.99+

John FurrierPERSON

0.99+

MedtronicORGANIZATION

0.99+

WalmartORGANIZATION

0.99+

2019DATE

0.99+

UberORGANIZATION

0.99+

AppleORGANIZATION

0.99+

JohnPERSON

0.99+

400 millionQUANTITY

0.99+

Evan SpiegelPERSON

0.99+

24 monthsQUANTITY

0.99+

2017DATE

0.99+

RoboFlowORGANIZATION

0.99+

15 minutesQUANTITY

0.99+

RivianORGANIZATION

0.99+

12 monthsQUANTITY

0.99+

20%QUANTITY

0.99+

Cardinal HealthORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

BarcelonaLOCATION

0.99+

WimbledonEVENT

0.99+

roboflow.com/careersOTHER

0.99+

firstQUANTITY

0.99+

second segmentQUANTITY

0.99+

each teamQUANTITY

0.99+

six monthsQUANTITY

0.99+

bothQUANTITY

0.99+

IntelORGANIZATION

0.99+

both worldsQUANTITY

0.99+

2%QUANTITY

0.99+

two years laterDATE

0.98+

Mobile World CongressEVENT

0.98+

UbersORGANIZATION

0.98+

third wayQUANTITY

0.98+

oneQUANTITY

0.98+

a weekQUANTITY

0.98+

Magic SudokuTITLE

0.98+

secondQUANTITY

0.98+

NvidiaORGANIZATION

0.98+

SudokuTITLE

0.98+

MWCEVENT

0.97+

todayDATE

0.97+

billion dollarQUANTITY

0.97+

one single thingQUANTITY

0.97+

over a hundred thousand developersQUANTITY

0.97+

fourQUANTITY

0.97+

thirdQUANTITY

0.96+

ElonORGANIZATION

0.96+

third thingQUANTITY

0.96+

TeslaORGANIZATION

0.96+

JetsonCOMMERCIAL_ITEM

0.96+

ElonPERSON

0.96+

RoboFlowTITLE

0.96+

InstagramORGANIZATION

0.95+

TwilioORGANIZATION

0.95+

twentiesQUANTITY

0.95+

Product Hunt ARTITLE

0.95+

MoorePERSON

0.95+

both researchersQUANTITY

0.95+

one thingQUANTITY

0.94+

Adam Wenchel, Arthur.ai | CUBE Conversation


 

(bright upbeat music) >> Hello and welcome to this Cube Conversation. I'm John Furrier, host of theCUBE. We've got a great conversation featuring Arthur AI. I'm your host. I'm excited to have Adam Wenchel who's the Co-Founder and CEO. Thanks for joining us today, appreciate it. >> Yeah, thanks for having me on, John, looking forward to the conversation. >> I got to say, it's been an exciting world in AI or artificial intelligence. Just an explosion of interest kind of in the mainstream with the language models, which people don't really get, but they're seeing the benefits of some of the hype around OpenAI. Which kind of wakes everyone up to, "Oh, I get it now." And then of course the pessimism comes in, all the skeptics are out there. But this breakthrough in generative AI field is just awesome, it's really a shift, it's a wave. We've been calling it probably the biggest inflection point, then the others combined of what this can do from a surge standpoint, applications. I mean, all aspects of what we used to know is the computing industry, software industry, hardware, is completely going to get turbo. So we're totally obviously bullish on this thing. So, this is really interesting. So my first question is, I got to ask you, what's you guys taking? 'Cause you've been doing this, you're in it, and now all of a sudden you're at the beach where the big waves are. What's the explosion of interest is there? What are you seeing right now? >> Yeah, I mean, it's amazing, so for starters, I've been in AI for over 20 years and just seeing this amount of excitement and the growth, and like you said, the inflection point we've hit in the last six months has just been amazing. And, you know, what we're seeing is like people are getting applications into production using LLMs. I mean, really all this excitement just started a few months ago, with ChatGPT and other breakthroughs and the amount of activity and the amount of new systems that we're seeing hitting production already so soon after that is just unlike anything we've ever seen. So it's pretty awesome. And, you know, these language models are just, they could be applied in so many different business contexts and that it's just the amount of value that's being created is again, like unprecedented compared to anything. >> Adam, you know, you've been in this for a while, so it's an interesting point you're bringing up, and this is a good point. I was talking with my friend John Markoff, former New York Times journalist and he was talking about, there's been a lot of work been done on ethics. So there's been, it's not like it's new. It's like been, there's a lot of stuff that's been baking over many, many years and, you know, decades. So now everyone wakes up in the season, so I think that is a key point I want to get into some of your observations. But before we get into it, I want you to explain for the folks watching, just so we can kind of get a definition on the record. What's an LLM, what's a foundational model and what's generative ai? Can you just quickly explain the three things there? >> Yeah, absolutely. So an LLM or a large language model, it's just a large, they would imply a large language model that's been trained on a huge amount of data typically pulled from the internet. And it's a general purpose language model that can be built on top for all sorts of different things, that includes traditional NLP tasks like document classification and sentiment understanding. But the thing that's gotten people really excited is it's used for generative tasks. So, you know, asking it to summarize documents or asking it to answer questions. And these aren't new techniques, they've been around for a while, but what's changed is just this new class of models that's based on new architectures. They're just so much more capable that they've gone from sort of science projects to something that's actually incredibly useful in the real world. And there's a number of companies that are making them accessible to everyone so that you can build on top of them. So that's the other big thing is, this kind of access to these models that can power generative tasks has been democratized in the last few months and it's just opening up all these new possibilities. And then the third one you mentioned foundation models is sort of a broader term for the category that includes LLMs, but it's not just language models that are included. So we've actually seen this for a while in the computer vision world. So people have been building on top of computer vision models, pre-trained computer vision models for a while for image classification, object detection, that's something we've had customers doing for three or four years already. And so, you know, like you said, there are antecedents to like, everything that's happened, it's not entirely new, but it does feel like a step change. >> Yeah, I did ask ChatGPT to give me a riveting introduction to you and it gave me an interesting read. If we have time, I'll read it. It's kind of, it's fun, you get a kick out of it. "Ladies and gentlemen, today we're a privileged "to have Adam Wenchel, Founder of Arthur who's going to talk "about the exciting world of artificial intelligence." And then it goes on with some really riveting sentences. So if we have time, I'll share that, it's kind of funny. It was good. >> Okay. >> So anyway, this is what people see and this is why I think it's exciting 'cause I think people are going to start refactoring what they do. And I've been saying this on theCUBE now for about a couple months is that, you know, there's a scene in "Moneyball" where Billy Beane sits down with the Red Sox owner and the Red Sox owner says, "If people aren't rebuilding their teams on your model, "they're going to be dinosaurs." And it reminds me of what's happening right now. And I think everyone that I talk to in the business sphere is looking at this and they're connecting the dots and just saying, if we don't rebuild our business with this new wave, they're going to be out of business because there's so much efficiency, there's so much automation, not like DevOps automation, but like the generative tasks that will free up the intellect of people. Like just the simple things like do an intro or do this for me, write some code, write a countermeasure to a hack. I mean, this is kind of what people are doing. And you mentioned computer vision, again, another huge field where 5G things are coming on, it's going to accelerate. What do you say to people when they kind of are leaning towards that, I need to rethink my business? >> Yeah, it's 100% accurate and what's been amazing to watch the last few months is the speed at which, and the urgency that companies like Microsoft and Google or others are actually racing to, to do that rethinking of their business. And you know, those teams, those companies which are large and haven't always been the fastest moving companies are working around the clock. And the pace at which they're rolling out LLMs across their suite of products is just phenomenal to watch. And it's not just the big, the large tech companies as well, I mean, we're seeing the number of startups, like we get, every week a couple of new startups get in touch with us for help with their LLMs and you know, there's just a huge amount of venture capital flowing into it right now because everyone realizes the opportunities for transforming like legal and healthcare and content creation in all these different areas is just wide open. And so there's a massive gold rush going on right now, which is amazing. >> And the cloud scale, obviously horizontal scalability of the cloud brings us to another level. We've been seeing data infrastructure since the Hadoop days where big data was coined. Now you're seeing this kind of take fruit, now you have vertical specialization where data shines, large language models all of a set up perfectly for kind of this piece. And you know, as you mentioned, you've been doing it for a long time. Let's take a step back and I want to get into how you started the company, what drove you to start it? Because you know, as an entrepreneur you're probably saw this opportunity before other people like, "Hey, this is finally it, it's here." Can you share the origination story of what you guys came up with, how you started it, what was the motivation and take us through that origination story. >> Yeah, absolutely. So as I mentioned, I've been doing AI for many years. I started my career at DARPA, but it wasn't really until 2015, 2016, my previous company was acquired by Capital One. Then I started working there and shortly after I joined, I was asked to start their AI team and scale it up. And for the first time I was actually doing it, had production models that we were working with, that was at scale, right? And so there was hundreds of millions of dollars of business revenue and certainly a big group of customers who were impacted by the way these models acted. And so it got me hyper-aware of these issues of when you get models into production, it, you know. So I think people who are earlier in the AI maturity look at that as a finish line, but it's really just the beginning and there's this constant drive to make them better, make sure they're not degrading, make sure you can explain what they're doing, if they're impacting people, making sure they're not biased. And so at that time, there really weren't any tools to exist to do this, there wasn't open source, there wasn't anything. And so after a few years there, I really started talking to other people in the industry and there was a really clear theme that this needed to be addressed. And so, I joined with my Co-Founder John Dickerson, who was on the faculty in University of Maryland and he'd been doing a lot of research in these areas. And so we ended up joining up together and starting Arthur. >> Awesome. Well, let's get into what you guys do. Can you explain the value proposition? What are people using you for now? Where's the action? What's the customers look like? What do prospects look like? Obviously you mentioned production, this has been the theme. It's not like people woke up one day and said, "Hey, I'm going to put stuff into production." This has kind of been happening. There's been companies that have been doing this at scale and then yet there's a whole follower model coming on mainstream enterprise and businesses. So there's kind of the early adopters are there now in production. What do you guys do? I mean, 'cause I think about just driving the car off the lot is not, you got to manage operations. I mean, that's a big thing. So what do you guys do? Talk about the value proposition and how you guys make money? >> Yeah, so what we do is, listen, when you go to validate ahead of deploying these models in production, starts at that point, right? So you want to make sure that if you're going to be upgrading a model, if you're going to replacing one that's currently in production, that you've proven that it's going to perform well, that it's going to be perform ethically and that you can explain what it's doing. And then when you launch it into production, traditionally data scientists would spend 25, 30% of their time just manually checking in on their model day-to-day babysitting as we call it, just to make sure that the data hasn't drifted, the model performance hasn't degraded, that a programmer did make a change in an upstream data system. You know, there's all sorts of reasons why the world changes and that can have a real adverse effect on these models. And so what we do is bring the same kind of automation that you have for other kinds of, let's say infrastructure monitoring, application monitoring, we bring that to your AI systems. And that way if there ever is an issue, it's not like weeks or months till you find it and you find it before it has an effect on your P&L and your balance sheet, which is too often before they had tools like Arthur, that was the way they were detected. >> You know, I was talking to Swami at Amazon who I've known for a long time for 13 years and been on theCUBE multiple times and you know, I watched Amazon try to pick up that sting with stage maker about six years ago and so much has happened since then. And he and I were talking about this wave, and I kind of brought up this analogy to how when cloud started, it was, Hey, I don't need a data center. 'Cause when I did my startup that time when Amazon, one of my startups at that time, my choice was put a box in the colo, get all the configuration before I could write over the line of code. So the cloud became the benefit for that and you can stand up stuff quickly and then it grew from there. Here it's kind of the same dynamic, you don't want to have to provision a large language model or do all this heavy lifting. So that seeing companies coming out there saying, you can get started faster, there's like a new way to get it going. So it's kind of like the same vibe of limiting that heavy lifting. >> Absolutely. >> How do you look at that because this seems to be a wave that's going to be coming in and how do you guys help companies who are going to move quickly and start developing? >> Yeah, so I think in the race to this kind of gold rush mentality, race to get these models into production, there's starting to see more sort of examples and evidence that there are a lot of risks that go along with it. Either your model says things, your system says things that are just wrong, you know, whether it's hallucination or just making things up, there's lots of examples. If you go on Twitter and the news, you can read about those, as well as sort of times when there could be toxic content coming out of things like that. And so there's a lot of risks there that you need to think about and be thoughtful about when you're deploying these systems. But you know, you need to balance that with the business imperative of getting these things into production and really transforming your business. And so that's where we help people, we say go ahead, put them in production, but just make sure you have the right guardrails in place so that you can do it in a smart way that's going to reflect well on you and your company. >> Let's frame the challenge for the companies now that you have, obviously there's the people who doing large scale production and then you have companies maybe like as small as us who have large linguistic databases or transcripts for example, right? So what are customers doing and why are they deploying AI right now? And is it a speed game, is it a cost game? Why have some companies been able to deploy AI at such faster rates than others? And what's a best practice to onboard new customers? >> Yeah, absolutely. So I mean, we're seeing across a bunch of different verticals, there are leaders who have really kind of started to solve this puzzle about getting AI models into production quickly and being able to iterate on them quickly. And I think those are the ones that realize that imperative that you mentioned earlier about how transformational this technology is. And you know, a lot of times, even like the CEOs or the boards are very personally kind of driving this sense of urgency around it. And so, you know, that creates a lot of movement, right? And so those companies have put in place really smart infrastructure and rails so that people can, data scientists aren't encumbered by having to like hunt down data, get access to it. They're not encumbered by having to stand up new platforms every time they want to deploy an AI system, but that stuff is already in place. There's a really nice ecosystem of products out there, including Arthur, that you can tap into. Compared to five or six years ago when I was building at a top 10 US bank, at that point you really had to build almost everything yourself and that's not the case now. And so it's really nice to have things like, you know, you mentioned AWS SageMaker and a whole host of other tools that can really accelerate things. >> What's your profile customer? Is it someone who already has a team or can people who are learning just dial into the service? What's the persona? What's the pitch, if you will, how do you align with that customer value proposition? Do people have to be built out with a team and in play or is it pre-production or can you start with people who are just getting going? >> Yeah, people do start using it pre-production for validation, but I think a lot of our customers do have a team going and they're starting to put, either close to putting something into production or about to, it's everything from large enterprises that have really sort of complicated, they have dozens of models running all over doing all sorts of use cases to tech startups that are very focused on a single problem, but that's like the lifeblood of the company and so they need to guarantee that it works well. And you know, we make it really easy to get started, especially if you're using one of the common model development platforms, you can just kind of turn key, get going and make sure that you have a nice feedback loop. So then when your models are out there, it's pointing out, areas where it's performing well, areas where it's performing less well, giving you that feedback so that you can make improvements, whether it's in training data or futurization work or algorithm selection. There's a number of, you know, depending on the symptoms, there's a number of things you can do to increase performance over time and we help guide people on that journey. >> So Adam, I have to ask, since you have such a great customer base and they're smart and they got teams and you're on the front end, I mean, early adopters is kind of an overused word, but they're killing it. They're putting stuff in the production's, not like it's a test, it's not like it's early. So as the next wave comes of fast followers, how do you see that coming online? What's your vision for that? How do you see companies that are like just waking up out of the frozen, you know, freeze of like old IT to like, okay, they got cloud, but they're not yet there. What do you see in the market? I see you're in the front end now with the top people really nailing AI and working hard. What's the- >> Yeah, I think a lot of these tools are becoming, or every year they get easier, more accessible, easier to use. And so, you know, even for that kind of like, as the market broadens, it takes less and less of a lift to put these systems in place. And the thing is, every business is unique, they have their own kind of data and so you can use these foundation models which have just been trained on generic data. They're a great starting point, a great accelerant, but then, in most cases you're either going to want to create a model or fine tune a model using data that's really kind of comes from your particular customers, the people you serve and so that it really reflects that and takes that into account. And so I do think that these, like the size of that market is expanding and its broadening as these tools just become easier to use and also the knowledge about how to build these systems becomes more widespread. >> Talk about your customer base you have now, what's the makeup, what size are they? Give a taste a little bit of a customer base you got there, what's they look like? I'll say Capital One, we know very well while you were at there, they were large scale, lot of data from fraud detection to all kinds of cool stuff. What do your customers now look like? >> Yeah, so we have a variety, but I would say one area we're really strong, we have several of the top 10 US banks, that's not surprising, that's a strength for us, but we also have Fortune 100 customers in healthcare, in manufacturing, in retail, in semiconductor and electronics. So what we find is like in any sort of these major verticals, there's typically, you know, one, two, three kind of companies that are really leading the charge and are the ones that, you know, in our opinion, those are the ones that for the next multiple decades are going to be the leaders, the ones that really kind of lead the charge on this AI transformation. And so we're very fortunate to be working with some of those. And then we have a number of startups as well who we love working with just because they're really pushing the boundaries technologically and so they provide great feedback and make sure that we're continuing to innovate and staying abreast of everything that's going on. >> You know, these early markups, even when the hyperscalers were coming online, they had to build everything themselves. That's the new, they're like the alphas out there building it. This is going to be a big wave again as that fast follower comes in. And so when you look at the scale, what advice would you give folks out there right now who want to tee it up and what's your secret sauce that will help them get there? >> Yeah, I think that the secret to teeing it up is just dive in and start like the, I think these are, there's not really a secret. I think it's amazing how accessible these are. I mean, there's all sorts of ways to access LLMs either via either API access or downloadable in some cases. And so, you know, go ahead and get started. And then our secret sauce really is the way that we provide that performance analysis of what's going on, right? So we can tell you in a very actionable way, like, hey, here's where your model is doing good things, here's where it's doing bad things. Here's something you want to take a look at, here's some potential remedies for it. We can help guide you through that. And that way when you're putting it out there, A, you're avoiding a lot of the common pitfalls that people see and B, you're able to really kind of make it better in a much faster way with that tight feedback loop. >> It's interesting, we've been kind of riffing on this supercloud idea because it was just different name than multicloud and you see apps like Snowflake built on top of AWS without even spending any CapEx, you just ride that cloud wave. This next AI, super AI wave is coming. I don't want to call AIOps because I think there's a different distinction. If you, MLOps and AIOps seem a little bit old, almost a few years back, how do you view that because everyone's is like, "Is this AIOps?" And like, "No, not kind of, but not really." How would you, you know, when someone says, just shoots off the hip, "Hey Adam, aren't you doing AIOps?" Do you say, yes we are, do you say, yes, but we do differently because it's doesn't seem like it's the same old AIOps. What's your- >> Yeah, it's a good question. AIOps has been a term that was co-opted for other things and MLOps also has people have used it for different meanings. So I like the term just AI infrastructure, I think it kind of like describes it really well and succinctly. >> But you guys are doing the ops. I mean that's the kind of ironic thing, it's like the next level, it's like NextGen ops, but it's not, you don't want to be put in that bucket. >> Yeah, no, it's very operationally focused platform that we have, I mean, it fires alerts, people can action off them. If you're familiar with like the way people run security operations centers or network operations centers, we do that for data science, right? So think of it as a DSOC, a Data Science Operations Center where all your models, you might have hundreds of models running across your organization, you may have five, but as problems are detected, alerts can be fired and you can actually work the case, make sure they're resolved, escalate them as necessary. And so there is a very strong operational aspect to it, you're right. >> You know, one of the things I think is interesting is, is that, if you don't mind commenting on it, is that the aspect of scale is huge and it feels like that was made up and now you have scale and production. What's your reaction to that when people say, how does scale impact this? >> Yeah, scale is huge for some of, you know, I think, I think look, the highest leverage business areas to apply these to, are generally going to be the ones at the biggest scale, right? And I think that's one of the advantages we have. Several of us come from enterprise backgrounds and we're used to doing things enterprise grade at scale and so, you know, we're seeing more and more companies, I think they started out deploying AI and sort of, you know, important but not necessarily like the crown jewel area of their business, but now they're deploying AI right in the heart of things and yeah, the scale that some of our companies are operating at is pretty impressive. >> John: Well, super exciting, great to have you on and congratulations. I got a final question for you, just random. What are you most excited about right now? Because I mean, you got to be pretty pumped right now with the way the world is going and again, I think this is just the beginning. What's your personal view? How do you feel right now? >> Yeah, the thing I'm really excited about for the next couple years now, you touched on it a little bit earlier, but is a sort of convergence of AI and AI systems with sort of turning into AI native businesses. And so, as you sort of do more, get good further along this transformation curve with AI, it turns out that like the better the performance of your AI systems, the better the performance of your business. Because these models are really starting to underpin all these key areas that cumulatively drive your P&L. And so one of the things that we work a lot with our customers is to do is just understand, you know, take these really esoteric data science notions and performance and tie them to all their business KPIs so that way you really are, it's kind of like the operating system for running your AI native business. And we're starting to see more and more companies get farther along that maturity curve and starting to think that way, which is really exciting. >> I love the AI native. I haven't heard any startup yet say AI first, although we kind of use the term, but I guarantee that's going to come in all the pitch decks, we're an AI first company, it's going to be great run. Adam, congratulations on your success to you and the team. Hey, if we do a few more interviews, we'll get the linguistics down. We can have bots just interact with you directly and ask you, have an interview directly. >> That sounds good, I'm going to go hang out on the beach, right? So, sounds good. >> Thanks for coming on, really appreciate the conversation. Super exciting, really important area and you guys doing great work. Thanks for coming on. >> Adam: Yeah, thanks John. >> Again, this is Cube Conversation. I'm John Furrier here in Palo Alto, AI going next gen. This is legit, this is going to a whole nother level that's going to open up huge opportunities for startups, that's going to use opportunities for investors and the value to the users and the experience will come in, in ways I think no one will ever see. So keep an eye out for more coverage on siliconangle.com and theCUBE.net, thanks for watching. (bright upbeat music)

