SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI
(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)
SUMMARY :
I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ed Alban | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Ed Albanese | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five seconds | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Ed | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
10 good questions | QUANTITY | 0.99+ |
Swami | PERSON | 0.99+ |
15 different possibilities | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Vectara | ORGANIZATION | 0.99+ |
Amr Awadallah | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Cloudera | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
end of 2019 | DATE | 0.99+ |
yesterday | DATE | 0.98+ |
Big Data | ORGANIZATION | 0.98+ |
40 million users | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
two great guests | QUANTITY | 0.98+ |
12 plus years | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
five dollar | QUANTITY | 0.98+ |
Netscape | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first inning | QUANTITY | 0.98+ |
Amr | PERSON | 0.97+ |
two schools | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
10 years ago | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
first day | QUANTITY | 0.96+ |
three | DATE | 0.96+ |
chatGPT | TITLE | 0.96+ |
first places | QUANTITY | 0.95+ |
Bing | ORGANIZATION | 0.95+ |
Notion | TITLE | 0.95+ |
first thing | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
Beyond the Buzz | TITLE | 0.94+ |
Sati Natel | PERSON | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
one location | QUANTITY | 0.93+ |
three years ago | DATE | 0.93+ |
single application | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
first platform | QUANTITY | 0.91+ |
five years old | QUANTITY | 0.91+ |
Nikesh Arora, Palo Alto Networks | Palo Alto Networks Ignite22
Upbeat music plays >> Voice Over: TheCUBE presents Ignite 22, brought to you by Palo Alto Networks. >> Good morning everyone. Welcome to theCUBE. Lisa Martin here with Dave Vellante. We are live at Palo Alto Networks Ignite. This is the 10th annual Ignite. There's about 3,000 people here, excited to really see where this powerhouse organization is taking security. Dave, it's great to be here. Our first time covering Ignite. People are ready to be back. They.. and security is top. It's a board level conversation. >> It is the other Ignite, I like to call it cuz of course there's another big company has a conference name Ignite, so I'm really excited to be here. Palo Alto Networks, a company we've covered for a number of years, as we just wrote in our recent breaking analysis, we've called them the gold standard but it's not just our opinion, we've backed it up with data. The company's on track. We think to do close to 7 billion in revenue by 2023. That's double it's 2020 revenue. You can measure it with execution, market cap M and A prowess. I'm super excited to have the CEO here. >> We have the CEO here, Nikesh Arora joins us from Palo Alto Networks. Nikesh, great to have you on theCube. Thank you for joining us. >> Well thank you very much for having me Lisa and Dave >> Lisa: It was great to see your keynote this morning. You said that, you know fundamentally security is a data problem. Well these days every company has to be a data company. Grocery stores, gas stations, car dealers. How is Palo Alto networks making customers, these data companies, more secure? >> Well Lisa, you know, (coughs) I've only done cybersecurity for about four, four and a half years so when I came to the industry I was amazed to see how security is so reactive as opposed to proactive. We should be able to stop bad threats, right? as they're happening. But I think a lot of threats get through because we don't have the right infrastructure and the right tooling and right products in there. So I think we've been working hard for the last four and a half years to turn it around so we can have consistent data flow across an enterprise and then mine that data for threats and anomalous behavior and try and protect our customers. >> You know the problem, I wrote this, this weekend, the problem in cybersecurity is well understood, you put up that Optiv graph and it's like 8,000 companies >> Yes >> and I think you mentioned your keynote on average, you know 30 to 40 tools, maybe 50, at least 20, >> Yes. >> from the folks that I talked to. So, okay, great, but actually solving that problem is not trivial. To be a consolidator, I mean, everybody wants to consolidate tools. So in your three to four years and security as you well know, it's, you can't fake security. It's a really, really challenging topic. So when you joined Palo Alto Networks and you heard that strategy, I know you guys have been thinking about this for some time, what did you see as the challenges to actually executing on that and how is it that you've been able to sort of get through that knot hole. >> So Dave, you know, it's interesting if you look at the history of cybersecurity, I call them the flavor of the decade, a flare, you know a new threat vector gets created, very large market gets created, a solution comes through, people flock, you get four or five companies will chase that opportunity, and then they become leaders in that space whether it's firewalls or endpoints or identity. And then people stick to their swim lane. The problem is that's a very product centric approach to security. It's not a customer-centric approach. The customer wants a more secure enterprise. They don't want to solve 20 different solutions.. problems with 20 different point solutions. But that's kind of how the industry's grown up, and it's been impossible for a large security company in one category, to actually have a substantive presence in the next category. Now what we've been able to do in the last four and a half years is, you know, from our firewall base we had resources, we had intellectual capability from a security perspective and we had cash. So we used that to pay off our technical debt. We acquired a bunch of companies, we created capability. In the last three years, four years we've created three incremental businesses which are all on track to hit a billion dollars the next 12 to 18 months. >> Yeah, so it's interesting on Twitter last night we had a little conversation about acquirers and who was a good, who was not so good. It was, there was Oracle, they came up actually very high, they'd done pretty, pretty good Job, VMware was on the list, IBM, Cisco, ServiceNow. And if you look at IBM and Cisco's strategy, they tend to be very services heavy, >> Mm >> right? How is it that you have been able to, you mentioned get rid of your technical debt, you invested in that. I wonder if you could, was it the, the Cloud, even though a lot of the Cloud was your own Cloud, was that a difference in terms of your ability to integrate? Because so many companies have tried it in the past. Oracle I think has done a good job, but it took 'em 10 to 12 years, you know, to, to get there. What was the sort of secret sauce? Is it culture, is it just great engineering? >> Dave it's a.. thank you for that. I think, look, it's, it's a mix of everything. First and foremost, you know, there are certain categories we didn't play in so there was nothing to integrate. We built a capability in a category in automation. We didn't have a product, we acquired a company. It's a net new capability in instant response. We didn't have a capability. It was net new capability. So there was, there was, other than integrating culturally and into the organization into our core to market processes there was no technical integration needed. Most of our technical integration was needed in our Cloud platform, which we bought five or six companies, we integrated then we just bought one recently called cyber security as well, which is going to get integrated in the Cloud platform. >> Dave: Yeah. >> And the thing is like, the Cloud platform is net new in the industry. We.. nobody's created a Cloud security platform yet, so we're working hard to create it because we don't want to replicate the mistakes of the past, that were made in enterprise security, in Cloud security. So it's a combination of cultural integration it's a combination of technical integration. The two things we do differently I think, than most people in the industry is look, we have no pride of, you know of innovations. Like, if somebody else has done it, we respect it and we'll acquire it, but we always want to acquire number one or number two in their category. I don't want number three or four. There's three or four for a reason and there still leaves one or two out there to compete with. So we've always acquired one or two, one. And the second thing, which is as important is most of these companies are in the early stage of development. So it's very important for the founding team to be around. So we spend a lot of time making sure they stick around. We actually make our people work for them. My principle is, listen, if they beat us in the open market with all our resources and our people, then they deserve to run this as opposed to us. So most of our new product categories are run by founders of companies required. >> So a little bit of Jack Welch, a little bit of Franks Lubens is a, you know always deference to the founders. But go ahead Lisa. >> Speaking of cultural transformation, you were mentioning your keynote this morning, there's been a significant workforce transformation at Palo Alto Networks. >> Yeah >> Talk a little bit about that, cause that's a big challenge, for many organizations to achieve. Sounds like you've done it pretty well. >> Well you know, my old boss, Eric Schmidt, used to say, 'revenue solves all known problems'. Which kind of, you know, it is a part joking, part true, but you know as Dave mentioned, we've doubled or two and a half time the revenues in the last four and a half years. That allows you to grow, that allows you to increase headcount. So we've gone from four and a half thousand people to 14,000 people. Good news is that's 9,500 people are net new to the company. So you can hire a whole new set of people who have new skills, new capabilities and there's some attrition four and a half thousand, some part of that turns over in four and a half years, so we effectively have 80% net new people, and the people we have, who are there from before, are amazing because they've built a phenomenal firewall business. So it's kind of been right sized across the board. It's very hard to do this if you're not growing. So you got to focus on growing. >> Dave: It's like winning in sports. So speaking of firewalls, I got to ask you does self-driving cars need brakes? So if I got a shout out to my friend Zeus Cararvela so like that's his line about why you need firewalls, right? >> Nikesh: Yes. >> I mean you mentioned it in your keynote today. You said it's the number one question that you get. >> and I don't get it why P industry observers don't go back and say that's, this is ridiculous. The network traffic is doubling or tripling. (clears throat) In fact, I gave an interesting example. We shut down our data centers, as I said, we are all on Google Cloud and Amazon Cloud and then, you know our internal team comes in, we'd want a bigger firewall. I'm like, why do you want a bigger firewall? We shut down our data centers as well. The traffic coming in and out of our campus is doubled. We need a bigger firewall. So you still need a firewall even if you're in the Cloud. >> So I'm going to come back to >> Nikesh: (coughs) >> the M and A strategy. My question is, can you be both best of breed and develop a comprehensive suite number.. part one and part one A of that is do you even have to, because generally sweets win out over best of breed. But what, how do you, how do you respond? >> Well, you know, this is this age old debate and people get trapped in that, I think in my mind, and let me try and expand the analogy which I tried to do up in my keynote. You know, let's assume that Oracle, Microsoft, Dynamics and Salesforce did not exist, okay? And you were running a large company of 50,000 people and your job was to manage the customer process which easier to understand than security. And I said, okay, guess what? I have a quoting system and a lead system but the lead system doesn't talk to my coding system. So I get leads, but I don't know who those customers. And I write codes for a whole new set of customers and I have a customer database. Then when they come as purchase orders, I have a new database with all the customers who've bought something from me, and then when I go get them licensing I have a new database and when I go have customer support, I have a fifth database and there are customers in all five databases. You'll say Nikesh you're crazy, you should have one customer database, otherwise you're never going to be able to make this work. But security is the same problem. >> Dave: Mm I should.. I need consistency in data from suit to nuts. If it's in Cloud, if you're writing code, I need to understand the security flaws before they go into deployment, before they go into production. We for somehow ridiculously have bought security like IT. Now the difference between IT and security is, IT is required to talk to each other, so a Dell server and HP server work very similarly but a Palo Alto firewall and a Checkpoint firewall Fortnight firewall work formally differently. And then how that transitions into endpoints is a whole different ball game. So you need consistency in data, as Lisa was saying earlier, it's a data problem. You need consistency as you traverse to the enterprise. And that's why that's the number one need. Now, when you say best of breed, (coughs) best of breed, if it's fine, if it's a specific problem that you're trying to solve. But if you're trying to make sure that's the data flow that happens, you need both best of breed, you know, technology that stops things and need integration on data. So what we are trying to do is we're trying to give people best to breed solutions in the categories they want because otherwise they won't buy us. But we're also trying to make sure we stitch the data. >> But that definition of best of breed is a little bit of nuance than different in security is what I'm hearing because that consistency >> Nikesh: (coughs) Yes, >> across products. What about across Cloud? You mentioned Google and Amazon. >> Yeah so that's great question. >> Dave: Are you building the security super Cloud, I call it, above the Cloud? >> It's, it's not, it's, less so a super Cloud, It's more like Switzerland and I used to work at Google for 10 years, not a secret. And we used to sell advertising and we decided to go into pub into display ads or publishing, right. Now we had no publishing platform so we had to be good at everybody else's publishing platform >> Dave: Mm >> but we never were able to search ads for everybody else because we only focus on our own platform. So part of it is when the Cloud guys they're busy solving security for their Cloud. Google is not doing anything about Amazon Cloud or Microsoft Cloud, Microsoft's Azure, right? AWS is not doing anything about Google Cloud or Azure. So what we do is we don't have a Cloud. Our job in providing Cloud securities, be Switzerland make sure it works consistently across every Cloud. Now if you try to replicate what we offer Prisma Cloud, by using AWS, Azure and GCP, you'd have to first of all, have three panes of glass for all three of them. But even within them they have four panes of glass for the capabilities we offer. So you could end up with 12 different interfaces to manage a development process, we give you one. Now you tell me which is better. >> Dave: Sounds like a super Cloud to me Lisa (laughing) >> He's big on super Cloud >> Uber Cloud, there you >> Hey I like that, Uber Cloud. Well, so I want to understand Nikesh, what's realistic. You mentioned in your keynote Dave, brought it up that the average organization has 30 to 50 tools, security tools. >> Nikesh: Yes, yes >> On their network. What is realistic for from a consolidation perspective where Palo Alto can come in and say, let me make this consistent and simple for you. >> Well, I'll give you your own example, right? (clears throat) We're probably sub 10 substantively, right? There may be small things here and there we do. But on a substantive protecting the enterprise perspective you be should be down to eight or 10 vendors, and that is not perfect but it's a lot better than 50, >> Lisa: Right? >> because don't forget 50 tools means you have to have capability to understand what those 50 tools are doing. You have to have the capability to upgrade them on a constant basis, learn about their new capabilities. And I just can't imagine why customers have two sets of firewalls right. Now you got to learn both the files on how to deploy both them. That's silly because that's why we need 7 million more people. You need people to understand, so all these tools, who work for companies. If you had less tools, we need less people. >> Do you think, you know I wrote about this as well, that the security industry is anomalous and that the leader has, you know, single digit, low single digit >> Yes >> market shares. Do you think that you can change that? >> Well, you know, when I started that was exactly the observation I had Dave, which you highlighted in your article. We were the largest by revenue, by small margin. And we were one and half percent of the industry. Now we're closer to three, three to four percent and we're still at, you know, like you said, going to be around $7 billion. So I see a path for us to double from here and then double from there, and hopefully as we keep doubling and some point in time, you know, I'd like to get to double digits to start with. >> One of the things that I think has to happen is this has to grow dramatically, the ecosystem. I wonder if you could talk about the ecosystem and your strategy there. >> Well, you know, it's a matter of perspective. I think we have to get more penetrated in our largest customers. So we have, you know, 1800 of the top 2000 customers in the world are Palo Alto customers. But we're not fully penetrated with all our capabilities and the same customers set, so yes the ecosystem needs to grow, but the pandemic has taught us the ecosystem can grow wherever they are without having to come to Vegas. Which I don't think is a bad thing to be honest. So the ecosystem is growing. You are seeing new players come to the ecosystem. Five years ago you didn't see a lot of systems integrators and security. You didn't see security offshoots of telecom companies. You didn't see the Optivs, the WWTs, the (indistinct) of the world (coughs) make a concerted shift towards consolidation or services and all that is happening >> Dave: Mm >> as we speak today in the audience you will find people from Google, Amazon Microsoft are sitting in the audience. People from telecom companies are sitting in the audience. These people weren't there five years ago. So you are seeing >> Dave: Mm >> the ecosystem's adapting. They're, they want to be front and center of solving the customer's problem around security and they want to consolidate capability, they need. They don't want to go work with a hundred vendors because you know, it's like, it's hard. >> And the global system integrators are key. I always say they like to eat at the trough and there's a lot of money in security. >> Yes. >> Dave: (laughs) >> Well speaking of the ecosystem, you had Thomas Curry and Google Cloud CEO in your fireside chat in the keynote. Talk a little bit about how Google Cloud plus Palo Alto Networks, the Zero Trust Partnership and what it's enable customers to achieve. >> Lisa, that's a great question. (clears his throat) Thank you for bringing it up. Look, you know the, one of the most fundamental shifts that is happening is obviously the shift to the Cloud. Now when that shift fully, sort of, takes shape you will realize if your network has changed and you're delivering everything to the Cloud you need to go figure out how to bring the traffic to the Cloud. You don't have to bring it back to your data center you can bring it straight to the Cloud. So in that context, you know we use Google Cloud and Amazon Cloud, to be able to carry our traffic. We're going from a product company to a services company in addition, right? Cuz when we go from firewalls to SASE we're not carrying your traffic. When we carry our traffic, we need to make sure we have underlying capability which is world class. We think GCP and AWS and Azure run some of the biggest and best networks in the world. So our partnership with Google is such that we use their public Cloud, we sit on top of their Cloud, they give us increased enhanced functionality so that our customers SASE traffic gets delivered in priority anywhere in the world. They give us tooling to make sure that there's high reliability. So you know, we partner, they have Beyond Corp which is their version of Zero Trust which allows you to take unmanaged devices with browsers. We have SASE, which allows you to have managed devices. So the combination gives our collective customers the ability for Zero Trust. >> Do you feel like there has to be more collaboration within the ecosystem, the security, you know, landscape even amongst competitors? I mean I think about Google acquires Mandiant. You guys have Unit 42. Should and will, like, Wendy Whitmore and maybe they already are, Kevin Mandia talk more and share more data. If security's a data problem is all this data >> Nikesh: Yeah look I think the industry shares threat data, both in private organizations as well as public and private context, so that's not a problem. You know the challenge with too much collaboration in security is you never know. Like you know, the moment you start sharing your stuff at third parties, you go out of Secure Zone. >> Lisa: Mm >> Our biggest challenge is, you know, I can't trust a third party competitor partner product. I have to treat it with as much suspicion as anything else out there because the only way I can deliver Zero Trust is to not trust anything. So collaboration in Zero Trust are a bit of odds with each other. >> Sounds like another problem you can solve >> (laughs) >> Nikesh last question for you. >> Yes >> Favorite customer or example that you think really articulates the value of what Palo Alto was delivering? >> Look you know, it's a great question, Lisa. I had this seminal conversation with a customer and I explained all those things we were talking about and the customer said to me, great, okay so what do I need to do? I said, fun, you got to trust me because you know, we are on a journey, because in the past, customers have had to take the onus on themselves of integrating everything because they weren't sure a small startup will be independent, be bought by another cybersecurity company or a large cybersecurity company won't get gobbled up and split into pieces by private equity because every one of the cybersecurity companies have had a shelf life. So you know, our aspiration is to be the evergreen cybersecurity company. We will always be around and we will always tackle innovation and be on the front line. So the customer understood what we're doing. Over the last three years we've been working on a transformation journey with them. We're trying to bring them, or we have brought them along the path of Zero Trust and we're trying to work with them to deliver this notion of reducing their meantime to remediate from days to minutes. Now that's an outcome based approach that's a partnership based approach and we'd like, love to have more and more customers of that kind. I think we weren't ready to be honest as a company four and a half years ago, but I think today we're ready. Hence my keynote was called The Perfect Storm. I think we're at the right time in the industry with the right capabilities and the right ecosystem to be able to deliver what the industry needs. >> The perfect storm, partners, customers, investors, employees. Nikesh, it's been such a pleasure having you on theCUBE. Thank you for coming to talk to Dave and me right after your keynote. We appreciate that and we look forward to two days of great coverage from your executives, your customers, and your partners. Thank you. >> Well, thank you for having me, Lisa and Dave and thank you >> Dave: Pleasure >> for what you guys do for our industry. >> Our pleasure. For Nikesh Arora and Dave Vellante, I'm Lisa Martin, you're watching theCUBE live at MGM Grand Hotel in Las Vegas, Palo Alto Ignite 22. Stick around Dave and I will be joined by our next guest in just a minute. (cheerful music plays out)
SUMMARY :
brought to you by Palo Alto Networks. Dave, it's great to be here. I like to call it cuz Nikesh, great to have you on theCube. You said that, you know and the right tooling and and you heard that strategy, So Dave, you know, it's interesting And if you look at IBM How is it that you have been able to, First and foremost, you know, of, you know of innovations. Lubens is a, you know you were mentioning your for many organizations to achieve. and the people we have, So speaking of firewalls, I got to ask you I mean you mentioned and then, you know our that is do you even have to, Well, you know, this So you need consistency in data, and Amazon. so that's great question. and we decided to go process, we give you one. that the average organization and simple for you. Well, I'll give you You have to have the Do you think that you can change that? and some point in time, you know, I wonder if you could So we have, you know, 1800 in the audience you will find because you know, it's like, it's hard. And the global system and Google Cloud CEO in your So in that context, you security, you know, landscape Like you know, the moment I have to treat it with as much suspicion for you. and the customer said to me, great, okay Thank you for coming Arora and Dave Vellante,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cisco | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
five | QUANTITY | 0.99+ |
Eric Schmidt | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Dell | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Kevin Mandia | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
80% | QUANTITY | 0.99+ |
HP | ORGANIZATION | 0.99+ |
2020 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
9,500 people | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
six companies | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Vegas | LOCATION | 0.99+ |
four and a half years | QUANTITY | 0.99+ |
14,000 people | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Wendy Whitmore | PERSON | 0.99+ |
50,000 people | QUANTITY | 0.99+ |
Jack Welch | PERSON | 0.99+ |
10 vendors | QUANTITY | 0.99+ |
Five years ago | DATE | 0.99+ |
Thomas Curry | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
50 tools | QUANTITY | 0.99+ |
1800 | QUANTITY | 0.99+ |
Zero Trust | ORGANIZATION | 0.99+ |
Salesforce | ORGANIZATION | 0.99+ |
12 different interfaces | QUANTITY | 0.99+ |
Breaking Analysis: What to Expect in Cloud 2022 & Beyond
from the cube studios in palo alto in boston bringing you data-driven insights from the cube and etr this is breaking analysis with dave vellante you know we've often said that the next 10 years in cloud computing won't be like the last ten cloud has firmly planted its footprint on the other side of the chasm with the momentum of the entire multi-trillion dollar tech business behind it both sellers and buyers are leaning in by adopting cloud technologies and many are building their own value layers on top of cloud in the coming years we expect innovation will continue to coalesce around the three big u.s clouds plus alibaba in apac with the ecosystem building value on top of the hardware saw tooling provided by the hyperscalers now importantly we don't see this as a race to the bottom rather our expectation is that the large public cloud players will continue to take cost out of their platforms through innovation automation and integration while other cloud providers and the ecosystem including traditional companies that buy it mine opportunities in their respective markets as matt baker of dell is fond of saying this is not a zero sum game welcome to this week's wikibon cube insights powered by etr in this breaking analysis we'll update you on our latest projections in the cloud market we'll share some new etr survey data with some surprising nuggets and drill into this the important cloud database landscape first we want to take a look at what people are talking about in cloud and what's been in the recent news with the exception of alibaba all the large cloud players have reported earnings google continues to focus on growth at the expense of its profitability google reported that it's cloud business which includes applications like google workspace grew 45 percent to five and a half billion dollars but it had an operating loss of 890 billion now since thomas curion joined google to run its cloud business google has increased head count in its cloud business from 25 000 25 000 people now it's up to 40 000 in an effort to catch up to the two leaders but playing catch up is expensive now to put this into perspective let's go back to aws's revenue in q1 2018 when the company did 5.4 billion so almost exactly the same size as google's current total cloud business and aws is growing faster at the time at 49 don't forget google includes in its cloud numbers a big chunk of high margin software aws at the time had an operating profit of 1.4 billion that quarter around 26 of its revenues so it was a highly profitable business about as profitable as cisco's overall business which again is a great business this is what happens when you're number three and didn't get your head out of your ads fast enough now in fairness google still gets high marks on the quality of its technology according to corey quinn of the duck bill group amazon and google cloud are what he called neck and neck with regard to reliability with microsoft azure trailing because of significant disruptions in the past these comments were made last week in a bloomberg article despite some recent high-profile outages on aws not surprisingly a microsoft spokesperson said that the company's cloud offers industry-leading reliability and that gives customers payment credits after some outages thank you turning to microsoft and cloud news microsoft's overall cloud business surpassed 22 billion in the december quarter up 32 percent year on year like google microsoft includes application software and sas offerings in its cloud numbers and gives little nuggets of guidance on its azure infrastructure as a service business by the way we estimate that azure comprises about 45 percent of microsoft's overall cloud business which we think hit a 40 billion run rate last quarter microsoft guided in its earning call that recent declines in the azure growth rates will reverse in q1 and that implies sequential growth for azure and finally it was announced that the ftc not the doj will review microsoft's announced 75 billion acquisition of activision blizzard it appears ftc chair lena khan wants to take this one on herself she of course has been very outspoken about the power of big tech companies and in recent a recent cnbc interview suggested that the u.s government's actions were a meaningful contributor back then to curbing microsoft's power in the 90s i personally found that dubious just ask netscape wordperfect novell lotus and spc the maker of harvard presentation graphics how effective the government was in curbing microsoft power generally my take is that the u s government has had a dismal record regulating tech companies most notably ibm and microsoft and it was market forces company hubris complacency and self-inflicted wounds not government intervention these were far more effective than the government now of course if companies are breaking the law they should be punished but the u.s government hasn't been very productive in its actions and the unintended consequences of regulation could be detrimental to the u.s competitiveness in the race with china but i digress lastly in the news amazon announced earnings thursday and the company's value increased by 191 billion dollars on friday that's a record valuation gain for u.s stocks aws amazon's profit engine grew 40 percent year on