Published Date : Mar 3 2023

SUMMARY :

I'm excited to have Adam Wenchel looking forward to the conversation. kind of in the mainstream and that it's just the amount Adam, you know, you've so that you can build on top of them. to give me a riveting introduction to you And you mentioned computer vision, again, And you know, those teams, And you know, as you mentioned, of when you get models into off the lot is not, you and that you can explain what it's doing. So it's kind of like the same vibe so that you can do it in a smart way And so, you know, that creates and make sure that you out of the frozen, you know, and so you can use these foundation models a customer base you got there, that are really leading the And so when you look at the scale, And so, you know, go how do you view that So I like the term just AI infrastructure, I mean that's the kind of ironic thing, and you can actually work the case, is that the aspect of and so, you know, we're seeing exciting, great to have you on so that way you really are, success to you and the team. out on the beach, right? and you guys doing great work. and the value to the users and

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John MarkoffPERSON

0.99+

MicrosoftORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

Adam WenchelPERSON

0.99+

JohnPERSON

0.99+

Red SoxORGANIZATION

0.99+

John DickersonPERSON

0.99+

AmazonORGANIZATION

0.99+

AdamPERSON

0.99+

John FurrierPERSON

0.99+

Palo AltoLOCATION

0.99+

2015DATE

0.99+

Capital OneORGANIZATION

0.99+

fiveQUANTITY

0.99+

100%QUANTITY

0.99+

2016DATE

0.99+

13 yearsQUANTITY

0.99+

SnowflakeTITLE

0.99+

threeQUANTITY

0.99+

first questionQUANTITY

0.99+

twoQUANTITY

0.99+

fiveDATE

0.99+

todayDATE

0.99+

oneQUANTITY

0.99+

four yearsQUANTITY

0.99+

Billy BeanePERSON

0.99+

over 20 yearsQUANTITY

0.99+

DARPAORGANIZATION

0.99+

third oneQUANTITY

0.98+

AWSORGANIZATION

0.98+

siliconangle.comOTHER

0.98+

University of MarylandORGANIZATION

0.97+

first timeQUANTITY

0.97+

USLOCATION

0.97+

firstQUANTITY

0.96+

six years agoDATE

0.96+

New York TimesORGANIZATION

0.96+

ChatGPTORGANIZATION

0.96+

SwamiPERSON

0.95+

ChatGPTTITLE

0.95+

hundreds of modelsQUANTITY

0.95+

25, 30%QUANTITY

0.95+

single problemQUANTITY

0.95+

hundreds of millions of dollarsQUANTITY

0.95+

10QUANTITY

0.94+

MoneyballTITLE

0.94+

waveEVENT

0.91+

three thingsQUANTITY

0.9+

AIOpsTITLE

0.9+

last six monthsDATE

0.89+

few months agoDATE

0.88+

bigEVENT

0.86+

next couple yearsDATE

0.86+

DevOpsTITLE

0.85+

ArthurPERSON

0.85+

CUBEORGANIZATION

0.83+

dozens of modelsQUANTITY

0.8+

a few years backDATE

0.8+

six years agoDATE

0.78+

theCUBEORGANIZATION

0.76+

SageMakerTITLE

0.75+

decadesQUANTITY

0.75+

TwitterORGANIZATION

0.74+

MLOpsTITLE

0.74+

supercloudORGANIZATION

0.73+

super AI waveEVENT

0.73+

a couple monthsQUANTITY

0.72+

ArthurORGANIZATION

0.72+

100 customersQUANTITY

0.71+

Cube ConversationEVENT

0.69+

theCUBE.netOTHER

0.67+

Sarvesh Sharma, Dell Technologies & John McCready, Dell Technologies | MWC Barcelona 2023


 

(gentle upbeat music) >> Announcer: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (bright upbeat music) >> We're back in Barcelona at the Fira. My name is Dave Vellante. I'm here with David Nicholson. We're live at MWC23, day four of the coverage. The show is still rocking. You walk the floor, it's jamming. People are lined up to get in the copter, in the right. It's amazing. Planes, trains, automobiles, digitization of analog businesses. We're going to talk private wireless here with Dell. Sarvesh Sharma, the Global Director for Edge and Private Mobility Solutions practice at Dell. And John McCready is a Senior Director for 5G Solutions and product management at Dell Technologies. Guys, good to see you. >> Likewise, likewise. >> Good to see you too. >> Private wireless. It's the buzz of the show. Everybody's talking about it. What's Dell's point of view on that? >> So Dell is, obviously, interested entering the private wireless game, as it's a good part of the overall enterprise IT space. As you move more and more into the different things. What we announced here, is sort of our initial partnerships with some key players like Airspan and expedo and AlphaNet. Players that are important in the space. Dell's going to provide an overall system integration solution wrap along with our Edge BU as well. And we think that we can bring really good solutions to our enterprise customers. >> Okay, I got to ask you about AlphaNet. So HPE pulled a little judo move they waited till you announced your partnership and then they bought the company. What, you know, what's your opinion on that? You going to, you going to dump AlphaNet, you're going to keep 'em? >> No. >> We're open Ecosystem. >> Yeah, it's an open ecosystem. We announce these are our initial partners, you know we're going to announce additional partners that was always the case. You know, there's a lot of good players in this space that bring different pros and cons. We got to be able to match the solution requirements of all our customers. And so we'll continue to partner with them and with others. >> Good, good answer, I like that. So some of these solutions are sort of out of the box, others require more integration. Can you talk about your, the spectrum of your portfolio? >> So I'm glad you brought up the integration part, right? I mean, if you look at private wireless, private mobility it is not a sell by itself. At the end of the day what the enterprise wants is not just private mobility. They're looking for an outcome. Which means from an integration perspective, you need somebody who can integrate the infrastructure stack. But that's not enough. You need somebody who can bring in the application stack to play and integrate that application stack with the enterprises IT OT. And that's not enough. You need somebody to put those together. And Dell is ideally suited to do all of this, right? We have strong partners that can bring the infrastructure stack to play. We have a proven track record of managing the IT and the enterprise stack. So we are very excited to say, "Hey, this is the sweet spot for us. And if there was a right to win the edge, we have it." >> Can you explain, I mean, people might be saying, well, why do I even need private wireless? I got Wi-Fi. I know it's kind of a dumb question for people who are in the business, but explain to folks in the audience who may not understand the intersection of the two. >> So, yeah, so I think, you know, wireless is a great techno- pardon me, Wi-Fi is a great technology for taking your laptop to the conference room. You know, it's effectively wireless LAN Where private 5G and before that private LTE had come into play is where there's a number of attributes of your application, what you're using it for, for which Wi-Fi is not as well suited. And so, you know, that plays out in different verticals in different ways. Either maybe you need a much higher capacity than Wi-Fi, better security than Wi-Fi, wider coverage like outdoor, and in many cases a more predictable reliability. So cellular is just a different way of handling the wireless interface that provides those attributes. So, you know, I think at the beginning, the first several years, you know Wi-Fi and 5G are going to live side by side in the enterprise for their different roles. How that plays out in the long term? We'll see how they each evolve. >> But I think anybody can relate to that. I mean, Wi-Fi's fine, you know, we have our issues with Wi-Fi. I'm having a lot of issues with Wi-Fi this week, but generally speaking, it works just fine. It's ubiquitous, it's cheap, okay. But I would not want to run my factory on it and rely on it for my robots that are shipping products, right? So that really is kind of the difference. It's really an industry 4.0 type. >> Yeah, exactly. So I mean, manufacturing's an important vertical, but things of energy and mining and things like that they're all outdoor, right? So you actually need the scale that comes, with a higher power technology, and even, you know just basic things like running cameras in a retail store and using AI to watch for certain things. You get a much better latency performance on private 5G and therefore are able to run more sophisticated applications. >> So I could be doing realtime inference. I can imagine Dave, I got an arm processor I'm doing some realtime inference AI at the Edge. You know, you need something like 5G to be able to do that, you can't be doing that over Wi-Fi. >> Yeah >> You nailed it. I mean that's exactly the difference, right? I mean if you look at Wi-Fi, it grow out from a IT enabled mode, right? You got to replace an ethernet. It was an IT extension. A LAN extension. Cellular came up from the mode of, "Hey, when I have that call, I need for it to be consistent and I need for it to be always available," right? So it's a different way of looking at it. Not to say one is better, the other is not better. It's just a different philosophy behind the technologies and they're going to coexist because they meet diverse needs. >> Now you have operators who embrace the idea of 5G obviously, and even private 5G. But the sort of next hurdle to overcome for some, is the idea of open standards. What does the landscape look like right now in terms of those conversations? Are you still having to push people over that hump, to get them beyond the legacy of proprietary closed stacks? >> Yeah, so I think I look, there are still people who are advocating that. And I think in the carrier's core networks it's going to take a little longer their main, you know macro networks that they serve the general public. In the private network though, the opportunity to use open standard and open technology is really strong because that's how you bring the innovation. And that's what we need in order to be able to solve all these different business problems. You know, the problems in retail, and healthcare and energy, they're different. And so you need to be able to use this open stack and be able to bring different elements of technology and blend it together in order to serve it. Otherwise we won't serve it. We'll all fail. So that's why I think it's going to have a quicker path in private. >> And the only thing to add to that is if you look at private 5G and the deployment of private LTE or private 5G, right? There is no real technology debt that you carry. So it's easy for us to say, "Hey, the operators are not listening, they're not going open." But hey, they have a technical debt, they have 2G, 3G, 4G, 5G, systems, right? >> Interviewer: Sure. >> But the reason we are so excited about private 5G and private 4G, is right off the bat when we go into an enterprise space, we can go open. >> So what exactly is Dell's role here? How do you see, obviously you make hardware and you have solutions, but you got to open ecosystems. You got, you know, you got labs, what do you see your role in the ecosystem? Kind of a disruptor here in this, when I walk around this show. >> Well a disruptor, also a solution provider, and system integrator. You know, Sarvesh and I are part of the telecom practice. We have a big Edge practice in Dell as well. And so for this space around private 5G, we're really teamed up with our cohort in the Edge business unit. And think about this as, it's not just private 5G. It's what are you doing with it? That requires storage, it requires compute, it requires other applications. So Dell brings that entire package. There definitely are players who are just focused on the connectivity, but our view is, that's not enough. To ask the enterprise to integrate that all themself. I don't think that's going to work. You need to bring the connectivity and the application to storage compute the whole solution. >> Explain Telecom and and Edge. They're different but they're like cousins in the Dell organization. Where do you guys divide the two? >> You're saying within Dell? >> Yeah, within Dell. >> Yeah, so if you look at Dell, right? Telecom is one of our most newest business units. And the way it has formed is like we talk Edge all the time, right? It's not new. Edge has always been around. So our enterprise Edge has always been around. What has changed with 5G is now you can seamlessly move between the enterprise Edge and the telecom Edge. And for that happen you had to bring in a telecom systems business unit that can facilitate that evolution. The next evolution of seamless Edge that goes across from enterprise all the way into the telco and other places where Edge needs to be. >> Same question for the market, because I remember at Dell Tech World last year, I interviewed Lowe's and the discussion was about the Edge. >> John: Yep. >> What they're doing in their Edge locations. So that's Edge. That's cool. But then I had, I had another discussion with an agriculture firm. They had like the massive greenhouses and they were growing these awesome tomatoes. Well that was Edge too. It was actually further Edge. So I guess those are both Edge, right? >> Sarvesh: Yeah, yeah, yeah. >> Spectrum there, right? And then the telecom business, now you're saying is more closely aligned with that? >> Right. >> Depending on what you're trying to do. The appropriate place for the Edge is different. You, you nailed it exactly, right. So if you need wide area, low latency, the Edge being in the telecom network actually makes a lot of sense 'cause they can serve wide area low latency. If you're just doing your manufacturing plant or your logistics facility or your agricultural growing site, that's the Edge. So that's exactly right. And the tech, the reason why they're close cousins between telecom and that is, you're going to need some kind of connectivity, some kind of connectivity from that Edge, in order to execute whatever it's you're trying to do with your business. >> Nature's Fresh was the company. I couldn't think of Nature's Fresh. They're great. Keith awesome Cube guest. >> You mentioned this mix of Wi-Fi and 5G. I know it's impossible to predict with dates certain, you know, when this, how's this is going to develop. But can you imagine a scenario where at some point in time we don't think in terms of Wi-Fi because everything is essentially enabled by a SIM or am I missing a critical piece there, in terms of management of spectrum and the complicated governmental? >> Yeah, there is- >> Situation, am I missing something? It seems like a logical progression to me, but what am I missing? >> Well, there is something to be said about spectrum, right? If you look at Wi-Fi, as I said, the driver behind the technology is different. However, I fully agree with you that at some point in time, whether it's Wi-Fi behind, whether it's private 5G behind becomes a moot point. It's simply a matter of, where is my data being generated? What is the best technology for me to use to ingest that data so I can derive value out of that data. If it means Wi-Fi, so be it. If it means cellular, so be it. And if you look at cellular right? The biggest thing people talk about SIMs. Now if you look at 5G standard. In 5G standard, you have EAPTLS, which means there is a possibility that SIMs in the future go away for IoT devices. I'm not saying they need to go away for consumer devices, they probably need to be there. But who's to say going ahead for IoT devices, they all become SIM free. So at that point, whether you Wi-Fi or 5G doesn't matter. >> Yeah, by the way, on the spectrum side people are starting to think about the concept. You might have heard this NRU, new radio unlicensed. So it's running the Wi-Fi standard, but in the unlicensed bands like Wi-Fi. So, and then the last piece is of course you know, the cost, the reality it stays 5G still new technology, the endpoints, you know, what would go in your laptop or a sensor et cetera. Today that's more expensive than Wi-Fi. So we need to get the volume curve down a little bit for that to really hit every application. I would guess your vision is correct. >> David: Yep >> But who can predict? >> Yeah, so explain more about what the unlicensed piece means for organizations. What does that for everybody? >> That's more of a future thing. So you know, just- >> No, right, but let's put on our telescope. >> Okay, so it's true today that Wi-Fi traditionally runs in the bands that have been licensed by the government and it's a country by country thing, right? >> Dave: Right. >> What we did in the United States was CBRS, is different than what they've done in Germany where they took part of the Zurich C-band and gave it to the enterprises. The telco's not involved. And now that's been copied in Japan and Korea. So it's one of the complications unfortunately in the market. Is that you have this different approach by regulators in different countries. Wi-Fi, the unlicensed band is a nice global standard. So if you could run NR just as 5G, right? It's another name for 5G, run that in the unlicensed bands, then you solve the spectrum problem that Dave was asking about. >> Which means that the market really opens up and now. >> It would be a real enabler >> Innovation. >> Exactly. >> And the only thing I would add to that is, right, there are some enterprises who have the size and scale to kind of say, "Hey, I'm going the unlicensed route. I can do things on my own." There are some enterprises that still are going to rely on the telcos, right? So I don't want to make a demon out of the telcos that you own the spectrum, no. >> David: Sure. >> They will be offering a very valuable service to a massive number of small, medium enterprises and enterprises that span regional boundaries to say, hey we can bring that consistent experience to you. >> But the primary value proposition has been connectivity, right? >> Yes. >> I mean, we can all agree on that. And you hear different monetization models, we can't allow the OTT vendors to do it again. You know, we want to tax Netflix. Okay, we've been talking about that all week. But there may be better models. >> Sarvesh: Yes. >> Right, and so where does private network fit into the monetization models? Let's follow the money here. >> Actually you've brought up an extremely important point, right? Because if you look at why haven't 5G networks taken off, one of the biggest things people keep contrasting is what is the cost of a Wi-Fi versus the cost of deploying a 5G, right? And a portion of the cost of deploying a 5G is how do you commercialize that spectrum? What is going to be the cost of that spectrum, right? So the CSPs will have to eventually figure out a proper commercialization model to say, hey listen, I can't just take what I've been doing till date and say this is how I make. Because if you look at 5G, the return of investment is incremental. Any use case you take, unless, let's take smart manufacturing, unless the factory decides I'm going to rip and replace everything by a 5G, they're going to introduce a small use case. You look at the investment for that use case, you'll say Hmm, I'm not making money. But guess what? Once you've deployed it and you bring use case number two, three, four, five, now it starts to really add value. So how can a CSP acknowledge that and create commercial models to enable that is going to be key. Like one of the things that Dell does in terms of as a service solution that we offer. I think that is a crucial way of really kick starting 5G adoption. >> It's Metcalfe's Law in this world, right? The first telephone, not a lot of value, second, I can call one person, but you know if I can call a zillion now it's valuable. >> John: Now you got data. >> Yeah, right, you used a phrase, rip and replace. What percentage of the market that you are focusing on is the let's go in and replace something, versus the let's help you digitally transform your business. And this is a networking technology that we can use to help you digitally transform? The example that you guys have with the small breweries, a perfect example. >> Sarvesh: Yeah. >> You help digitize, you know, digitally transform their business. You weren't going in and saying, I see that you have these things connected via Wi-Fi, let's rip those out and put SIMs in. >> No. >> Nope, so you know- >> That's exactly right. It's enabling new things that either couldn't be achieved before or weren't. So from a private 5G perspective, it's not going to be rip and replaced. As I said, I think we'll coexist with Wi-Fi, it's still got a great role. It's enabling those, solving those business problems that either hadn't been solved before or could not be solved with other technology. >> How are you guys using AI? Everybody's talking about ChatGPT. I love ChatGPT, we use it all the time. Love it, hate it, you know, whatever. It's a fun topic. But AI generally is here in a way that it wasn't when the enterprise disaggregated. >> John: Right. >> So there's AI, there's automation, there's opportunities there. How do they fit into private 5G? >> So if you look at it, right, AI, AI/ML is actually crucial to value extraction from that data, because all private 5G is doing is giving you access to that precious data. But that data by itself means nothing, right? You get access to the data, extracting value out of the data that bring in business value is all going to be AI/ML. Whether it's computer vision, whether it's data analytics on the fly so that you can, you know do your closed loop controls or what have you. All of these are going to be AI/ML models. >> Dave: Does it play into automation as well? >> Absolutely, 'cause they drive the automation, right? You learn your AI models, drive their automation. Control, closed loop control systems are a perfect example of their automation. >> Explain that further. Like give us an example. >> So for example, let's say we're talking about a smart manufacturing, right? So you have widgets coming down the pipe, right? You have your computer vision, you have your AI/ML model that says, "Hey, I'm starting to detect a consistent error in the product being manufactured. I'm going to close loop that automation and either tweak the settings of the machine, shut down the machine, open a workflow, escalate it for human intervention." All that automation is facilitated by the AI/ML models >> And that, and by the way, there's real money in that, right? If you're making your power and you're making it wrong, you don't detect it for hours, there's real money in fixing that >> Right. >> So I've got a, I've got an example albeit a slight, not even slightly, but a tragic one. Let's say you have a train that's rolling down the tracks at every several miles or so, temperature readings are taken from bearings in the train. >> Sarvesh: Yes, yes. >> Wouldn't it be nice to have that be happening in real time? >> Sarvesh: Yes. >> So it doesn't reach that critical point >> Yes. >> Where then you have a derailment. >> Yes. >> Yeah, absolutely. >> I mean, those are, it's doesn't sound sexy in terms of "Hey, what a great business use case that we can monetize." >> John: Yeah. >> But I'll bet you in hindsight that operator would've loved to have that capability. >> John: Yeah. >> Sarvesh: Right. >> To be able to shut the train down and not run. >> That's a great example where the carrier is actually, probably in a good position, right? Cause you got wide area, you want low latency. So the traditional carriers would be able in great position to provide that exact service. Telemetry is another great example. We've been talking about other kinds of automation, but just picking up measurements and so on. The other example of that is in oil and gas, right? As you've got pipelines running around you're measuring pressure, temperature, you detect a leak, >> David: Right. >> in minutes, not weeks. >> David: Right. >> So there's a lot of good examples of things like that >> To pick up in a point, Dave. You know, it's like you look at these big huge super tankers, right? They have big private networks on that super tanker to monitor everything. If on this train we had, you know, we hear about so many Edges, let's call one more the rolling Edge. >> Yeah. >> Right, that, that Edge is right on that locomotive tracking everything with AI/ML models, detecting things, warning people ahead of time shutting it down as needed. And that connectivity doesn't have to be wired. It can be a rolling wireless. It potentially could be a spectrum that's you know, open spectrum in the future. Or as you said, an operator could facilitate that. So many options, right? >> Yeah, got to double down on this. Look, I know 'cause I've been involved in some of these projects. Amusement park operators are doing this for rides. >> John: Yes. >> Sarvesh: Yep. >> So that they can optimize the amount of time the ride is up, so they can shorten lines >> Yes. >> So that they can get people into shops to buy food and souvenirs. >> John: Yes. >> Certainly we should be able to do it to protect infrastructure. >> Sarvesh: Absolutely. >> Right, so- >> But I think the ultimate point you're making is, it's actually quite finally segmented. There's so many different applications. And so that's why again, we come back to what we started with is at Dell, we're bringing the solution from Edge, compute, application, connectivity, and be able to bring that across all these different verticals and these different solutions. The other amusement park example, by the way, is as the rides start to invest in virtual reality, so you're moving, but you're seeing something, you need some technology like 5G to have low latency and keep that in sync and have a good experience on the ride. >> To 5G and beyond, gents. Thanks so much for coming on theCUBE. >> All right, thank you Dave. >> It was great to have you. >> Thank, thank you guys. >> Great to meet you guys. Thank you very much. >> Great, all right. Keep it right there. For David Nicholson and Dave Vellante, This is theCUBE's coverage of MWC23. Check out siliconangle.com for all the news. theCUBE.net is where all these videos live. John Furrier is in our Palo Alto office, banging out that news. Keep it right there. Be right back after this short break. (gentle upbeat music)