year for the quarter it closed the year at 62 billion dollars in revenue and at a 71 billion dollar revenue run rate aws is now larger than ibm which without kindrel is at a 67 billion dollar run rate just for context ibm's revenue in 2011 was 107 billion dollars now there's a conversation going on in the media and social that in order to continue this growth and compete with microsoft that aws has to get into the sas business and offer applications we don't think that's the right strategy for amp from for amazon in the near future rather we see them enabling developers to compete in that business finally amazon disclosed that 48 of its top 50 customers are using graviton 2 instances why is this important because aws is well ahead of the competition in custom silicon chips is and is on a price performance curve that is far better than alternatives especially those based on x86 this is one of the reasons why we think this business is not a race to the bottom aws is being followed by google microsoft and alibaba in terms of developing custom silicon and will continue to drive down their internal cost structures and deliver price performance equal to or better than the historical moore's law curves so that's the recent news for the big u.s cloud providers let's now take a look at how the year ended for the big four hyperscalers and look ahead to next year here's a table we've shown this view before it shows the revenue estimates for worldwide is and paths generated by aws microsoft alibaba and google now remember amazon and alibaba they share clean eye ass figures whereas microsoft and alphabet only give us these nuggets that we have to interpret and we correlate those tidbits with other data that we gather we're one of the few outlets that actually attempts to make these apples to apples comparisons there's a company called synergy research there's another firm that does this but i really can't map to their numbers their gcp figures look far too high and azure appears somewhat overestimated and they do include other stuff like hosted private cloud services but it's another data point that you can use okay back to the table we've slightly adjusted our gcp figures down based on interpreting some of alphabet's statements and other survey data only alibaba has yet to announce earnings so we'll stick to a 2021 market size of about 120 billion dollars that's a 41 growth rate relative to 2020 and we expect that figure to increase by 38 percent to 166 billion in 2022 now we'll discuss this a bit later but these four companies have created an opportunity for the ecosystem to build what we're calling super clouds on top of this infrastructure and we're seeing it happen it was increasingly obvious at aws re invent last year and we feel it will pick up momentum in the coming months and years a little bit more on that later now here's a graphical view of the quarterly revenue shares for these four companies notice that aws has reversed its share erosion and is trending up slightly aws has accelerated its growth rate four quarters in a row now it accounted for 52 percent of the big four hyperscaler revenue last year and that figure was nearly 54 in the fourth quarter azure finished the year with 32 percent of the hyper scale revenue in 2021 which dropped to 30 percent in q4 and you can see gcp and alibaba they're neck and neck fighting for the bronze medal by the way in our recent 2022 predictions post we said google cloud platform would surpass alibaba this year but given the recent trimming of our numbers google's got some work to do for that prediction to be correct okay just to put a bow on the wikibon market data let's look at the quarterly growth rates and you'll see the compression trends there this data tracks quarterly revenue growth rates back to 20 q1 2019 and you can see the steady downward trajectory and the reversal that aws experienced in q1 of last year now remember microsoft guided for sequential growth and azure so that orange line should trend back up and given gcp's much smaller and big go to market investments that we talked about we'd like to see an acceleration there as well the thing about aws is just remarkable that it's able to accelerate growth at a 71 billion run rate business and alibaba you know is a bit more opaque and likely still reeling from the crackdown of the chinese government we're admittedly not as close to the china market but we'll continue to watch from afar as that steep decline in growth rate is somewhat of a concern okay let's get into the survey data from etr and to do so we're going to take some time series views on some of the select cloud platforms that are showing spending momentum in the etr data set you know etr uses a metric we talked about this a lot called net score to measure that spending velocity of products and services netscore basically asks customers are you spending more less or the same on a platform and a vendor and then it subtracts the lesses from the moors and that yields a net score this chart shows net score for five cloud platforms going back to january 2020. note in the table that the table we've inserted inside that chart shows the net score and shared n the latter metric indicates the number of mentions in the data set and all the platforms we've listed here show strong presence in the survey that red dotted line at 40 percent that indicates spending is at an elevated level and you can see azure and aws and vmware cloud on aws as well as gcp are all nicely elevated and bounding off their october figures indicating continued cloud momentum overall but the big surprise in these figures is the steady climb and the steep bounce up from oracle which came in just under the 40 mark now one quarter is not necessarily a trend but going back to january 2020 the oracle peaks keep getting higher and higher so we definitely want to keep watching this now here's a look at some of the other cloud platforms in the etr survey the chart here shows the same time series and we've now brought in some of the big hybrid players notably vmware cloud which is vcf and other on-prem solutions red hat openstack which as we've reported in the past is still popular in telcos who want to build their own cloud we're also starting to see hpe with green lake and dell with apex show up more and ibm which years ago acquired soft layer which was really essentially a bare metal hosting company and over the years ibm cobbled together its own public cloud ibm is now racing after hybrid cloud using red hat openshift as the linchpin to that strategy now what this data tells us first of all these platforms they don't have the same presence in the data set as do the previous players vmware is the one possible exception but other than vmware these players don't have the spending velocity shown in the previous chart and most are below the red line hpe and dell are interesting and notable in that they're transitioning their early private cloud businesses to dell gr sorry hpe green lake and dell apex respectively and finally after years of kind of staring at their respective navels in in cloud and milking their legacy on-prem models they're finally building out cloud-like infrastructure for their customers they're leaning into cloud and marketing it in a more sensible and attractive fashion for customers so we would expect these figures are going to bounce around for a little while for those two as they settle into a groove and we'll watch that closely now ibm is in the process of a complete do-over arvin krishna inherited three generations of leadership with a professional services mindset now in the post gerschner gerstner era both sam palmisano and ginny rometty held on far too long to ibm's service heritage and protected the past from the future they missed the cloud opportunity and they forced the acquisition of red hat to position the company for the hybrid cloud remedy tried to shrink to grow but never got there krishna is moving faster and with the kindred spin is promising mid-single-digit growth which would be a welcome change ibm is a lot of work to do and we would expect its net score figures as well to bounce around as customers transition to the future all right let's take a look at all these different players in context these are all the clouds that we just talked about in a two-dimensional view the vertical axis is net score or spending momentum and the horizontal axis is market share or presence or pervasiveness in the data set a couple of call-outs that we'd like to make here first the data confirms what we've been saying what everybody's been saying aws and microsoft stand alone with a huge presence many tens of billions of dollars in revenue yet they are both well above the 40 line and show spending momentum and they're well ahead of gcp on both dimensions second vmware while much smaller is showing legitimate momentum which correlates to its public statements alibaba the alibaba in this survey really doesn't have enough sample to make hardcore conclusions um you can see hpe and dell and ibm you know similarly they got a little bit more presence in the data set but they clearly have some work to do what you're seeing there is their transitioning their legacy install bases oracle's the big surprise look what oracle was in the january survey and how they've shot up recently now we'll see if this this holds up let's posit some possibilities as to why it really starts with the fact that oracle is the king of mission critical apps now if you haven't seen video on twitter you have to check it out it's it's hilarious we're not going to run the video here but the link will be in our post but i'll give you the short version some really creative person they overlaid a data migration narrative on top of this one tooth guy who speaks in spanish gibberish but the setup is he's a pm he's a he's a a project manager at a bank and aws came into the bank this of course all hypothetical and said we can move all your apps to the cloud in 12 months and the guy says but wait we're running mission critical apps on exadata and aws says there's nothing special about exadata and he starts howling and slapping his knee and laughing and giggling and talking about the 23 year old senior engineer who says we're going to do this with microservices and he could tell he was he was 23 because he was wearing expensive sneakers and what a nightmare they encountered migrating their environment very very very funny video and anyone who's ever gone through a major migration of mission critical systems this is gonna hit home it's funny not funny the point is it's really painful to move off of oracle and oracle for all its haters and its faults is really the best environment for mission critical systems and customers know it so what's happening is oracle's building out the best cloud for oracle database and it has a lot of really profitable customers running on-prem that the company is migrating to oracle cloud infrastructure oci it's a safer bet than ripping it and putting it into somebody else's cloud that doesn't have all the specialized hardware and oracle knowledge because you can get the same integrated exadata hardware and software to run your database in the oracle cloud it's frankly an easier and much more logical migration path for a lot of customers and that's possibly what's happening here not to mention oracle jacks up the license price nearly doubles the license price if you run on other clouds so not only is oracle investing to optimize its cloud infrastructure it spends money on r d we've always talked about that really focused on mission critical applications but it's making it more cost effective by penalizing customers that run oracle elsewhere so this possibly explains why when the gartner magic quadrant for cloud databases comes out it's got oracle so well positioned you can see it there for yourself oracle's position is right there with aws and microsoft and ahead of google on the right-hand side is gartner's critical capabilities ratings for dbms and oracle leads in virtually all of the categories gartner track this is for operational dvms so it's kind of a narrow view it's like the red stack sweet spot now this graph it shows traditional transactions but gartner has oracle ahead of all vendors in stream processing operational intelligence real-time augmented transactions now you know gartner they're like old name framers and i say that lovingly so maybe they're a bit biased and they might be missing some of the emerging opportunities that for example like snowflake is pioneering but it's hard to deny that oracle for its business is making the right moves in cloud by optimizing for the red stack there's little question in our view when it comes to mission critical we think gartner's analysis is correct however there's this other really exciting landscape emerging in cloud data and we don't want it to be a blind spot snowflake calls it the data cloud jamactagani calls it data mesh others are using the term data fabric databricks calls it data lake house so so does oracle by the way and look the terminology is going to evolve and most of the action action that's happening is in the cloud quite frankly and this chart shows a select group of database and data warehouse companies and we've filtered the data for aws azure and gcp customers accounts so how are these accounts or companies that were showing how these vendors were showing doing in aws azure and gcp accounts and to make the cut you had to have a minimum of 50 mentions in the etr survey so unfortunately data bricks didn't make it just not enough presence in the data set quite quite yet but just to give you a sense snowflake is represented in this cut with 131 accounts aws 240 google 108 microsoft 407 huge [ __ ] 117 cloudera 52 just made the cut ibm 92 and oracle 208. again these are shared accounts filtered by customers running aws azure or gcp the chart shows a net score lime green is new ads forest green is spending more gray is flat spending the pink is spending less and the bright red is defection again you subtract the red from the green and you get net score and you can see that snowflake as we reported last week is tops in the data set with a net score in the 80s and virtually no red and even by the way single digit flat spend aws google and microsoft are all prominent in the data set as is [ __ ] and snowflake as i just mentioned and they're all elevated over the 40 mark cloudera yeah what can we say once they were a high flyer they're really not in the news anymore with anything compelling other than they just you know took the company private so maybe they can re-emerge at some point with a stronger story i hope so because as you can see they actually have some new additions and spending momentum in the green just a lot of customers holding steady and a bit too much red but they're in the positive territory at least with uh plus 17 percent unlike ibm and oracle and this is the flip side of the coin ibm they're knee-deep really chest deep in the middle of a major transformation we've said before arvind krishna's strategy and vision is at least achievable prune the portfolio i.e spin out kindrel sell watson health hold serve with the mainframe and deal with those product cycles shift the mix to software and use red hat to win the day in hybrid red hat is working for ibm's growing well into the double digits unfortunately it's not showing up in this chart with little database momentum in aws azure and gcp accounts zero new ads not enough acceleration and spending a big gray middle in nearly a quarter of the base in the red ibm's data and ai business only grew three percent this last quarter and the word database wasn't even mentioned once on ibm's earnings call this has to be a concern as you can see how important database is to aws microsoft google and the momentum it's giving companies like snowflake and [ __ ] and others which brings us to oracle with a net score of minus 12. so how do you square the momentum in oracle cloud spending and the strong ratings and databases from gartner with this picture good question and i would say the following first look at the profile people aren't adding oracle new a large portion of the base 25 is reducing spend by 6 or worse and there's a decent percentage of the base migrating off oracle with a big fat middle that's flat and this accounts for the poor net score overall but what etr doesn't track is how much is being spent rather it's an account based model and oracle is heavily weighted toward big spenders running mission critical applications and databases oracle's non-gaap operating margins are comparable to ibm's gross margins on a percentage basis so a very profitable company with a big license and maintenance in stall basin oracle has focused its r d investments into cloud erp database automation they've got vertical sas and they've got this integrated hardware and software story and this drives differentiation for the company but as you can see in this chart it has a legacy install base that is constantly trying to minimize its license costs okay here's a little bit of different view on the same data we expand the picture with the two dimensions of net score on the y-axis and market share or pervasiveness on the horizontal axis and the table insert is how the data gets plotted y and x respectively not much to add here other than to say the picture continues to look strong for those companies above the 40 line that are focused and their focus and have figured out a clear cloud strategy and aren't necessarily dealing with a big install base the exception of course is is microsoft and the ones below the line definitely have parts of their portfolio which have solid momentum but they're fighting the inertia of a large install base that moves very slowly again microsoft had the advantage of really azure and migrating those customers very quickly okay so let's wrap it up starting with the big three cloud players aws is accelerating and innovating great example is custom silicon with nitro and graviton and other chips that will help the company address concerns related to the race to the bottom it's not a race to zero aws we believe will let its developers go after the sas business and for the most part aws will offer solutions that address large vertical markets think call centers the edge remains a wild card for aws and all the cloud players really aws believes that in the fullness of time all workloads will run in the public cloud now it's hard for us to imagine the tesla autonomous vehicles running in the public cloud but maybe aws will redefine what it means by its cloud microsoft well they're everywhere and they're expanding further now into gaming and the metaverse when he became ceo in 2014 many people said that satya should ditch xbox just as an aside the joke among many oracle employees at the time was that safra katz would buy her kids and her nieces and her nephews and her kids friends everybody xbox game consoles for the holidays because microsoft lost money for everyone that they shipped well nadella has stuck with it and he sees an opportunity to expand through online gaming communities one of his first deals as ceo was minecraft now the acquisition of activision will make microsoft the world's number three gaming company by revenue behind only 10 cent and sony all this will be powered by azure and drive more compute storage ai and tooling now google for its part is battling to stay relevant in the conversation luckily it can afford the massive losses it endures in cloud because the company's advertising business is so profitable don't expect as many have speculated that google is going to bail on cloud that would be a huge mistake as the market is more than large enough for three players which brings us to the rest of the pack cloud ecosystems generally and aws specifically are exploding the idea of super cloud that is a layer of value that spans multiple clouds hides the underlying complexity and brings new value that the cloud players aren't delivering that's starting to bubble to the top and legacy players are staying close to their customers and fighting to keep them spending and it's working dell hpe cisco and smaller predominantly on-plan prem players like pure storage they continue to do pretty well they're just not as sexy as the big cloud players the real interesting activity it's really happening in the ecosystem of companies and firms within industries that are transforming to create their own digital businesses virtually all of them are running a portion of their offerings on the public cloud but often connecting to on-premises workloads and data think goldman sachs making that work and creating a great experience across all environments is a big opportunity and we're seeing it form right before our eyes don't miss it okay that's it for now thanks to my colleague stephanie chan who helped research this week's topics remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcast check out etr's website at etr dot ai and also we publish a full report every week on wikibon.com and siliconangle.com you can get in touch with me email me at david.velante siliconangle.com you can dm me at divalante or comment on my linkedin post this is dave vellante for the cube insights powered by etr have a great week stay safe be well and we'll see you next time [Music] you
SUMMARY :
opportunity for the ecosystem to build
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
amazon | ORGANIZATION | 0.99+ |
45 percent | QUANTITY | 0.99+ |
2011 | DATE | 0.99+ |
40 percent | QUANTITY | 0.99+ |
january 2020 | DATE | 0.99+ |
2021 | DATE | 0.99+ |
microsoft | ORGANIZATION | 0.99+ |
alibaba | ORGANIZATION | 0.99+ |
32 percent | QUANTITY | 0.99+ |
30 percent | QUANTITY | 0.99+ |
52 percent | QUANTITY | 0.99+ |
5.4 billion | QUANTITY | 0.99+ |
2020 | DATE | 0.99+ |
january 2020 | DATE | 0.99+ |
2022 | DATE | 0.99+ |
ibm | ORGANIZATION | 0.99+ |
48 | QUANTITY | 0.99+ |
22 billion | QUANTITY | 0.99+ |
71 billion | QUANTITY | 0.99+ |
40 billion | QUANTITY | 0.99+ |
40 percent | QUANTITY | 0.99+ |
62 billion dollars | QUANTITY | 0.99+ |
2014 | DATE | 0.99+ |
107 billion dollars | QUANTITY | 0.99+ |
890 billion | QUANTITY | 0.99+ |
two leaders | QUANTITY | 0.99+ |
17 percent | QUANTITY | 0.99+ |
38 percent | QUANTITY | 0.99+ |
1.4 billion | QUANTITY | 0.99+ |
67 billion dollar | QUANTITY | 0.99+ |
december quarter | DATE | 0.99+ |
xbox | COMMERCIAL_ITEM | 0.99+ |
sam palmisano | PERSON | 0.99+ |
191 billion dollars | QUANTITY | 0.99+ |
thomas curion | PERSON | 0.99+ |
stephanie chan | PERSON | 0.99+ |
aws | ORGANIZATION | 0.99+ |
three percent | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
friday | DATE | 0.99+ |
david.velante | OTHER | 0.99+ |
last week | DATE | 0.99+ |
71 billion dollar | QUANTITY | 0.99+ |
75 billion | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
krishna | PERSON | 0.99+ |
boston | LOCATION | 0.99+ |
50 mentions | QUANTITY | 0.99+ |
three players | QUANTITY | 0.99+ |
23 | QUANTITY | 0.99+ |
oracle | ORGANIZATION | 0.99+ |
five and a half billion dollars | QUANTITY | 0.99+ |
q1 2018 | DATE | 0.99+ |
two dimensions | QUANTITY | 0.99+ |
166 billion | QUANTITY | 0.99+ |
lena khan | PERSON | 0.99+ |
multi-trillion dollar | QUANTITY | 0.99+ |
12 months | QUANTITY | 0.99+ |
gartner | ORGANIZATION | 0.99+ |
Rebecca Weekly, Intel Corporation | AWS re:Invent 2020
>>from around the globe. It's the Cube with digital coverage of AWS reinvent 2020 sponsored by Intel, AWS and our community partners. Welcome back to the Cubes Coverage of 80 Bus Reinvent 2020. This is the Cube virtual. I'm your host, John Ferrier normally were there in person, a lot of great face to face, but not this year with the pandemic. We're doing a lot of remote, and he's got a great great content guest here. Rebecca Weekly, who's the senior director and senior principal engineer at for Intel's hyper scale strategy and execution. Rebecca. Thanks for coming on. A lot of great news going on around Intel on AWS. Thanks for coming on. >>Thanks for having me done. >>So Tell us first, what's your role in Intel? Because obviously compute being reimagined. It's going to the next level, and we're seeing the sea change that with Cove in 19, it's putting a lot of pressure on faster, smaller, cheaper. This is the cadence of Moore's law. This is kind of what we need. More horsepower. This is big theme of the event. What's what's your role in intel? >>Oh, well, my team looks after a joint development for product and service offerings with Intel and A W s. So we've been working with AWS for more than 14 years. Um, various projects collaborations that deliver a steady beat of infrastructure service offerings for cloud applications. So Data Analytics, ai ml high performance computing, Internet of things, you name it. We've had a project or partnership, several in those the main faces on thanks to that relationship. You know, today, customers Committee choose from over 220 different instance types on AWS global footprint. So those feature Intel processors S, P. J s ai accelerators and more, and it's been incredibly rewarding an incredibly rewarding partnership. >>You know, we've been covering Intel since silicon angle in the Cube was formed 10 years ago, and this is what we've been to every reinvent since the first one was kind of a smaller one. Intel's always had a big presence. You've always been a big partner, and we really appreciate the contribution of the industry. Um, you've been there with with Amazon. From the beginning, you've seen it grow. You've seen Amazon Web services become, ah, big important player in the enterprise. What's different this year from your perspective. >>Well, 2020 has been a challenging here for sure. I was deeply moved by the kinds of partnership that we were able to join forces on within telling a W s, uh, to really help those communities across the globe and to address all the different crisis is because it it hasn't just been one. This has been, ah, year of of multiple. Um, sometimes it feels like rolling crisis is So When the pandemic broke out in India in March of this year, there were schools that were forced to close, obviously to slow the spread of the disease. And with very little warning, a bunch of students had to find themselves in remote school out of school. Uh, so the Department of Education in India engaged career launcher, which is a partner program that we also sponsor and partner with, and it really they had to come up with a distance learning solutions very quickly, uh, that, you know, really would provide Children access to quality education while they were remote. For a long as they needed to be so Korean launcher turned to intel and to a W s. We helped design infrastructure solution to meet this challenge and really, you know, within the first, the first week, more than 100 teachers were instructing classes using that online portal, and today it serves more than 165,000 students, and it's going to accommodate more than a million over the fear. Um, to me, that's just a perfect example of how Cove it comes together with technology, Thio rapidly address a major shift in how we're approaching education in the times of the pandemic. Um, we also, you know, saw kind of a climate change set of challenges with the wildfires that occurred this year in 2020. So we worked with a partner, Roman, as well as a partner who is a partner with AWS end until and used the EEC Thio C five instances that have the second Gen Beyond available processors. And we use them to be able to help the Australian researchers who were dealing with that wildfire increase over 60 fold the number of parallel wildfire simulations that they could perform so they could do better forecasting of who needed to leave their homes how they could manage those scenarios. Um, and we also were able toe work with them on a project to actually thwart the extinction of the Tasmanian Devils. Uh, in also in Australia. So again, that was, you know, an HPC application. And basically, by moving that to the AWS cloud and leveraging those e c two instances, we were able to take their analysis time from 10 days to six hours. And that's the kind of thing that makes the cloud amazing, right? We work on technology. We hope that we get thio, empower people through that technology. But when you can deploy that technology a cloud scale and watch the world's solve problems faster, that has made, I would say 2020 unique in the positivity, right? >>Yeah. You don't wanna wish this on anyone, but that's a real upside for societal change. I mean, I love your passion on that. I think this is a super important worth calling out that the cloud and the cloud scale With that kind of compute power and differentiation, you gets faster speed to value not just horsepower, but speed to value. This is really important. And it saved lives that changes lives. You know, this is classic change. The world kind of stuff, and it really is on center stage on full display with Cove. I really appreciate, uh, you making that point? It's awesome. Now with that, I gotta ask you, as the strategist for hyper scale intel, um, this is your wheelhouse. You get the fashion for the cloud. What kind of investments are you making at Intel To make more advancements in the clock? You take a minute, Thio, share your vision and what intel is working on? >>Sure. I mean, obviously were known more for our semiconductor set of investments. But there's so much that we actually do kind of across the cloud innovation landscape, both in standards, open standards and bodies to enable people to work together across solutions across the world. But really, I mean, even with what we do with Intel Capital, right, we're investing. We've invested in a bunch of born in the cloud start up, many of whom are on top of AWS infrastructure. Uh, and I have found that to be a great source of insights, partnerships, you know, again how we can move the needle together, Thio go forward. So, in the space of autonomous learning and adopt is one of the start ups we invested in. And they've really worked to use methodologies to improve European Health Co network monitoring. So they were actually getting a ton of false positive running in their previous infrastructure, and they were able to take it down from 50 k False positive the day to 50 using again a I on top of AWS in the public cloud. Um, using obviously and a dog, you know, technology in the space of a I, um we've also seen Capsule eight, which is an amazing company that's enabling enterprisers enterprises to modernize and migrate their workloads without compromising security again, Fully born in the cloud able to run on AWS and help those customers migrate to the public cloud with security, we have found them to be an incredible partner. Um, using simple voice commands on your on your smartphone hypersonic is another one of the companies that we've invested in that lets business decision makers quickly visualized insects insight from their disparate data sources. So really large unstructured data, which is the vast majority of data stored in the world that is exploding. Being able to quickly discern what should we do with this. How should we change something about our company using the power of the public cloud? I'm one of the last ones that I absolutely love to cover kind of the wide scope of the waves. That cloud is changing the innovation landscape, Um, Model mine, which is basically a company that allows people thio take decades of insights out of the mainframe data and do something with it. They actually use Amazon's cloud Service, the cloud storage service. So they were able Teoh Teik again. Mainframe data used that and be able to use Amazon's capabilities. Thio actually create, you know, meaningful insights for business users. So all of those again are really exciting. There's a bunch of information on the Intel sponsor channel with demos and videos with those customer stories and many, many, many more. Using Amazon instances built on Intel technology, >>you know that Amazon has always been in about startup born in the cloud. You mentioned that Intel has always been investing with Intel Capital, um, generations of great investments. Great call out there. Can you tell us more about what, uh, Amazon technology about the new offerings and Amazon has that's built on Intel because, as you mentioned at the top of the interview, there's been a long, long standing partnership since inception, and it continues. Can you take a minute to explain some of the offerings built on the Intel technology that Amazon's offering? >>Well, I've always happened to talk about Amazon offerings on Intel products. That's my day job. You know, really, we've spent a lot of time this year listening to our customer feedback and working with Amazon to make sure that we are delivering instances that are optimized for fastest compute, uh, better virtual memory, greater storage access, and that's really being driven by a couple of very specific workloads. So one of the first that we are introducing here it reinvents is the n five the n instant, and that's really ah, high frequency, high speed, low Leighton see network variants of what was, you know, the traditional Amazon E. C two and five. Um, it's powered by a second Gen Intel scalable processors, The Cascade late processors and really these have the highest all court turbo CPU performance from the on scalable processors in the club, with a frequency up to 4.5 gigahertz. That is really exciting for HPC work clothes, uh, for gaining for financial applications. Simulation modeling applications thes are ones where you know, automation, Um, in the automotive space in the aerospace industries, energy, Telkom, all of them can really benefit from that super low late and see high frequency. So that's really what the M five man is all about, um, on the br to others that we've introduced here today and that they are five beats and that is that can utilize up thio 60 gigabits per second of Amazon elastic block storage and really again that bandwidth and the 260 I ops that it can deliver is great for large relational databases. So the database file systems kind of workload. This is really where we are super excited. And again, this is built on Cascade Lake. The 2nd 10. Yeah, and it takes It takes advantage of many different aspects of how we're optimizing in that processor. So we were excited to partner with customers again using E. B s as well as various other solutions to ensure that data ingestion times for applications are reduced and they can see the delivery to what you were mentioning before right time to results. It's all about time to results on the last one is t three e. N. 33 e n is really the new D three instant. It's again on the Alexa Cascade Lake. We offer those for high density with high density local hard drive storage so very cost optimized but really allowing you to have significantly higher network speed and disk throughput. So very cost optimized for storage applications that seven x more storage capacity, 80% lower costs given terabytes of storage compared to the previous B two instances. So we will really find that that would be ideal for workloads in distributed and clustered file system, Big data and analytics. Of course, you need a lot of capacity on high capacity data lakes. You know, normally you want to optimize a day late for performance, but if you need tons of capacity, you need to walk that line. And I think the three and really will help you do that. And and of course, I would be absolutely remiss to not mention that last month we announced the Amazon Web Services Partnership with us on an Intel select solution, which is the first, you know, cloud Service provider to really launching until select solution there. Um, and it's an HPC space, So this is really about in high performance computing. Developers can spend weeks for months researching, you know, to manage compute storage network software configuration options. It's not a field that has gone fully cloud native by default, and those recipes air still coming together. So this is where the AWS parallel cluster solution using. It's an Intel Select solution for simulation and modeling on top of AWS. We're really excited about how it's going to make it easier for scientists and researchers like the ones I mentioned before, but also I t administrators to deploy and manage and just automatically scale those high performance computing clusters in Aws Cloud. >>Wow, that's a lot. A lot of purpose built e mean, no, you guys were really nailing. I mean, low late and see you got stories, you got density. I mean, these air use cases where there's riel workloads that require that kind of specialty and or e means beyond general purpose. Now, you're kind of the general purpose of the of the use case. This is what cloud does this is amazing. Um, final comments this year. I want to get your thoughts because you mentioned Cloud Service provider. You meant to the select program, which is an elite thing, right? Okay, we're anticipating Mawr Cloud service providers. We're expecting Mawr innovation around chips and silicon and software. This is just getting going. It feels like to me, it's just the pulse is different this year. It's faster. The cadence has changed. As a strategist, What's your final comments? Where is this all going? Because this is pretty different. Its's not what it was pre code, but I feel like this is going to continue transforming and being faster. What's your thoughts? >>Absolutely. I mean, the cloud has been one of the biggest winners in a time of, you know, incredible crisis for our world. I don't think anybody has come out of this time without understanding remote work, you know, uh, remote retail, and certainly a business transformation is inevitable and required thio deliver in a disaster recovery kind of business continuity environment. So the cloud will absolutely continue on continue to grow as we enable more and more people to come to it. Um, I personally, I couldn't be more excited than to be able Thio leverage a long term partnership, incredible strength of that insulin AWS partnership and these partnerships with key customers across the ecosystem. We do so much with SVS Os Vives s eyes MSP, you know, name your favorite flavor of acronym, uh, to help end users experience that digital transformation effectively, whatever it might be. And as we learn, we try and take those learnings into any environment. We don't care where workloads run. We care that they run best on our architecture. Er and that's really what we're designing. Thio. And when we partner between the software, the algorithm on the hardware, that's really where we enable the best and user demand and the end use their time to incite and use your time to market >>best. >>Um, so that's really what I'm most excited about. That's obviously what my team does every day. So that's of course, what I'm gonna be most excited about. Um, but that's certainly that's that's the future that you see. And I think it is a bright and rosy one. Um, you know, I I won't say things I'm not supposed to say, but certainly do be sure to tune into the Cube interview with It's on. And you know, also Chatan, who's the CEO of Havana and obviously shaken, is here at A W s, a Z. They talk about some exciting new projects in the AI face because I think that is when we talk about the software, the algorithms and the hardware coming together, the specialization of compute where it needs to go to help us move forward. But also, the complexity of managing that heterogeneity at scale on what that will take and how much more we need to do is an industry and as partners to make that happen. Um, that is the next five years of managing. You know how we are exploding and specialized hardware. I'm excited about that, >>Rebecca. Thank you for your great insight there and thanks for mentioning the Cube interviews. And we've got some great news coming. We'll be breaking that as it gets announced. The chips in the Havana labs will be great stuff. I wouldn't be remiss if I didn't call out the intel. Um, work hard, play hard philosophy. Amazon has a similar approach. You guys do sponsor the party every year replay party, which is not gonna be this year. So we're gonna miss that. I think they gonna have some goodies, as Andy Jassy says, Plan. But, um, you guys have done a great job with the chips and the performance in the cloud. And and I know you guys have a great partner. Concerts provide a customer in Amazon. It's great showcase. Congratulations. >>Thank you so much. I hope you all enjoy olive reinvents even as you adapt to New time. >>Rebecca Weekly here, senior director and senior principal engineer. Intel's hyper scale strategy and execution here in the queue breaking down the Intel partnership with a W s. Ah, lot of good stuff happening under the covers and compute. I'm John for your host of the Cube. We are the Cube. Virtual Thanks for watching
SUMMARY :
It's the Cube with digital coverage It's going to the next level, and we're seeing the sea change that with Cove in 19, ai ml high performance computing, Internet of things, you name it. and this is what we've been to every reinvent since the first one was kind of a smaller one. by the kinds of partnership that we were able to join forces on within telling a W I really appreciate, uh, you making that point? I'm one of the last ones that I absolutely love to cover kind of the wide scope of the waves. about the new offerings and Amazon has that's built on Intel because, as you mentioned at the top of the interview, and researchers like the ones I mentioned before, but also I t administrators to deploy it's just the pulse is different this year. I mean, the cloud has been one of the biggest winners in a time of, that's the future that you see. And and I know you guys have a great partner. I hope you all enjoy olive reinvents even as you adapt to in the queue breaking down the Intel partnership with a W s. Ah, lot of good stuff happening under the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Australia | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Rebecca | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John Ferrier | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
10 days | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
more than a million | QUANTITY | 0.99+ |
more than 165,000 students | QUANTITY | 0.99+ |
European Health Co | ORGANIZATION | 0.99+ |
Intel Capital | ORGANIZATION | 0.99+ |
Chatan | PERSON | 0.99+ |
Telkom | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
50 k | QUANTITY | 0.99+ |
more than 100 teachers | QUANTITY | 0.99+ |
2020 | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Department of Education | ORGANIZATION | 0.99+ |
five beats | QUANTITY | 0.99+ |
first one | QUANTITY | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
six hours | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
more than 14 years | QUANTITY | 0.99+ |
John | PERSON | 0.98+ |
last month | DATE | 0.98+ |
50 | QUANTITY | 0.98+ |
Havana | LOCATION | 0.98+ |
10 years ago | DATE | 0.98+ |
Intel Corporation | ORGANIZATION | 0.98+ |
this year | DATE | 0.98+ |
both | QUANTITY | 0.97+ |
first week | QUANTITY | 0.97+ |
2nd 10 | QUANTITY | 0.97+ |
Thio | PERSON | 0.97+ |
Moore | PERSON | 0.97+ |
over 60 fold | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
pandemic | EVENT | 0.96+ |
A W s. | ORGANIZATION | 0.96+ |
Cube | COMMERCIAL_ITEM | 0.96+ |
seven | QUANTITY | 0.95+ |
decades | QUANTITY | 0.94+ |
five instances | QUANTITY | 0.94+ |
Thio | TITLE | 0.93+ |
over 220 different instance | QUANTITY | 0.93+ |
Driving Digital Transformation with Search & AI | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back to our final session in cultivating a data fluent culture track earlier today, we heard from experts like Valerie from the Data Lodge who shared best practices that you can apply to build that data flew into culture in your organization and tips on how to become the next analyst of the future from Yasmin at Comcast and Steve at all Terex. Then we heard from a captivating session with Cindy Hausen and Ruhollah Benjamin, professor at Princeton, on how now is our chance to change the patterns of injustice that we see have been woven into the fabric of society. If you do not have a chance to see today's content, I highly recommend that you check it out on demand. There's a lot of great information that you could start applying today. Now I'm excited to introduce our next session, which will take a look at how the democratization of data is powering digital transformation in the insurance industry. We have two prestigious guests joining us today. First Jim Bramblett, managing director of North America insurance practice, lead at its center. Throughout Jim's career, he's been focused on large scale transformation from large to midsize insurance carriers. His direct experience with clients has traditionally been in the intersection of technology, platform transformation and operating remodel redesign. We also have Michael cast Onus, executive VP and chief operating officer at DNA. He's responsible for all information technology, analytics and operating functions across the organization. Michael has led major initiatives to launch digital programs and incorporating modern AP I architectures ER, which was primarily deployed in the cloud. Jim, please take it away. >>Great. Thanks, Paula E thought we'd cover a few things today around around data. This is some of the trends we see in data within the insurance sector. And then I'll hand it over to Michael Teoh, take you through his story. You know, I think at the macro level, as we think about data and we think about data in the context of the insurance sector, it's interesting because the entire history of the insurance sector has been built on data and yet, at the same time, the entire future of it relies on that same data or similar similar themes for data. But but different. Right? So we think about the history, what has existed in an insurance companies. Four walls was often very enough, very enough to compete, right? So if you think about your customer data, claims, data, CRM, data, digital data, all all the data that was yeah, contained within the four walls of your company was enough to compete on. And you're able to do that for hundreds of years. But as we we think about now as we think about the future and the ability to kind of compete on data, this data comes from many more places just than inside your four walls. It comes from every device, every human, every vehicle, every property, every every digital interaction. Um in upon this data is what we believe insurers need to pivot to. To compete right. They need to be able to consume this data at scale. They need to be able to turn through this data to drive analytics, and they serve up insights based on those analytics really at the desktop of insurance professionals. And by the way, that has to be in the natural transition of national transaction. Of that employees work day. So an underwriter at a desktop claim him on the desktop, the sales associate of desktop. Those insights need to be served up at that point in time when most relevant. And you know. So if we think about how insurance companies are leveraging data, we see this really on kind of three horizons and starting from the left hand side of the page here, this is really brilliant basics. So how my leveraging core core data and core applied intelligence to monetize your existing strategy? And I think this brilliant based, brilliant basics concept is where most of most of my clients, at least within insurance are are today. You know, how are we leveraging data in the most effective way and putting it in the hands of business decision makers to make decisions largely through reporting and some applied intelligence? Um, Horizon two. We see, you know, definitely other industries blazing a trail here, and this is really about How do we integrate ecosystems and partners Now? I think within insurance, you know, we've had data providers forever, right? Whether it's NPR data, credit data risk data, you know, data aggregators and data providers have been a critical part of the insurance sector for for decades. I think what's different about this this ecosystem and partnership model is that it's much more Oneto one and it's much more, you know, kind of. How do we integrate more tightly and how do we become more embedded in each other's transactions? I think that we see some emergence of this, um, in insurance with automotive manufacturers with building management systems. But I think in the grand scheme of things, this is really very, very nascent for us as a sector. And I think the third horizon is is, you know, how do we fundamentally think about data differently to drive new business models? And I, you know, I don't know that we haven't ensure here in North America that's really doing this at any sort of scale. We certainly see pilots and proofs of concepts. We see some carriers in Europe farther down this path, but it's really it's really very new for us. A Z Think about these three horizons for insurance. So you know what's what's behind all this and what's behind. You know, the next powering of digital transformation and and we think at the end of the exercise, its data data will be the next engine that powers digital transformation. So in this exhibit, you know we see the three horizons across the top. You know, data is activated and activating digital transformation. And this, you know, this purple 3rd, 3rd road here is we think some of the foundational building blocks required to kind of get this right. But I think what's most important about about this this purple third bar here is the far right box, which is business adoption. Because you can build this infrastructure, you can have. You know, this great scalable cloud capability. Um, you can create a bunch of applications and intelligence, but unless it's adopted by the business, unless it's democratized, unless those insights and decisions air served up in the natural course of business, you're gonna have trouble really driving value. So that way, I think this is a really interesting time for data. We think this is kind of the next horizon to power the next age of digital transformation for insurance companies. With that brief prelude, I am, I'm honored. Thio, turn it over to Michael Stone Is the Cielo at CNN Insurance? >>Thanks, Jim, for that intro and very exciting Thio be here is part of part of beyond when I think a digital transformation within the context of insurance, actually look at it through the lens of competing in an era of near perfect information. So in order to be able to deliver all of the potential value that we talked about with regard to data and changing ecosystem and changing demands, the question becomes, How do you actually harness the information that's available to everybody to fundamentally change the business? So if you'll indulge me a bit here, let me tell you just a little bit more for those that don't know about insurance, what it really is. And I use a very long run on sentence to do that. It's a business model where capital is placed against risk in the form of products and associated services sold the customers through channels two companies to generate a return. Now, this sounds like a lot of other businesses in across multiple industries that were there watching today. But the difference within insurance is that every major word in that long run on sentence is changing sources of capital that we could draw on to be able to underwrite risk of going away. The nature of risk itself is changing from the perspective of policies that live six months to a year, the policies that could last six minutes. The products that we're creating are changing every day for our ability to actually put a satellite up in the air or ensure against the next pandemic. Our customers are not just companies or individuals, but they could be governments completely different entities than we would have been in sharing in the past and channels were changing. We sell direct, we sell through brokers and products are actually being embedded in other products. So you may buy something and not even know that insurance is a part of it. And what's most interesting here is the last word which is around return In the old world. Insurance was a cash flow business in which we could bring the premium in and get a level of interest income and being able to use that money to be able thio buffer the underwriting results that we would have. But those returns or dramatically reduced because of the interest income scenario, So we have to generate a higher rate of return. So what do we need to do? Is an insurance company in through this digital transformation to be able to get there? Well, fundamentally, we need to rethink how we're using information, and this is where thought spot and the cloud coming for us. We have two basic problems that we're looking to solve with information. The first one is information veracity. Do we believe it? When we get it? Can we actually trust it? Do we know what it means when we say that this is a policy in force or this is a new customer where this is the amount of attention or rate that we're going to get? Do we actually believe in that piece of data? The second is information velocity. Can we get it fast enough to be able to capitalize upon it? So in other words, we're We're working in a situation where the feedback loop is closing quickly and it's operating at a speed that we've never worked in before. So if we can't solve veracity and velocity, then we're never going to be able to get to where we need to go. So when we think of something like hot spot, what do we use it for? We use it to be able to put it in the hands of our business years so that they could ask the key questions about how the business is running. How much profit of my generating this month? What brokers do I need to talk? Thio. What is my rate retention? Look like what? The trends that I'm seeing. And we're using that mechanism not just to present nice visualizations, but to enable that really quick, dynamic question and answer and social, socially enabled search, which completely puts us in a different position of being able to respond to the market conditions. In addition, we're using it for pattern recognition. Were using it for artificial intelligence. We're gonna be capitalizing on the social aspect of of search that's that's enabled through thought spot and also connecting it into our advanced machine learning models and other capabilities that we currently have. But without it solving the two fundamental problems of veracity and velocity, we would be handicapped. So let me give you some advice about if I were in your position and you don't need to be in sleepy old industry like insurance to be able to do this, I'll leave you with three things. The first one is picking water holes so What are the things that you really want to be good at? What are the pieces of information that you really need to know more about? I mean, in insurance, its customers, it's businesses, locations, it's behavior. There are only a few water also really understand and pick those water holes that you're going to be really good at. The second is stand on the shoulders of giants. You know, in the world of technology, there's often a philosophy that says, Well, I can build it something better than somebody else create if I have it in house. But I'm happy to stand on the shoulders of giants like Thought Spot and Google and others to be able to create this capability because guess what? They're gonna out innovate any of the internal shops all day and every day. So don't be afraid. Thio. Stand side by side on the shoulders of giants as part of your journey. Unless you've got to build these organizations not just the technology for rapid experimentation and learning, because guess what? The moment you deliver insight, it begs another question, which also could change the business process, which could change the business model and If your organization the broader organization of business technology, analytics, customer service operations, etcetera is not built in a way that could be dynamic and flexible based on where the market is or is going, then you're gonna miss out on the opportunity. So again, I'm proud to be part of the fast black community. Really love the technology. And if if you look too, have the same kind of issues with your given industry about how you can actually speed up decision making, deliver insights and deliver this kind of search and recommended to use it. And with that, let's go to some questions. >>Awesome. Thank you so much, Michael and Jim for that in depth perspective and those tangible takeaways for our audience. We have a few minutes left and would love to ask a few questions. So here's the first one for Michael Michael. What are some of the most important things that you know now that you didn't know before you started this process? I think one of >>the things that's a great question. I think one of the things that really struck me is that, you know, traditional thinking would be very use case centric or pain point centric Show me, uh, this particular model or a particular question you want me to answer that can build your own analytics to do that or show me a deficiency in the system and I can go and develop a quick head that will do well, then you know, wallpaper over that particular issue. But what we've really learned is the foundation matters. So when we think about building things is building the things that are below the waterline, the pipes and plumbing about how you move data around how the engines work and how it all connects together gives you the above the waterline features that you could deliver to. You know, your employees into your customers much faster chasing use cases across the top above the waterline and ignoring what's below the water line to me. Is it really, uh, easy recipe too quick? Get your way to nothing. So again, focus on the foundation bill below the water line and then iterated above the water line that z what the lessons we've learned. It has been very effective for us. >>I think that's a very great advice for all those watching today on. But Here's one for Jim. Jim. What skills would you say are required for teams to truly adopt this digital transformation process? >>Yeah, well, I think that's a really good question, and I think I'd start with it's It's never one. Well, our experience has shown us number a one person show, right? So So we think to kind of drive some of the value that that that Michael spoke about. We really looked across disciplinary teams, which is a an amalgamation of skills and and team members, right? So if you think about the data science skills required, just kinda under under understand how toe toe work with data and drive insights, Sometimes that's high end analytic skills. Um, where you gonna find value? So some value architectural skills Thio really articulate, you know, Is this gonna move the needle for my business? I think there's a couple of critical critical components of this team. One is, you know, the operation. Whatever. That operation maybe has to be embedded, right, because they designed this is gonna look at a piece of data that seems interesting in the business Leader is going to say that that actually means nothing to me in my operation. So and then I think the last the last type of skill would be would be a data translator. Um, sitting between sometimes the technology in the business so that this amalgamation of skills is important. You know, something that Michael talked about briefly that I think is critical is You know, once you deliver insight, it leads to 10 more questions. So just in a intellectual curiosity and an understanding of, you know, if I find something here, here, the implications downstream from my business are really important. So in an environment of experimenting and learning thes thes cross discipline teams, we have found to be most effective. And I think we thought spot, you know, the platform is wired to support that type of analysis and wired to support that type of teaming. >>Definitely. I think that's though there's some really great skills. That's for people to keep in mind while they are going through this process. Okay, Michael, we have another question for you. What are some of the key changes you've had to make in your environment to make this digital transformation happen? >>That's a great question. I think if you look at our environment. We've got a mixture of, you know, space agent Stone age. We've got old legacy systems. We have all sorts of different storage. We have, you know, smatterings of things that were in cloud. The first thing that we needed to do was make a strong commitment to the cloud. So Google is our partner for for the cloud platform on unabashedly. The second thing that we needed to dio was really rethink the interplay between analytics systems in operational systems. So traditionally, you've got a large data warehouses that sit out over here that, you know, we've got some kind of extract and low that occurs, and we've got transactional operational systems that run the business, and we're thinking about them very differently from the perspective of bringing them together. How Doe I actually take advantage of data emotion that's in the cloud. So then I can actually serve up analytics, and I can also change business process as it's happening for the people that are transacting business. And in the meantime, I can also serve the multiple masters of total cost and consumption. So again, I didn't applications are two ships that pass in the night and never be in the world of Sienna. When you look at them is very much interrelated, especially as we want to get our analytics right. We want to get our A i m all right, and we want to get operational systems right By capturing that dated motion force across that architecture er that was an important point. Commit to the cloud, rethink the way we think analytics systems, work and operational systems work and then move them in tandem, as opposed to doing one without the other one in the vacuum. >>That's that's great advice, Michael. I think it's very important those key elements you just hit one question that we have final question we have for Jim. Jim, how do you see your client sustain the benefits that they've gained through this process? >>Yeah, it's a really good question. Um, you know, I think about some of the major themes around around beyond right, data fluency is one of them, right? And as I think about fluency, you only attain fluency through using the language every single day. They were day, week, over week, month over month. So you know, I think that applies to this. This problem too. You know, we see a lot of clients have to change probably two things at the same time. Number one is mindset, and number two is is structure. So if you want to turn these data projects from projects into processes, right, so so move away from spinning up teams, getting getting results and winding down. You wanna move away from that Teoh process, which is this is just the way working for these teams. Um, you have to change the mindset and often times you have to marry that with orb structure change. So So I'm gonna spin up these teams, but this team is going to deliver a set of insights on day. Then we're gonna be continuous improvement teams that that persist over time. So I think this shifting from project teams to persistent teams coupled with mindset coupled with with or structure changed, you know, a lot of times has to be in place for a period of time to get to get the fluency and achieve the fluency that that most organizations need. >>Thanks, Jim, for that well thought out answer. It really goes to show that the transformation process really varies when it comes to organizations, but I think this is a great way to close out today's track. I like to think Jim, Michael, as well as all the experts that you heard earlier today for sharing. There's best practice as to how you all can start transforming your organization's by building a data fluent culture, Um, and really empowering your employees to understand what data means and how to take actions with it. As we wrap up and get ready for the next session, I'd like to leave you all with just a couple of things. Number one if you miss anything or would like to watch any of the other tracks. Don't worry. We have everything available after this event on demand number two. If you want to ask more questions from the experts that you heard earlier today, you have a chance to do so. At the Meet The Experts Roundtable, make sure to attend the one for track four in cultivating a data fluent culture. Now, as we get ready for the product roadmap, go take a sip of water. This is something you do not want to miss. If you love what you heard yesterday, you're gonna like what you hear today. I hear there's some type of Indiana Jones theme to it all, so I won't say anything else, but I'll see you there.