Published Date : Mar 2 2023

SUMMARY :

that drive human progress. in the copter, in the right. It's the buzz of the show. Players that are important in the space. Okay, I got to ask you about AlphaNet. We got to be able to match the solution are sort of out of the box, the application stack to play intersection of the two. How that plays out in the long term? So that really is kind of the difference. So you actually need the scale that comes, You know, you need something I mean if you look at Wi-Fi, is the idea of open standards. the opportunity to use open And the only thing to add to that is and private 4G, is right off the bat and you have solutions, and the application to storage in the Dell organization. Yeah, so if you look at Dell, right? and the discussion was about the Edge. They had like the massive greenhouses So if you need wide area, low latency, I couldn't think of Nature's Fresh. and the complicated governmental? What is the best technology for me to use the endpoints, you know, What does that for everybody? So you know, just- No, right, but let's run that in the unlicensed bands, Which means that the market that you own the spectrum, no. and enterprises that span And you hear different into the monetization models? that is going to be key. person, but you know to help you digitally transform? I see that you have these it's not going to be rip and replaced. Love it, hate it, you know, whatever. So there's AI, there's automation, so that you can, you know drive the automation, right? Explain that further. So you have widgets coming from bearings in the train. you have a derailment. I mean, those are, it's But I'll bet you in hindsight To be able to shut the So the traditional carriers would be able If on this train we had, you know, spectrum that's you know, Yeah, got to double down on this. So that they can to protect infrastructure. as the rides start to To 5G and beyond, gents. Great to meet you guys. for all the news.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

David NicholsonPERSON

0.99+

DavePERSON

0.99+

JohnPERSON

0.99+

AlphaNetORGANIZATION

0.99+

JapanLOCATION

0.99+

DavidPERSON

0.99+

Sarvesh SharmaPERSON

0.99+

John McCreadyPERSON

0.99+

BarcelonaLOCATION

0.99+

GermanyLOCATION

0.99+

John FurrierPERSON

0.99+

NetflixORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

KoreaLOCATION

0.99+

AirspanORGANIZATION

0.99+

DellORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

Nature's FreshORGANIZATION

0.99+

KeithPERSON

0.99+

United StatesLOCATION

0.99+

last yearDATE

0.99+

one personQUANTITY

0.99+

expedoORGANIZATION

0.99+

SarveshPERSON

0.99+

siliconangle.comOTHER

0.99+

twoQUANTITY

0.99+

EdgeORGANIZATION

0.99+

HPEORGANIZATION

0.99+

bothQUANTITY

0.99+

secondQUANTITY

0.98+

first telephoneQUANTITY

0.98+

theCUBEORGANIZATION

0.98+

oneQUANTITY

0.98+

this weekDATE

0.98+

theCUBE.netOTHER

0.97+

TodayDATE

0.97+

todayDATE

0.95+

MetcalfePERSON

0.94+

5GORGANIZATION

0.94+

Dell Tech WorldORGANIZATION

0.92+

eachQUANTITY

0.92+

MWC23EVENT

0.92+

first several yearsQUANTITY

0.9+

Warren Jackson, Dell Technologies & Scott Waller, CTO, 5G Open Innovation Lab | MWC Barcelona 2023


 

>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Hey, welcome back to the Fira in Barcelona. My name is Dave Vellante. I'm here with David Nicholson, day four of MWC '23. Show's winding down a little bit, but it's still pretty packed here. Lot of innovation, planes, trains, automobiles, and we're talking 5G all week, private networks, connected breweries. It's super exciting. Really happy to have Warren Jackson here as the Edge Gateway Product Technologist at Dell Technologies, and Scott Waller, the CTO of the 5G Open Innovation Lab. Folks, welcome to theCUBE. >> Good to be here. >> Really interesting stories that we're going to talk about. Let's start, Scott, with you, what is the Open Innovation Lab? >> So it was hatched three years ago. Ideated about a bunch of guys from Microsoft who ran startup ventures program, started the developers program over at Microsoft, if you're familiar with MSDN. And they came three years ago and said, how does CSPs working with someone like T-Mobile who's in our backyard, I'm from Seattle. How do they monetize the edge? You need a developer ecosystem of applications and use cases. That's always been the thing. The carriers are building the networks, but where's the ecosystem of startups? So we built a startup ecosystem that is sponsored by partners, Dell being one sponsor, Intel, Microsoft, VMware, Aspirant, you name it. The enterprise folks who are also in the connectivity business. And with that, we're not like a Y Combinator or a Techstars where it's investment first and it's all about funding. It's all about getting introductions from a startup who might have a VR or AI type of application or observability for 5G slicing, and bring that in front of the Microsoft's of the world, or the Intel's and the Dell's of the world that they might not have the capabilities to do it because they're still a small little startup with an MVP. So we really incubate. We're the connectors and build a network. We've had 101 startups over the last three years. They've raised over a billion dollars. And it's really valuable to our partners like T-Mobile and Dell, et cetera, where we're bringing in folks like Expedo and GenXComm and Firecell. Start up private companies that are around here they were cohorts from our program in the past. >> That's awesome because I've often, I mean, I've seen Dell get into this business and I'm like, wow, they've done a really good job of finding these guys. I wonder what the pipeline is. >> We're trying to create the pipeline for the entire industry, whether it's 5G on the edge for the CSPs, or it's for private enterprise networks. >> Warren, what's this cool little thing you got here? >> Yeah, so this is very unique in the Dell portfolio. So when people think of Dell, they think of servers laptops, et cetera. But what this does is it's designed to be deployed at the edge in harsh environments and it allows customers to do analytics, data collection at the edge. And what's unique about it is it's got an extended temperature range. There's no fan in this and there's lots of ports on it for data ingestion. So this is a smaller box Edge Gateway 3200. This is the product that we're using in the brewery. And then we have a bigger brother of this, the Edge Gateway 5200. So the value of it, you can scale depending on what your edge compute requirements are at the edge. >> So tell us about the brewery story. And you covered it, I know you were in the Dell booth, but it's basically an analog brewery. They're taking measurements and temperatures and then writing it down and then entering it in and somebody from your company saw it and said, "We can help you with this problem." Explain the story. >> Yeah, so Scott and I did a walkthrough of the brewery back in November timeframe. >> It's in Framingham, Mass. >> Framingham, Mass, correct. And basically, we talked to him, and we said, what keeps you guys up at night? What's a problem that we can solve? Very simple, a kind of a lower budget, didn't have a lot money to spend on it, but what problem can we solve that will realize great benefit for you? So we looked at their fermentation process, which was completely analog. Somebody was walking around with a clipboard looking at analog gauges. And what we did is we digitized that process. So what this did for them rather than being completely reactive, and by the time they realized there was something going wrong with the fermentation process, it's too late. A batch of scrap. This allowed them to be proactive. So anytime, anywhere on the tablet or a phone, they can see if that fermentation process is going out of range and do something about it before the batch gets scrapped. >> Okay. Amazing. And Scott, you got a picture of this workflow here? >> Yeah, actually this is the final product. >> Explain that. >> As Warren mentioned, the data is actually residing in the industrial side of the network So we wanted to keep the IT/OT separation, which is critical on the factory floor. And so all the data is brought in from the sensors via digital connection once it's converted and into the edge gateway. Then there's a snapshot of it using Telit deviceWISE, their dashboarding application, that is decoding all the digital readings, putting them in a nice dashboard. And then when we gave them, we realized another problem was they're using cheap little Chromebooks that they spill beer on once a week and throw them out. That's why they bought the cheap ones 'cause they go through them so fast. So we got a Dell Latitude Rugged notebook. This is a brand new tablet, but they have the dashboarding software. So no matter if they're out there on the floor, but because the data resides there on the factory they have access to be able to change the parameters. This one's in the maturation cycle. This one's in the crashing cycle where they're bringing the temperature back down, stopping the fermentation process, getting it ready to go to the canning side of the house. >> And they're doing all that from this dashboard. >> They're doing all from the dashboard. They also have a giant screen that we put up there that in the floor instead of walking a hundred yards back behind a whole bunch of machinery equipment from a safety perspective, now they just look up on the screen and go, "Oh, that's red. That's out of range." They're actually doing a bunch of cleaning and a bunch of other things right now, too. So this is real time from Boston. >> Dave: Oh okay. >> Scott: This is actually real time from Boston. >> I'm no hop master, but I'm looking at these things flashing at me and I'm thinking something's wrong with my beer. >> We literally just lit this up last week. So we're still tweaking a few things, but they're also learning around. This is a new capability they never had. Oh, we have the ability to alert and monitor at different processes with different batches, different brews, different yeast types. Then now they're also training and learning. And we're going to turn that into eventually a product that other breweries might be able to use. >> So back to the kind of nuts and bolts of the system. The device that you have here has essentially wifi antennas on the back. >> Warren: Correct. >> Pull that up again if you would, please. >> Now I've seen this, just so people are clear, there are also paddle 5G antennas that go on the other side. >> Correct. >> That's sort of the connection from the 5G network that then gets transmogrified, technical term guys, into wifi so the devices that are physically connected to the brew vats, don't know what they're called. >> Fermentation tanks. >> Fermentation tanks, thank you. Those are wifi. That's a wifi signal that's going into this. Is that correct? >> Scott: No. >> No, it's not. >> It's a hard wire. >> Okay, okay. >> But, you're right. This particular gateway. >> It could be wifi if it's hard wire. >> It could be, yes. Could be any technology really. >> This particular gateway is not outfitted with 5G, but something that was very important in this application was to isolate the IT network, which is on wifi and physically connected from the OT network, which is the 5G connection. So we're sending the data directly from the gateway up to the cloud. The two partners that we worked with on this project were ifm, big sensor manufacturer that actually did the wired sensors into an industrial network called IO-Link. So they're physically wired into the gateway and then in the gateway we have a solution from our partner Telit that has deviceWISE software that actually takes the data in, runs the analytics on it, the logic, and then visualizes that data locally on those panels and also up to their cloud, which is what we're looking at. So they can look at it locally, they're in the plant and then up in the cloud on a phone or a tablet, whatever, when they're at home. >> We're talking about a small business here. I don't know how many employees they have, but it's not thousands. And I love that you're talking about an IT network and an OT network. And so they wanted, it is very common when we talk about industrial internet of things use cases, but we're talking about a tiny business here. >> Warren: Correct. >> They wanted to separate those networks because of cost, because of contention. Explain why. >> Yeah, just because, I mean, they're running their ERP system, their payroll, all of their kind of the way they run their business on their IT network and you don't want to have the same traffic out on the factory floor on that network, so it was pretty important. And the other thing is we really, one of the things that we didn't want to do in this project is interrupt their production process at all. So we installed this entire system in two days. They didn't have to shut down, they didn't have to stop. We didn't have to interrupt their process at all. It was like we were invisible there and we spun the thing up and within two days, very simple, easy, but tremendous value for their business. >> Talk about new markets here. I mean, it's like any company that's analog that needs to go digital. It's like 99% of the companies on the planet. What are you guys seeing out there in terms of the types of examples beyond breweries? >> Yeah, I could talk to that. So I spent a lot of time over the last couple years running my own little IoT company and a lot of it being in agriculture. So like in Washington state, 70% of the world's hops is actually grown in Washington state. It's my hometown. But in the Ag producing regions, there's lack of connectivity. So there's interest in private networks because the carriers aren't necessarily deploying it. But because we have the vast amount of hops there's a lot of IPAs, a lot of hoppy IPAs that come out of Seattle. And with that, there's a ton of craft breweries that are about the same size, some are a little larger. Anheuser-Busch and InBev and Heineken they've got great IoT platforms. They've done it. They're mass scale, they have to digitize. But the smaller shops, they don't, when we talk about IT/OT separation, they're not aware of that. They think it's just, I get local broadband and I get wifi and one hotspot inside my facility and it works. So a little bit of it was the education. I have got years in IT/OT security in my background so that education and we come forward with a solution that actually does that for them. And now they're aware of it. So now when they're asking questions of other vendors that are trying to sell them some type of solution, they're inherently aware of what should be done so they're not vulnerable to ransomware attacks, et cetera. So it's known as the Purdue Model. >> Well, what should they do? >> We came in and keep it completely separated and educated them because in the end too we'll build a design guide and a starter kit out of this that other brewers can use. Because I've toured dozens of breweries in Washington, the exact same scenario, analog gauges, analog process, very manual. And in the end, when you ask the brewer, what do they want out of this? It keeps them up at night because if the temperature goes out of range, because the chiller fails, >> They ruined. >> That's $30,000 lost in beer. That's a lot to a small business. However, it's also once they start digitizing the data and to Warren's point, it's read-only. We're not changing any of the process. We augmented on top of their existing systems. We didn't change their process. But now they have the ability to look at the data and see batch to batch consistency. Quality doesn't always mean best, it means consistency from batch to batch. Every beer from exhibit A from yesterday to two months from now of the same style of beer should be the same taste, flavor, boldness, et cetera. This is giving them the insights on it. >> It's like St. Louis Buds, when we were kids. We would buy the St. Louis Buds 'cause they tasted better than the Merrimack Buds. And then Budweiser made them all the same. >> Must be an East coast thing. >> It's an old guy thing, Dave. You weren't born yet. >> I was in high school. Yeah, I was in high school. >> We like the hops. >> We weren't 21. Do me a favor, clarify OT versus IT. It's something we talk about all the time, but not everyone's familiar with that separation. Define OT for me. >> It's really the factory floor. You got IT systems that are ERP systems, billing, you're getting your emails, stuff like that. Where the ransomware usually gets infected in. The OT side is the industrial control network. >> David: What's the 'O' stand for? >> Operation. >> David: Operation? >> Yeah, the operations side. >> 'Cause some people will think objects 'cause we think internet of things. >> The industrial operations, think of it that way. >> But in a sense those are things that are connected. >> And you think of that as they are the safety systems as well. So a machine, if someone doesn't push the stop button, you'd think if there's a lot of traffic on that network, it isn't guaranteed that that stop button actually stops that blade from coming down, someone's going to lose their arm. So it's very tied to safety, reliability, low latency. It is crafted in design that it never touches the internet inherently without having to go through a security gateway which is what we did. >> You mentioned the large companies like InBev, et cetera. You're saying they're already there. Are they not part of your target market? Or are there ways that you can help them? Is this really more of a small to mid-size company? >> For this particular solution, I think so, yeah. Because the cost to entry is low. I mean, you talk about InBev, they have millions of dollars of budgets to spend on OT. So they're completely automated from top to bottom. But these little craft brewers, which they're everywhere in the US. Vermont, Washington state, they're completely manual. A lot of these guys just started in their garage. And they just scaled up and they got a cult kind of following around their beers. One thing that we found here this week, when you talk around edge and 5G and beer, those things get people excited. In our booth we're serving beer, and all these kind of topics, it brings people together. >> And it lets the little guy compete more effectively with the big giants. >> Correct. >> And how do you do more with less as the little guy is kind of the big thing and to Warren's point, we have folks come up and say, "Great, this is for beer, but what about wine? What about the fermentation process of wine?" Same materials in the end. A vessel of some sort, maybe it's stainless steel. The clamps are the same, the sensors are the same. The parameters like temperature are key in any type of fermentation. We had someone talking about olive oil and using that. It's the same sanitary beverage style equipment. We grabbed sensors that were off the shelf and then we integrated them in and used the set of platforms that we could. How do we rapidly enable these guys at the lowest possible cost with stuff that's at the shelf. And there's four different companies in the solution. >> We were having a conversation with T-Mobile a little earlier and she mentioned the idea of this sounding scary. And this is a great example of showing that in fact, at a relatively small scale, this technology makes a lot of sense. So from that perspective, of course you can implement private 5G networks at an industrial scale with tens of millions of dollars of investment. But what about all of the other things below? And that seems to be a perfect example. >> Yeah, correct. And it's one of the things with the gateway and having flexibility the way Dell did a great job of putting really good modems in it. It had a wide spectrum range of what bands they support. So being able to say, at a larger facility, I mean, if Heineken wants to deploy something like this, oh, heck yeah, they probably could do it. And they might have a private 5G network, but let's say T-Mobile offers a private offering on their public via a slice. It's easy to connect that radio to it. You just change the sims. >> Is that how the CSPs fit here? How are they monetized? >> Yeah, correct. So one of our partners is T-Mobile and so we're working with them. We've got other telco partners that are coming on board in our lab. And so we'll do the same thing. We're going to take this back and put it in the lab and offer it up as others because the baseline building blocks or Lego blocks per se can be used in a bunch of different industries. It's really that starter point of giving folks the idea of what's possible. >> So small manufacturing, agriculture you mentioned, any other sort of use cases we should tune into? >> I think it's environmental monitoring, all of that stuff, I see it in IoT deployments all over the world. Just the simple starter kits 'cause a farmer doesn't want to get sold a solution, a platform, where he's got to hire a bunch of coders and partner with the big carriers. He just wants something that works. >> Another use case that we see a lot, a high cost in a lot of these places is the cost of energy. And a lot of companies don't know what they're spending on electricity. So a very simple energy monitoring system like that, it's a really good ROI. I'm going to spend five or $10,000 on a system like this, but I'm going to save $20,000 over a year 'cause I'm able to see, have visibility into that data. That's a lot of what this story's about, just giving visibility into the process. >> It's very cool, and like you said, it gets people excited. Is it a big market? How do you size it? Is it a big TAM? >> Yeah, so one thing that Dell brings to the table in this space is people are buying their laptops, their servers and whatnot from Dell and companies are comfortable in doing business with Dell because of our model direct to customer and whatnot. So our ability to bring a device like this to the OT space and have them have that same user experience they have with laptops and our client products in a ruggedized solution like this and bring a lot of partners to the table makes it easy for our customers to implement this across all kinds of industries. >> So we're talking to billions, tens of billions. Do we know how big this market is? What's the TAM? I mean, come on, you work for Dell. You have to do a TAM analysis. >> Yes, no, yeah. I mean, it really is in the billions. The market is huge for this one. I think we just tapped into it. We're kind of focused in on the brewery piece of it and the liquor piece of it, but the possibilities are endless. >> Yeah, that's tip of the spear. Guys, great story. >> It's scalable. I think the biggest thing, just my final feedback is working and partnering with Dell is we got something as small as this edge gateway that I can run a Packet Core on and run a 5G standalone node and then have one of the small little 5G radios out there. And I've got these deployed in a farm. Give the farmer an idea of what's possible, give him a unit on his tractor, and now he can do something that, we're providing connectivity he had never had before. But as we scale up, we've got the big brother to this. When we scale up from that, we got the telco size units that we can put. So it's very scalable. It's just a great suite of offerings. >> Yeah, outstanding. Guys, thanks for sharing the story. Great to have you on theCUBE. >> Good to be with you today. >> Stop by for beer later. >> You know it. All right, Dave Vellante for Dave Nicholson and the entire CUBE team, we're here live at the Fira in Barcelona MWC '23 day four. Keep it right there. (upbeat music)