SUMMARY :
best practices that you can apply to build that data flew into culture in your organization So if you think about your customer data, So in order to be able to deliver all of the potential value that we talked about with regard to data that you know now that you didn't know before you started this process? the above the waterline features that you could deliver to. What skills would you say are required for teams And I think we thought spot, you know, the platform is wired to What are some of the key changes you've had to make in your environment to make this digital transformation I think if you look at our environment. Jim, how do you see your client sustain the benefits that they've gained through this process? So I think this shifting from project teams to persistent teams coupled There's best practice as to how you all can start transforming
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jim | PERSON | 0.99+ |
Michael | PERSON | 0.99+ |
Michael Teoh | PERSON | 0.99+ |
Cindy Hausen | PERSON | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Jim Bramblett | PERSON | 0.99+ |
Comcast | ORGANIZATION | 0.99+ |
six months | QUANTITY | 0.99+ |
Europe | LOCATION | 0.99+ |
Paula E | PERSON | 0.99+ |
Valerie | PERSON | 0.99+ |
DNA | ORGANIZATION | 0.99+ |
10 more questions | QUANTITY | 0.99+ |
Yasmin | PERSON | 0.99+ |
today | DATE | 0.99+ |
two companies | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
Terex | ORGANIZATION | 0.99+ |
one question | QUANTITY | 0.99+ |
two ships | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
Michael Stone | PERSON | 0.99+ |
Thio | PERSON | 0.99+ |
hundreds of years | QUANTITY | 0.98+ |
second thing | QUANTITY | 0.98+ |
First | QUANTITY | 0.98+ |
CNN Insurance | ORGANIZATION | 0.98+ |
two prestigious guests | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
Data Lodge | ORGANIZATION | 0.98+ |
three things | QUANTITY | 0.98+ |
two fundamental problems | QUANTITY | 0.97+ |
Thought Spot | ORGANIZATION | 0.96+ |
Sienna | LOCATION | 0.96+ |
a year | QUANTITY | 0.96+ |
first one | QUANTITY | 0.95+ |
pandemic | EVENT | 0.95+ |
One | QUANTITY | 0.95+ |
two basic problems | QUANTITY | 0.94+ |
Michael Michael | PERSON | 0.94+ |
third horizon | QUANTITY | 0.93+ |
earlier today | DATE | 0.93+ |
3rd | QUANTITY | 0.92+ |
Oneto | ORGANIZATION | 0.91+ |
Four walls | QUANTITY | 0.9+ |
first thing | QUANTITY | 0.89+ |
six minutes | QUANTITY | 0.89+ |
NPR | ORGANIZATION | 0.88+ |
decades | QUANTITY | 0.85+ |
every vehicle | QUANTITY | 0.84+ |
single day | QUANTITY | 0.82+ |
third bar | QUANTITY | 0.81+ |
Meet The Experts Roundtable | EVENT | 0.79+ |
Princeton | ORGANIZATION | 0.78+ |
device | QUANTITY | 0.76+ |
3rd road | QUANTITY | 0.76+ |
Indiana Jones | TITLE | 0.76+ |
number two | QUANTITY | 0.75+ |
every human | QUANTITY | 0.74+ |
three horizons | QUANTITY | 0.74+ |
Empowerment Through Inclusion | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back. I'm so excited to introduce our next session empowerment through inclusion, reimagining society and technology. This is a topic that's personally very near and dear to my heart. Did you know that there's only 2% of Latinas in technology as a Latina? I know that there's so much more we could do collectively to improve these gaps and diversity. I thought spot diversity is considered a critical element across all levels of the organization. The data shows countless times. A diverse and inclusive workforce ultimately drives innovation better performance and keeps your employees happier. That's why we're passionate about contributing to this conversation and also partnering with organizations that share our mission of improving diversity across our communities. Last beyond, we hosted the session during a breakfast and we packed the whole room. This year, we're bringing the conversation to the forefront to emphasize the importance of diversity and data and share the positive ramifications that it has for your organization. Joining us for this session are thought spots Chief Data Strategy Officer Cindy Housing and Ruhollah Benjamin, associate professor of African American Studies at Princeton University. Thank you, Paola. So many >>of you have journeyed with me for years now on our efforts to improve diversity and inclusion in the data and analytic space. And >>I would say >>over time we cautiously started commiserating, eventually sharing best practices to make ourselves and our companies better. And I do consider it a milestone. Last year, as Paola mentioned that half the room was filled with our male allies. But I remember one of our Panelists, Natalie Longhurst from Vodafone, suggesting that we move it from a side hallway conversation, early morning breakfast to the main stage. And I >>think it was >>Bill Zang from a I G in Japan. Who said Yes, please. Everyone else agreed, but more than a main stage topic, I want to ask you to think about inclusion beyond your role beyond your company toe. How Data and analytics can be used to impact inclusion and equity for the society as a whole. Are we using data to reveal patterns or to perpetuate problems leading Tobias at scale? You are the experts, the change agents, the leaders that can prevent this. I am thrilled to introduce you to the leading authority on this topic, Rou Ha Benjamin, associate professor of African studies at Princeton University and author of Multiple Books. The Latest Race After Technology. Rou ha Welcome. >>Thank you. Thank you so much for having me. I'm thrilled to be in conversation with you today, and I thought I would just kick things off with some opening reflections on this really important session theme. And then we could jump into discussion. So I'd like us to as a starting point, um, wrestle with these buzzwords, empowerment and inclusion so that we can have them be more than kind of big platitudes and really have them reflected in our workplace cultures and the things that we design in the technologies that we put out into the world. And so to do that, I think we have to move beyond techno determinism, and I'll explain what that means in just a minute. Techno determinism comes in two forms. The first, on your left is the idea that technology automation, um, all of these emerging trends are going to harm us, are going to necessarily harm humanity. They're going to take all the jobs they're going to remove human agency. This is what we might call the techno dystopian version of the story and this is what Hollywood loves to sell us in the form of movies like The Matrix or Terminator. The other version on your right is the techno utopian story that technologies automation. The robots as a shorthand, are going to save humanity. They're gonna make everything more efficient, more equitable. And in this case, on the surface, he seemed like opposing narratives right there, telling us different stories. At least they have different endpoints. But when you pull back the screen and look a little bit more closely, you see that they share an underlying logic that technology is in the driver's seat and that human beings that social society can just respond to what's happening. But we don't really have a say in what technologies air designed and so to move beyond techno determinism the notion that technology is in the driver's seat. We have to put the human agents and agencies back into the story, the protagonists, and think carefully about what the human desires worldviews, values, assumptions are that animate the production of technology. And so we have to put the humans behind the screen back into view. And so that's a very first step and when we do that, we see, as was already mentioned, that it's a very homogeneous group right now in terms of who gets the power and the resource is to produce the digital and physical infrastructure that everyone else has to live with. And so, as a first step, we need to think about how to create more participation of those who are working behind the scenes to design technology now to dig a little more a deeper into this, I want to offer a kind of low tech example before we get to the more hi tech ones. So what you see in front of you here is a simple park bench public bench. It's located in Berkeley, California, which is where I went to graduate school and on this particular visit I was living in Boston, and so I was back in California. It was February. It was freezing where I was coming from, and so I wanted to take a few minutes in between meetings to just lay out in the sun and soak in some vitamin D, and I quickly realized, actually, I couldn't lay down on this bench because of the way it had been designed with these arm rests at intermittent intervals. And so here I thought. Okay, the the armrest have, ah functional reason why they're there. I mean, you could literally rest your elbows there or, um, you know, it can create a little bit of privacy of someone sitting there that you don't know. When I was nine months pregnant, it could help me get up and down or for the elderly, the same thing. So it has a lot of functional reasons, but I also thought about the fact that it prevents people who are homeless from sleeping on the bench. And this is the Bay area that we were talking about where, in fact, the tech boom has gone hand in hand with a housing crisis. Those things have grown in tandem. So innovation has grown within equity because we haven't thought carefully about how to address the social context in which technology grows and blossoms. And so I thought, Okay, this crisis is growing in this area, and so perhaps this is a deliberate attempt to make sure that people don't sleep on the benches by the way that they're designed and where the where they're implemented and So this is what we might call structural inequity. By the way something is designed. It has certain effects that exclude or harm different people. And so it may not necessarily be the intense, but that's the effect. And I did a little digging, and I found, in fact, it's a global phenomenon, this thing that architects called hostile architecture. Er, I found single occupancy benches in Helsinki, so only one booty at a time no laying down there. I found caged benches in France. And in this particular town. What's interesting here is that the mayor put these benches out in this little shopping plaza, and within 24 hours the people in the town rallied together and had them removed. So we see here that just because we have, uh, discriminatory design in our public space doesn't mean we have to live with it. We can actually work together to ensure that our public space reflects our better values. But I think my favorite example of all is the meter bench. In this case, this bench is designed with spikes in them, and to get the spikes to retreat into the bench, you have to feed the meter you have to put some coins in, and I think it buys you about 15 or 20 minutes. Then the spikes come back up. And so you'll be happy to know that in this case, this was designed by a German artists to get people to think critically about issues of design, not just the design of physical space but the design of all kinds of things, public policies. And so we can think about how our public life in general is metered, that it serves those that can pay the price and others are excluded or harm, whether we're talking about education or health care. And the meter bench also presents something interesting. For those of us who care about technology, it creates a technical fix for a social problem. In fact, it started out his art. But some municipalities in different parts of the world have actually adopted this in their public spaces in their parks in order to deter so called lawyers from using that space. And so, by a technical fix, we mean something that creates a short term effect, right. It gets people who may want to sleep on it out of sight. They're unable to use it, but it doesn't address the underlying problems that create that need to sleep outside in the first place. And so, in addition to techno determinism, we have to think critically about technical fixes that don't address the underlying issues that technology is meant to solve. And so this is part of a broader issue of discriminatory design, and we can apply the bench metaphor to all kinds of things that we work with or that we create. And the question we really have to continuously ask ourselves is, What values are we building in to the physical and digital infrastructures around us? What are the spikes that we may unwittingly put into place? Or perhaps we didn't create the spikes. Perhaps we started a new job or a new position, and someone hands us something. This is the way things have always been done. So we inherit the spike bench. What is our responsibility when we noticed that it's creating these kinds of harms or exclusions or technical fixes that are bypassing the underlying problem? What is our responsibility? All of this came to a head in the context of financial technologies. I don't know how many of you remember these high profile cases of tech insiders and CEOs who applied for Apple, the Apple card and, in one case, a husband and wife applied and the husband, the husband received a much higher limit almost 20 times the limit as his wife, even though they shared bank accounts, they lived in Common Law State. And so the question. There was not only the fact that the husband was receiving a much better interest rate and the limit, but also that there was no mechanism for the individuals involved to dispute what was happening. They didn't even know what the factors were that they were being judged that was creating this form of discrimination. So in terms of financial technologies, it's not simply the outcome that's the issue. Or that could be discriminatory, but the process that black boxes, all of the decision making that makes it so that consumers and the general public have no way to question it. No way to understand how they're being judged adversely, and so it's the process not only the product that we have to care a lot about. And so the case of the apple cart is part of a much broader phenomenon of, um, racist and sexist robots. This is how the headlines framed it a few years ago, and I was so interested in this framing because there was a first wave of stories that seemed to be shocked at the prospect that technology is not neutral. Then there was a second wave of stories that seemed less surprised. Well, of course, technology inherits its creator's biases. And now I think we've entered a phase of attempts to override and address the default settings of so called racist and sexist robots, for better or worse. And here robots is just a kind of shorthand, that the way people are talking about automation and emerging technologies more broadly. And so as I was encountering these headlines, I was thinking about how these air, not problems simply brought on by machine learning or AI. They're not all brand new, and so I wanted to contribute to the conversation, a kind of larger context and a longer history for us to think carefully about the social dimensions of technology. And so I developed a concept called the New Jim Code, which plays on the phrase Jim Crow, which is the way that the regime of white supremacy and inequality in this country was defined in a previous era, and I wanted us to think about how that legacy continues to haunt the present, how we might be coding bias into emerging technologies and the danger being that we imagine those technologies to be objective. And so this gives us a language to be able to name this phenomenon so that we can address it and change it under this larger umbrella of the new Jim Code are four distinct ways that this phenomenon takes shape from the more obvious engineered inequity. Those were the kinds of inequalities tech mediated inequalities that we can generally see coming. They're kind of obvious. But then we go down the line and we see it becomes harder to detect. It's happening in our own backyards. It's happening around us, and we don't really have a view into the black box, and so it becomes more insidious. And so in the remaining couple minutes, I'm just just going to give you a taste of the last three of these, and then a move towards conclusion that we can start chatting. So when it comes to default discrimination. This is the way that social inequalities become embedded in emerging technologies because designers of these technologies aren't thinking carefully about history and sociology. Ah, great example of this came Thio headlines last fall when it was found that widely used healthcare algorithm affecting millions of patients, um, was discriminating against black patients. And so what's especially important to note here is that this algorithm healthcare algorithm does not explicitly take note of race. That is to say, it is race neutral by using cost to predict healthcare needs. This digital triaging system unwittingly reproduces health disparities because, on average, black people have incurred fewer costs for a variety of reasons, including structural inequality. So in my review of this study by Obermeyer and colleagues, I want to draw attention to how indifference to social reality can be even more harmful than malicious intent. It doesn't have to be the intent of the designers to create this effect, and so we have to look carefully at how indifference is operating and how race neutrality can be a deadly force. When we move on to the next iteration of the new Jim code coded exposure, there's attention because on the one hand, you see this image where the darker skin individual is not being detected by the facial recognition system, right on the camera or on the computer. And so coated exposure names this tension between wanting to be seen and included and recognized, whether it's in facial recognition or in recommendation systems or in tailored advertising. But the opposite of that, the tension is with when you're over included. When you're surveiled when you're to centered. And so we should note that it's not simply in being left out, that's the problem. But it's in being included in harmful ways. And so I want us to think carefully about the rhetoric of inclusion and understand that inclusion is not simply an end point. It's a process, and it is possible to include people in harmful processes. And so we want to ensure that the process is not harmful for it to really be effective. The last iteration of the new Jim Code. That means the the most insidious, let's say, is technologies that are touted as helping US address bias, so they're not simply including people, but they're actively working to address bias. And so in this case, There are a lot of different companies that are using AI to hire, create hiring software and hiring algorithms, including this one higher view. And the idea is that there there's a lot that AI can keep track of that human beings might miss. And so so the software can make data driven talent decisions. After all, the problem of employment discrimination is widespread and well documented. So the logic goes, Wouldn't this be even more reason to outsource decisions to AI? Well, let's think about this carefully. And this is the look of the idea of techno benevolence trying to do good without fully reckoning with what? How technology can reproduce inequalities. So some colleagues of mine at Princeton, um, tested a natural learning processing algorithm and was looking to see whether it exhibited the same, um, tendencies that psychologists have documented among humans. E. And what they found was that in fact, the algorithm associating black names with negative words and white names with pleasant sounding words. And so this particular audit builds on a classic study done around 2003, before all of the emerging technologies were on the scene where two University of Chicago economists sent out thousands of resumes to employers in Boston and Chicago, and all they did was change the names on those resumes. All of the other work history education were the same, and then they waited to see who would get called back. And the applicants, the fictional applicants with white sounding names received 50% more callbacks than the black applicants. So if you're presented with that study, you might be tempted to say, Well, let's let technology handle it since humans are so biased. But my colleagues here in computer science found that this natural language processing algorithm actually reproduced those same associations with black and white names. So, too, with gender coded words and names Amazon learned a couple years ago when its own hiring algorithm was found discriminating against women. Nevertheless, it should be clear by now why technical fixes that claim to bypass human biases are so desirable. If Onley there was a way to slay centuries of racist and sexist demons with a social justice box beyond desirable, more like magical, magical for employers, perhaps looking to streamline the grueling work of recruitment but a curse from any jobseekers, as this headline puts it, your next interview could be with a racist spot, bringing us back to that problem space we started with just a few minutes ago. So it's worth noting that job seekers are already developing ways to subvert the system by trading answers to employers test and creating fake applications as informal audits of their own. In terms of a more collective response, there's a federation of European Trade unions call you and I Global that's developed a charter of digital rights for work, others that touches on automated and a I based decisions to be included in bargaining agreements. And so this is one of many efforts to change their ecosystem to change the context in which technology is being deployed to ensure more protections and more rights for everyday people in the US There's the algorithmic accountability bill that's been presented, and it's one effort to create some more protections around this ubiquity of automated decisions, and I think we should all be calling from more public accountability when it comes to the widespread use of automated decisions. Another development that keeps me somewhat hopeful is that tech workers themselves are increasingly speaking out against the most egregious forms of corporate collusion with state sanctioned racism. And to get a taste of that, I encourage you to check out the hashtag Tech won't build it. Among other statements that they have made and walking out and petitioning their companies. Who one group said, as the people who build the technologies that Microsoft profits from, we refuse to be complicit in terms of education, which is my own ground zero. Um, it's a place where we can we can grow a more historically and socially literate approach to tech design. And this is just one, um, resource that you all can download, Um, by developed by some wonderful colleagues at the Data and Society Research Institute in New York and the goal of this interventionist threefold to develop an intellectual understanding of how structural racism operates and algorithms, social media platforms and technologies, not yet developed and emotional intelligence concerning how to resolve racially stressful situations within organizations, and a commitment to take action to reduce harms to communities of color. And so as a final way to think about why these things are so important, I want to offer a couple last provocations. The first is for us to think a new about what actually is deep learning when it comes to computation. I want to suggest that computational depth when it comes to a I systems without historical or social depth, is actually superficial learning. And so we need to have a much more interdisciplinary, integrated approach to knowledge production and to observing and understanding patterns that don't simply rely on one discipline in order to map reality. The last provocation is this. If, as I suggested at the start, inequity is woven into the very fabric of our society, it's built into the design of our. Our policies are physical infrastructures and now even our digital infrastructures. That means that each twist, coil and code is a chance for us toe. We've new patterns, practices and politics. The vastness of the problems that we're up against will be their undoing. Once we accept that we're pattern makers. So what does that look like? It looks like refusing color blindness as an anecdote to tech media discrimination rather than refusing to see difference. Let's take stock of how the training data and the models that we're creating have these built in decisions from the past that have often been discriminatory. It means actually thinking about the underside of inclusion, which can be targeting. And how do we create a more participatory rather than predatory form of inclusion? And ultimately, it also means owning our own power in these systems so that we can change the patterns of the past. If we're if we inherit a spiked bench, that doesn't mean that we need to continue using it. We can work together to design more just and equitable technologies. So with that, I look forward to our conversation. >>Thank you, Ruth. Ha. That was I expected it to be amazing, as I have been devouring your book in the last few weeks. So I knew that would be impactful. I know we will never think about park benches again. How it's art. And you laid down the gauntlet. Oh, my goodness. That tech won't build it. Well, I would say if the thoughts about team has any saying that we absolutely will build it and will continue toe educate ourselves. So you made a few points that it doesn't matter if it was intentional or not. So unintentional has as big an impact. Um, how do we address that does it just start with awareness building or how do we address that? >>Yeah, so it's important. I mean, it's important. I have good intentions. And so, by saying that intentions are not the end, all be all. It doesn't mean that we're throwing intentions out. But it is saying that there's so many things that happened in the world, happened unwittingly without someone sitting down to to make it good or bad. And so this goes on both ends. The analogy that I often use is if I'm parked outside and I see someone, you know breaking into my car, I don't run out there and say Now, do you feel Do you feel in your heart that you're a thief? Do you intend to be a thief? I don't go and grill their identity or their intention. Thio harm me, but I look at the effect of their actions, and so in terms of art, the teams that we work on, I think one of the things that we can do again is to have a range of perspectives around the table that can think ahead like chess, about how things might play out, but also once we've sort of created something and it's, you know, it's entered into, you know, the world. We need to have, ah, regular audits and check ins to see when it's going off track just because we intended to do good and set it out when it goes sideways, we need mechanisms, formal mechanisms that actually are built into the process that can get it back on track or even remove it entirely if we find And we see that with different products, right that get re called. And so we need that to be formalized rather than putting the burden on the people that are using these things toe have to raise the awareness or have to come to us like with the apple card, Right? To say this thing is not fair. Why don't we have that built into the process to begin with? >>Yeah, so a couple things. So my dad used to say the road to hell is paved with good intentions, so that's >>yes on. In fact, in the book, I say the road to hell is paved with technical fixes. So they're me and your dad are on the same page, >>and I I love your point about bringing different perspectives. And I often say this is why diversity is not just about business benefits. It's your best recipe for for identifying the early biases in the data sets in the way we build things. And yet it's such a thorny problem to address bringing new people in from tech. So in the absence of that, what do we do? Is it the outside review boards? Or do you think regulation is the best bet as you mentioned a >>few? Yeah, yeah, we need really need a combination of things. I mean, we need So on the one hand, we need something like a do no harm, um, ethos. So with that we see in medicine so that it becomes part of the fabric and the culture of organizations that that those values, the social values, have equal or more weight than the other kinds of economic imperatives. Right. So we have toe have a reckoning in house, but we can't leave it to people who are designing and have a vested interest in getting things to market to regulate themselves. We also need independent accountability. So we need a combination of this and going back just to your point about just thinking about like, the diversity on teams. One really cautionary example comes to mind from last fall, when Google's New Pixel four phone was about to come out and it had a kind of facial recognition component to it that you could open the phone and they had been following this research that shows that facial recognition systems don't work as well on darker skin individuals, right? And so they wanted Thio get a head start. They wanted to prevent that, right? So they had good intentions. They didn't want their phone toe block out darker skin, you know, users from from using it. And so what they did was they were trying to diversify their training data so that the system would work better and they hired contract workers, and they told these contract workers to engage black people, tell them to use the phone play with, you know, some kind of app, take a selfie so that their faces would populate that the training set, But they didn't. They did not tell the people what their faces were gonna be used for, so they withheld some information. They didn't tell them. It was being used for the spatial recognition system, and the contract workers went to the media and said Something's not right. Why are we being told? Withhold information? And in fact, they told them, going back to the park bench example. To give people who are homeless $5 gift cards to play with the phone and get their images in this. And so this all came to light and Google withdrew this research and this process because it was so in line with a long history of using marginalized, most vulnerable people and populations to make technologies better when those technologies are likely going toe, harm them in terms of surveillance and other things. And so I think I bring this up here to go back to our question of how the composition of teams might help address this. I think often about who is in that room making that decision about sending, creating this process of the contract workers and who the selfies and so on. Perhaps it was a racially homogeneous group where people didn't want really sensitive to how this could be experienced or seen, but maybe it was a diverse, racially diverse group and perhaps the history of harm when it comes to science and technology. Maybe they didn't have that disciplinary knowledge. And so it could also be a function of what people knew in the room, how they could do that chest in their head and think how this is gonna play out. It's not gonna play out very well. And the last thing is that maybe there was disciplinary diversity. Maybe there was racial ethnic diversity, but maybe the workplace culture made it to those people. Didn't feel like they could speak up right so you could have all the diversity in the world. But if you don't create a context in which people who have those insights feel like they can speak up and be respected and heard, then you're basically sitting on a reservoir of resource is and you're not tapping into it to ensure T to do right by your company. And so it's one of those cautionary tales I think that we can all learn from to try to create an environment where we can elicit those insights from our team and our and our coworkers, >>your point about the culture. This is really inclusion very different from just diversity and thought. Eso I like to end on a hopeful note. A prescriptive note. You have some of the most influential data and analytics leaders and experts attending virtually here. So if you imagine the way we use data and housing is a great example, mortgage lending has not been equitable for African Americans in particular. But if you imagine the right way to use data, what is the future hold when we've gotten better at this? More aware >>of this? Thank you for that question on DSO. You know, there's a few things that come to mind for me one. And I think mortgage environment is really the perfect sort of context in which to think through the the both. The problem where the solutions may lie. One of the most powerful ways I see data being used by different organizations and groups is to shine a light on the past and ongoing inequities. And so oftentimes, when people see the bias, let's say when it came to like the the hiring algorithm or the language out, they see the names associated with negative or positive words that tends toe have, ah, bigger impact because they think well, Wow, The technology is reflecting these biases. It really must be true. Never mind that people might have been raising the issues in other ways before. But I think one of the most powerful ways we can use data and technology is as a mirror onto existing forms of inequality That then can motivate us to try to address those things. The caution is that we cannot just address those once we come to grips with the problem, the solution is not simply going to be a technical solution. And so we have to understand both the promise of data and the limits of data. So when it comes to, let's say, a software program, let's say Ah, hiring algorithm that now is trained toe look for diversity as opposed to homogeneity and say I get hired through one of those algorithms in a new workplace. I can get through the door and be hired. But if nothing else about that workplace has changed and on a day to day basis I'm still experiencing microaggressions. I'm still experiencing all kinds of issues. Then that technology just gave me access to ah harmful environment, you see, and so this is the idea that we can't simply expect the technology to solve all of our problems. We have to do the hard work. And so I would encourage everyone listening to both except the promise of these tools, but really crucially, um, Thio, understand that the rial kinds of changes that we need to make are gonna be messy. They're not gonna be quick fixes. If you think about how long it took our society to create the kinds of inequities that that we now it lived with, we should expect to do our part, do the work and pass the baton. We're not going to magically like Fairy does create a wonderful algorithm that's gonna help us bypass these issues. It can expose them. But then it's up to us to actually do the hard work of changing our social relations are changing the culture of not just our workplaces but our schools. Our healthcare systems are neighborhoods so that they reflect our better values. >>Yeah. Ha. So beautifully said I think all of us are willing to do the hard work. And I like your point about using it is a mirror and thought spot. We like to say a fact driven world is a better world. It can give us that transparency. So on behalf of everyone, thank you so much for your passion for your hard work and for talking to us. >>Thank you, Cindy. Thank you so much for inviting me. Hey, I live back to you. >>Thank you, Cindy and rou ha. For this fascinating exploration of our society and technology, we're just about ready to move on to our final session of the day. So make sure to tune in for this customer case study session with executives from Sienna and Accenture on driving digital transformation with certain AI.
SUMMARY :
I know that there's so much more we could do collectively to improve these gaps and diversity. and inclusion in the data and analytic space. Natalie Longhurst from Vodafone, suggesting that we move it from the change agents, the leaders that can prevent this. And so in the remaining couple minutes, I'm just just going to give you a taste of the last three of these, And you laid down the gauntlet. And so we need that to be formalized rather than putting the burden on So my dad used to say the road to hell is paved with good In fact, in the book, I say the road to hell for identifying the early biases in the data sets in the way we build things. And so this all came to light and the way we use data and housing is a great example, And so we have to understand both the promise And I like your point about using it is a mirror and thought spot. I live back to you. So make sure to
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Cindy | PERSON | 0.99+ |
Ruth | PERSON | 0.99+ |
France | LOCATION | 0.99+ |
Natalie Longhurst | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Boston | LOCATION | 0.99+ |
Paola | PERSON | 0.99+ |
Japan | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
$5 | QUANTITY | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
Chicago | LOCATION | 0.99+ |
Rou Ha Benjamin | PERSON | 0.99+ |
Bill Zang | PERSON | 0.99+ |
Helsinki | LOCATION | 0.99+ |
Vodafone | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Sienna | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Data and Society Research Institute | ORGANIZATION | 0.99+ |
Cindy Housing | PERSON | 0.99+ |
Last year | DATE | 0.99+ |
nine months | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Obermeyer | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
European Trade unions | ORGANIZATION | 0.99+ |
Berkeley, California | LOCATION | 0.99+ |
Multiple Books | TITLE | 0.99+ |
two | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Tobias | PERSON | 0.99+ |
February | DATE | 0.99+ |
University of Chicago | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
one case | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Jim Crow | PERSON | 0.99+ |
This year | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
20 minutes | QUANTITY | 0.99+ |
I Global | ORGANIZATION | 0.99+ |
two forms | QUANTITY | 0.98+ |
first step | QUANTITY | 0.98+ |
2% | QUANTITY | 0.98+ |
Terminator | TITLE | 0.98+ |
Thio | PERSON | 0.98+ |
last fall | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
The Matrix | TITLE | 0.98+ |
24 hours | QUANTITY | 0.98+ |
The Latest Race After Technology | TITLE | 0.98+ |
Jim | PERSON | 0.98+ |
Princeton University | ORGANIZATION | 0.98+ |
Rou ha | PERSON | 0.97+ |
one | QUANTITY | 0.97+ |
both ends | QUANTITY | 0.97+ |
Accenture | ORGANIZATION | 0.96+ |
one booty | QUANTITY | 0.96+ |
almost 20 times | QUANTITY | 0.96+ |
Hollywood | ORGANIZATION | 0.95+ |
centuries | QUANTITY | 0.95+ |
rou | PERSON | 0.95+ |
one group | QUANTITY | 0.94+ |
Onley | PERSON | 0.93+ |
about 15 | QUANTITY | 0.93+ |
one discipline | QUANTITY | 0.93+ |
millions of patients | QUANTITY | 0.92+ |
four distinct ways | QUANTITY | 0.92+ |
Pixel four | COMMERCIAL_ITEM | 0.9+ |
few minutes ago | DATE | 0.9+ |
50% more | QUANTITY | 0.88+ |
few years ago | DATE | 0.88+ |
couple years ago | DATE | 0.88+ |
African | OTHER | 0.85+ |
one effort | QUANTITY | 0.85+ |
single occupancy benches | QUANTITY | 0.84+ |
African American | OTHER | 0.82+ |
Become the Analyst of the Future | Beyond.2020 Digital
>>Yeah, yeah. >>Hello and welcome back. I hope you're ready for our next session. Become the analyst of the future. We'll hear the customer's perspective about their increasingly strategic role and the potential career growth that comes with it. Joining us today are Nate Weaver, director of product marketing at Thought Spot. Yasmin Natasa, senior director of national sales strategy and insights over at Comcast and Steve Would Ledge VP of customer and partner initiatives. Oughta Terex. We're so happy to have you all here today. I'll hand things over to meet to kick things off. >>Yeah, thanks, Paula. I'd like to start with a personal story that might resonate with our audience, says an analyst. Early in my career, I was the intermediary between the business and what we called I t right. Basically database administrators. I was responsible for understanding business logic gathering requirements, Ringling data building dashboards for executives and, in my case, 100 plus sales reps. Every request that came through the business intelligence team. We owned everything, right? Indexing databases for speed, S s. I s packages for data transfer maintaining Department of Data Lakes all out cubes, etcetera. We were busy. Now we were constantly building or updating something. The worst part is an analyst, If you ask the business, every request took too long. It was slow. Well, from an analyst perspective, it was slow because it's a complex process with many moving parts. So as an analyst fresh out of grad school often felt overeducated, sometimes underappreciated, like a report writer, we were constantly overwhelmed by never ending ad hoc request, even though we had hundreds of reports and robust dashboards that would answer 90% of the questions. If the end user had an analytical foundation like I did right, if they knew where to look and how to navigate dimensions and hierarchies, etcetera. So anyway, point is, we had to build everything through this complex and slow, um, process. So for the first decade of my career, I had this gut feeling there had to be a better way, and today we're going to talk about how thought SWAT and all tricks are empowering the analysts of the future by reimagining the entire data pipeline. This paradigm shift allows businesses and data teams thio, connect, transform, model and, most importantly, automate what used to be this terribly complex data analysis process. With that, I'd like to hand it over to Steve to describe the all tricks analytic process automation platform and how they help analysts create more robust data sets that enable non technical end users toe ask and answer their own questions, but also more sophisticated business questions. Using Search and AI Analytics in Thoughts Fire Steve over to you. >>Thanks for that really relevant example. Nate and Hi, everyone. I'm Steve. Will it have been in the market for about 20 years, and then Data Analytics and I can completely I can completely appreciate what they was talking about. And what I think is unique about all tricks is how we not only bring people to the data for a self service environment, but I think what's often missed in analytics is the automation and figure out. What is the business process that needs to be repeated and connecting the dots between the date of the process and the people To speed up those insights, uh, to not only give people to self service, access to information, to do data prep and blending, but more advanced analytics, and then driving that into the business in terms of outcomes. And I'll show you what that looks like when you talk about the analytic process automation platform on the next slide. What we've done is we've created this end to end workflow where data is on the left, outcomes around the right and within the ultras environment, we unify data prep and blend analytics, data science and process automation. In this continuous process, so is analysis or an end user. I can go ahead and grab whatever data is made available to me by i t. You have got 80 plus different inputs and a p i s that we connect to. You have this drag and drop environment where you conjoined the data together, apply filters, do some descriptive analytics, even do things like grab text documents and do sentiments analysis through that with text, mining and natural language processing. As people get more used to the platform and want to do more advanced analytics and process automation, we also have things like assisted machine learning and predictive analytics out of the box directly within it as well and typically within organizations. These would be different departments and different tools doing this and we try to bring all this together in one system. So there's 260 different automation building blocks again and drag a drop environment. And then those outcomes could be published into a place where thoughts about visualizes that makes it accessible to the business users to do additional search based B I and analytics directly from their browser. And it's not just the insights that you would get from thought spot, but a lot of automation is also driving unattended, unattended or automated actions within operational systems. If you take an example of one of our customers that's in the telecommunications world, they drive customer insights around likeliness to turn or next best offers, and they deliver that within a salesforce applications. So when you walk into a retail store for your cell phone provider, they will know more about you in terms of what services you might be interested in. And if you're not happy at the time and things like that. So it's about how do we connect all those components within the business process? And what this looks like is on this screen and I won't go through in detail, but it's ah, dragon drop environment, where everything from the input data, whether it's cloud on Prem or even a local file that you might have for a spreadsheet. Uh, I t wants to have this environment where it's governed, and there's sort of components that you're allowed to have access to so that you could do that data crept and blending and not just data within your organization, but also then being able to blend in third party demographic data or firm a graphic information from different third party data providers that we have joined that data together and then do more advanced analytics on it. So you could have a predictive score or something like that being applied and blending that with other information about your customer and then sharing those insights through thought spots and more and more users throughout the organization. And bring that to life. In addition to you, as we know, is gonna talk about her experience of Comcast. Given the world that we're in right now, uh, hospital care and the ability to have enough staff and and take care of all of our people is a really important thing. So one of our customers, a large healthcare network in the South was using all tricks to give not only analyst with the organization, but even nurses were being trained on how to use all tricks and do things like improve observation. Wait time eso that when you come in, the nurse was actually using all tricks to look at the different time stamps out of ethic and create a process for the understands. What are all the causes for weight in three observation room and identify outliers of people that are trying to come in for a certain type of care that may wait much longer than on average. And they're actually able to reduce their wait time by 22%. And the outliers were reduced by about 50% because they did a better job of staffing. And overall staffing is a big issue if you can imagine trying to have a predictive idea of how many staff you need in the different medical facilities around the network, they were bringing in data around the attrition of healthcare workers, the volume of patient load, the scheduled holidays that people have and being able to predict 4 to 6 months out. What are the staff that they need to prepare toe have on on site and ready so they could take care of the patients as they're coming in. In this case, they used in our module within all tricks to do that, planning to give HR and finance a view of what's required, and they could do a drop, a drop down by department and understand between physicians, nurses and different facilities. What is the predicted need in terms of staffing within that organization? So you go to the next slide done, you know, aside from technology, the number one thing for the analysts of the future is being able to focus on higher value business initiatives. So it's not just giving those analysts the ability to do this self service dragon drop data prep and blend and analytics, but also what are the the common problems that we've solved as a community? We have 150,000 people in the alter its community. We've been in business for over 23 years, so you could go toe this gallery and not only get things like the thought spot tools that we have to connect so you can do direct query through T Q l and pushed it into thought spot in Falcon memory and other things. But look at things like the example here is the healthcare District, where we have some of our third party partners that have built out templates and solutions around predictive staffing and tracking the complicating conditions around Cove. It as an example on different KPs that you might have in healthcare, environment and retail, you know, over 150 different solution templates, tens of thousands of different posts across different industries, custom return and other problems that we can solve, and bringing that to the community that help up level, that collective knowledge, that we have this business analyst to solve business problems and not just move data, and then finally, you know, as part of that community, part of my role in all tricks is not only working with partners like thought spot, but I also share our C suite advisory board, which we just happen to have this morning, as a matter of fact, and the number one thing we heard and discussed at that customer advisory board is a round up Skilling, particularly in this virtual world where you can't do in classroom learning how do we game if I and give additional skills to our staff so that they can digitize and automate more and more analytic processes in their organization? I won't go through all this, but we do have learning paths for both beginners. A swell as advanced people that want to get more into the data science world. And we've also given back to our community. There's an initiative called Adapt where we've essentially donated 125 hours of free training free access to our products. Within the first two weeks, we've had over 9000 people participate in that get certified across 100 different companies and then get jobs in this new world where they've got additional skills now around analytics. So I encourage you to check that out, learn what all tricks could do for you in up Skilling your journey becoming that analysts of the future And thanks for having me today thoughts fun looking forward to the rest of conversation with the Azmin. >>Yeah, thanks. I'm gonna jump in real quick here because you just mentioned something that again as an analyst, is incredibly important. That's, you know, empowering Mia's an analyst to answer those more sophisticated business questions. There's a few things that you touched on that would be my personal top three. Right? Is an analyst. You talked about data cleansing because everyone has data quality problems enhancing the data sets. I came from a supply chain analytics background. So things like using Dun and Bradstreet in your examples at risk profiles to my supplier data and, of course, predictive analytics, like creating a forecast to estimate future demand. These are things that I think is an analyst. I could truly provide additional value. I'd like to show you a quick example, if I may, of the type of ad hoc request that I would often get from the business. And it's fairly complex, but with a combination of all tricks and thought spots very easy to answer. Crest. The request would look something like this. I'd like to see my spend this year versus last year to date. Uh, maybe look at that monthly for Onley, my area of responsibility. But I only want to focus on my top five suppliers from this year, right? And that's like an end statement. I saw that in one of your slides and so in thoughts about that's answering or asking a simple question, you're getting the answer in maybe 30 seconds. And that's because behind the scenes, the last part is answering those complexities for you. And if I were to have to write this out in sequel is an analyst, it could take me upwards, maybe oven our because I've got to get into the right environment in the database and think about the filters and the time stamps, and there's a lot going on. So again, thoughts about removes that curiosity tax, which when becoming the analysts of the future again, if I don't have to focus on the small details that allows me to focus on higher value business initiatives, right. And I want to empower the business users to ask and answer their own questions. That does come with up Skilling, the business users as well, by improving data fluency through education and to expand on this idea. I wanna invite Yasmin from Comcast to kind of tell her personal story. A zit relates to analysts of the future inside Comcast. >>Well, thank you for having me. It's such a pleasure. And Steve, thank you so much for starting and setting the groundwork for this amazing conversation. You hit the nail on the head. I mean, data is a Trojan horse off analytics, and our ability to generate that inside is eyes busy is anchored on how well we can understand the data on get the data clean It and tools, like all tricks, are definitely at the forefront off ability to accelerate the I'll speak to incite, which is what hot spot brings to the table. Eso My story with Thought spot started about a year and a half ago as I'm part of the Sales Analytics team that Comcast all group is officially named, uh, compensation strategy and insight. We are part of the Consumer Service, uh, Consumer Service expected Consumer Service group in the cell of Residential Sales Organization, and we were created to provide insight to the Comcast sells channel leaders Thio make sure that they have database insight to drive sales performance, increased revenue. We When we started the function, we were really doing a lot of data wrangling, right? It wasn't just a self performance. It waas understanding who are customers were pulling a data on productivity. Uh, so we were going into HR systems are really going doing the E T l process, but manually sometimes. And we took a pause at one point because we realized that we're spending a good 70% of our time just doing that and maybe 5% of our time storytelling. Now our strength was the storytelling. And so you see how that balance wasn't really there. And eso Jim, my leader pause. It pulls the challenge of Is there a better way of doing this on DSO? We scan the industry, and that's how we came across that spot. And the first time I saw the tool, I fell in love. There's not a way for me to describe it. I fell in love because I love the I love the the innovation that it brought in terms of removing the middleman off, having to create all these layers between the data and me. I want to touch the data. I want to feel it, and I want to ask questions directly to it, and that's what that's what does for us. So when we launched when we launch thoughts about for our team, we immediately saw the difference in our ability to provide our stakeholders with better answers faster. And the combination of the two makes us actually quite dangerous right on. But it has been It has been a great great journey altogether are inter plantation was done on the cloud because at the time, uh, the the we had access to AWS account and I love to be at the edge of technology, So I figured it would be a good excuse for me to learn more about cloud technology on its been things. Video has been a great journey. Um, my, my background, uh, into analytics comes from science. And so, for me, uh, you know, we are really just stretching the surface off. What is possible in terms off the how well remind data to answer business questions on Do you know, tools like thought spot in combination with technologies. Like all trades, eyes really are really the way to go about it. And the up skilling, um the up skilling off the analysts that comes with it is really, really, really exciting because people who love data want to be able to, um want to be efficient about how they spend time with data. Andi and that's what? That's what I spend a lot of my Korea I'd Comcast and before Comcast doing so It gives me a lot of ah, a lot of pleasure to, um to bring that to my organization and to walk with colleagues outside off. We didn't Comcast to do so The way we the way we use stops, that's what we did not seem is varies. One of the things that I'm really excited about is integrating it with all the tools that we have in our analytics portfolio, and and I think about it as the over the top strategy. Right. Uh, group, like many other groups, wouldn't Comcast and with our organizations also used to be I tools. And it is not, um, you choose on a mutually exclusive strategies, right? Eso In our world, we build decision making, uh, decision making tools from the analysis that we generate. When we have the read out with the cells channel leaders, we we talk about the insight, and invariably there's some components off those insight that they want to see on a regular basis. That becomes a reporting activity. We're not in a reporting team. We partner with reporting team for them to think that input and and and put it on and create a regular cadence for it. Uh, the over the top strategy for me is, um, are working with the reporting team to then embed the link to talk spot within the report so that the questions that can be answered by the reports left dashboard are answered within the dashboard. But we make sure that we replicate the data source that feeds that report into thought spot so that the additional questions can then be insert in that spot. It and it works really well because it creates a great collaboration with our partners on the on the reporting side of the house on it also helps of our end the end users do the cell service in along the analytic spectrum, right? You go to the report when you can, when all you need is dropped down the filters and when the questions become more sophisticated, you still have a platform in the place to go to ask the questions directly and do things that are a bit funk here, like, you know, use for like you because you don't know what you're looking for. But you know that there's there's something there to find. >>Yeah, so yeah, I mean, a quick question. Our think would be on this year's analytics meet Cloud open for everyone and your experience. What does that mean to you? Including in the context of the thought spot community inside Comcast? >>Oh yes, it's the Comcast community. The passport commedia Comcast is very vibrant. My peers are actually our colleagues, who I have in my analytics village prior to us getting on board with hot spot and has been a great experience for us. So have thoughts, but as an additional kind of topic Thio to connect on. So my team was the second at Comcast to implement that spot. The first waas, the product team led by Skylar, and he did his instance on Prem. Um, he the way that he brings his data is, is through a sequel server. When I came what, as I mentioned earlier, I went on the cloud because, as I mentioned earlier, I like to be on the edge of technology and at the time thought spot was moving towards towards the cloud. So I wanted to be part of that wave. There's Ah, mobile team has a new instance that is on the cloud thing. The of the compliance team uses all tricks, right? And the S O that that community to me is really how the intellectual capital that we're building, uh, using thought spot is really, really growing on by what happens to me. And the power of being on the cloud is that if we are all using the same tool, right and we are all kind of bringing our data together, um, we are collaborating in ways that make the answer to the business questions that the C suite is asking much better, much richer. They don't always come to us at the same time, right? Each function has his own analytics group, Andi. Sometimes if we are not careful, we're working silo. But the community allows us to know about what each other are working on. And the fact that we're using the same tool creates a common language that translates into opportunities for collaboration, which will translate into, as I mentioned earlier, richer better on what comprehensive answers to the business. So analyst Nick the cloud means better, better business and better business answers and and better experiences for customers at the end of the day, so I'm all for it. >>That's great. Yeah. Comcast is obviously a very large enterprise. Lots of data sources, lots of data movement. It's cool to hear that you have a bit of a hybrid architecture, er thought spot both on premise. Stand in the cloud and you did bring up one other thing that I think is an important question for Steve. Most people may just think of all tricks as an E T l tool, but I know customers like Comcast use it for way more than just that. Can you expand upon the differences between what people think of a detail tool and what all tricks is today? >>Yeah, I think of E. T L tools as sort of production class source to target mapping with transformations and data pipelines that air typically built by I t. To service, you know, major areas within the business, and that's super valuable. One doesn't go away, and in all tricks can provide some of that. But really, it's about the end user empowerment. So going back to some of guys means examples where you know there may be some new information that you receive from a third party or even a spreadsheet that you develop something on. You wanna start to play around that information so you can think of all the tricks as a data lab or data science workbench, in fact, that you know, we're in the Gartner Magic Quadrant for data science and machine learning platforms. Because a lot of that innovation is gonna happen at the individual level we're trying to solve. And over time, you might want to take that learning and then have I t production eyes it within another system. But you know, there's this trade off between the agility that end users need and sort of the governance that I t needs to bring. So we work best in a environment where you have that in user autonomy. You could do E tail workloads, data prep and Glenn bringing your own information on then work with i t. To get that into the right server based environment to scale out in the thought spot and other applications that you develop new insights for the business. So I see it is ah, two sides of the same coin. In many ways, a home. And >>with that we're gonna hand it back over to a Paula. >>Thank you, Nate, Yasmin and Steve for the insights into the journey of the analyst of the future. Next up in a couple minutes, is our third session of today with Ruhollah Benjamin, professor of African American Studies at Princeton University, and our chief data strategy officer, Cindy House, in do a couple of jumping jacks or grab a glass of water and don't miss out on the next important discussion about diversity and data.