Published Date : Mar 2 2023

SUMMARY :

that drive human progress. and Scott Waller, the CTO of that we're going to talk about. the capabilities to do it of finding these guys. for the entire industry, So the value of it, Explain the story. of the brewery back in November timeframe. and by the time they realized of this workflow here? is the final product. and into the edge gateway. that from this dashboard. that in the floor instead Scott: This is actually and I'm thinking something's that other breweries might be able to use. nuts and bolts of the system. Pull that up again that go on the other side. so the devices that are Is that correct? This particular gateway. if it's hard wire. It could be, yes. that actually takes the data in, And I love that you're because of cost, because of contention. And the other thing is we really, It's like 99% of the that are about the same size, And in the end, when you ask the brewer, We're not changing any of the process. than the Merrimack Buds. It's an old guy thing, Dave. I was in high school. It's something we talk about all the time, It's really the factory floor. 'cause we think internet of things. The industrial operations, But in a sense those are doesn't push the stop button, You mentioned the large Because the cost to entry is low. And it lets the little is kind of the big thing and she mentioned the idea And it's one of the of giving folks the all over the world. places is the cost of energy. It's very cool, and like you and bring a lot of partners to the table What's the TAM? and the liquor piece of it, Yeah, that's tip of the spear. got the big brother to this. Guys, thanks for sharing the story. and the entire CUBE team,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
David NicholsonPERSON

0.99+

Dave NicholsonPERSON

0.99+

Dave VellantePERSON

0.99+

ScottPERSON

0.99+

WarrenPERSON

0.99+

T-MobileORGANIZATION

0.99+

$30,000QUANTITY

0.99+

MicrosoftORGANIZATION

0.99+

Scott WallerPERSON

0.99+

SeattleLOCATION

0.99+

Warren JacksonPERSON

0.99+

DellORGANIZATION

0.99+

WashingtonLOCATION

0.99+

DavePERSON

0.99+

$10,000QUANTITY

0.99+

USLOCATION

0.99+

99%QUANTITY

0.99+

DavidPERSON

0.99+

fiveQUANTITY

0.99+

InBevORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

two partnersQUANTITY

0.99+

IntelORGANIZATION

0.99+

NovemberDATE

0.99+

Anheuser-BuschORGANIZATION

0.99+

yesterdayDATE

0.99+

TelitORGANIZATION

0.99+

70%QUANTITY

0.99+

BostonLOCATION

0.99+

oneQUANTITY

0.99+

BarcelonaLOCATION

0.99+

101 startupsQUANTITY

0.99+

HeinekenORGANIZATION

0.99+

GenXCommORGANIZATION

0.99+

ExpedoORGANIZATION

0.99+

thousandsQUANTITY

0.99+

last weekDATE

0.99+

5G Open Innovation LabORGANIZATION

0.99+

three years agoDATE

0.99+

billionsQUANTITY

0.99+

AspirantORGANIZATION

0.98+

this weekDATE

0.98+

FirecellORGANIZATION

0.98+

VMwareORGANIZATION

0.98+

MWC '23EVENT

0.98+

two daysQUANTITY

0.98+

todayDATE

0.98+

four different companiesQUANTITY

0.98+

Edge Gateway 5200COMMERCIAL_ITEM

0.98+

Open Innovation LabORGANIZATION

0.98+

millions of dollarsQUANTITY

0.97+

telcoORGANIZATION

0.97+

CUBEORGANIZATION

0.97+

over a billion dollarsQUANTITY

0.97+

Douglas Lieberman, Dell Technologies & Dennis Wong, Singtel | MWC Barcelona 2023


 

(gentle pulsating music) >> Narrator: TheCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (light airy music) >> Good evening from Fira, Barcelona in Spain. It's Lisa Martin and Dave Vellante. We are covering with theCUBE MWC '23. This is day three. Three full days, almost, of coverage we've given you. And don't worry, we've got a great conversation next, and another day tomorrow. We're going to be talking with Singtel and Dell next about 5G network slicing. Sexy stuff. Please welcome Dennis Wong, VP Enterprise 5G and Platform from Singtel. And Douglas Lieberman is back with us. Our alumni, Global Senior Director, GTM and Co-Creation Services, Telecom Systems Business at Dell. Welcome, guys. Great to have you. >> Thank you very much. >> Thanks for having us. >> So Dennis, go ahead and start with you. Talk to the audience about Singtel. You've got a unique insight into some of the challenges that 5G brings and the opportunities. What is Singtel seeing there? >> I think from a Singtel perspective, I think 5G technology brings about a new era of opportunities for all the enterprises, you know, from big to small. I think that's one thing that we are aiming to do. How do we put technology together? And that's why I think that 5G brings about a lot more capabilities, a lot more parameters that, you know, for the new technology, new devices, new services that we can explore. I mean, we are giving ourself a new opportunity to try something that's better than Wi-Fi, that is better 4G. So I think that's something very exciting for me. >> What are some of the challenges that you see that are, that you look to partners like Dell to help wipe off the table? >> I think one of the things that Dell has been doing very closely with us, I think in terms of the network technology, in terms of the RAN, in terms of the, you know, kind of virtualization, in terms of marketplace, in terms of ecosystem, they are all over the place. So I think for them, they are not looking at just hardware, they are looking at how to support us as a whole ecosystem to work things together. >> You know, it's interesting because it's maybe an overused term, but everyone talks about 5G being the enterprise G. And really, what's interesting about 5G, and where Dell is really able to add value in working with partners like Singtel, is the disaggregation of 5G and the open side of it, and the ability to take different workloads and customize them because of the fact that the whole packet core and the CU and the DU and that architecture is not locked into a single proprietary architecture, allows for customization and injection of workloads, and allows enterprises to really tune the network to what their workloads need to be. >> So I wonder, Dennis, can you take us through the anatomy of a 5G deployment? How does it work? Do you start with a sort of greenfield, sort of test bed? How do you connect it to your 4G networks? Take us through the process. >> Maybe I will go through from a customer lens. What does the customer think, and what does the customer feels about when we approach them for 5G? I think for most of the customers who are thinking about 5G, they are usually already having some kind of a services that's running on the current technology. Could be 4G, could be Wi-Fi. And one very typical example that I can share with you is that one of the customers, he was saying that, "I'm having Wi-Fi already. Can you prove to me that 5G is better?" So, what we did was that we actually rolled out our, this little proprietary 5G in the box. We call it 5G GENIE. GENIE stands for Generating Instant Experience. You know, very interesting name. We pushed that to the customer place. Within 30 minutes, he set up a 5G connectivity in his area, and he tested his performance of his Wi-Fi with the GENIE on the spot. And immediately, wow, he see that there's a lot of difference in the performance. Now, so the first part, is really about getting the customer to feel that, why 5G is truly better. Let them experience it. Then after which, we went through with them, because of this performance, what does it do to your business? From a productivity perspective, security perspective, safety perspective. And they kind of look at it and say, "Wow." that is where the ROI comes from. Then after which, then is where I think, you know, where Dave says, you know, he comes in whereby then, we will design, if it's a factory, we are to design the coverage in the factory because robots are moving. You want to ensure that every part of them, of their factories have the coverage. So we are to design it, we are to build it, put in all the controls and put in all the devices. And then after which, you know, then all things will go. And of course, from a customer perspective, they will still need to run the application. We need to check that the performance is, you know, up to the mark. So I think in all, the 5G journey is not really just about putting the network and, "Here, customer, let's use it." There's a lot of conviction, there's a lot of testing, there's a lot of what we call trial and error with the customer. Yeah. >> So thank you for that explanation. So that's there, we're going to make a business case, and they're going to see immediate performance improvements. Then, I presume they're going to start building new applications on top. And then maybe that'll negatively affect the performance, but that's okay. It's like we were talking about the other day, there's so much data pumping, you get equivalent performance, but so much more capability. So how are you guys thinking about that ultimate layer, where that value is, the application, the workloads, that are going to be new to these networks? >> Well, let's, you know, we can take a step back and talk about, for example, the use case he just talked about, which was in, you know, autonomous vehicles or robots inside a factory. It's not that it's just more performance. It's reliable performance and consistent performance. Because the difference with a cellular solution, a mobile solution, a 5G solution, than a Wi-Fi, is the guaranteed spectrum and the isolated spectrum and the lack of competition for that space. I mean, I tell people this all the time, and you can see it right now. If you were to open your phone and look at all the Wi-Fi hotspots that exist right here, there is an enormous amount of contention for the exact same spectrum and we're all competing with each other. >> Dave: I can't get into the network. >> Right, and so the more people that walk past us in this cube, the more that there's going to be interference. And so the performance is not guaranteed. And if you have an automated factory, if you have machines that are moving around a factory, if you have robots that need to work together, you can't afford for it to be great one minute, and lousy the next minute. You need consistent high performance. And that's where these 5G networks and private 5G networks are really, really important. 'Cause it's not just about faster. Sometimes it's not all about can I get it there faster? I want it faster, but reliably and consistently, and make sure I get the same experience every time, so that I can then build more intricate and complicated applications. If you have a warehouse that's got autonomous robots, the closer I can have those robots get to each other, means the more packages I can move, or the more welds I can make, or the more machine parts I can get out the door because I don't have to build into the, "Oh my God, I lost Wi-Fi connectivity for 10 seconds," and I got, "And everything stops, until the connectivity comes back and they can resume." >> And anybody would choose consistent, predictable performance over spiky performance. >> Doug: Right. >> And you're saying the technology, you're able to better leverage the spectrum, isolate the spectrum for that specific use case. That is a technology enabler. >> Dennis: Maybe I can also give you another perspective. Together with the 5G technology is where the multi-edge computing comes into place. And that's where I think one of the things that we work very closely with Dell as well. Because that is very important. With that compute at the edge, means that your latency is low. And, like what you said, it's not just low latency, it's consistently low latency. Today, let's say in Singapore, Singapore is a very small city. You can travel from one end of the city to the other end in one and a half hour, and that's it. Singapore is so- >> If there's no traffic. >> And if there's no traffic. (all laugh) Now, so everyone was saying, "Singapore is such a small city, why would you need a edge?" So I explained to them, we did a test from a cloud gaming perspective. As we use 4G over the public cloud, it's true that you can get about 10, 15, 20 milliseconds, you know, on a good day, but it's, on average, it's about 15, 20 milliseconds. However, you will find that there are times, whereby it'll spike to 150, spike to 90, spike to 200. So you can see that it's not just about low latency, it's about consistent low latency. So that's where I think 5G and MEC come as a good pair to make sure that, you know, the performance of our, for those factories or what, you know, kind of Doug has mentioned, the high performance, you know, synchronized services is very important. Beside packing the, you know, the drones, or the robots who go close together, you want it to be synchronized. And you know, if you've seen some of those robots that work together, it's almost synchronized. That is the one thing that, our dreams that we going to make sure that we going to achieve, yeah. >> And then, of course, on top of all that, is security, which is really, really important on all these. I mean the vulnerabilities of Wi-Fi are well known. There is a hundred different tools that you can download for free to test the security of any Wi-Fi network. So there's- >> Dave: I got my VPN and it won't let me on the network. >> Right, exactly. (all laugh) You know, so the benefit of a 5G solution, a 4G solution, is the added layer of security. I'm not saying that it's perfect, you know, there are obviously ways to get around those as well, but every additional layer of security is one less attack factor that you have to worry about every single day. >> So Dennis, you're pro on the 5G adoption journey. You both have talked about the ostensible benefits there and then the capabilities. I want to understand, how is Dell actually helping, under the covers, Singtel, deliver this connectivity and this consistency and the reliability that your customers expect? >> Yeah. I think, you know, having all these services together, I think, other than just what we call the 5G connectivity, it's like what you mentioned about the RAN, the disaggregated kind of services, I think that gives us a lot of opportunity in terms of flexibility, in terms, of course. But I think one of the things that we also work closely together is about new technology. As I've mentioned also that, you know, the marketplace or the partners that Dell brings, that's very, very important for us. And then for me, I think that, if I look at it again from the customer lens again, right? Having the kind of right equipment, which we are working together with Dell, is important, but I think having the right ecosystem that use the equipment, is even more important. I will give you a very simple example. For any organization, for any services that you need to deploy, let's choose a SMB. You'll realize that, if I want to deploy an application in my office, there's a few things you need to consider. Networks, which could be provided by 5G, right? Then you talk about the public cloud. Then you talk about the, what we call the public cloud and you talk about the edge. Now, in order for you to deploy this, you'll realize that every one of them could be orchestrated and synchronized. And then, as well, Doug has mentioned, after you implemented three of them, you've still got to consider security across them. >> Lisa: Yeah, yeah. >> So what happens there for us, what we want to do is that, we actually build a platform that actually sits on top of all this. This platform actually controls the 5G network, the MEC, as well as the, what we call the public all together. And on top, sitting on top of that is all the applications. Why so? Because again, anytime you have an application, you know that you have to make sure that the VMs works, the hypervisor works, you know, connectivity works, the compatibility works. So, when we build this platform, we put all the ecosystem on board and then it makes it like, the customer can have a one stop shop, look at the equipment, look at the, what we call the equipment, look at the networks, look at the, you know, the cloud, the IaaS as well as the application, it works. And so, working together with Dell, we actually come up and look at some solution that's fit for the market. One of the opportunity that we are looking together with this Dell is in Singapore. How do we actually ship a really packaged bundle to SMEs that has a Dell equipment, our 5G network, plus the platform product ecosystem, that can ship to any restaurant around? So that, you know, we are thinking out loud. Like for example, as you move into the restaurant, you know, we always say that, please scan your barcode on the table for the menu. >> Lisa: Yeah. >> You can just go in, and by facial recognition, knowing that you are not a staff. So it's a reverse privacy. And then after that, push, you know, the menu to your phone directly. And so, therefore, it cuts again the stuff of me trying to scan the menu or waiting for it to load. And because with the on-prem equipment from Dell, let's say for example, there's things is pushed to the phone instantly. You know, sometimes we know that, when some of this goes to the public web or public cloud, and by the time it loads the menu, you are just waiting to avoid the load. So you can see that all these become a experience for the SMEs and the restaurant's staff. So I think these are some of these great use cases that we can foresee in the future. >> And I think, you know, something you just said is really a key part, right? As technologists, sometimes we get wrapped around the technology, and we forget about the fact that it's all about the outcome. To the enterprise, they're looking at a workload. They have a very specific thing they want to accomplish. And all this stuff, private 5G, and edge, and cloud, they're all really irrelevant. They're just means to get to what their outcome that they want to be is. And when we look at them atomically, and as independent little units, we end up with sprawl, and honestly, enterprises are telling us more and more and more, "I don't want that. I don't want a science project. I don't want to be responsible for figuring out how all these things are going to play together and have one rack of equipment for my network, and one rack of equipment for my private 5G, and another rack of equipment for my edge cloud and another rack of equipment for the MEC." And you start to get data centers inside of a pizza shop where there's no space to put a data center, right? And so the partnership we have with Singtel, and exactly what Dennis was just talking about, is how do we take all of those and start realizing that with virtualization and containerization and the open architecture that exists with function virtualization in networking today, in private 5G. We're able to utilize a common infrastructure stack, a common platform to be able to give you all those functions to run the 5G, to run your core applications, to run the MEC, to do all those things, so that we're minimizing the footprint, but also minimizing the complexity. And that's really the point. >> So how mature are we today? Where are we? When can we expect deployments? You know, are there any sort of early case examples you can share? >> Yeah, like I said, you know, in Singapore itself, we have already saw a little bit of success. Especially in Singapore, we have 5G SA already. So I think one of the few things that like I mentioned, some of these use cases that we did. So the company that I talked earlier about is a factory. They took the 5G GENIE, went there, and tested against the Wi-Fi, agree with it. They say, "Let's deploy." They have deployed it now, and it's running. So it's using the 5G for safety, you know, and safety inspection and remote assistance, for training, et cetera. We're using the VR goggles. So I think that's really a live use case. The other live use case is that in Singapore, one of the, you know, kind of automotive manufacturing plants is actually using the AGV that's controlled by our 5G, that's moving around in the factory in a very, what we call random manner. In a way that, in the past, whereby you would never conceive the automotive factories that is going to go on conveyor belts. But now, the AGV is moving as in where at in the ad hoc manner, yeah. >> Yeah, I mean we've got solutions. We've implemented with customers for mining, for example. For the autonomous vehicles in a mine where the, you know, after the mine explosion goes off and you got to gather the minerals and the ores, there's a lot of time that you have to wait before humans can go in. But with a 5G solution, we've been able to enable autonomous vehicles to go in there and start the process of collecting that ore without waiting for the humans, substantially improving safety, security, and the output and revenue of those mines. >> Dave: No, no canary necessary. (Dennis laughs) Is that correct that this capability is not really going to cannibalize Wi-Fi, right? It's going to go into use cases, or will it? Are there situations that overlap, where customers have sort of on the edge, no pun intended, tried to use Wi-Fi and then this will cannibalize some piece of the market? >> Look, there's a Venn diagram somewhere, right? (Lisa and Dennis chuckle) And at the end of the day, no one who's being honest is going to say that 5G is going to replace Wi-Fi, right? >> Yeah, yeah, sure. >> There are, and there's a lot of reasons for that. You know, challenges in adding new devices, you know, if you go to a store, and you want to get on their Wi-Fi, you don't want to necessarily add a new SIM to your phone. So there are places where Wi-Fi is still going to remain a very powerful long-term solution that's not going anywhere, especially at the moment because the cost of Wi-Fi, you know, the chips for Wi-Fi are pennies a piece to put in devices. So we're a long way away from 5G being at the same monetary scale as Wi-Fi. But, there are a lot of use cases where Wi-Fi is simply doesn't work. I talked about that mining solution, Wi-Fi doesn't work in a mine. It's got the wrong physics properties, it's got the wrong distance limitations, there's all sorts of problems. And so, what 5G has opened up, is where in the past, people tried to make Wi-Fi work and either gave up and ran wired, or just dealt with constant problems, like all their machines shutting down simultaneously. 5G is enabling them to now have a real solution that works. So it's carving out a niche for itself. In some places it's replacing Wi-Fi without a doubt 'cause it is a better solution. But there are some use cases that are going to remain Wi-Fi for a long time. >> And how flexible and mobile can that solution be? 'Cause we can't use Wi-Fi here. (Dennis chuckles) We have to use a hard line. >> Yep. >> Right? So, could we use 5G, our own private network on theCUBE? Or is it because we're going too many places? It's just just too complicated for us? >> That's where it comes from. >> Stick with fixed lines. >> That's where the next technology of 5G come from. >> Yeah. >> Slicing. >> Talk about that. >> You see that, you know, somebody ask me, "Why would somebody need slicing?" Then I'll ask you, "That if you are in US, or in any country in the world, there's always two way. You can use a highway and you pay toll. Or you use your small roads. Exactly, why do you have a highway, that you have to pay toll?" There is a highway, there's a path, there's a slice. So for operators, we can always say that based on your mission criticality, based on the speed you want, based on the kind of urgency you need, our works give you a slice, and that you have to pay a premium for it. So similarly, would be that 5G is going to be available here, and say that Cube will purchase a slice from Californica. And say that for Cube, this is your 5G, you have a freeway, green way, it's highly possible. >> Believe me, we're paying a premium for hard lines at Mobile World Congress or MWC. (all laugh) >> And to that point, right, you know, and those slicing gives you the opportunity to do profiling and, you know, setting up. When I say profiling, you know, different devices and different customers getting different metrics on how they use that network. So some of them will get a superhighway, some of them will get a medium size highway, somebody- >> Dennis: Somebody getting a secured highway. >> Right, so a more secure highway. So, there's a lot more flexibility with 5G, and that's why I said, you know, there's a lot of use cases, where it will replace Wi-Fi, and it will be very powerful. And that's the places where we're really seeing the adoption really taking off. >> You guys have done a great job explaining 5G, really. Why you're pro 5G, the opportunities of the use cases. Thank you so much for joining us today. >> Dennis: Thank you, Lisa. >> Also talking about what Dell and Singtel are doing together. I imagine the journey probably has just begun, but you've made tremendous amount of progress so far. It's a great use case. Thank you for sharing it with us today. >> Thank you very much. >> Thank you. Thank you, Dave. Thank you, Lisa. >> All right, our pleasure. For our guests and for Dave Vellante, I'm Lisa Martin. You're watching theCUBE, live at MWC '23 from Barcelona, Spain. Stick around. Dave comes up with a very cool wrap, after this. (light airy music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. And Douglas Lieberman is back with us. that 5G brings and the opportunities. a lot more parameters that, you know, in terms of the, you know, and the ability to take How do you connect it to your 4G networks? is that one of the customers, So thank you for that explanation. and look at all the Wi-Fi Right, and so the more people And anybody would choose consistent, the technology, of the city to the other end the high performance, you know, that you can download for free and it won't let me on the network. that you have to worry and the reliability that for any services that you need to deploy, the hypervisor works, you know, the menu to your phone directly. And I think, you know, and tested against the that you have to wait some piece of the market? because the cost of Wi-Fi, you know, We have to use a hard line. That's where the next and that you have to pay a premium for it. a premium for hard lines And to that point, right, you know, Dennis: Somebody and that's why I said, you know, opportunities of the use cases. I imagine the journey Thank you, Lisa. Dave comes up with a very

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DennisPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

SingtelORGANIZATION

0.99+

Dennis WongPERSON

0.99+

SingaporeLOCATION

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

Douglas LiebermanPERSON

0.99+

DougPERSON

0.99+

USLOCATION

0.99+

LisaPERSON

0.99+

10 secondsQUANTITY

0.99+

DellORGANIZATION

0.99+

90QUANTITY

0.99+

first partQUANTITY

0.99+

CalifornicaLOCATION

0.99+

150QUANTITY

0.99+

200QUANTITY

0.99+

Barcelona, SpainLOCATION

0.99+

one minuteQUANTITY

0.99+

threeQUANTITY

0.99+

todayDATE

0.99+

one and a half hourQUANTITY

0.99+

one rackQUANTITY

0.99+

TodayDATE

0.99+

GTMORGANIZATION

0.99+

15QUANTITY

0.99+

Dell TechnologiesORGANIZATION

0.99+

tomorrowDATE

0.99+

two wayQUANTITY

0.99+

5GORGANIZATION

0.98+

OneQUANTITY

0.98+

20QUANTITY

0.98+

oneQUANTITY

0.97+

Three full daysQUANTITY

0.97+

30 minutesQUANTITY

0.97+

20 millisecondsQUANTITY

0.96+

GENIEORGANIZATION

0.96+

Andy Sheahen, Dell Technologies & Marc Rouanne, DISH Wireless | MWC Barcelona 2023


 

>> (Narrator) The CUBE's live coverage is made possible by funding by Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Welcome back to Fira Barcelona. It's theCUBE live at MWC23 our third day of coverage of this great, huge event continues. Lisa Martin and Dave Nicholson here. We've got Dell and Dish here, we are going to be talking about what they're doing together. Andy Sheahen joins as global director of Telecom Cloud Core and Next Gen Ops at Dell. And Marc Rouanne, one of our alumni is back, EVP and Chief Network Officer at Dish Wireless. Welcome guys. >> Great to be here. >> (Both) Thank you. >> (Lisa) Great to have you. Mark, talk to us about what's going on at Dish wireless. Give us the update. >> Yeah so we've built a network from scratch in the US, that covered the US, we use a cloud base Cloud native, so from the bottom of the tower all the way to the internet uses cloud distributed cloud, emits it, so there are a lot of things about that. But it's unique, and now it's working, so we're starting to play with it and that's pretty cool. >> What's some of the proof points, proof in the pudding? >> Well, for us, first of all it was to do basic voice and data on a smartphone and for me the success would that you won't see the difference for a smartphone. That's base line. the next step is bringing this to the enterprise for their use case. So we've covered- now we have services for smartphones. We use our brand, Boost brand, and we are distributing that across the US. But as I said, the real good stuff is when you start to making you know the machines and all the data and the applications for the enterprise. >> Andy, how is Dell a facilitator of what Marc just described and the use cases and what their able to deliver? >> We're providing a number of the servers that are being used out in their radio access network. The virtual DU servers, we're also providing some bare metal orchestration capabilities to help automate the process of deploying all these hundreds and thousands of nodes out in the field. Both of these, the servers and the bare metal orchestra product are things that we developed in concert with Dish, working together to understand the way, the best way to automate, based on the tooling their using in other parts of their network, and we've been with you guys since day one, really. >> (Marc) Absolutely, yeah. >> Making each others solutions better the whole way. >> Marc, why Dell? >> So, the way the networks work is you have a cloud, and you have a distributed edge you need someone who understands the diversity of the edge in order to bring the cloud software to the edge, and Dell is the best there, you know, you can, we can ask them to mix and match accelerators, processors memory, it's very diverse distributed edge. We are building twenty thousands sides so you imagine the size and the complexity and Dell was the right partner for that. >> (Andy) Thank you. >> So you mentioned addressing enterprise leads, which is interesting because there's nothing that would prevent you from going after consumer wireless technically, right but it sounds like you have taken a look at the market and said "we're going to go after this segment of the market." >> (Marc) Yeah. >> At least for now. Are there significant differences between what an enterprise expects from a 5G network than, verses a consumer? >> Yeah. >> (Dave) They have higher expectations, maybe, number one I guess is, if my bill is 150 dollars a month I can have certain levels of expectations whereas a large enterprise the may be making a much more significant investment, are their expectations greater? >> (Marc) Yeah. >> Do you have a higher bar to get over? >> So first, I mean first we use our network for consumers, but for us it's an enterprise. That's the consumer segment, an enterprise. So we expose the network like we would to a car manufacturer, or to a distributor of goods of food and beverage. But what you expect when you are an enterprise, you expect, manage your services. You expect to control the goodness of your services, and for this you need to observe what's happening. Are you delivering the right service? What is the feedback from the enterprise users, and that's what we call the observability. We have a data centric network, so our enterprises are saying "Yeah connecting is enough, but show us how it works, and show us how we can learn from the data, improve, improve, and become more competitive." That's the big difference. >> So what you say Marc, are some of the outcomes you achieved working with Dell? TCO, ROI, CapX, OpX, what are some of the outcomes so far, that you've been able to accomplish? >> Yeah, so obviously we don't share our numbers, but we're very competitive. Both on the CapX and the OpX. And the second thing is that we are much faster in terms of innovation, you know one of the things that Telecorp would not do, was to tap into the IT industry. So we access to the silicon and we have access to the software and at a scale that none of the Telecorp could ever do and for us it's like "wow" and it's a very powerful industry and we've been driving the consist- it's a bit technical but all the silicone, the accelerators, the processors, the GPU, the TPUs and it's like wow. It's really a transformation. >> Andy, is there anything anagallis that you've dealt with in the past to the situation where you have this true core edge, environment where you have to instrument the devices that you provide to give that level of observation or observability, whatever the new word is, that we've invented for that. >> Yeah, yeah. >> I mean has there, is there anything- >> Yeah absolutely. >> Is this unprecedented? >> No, no not at all. I mean Dell's been really working at the edge since before the edge was called the edge right, we've been selling, our hardware and infrastructure out to retail shops, branch office locations, you know just smaller form factors outside of data centers for a very long time and so that's sort of the consistency from what we've been doing for 30 years to now the difference is the volume, the different number of permutations as Marc was saying. The different type of accelerator cards, the different SKUS of different server types, the sheer volume of nodes that you have in a nationwide wireless network. So the volumes are much different, the amount of data is much different, but the process is really the same. It's about having the infrastructure in the right place at the right time and being able to understand if it's working well or if it's not and it's not just about a red light or a green light but healthy and unhealthy conditions and predicting when the red lights going to come on. And we've been doing that for a while it's just a different scale, and a different level of complexity when you're trying to piece together all these different components from different vendors. >> So we talk a lot about ecosystem, and sometimes because of the desire to talk about the outcomes and what the end users, customers, really care about sometimes we will stop at the layer where say a Dell lives, and we'll see that as the sum total of the component when really, when you talk about a server that Dish is using that in and of itself is an ecosystem >> Yep, yeah >> (Dave) or there's an ecosystem behind it you just mentioned it, the kinds of components and the choices that you make when you optimize these devices determine how much value Dish, >> (Andy) Absolutely. >> Can get out of that. How deep are you on that hardware? I'm a knuckle dragging hardware guy. >> Deep, very deep, I mean just the number of permutations that were working through with Dish and other operators as well, different accelerator cards that we talked about, different techniques for timing obviously there's different SKUs with the silicon itself, different chip sets, different chips from different providers, all those things have to come together, and we build the basic foundation and then we also started working with our cloud partners Red Hat, Wind River, all these guys, VM Ware, of course and that's the next layer up, so you've got all the different hardware components, you've got the extraction layer, with your virtualization layer and or ubernetise layer and all of that stuff together has to be managed compatibility matrices that get very deep and very big, very quickly and that's really the foundational challenge we think of open ran is thinking all these different pieces are going to fit together and not just work today but work everyday as everything gets updated much more frequently than in the legacy world. >> So you care about those things, so we don't have to. >> That's right. >> That's the beauty of it. >> Yes. >> Well thank you. (laughter) >> You're welcome. >> I want to understand, you know some of the things that we've been talking about, every company is a data company, regardless of whether it's telco, it's a retailer, if it's my bank, it's my grocery store and they have to be able to use data as quickly as possible to make decisions. One of the things they've been talking here is the monetization of data, the monetization of the network. How do you, how does Dell help, like a Dish be able to achieve the monetization of their data. >> Well as Marc was saying before the enterprise use cases are what we are all kind of betting on for 5G, right? And enterprises expect to have access to data and to telemetry to do whatever use cases they want to execute in their particular industry, so you know, if it's a health care provider, if it's a factory, an agricultural provider that's leveraging this network, they need to get the data from the network, from the devices, they need to correlate it, in order to do things like automatically turn on a watering system at a certain time, right, they need to know the weather around make sure it's not too windy and you're going to waste a lot of water. All that has data, it's going to leverage data from the network, it's going to leverage data from devices, it's going to leverage data from applications and that's data that can be monetized. When you have all that data and it's all correlated there's value, inherit to it and you can even go onto a forward looking state where you can intelligently move workloads around, based on the data. Based on the clarity of the traffic of the network, where is the right place to put it, and even based on current pricing for things like on demand insists from cloud providers. So having all that data correlated allows any enterprise to make an intelligent decision about how to move a workload around a network and get the most efficient placing of that workload. >> Marc, Andy mentions things like data and networks and moving data across the networks. You have on your business card, Chief Network Officer, what potentially either keeps you up at night in terror or gets you very excited about the future of your network? What's out there in the frontier and what are those key obstacles that have to be overcome that you work with? >> Yeah, I think we have the network, we have the baseline, but we don't yet have the consumption that is easy by the enterprise, you know an enterprise likes to say "I have 4K camera, I connect it to my software." Click, click, right? And that's where we need to be so we're talking about it APIs that are so simple that they become a click and we engineers we have a tendency to want to explain but we should not, it should become a click. You know, and the phone revolution with the apps became those clicks, we have to do the same for the enterprise, for video, for surveillance, for analytics, it has to be clicks. >> While balancing flexibility, and agility of course because you know the folks who were fans of CLIs come in light interfaces, who hate gooeys it's because they feel they have the ability to go down to another level, so obviously that's a balancing act. >> But that's our job. >> Yeah. >> Our job is to hide the complexity, but of course there is complexity. It's like in the cloud, an emprise scaler, they manage complex things but it's successful if they hide it. >> (Dave) Yeah. >> It's the same. You know we have to be emprise scaler of connectivity but hide it. >> Yeah. >> So that people connect everything, right? >> Well it's Andy's servers, we're all magicians hiding it all. >> Yeah. >> It really is. >> It's like don't worry about it, just know, >> Let us do it. >> Sit down, we will serve you the meal. Don't worry how it's cooked. >> That's right, the enterprises want the outcome. >> (Dave) Yeah. >> They don't want to deal with that bottom layer. But it is tremendously complex and we want to take that on and make it better for the industry. >> That's critical. Marc I'd love to go back to you and just I know that you've been in telco for such a long time and here we are day three of MWC the name changed this year, from Mobile World Congress, reflecting mobilism isn't the only thing, obviously it was the catalyst, but what some of the things that you've heard at the event, maybe seen at the event that give you the confidence that the right players are here to help move Dish wireless forward, for example. >> You know this is the first, I've been here for decades it's the first time, and I'm a Chief Network Officer, first time we don't talk about the network. >> (Andy) Yeah. >> Isn't that surprising? People don't tell me about speed, or latency, they talk about consumption. Apps, you know videos surveillance, or analytics or it's, so I love that, because now we're starting to talk about how we can consume and monetize but that's the first time. We use to talk about gigabytes and this and that, none of that not once. >> What does that signify to you, in terms of the evolution? >> Well you know, we've seen that the demand for the healthcare, for the smart cities, has been here for a decade, proof of concepts for a decade but the consumption has been behind and for me this is the oldest team is waking up to we are going to make it easy, so that the consumption can take off. The demand is there, we have to serve it. And the fact that people are starting to say we hide the complexity that's our problem, but don't even mention it, I love it. >> Yep. Drop the mic. >> (Andy and Marc) Yeah, yeah. >> Andy last question for you, some of the things we know Dell has a big and verging presents in telco, we've had a chance to see the booth, see the cool things you guys are featuring there, Dave did a great tour of it, talk about some of the things you've heard and maybe even from customers at this event that demonstrate to you that Dell is going in the right direction with it's telco strategy. >> Yeah, I mean personally for me this has been an unbelievable event for Dell we've had tons and tons of customer meetings of course and the feedback we're getting is that the things we're bring to market whether it's infrablocks, or purposeful servers that are designed for the telecom network are what our customers need and have always wanted. We get a lot of wows, right? >> (Lisa) That's nice. >> "Wow we didn't know Dell was doing this, we had no idea." And the other part of it is that not everybody was sure that we were going to move as fast as we have so the speed in which we've been able to bring some of these things to market and part of that was working with Dish, you know a pioneer, to make sure we were building the right things and I think a lot of the customers that we talked to really appreciate the fact that we're doing it with the industry, >> (Lisa) Yeah. >> You know, not at the industry and that comes across in the way they are responding and what their talking to us about now. >> And that came across in the interview that you just did. Thank you both for joining Dave and me. >> Thank you >> Talking about what Dell and Dish are doing together the proof is in the pudding, and you did a great job at explaining that, thanks guys, we appreciate it. >> Thank you. >> All right, our pleasure. For our guest and for Dave Nicholson, I'm Lisa Martin, you're watching theCUBE live from MWC 23 day three. We will be back with our next guest, so don't go anywhere. (upbeat music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. we are going to be talking about Mark, talk to us about what's that covered the US, we use a cloud base and all the data and the and the bare metal orchestra product solutions better the whole way. and Dell is the best at the market and said between what an enterprise and for this you need to but all the silicone, the instrument the devices and so that's sort of the consistency from deep are you on that hardware? and that's the next So you care about those Well thank you. One of the things and get the most efficient the future of your network? You know, and the phone and agility of course It's like in the cloud, an emprise scaler, It's the same. Well it's Andy's Sit down, we will serve you the meal. That's right, the and make it better for the industry. that the right players are here to help it's the first time, and but that's the first easy, so that the consumption some of the things we know and the feedback we're getting is that so the speed in which You know, not at the industry And that came across in the the proof is in the pudding, We will be back with our next

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Marc RouannePERSON

0.99+

MarcPERSON

0.99+

Andy SheahenPERSON

0.99+

DavePERSON

0.99+

Lisa MartinPERSON

0.99+

AndyPERSON

0.99+

DellORGANIZATION

0.99+

TelecorpORGANIZATION

0.99+

USLOCATION

0.99+

Wind RiverORGANIZATION

0.99+

MarkPERSON

0.99+

Red HatORGANIZATION

0.99+

30 yearsQUANTITY

0.99+

DishORGANIZATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

DISH WirelessORGANIZATION

0.99+

second thingQUANTITY

0.99+

first timeQUANTITY

0.99+

hundredsQUANTITY

0.99+

first timeQUANTITY

0.99+

oneQUANTITY

0.99+

BothQUANTITY

0.99+

bothQUANTITY

0.99+

firstQUANTITY

0.98+

OneQUANTITY

0.98+

Dish wirelessORGANIZATION

0.98+

LisaPERSON

0.98+

MWCEVENT

0.98+

third dayQUANTITY

0.98+

telcoORGANIZATION

0.98+

Mobile World CongressEVENT

0.98+

Next Gen OpsORGANIZATION

0.97+

TCOORGANIZATION

0.97+

Dish WirelessORGANIZATION

0.97+

CapXORGANIZATION

0.97+

this yearDATE

0.96+

BoostORGANIZATION

0.95+

150 dollars a monthQUANTITY

0.94+

OpXORGANIZATION

0.92+

Telecom Cloud CoreORGANIZATION

0.91+

thousandsQUANTITY

0.9+

ROIORGANIZATION

0.9+

tons and tons of customerQUANTITY

0.86+

Odded Solomon, VMware & Jared Woodrey, Dell Technologies | MWC Barcelona 2023


 