SUMMARY :
and the potential career growth that comes with it. So for the first decade of my career, And it's not just the insights that you would get from thought spot, the analysts of the future again, if I don't have to focus on the small details that allows me to focus saw the difference in our ability to provide our stakeholders with better answers Including in the context of the thought spot community inside And the S O that that community to me is Stand in the cloud and you did bring up the thought spot and other applications that you develop new insights for the business. and our chief data strategy officer, Cindy House, in do a couple
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Comcast | ORGANIZATION | 0.99+ |
Paula | PERSON | 0.99+ |
Ruhollah Benjamin | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
Nate Weaver | PERSON | 0.99+ |
Yasmin | PERSON | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
5% | QUANTITY | 0.99+ |
4 | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Nate | PERSON | 0.99+ |
125 hours | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
third session | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Glenn | PERSON | 0.99+ |
Yasmin Natasa | PERSON | 0.99+ |
80 plus | QUANTITY | 0.99+ |
150,000 people | QUANTITY | 0.99+ |
22% | QUANTITY | 0.99+ |
Cindy House | PERSON | 0.99+ |
Nick | PERSON | 0.99+ |
Each function | QUANTITY | 0.99+ |
100 plus sales reps. | QUANTITY | 0.99+ |
over 23 years | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Comca | ORGANIZATION | 0.99+ |
6 months | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
one system | QUANTITY | 0.99+ |
100 different companies | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Jim | PERSON | 0.99+ |
about 20 years | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
Thought Spot | ORGANIZATION | 0.98+ |
about 50% | QUANTITY | 0.98+ |
Mia | PERSON | 0.98+ |
first two weeks | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
one point | QUANTITY | 0.97+ |
Department of Data Lakes | ORGANIZATION | 0.97+ |
hundreds of reports | QUANTITY | 0.97+ |
over 9000 people | QUANTITY | 0.97+ |
first decade | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Steve Would Ledge | PERSON | 0.95+ |
Gartner | ORGANIZATION | 0.95+ |
first time | QUANTITY | 0.94+ |
five suppliers | QUANTITY | 0.94+ |
Dun | ORGANIZATION | 0.92+ |
tens of thousands | QUANTITY | 0.92+ |
Princeton University | ORGANIZATION | 0.92+ |
Oughta Terex | PERSON | 0.91+ |
over 150 different solution | QUANTITY | 0.91+ |
Azmin | PERSON | 0.9+ |
a year and a half ago | DATE | 0.9+ |
260 different automation building blocks | QUANTITY | 0.87+ |
couple minutes | QUANTITY | 0.86+ |
Onley | ORGANIZATION | 0.85+ |
top three | QUANTITY | 0.83+ |
Andi | PERSON | 0.83+ |
about | DATE | 0.79+ |
Thio | PERSON | 0.74+ |
Bradstreet | ORGANIZATION | 0.74+ |
Picking the Right Use Cases | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back, everyone. And let's get ready for session number two, which is all around picking the right use cases. We're going to take a look at how to make the most of your data driven journey through the lens of some instructive customer examples. So today we're joined by thought squads David Copay, who is a director of business value consulting like Daniel, who's a customer success manager and then engagement manager. Andrea Frisk, who not so long ago was actually a product manager. Canadian Tire, who are one of our customers. And she was responsible for the thoughts. What implementation? So we figured Who better to get involved? But yeah, let's Let's take it away, David. >>Thanks, Gina. Welcome, everybody. And Andrea Blake looking forward to this session with you. A zoo. We all know preparation early is key to success on Duin. Any project having the right team on sponsorship Thio, build and deploy. Ah, use case is critical being focused on three outcome that you have in mind both the business deliverables and then also the success criteria of how you're going to manage, uh, manage and define success. When you get there, Eyes really critical to to set you up in the right direction initially. So, Andrea, as as we mentioned, uh, you came from an organization that quite several use cases on thoughts about. So maybe you can talk us through some of those preparation steps that, yeah, that you went through and and share some insights on how folks can come prepare appropriately. >>Eso having the right team members makes such a difference. Executive support really helped the Canadian tire adoption spread. It gave the project presence and clout in leadership meetings and helped to drive change from the top down. We had clear goals and success criteria from our executive that we used to shape the go forward plan with training and frame the initial use case roadmap. One of the other key benefits over executive sponsor was that the reporting team for our initial use case rolled up by underhand. So there was a very clear directive for a rapid phase out of the old tools once thought Spot supported the same data story. And this is key because as you start to roll through use cases, you wanna realize the value. And if you're still executing the old the same time as the new. That's not gonna happen. As we expanded into areas where we were unfamiliar with the data in business utilization, we relied on the data experts and and users to inform what success would look like in the new use cases. We learned early on that those who got volunteer old and helping didn't always become the champions. That would help you drive value from the use case. Using the thoughts about it meant tables. We started to seek out users who are consistently logging in after an initial training, indicating their curiosity and appetite to learn more. We also looked for activities outside of just pin board views toe identify users that had the potential to build and guide new users as subject matter experts, not just in a data but in thought spot. This helps us find the right people to cultivate who were already excited about the potential of thought spot and could help us champion a use case. >>That's really helpful, great, great insight for someone who's been there and done that. Blake is as a customer success manager. Obviously, you approach many of the same situations, anything you'd like to add that >>I still along with the right team. My first question with any use cases. Why Why are we doing this? You've gathered all this data and now we want to use it. But But what for? When you get that initial response on Why this use case? Don't stop there. Keep asking Why keep digging? Keep digging. Keep digging. So what you're essentially trying to get at is what does the decision is that we will be made or potentially be made because of this use case. For example, let's say that we're looking at an expenses use case. What will be done with the insides gathered with this use case? Are those insights going? Thio change the expense approval process Now, Once you have that, why defined now it becomes a lot easier to define the success criteria. Success criteria they use. Face can sometimes be difficult to truly defined. But when you understand why it becomes much easier, so now you can document that success criteria. And the hard part at that point is to actually track that success over time, track the success of the use case, which is something that is easily miss but It's something that is incredibly useful to the overall initiative. >>Right measure. Measure the outcomes. You can't manage what you what? You can't what you don't measure right? As the old adage goes, and you know it's part of the business consulting team. That's really where we come in. Is helping customers really fundamentally define? How are we going to measure a success? Aziz. We move forward. Andi, I think you know, I think we've alluded to this a little bit in terms of that sort of ongoing nature of This is, you know, after the title of the session, eyes choosing the right news cases in the plural right? So it's very important to remember that this is not a single point in time event that happens once. This is a constant framework or process, because most organizations will find that there's many use cases, potentially dozens of use cases that thoughts what could be used for, and clearly you can't move forward with all of them. At the same time, eso. Another thing that our team helps customers walk through is what's the impact, the potential value, other particular use case. You know, you, Blake, you mentioned some of those outcomes, is it? Changing the expense processes it around? Reducing customer churn is an increasing speed toe insight and speak the market on defining those measurable outcomes that define the vertical axis here. The strategic importance off that use case. Um, but that's not the only dimension that you're gonna look at the East to deploy factors into that you could have the most valuable use case ever. But if it's going to take you to three years to get it implemented for various reasons, you're not really gonna start with that one, right? So the combination of east to deploy, aligned with the strategic importance or business value really gives you that road map of where to focus to prioritize on use cases. Eso again, Andrea, you've been through this, um, in your prior time at Canadian time. Maybe you can share some thoughts on how you approach that. >>Yeah. So our initial use case was a great launching platform because the merchandizing team had a huge amount across full engagement. So once we had the merchants on board, we started to plan or use case roadmap looking for other areas, and departments were thought spot had already started to spread by word of mouth and we where we felt there was a high strategic importance. As we started to scope these areas, the ease of deployment started to get more complicated. We struggled to get the right people engaged and didn't always have the top down support for resources in the new use case area. We wanted to maintain momentum with the adoption, but it was starting to feel like we were stalling out on the freeway. Then the strategic marketing team reached out and was really excited about getting into thought spot. This was an underserved team where when it came to data, they always had someone else running it for them, and they'd have to request reports and get the information in. Um, and our initial roadmap focused on the biggest impact areas where we could get the most users, and this team was not on the radar. But when we started to engage with them, we realized that this was gonna be an easy deployment. We already had the data and thought spot to support their needs, and it turned into such a great win because as a marketing team, they were so thrilled to have thought spot and to get the data when they needed it and wanted it. They continued to spread the word and let everyone know. But it also gave the project team a quick win to put some gas in the tank and keep us moving. So you want to plan your use case trajectory, but you also need to be willing to adapt to keep the momentum going. >>Yeah, no, that's a That's a really great point. So So Blake is a customer success manager. I'm sure you lived through some integration of this all the time. So any anything you wanted to add that >>Yes. So to Andrew's point, continuous delivery is key for technical folks out there were talking and agile methodology mindset versus a waterfall. So to show value, there's many different factors that air at play. You need to look at the overall business initiatives. We need to look at financial considerations. We need to look at different career objectives and also resource limitations. So when you start thinking about all those different factors, this becomes a mixture of art and science. So, for example, at the beginning of a project when thought spot is has just been purchased or whatever tool has just been purchased. You want to show immediate value to justify that purchase. So in order to show immediate value, you might want to look at a project or a use case that is tightly aligned to a business objective. Therefore, it shows value, and it has data that is ready to go without many different transformations. But as you move forward, you have to come up with a plan that is going to mix together these difficult use cases with the easier use cases and high business values cases versus the lower. So in order to do that, my most successful customers are evaluating those different business factors and putting those into place with an overall use case development plan. >>Really good feedback. That's great. Thank you. Thanks, Blake. Um, I think s a little bit of a reality check here. Right. So I think we all recognize that any technology implementation, um, is gonna have her bumps in the road. It's not gonna be smooth sailing all along the way. You know, we talk about people, process and technology. The technology wrote wrote roadblocks can be infrastructure related there could be some of the data quality issues that you're alluding to there. Like Onda, people in process fall into the sort of the cultural, uh, cultural cultural side of it. Blake, maybe you can spend a couple minutes going through. What? What if some of those bigger roadblocks that people may face on that, um, technical side on how they could both prepare for them and then address them as they come along? >>Yeah. So the most intimidating part of any business intelligence or analytics initiative is that it's going to put the data directly into the hands of the business users. And this is especially true with ocelot. So why this is intimidating is because it's going toe, lay bare and expose any data issues that exist. So this is going to lead to the most common objective that I hear to starting. Any new use case or any FBI initiative overall, which is our data isn't ready. And essentially that is fear of failure. So when data isn't ready and companies aren't ready to start these projects, what happens is to get around those data issues. There's a lot of patchwork that's happening, you know, this patchwork is necessary just to keep the wheels in motion just to keep things going. So what I mean by the patchwork is extracting the data from a source doing some manual manipulation, doing some manipulation directly within the within the database in order to satisfy those business users request. So this keeps things going, but it's not addressing the key issues that are in place now. While it's intimidating to start these initiatives, the beauty of starting these B I initiatives is it's going to force your company to address and fix these issues. And this, to me, is somewhere where thoughts what is a gigantic benefit? It's not something that we talk about necessarily or market, but thought Spot is really good at helping fix these data issues. And I say this for two reasons. One his data quality. So, with thoughts about you can run, searches directly against your most granular level data and find where those data issues exist, and now, especially with embrace, you're running it directly against the source. So thats what is going to really help you figure out those data quality issues. So as you develop a use case, we can uncover those data quality issues and address them accordingly. And second is data governance. So especially again with embrace and our cloud, our cloud structure is you are going to be bringing Companies are going to be bringing data sources from all over the place all into one source and into one logical view. And so traditionally, the problem with that is that your data and source a might be the theoretically the same data and source B. But the numbers are different. And so you have different versions of the truth. So what thoughts about helps you do is when you bring those sources together. Now you're gonna identify those issues, and now you're gonna be forced to address them. You're gonna be forced to address naming convention issues, business logic issues, which business logic translates to the technical logic toe transform that data and then also security and access. Who was actually able to see this data across these different data sources. So overall, the biggest objective eye here is our data isn't ready. But I challenge that. And I say that by taking on this initiative with thought spot, you were going to be directly addressing that issue and thoughts. What's going to help you fix it? >>Yeah, that's Ah, I'd love that observation that, you know, data quality issues. They're not gonna go away by themselves. And if thoughts, thoughts what could be part of the solution, then even better. So that's a That's a really great observation. Eso Andrea, looking at the sort of the cultural side of things the people in process, Um, what are some of the challenges that you've seen there that folks in the audience could that could learn from? >>Yeah. So think about the last time you learned a new system or tool. How long did it take you to get adjusted and get the performance you wanted from it? Maybe you hit the ground running, but maybe you still feel like you're not quite getting the most out of it. Everyone deals with change differently, and sometimes we get stuck in the change curve and never fully adapt. Companies air no different. Ah, lot of the roadblocks you may face are not only from individual struggling to get on board, but can be the result of an organizational culture that may not be used to change or managing it. Their external impacts on how we accept change such as Was there a clear message about the upcoming changes and impacts? Was there a communication channel for questions and concerns? Did individuals feel like their input was sought after and valued? Where there are multiple mediums, toe learn from was their time to learn? Organizational change is hard. And if there isn't a culture that allocates time and resources to training, then realizing success is gonna be an uphill battle. It will be harder to move people forward if they don't have the time to get comfortable and feel acclimated to the new way of doing things. Without the training and change support from the organization, you'll end up running the old and the new simultaneously, which we talked about not in our live supporting users, in both eyes going to negate that value. There were times at Canadian Tire where we really struggled to get key stakeholders engaged or to get leadership by it on the time of the resources that we're gonna be needed and committed Thio to make a use case successful. So gauging where people and the organization are in the change curve is the first step in moving them along the path towards acceptance and integration. So you'll wanna have an action plan to address the concerns and resistance and a way to solicit and channel feedback. >>Yeah, that's Zo great feedback. And I particularly like what you talked about sort of the old and the new because, you know, we've talked about success and measurement on value quite a bit in this session, and ultimately that's that's the goal, right? Is to live a Value s o. This is a framework that we found really helpful visit. Value Team is defining those success criteria really actually falls into two categories on the right hand side. Better decisions. Um, that's ultimately what you're looking to drive with thoughts about right. You're looking to get newer inside faster to be able to drive action and outcomes based on decisions that do. Maybe we're using your gut for previously on the words under that heading. They're going to change by organizations. So you know, those don't get too caught up on those, but it's really around defining, you know, one. Are those better decisions that you're looking to drive, Who what's the persona is gonna be making them one of their actually looking to accomplish when inside. So they're looking to get one of what are the actions they're going to take on those insights? And then how do we measure Thean pact of those actions that then provides us with the the foundation of a business case in our I, um, in parallel to that, it's important to remember that this use case is not just operating in a vacuum, right? Every organization has a Siri's off strategic transformational initiatives move to the cloud democratized data, etcetera. And to the extent that you can tie particular use cases into those key strategic initiatives, really elevates the importance off that use case outside of its own unique business case. In our calculation on Bazzaz several purposes, right, it raises the visibility project. It raises the visibility of the person championing project on. Do you know reality here is that every idea organization has tons of projects have taken invest in, but the ones they're gonna be more likely to invest in other ones that are tied to those strategic initiatives. So it increases the likelihood of getting the support and funding that you need to drive this forward um, that's really around defining the success success criteria upfront. Um, and >>what >>we find is a lot of organizations do that pretty well, and they've got a solid, really solid business case to move forward. But then over time, they kind of forget about that on. Do you know, a year down the line two years down the line, Maybe even, you know, three months, six months down the line. Maybe people have rotated through the business. People have come and gone, and you almost forget the benefit that you're driving, right? And so it's really important to not do that and keep an eye on and track Onda, look back and analyze and realize the value that use cases have driven on. Obviously, the structure of that and what you measure is gonna very significantly by escape. But it's really important there Thio to make sure that you're counting your success and measuring your success. Um, Andrea, I don't any any thoughts on that from from your past experience. >>Yeah, um, success will be different For each use case, 1 may be focused on reducing the time to insights in a fast competitive market, while another may be driven by a need to increase data fluency to reduce risk. The weighting of each of these criterias will shift and and the value perception should as well. Um, but one thing that we don't want to forget is to share your personal successes. So be proud of the work that you've done in the value it's created. Um, if you're a user who has taken advantage of thought spot and managed to grab a competitive edge by having faster in depth access to data, share that in your business reviews. If you're managing the adoption at your company, share your use case winds and user adoption stories. Your customer success team is here to help you articulate the value and leverage the great work being done in and because of thought spot. >>Yeah, long story short here. This benefits everybody. This is something that's easily overlooked and something that it ZZ not to do this to track adoption to define the r o I, but it benefits those benefits. Start spot benefits of customers. Everybody wins. When we do this, >>that's Ah, that's a great point. So, um, so if we talk about you know, as we wrap the session up. You know what can what can folks in the audience dio right now to start making some of this stuff happened? You know, you're Blake again, coming back to you in customer success. How have you and your role help customers take that next step and start executing on some of the things that we've talked about? >>Yeah. So to start off with, I would just say for each use case as much as possible, define the why and to find the success criteria. Just start off with those two, those two elements and over time that that process we'll get more and more refined and our goal within the CSCE or within within thoughts. But overall, not just the C s order is to enable all of our all of our customers to be able to do all these things on their own. And to be a successful, it's possible to be able to pick the right use cases to be able to execute those right use cases as effectively as possible. So we are here to help with that. CS is here to help with that. Your account executives here to help with that, we have use case workshops. We have our professional services team that can get in and help develop use cases. So lots of options available in goal. We all mutually benefit when we try to track towards thes best possible use cases. >>All right, that we're here to help. That's Ah, that's a great way. Thio, wrap up the session there. Thanks, Blake. For all of your thoughts and Andrea to hope everyone in the audience got some valuable insights here on how to choose the right news case and be successful with thoughts about, um, with that being, I'll hand it back over to you. >>Amazing. That was an awesome session. Thank you so much, guys. So our third session is up next, and we're going to be going Global s. Oh, hang on tight as we explore best practices from the extended ecosystem of cloud based analytics. >>Yeah,
SUMMARY :
We're going to take a look at how to make the most of your data driven journey through the lens of some instructive And Andrea Blake looking forward to this session with you. It gave the project presence and clout in leadership meetings and helped to drive Obviously, you approach many of the same situations, And the hard part at that point is to actually track look at the East to deploy factors into that you could have the most valuable use case ever. We already had the data and thought spot to support their needs, and it turned into such a great So any anything you wanted So in order to show immediate people in process fall into the sort of the cultural, uh, cultural cultural side of What's going to help you fix it? Yeah, that's Ah, I'd love that observation that, you know, data quality issues. Ah, lot of the roadblocks you may face are not only from individual struggling to get on board, And to the extent that you can tie particular use cases into those Obviously, the structure of that and what you measure is gonna very Your customer success team is here to help you This is something that's easily overlooked and something that it ZZ not to do this So, um, so if we talk about you know, And to be a successful, it's possible to be able to pick the right use cases to be thoughts about, um, with that being, I'll hand it back over to you. Thank you so much, guys.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Andrea | PERSON | 0.99+ |
Andrea Blake | PERSON | 0.99+ |
Gina | PERSON | 0.99+ |
Andrea Frisk | PERSON | 0.99+ |
David Copay | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Andrew | PERSON | 0.99+ |
Blake | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
third session | QUANTITY | 0.99+ |
two elements | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
Andi | PERSON | 0.99+ |
six months | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
three months | QUANTITY | 0.99+ |
Thio | PERSON | 0.98+ |
two categories | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
two reasons | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
single point | QUANTITY | 0.98+ |
FBI | ORGANIZATION | 0.98+ |
a year | QUANTITY | 0.97+ |
first step | QUANTITY | 0.97+ |
two years | QUANTITY | 0.97+ |
one source | QUANTITY | 0.97+ |
Aziz | PERSON | 0.97+ |
One | QUANTITY | 0.96+ |
both eyes | QUANTITY | 0.96+ |
one thing | QUANTITY | 0.93+ |
dozens of use cases | QUANTITY | 0.92+ |
each use case | QUANTITY | 0.88+ |
session | QUANTITY | 0.87+ |
Eso Andrea | PERSON | 0.78+ |
Canadian | LOCATION | 0.72+ |
three outcome | QUANTITY | 0.7+ |
Duin | ORGANIZATION | 0.66+ |
1 | QUANTITY | 0.63+ |
Canadian Tire | ORGANIZATION | 0.63+ |
once | QUANTITY | 0.61+ |
Thio | ORGANIZATION | 0.58+ |
Onda | ORGANIZATION | 0.57+ |
tons | QUANTITY | 0.55+ |
Bazzaz | ORGANIZATION | 0.52+ |
Spot | ORGANIZATION | 0.51+ |
cases | QUANTITY | 0.51+ |
Beyond.2020 | ORGANIZATION | 0.45+ |
couple | QUANTITY | 0.45+ |
number | OTHER | 0.37+ |
Evolving Your Analytics Center of Excellence | Beyond.2020 Digital
>>Hello, everyone, and welcome to track three off beyond. My name is being in Yemen and I am an account executive here at Thought spot based out of our London office. If the accents throwing you off I don't quite sound is British is you're expecting it because the backgrounds Australian so you can look forward to seeing my face. As we go through these next few sessions, I'm gonna be introducing the guests as well as facilitating some of the Q and A. So make sure you come and say hi in the chat with any comments, questions, thoughts that you have eso with that I mean, this whole track, as the title somewhat gives away, is really about everything that you need to know and all the tips and tricks when it comes to adoption and making sure that your thoughts what deployment is really, really successful. We're gonna be taking off everything from user training on boarding new use cases and picking the right use cases, as well as hearing from our customers who have been really successful in during this before. So with that, though, I'm really excited to introduce our first guest, Kathleen Maley. She is a senior analytics executive with over 15 years of experience in the space. And she's going to be talking to us about all her tips and tricks when it comes to making the most out of your center of excellence from obviously an analytics perspective. So with that, I'm going to pass the mic to her. But look forward to continuing the chat with you all in the chat. Come say hi. >>Thank you so much, Bina. And it is really exciting to be here today, thanks to everyone for joining. Um, I'll jump right into it. The topic of evolving your analytics center of excellence is a particular passion of mine on I'm looking forward to sharing some of my best practices with you. I started my career, is a member of an analytic sioe at Bank of America was actually ah, model developer. Um, in my most recent role at a regional bank in the Midwest, I ran an entire analytics center of excellence. Um, but I've also been on the business side running my own P and l. So I think through this combination of experiences, I really developed a unique perspective on how to most effectively establish and work with an analytic CEO. Um, this thing opportunity is really a two sided opportunity creating value from analytics. Uh, and it really requires the analytics group and the line of business Thio come together. Each has a very specific role to play in making that happen. So that's a lot of what I'll talk about today. Um, I started out just like most analysts do formally trained in statistics eso whether your data analyst or a business leader who taps into analytical talent. I want you to leave this talk today, knowing the modern definition of analytics, the purpose of a modern sioe, some best practices for a modern sioe and and then the role that each of you plays in bringing this Kuito life. So with that said, let me start by level, setting on the definition of analytics that aligns with where the discipline is headed. Um, versus where it's been historically, analytics is the discovery, interpretation and communication of meaningful patterns in data, the connective tissue between data and effective decision making within an organization. And this is a definition that I've been working under for the last, you know, 7 to 10 years of my career notice there is nothing in there about getting the data. We're at this amazing intersection of statistics and technology that effectively eliminates getting the data as a competitive advantage on this is just It's true for analysts who are thinking in terms of career progression as it is for business leaders who have to deliver results for clients and shareholders. So the definition is action oriented. It's purposeful. It's not about getting the data. It's about influencing and enabling effective decision making. Now, if you're an analyst, this can be scary because it's likely what you spend a huge amount of your time doing, so much so that it probably feels like getting the data is your job. If that's the case, then the emergence of these new automated tools might feel like your job is at risk of becoming obsolete. If you're a business leader, this should be scary because it means that other companies air shooting out in front of you not because they have better ideas, necessarily, but because they can move so much faster. According to new research from Harvard Business Review, nearly 90% of businesses say the more successful when they equipped those at the front lines with the ability to make decisions in the moment and organizations who are leading their industries and embracing these decision makers are delivering substantial business value nearly 50% reporting increased customer satisfaction, employee engagement, improve product and service quality. So, you know, there there is no doubt that speed matters on it matters more and more. Um, but if you're feeling a little bit nervous, I want you to think of it. I want you think of it a little differently. Um, you think about the movie Hidden figures. The job of the women in hidden figures was to calculate orbital trajectories, uh, to get men into space and then get them home again. And at the start of the movie, they did all the required mathematical calculations by hand. At the end of the movie, when technology eliminated the need to do those calculations by hand, the hidden figures faced essentially the same decision many of you are facing now. Do I become obsolete, or do I develop a new set of, in their case, computer science skills required to keep doing the job of getting them into space and getting them home again. The hidden figures embraced the latter. They stayed relevant on They increase their value because they were able to doom or of what really mattered. So what we're talking about here is how do we embrace the new technology that UN burdens us? And how do we up skill and change our ways of working to create a step function increase in data enabled value and the first step, really In evolving your analytics? Dewey is redefining the role of analytics from getting the data to influencing and enabling effective decision making. So if this is the role of the modern analyst, a strategic thought partner who harnesses the power of data and directs it toward achieving specific business outcomes, then let's talk about how the series in which they operate needs change to support this new purpose. Um, first, historical CEOs have primarily been about fulfilling data requests. In this scenario, C always were often formed primarily as an efficiency measure. This efficiency might have come in the form of consistency funds, ability of resource is breaking down silos, creating and building multipurpose data assets. Um, and under the getting the data scenario that's actually made a lot of sense for modern Sealy's, however, the objective is to create an organization that supports strategic business decision ing for individuals and for the enterprises the whole. So let's talk about how we do that while maintaining the progress made by historical seaweeds. It's about really extending its extending what, what we've already done the progress we've already made. So here I'll cover six primary best practices. None is a silver bullet. Each needs to fit within your own company culture. But these air major areas to consider as you evolve your analytics capabilities first and foremost always agree on the purpose and approach of your Coe. Successfully evolving yourself starts with developing strategic partnerships with the business leaders that your organization will support that the analytics see we will support. Both parties need to explicitly blocked by in to the objective and agree on a set of operating principles on bond. I think the only way to do that is just bringing people to the table, having an open and honest conversation about where you are today, where you wanna be and then agree on how you will move forward together. It's not about your organization or my organization. How do we help the business solve problems that, you know, go beyond what what we've been able to do today? So moving on While there's no single organizational model that works for everyone, I generally favor a hybrid model that includes some level of fully dedicated support. This is where I distinguish between to whom the analyst reports and for whom the analyst works. It's another concept that is important to embrace in spirit because all of the work the analyst does actually comes from the business partner. Not from at least it shouldn't come from the head of the analytic Center of excellence. Andan analysts who are fully dedicated to a line of business, have the time in the practice to develop stronger partnerships to develop domain knowledge and history on those air key ingredients to effectively solving business problems. You, you know, how can you solve a problem when you don't really understand what it is? So is the head of an analytic sioe. I'm responsible for making sure that I hire the right mix of skills that I can effectively manage the quality of my team's work product. I've got a specialized skill set that allows me to do that, Um, that there's career path that matters to analysts on all of the other things that go along with Tele management. But when it comes to doing the work, three analysts who report to me actually work for the business and creating some consistency and stability there will make them much more productive. Um, okay, so getting a bit more, more tactical, um, engagement model answers the question. Who do I go to When? And this is often a question that business partners ask of a centralized analytics function or even the hybrid model. Who do I go to win? Um, my recommendation. Make it easy for them. Create a single primary point of contact whose job is to build relationships with a specific partner set of partners to become deeply embedded in their business and strategies. So they know why the businesses solving the problems they need to solve manage the portfolio of analytical work that's being done on behalf of the partner, Onda Geun. Make it make it easy for the partner to access the entire analytics ecosystem. Think about the growing complexity of of the current analytics ecosystem. We've got automated insights Business Analytics, Predictive modeling machine learning. Um, you Sometimes the AI is emerging. Um, you also then have the functional business questions to contend with. Eso This was a big one for me and my experience in retail banking. Uh, you know, if if I'm if I'm a deposits pricing executive, which was the line of business role that I ran on, I had a question about acquisitions through the digital channel. Do I talk Thio the checking analyst, Or do I talk to the digital analyst? Um, who owns that question? Who do I go to? Eso having dedicated POC s on the flip side also helps the head of the center of excellence actually manage. The team holistically reduces the number of entry points in the complexity coming in so that there is some efficiency. So it really is a It's a win win. It helps on both sides. Significantly. Um, there are several specific operating rhythms. I recommend each acting as a as a different gear in an integrated system, and this is important. It's an integrated decision system. All of these for operating rhythms, serves a specific purpose and work together. So I recommend a business strategy session. First, UM, a portfolio management routine, an internal portfolio review and periodic leadership updates, and I'll say a little bit more about each of those. So the business strategy session is used to set top level priorities on an annual or semiannual basis. I've typically done this by running half day sessions that would include a business led deep dive on their strategy and current priorities. Again, always remembering that if I'm going to try and solve all the business problem, I need to know what the business is trying to achieve. Sometimes new requester added through this process often time, uh, previous requests or de prioritized or dropped from the list entirely. Um, one thing I wanna point out, however, is that it's the partner who decides priorities. The analyst or I can guide and make recommendations, but at the end of the day, it's up to the business leader to decide what his or her short term and long term needs and priorities are. The portfolio management routine Eyes is run by the POC, generally on a biweekly or possibly monthly basis. This is where new requests or prioritize, So it's great if we come together. It's critical if we come together once or twice a year to really think about the big rocks. But then we all go back to work, and every day a new requests are coming up. That pipeline has to be managed in an intelligent way. So this is where the key people, both the analyst and the business partners come together. Thio sort of manage what's coming in, decking it against top priorities, our priorities changing. Um, it's important, uh, Thio recognize that this routine is not a report out. This routine is really for the POC who uses it to clarify questions. Raised risks facilitate decisions, um, from his partners with his or her partner so that the work continues. So, um, it should be exactly as long as it needs to be on. Do you know it's as soon as the POC has the information he or she needs to get back to work? That's what happens. An internal portfolio review Eyes is a little bit different. This this review is internal to the analytics team and has two main functions. First, it's where the analytics team can continue to break down silos for themselves and for their partners by talking to each other about the questions they're getting in the work that they're doing. But it's also the form in which I start to challenge my team to develop a new approach of asking why the request was made. So we're evolving. We're evolving from getting the data thio enabling effective business decision ing. Um, and that's new. That's new for a lot of analysts. So, um, the internal portfolio review is a safe space toe asks toe. Ask the people who work for May who report to May why the partner made this request. What is the partner trying to solve? Okay, senior leadership updates the last of these four routines, um, less important for the day to day, but significantly important for maintaining the overall health of the SIOE. I've usually done this through some combination of email summaries, but also standing agenda items on a leadership routine. Um, for for me, it is always a shared update that my partner and I present together. We both have our names on it. I typically talk about what we learned in the data. Briefly, my partner will talk about what she is going to do with it, and very, very importantly, what it is worth. Okay, a couple more here. Prioritization happens at several levels on Dive. Alluded to this. It happens within a business unit in the Internal Portfolio review. It has to happen at times across business units. It also can and should happen enterprise wide on some frequency. So within business units, that is the easiest. Happens most frequently across business units usually comes up as a need when one leader business leader has a significant opportunity but no available baseline analytical support. For whatever reason. In that case, we might jointly approach another business leader, Havenaar Oi, based discussion about maybe borrowing a resource for some period of time. Again, It's not my decision. I don't in isolation say, Oh, good project is worth more than project. Be so owner of Project Be sorry you lose. I'm taking those. Resource is that's It's not good practice. It's not a good way of building partnerships. Um, you know that that collaboration, what is really best for the business? What is best for the enterprise, um, is an enterprise decision. It's not a me decision. Lastly, enterprise level part ization is the probably the least frequent is aided significantly by the semi annual business strategy sessions. Uh, this is the time to look enterprise wide. It all of the business opportunities that play potential R a y of each and jointly decide where to align. Resource is on a more, uh, permanent basis, if you will, to make sure that the most important, um, initiatives are properly staffed with analytical support. Oxygen funding briefly, Um, I favor a hybrid model, which I don't hear talked about in a lot of other places. So first, I think it's really critical to provide each business unit with some baseline level of analytical support that is centrally funded as part of a shared service center of excellence. And if a business leader needs additional support that can't otherwise be provided, that leader can absolutely choose to fund an incremental resource from her own budget that is fully dedicated to the initiative that is important to her business. Um, there are times when that privatization happens at an enterprise level, and the collective decision is we are not going to staff this potentially worthwhile initiative. Um, even though we know it's worthwhile and a business leader might say, You know what? I get it. I want to do it anyway. And I'm gonna find budget to make that happen, and we create that position, uh, still reporting to the center of excellence for all of the other reasons. The right higher managing the work product. But that resource is, as all resource is, works for the business leader. Um, so, uh, it is very common thinking about again. What's the value of having these resource is reports centrally but work for the business leader. It's very common Thio here. I can't get from a business leader. I can't get what I need from the analytics team. They're too busy. My work falls by the wayside. So I have to hire my own people on. My first response is have we tried putting some of these routines into place on my second is you might be right. So fund a resource that's 100% dedicated to you. But let me use my expertise to help you find the right person and manage that person successfully. Um, so at this point, I I hope you see or starting to see how these routines really work together and how these principles work together to create a higher level of operational partnership. We collectively know the purpose of a centralized Chloe. Everyone knows his or her role in doing the work, managing the work, prioritizing the use of this very valuable analytical talent. And we know where higher ordered trade offs need to be made across the enterprise, and we make sure that those decisions have and those decision makers have the information and connectivity to the work and to each other to make those trade offs. All right, now that we've established the purpose of the modern analyst and the functional framework in which they operate, I want to talk a little bit about the hard part of getting from where many individual analysts and business leaders are today, uh, to where we have the opportunity to grow in order to maintain pain and or regain that competitive advantage. There's no judgment here. It's simply an artifact. How we operate today is simply an artifact of our historical training, the technology constraints we've been under and the overall newness of Applied analytics as a distinct discipline. But now is the time to start breaking away from some of that and and really upping our game. It is hard not because any of these new skills is particularly difficult in and of themselves. But because any time you do something, um, for the first time, it's uncomfortable, and you're probably not gonna be great at it the first time or the second time you try. Keep practicing on again. This is for the analyst and for the business leader to think differently. Um, it gets easier, you know. So as a business leader when you're tempted to say, Hey, so and so I just need this data real quick and you shoot off that email pause. You know it's going to help them, and I'll get the answer quicker if I give him a little context and we have a 10 minute conversation. So if you start practicing these things, I promise you will not look back. It makes a huge difference. Um, for the analyst, become a consultant. This is the new set of skills. Uh, it isn't as simple as using layman's terms. You have to have a different conversation. You have to be willing to meet your business partner as an equal at the table. So when they say, Hey, so and so can you get me this data You're not allowed to say yes. You're definitely not is not to say no. Your reply has to be helped me understand what you're trying to achieve, so I can better meet your needs. Andi, if you don't know what the business is trying to achieve, you will never be able to help them get there. This is a must have developed project management skills. All of a sudden, you're a POC. You're in charge of keeping track of everything that's coming in. You're in charge of understanding why it's happening. You're responsible for making sure that your partner is connected across the rest of the analytics. Um, team and ecosystem that takes some project management skills. Um, be business focused, not data focused. Nobody cares what your algorithm is. I hate to break it to you. We love that stuff on. We love talking about Oh, my gosh. Look, I did this analysis, and I didn't think this is the way I was gonna approach it, and I did. I found this thing. Isn't it amazing? Those are the things you talk about internally with your team because when you're doing that, what you're doing is justifying and sort of proving the the rightness of your answer. It's not valuable to your business partner. They're not going to know what you're talking about anyway. Your job is to tell them what you found. Drawing conclusions. Historically, Analyst spent so much of their time just getting data into a power 0.50 pages of summarized data. Now the job is to study that summarized data and draw a conclusion. Summarized data doesn't explain what's happening. They're just clues to what's happening. And it's your job as the analyst to puzzle out that mystery. If a partner asked you a question stated in words, your answer should be stated in words, not summarized data. That is a new skill for some again takes practice, but it changes your ability to create value. So think about that. Your job is to put the answer on page with supporting evidence. Everything else falls in the cutting room floor, everything. Everything. Everything has to be tied to our oi. Um, you're a cost center and you know, once you become integrated with your business partner, once you're working on business initiatives, all of a sudden, this actually becomes very easy to do because you will know, uh, the business case that was put forth for that business initiative. You're part of that business case. So it becomes actually again with these routines in place with this new way of working with this new way of thinking, it's actually pretty easy to justify and to demonstrate the value that analytic springs to an organization. Andi, I think that's important. Whether or not the organization is is asking for it through formalized reporting routine Now for the business partner, understand that this is a transformation and be prepared to support it. It's ultimately about providing a higher level of support to you, but the analysts can't do it unless you agree to this new way of working. So include your partner as a member of your team. Talk to them about the problems you're trying to sell to solve. Go beyond asking for the data. Be willing and able to tie every request to an overarching business initiative on be poised for action before solution is commissioned. This is about preserving. The precious resource is you have at your disposal and you know often an extra exploratory and let it rip. Often, an exploratory analysis is required to determine the value of a solution, but the solution itself should only be built if there's a plan, staffing and funding in place to implement it. So in closing, transformation is hard. It requires learning new things. It also requires overriding deeply embedded muscle memory. The more you can approach these changes is a team knowing you won't always get it right and that you'll have to hold each other accountable for growth, the better off you'll be and the faster you will make progress together. Thanks. >>Thank you so much, Kathleen, for that great content and thank you all for joining us. Let's take a quick stretch on. Get ready for the next session. Starting in a few minutes, you'll be hearing from thought spots. David Coby, director of Business Value Consulting, and Blake Daniel, customer success manager. As they discuss putting use cases toe work for your business
SUMMARY :
But look forward to continuing the chat with you all in the chat. This is for the analyst and for the business leader to think differently. Get ready for the next session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kathleen | PERSON | 0.99+ |
Kathleen Maley | PERSON | 0.99+ |
David Coby | PERSON | 0.99+ |
Yemen | LOCATION | 0.99+ |
100% | QUANTITY | 0.99+ |
10 minute | QUANTITY | 0.99+ |
Blake Daniel | PERSON | 0.99+ |
second | QUANTITY | 0.99+ |
Bank of America | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
First | QUANTITY | 0.99+ |
Dewey | PERSON | 0.99+ |
7 | QUANTITY | 0.99+ |
Each | QUANTITY | 0.99+ |
May | DATE | 0.99+ |
Both parties | QUANTITY | 0.99+ |
0.50 pages | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
Thio | PERSON | 0.99+ |
both sides | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
nearly 50% | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Hidden figures | TITLE | 0.99+ |
over 15 years | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
second time | QUANTITY | 0.98+ |
first guest | QUANTITY | 0.98+ |
once | QUANTITY | 0.98+ |
nearly 90% | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
Bina | PERSON | 0.98+ |
single | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
Midwest | LOCATION | 0.97+ |
three analysts | QUANTITY | 0.97+ |
one | QUANTITY | 0.96+ |
first response | QUANTITY | 0.96+ |
two sided | QUANTITY | 0.94+ |
Chloe | PERSON | 0.92+ |
first step | QUANTITY | 0.92+ |
half day | QUANTITY | 0.91+ |
Business Value Consulting | ORGANIZATION | 0.9+ |
POC | ORGANIZATION | 0.9+ |
two main functions | QUANTITY | 0.89+ |
each business unit | QUANTITY | 0.88+ |
twice a year | QUANTITY | 0.86+ |
couple | QUANTITY | 0.81+ |
Sealy | ORGANIZATION | 0.8+ |
Thought | ORGANIZATION | 0.77+ |
Andi | PERSON | 0.76+ |
six primary best | QUANTITY | 0.76+ |
one leader | QUANTITY | 0.7+ |
Onda | PERSON | 0.68+ |
three | QUANTITY | 0.68+ |
Review | ORGANIZATION | 0.66+ |
biweekly | QUANTITY | 0.65+ |
Australian | OTHER | 0.63+ |
four routines | QUANTITY | 0.61+ |
Havenaar Oi | ORGANIZATION | 0.6+ |
Geun | ORGANIZATION | 0.59+ |
Harvard | ORGANIZATION | 0.54+ |
Business | TITLE | 0.51+ |
British | LOCATION | 0.5+ |
Beyond.2020 | OTHER | 0.5+ |
SIOE | TITLE | 0.39+ |
Breaking Down Data Silos | Beyond.2020 Digital
>>Yeah, yeah, >>Hello. We're back with Today's the last session in the creating engaging analytics experiences for all track breaking down data silos. A conversation with Snowflake on Western Union Earlier today, we did a few deep dives into the thought spot product with sessions on thoughts about one. Thoughts were everywhere on spot. Take you to close out this track. We're joined by industry leading experts Christian Kleinerman s VP of product at Snowflake and Tom Matzzie, Pharaoh, chief data officer at Western Union, for a thought provoking conversation on data transformation on how to avoid the pitfalls of traditional analytics. They'll be discussing in key challenges faced by organizations, why user engagement matters and looking towards the future of the industry. No Joining Thomas and Christian in conversation is Angela Cooper, vice president of customer success at Thought spot. Thank you all for being here today. We're so excited for what is what this conversation has in store. Handing it over now to Christian to kick things off. >>Hi. So, a few years ago, when when someone asked about Snowflake, the most common answer, it was like, what is snowflake and what do you do? Hopefully in the last couple off months, things have changed and and here I am showing a couple of momentum data points on, uh, where we have accomplished here it Snowflake. So we we have received Ah, a lot of attention and buzz. Recently, we were listed in the New York Stock Exchange And we even though we still think of ourselves as a small start up company, we have crossed the 2000 employees mark. More important, we count with 3 3000 plus amazing customers. And something that we obsess about is the a satisfaction of our customers. We really are working hard. The laboring technology that having a platform for better decisions, better analytics and then the promoters course off 71 depicted here is a testament of that. And last, but certainly not least about snowflake. It's very important that we know that we succeed with our partners. We know that we don't go to market by ourselves. We actually have Ah, fantastic set of partners and of course, thoughts. But it is one of our most important partners. >>Good morning. Good afternoon. Eso Amman Thomas affair on the chief kid officer here at Western Union. It's gonna be a background of a Western union and what we, uh, what we do and how we service our customers. So today we are in over 200 countries and territories worldwide. We have a 550,000 retail Asian network to service all of our customers, uh, needs from what he transfer and picking up in a depositing cash. We also have our digital transformation underway, where we now have educate abilities up and running and over 35 countries with paled options to accounts in over 120 countries. We think about our overall business and how support are over our customers and our services. It really has transformed over the past 12 months with Cove it and it's part of that We have to be able to really accelerate our transformation on a digital front to help to enable in the super those customers going forward. Eso as part of that, You know, a big, big help in a big supporter of that transformation has been snowflake and has been thought spot as part of that transformation. If you go the next to the next slide are our current, uh B I in our illegal tools right to date, uh, have been very useful up until the last one or two years. As data explodes and as as our customer needs transform and as our solutions and our time to act in our time to react in the overall market becomes faster and faster, we need to be able to basically look across our entire company, our entire organization and cross functionally to visit to leverage data leverage our insights to really basically pivot our overall business and our overall model to support our customers and our and to enable those services and products going forward. So as part of that, snowflakes been a huge part of that journey, right, allowing us to consolidate over our 30 plus data stores across the company on able to really leverage that overall data and insights to drive, uh, quick reaction right with the pivot, our business offered to enable new services and improve customer experiences going forward and then being able to use a snowflake and then being put the applications on top of that like thought spot, which allows, uh, users that are both technical and nontechnical to the go in and just, um, ask the question as if the searching on Google or Yahoo or being they can just ask any question they want and then get the results back in real time, made that business call and then really go forward through these is this larger ecosystem as a whole. It's really enabled us to really transform our business and supporter customers going forward. >>Wonderful. Thank you, Tom. Thank you, Christian, for the overview of both snowflake and Western Union. Both have big presence in Denver, which is where Tom and I are tonight. Um, I'm here. I'm the vice president of customer success for Thought spot, and I wanted to ask both of you some questions about the industry and specific things that you're facing within Western Union. So first I was hoping Christian that you could talk to me a little bit about Snowflake has thousands of customers at this point, servicing essentially located data sets. But what are you seeing? Has been the top challenges that businesses air facing and how it snowflake uniquely positioned to help. Yeah, >>so certainly the think the challenges air made. I would say that the macro challenge above everything is how to turn data into a competitive differentiator, their study after study that says companies that embrace data and insights and analytics they are outperforming their competitors. So that would be my macro challenge. Once you go into the next level, maybe I can think of three elements. The first one Tom already perfectly teed up the topic of of silence and the reality For most organizations, data is fragmented across different database systems. Even filed systems in some instances transactional databases, analytical data bases and what customers expect is to have, ah, unified experience like I am dealing with company extra company. Why? And I really don't care if behind the scenes there's 10 different teams or 100 different systems. I just want a unified experience. And the Congress is true. The opportunity to deliver personalized custom experiences is reliant on a single view of the day. The other topic that comes to mind this is the one of data governance, Um, as data becomes more important than a reorganization, understanding the constraints and security and privacy also become critical to not only advanced data capability but do it doing so responsibly and within the norms off regulation and the last one which is something court to tow our vision. We are pioneering the concept of the data cloud and the challenge that that we're addressing there is the problem around access to data, right. You can no longer as an organization think of making decisions just on your own data. But there's lots of data collaboration, data enrichment. Maybe I wanna put my data in context. And that's what we're trying to simplify and democratize access and simplify connecting to the data that improves decisions on all three fronts. Obviously, we're obsessed. That's no bling on on tearing down the silos on delivering a solution that is very focused on data governance. And for sure, the data cloud simplifies access to data. >>Wonderful. Now, I know we we really focused on those data silos is a business challenge. But Tom, going through your digital transformation journey are there specific challenges that you faced with Western Union That thought spot and snowflake have helped you overcome? >>Yeah. So? So first off fully agree what Christian just said, right? Those are absolutely, you know, problems that we faced. And we've had overcome, um, service, any company right being able to the transforming to modernize the cloud. Um, for us, one of the biggest things is being able to not just access our information, but have it in a way that it can be consumed, right? Have it in a way that it could be understood, right? Have it in a way that we can then drive business business decision points and and be able to use that information to either fix a problem that we see or better service our customers or offer a product that we're seeing right now is a miss in the marketplace to service in a underserved community or underserved, um, customer base. Also, from our standpoint, being able toe look, um um, uh and predict in forecast what's going to happen and be able to use that information and use our insights to then be proactive and thio in either, You know, be thoughtful about how do we shift our focus, or how do we then change our strategy to take advantage of that for that forecast in that position that we're seeing into the future? >>Wonderful. I've heard from many customers you could not have predicted what was going to happen to our businesses in the year 2020 with the traditional models and especially with what did you say? 30 plus different data silos. Being able to do that type of prediction across those systems must have been very, very difficult. You also mentioned going through a digital transformation at Western Union. So can you talk to me, Tom? A little bit about kind of present day? And why? Why is it important to enable your frontline knowledge workers with the right data at the right time with the right technology? >>Yeah, so? So you're spot on, by the way. But, uh, no one predicted that that we would have a pandemic that would literally consume the entire globe right And change how consumers, um uh, use and buy services and products, or how economies would either shut down or at the reopening shut down again. And then how different interests to be impacted by this? Right. So, uh, what we learned and what we were able to pivot was being able to do exactly what you just said, right. Being able to understand what's happening the date of the right time, right then being able to with the right technology with the right capabilities, understand? what's happening. I understand. Then what should our pivot be? And how should we then go focus on that pivot to go into go and transform? I think it's e. It's more than just just the front lines. Also, our executives. It's also are back office operations, right, because as you think through this, right as customers were having issues right, go into retail locations that were closed. It end of Q one Earlier, Q two. We obviously had a a large surplus right of phone calls coming into our call centers, asking for help, asking for How can we transact better? Where can we go? Right? How do we handle the operationally? Right? As we had a massive surge onto our digital platform where we were, we had 100% increase year over year in Q one and Q two. How do we make sure that our platform the technology can scale right and still provide the right S L A's and and and and the right, um uh, support to our internal customers as well as our extra customers in the future? Eso so really interesting, though, you know, on on on the front line side, our sales staff, right? And even our front line associates with our agent locations A to retail side, you know, for us, is really around. How do we best support them? So how do we partner with them to understand? You know, when a certain certain governments or certain, uh, regions were going toe lock down, how do we support them to keep them open, right. How do we make them a essential service going forward? How do we enable them? Right, the Wright systems or technology to do things a bit differently than they have in the past to adopt right with the changing times. But, you know, I'll tell you the amount of transformation in the basement we've done this year, I think you know, has a massive and actually on Lee, you know, created a larger wave for us to actually ride into the future as we can, to base to innovate, you know, in partnership with both thought spot and with the snowflake into the future. >>Absolutely. I've seen many, many a industry analyst reports talking about how companies now in 2020 have accelerated that digital transformation movement because of current day. In current time, Christian What are you seeing with the rest of the industry and other global companies about enabling data across the globe at the right time? >>Yeah, so I can't agree more with with with with what? Tom said. And he gave some very, um, compelling and very riel use cases where the timeliness of data and and and and and at the right time concept make a big difference. Right? They aske part of our data marketplace with snowflake with deliver, for example, um, up to date low ladies information on, uh, covert 19 data sets where we're infection spiking. And what were the trends? And the use case was very, very riel. Every single company was trying to make sense of the numbers. Uh, all machine learning models were sort of like, out of whack, because no trends and no patterns may make sense anymore. And it was They need to be able to join my data and my activity with this health data set and make decisions at the right time. Imagine if if the cycle to makes all these decisions waas Ah, monthlong. You would never catch up, right? And he speaks to tow a concept that it that is, um, dear, it wasa snowflake and is the lifetime value data right? The notion of ableto act on a piece of data on an event at the right time and obviously with the slow laden see it's possible, makes a big difference. And and there is no end of example. Stomach gives her all again very compelling ones. Um, there's many others, but if you're running a marketing campaign and would you want to know five minutes later that it's not working out, you're burning your daughters? Or would you want to know the next day? Or if someone is going to give you you have a subscription based business and you're going toe, for example, have a model that predicts the turn of your customer? How useful is if you find out Hey, your customer is gonna turn, but you found out two months later. Once probably you are really toe action and change the outcome. Eyes different and and and this order to manage that I'm talking about days or months are not uncommon. Many organizations today, and that's where the topic of right technology matters. Um, I love asking questions about Do you know, an organization and customers. Do you run data, transformations and ingests at two and three in the morning? And the most common answer is yes. And then you start asking why. And usually the answer is some flavor off technology made me do it and a big part of what we're trying to do, like what we're pioneering is. How about ingesting data, transforming data enriching data when the business needs it at the right time with the right timeliness? Not when the technology had cycles. So they were Scipio available, so the importance can't be overstated. There is value in in in analyzing understanding data on time, and we provide technology and platform to any of this. >>That's such a good point. Christian. We ended up on Lee doing processes and loading in the middle of the night because that's what the technology at that time would allow. You couldn't have the concurrency. You couldn't have, um, data happening all at the same time. And so wonderful point that stuff like enables. I think another piece that's interesting that you guys a hit on is that it's important to have the same user experiencing user interface at the right time. And so what I found talking to customers. And Tom what? You and I have discussed this. When you have 30 different data sets and you have a interface that's different, you have a legacy reports system. Maybe you have excel on top of another. You have thought spot on one. You have your dashboard of choice on another, those different sources in different ways. To view that data, it can all be so disjointed. And the combination of thought spot with snowflake and all the data in one place with a centralized, unified user experience just helps users take advantage off the insights that they need right at that right moment. So kind of finishing up for our last question for today I'm interested to hear about Christian will go back to you quickly about what do you see from snowflakes? Perspective is ahead. Future facing for data and analytics. >>One of the topics you just alluded toe Angela, which is the fact that many data sets are gonna be part of the processes by which we make decisions and that that's where were the experience with thoughts but a single unified search experience for a single unified. Um automatic insects, which is what's para que does That is the future, right? I I don't think that x many years from now on, and I think that that X is a small number. Organizations are going to say I had some business activity. I collected some data. I did some analysis and I have conclusions because it always has to be okay, put it in context or look at industry trends and look at other activity that can help him make more sense about my data. The example of tracking they covert are breaking is ah, timely one. But you can always say go on, put it in context with, I don't know, maybe the GDP of the country or the adoption of a platform and things like that. So I think that's ah big trend on having multiple data sets. Contributing towards better decisions towards better product experience is for better services. And, of course, Snowflake is trying to do its part, is doing its part with vision and simplify answers today and the answer on hot spot simplifying blending the interface so that would be super useful. The other big piece, of course, is, um, Predictive Analytics people Talk machine Learning and AI, which is a little bit to buzz worthy. But it is true that we have the technology to drive predictions and and do a better job of understanding behaviors off what's supposed to happen based on understanding the best and the last one. If if if I'm allowed one. Exco What's ahead for data industry, which sounds obvious, but But we're not all the way. There is both cloud the adoption and moving to the cloud as well as the topic of multi Cloud. Increasingly, I think we we finally shifted conversations from Should I go to the cloud or not? Now it's How fast do I do it? And increasingly what we hear is I may want to take the best of the different clouds and how doe I go in and and and embrace a multi cloud reality without having to learn 100 plus different services and nuances of services on on every car and this work technologies like snowflake and thoughts about that can can support a different multiple deployment are being well received by different customs, nerve fault, >>Tom industry trends, or one thing I know. Western Union is really leading in the digital transformation and in your space, What's next for Western Union? >>Yeah, so just add on Requip Thio Christian before I dive into a Western Union use case just to your point. Christian, I really see a convergence happening between how people today work or or manage their personal life, where the applications, the user experiences and the responses are at your fingertips. Easy to use don't need to learn different tools. It's just all there, right, whether you're an android user or an apple user rights, although your fingertips I ask you the same innovation and transmission happening now on the work side, where I see to your point right a convergence happening where not just that the technology teams but even the business teams. They wanna have that same feature, that same functionality, where all their insights their entire way to interact with the business with the business teams with their data with their systems with their products for their services are at their fingertips right where they can go and they can make a change on an iPad or an iPhone and instant effect. They can go change a rule. They could go and modify Uh uh, an algorithm. They can go and look at expanding their product base, and it's just there. It's instant now. This would take time, right? Because this is going to be a transformational journey right across many different industries, but it's part of that. I really see that type of instant gratification, uh, satisfaction, that type of being able to instantly get those insights. Be able thio to really, you know, do what you do on your personal life in your work life every single day. That trend is absolutely it's actually happening. And it's kind of like tag team that into what we're doing at Western Union is exactly that we are actually transforming how our business teams, uh, in our technology teams are able to interact with our customers, interact with our products, interact with our services, interact with our data and our systems instantly. Right? Perfect example that it's that spot where they could go on typing any question they want. And they instigate an answer like that that that was unheard of a year ago, at least for our business. Right being able to to to go and put in in a new rule and and have it flow through the rules engine and have an instant customer impact that's coming right. Being able to instantly change or configure a new product or service with new fee structure and launch in 15 minutes. That's coming, right? All these new transformations about how do we actually better, uh, leverage our capabilities, our products and our services to meet those customer demands instantly. That's where I see the industry going the next couple of years. >>Wonderful. Um, excited to have both of you on the panel this afternoon. So thank you so much for joining us, Christian and Tom as just a quick wrap up. I, you know, learned quite a bit about industry trends and the problems facing companies today. And from the macro view with snowflake and thousands of customers and thought spots, customers and Western Union. The underlying theme is data unity, right? No more fragmented silos, no more fragmented user experiences, but truly bringing everything together in a governed safe way for users. Toe have trust in the data to have trust in what to answer and what insight is being put in front of them. And all of this pulled together so that businesses can make those better decisions more informed and more personalized. Consumer like experiences for your customers in modern technology stacks. So again, thank you both today for joining us, and we look forward to many more conversations in the future. Thank you >>for having me very happy to be here. >>Thank you so much. >>Thanks. >>Thank you, Angela. And thank you, Tom and Christian for sharing your stories. It was really interesting to hear how the events of this year have prompted Western Union to accelerate their digital transformation with snowflake and thought spot and just reflecting on alot sessions in this track, I love seeing how we're making the search experience even easier and even more consumer like in that first session and then moving on to the second session with our customer Hayes. It was really impressive to see how quickly they'd embedded thought spot into their own MD audit product. And then, of course, we heard about Spot Ike, which is making it easier for everybody to get to the Y faster with automated insights. So I'm afraid that wraps up the sessions in this track. We've come to an end, But remember to join us for the exciting product roadmap session coming right up. And then after that, put your questions to the speakers that you've heard in Track two in I'll meet the Experts Roundtable, creating engaging analytics experiences for all. Now all that remains is for me to say thank you for joining us. We really appreciate you taking the time. I hope it's been interesting and valuable. And if it has, we'd love to pick up with you for a 1 to 1 conversation Bye for now.