>> Narrator: theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Welcome back to Barcelona, Spain, everyone. It's theCUBE live at MWC '23, day three of four days of CUBE coverage. It's like a cannon of CUBE content coming right at you. I'm Lisa Martin with Dave Nicholson. We've got Dell and VMware here. Going to be talking about the ecosystem partnerships and what they're doing to further organizations in the telco industry. Please welcome Jared Woodrey, Director of Partner Engineering Open Telecom Ecosystem Lab, OTEL. Odded Solomon is here as well, Director of Product Management, VMware Service Provider and Edge Business Unit at VMware. Guys, great to have you on the program. >> Thank you for having me. >> Welcome to theCUBE. So Jared, first question for you. Talk about OTEL. I know there's a big announcement this week, but give the audience context and understanding of what OTEL is and how it works. >> Sure. So the Open Telecom Ecosystem Lab is physically located at Round Rock, Texas, it's the heart and soul of it. But this week we also just announced opening up the Cork, Ireland extension of OTEL. The reason for our existence is to to try and make it as easy as possible for both partners and customers to come together and to re-aggregate this disaggregated ecosystem. So that comes with a number of automation tools and basically just giving a known good testing environment so that tests that happen in our lab are as close to real world as they possibly can be and make it as transparent and open as possible for both partners like VMware as well as customers. >> Odded, talk about what you're doing with Dell and OTEL and give us a customer example of maybe one that you're working with or even even mentioning it by a high level descriptor if you have to. >> Yeah. So we provide a telco cloud platform, which is essentially a vertical in VMware. The telco cloud platform is serving network function vendors, such as Ericsson, Nokia, Mavenir, and so on. What we do with Dell as part of this partnership is essentially complementing the platform with some additional functionality that is not coming out of the box. We used to have a data protection in the past, but this is no longer our main business focus. So we do provide APIs that we can expose and work together with Dell PPDM solution so customer can benefit from this and leverage the partnership and have overall solution that is not coming out of the box from VMware. >> I'm curious, from a VMware perspective. VMware is associated often with the V in VMware, virtualization, and we've seen a transition over time between sort of flavors of virtualization and what is the mix currently today in the telecom space between environments that are leveraging what we would think of as more traditional virtualization with full blown Linux, Windows operating systems in a VM versus the world of containerized microservices? What does that mix look like today? Where do you see it going? >> Yeah, so the VMware telco cloud platform exists for about eight years. And the V started around that time. You might heard about open stack in addition to VMware. So this has definitely helped the network equipment providers with virtualizing their network functions. Those are typically VNF, virtualized network functions, inside the VMs. Essentially we have 4G applications, so core applications, EPC, we have IMS. Those are typically, I would say maybe 80 or 90% of the ecosystem right now. 5G is associated with cloud native network functions. So 5G is getting started now, getting deployed. There is an exponential growth on the core side. Now, when we expand towards the edge of the network we see more potential growth. This is 5G ran, we see the vRAN, we see the open RAN, we see early POCs, we see field trials that are starting. We obviously has production customer now. You just spoke to one. So this is really starting, cloud native is really starting I would say about 10 to 20% of the network functions these days are cloud native. >> Jared, question for you. You mentioned data protection, a huge topic there obviously from a security perspective. Data protection used to be the responsibility of the CSPs. You guys are changing that. Can you talk a little bit about how you're doing that and what Dell's play there is? >> Yeah, so PowerProtect Data Management is a product, but it's produced by Dell. So what this does is it enables data protection over virtual cloud as well as the physical infrastructure of specifically in this case of a telecoms ecosystem. So what this does is enables an ability to rapidly redeploy and back up existing configurations all the way up to the TCP and TCA that pulls the basis of our work here with VMware. >> So you've offloaded that responsibility from the CSPs. You freed them from that. >> So the work that we did, honestly was to make sure that we have a very clear and concise and accurate procedures for how to conduct this as well. And to put this through a realistic and real world as if it was in a telecoms own production network, what did that would actually look like, and what it would take to bring it back up as well. So our responsibility is to make sure that when we when we provide these products to the customers that not only do they work exactly as their intended to, but there is also documentation to help support them and to enable them to have their exact specifications met by as well. >> Got it. So talk about a little bit about OTEL expansion into Cork. What you guys are doing together to enable CSPs here in EMEA? >> Yeah, so the reason why we opened up a facility in Cork Island was to give, for an EMEA audience, for an EMEA CSPs and ability to look and feel and touch some of the products that we're working on. It also just facilitates and ease especially for European-based partners to have a chance to very easily come to a lab environment. The difference though, honestly, is the between Round Rock, Texas and Cork Island is that it's virtually an extension of the same thing. Like the physical locations can make it easier to provide access and obviously to showcase the products that we've developed with partners. But the reality is that it's more than just the physical location. It's more about the ability and ease by which customers and partners can access the labs. >> So we should be expecting a lot of Tito's vodka to be consumed in Cork at some point. Might change the national beverage. >> We do need to have some international exchange. >> Yeah, no, that's good to know. Odded, on the VMware side of things. There's a large group of folks who have VMware skillsets. >> Odded: Correct. >> The telecom industry is moving into this world of the kind of agility that those folks are familiar with. How do people come out of the traditional VMware virtualization world and move into that world of cloud native applications and serve the telecom space? What would your recommendation be? If you were speaking at a VMUG, a VMware Users Group meeting with all of your telecom background, what would you share with them that's critical to understand about how telecom is different, or how telecom's spot in its evolution might be different than the traditional IT space? >> So we're talking about the people with the knowledge and the background of. >> Yeah, I'm a V expert, let's say. And I'm looking into the future and I hear that there are 80,000 people in Barcelona at this event, and I hear that Dell is building optimized infrastructure specifically for telecom, and that VMware is involved. And I'm an expert in VMware and I want to be involved. What do I need to do? I know it's a little bit outside of the box question, but especially against the backdrop of economic headwinds globally, there are a lot of people facing transitions. What are your thoughts there? >> So, first of all, we understand the telco requirements, we understand the telco needs, and we make sure that what we learn from the customers, what we learn from the partners is being built into the VMware products. And simplicity is number one thing that is important for us. We want the customer experience, we want the user experience to be the same as they know even though we are transitioning into cloud native networks that require more frequent upgrades and they have more complexity to be honest. And what we do in our vertical inside VMware we are focusing on automation, telco cloud automation, telco cloud service assurance. Think of it as a wrapper around the SDDC stack that we have from VMware that really simplifies the operations for the telcos because it's really a challenge about skillset. You need to be a DevOps, SRE in order to operate these networks. And things are becoming really complex. We simplify it for them with the same VMware experience. We have a very good ability to do that. We sell products in VMware. Unlike our competition that is mostly selling professional services and support, we try to focus more on the products and delivering the value. Of course, we have services offering because telcos requires some customizations, but we do focus on automation simplicity throughout our staff. >> So just follow up. So in other words the investment in education in this VMware ecosystem absolutely can be extended and applied into the telecom world. I think it's an important thing. >> I was going to add to that. Our engagement in OTEL was also something that we created a solutions brief whether we released from Mobile World Congress this week. But in conjunction with that, we also have a white paper coming out that has a much more expansive explanation and documentation of what it was that we accomplished in the work that we've done together. And that's not something that is going to be a one-off thing. This is something that will stay evergreen that we'll continue to expand both the testing scope as well as the documentation for what this solution looks like and how it can be used as well as documentation on for the V experts for how they can then leverage and realize the the potential for what we're creating together. >> Jared, does Dell look at OTEL as having the potential to facilitate the continued evolution of the actual telco industry? And if so, how? >> Well, I mean, it would be a horrible answer if I were to say no to that. >> Right. >> I think, I honestly believe that one of the most difficult things about this idea of having desired ecosystem is not just trying to put it back together, but then also how to give yourself choice. So each time that you build one of those solution sets like that exists as an island out of all the other possibilities that comes with it. And OTEL seeks to not just be able to facilitate building that first solution set. Like that's what solutions engineering can do. And that's generally done relatively protected and internally. The Open Telecom Ecosystem seeks to build that then to also provide the ability to very easily change specific components of that whether that's a hardware component, a NIC, whether a security pass just came out or a change in either TCP or TCA or we talked a little bit about for this specific engagement that it was done on TCP 2.5. >> Odded: Correct. >> Obviously there's already a 2.7 and 3.0 is coming out. It's not like we're going to sit around and write our coattails of what 2.7 has happened. So this isn't intended to be a one and done thing. So when we talk about trying to make that easier and simpler and de-risk all of the risk that comes from trying to put all these things together, it's not just the the one single solution that you built in the lab. It's what's the next one? And how do I optimize this? And I have specific requirements as a CSP, how can I take something you built that doesn't quite match it, but how do I make that adjustment? So that's what we see to do and make it as easy and as painless as possible. >> What's the engagement model with CSPs? Is it led by Dell only, VMware partner? How does that work? >> Yeah, I can take that. So that depends on the customer, but typically customers they want to choose the cloud vendor. So they come to VMware, we want VMware. Typically, they come from the IT side. They said, "Oh, we want to manage the network side of the house the same way as we manage the IT. We don't want to have special skill sets, special teams." So they move from the IT to the network side and they want VMware there. And then obviously they have an RSP process and they have hardware choices. They can go with Dell, they can go with others. We leverage vSphere, other compatibility. So we can be flexible with the customer choice. And then depending on which customer, how large they are, they select the network equipment provider that the runs on top. We position our platform as multi-vendor. So many of them choose multiple network functions providers. So we work with Dell. So assuming that the customer is choosing Dell. We work very closely with them, offering the best solution for the customer. We work with them sometimes to even design the boxes to make sure that it fits their use cases and to make sure that it works properly. So we have a partnership validation certification end-to-end from the applications all the way down to the hardware. >> It's a fascinating place in history to be right now with 5G. Something that a lot of consumers sort of assume. It's like, "Oh, hey, yeah, we're already there. What's the 6G thing going to look like?" Well, wait a minute, we're just at the beginning stages. And so you talk about disaggregation, re-aggregation, or reintegration, the importance of that. Folks like Dell have experience in that space. Folks at VMware have a lot of experience in the virtualization space, but I heard that VMware is being acquired by Broadcom, if it all goes through, of course. You don't need to comment on it. But you mentioned something, SDDC, software-defined data center. That stack is sometimes misunderstood by the public at large and maybe the folks in the EU, I will editorialize for a moment here. It is eliminating capture in a way by larger hyperscale cloud providers. It absolutely introduces more competition into the market space. So it's interesting to hear Broadcom acknowledging that this is part of the future of VMware, no matter what else happens. These capabilities that spill into the telecom space are something that they say they're going to embrace and extend. I think that's important for anyone who's evaluating this if they're concern. Well, wait a minute. Yeah, when I reintegrate, do I want VMware as part of this mix? Is that an unknown? It's pretty clear that that's something that is part of the future of VMware moving forward. That's my personal opinion based on analysis. But you brought up SDDC, so I wanted to mention that. Again, I'm not going to ask you to get into trouble on that at all. What should we be, from a broad perspective, are there any services, outcomes that are going to come out of all of this work? The agility that's being built by you folks and folks in the open world. Are there any specific things that you personally are excited about? Or when we think about consumer devices, getting data, what are the other kinds of things that this facilitates? Anything cool, either one of you. >> So specific use cases? >> Yeah, anything. It's got to be cool though. If it's not cool we're going to ask you to leave. >> All right. I'll take that challenge. (laughs) I think one of the things that is interesting for something like OTEL as an exist, as being an Open Telecom Ecosystem, there are going to be some CSPs that it's very difficult for them to have this optionality existing for themselves. Especially when you start talking about tailoring it for specific CSPs and their needs. One of the things that becomes much more available to some of the smaller CSPs is the ability to leverage OTEL and basically act as one of their pre-production labs. So this would be something that would be very specific to a customer and we would obviously make sure that it's completely isolated but the intention there would be that it would open up the ability for what would normally take a much longer time period for them to receive some of the benefits of some of the changes that are happening within the industry. But they would have immediate benefit by leveraging specifically looking OTEL to provide them some of their solutions. And I know that you were also looking for specific use cases out of it, but like that's a huge deal for a lot of CSPs around the world that don't have the ability to lay out all the different permutations that they are most interested in and start to put each one of those through a test cycle. A specific use cases for what this looks like is honestly the most exciting that I've seen for right now is on the private 5G networks. Specifically within mining industry, we have a, sorry for the audience, but we have a demo at our booth that starts to lay out exactly how it was deployed and kind of the AB of what this looked like before the world of private 5G for this mining company and what it looks like afterwards. And the ability for both safety, as well as operational costs, as well as their ability to obviously do their job better is night and day. It completely opened up a very analog system and opened up to a very digitalized system. And I would be remiss, I didn't also mention OpenBrew, which is also an example in our booth. >> We saw it last night in action. >> We saw it. >> I hope you did. So OpenBrew is small brewery in Northeast America and we basically took a very manual process of checking temperature and pressure on multiple different tanks along the entire brewing process and digitized everything for them. All of that was enabled by a private 5G deployment that's built on Dell hardware. >> You asked for cool. I think we got it. >> Yeah, it's cool. >> Jared: I think beer. >> Cool brew, yes. >> Root beer, I think is trump card there. >> At least for folks from North America, we like our brew cool. >> Exactly. Guys, thank you so much for joining Dave and me talking about what Dell, OTEL, and VMware are doing together, what you're enabling CSPs to do and achieve. We appreciate your time and your insights. >> Absolutely. >> Thank you. >> All right, our pleasure. For our guests and for Dave Nicholson, I'm Lisa Martin. You watching theCUBE live from MWC '23. Day three of our coverage continues right after a short break. (upbeat music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. in the telco industry. but give the audience context So the Open Telecom Ecosystem Lab of maybe one that you're working with that is not coming out of the box. and what is the mix currently of the network functions responsibility of the CSPs. that pulls the basis of responsibility from the CSPs. So the work that we did, to enable CSPs here in EMEA? and partners can access the labs. Might change the national beverage. We do need to have some Odded, on the VMware side of things. and serve the telecom space? So we're talking about the people and I hear that there are 80,000 people that really simplifies the and applied into the telecom world. and realize the the potential Well, I mean, it would that one of the most difficult and simpler and de-risk all of the risk So that depends on the customer, that is part of the future going to ask you to leave. that don't have the ability to lay out All of that was enabled I think we got it. we like our brew cool. CSPs to do and achieve. You watching theCUBE live from MWC '23.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
MichielPERSON

0.99+

AnnaPERSON

0.99+

DavidPERSON

0.99+

BryanPERSON

0.99+

JohnPERSON

0.99+

IBMORGANIZATION

0.99+

MichaelPERSON

0.99+

ChrisPERSON

0.99+

NECORGANIZATION

0.99+

EricssonORGANIZATION

0.99+

KevinPERSON

0.99+

Dave FramptonPERSON

0.99+

MicrosoftORGANIZATION

0.99+

Kerim AkgonulPERSON

0.99+

Dave NicholsonPERSON

0.99+

JaredPERSON

0.99+

Steve WoodPERSON

0.99+

PeterPERSON

0.99+

Lisa MartinPERSON

0.99+

NECJORGANIZATION

0.99+

Lisa MartinPERSON

0.99+

Mike OlsonPERSON

0.99+

AmazonORGANIZATION

0.99+

DavePERSON

0.99+

Michiel BakkerPERSON

0.99+

FCAORGANIZATION

0.99+

NASAORGANIZATION

0.99+

NokiaORGANIZATION

0.99+

Lee CaswellPERSON

0.99+

ECECTORGANIZATION

0.99+

Peter BurrisPERSON

0.99+

OTELORGANIZATION

0.99+

David FloyerPERSON

0.99+

Bryan PijanowskiPERSON

0.99+

Rich LanePERSON

0.99+

KerimPERSON

0.99+

Kevin BoguszPERSON

0.99+

Jeff FrickPERSON

0.99+

Jared WoodreyPERSON

0.99+

LincolnshireLOCATION

0.99+

KeithPERSON

0.99+

Dave NicholsonPERSON

0.99+

ChuckPERSON

0.99+

JeffPERSON

0.99+

National Health ServicesORGANIZATION

0.99+

Keith TownsendPERSON

0.99+

WANdiscoORGANIZATION

0.99+

GoogleORGANIZATION

0.99+

MarchDATE

0.99+

NutanixORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

IrelandLOCATION

0.99+

Dave VellantePERSON

0.99+

Michael DellPERSON

0.99+

RajagopalPERSON

0.99+

Dave AllantePERSON

0.99+

EuropeLOCATION

0.99+

March of 2012DATE

0.99+

Anna GleissPERSON

0.99+

SamsungORGANIZATION

0.99+

Ritika GunnarPERSON

0.99+

Mandy DhaliwalPERSON

0.99+

Sidd Chenumolu, DISH Wireless & Song Toh, Dell Technologies | MWC Barcelona 2023


 

>> theCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Lisa Martin: Good afternoon everyone. theCUBE live in Barcelona, Spain at MWC23. Lisa Martin with Dave Nicholson. Day three of our wall-to-wall coverage of four days of CUBE content. I know, it's amazing. We're going to have a great conversation next with DISH and Dell, talking about the value of automation and telecom for 5G. Please welcome Song Toh, Senior Director of Product Management Infrastructure Automation at Dell. And Sidd Chenumolu, VP of Technology Development at DISH. Guys, great to have you on theCUBE. >> Thanks for having us. >> Thank you, it's a pleasure. >> So let's go ahead and start with you. We know that DISH is developing its own open cloud native 5G network from the ground up. Talk to us about before you were working with Dell, what the situation was like and why you brought Dell in to help drive the innovation. >> Ah, that's a good question. So, three years ago we started the journey, and one thing that was very clear to us is that we want to work with the partners who are going to be the leaders in this space. And it was very clear we are going to be in the cloud side- we are going to be in hybrid cloud, we are going to have our own data centers. Everything that we built is going to replicate a cloud model. 'Cause it was very, like we said, what is 5G? Fundamentally, if you think about 5G, right? Everyone says people talk about speeds. Okay, get it. But it's also about vertical industries. It's about customization of a network, application driven network. That's the way I call it, because if you walk around the floor right now, everyone's talking about monetization of 5G, everyone keeps doing enterprise. So you put two and two together, what do you get? That means you have to work with the leaders who have been serving enterprises forever, who know the enterprises' pain, they know all the problem statements. So we said, "okay, let's see who's out there and who can help us." And then obviously, Dell comes to the picture. So we had a good conversation, there was an alignment in where Dell wanted to go long-term, so we saw synergies. So we had a vision, we needed their help. They wanted to get into this space too. So there was an agreement, let's do it together. And it's been a good partnership since then. >> What were some of the challenges that you had at that time? Going, "we've got some challenges here, some risks, we want to move DISH forward and automate." Talk about some of those challenges that helped you understand, "Yeah, Dell's the right partner for this." >> Oh, first is when we started this, right? I'll be honest, I don't think we anticipated the complexity. We didn't know what we didn't know. So initially it was learning from Dell, who was more like teaching us, "this is what you're going to see, this is how it's going to look like". And then we started bringing the telco aspects on top of it. So it was not like, "I'm going to build a 5G". We said, "no, Dell, tell me what does the data center look like? Tell me the day-to-day challenges. How do you bring a server in? How the rack looks like, what are the connectivity?" So, learning, then you bring the telco as an application, it was not like a telco first. It was like a software first, infrastructure second, now you bring in the telco part of it. So, I mean, challenges I would say, right? Everything was new, pretty much across the board for us. It was not just one thing. We were doing Open RAN, which was a brand new cloud native, was completely new. 5G standalone was new. No one had done that before, and (mumbles) was hybrid cloud. So I think we were on a stool sitting on the, with the four legs, all were wobbly. (laughs) We made it. So, automation was definitely the key. We knew we had to go at a scale, because we are in FCC deployment, we are meeting like- we will be at covering 230 million pops by June of this year. So, aggressive timelines- >> Dave Nicholson: Wait, say that again. How many, so say that ag- how many? >> 230 million. >> And, pops being points of presence? >> No, sorry, population. U. S.- >> Oh, population. Okay, I'm sorry, I'm sorry. Okay, okay. >> Okay. I'm sorry, I'm- >> So, very aggressive buildout for us. >> Wow. >> And automation has to be the key for it, because we just cannot- first is, we cannot scale a company. We are a startup. This wireless is a startup. That's how we started with a handful of people. We obviously hired a lot of people since then, but we said, "we will never be at the scale of the existing CSPs today." We can't. Time is not on our side, and we don't want to be at that scale anyway, 'cause we want to be nimble, move fast. So what do you need? Automation. Automation at every layer. And it's a journey. Never stops. >> No, it doesn't stop. >> Oh yeah, I'm sorry. Yeah, she's- >> Go ahead and get a question in. I don't want to hog. >> So when most people hear DISH, they think of streaming content, they think of alternative to cable provider. >> Sidd: Yeah. >> In that space. But just clarify for us all of the things that DISH is involved with today, and what DISH aspires to be involved with as we move forward. >> Good question. We want to be in the connectivity space. We want to connect everything. That's our goal, our mission statement. We started with the satellite, since then we moved on to the IPTV Sling, which is a leader. So we are not afraid to take risks, right? So what we own- we own satellites, we know content delivery very well. I think we are done there for many years. We agreed to that. Now we said, "now we understand wireless". What we want to do is, we want to deliver the data to the customers, and whether it could be videos, it could be audio data, like voice, anything, or it could be a machine. We just want to be in the connectivity space of connecting everything, and based on- you look around, right? It's all about connectivity. Everything requires connectivity. It's all about data monetization, and we want to be there in every aspect of it. >> Connectivity is almost the lifeblood these days of everything that we do, right? >> Sidd: Yep. >> Song: Indeed. >> And of every industry. Song, talk a little bit about the DISH Wireless use case. How some of their challenges in telco really maybe helped even Dell accelerate its presence in telco. >> Absolutely, right. I think one thing that Sidd mentioned, right, 230 million populations, but what does that translate to in terms of infrastructure deployment? 'Cause he said it's a startup. They started from not a whole lot in terms of coverage. So, in terms of 5G deployment, whether it's virtualized or open RAN, there needs to be distributed infrastructure that covers the entire United States, right? A certain percentage of the population is still a huge amount of coverage. So deploy tens of thousands, hundreds of thousands of servers around the country, get them set up, get 'em configured, and maintain and monitor and meter all of that. We help DISH to essentially roll that out, get it going, and then they deploy their RAN workload on top. I mean, that's a very significant undertaking. We were very proud to be able to offer our Bare Metal Orchestrator to facilitate that, but ultimately their success is their success. We are there to help, right? We are partnered, and we- happy to definitely be able to say we got to a point that we are happy, you know, in claims of success there. >> Well, that's why we selected Dell. >> Thank you. (chuckles) >> Let's unpack a little bit of some of the successes, some of the outcomes that you've achieved so far, working with Dell. >> Let me give an example. Today we have an ability to upgrade, update, even swap a RAN vendor overnight. Entire market, unheard of overnight. Give me hours, I'll do the entire thing for you from scratch. We can instantiate entire data center racks remotely in a matter of minutes. Cannot do that without automation, and with the help- >> Lisa Martin: Couldn't do it before. >> We have curated an extraordinary, what you call orchestration mechanism of finely tuned data sets and pipelines. It's like a machine. It keeps spinning. It's very good. And again, not something that happened overnight. Took us several months to get there with a lot of our partners, and Dell was there. >> Song: Right. >> I'd be curious to get your perspectives, each of you, on some of the buzz that was going on around the show where the telecom, "plumbing providers"- >> Sidd: Yep. >> have complained about the content streaming through, and maybe they need to charge more for access, and Netflix hit back and said, "well, hold on a minute. You wouldn't have anything to deliver to your customers if it weren't for the content we are producing. Maybe we need licensing fees from you." >> Song: (chuckles) >> What is your view on that, in terms of this whole over the top conversation? DISH seems sort of, kind of in a hybrid position there. >> Well, it's a very complex question. I think everyone is struggling with it, so I'm not sure if I have the right answer for it. We are definitely unique because we own the content too. We want to offer- we probably may offer our own content over the wireless service. There is a pros and cons. I mean, purely from a, as a M&O service provider, it's a lot of effort and cost for us to deliver huge amount of bandwidth. But again, the networks are being built to handle huge capacity. So if you don't have video, what do we do? That's also a realistic question. I think there is a mechanism where the cost and the value both have to be shared. So that it's a win-win for everyone. It's not lopsided to one. And said, "you carry most of the cost", and I'm transparent, it doesn't work that way long term. And especially given the 5G side, with all the slicing capabilities and ability to offer QoS, better quality of experience, I think there's a value to be created here. >> If you look at the infrastructure necessary to drive all of these things- >> Right. >> We've seen, just go back to our own consumer experience with the internet. We've gone from text to images to video. >> Song: Right. >> To high definition video. >> Sidd: Yeah. >> To, is 8K video absurd? Do we really need to be able to handle that? What are the things that need to be supported as we move forward? Is it that we scale out into this world of billions and billions of things that are connected? Or are there these much bigger, fatter pipelines for things like 8K video or it a combination of the two? What is Dell thinking of when it thinks of the infrastructure that it builds and how you customize that- >> Song: Right. >> to address those things? What's on the horizon? >> Dave, I think that's a very good question, right? Certainly communication service providers like DISH has built out the capacity to handle the customers that they want to serve. But there's another aspect of this I think I'd like to add on top of the question you posed, it's not about say, 10, say a thousand streams of 8K. I would need to be able to handle that. I think the present challenge right now is really, say there's a sports stadium that you need to activate so that, not about everyone filming that sports game, it's about, "Hey, I got to tell my, whoever- I got a 10 seconds video clip that I got to share with my friends." It's also not about copyright. It's more about- >> Dave Nicholson: (laughs) >> can you as a provider- >> The NFL is listening. >> Exactly. Can you as a provider handle that service? Because otherwise your customers say, "oh, I got into the sports stadium, every time I could not even text my daughter." >> Dave Nicholson: Yeah. >> So, how do you then scale up the infrastructure as needed, the bandwidth as needed, and scale back down when it's not? Maybe, because the infrastructure can potentially be repurposed for a different workload too. That requires automation, right? From bottom to top, all the way, infrastructure - all the way up to the workload. And that's I think a question that people are starting to ask. I'm not sure. I mean, still you guys have thought about that too as a- >> I mean, instant gratification is the new thing, right? Everyone wants instant response, everyone feedback, everything. So connectivity is given. I do think there is a space for both billions of devices and the 8K and probably 16K in the future. It's going to happen in the technology walls. That's why I like, say, the 5G, and especially the way we architect our own network. We call it network of networks. I'm not designing a network that is only for one monolithic application or one stack only. We are actually programmable network, because I know network A is for 8K. Network B is for IOT, network C is for regular, network D is for something else. And the list can keeps on growing. I don't think we can stifle innovation at any level and said, "well you can't do this because we are not ready." World is going to move too fast. Technology is too fast for all of us. >> But do you have to prioritize? >> If there is a business for- it's all top-down driven, not much of a technology driven. If there's a business, someone said there's a value to be made, it's prioritized. >> What's your - Sidd, we'll stick with you, your observations. This is day three of MWC 23. Lot of talk here on disaggregation. A lot of talk about open RAN, a lot of talk about private 5G wireless networks, but also some controversy. You brought up the Netflix controversy. >> Dave: Yep. >> What are some of the messages that you've heard so far from this event - and then, Song, we'll ask you the same question - that excite you about the direction that the industry's going and where DISH Wireless stands within it? >> Yeah. I mean, I didn't have a chance to walk the floor, but for wherever I have been in the last two and a half days, one thing that stood out is people are no longer talking about gigabits capacity anymore. They're talking about monetization of the network. Everyone is talking APIs now. >> Lisa Martin: Yeah. >> That's the buzzword. If I said monetization, API- I got a beautiful network not tell me how to make money off it and how do I work with each other? It's no longer about "I want to own it all." What can I do to partner with A, partner with B? How can we all grow together? I think that's the theme that I see this year compared to the previous years, where it was always about like, "hey, build the best 5G network with the high speeds, big radios." I don't even see radios, by the way. >> Lisa Martin: (chuckles) >> Interesting. Yeah. So the actual, it's almost fascinating when you toil in obscurity to build these critical components and then people ignore you. So I feel for the radio people. >> Song: (laughs) Being a long-term infrastructure guy, what have you been seeing here that's interesting? >> Well, a few things that I feel quite excited about from the conversation I've had. One is, on the private mobility side, Lisa, as you said, I'm seeing certainly customers, partners, and even in the booth talking about what the use cases are, right? Rather than, "Hey, here's a cool technology." But actually, people talking about use cases now. And, with the communication service providers and the operators, I'm hearing - of course, I mean, Sidd's doesn't have that problem because it's building whole new, >> (chuckles) >> but there are other providers that are saying, "Hey, we acknowledge that we need to transform and we are on the way too", rather than saying, "can I not do it and still, you know, live with the modern world." So I feel that we always need to be ready to change, because the world, the market, and all other factors will cause us to either change or really to change. And I think we are changing. Open system is becoming more of a expected, you know, future. It's just how do we get there, right? What do we need to learn as we get there? And we're happy to provide the support as a partner, the automation technology, and even the solutions to enable that, from Dell's perspective. >> So DISH in particular? DISH Wireless. >> Yep. >> Despite the fact that everyone's heard of DISH. >> Song: Yeah. >> DISH has been around for a long time. Where you sit within DISH Wireless, you described it as a startup. You don't feel encumbered by a lot of the legacy things that maybe some other providers do. Is that a fair statement or are you having to navigate that? We call it ambidextrous management >> (laughs) >> in the CTO world, where it's like, got to keep the lights on, got to keep the existing revenue flowing, also got to innovate. How do you blend the two? Is that a challenge? >> Well, probably not a challenge for me. I'm on the wireless technology and architecture side, so I get to do the cool stuff. >> Dave Nicholson: Okay. >> Don't have to worry about day to day operations, some complexity or revenue. Someone else is managing that complex part. They let me play with my toys. >> Well played, well played. >> Guys, it's been great having you on the program talking about what DISH Wireless is doing with Dell. Thanks to Dell. We're going to be watching this space to see how you continue to innovate. Thank you so much for joining us on the program. >> Thanks for having us. >> Thank you. >> Our pleasure. >> For our guests and for Dave Nicholson. I'm Lisa Martin. You're watching theCUBE live from MWC 23. Stick around. Our next guest joins Dave and me in just a minute. (upbeat music) (upbeat music) (upbeat music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. Guys, great to have you on theCUBE. and why you brought Dell in be in the cloud side- we are that you had at that time? I don't think we How many, so say that ag- how many? No, sorry, population. I'm sorry, I'm sorry. of the existing CSPs today." Go ahead and get a question to cable provider. all of the things that DISH I think we are done there for many years. the DISH Wireless use case. we are happy, you know, in Thank you. of some of the successes, I'll do the entire thing what you call orchestration mechanism and maybe they need to What is your view on that, in terms of and the value both have to be shared. We've gone from text to images to video. I think I'd like to add on I got into the sports stadium, Maybe, because the and especially the way we to be made, it's prioritized. a lot of talk about private monetization of the network. I don't even see radios, by the way. So I feel for the radio people. and the operators, I'm to transform and we are So DISH in particular? Despite the fact that the legacy things that maybe in the CTO world, where it's like, I'm on the wireless technology about day to day operations, We're going to be and me in just a minute.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

Sidd ChenumoluPERSON

0.99+

DavePERSON

0.99+

DellORGANIZATION

0.99+

DISHORGANIZATION

0.99+

LisaPERSON

0.99+

SiddPERSON

0.99+

M&OORGANIZATION

0.99+

Song TohPERSON

0.99+

twoQUANTITY

0.99+

NetflixORGANIZATION

0.99+

DISH WirelessORGANIZATION

0.99+

telcoORGANIZATION

0.99+

United StatesLOCATION

0.99+

NFLORGANIZATION

0.99+

230 millionQUANTITY

0.99+

10 secondsQUANTITY

0.99+

billionsQUANTITY

0.99+

Barcelona, SpainLOCATION

0.99+

Dell TechnologiesORGANIZATION

0.99+

four daysQUANTITY

0.99+

bothQUANTITY

0.98+

firstQUANTITY

0.98+

DISH WirelessORGANIZATION

0.98+

TodayDATE

0.98+

one stackQUANTITY

0.98+

three years agoDATE

0.98+

10QUANTITY

0.98+

FCCORGANIZATION

0.97+

16KQUANTITY

0.97+

one thingQUANTITY

0.97+

U. S.LOCATION

0.97+

Day threeQUANTITY

0.96+

four legsQUANTITY

0.96+

OneQUANTITY

0.95+

MWC 23EVENT

0.95+

230 million populationsQUANTITY

0.95+

eachQUANTITY

0.95+

230 million popsQUANTITY

0.94+

todayDATE

0.94+

June of this yearDATE

0.93+

MWC23LOCATION

0.92+

this yearDATE

0.91+

Tammy Whyman, Telco & Kurt Schaubach, Federated Wireless | MWC Barcelona 2023


 

>> Announcer: The cube's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) (background indistinct chatter) >> Good morning from Barcelona, everyone. It's theCUBE live at MWC23, day three of our four days of coverage. Lisa Martin here with Dave Nicholson. Dave, we have had some great conversations. Can't believe it's day three already. Anything sticking out at you from a thematic perspective that really caught your eye the last couple days? >> I guess I go back to kind of our experience with sort of the generalized world of information technology and a lot of the parallels between what's been happening in other parts of the economy and what's happening in the telecom space now. So it helps me understand some of the complexity when I tie it back to things that I'm aware of >> A lot of complexity, but a big ecosystem that's growing. We're going to be talking more about the ecosystem next and what they're doing to really enable customers CSPs to deliver services. We've got two guests here, Tammy Wyman joins us the Global head of Partners Telco at AWS. And Kurt Schaubach, CTO of Federated Wireless. Welcome to theCUBE Guys. >> Thank you. >> Thank you. >> Great to have you here, day three. Lots of announcements, lots of news at MWC. But Tammy, there's been a lot of announcements from partners with AWS this week. Talk to us a little bit more about first of all, the partner program and then let's unpack some of those announcements. One of them is with Federated Wireless. >> Sure. Yeah. So AWS created the partner program 10 years ago when they really started to understand the value of bringing together the ecosystem. So, I think we're starting to see how this is becoming a reality. So now we 100,000 partners later, 150 countries, 70% of those partners are outside of the US. So truly the global nature and partners being ISVs, GSIs. And then in the telco space, we're actually looking at how we help CSBs become partners of AWS and bring new revenue streams. So that's how we start having the discussions around Federated Wireless. >> Talk a little bit about Federated Wireless, Kurt, give the audience an overview of what you guys are doing and then maybe give us some commentary on the partnership. >> Sure. So we're a shared spectrum and private wireless company, and we actually started working with AWS about five years ago to take this model that we developed to perfect the use of shared spectrum to enable enterprise communications and bring the power of 5G to the enterprise to bring it to all of the AWS customers and partners. So through that now through we're one of the partner network participants. We're working very closely with the AWS team on bringing this, really unique form of connectivity to all sorts of different enterprise use cases from solving manufacturing and warehouse logistics issues to providing connectivity to mines, enhancing the experience for students on a university campus. So it's a really exciting partnership. Everything that we deliver on an end-to-end basis from design deployment to bringing the infrastructure on-prem, all runs on AWS. (background indistinct chatter) >> So a lot of the conversations that we've had sort of start with this concept of the radio access network and frankly in at least the public domain cellular sites. And so all of a sudden it's sort of grounded in this physical reality of these towers with these boxes of equipment on the tower, at the base of the tower, connected to other things. How does AWS and Federated Wireless, where do you fit in that model in terms of equipment at the base of a tower versus what having that be off-premises in some way or another. Kind of give us more of a flavor for the kind of physical reality of what you guys are doing? >> Yeah, I'll start. >> Yeah, Tammy. >> I'll hand it over to the real expert but from an AWS perspective, what we're finding is really I don't know if it's even a convergence or kind of a delaying of the network. So customers are, they don't care if they're on Wi-Fi if they're on public spectrum, if they're on private spectrum, what they want are networks that are able to talk to each other and to provide the right connectivity at the right time and with the right pricing model. So by moving to the cloud that allows us that flexibility to be able to offer the quality of service and to be able to bring in a larger ecosystem of partners as with the networks are almost disaggregated. >> So does the AWS strategy focus solely on things that are happening in, say, AWS locations or AWS data centers? Or is AWS also getting into the arena of what I would refer to as an Outpost in an AWS parlance where physical equipment that's running a stack might actually also be located physically where the communications towers are? What does that mix look like in terms of your strategy? >> Yeah, certainly as customers are looking at hybrid cloud environments, we started looking at how we can use Outpost as part of the network. So, we've got some great use cases where we're taking Outpost into the edge of operators networks, and really starting to have radio in the cloud. We've launched with Dish earlier, and now we're starting to see some other announcements that we've made with Nokia about having ran in the cloud as well. So using Outpost, that's one of our key strategies. It creates, again, a lot of flexibility for the hybrid cloud environment and brings a lot of that compute power to the edge of the network. >> Let's talk about some of the announcements. Tammy was reading that AWS is expanding, its telecom and 5g, private 5G network support. You've also unveiled the AWS Telco Network Builder service. Talk about that, who that's targeted for. What does an operator do with AWS on this? Or maybe you guys can talk about that together. >> Sure. Would you like to start? I can talk. All right. So from the network builder, it's aimed at the, I would say the persona that it's aimed at would be the network engineer within the CSPs. And there was a bit of a difficulty when you want to design a telco network on AWS versus the way that the network engineers would traditionally design. So I'm going to call them protocols, but you know I can imagine saying, "I really want to build this on the cloud, but they're making me move away from my typical way that I design a network and move it into a cloud world." So what we did was really kind of create this template saying, "You can build the network as you always do and we are going to put the magic behind it to translate it into a cloud world." So just really facilitating and taking some of the friction out of the building of the network. >> What was the catalyst for that? I think Dish and Swisscom you've been working with but talk about the catalyst for doing that and how it's facilitating change because part of that's change management with how network engineers actually function and how they work. >> Absolutely, yeah. And we're looking, we listen to customers and we're trying to understand what are those friction points? What would make it easier? And that was one that we heard consistently. So we wanted to apply a bit of our experience and the way that we're able to use data translate that using code so that you're building a network in your traditional way, and then it kind of spits out what's the formula to build the network in the cloud. >> Got it. Kurt, talk about, yeah, I saw that there was just an announcement that Federated Wireless made JBG Smith. Talk to us more about that. What will federated help them to create and how are you all working together? >> Sure. So JBG Smith is the exclusive redeveloper of an area just on the other side of the Potomac from Washington DC called National Landing. And it's about half the size of Manhattan. So it's an enormous area that's getting redeveloped. It's the home of Amazon's new HQ two location. And JBG Smith is investing in addition to the commercial real estate, digital place making a place where people live, work, play, and connect. And part of that is bringing an enhanced level of connectivity to people's homes, their residents, the enterprise, and private wireless is a key component of that. So when we talk about private wireless, what we're doing with AWS is giving an enterprise the freedom to operate a network independent of a mobile network operator. So that means everything from the ran to the core to the applications that run on this network are sort of within the domain of the enterprise merging 5G and edge compute and driving new business outcomes. That's really the most important thing. We can talk a lot about 5G here at MWC about what the enterprise really cares about are new business outcomes how do they become more efficient? And that's really what private wireless helps enable. >> So help us connect the dots. When we talk about private wireless we've definitely been in learning mode here. Well, I'll speak for myself going around and looking at some of the exhibits and seeing how things work. And I know that I wasn't necessarily a 100% clear on this connection between a 5G private wireless network today and where Wi-Fi still comes into play. So if I am a new resident in this area, happily living near the amazing new presence of AWS on the East coast, and I want to use my mobile device how am I connected into that private wireless network? What does that look like as a practical matter? >> So that example that you've just referred to is really something that we enable through neutral host. So in fact, what we're able to do through this private network is also create carrier connectivity. Basically create a pipe almost for the carriers to be able to reach a consumer device like that. A lot of private wireless is also driving business outcomes with enterprises. So work that we're doing, like for example, with the Cal Poly out in California, for example is to enable a new 5G innovation platform. So this is driving all sorts of new 5G research and innovation with the university, new applications around IoT. And they need the ability to do that indoors, outdoors in a way that's sort of free from the domain of connectivity to a a mobile network operator and having the freedom and flexibility to do that, merging that with edge compute. Those are some really important components. We're also doing a lot of work in things like warehouses. Think of a warehouse as being this very complex RF environment. You want to bring robotics you want to bring better inventory management and Wi-Fi just isn't an effective means of providing really reliable indoor coverage. You need more secure networks you need lower latency and the ability to move more data around again, merging new applications with edge compute and that's where private wireless really shines. >> So this is where we do the shout out to my daughter Rachel Nicholson, who is currently a junior at Cal Poly San Luis Obispo. Rachel, get plenty of sleep and get your homework done. >> Lisa: She better be studying. >> I held up my mobile device and I should have said full disclosure, we have spotty cellular service where I live. So I think of this as a Wi-Fi connected device, in fact. So maybe I confuse the issue at least. >> Tammy, talk to us a little bit about the architecture from an AWS perspective that is enabling JBG Smith, Cal Poly is this, we're talking an edge architecture, but give us a little bit more of an understanding of what that actually technically looks like. >> Alright, I would love to pass this one over to Kurt. >> Okay. >> So I'm sorry, just in terms of? >> Wanting to understand the AWS architecture this is an edge based architecture hosted on what? On AWS snow, application storage. Give us a picture of what that looks like. >> Right. So I mean, the beauty of this is the simplicity in it. So we're able to bring an AWS snowball, snow cone, edge appliance that runs a pack of core. We're able to run workloads on that locally so some applications, but we also obviously have the ability to bring that out to the public cloud. So depending on what the user application is, we look at anything from the AWS snow family to Outpost and sort of develop templates or solutions depending on what the customer workloads demand. But the innovation that's happened, especially around the pack core and how we can make that so compact and able to run on such a capable appliance is really powerful. >> Yeah, and I will add that I think the diversification of the different connectivity modules that we have a lot of them have been developed because of the needs from the telco industry. So the adaptation of Outpost to run into the edge, the snow family. So the telco industry is really leading a lot of the developments that AWS takes to market in the end because of the nature of having to have networks that are able to disconnect, ruggedize environments, the latency, the numerous use cases that our telco customers are facing to take to their end customers. So like it really allows us to adapt and bring the right network to the right place and the right environment. And even for the same customer they may have different satellite offices or remote sites that need different connectivity needs. >> Right. So it sounds like that collaboration between AWS and telco is quite strong and symbiotic, it sounds like. >> Tammy: Absolutely. >> So we talked about a number of the announcements in our final minutes. I want to talk about integrated private wireless that was just announced last week. What is that? Who are the users going to be? And I understand T-Mobile is involved there. >> Yes. Yeah. So this is a program that we launched based on what we're seeing is kind of a convergence of the ecosystem of private wireless. So we wanted to be able to create a program which is offering spectrum that is regulated as well. And we wanted to offer that on in a more of a multi country environment. So we launched with T-Mobile, Telephonica, KDDI and a number of other succeed, as a start to start being able to bring the regulated spectrum into the picture and as well other ISVs who are going to be bringing unique use cases so that when you look at, well we've got the connectivity into this environment, the mine or the port, what are those use cases? You know, so ISVs who are providing maybe asset tracking or some of the health and safety and we bring them in as part of the program. And I think an important piece is the actual discoverability of this, because when you think about that if you're a buyer on the other side, like where do I start? So we created a portal with this group of ISVs and partners so that one could come together and kind of build what are my needs? And then they start picking through and then the ecosystem would be recommended to them. So it's a really a way to discover and to also procure a private wireless network much more easily than could be done in the past. >> That's a great service >> And we're learning a lot from the market. And what we're doing together in our partnership is through a lot of these sort of ruggedized remote location deployments that we're doing, mines, clearing underbrush and forest forest areas to prevent forest fires. There's a tremendous number of applications for private wireless where sort of the conventional carrier networks just aren't prioritized to serve. And you need a different level of connectivity. Privacy is big concern as well. Data security. Keeping data on premise, which is a another big application that we were able to drive through these edge compute platforms. >> Awesome. Guys, thank you so much for joining us on the program talking about what AWS Federated are doing together and how you're really helping to evolve the telco landscape and make life ultimately easier for all the Nicholsons to connect over Wi-Fi, our private 5g. >> Keep us in touch. And from two Californians you had us when you said clear the brush, prevent fires. >> You did. Thanks guys, it was a pleasure having you on the program. >> Thank you. >> Thank you. >> Our pleasure. For our guest and for Dave Nicholson, I'm Lisa Martin. You're watching theCUBE Live from our third day of coverage of MWC23. Stick around Dave and I will be right back with our next guest. (upbeat music)

Published Date : Mar 1 2023

SUMMARY :

that drive human progress. eye the last couple days? and a lot of the parallels the Global head of Partners Telco at AWS. the partner program and then let's unpack So AWS created the partner commentary on the partnership. and bring the power of So a lot of the So by moving to the cloud that allows us and brings a lot of that compute power of the announcements. So from the network but talk about the catalyst for doing that and the way that we're Talk to us more about that. from the ran to the core and looking at some of the exhibits and the ability to move So this is where we do the shout out So maybe I confuse the issue at least. bit about the architecture pass this one over to Kurt. the AWS architecture the beauty of this is a lot of the developments that AWS and telco is quite strong and number of the announcements a convergence of the ecosystem a lot from the market. on the program talking the brush, prevent fires. having you on the program. of coverage of MWC23.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Kurt SchaubachPERSON

0.99+

Lisa MartinPERSON

0.99+

Rachel NicholsonPERSON

0.99+

Dave NicholsonPERSON

0.99+

Tammy WymanPERSON

0.99+

AWSORGANIZATION

0.99+

CaliforniaLOCATION

0.99+

TammyPERSON

0.99+

telcoORGANIZATION

0.99+

T-MobileORGANIZATION

0.99+

KurtPERSON

0.99+

USLOCATION

0.99+

LisaPERSON

0.99+

Washington DCLOCATION

0.99+

Federated WirelessORGANIZATION

0.99+

DavePERSON

0.99+

RachelPERSON

0.99+

last weekDATE

0.99+

NokiaORGANIZATION

0.99+

SwisscomORGANIZATION

0.99+

Cal PolyORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

Tammy WhymanPERSON

0.99+

70%QUANTITY

0.99+

two guestsQUANTITY

0.99+

Dell TechnologiesORGANIZATION

0.99+

TelcoORGANIZATION

0.99+

BarcelonaLOCATION

0.99+

OneQUANTITY

0.99+

100%QUANTITY

0.99+

TelephonicaORGANIZATION

0.99+

JBG SmithORGANIZATION

0.99+

ManhattanLOCATION

0.99+

National LandingLOCATION

0.99+

four daysQUANTITY

0.99+

this weekDATE

0.98+

third dayQUANTITY

0.98+

10 years agoDATE

0.98+

JBG SmithPERSON

0.98+

DishORGANIZATION

0.98+

PotomacLOCATION

0.98+

twoQUANTITY

0.98+

KDDIORGANIZATION

0.98+

150 countriesQUANTITY

0.97+

MWC23EVENT

0.96+

two locationQUANTITY

0.96+

oneQUANTITY

0.96+

firstQUANTITY

0.96+

day threeQUANTITY

0.95+

MWCEVENT

0.95+

SiliconANGLE News | VMware Entices Telcos with Expanded 5G and Open RAN Portfolio


 

(electronic music) >> Hello, I'm John Furrier with SiliconANGLE News and host of theCUBE, and welcome to our news update for MWC in Barcelona, the premier event for cloud and to the telecommunication industry. News today, VMware in the news has lots of announcements, where it's expanding its line of products for communication service providers with Open RAND portfolio VMware's unveiled service management orchestration framework for simplifying and automating radio access networks and their applications. RANDs have traditionally been proprietary because of their need for low latency and speed and the Overran Alliance is championed open standard that would expand the number of players in the RAND ecosystem. According to Sanjay Oppai, senior vice president and general manager of the service provider and Edge Business Unit at VMware, VMware is the forefront of getting deployed in telcos both in the RAND as well as the core and VMware hopes they can extend their leadership from the enterprise data center and SD WAN and be the defacto standard in the RAND. VMware is also announcing a technical preview that'll allow communications service providers to run disaggregated and virtualized RAND functions directly on bare metal servers using VMware Tanzu. Project Hui is the initiative aimed at telecom providers that need flexibility in how they deploy edge devices. The VMware Telco cloud platform is also being improved to deliver carrier grade intelligent networking and lateral security features such as distributed firewall and intrusion detection and prevention, along with support for energy efficient use cases for 4G and 5G core load balancing. For enterprise customers, VMware is delivering new and enhanced remote worker device connectivity and intelligent wireless capabilities to its SD WAN and Secure Access Service Edge, or SASE Products, is also expanding its collaboration with Intel aimed at delivering new edge applications based on 5G connectivity that will support SD WAN use cases involving mobile and internet of things devices. Again, VMware spinning their portfolio in the news. Again, VMware is not stopping. Of course, theCUBE's, all the coverage of VMware Explorer will be coming up this year in 2023. Don't miss that. But at mwc, Dave Vellante and Lisa Martin, the entire Cube team are there for four days of live coverage. Of course, all the news and reporting is on SiliconANGLE.com. For all the action, go there. And of course theCUBE.net is where the broadcast is in Barcelona. This is theCUBE News. Thanks for watching.

Published Date : Feb 28 2023

SUMMARY :

VMware is the forefront of

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Sanjay OppaiPERSON

0.99+

Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

John FurrierPERSON

0.99+

BarcelonaLOCATION

0.99+

VMwareORGANIZATION

0.99+

2023DATE

0.99+

Overran AllianceORGANIZATION

0.99+

four daysQUANTITY

0.98+

MWCEVENT

0.97+

todayDATE

0.97+

Edge Business UnitORGANIZATION

0.97+

CubeORGANIZATION

0.96+

bothQUANTITY

0.96+

SiliconANGLE NewsORGANIZATION

0.94+

this yearDATE

0.94+

SiliconANGLE.comOTHER

0.93+

theCUBE.netOTHER

0.9+

TelcosORGANIZATION

0.9+

theCUBE NewsORGANIZATION

0.83+

theCUBEORGANIZATION

0.83+

IntelORGANIZATION

0.67+

VMware ExplorerTITLE

0.62+

VMware TanzuORGANIZATION

0.6+

VMwareTITLE

0.58+

Project HuiORGANIZATION

0.48+

mwcLOCATION

0.42+

5GOTHER

0.38+

SiliconANGLE News | Dell Partners with Telecom and Infrastructure Players to Accelerate Adoption


 

(energetic instrumental music) >> Hey, everyone. Welcome to SiliconANGLE CUBE News here from Mobile World Congress. This is a Mobile World Congress news update. Dell in the news here partners with leading infrastructure companies, Dell Technologies, really setting up an ecosystem. Here, Dell, with leading telecom and infrastructure players accelerating the network adoption, announcing that it's launching the Dell's Open Telecom Ecosystem community. A community of multiple telecom partners and communication service providers aimed at becoming a unifying force in the telecom industry. This announcement comes just days after Dell introduced a host of new hardware, platforms designed to help the teleconference build cloud-native open radio network access, also called RAN architectures, using proprietary and sub-components for various suppliers. Dell's Open Telecom Ecosystem community has already partnered with Nokia, Qualcomm, Amdocs and Juniper Networks to create new offerings aimed at accelerating open RAN price performance for communication service providers. This includes creating a new virtual RAN offering using Open Telecom Ecosystem Labs, and as the center for testing and validation, building next-generation 5G virtualized distributed units and deploy and automated validated 5G-SA network with various partners across the ecosystem. Dell's promising that this is just the beginning of the collaboration with the telecom industry as it seeks to accelerate the adoption of 5G networking technologies and solve key industry challenges. More action's on the ground, go to thecube.net, theCUBE is broadcasting live for four days, Dave Vellante, Lisa Martin. I'm in the studios in Palo Alto bringing you the news. Lot of action happening, of course. Go to siliconangle.com to catch all the breaking news. We have a special report. We already got 10 plus stories already flowing. Probably have another 10 today. Day two tomorrow as MWC continues to power more news coverage for the edge and cloud-native technologies. (pensive ambient music)

Published Date : Feb 28 2023

SUMMARY :

and as the center for

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

NokiaORGANIZATION

0.99+

AmdocsORGANIZATION

0.99+

QualcommORGANIZATION

0.99+

DellORGANIZATION

0.99+

Palo AltoLOCATION

0.99+

todayDATE

0.99+

Juniper NetworksORGANIZATION

0.99+

siliconangle.comOTHER

0.99+

Dell TechnologiesORGANIZATION

0.99+

10 plus storiesQUANTITY

0.99+

four daysQUANTITY

0.99+

thecube.netOTHER

0.98+

10QUANTITY

0.98+

MWCEVENT

0.97+

tomorrowDATE

0.96+

Day twoQUANTITY

0.95+

Mobile World CongressEVENT

0.95+

theCUBEORGANIZATION

0.94+

Mobile World CongressEVENT

0.83+

SiliconANGLE CUBEORGANIZATION

0.78+

OpenORGANIZATION

0.75+

SiliconANGLE NewsORGANIZATION

0.73+

Open Telecom EcosystemORGANIZATION

0.73+

Ecosystem LabsORGANIZATION

0.66+

Open Telecom EcosystemORGANIZATION

0.59+

Richard Leitao, DISH Network & Satish Iyer, Dell Technologies | MWC Barcelona 2023


 

>> theCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Hey everyone, guys and gals, good to see you. It's theCUBE live in Barcelona at MWC23. Lisa Martin here with Dave Vellante on day one of four days of wall to wall CUBE coverage. Dave, today is ecosystem day. We've had some great conversations about why the open ecosystem is so important and some of the key players in it. >> Well and I'm in search of disruptors, so I'm looking for, okay, who are the network operators that are going to actually lean into the future and drive it and challenge the existing incumbents. We'll talk about that today. >> And we're going to be talking about that next. We've got one of our alumni back with us. Satish Iyer is here, the Vice President of Emerging Services at Dell. Great to have you back on the program. >> Thank you. >> Richard Leitao is with us as well, the Vice President of National Development at DISH Network. Welcome. >> Pleasure to be here. >> So, lots of, this is day one, the theme is velocity. I feel like the day has gone by so quickly. But Dell and DISH have partnered together on a multi-year initiative to build your nationwide cloud-native 5G network that's going to cover a lot of the US. Talk a little bit about that partnership, we'll get both of your perspectives. Richard, we'll start with you. >> Sure. So thank you again for having me. So DISH had the opportunity of, of going through this experience, of innovating once more. For the ones that know DISH, DISH is a company that was founded in 1980 by an innovator, a disruptor. Of course, in the course of the next 40 years, we had the opportunities of even disrupting ourselves. We launched our first satellite TV service. We then launched the first streaming, video streaming platform, disrupting our own satellite business. And since 2008, we have been acquiring Spectrum and, you know, Spectrum, the most valuable asset of a wireless operator. We felt that this was the right opportunity, having 5G , having O-RAN, and we decided to go full in in a greenfield project building national network, 5G O-RAN cloud-based network, one of a kind network in in the US and, and most of all, using O-RAN, it's very important to us, what, what it can bring and it can bring to DISH but to the entire ecosystem of, of this sector in the US. >> Satish, talk a little bit about the partnership from Dell's perspective and some of the unique advantages that Dell is delivering to DISH. >> Oh absolutely. Again, like Richard was saying, I mean the telecom network is being desegregated as we speak. You know, companies like DISH and everybody else is looking at what are the best-in-class technologies we can bring to the table. I would like to say that, you know, the cloud is coming to the telco world, right? A lot of us have seen the tremendous transformation in the cloud world in the last few years. Now, you know, DISH is a big enterprise company. As you know, you know, we are pretty strong within the cloud space and enterprise space. So what we try to work with DISH is Dell, is to bring to DISH is, you know, that notion of cloud scale and the cloud ecosystem into telecom, right? By means best-in-class infrastructure products, best-in-class software products, to allow somebody like DISH to innovate and incre, you know, basically expand and build their O-RAN network. So it's absolutely important for us as we build and get into the telecom space to work with somebody like DISH who's also disrupting as a carrier in that space. >> So it's early days for Open RAN but you've decided, "okay, we're all in". >> Yeah. >> Right? So (chuckling) you burn the bridge, as they say, "go for it". (Lisa chuckles) So when you talk to most people, they say, "okay, it's, it's, it's, it's immature." It's got to be able to get to the levels of, of the, the the hardened stack reliability. But of course it brings the advantage of flexibility and speed. Are you optimizing for one or the other right now? How are you dealing with that balance? >> Well, it, it's, it's not mature in the sense that most of operators that think about it, they have a legacy network. And in order to go full in on the O-RAN side, they need to scrap a lot of things that they have and honestly, they don't want, and it doesn't make sense. So being a greenfield operator, give us that advantage. Give us the advantage and, and desegregation, it's all about chip sets, boxes and software and the chip sets part and what I like the most in desegregation is the time of innovation. The time that we can use new chip sets coming into the market, the size of the boxes that we are using. Obviously our footprint onsite is much smaller than traditional carriers or proprietary systems. So all of that Dell has been critical in supporting us. Supporting us having the best chip sets, having the smallest footprint and, you know, the software, the cycle of innovation is much faster than in proprietary systems. So ma-, it's maturing. I'm glad to say that probably two years ago here O-RAN was more like a, a pilot type of technology. It is not, we are live, we are live for more than 30 million customers in the US and, you know, the performance levels are very similar to traditional networks. >> So you don't just buy a nationwide cloud-native 5G network out of the box, you got to- >> No, you don't. >> You got to build it. So I'm curious as to what Dell's role is in that, in that build out. >> Right? >> How and how, I'm really curious how to, how you would grade Dell but we'll get there. >> Yeah, I mean, look, yes, you don't. So I think the, the, the first and foremost is again, as, as we, Dell, comes into the telco space, one of the things we have to look at is to understand what makes Dell better in the enterprise space, right? It is the best-in-class infrastructure. It is the software ties together. As you talk about desegregated networks, it's important to understand lot of these piece parts have to still be touched together, right? So I think the integration and integration aspects becomes really key which is really Dell is very good at. So one of the things we are working really closely with DISH Tech, you know Richard was alluding to, is bringing all, not just bringing all the software and hardware assets together, but how do you continuously innovate and keep fixing things faster, right? So in the old days, traditional ways, you have a software stack, it takes you 18 months, 20 months to actually get an upgrade done. Here we have continuously CI/CD pipelines where if you want to a change done within, within a week's or within a few days, where we can actually go and test and make sure these things work. So I think a lot of the best enterprise software practices, cloud practices, combined with whatever needs for telco, actually is what makes it very unique. >> I, I saw that this started out as an FCC compliance initiative that turned into a partnership, obviously a very successful one. Richard, talk about what DISH saw in Dell that really made it the right choice, knowing you have choices, you have options. >> You know, we saw the capability to execute, but we also saw the capability to innovate. From an execution level, at the end of the day, like we were talking, we started the project in the middle of COVID, and we had the first mandate to cover 20% of the US population by June, 2022. And now we have a second one, 70% of US population by June 2023. At the beginning of the project, it was all about availability of materials, logistics, how to distribute, how to transport material. So Dell has a world-class supply chain, we felt that working with Dell through all these challenges made things easier. So from an execution perspective, whenever you need to build a network and you, you are building thousands of sites, you need to have materials, you need to distribute them and you need to install them. Dell helped us across the board. Our expectations obviously will change. We have a network, we want to cooperate with Dell in many other areas. We want to, you know, leverage on Dell ability to reach the enterprise market, to have private 5G offers. So hopefully this collaboration will endure in time and, and, you know, will change and evolve in time. >> And it's a big bet. I mean, it's not like a single, it's not like a little transaction that you guys are doing. I feel like, you know Michael Dell and Eric Carlson had dinner and they said, "okay, we're going to, we're going to partner up and this is going to be a multi-decade partnership. You had to be transparent, "Hey, we're new at this, even though we're really good at enterprise tech and so you're going to, obviously if you take a chance on us, here's what we promise you." >> Absolutely. >> And vice versa, you guys had to say, "all right, hey, we're willing to roll the dice because we're trying to change the world." So what was that dynamic like? I mean, how did, I'm curious as to this has to be a lot of different levels, engineering, senior management, board level discussions. >> You know, we felt a huge buy-in from Dell on the Open RAN concept. >> Right. >> Yeah, okay. >> And, you know, edge computing and, and the ability to get us the best product and evolve the best product, Intel is is critical in all these offerings. Intel has a great relationship with Dell. Dell helped us. Dell sponsored the DISH program and some of these suppliers, So it was definitely good to have their support and the buy-in on the O-RAN concept. We felt it from day one and we felt secure on that. >> Yeah, I mean, I, to add to that, I mean, you know DISH was very instrumental in driving, dictating and executing to our roadmap, right? They're one of the key, I mean, since they are out there and they're really turning in a way, it's important that a customer who's actually at the out front of innovation, helps us drive our own roadmap. So to Richard's point, a lot of our product roadmaps, in terms of what have you built and all that, was based on what DISH thinks as going to be market-based requirements. They also helped us a lot in the integration aspects. Like I said, one of the things about open desegregation of these networks is there is a lot of integration because, you know, there is, it's not a one, one monolithic pipe smokestack anymore. You are picking up best-in-class pieces, bits and pieces and tying it together. And it's important to understand when you tie it together things will go wrong, right? So there is a lot of learnings from an integration standpoint. Supportability, deployment, one of the things Richard talked about was supply chain, you know. Other Dell's ability to, lot of these deployments, a lot of these configs in the factory, right, in the second part. So especially a lot of these partnerships started during COVID time and as you all know, you know what we went through two years ago. So we had to make sure that lot of these things are done in one place and a factory, and not done in the field because we couldn't do a lot of these things. So there's a lot of, lot of experimentation, lot of, lot, lot of innovation on that. >> So it's 2030, what's this look like? What's the vision if we can work backwards from there? Well, a, a great network coverage to the entire country, bringing new services to enterprises, to verticals, bringing value add to customers and, you know, technology cycles, they are lasting much less than they were. I cannot even say what will happen in three years. 2030, I mean, I know, I know somebody has a vision for 2030. That's another thing. (everyone laughs) >> A lot of it is "build it and they will come", right? >> Yeah. >> I mean it really is right? You put that network in place and then innovation happens on top. That's the best thing. >> Yeah. And look and and I think the biggest people think about Open RAN in terms of cost, which, you know, you, you have some things in cost that you appreciate in Open RAN. The footprint, the the possibility to diversify suppliers and and have more competition. But for me, Open RAN is about innovation and cycles of innovation. I used to work for Nokia, I used to work for Alcatel. I knew from the generation of an idea to an execution and having a feature delivered to a certain customer, it, it took months. We want innovation to take weeks. We are innovating at the speed, speed of the cloud. We are cooperating with new players, players on the cloud and, and we expect things to happen much faster than they traditionally happen on the telecom sector. >> Move fast and break things. >> Well, we also expect that speed- >> Break and fix. (everyone laughs) >> Yeah, thank you for that. >> But speaking of speed, your customers expect that, right? They expect the service to be up 24/7. They expect to be able to access whatever content they want, whenever they want from wherever they are. So comment, Richard, in our last few minutes here of, of how the, the Dell partnership is helping DISH to really deliver the excellent customer experience that your customers just expect that you're going to deliver. >> Well by setting up the system, number one, we are leveraging on a number of services. And I mentioned the supply chain, but in reality Dell made much more than that for our 20% milestone and is supporting our 70% milestone by installing, testing, verifying most of our data center equipment. We found that this offering from Dell was really addressing some of our needs because, you know, we, we believe they know a lot in this area and they, they can provide the best advice and the best speed to market in, in terms of having this equipment. Because we are working on a time clock, we need to have this done as soon as possible. You know for the future, I hope that they can help us in driving more services. I hope they can bring all the infrastructure that we need to offer to our customers. And, you know, we keep committed to O-RAN. O-RAN is really important. We are not compromising that. And I think the future is bright for both of us. >> Yeah, and Dell learns from the experience. >> Exactly. >> Absolutely. >> There's got to be a catalyst for expanding your roadmap and vision in telecom. >> Yeah, I mean, like you said, I mean, you asked a 2030 question and I think that, you know, know six, seven years from now I think people should look at what DISH and Dell and say they were the trailblazers of make, bringing Open RAN to the market and making 5G a reality. I mean, you talk about 5G, but every 5G is on a different stages. I do think that this combination, this partnership has the best chance to be the first ones to actually have a truly Open RAN network to be successful in commercial. >> Awesome guys. Trailblazers, Dell and DISH. Well, we look forward to watching this story unfold. Thank you- >> Thank you. >> for joining Dave and me on the program today talking about what you're doing together. We appreciate it. >> Thanks for having us. >> Our pleasure. >> Thank you, bye. >> For our guests and for Dave Vellante, I'm Lisa Martin. You're watching theCUBE live from Barcelona at MWC23. We'll be back after a short break, so we'll see you soon.

Published Date : Feb 27 2023

SUMMARY :

that drive human progress. and some of the key players in it. and challenge the existing incumbents. Great to have you back on the program. the Vice President of National I feel like the day So DISH had the opportunity of, of some of the unique advantages is to bring to DISH is, you know, So it's early days for Open RAN But of course it brings the advantage of the US and, you know, So I'm curious as to what Dell's role is how you would grade Dell So one of the things we made it the right choice, in the middle of COVID, that you guys are doing. I mean, how did, I'm curious as to on the Open RAN concept. and the ability to get us the best product and not done in the field because What's the vision if we can That's the best thing. in cost that you appreciate in Open RAN. Break and fix. They expect the service to be up 24/7. And I mentioned the supply from the experience. There's got to be a has the best chance to be the first ones Well, we look forward to me on the program today break, so we'll see you soon.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

RichardPERSON

0.99+

Lisa MartinPERSON

0.99+

DISHORGANIZATION

0.99+

DellORGANIZATION

0.99+

Richard LeitaoPERSON

0.99+

AlcatelORGANIZATION

0.99+

Dave VellantePERSON

0.99+

DavePERSON

0.99+

June, 2022DATE

0.99+

Satish IyerPERSON

0.99+

20 monthsQUANTITY

0.99+

June 2023DATE

0.99+

1980DATE

0.99+

DISH TechORGANIZATION

0.99+

2008DATE

0.99+

18 monthsQUANTITY

0.99+

BarcelonaLOCATION

0.99+

USLOCATION

0.99+

FCCORGANIZATION

0.99+

2030DATE

0.99+

LisaPERSON

0.99+

Dell TechnologiesORGANIZATION

0.99+

DISH NetworkORGANIZATION

0.99+

bothQUANTITY

0.99+

70%QUANTITY

0.99+

20%QUANTITY

0.99+

NokiaORGANIZATION

0.99+

second partQUANTITY

0.99+

Eric CarlsonPERSON

0.99+

telcoORGANIZATION

0.98+

two years agoDATE

0.98+

firstQUANTITY

0.98+

todayDATE

0.97+

oneQUANTITY

0.97+

first streamingQUANTITY

0.97+

more than 30 million customersQUANTITY

0.97+

three yearsQUANTITY

0.96+

Vice PresidentPERSON

0.96+

four daysQUANTITY

0.96+