SUMMARY :
we did a few deep dives into the thought spot product with sessions on thoughts about one. the most common answer, it was like, what is snowflake and what do you do? and as our solutions and our time to act in our time to react and I wanted to ask both of you some questions about the industry and specific things that you're facing And for sure, the data cloud simplifies access to data. that you faced with Western Union That thought spot and snowflake have helped you overcome? to either fix a problem that we see or better service our customers or offer Why is it important to enable your frontline knowledge ride into the future as we can, to base to innovate, you know, in partnership with both thought spot and with data across the globe at the right time? going to give you you have a subscription based business and you're going toe, and loading in the middle of the night because that's what the technology at that time the adoption and moving to the cloud as well as the topic of multi Cloud. in the digital transformation and in your space, What's next for Western Union? Be able thio to really, you know, do what you do on your And from the macro view with snowflake and thousands of customers for me to say thank you for joining us.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tom | PERSON | 0.99+ |
Angela Cooper | PERSON | 0.99+ |
Angela | PERSON | 0.99+ |
Tom Matzzie | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
Christian | PERSON | 0.99+ |
Denver | LOCATION | 0.99+ |
Christian Kleinerman | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
2020 | DATE | 0.99+ |
Thomas | PERSON | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
iPad | COMMERCIAL_ITEM | 0.99+ |
second session | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Pharaoh | PERSON | 0.99+ |
10 different teams | QUANTITY | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
first session | QUANTITY | 0.99+ |
New York Stock Exchange | ORGANIZATION | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
android | TITLE | 0.99+ |
Western union | ORGANIZATION | 0.99+ |
apple | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Both | QUANTITY | 0.99+ |
550,000 | QUANTITY | 0.99+ |
100 different systems | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
2000 employees | QUANTITY | 0.98+ |
Congress | ORGANIZATION | 0.98+ |
a year ago | DATE | 0.98+ |
over 120 countries | QUANTITY | 0.98+ |
1 | QUANTITY | 0.98+ |
two months later | DATE | 0.98+ |
Lee | PERSON | 0.98+ |
Today | DATE | 0.98+ |
over 200 countries | QUANTITY | 0.98+ |
tonight | DATE | 0.98+ |
71 | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
Western Union | LOCATION | 0.97+ |
three elements | QUANTITY | 0.97+ |
30 plus data stores | QUANTITY | 0.96+ |
five minutes later | DATE | 0.96+ |
first | QUANTITY | 0.96+ |
over 35 countries | QUANTITY | 0.96+ |
next day | DATE | 0.96+ |
30 different data sets | QUANTITY | 0.95+ |
Christian | ORGANIZATION | 0.95+ |
19 data sets | QUANTITY | 0.94+ |
single | QUANTITY | 0.94+ |
two | QUANTITY | 0.94+ |
Snowflake | EVENT | 0.94+ |
30 plus different data silos | QUANTITY | 0.93+ |
few years ago | DATE | 0.92+ |
this afternoon | DATE | 0.92+ |
this year | DATE | 0.92+ |
first one | QUANTITY | 0.92+ |
3 3000 plus | QUANTITY | 0.91+ |
SpotIQ | Beyond.2020 Digital
>>Yeah, yeah. >>Hello and welcome back. You're just in time for our third session spot. I Q amplify your insights with AI in this session will explore how AI gets you to the why of your data capturing changes and trends in the moment they happen. >>You'll >>start to understand how you can transform your data culture by making it easier for analysts to enable business users to consume insights in real time. >>You >>might think this all sounds too good to be true. Well, since seeing is believing, we're joined by thought spots. Vika Scrotum, senior product manager. Anak Shaped Mirror, principal product manager to walk you through all of this on MAWR. Over to you actually, >>Thank you. Wanna Hello, everyone. Welcome to the session. I am Action Hera, together with my colleague because today we will talk to you about how spot I Q uses a. I to generate meaningful insights for the users Before we dwell into that. Let's see why this is becoming so important. Your business and your data is growing and moving faster than ever. Data is considered the new oil Howard. Only those will benefit who can extract value of it. The data used in most of your organization's is just the tip of the iceberg beneath the tip of the iceberg. What you don't see or what you don't know to ask. That makes the difference in this data driven world. Let's learn how one can extract maximum value of the data to make smarter business decisions. We believe that analytics should require less input while producing more output with higher quality in a traditional approach. To be honest, users generally depend on somebody else to create data models, complex data queries to get answers to their pre anticipated questions. But solution like hot spot business users already have a Google like experience where they can just go and get answers to their questions. Now, if you look at other consumer applications, there are multiple of recommendation engines which are out there, which keep recommending. Which article should I read next? Which product should I buy? Which movie should I watch in a way, helping me optimized? Where should I focus my time on in a Similarly in analytics, as your data is growing, solutions must help users uncovered insights to questions which they may not ask, we believe, and a I automated insights will help users unleash the full potential off their data Across the spectrum, we see a potential in a smart, AI driven solution toe autonomously. Monitor your data and feed in relevant insights when you need them, much like a self driving car navigates our users safely to their desired destination. With this, yeah, I'm happy to introduce you to spot like you are a driven insights engine at scale, which will help you get full potential off your data like you automatically discovers, personalize and drive insights hidden in your data. So whenever you search to create answers, spot that you continues to ask a lot more questions on your behalf as it keeps drilling and related date dimensions and measures employed insights which may be of interest to you. Now you as a user can continue to ask your questions or can dig deeper into the inside, provided by spotted you Spartak. You also provides a comprehensive set of insights, which helps user get answers to their advance business questions. In a few clicks, so spotted it. You can help you detect any outlier, for example, spot that you can not only tell you which seller has the highest returns than others, but also which product that sellers selling has higher returns than other products. Or, like you can quickly detect any trends in your data and help us answer questions like how my account sign ups are trending after my targeted campaign is over. I can quickly use for, like, toe get unanswered how my open pipeline is related to my bookings amount and what's the like there. What it means is that how much time a lead will take to convert into a deal I can use partake. You, too, create multiple clusters off my all my customer base and then get answers to questions that which customer segment is buying which particular brand and what are the attributes last and the most used feature Key drivers of change spotted you helps you get answer to a question. What factors lead to the change in sales off a store in 2020 as compared to 2019? We can do all this and simple fix. That's barbecue. What is so unique about Spartak? You how it works hand in hand with our search experience, the more you search, the smarter. The spot that you get as it keeps learning from your usage behavior on generates relevant insights for you for your users. Spartak. You ensures that users can trust every insights. A generator. It broadly does this and broadly, two ways. It keeps their insights relevant by learning the underlying data model on. By incorporating the users feedback that is, users can provide feedback to the spot I Q similar to any social media back from, they can like watching sites they find useful on dislike. What insights Do not find it useful based on users. Feedback Spot like you can downgrade any insight if the users have not find it useful. In addition to that, users can dig deep into any Spartak you insight on all calculations behind it are available for a user to look and understand. The transparency in these calculations not only increases the analytical trust among the users, but also help them learn how they can use the search bar to do much more. I'm super excited to announce Partake you is now available on embrace so our automated A insights engine can run queries life and in database on these datasets so you do not need to bring your data to thoughts about as you connect your data sources. Touch Part performs full indexing value to the data you have selected, not just the headers in the material and as you run sport in Q, it optimizes and run efficient queries on your data warehouse on. I am super pleased to introduce you. This new spot like you monitor the spot that you monitor will enable all your users to keep track of their key metrics. Spartak, you monitor will not only provide them regular updates off their key metrics, but we also analyze all the underlying data on related dimensions to help them explain. What is leading to the change of a particular metric monitor will also be available on your mobile app so that you can keep track of your metrics whenever and wherever you go, because will talk for further detail about this during the demo. So now let's see Spartak in action. But before we go there, let's meet any. Amy is an analyst at a global retail about form. Amy is preparing for her quarterly sales review meeting with the management, so Amy has to report how the sales has meat performing how, what, what factors lead to the change in the sales? And if there are any other impressing insights, which everyone should off tell to the management? So but this Let's see how immigrant use part like you to prepare for the meeting. So Amy goes to that spot, chooses the sales data set for her company. But before we see how many users what I Q to prepare for the meeting. I just wanted to highlight that all this data which we're going to talk about is residing in Snowflake. >>So >>Touch Part is going to do a life query on the snowflake database on even spot. A Q analysis will run on the Snowflake databases, so we'll go back and see how you can use it. So Amy is preparing for the sales meeting for 2019. We just ended. So images right Sales 2019 on here. She has the graph of the Continent tickets, >>so >>what she does is immediately pence it >>for >>the report. She's creating Andi now. This graph is available >>there now. >>Any Monnet observed >>that >>the Q four sales is significantly higher than Q >>three, so >>you she wants to deep dive into this. So she just select these two data points and does the right click and runs particularities. So now, as we talked earlier, Spartak, you recommends which columns Spartak Things Will best explains this change >>on. >>Not only that, you can look that Spartacus automatically understood that Amy is trying toe identify what led to this change. So the change analysis we selected So now with this, >>Amy >>has a bit more business context when he realizes that she doesn't want to add these columns. So she's been using because she thinks this is too granular for the management right now. >>If >>she wants, she can add even more columns. All columns are available for her, and she can reduce columns. So now she runs 42 analysis. So while this product Unisys is running, what the system will do with the background, this part I Q will drill across all the dimensions, which any is selected and try to explain the difference, which is approximately $10 million in sales. So let's see if Amy's report is ready. Yeah, so with this, what's product you has done is protect you has drilled across all dimensions. Amy has selected and presented how the different values in these dimensions have changed. So it's product. You will not only tell you which values in these dimensions have changed the most, but also does an attribution that how much of this change has led to the overall change scenes. So here in the first inside sport accuse telling that 10 products have the largest change out of the 3 45 values and the account for 39% increase. Overall, there has been look by the prototype category. It's saying that five product types of the largest change out of the 15 values, and they account for 98.6% of total increase. And they're not saying the sailors increased their also demonstrating that in some categories the sales has actually decreased to ensure the sales has decreased. Amy finds this inside should be super useful so immediately pins this on the same pain, but she was preparing for and she's getting ready with that. Amy also wants to dig deeper into this inside. My name goes here. She sees that spot. I Q has not only calculated the change across these product types, but has also calculated person did change. So Amy immediately sorts this by wasn't did change. And then she notices that even though Sweater as a category as a prototype, was not appearing in the change analysis but has the most significant change in terms of percentage in comparison to Q two vs Q four. So she also wants to do this so she can just quickly change the title. And she can pin this insight as well under spin board for the management to look at with this done. Now, Amy, just want to go back to this sales and see if she can find anything else interesting. So now Amy has already figured out the possible causes. What led to the increase in sales? So now, for the whole of 2019, as this is also your closing, Amy looks, uh, the monthly figures for 2019, and she gets this craft now. If Amy has to understand, if there is an interesting insight, she can dig into different dimensions and figure out on her own or immigrant, just click on this product analysis. That's product immediately suggest all the dimensions and measures immigrant analyze sales by Andi many. We will run this What will happen is this barbecue system will try to identify outliers. The different trend analysis Onda cross correlation across different measures. So Amy again realizes that this is a bit too much for her. So she reduces some of these insights, which she thinks are not required for the management right now from the business context and the business meeting. And then she just immediately runs this analysis. So now, with this, Amy is hoping to get some interesting insights from Spartak, which immigrant present to her management meeting. Let's see what sport gets for her. So now the Alice is run within 10 seconds, so spot taken started analyzing. So these are the six anomaly sport like you found across different products, where their total sales are higher than the rest. He also founded Spot. I just found eight insights off different product types which has tired total sales and look across these enemy sees that oh jackets have against the highest sales across all the categories in December as well. Amy wants toe been this to the PIN board on M. It moves further now. Amy's is that it has also shown Total Country purchased their product a me thinks this is not a useful insights. Amy can get this feedback. The system and system asked, Why are you saying you don't find this useful so the system can remember? So you can also say that anomalies are obvious right now and give this feedback and the system will remember. In addition, Amy finds that the system has automatically correlated the total sales in total contrary purchase. Amy Pence this as well to the pin board. Andi. She loves this inside where she she is that not only the total sales have increased, but total quantity purchases have increased a lot more on their training, opposed as well. So she also opens this now anything. She is ready for her meeting with the management. So she just goes and shares the PIN board, which she just created with the management. And you know what happens immediately? The jacket sales category Manager Mr Tom replies back to Amy and says in the request, Any d really like this? So now we will see how Spartak you can help any educators as request doesn't mean really need to create these kind of reports every month to cater toe Tom's request. So with this, I will handle it because to take us walk us through How spot that you can cater this request. Hi, >>everyone. So analysts like Amy are always flooded with such requests from the business users and with Spot and you monitor. Amy can set up everyone who needs updates on a on a metric in just a few simple steps and enable them to drag these metrics whenever and wherever they want. And north of the metrics, they also get the corresponding change analysis on the device off their choice with hot Spot. What I give money being available on both Web and the mobile labs. So let's get started with the demo will be set up a meet and go to the search tab and creator times we start for the metrics you want to monitor, right? And please know if the charges already created is already created. All is available is, um, usually a section in a PIN board. Also dancer. Then there's no need to create a new child. She can simply then uh, right click on the chart and select moisture from the menu, which then shows, which then shows the breakdown off the metric he's going to monitor, including the measure. What it's been grouped by on what it is filtered on. Okay, and also as this is a weekly metric, all the subscribers are going to get a weekly notification for this metric had been a monthly metric. Then the notifications would have been delivered on a monthly cadence. Next she can click on, continue and go to the configure dimensions called on Page. Here A is recommending what all dimensions could best being the change in this metric, she can go ahead with default recommendation, or she can change the columns as she seems very she can click, she conflict, continue and go to the next page, which is the subscriber stage. It is added by default to the subscriber, but she can search everyone who needs update on this metric and add them on this metric by clicking confirmed, she'll see a toast message on the bottom of the page, taking on which will take a me to this page, which is a metric detail page On the top of this page, we can see the movement of the metric and how it is changing over time, 92 you can see that the Mets jacket, since number has increased by 2.5% in the week off 23rd of December has compared toa the week off 16th of December and just below e a has invaded the man is generated in sites which are readily available for consumption. Okay to discharge. Right here says that pain products have the largest change out of all the 28 values and contributes to the 88% of the total increase in the same. And this one right here is that Midwest is the larger Midwest has the largest change and accounts for 55.66% off the total increase. Now, all this goodness is also available on the mobile lab. Right? So let me just show you how business users are going to get notified on the based. On this metric, all the business users who are subscribed to this metric are going to get a regular email as well as push notifications on the mobile lab. And when the click on this, they line on a metric detail page which has all the starts, which I just showed you on the on the bed version, okay. And one cyclic on back burden. They land on this page, which is a monitor tab, and it summarizes all the metrics Which opportunity monitoring and gives them a whole gave you to stay all I want to stay on top of their businesses. Okay. Eso that folks was monitor. Now I'll search back to slaves and cover. Summarize the key takeaways. From what? That she and I just don't know. So it's part of you wanted, uh, Summit Spartak you. It automatically discovers insights and helps you unless the full potential of your data and that's what I do is comprehensive set off analysis. You can answer your advanced business question in just a few simple steps and the end speed of your time. Bring state. And with a new support for embrace, you can run sport like you on your data in your data warehouse and with spotted you monitor, you can monitor all the business metrics and not just died. We can also understand that teaching teaching drivers on those metrics on the platform of your choice. So with that, I'll hand over toe, you know. >>Thank you so much. Both of you That was fantastic. Um, I just love spot like, because it makes me look like much more of a rock star with data than I really am. So thank you guys for that fantastic presentation. Um, so we've got a couple of minutes for a couple of questions for you. The first one is for action. Um, once spot I Q generates a number of insights. Can you run spot I Q again on one of those insights? >>Yeah, As a philosophy off Spiric, you sport like you never takes the user to the dead end Spartak. You also transparently shares the calculation. So user can not only the keeper that on edit Understand how this product you inside has been calculated, but user can also run us for like you analysts is honest for data analysis as well. Which music? And continue to do not on the first level. Second level in the third level as well. >>That's cool. Thank you. Actually on then The next one is for because for spot ik monitor is it possible to edit the dimensions used for explaining the factors to change that was detected? >>Yes. It's an owner of the metric you can change the dimensions whenever you want and save them for everyone else. >>Okay, well, I think that's about all we've got time for in this session. So all that remains is for me to say a huge thank you to Because an Akshay Andi, we've got the last session of this track coming up in a few minutes. So grab a snack. Come right back and listen to an amazing customer story with Snowflake on Western Union, they're up next.
SUMMARY :
explore how AI gets you to the why of your data capturing changes and trends start to understand how you can transform your data culture by making it easier for analysts Anak Shaped Mirror, principal product manager to walk you through all of this on insights engine at scale, which will help you get full potential off your data like So Amy is preparing for the sales meeting for 2019. the report. as we talked earlier, Spartak, you recommends which columns Spartak Things Will So the change analysis we selected So now with this, So she's been using because she thinks this is too granular for the management right now. So now we will see how Spartak you to the search tab and creator times we start for the metrics you want to monitor, Both of you That was fantastic. keeper that on edit Understand how this product you inside has been calculated, the dimensions used for explaining the factors to change that was detected? and save them for everyone else. So all that remains is for me to say a huge thank you to Because
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Amy | PERSON | 0.99+ |
December | DATE | 0.99+ |
Vika Scrotum | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
10 products | QUANTITY | 0.99+ |
55.66% | QUANTITY | 0.99+ |
39% | QUANTITY | 0.99+ |
98.6% | QUANTITY | 0.99+ |
15 values | QUANTITY | 0.99+ |
2019 | DATE | 0.99+ |
2.5% | QUANTITY | 0.99+ |
Amy Pence | PERSON | 0.99+ |
88% | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Both | QUANTITY | 0.99+ |
third level | QUANTITY | 0.99+ |
2020 | DATE | 0.99+ |
first level | QUANTITY | 0.99+ |
Second level | QUANTITY | 0.99+ |
six anomaly | QUANTITY | 0.99+ |
28 values | QUANTITY | 0.99+ |
approximately $10 million | QUANTITY | 0.99+ |
five product | QUANTITY | 0.99+ |
92 | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Andi | PERSON | 0.99+ |
two data points | QUANTITY | 0.99+ |
Unisys | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
42 analysis | QUANTITY | 0.99+ |
third session | QUANTITY | 0.99+ |
3 45 values | QUANTITY | 0.99+ |
Anak Shaped Mirror | PERSON | 0.98+ |
Spartak | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
first one | QUANTITY | 0.97+ |
two ways | QUANTITY | 0.97+ |
eight insights | QUANTITY | 0.96+ |
Q two | OTHER | 0.95+ |
one | QUANTITY | 0.94+ |
Q four | OTHER | 0.93+ |
23rd of December | DATE | 0.93+ |
Howard | ORGANIZATION | 0.93+ |
16th of December | DATE | 0.92+ |
three | QUANTITY | 0.92+ |
Spot | ORGANIZATION | 0.92+ |
Western Union | LOCATION | 0.91+ |
Snowflake | LOCATION | 0.85+ |
Mets | ORGANIZATION | 0.85+ |
Snowflake | ORGANIZATION | 0.85+ |
Akshay Andi | PERSON | 0.84+ |
Summit Spartak | ORGANIZATION | 0.83+ |
Spartak | TITLE | 0.81+ |
SpotIQ | ORGANIZATION | 0.8+ |
Midwest | LOCATION | 0.8+ |
10 seconds | QUANTITY | 0.79+ |
Spartak | PERSON | 0.75+ |
Wan | PERSON | 0.71+ |
one cyclic | QUANTITY | 0.69+ |
Action Hera | ORGANIZATION | 0.66+ |
MAWR | ORGANIZATION | 0.65+ |
Alice | PERSON | 0.61+ |
ThoughtSpot Everywhere | Beyond.2020 Digital
>>Yeah, yeah. >>Welcome back to session, too. Thoughts about everywhere. Unlock new revenue streams with embedded search and I Today we're joined by our senior director of Global Oh am Rick Dimel, along with speakers from our thoughts about customer Hayes to discuss how thought spot is open for everyone by unlocking unprecedented value through data search in A I, you'll see how thoughts about compound analytics in your applications and hear how industry leaders are creating new revenue streams with embedded search and a I. You'll also learn how to increase app stickiness on how to create an autonomous this experience for your end users. I'm delighted to introduce our senior director of Global OPM from Phillips Spot, Rick DeMARE on then British Ramesh, chief technology officer, and Leon Roof, director of product management, both from Hayes over to you. Rick, >>Thank you so much. I appreciate it. Hi, everybody. We're here to talk to you about Fox Spot everywhere are branded version of our embedded analytics application. It really our analytics application is all about user experience. And in today's world, user experience could mean a lot of things in ux design methodologies. We want to talk about the things that make our product different from an embedded perspective. If you take a look at what product managers and product design people and engineers are doing in this space, they're looking at a couple of key themes when they design applications for us to consume. One of the key things in the marketplace today is about product led growth, where the product is actually the best marketing tool for the business, not even the sales portion or the marketing department. The product, by the word of mouth, is expanding and getting more people onto the system. Why is that important? It's important because within the first few days of any application, regardless of what it is being used binding users, 70% of those users will lose. Interest will stop coming back. Why do they stop coming back? Because there's no ah ha moment through them. To get engaged within the technology, today's technologies need to create a direct relationship with the user. There can't be a gatekeeper between the user and the products, such as marketing or sales or information. In our case. Week to to make this work, we have toe leverage learning models in leverage learning as it's called Thio. Get the user is engaged, and what that means is we have to give them capabilities they already know how to use and understand. There are too many applications on the marketplace today for for users to figure out. So if we can leverage the best of what other APS have, we can increase the usage of our systems. Because in today's world, what we don't want to do from a product perspective is lead the user to a dead end or from a product methodology. Our perspective. It's called an empty state, and in our world we do that all the time. In the embedded market place. If you look at at the embedded marketplace, it's all visualizations and dashboards, or what I call check engine lights in your application's Well, guess what happens when you hit a check engine life. You've got to call the dealer to get more information about what just took place. The same thing happens in the analytic space where we provide visualizations to users. They get an indicator, but they have to go through your gatekeepers to get access to the real value of that data. What am I looking at? Why is it important the best user experiences out on the marketplace today? They are autonomous. If we wanna leverage the true value of digital transformation, we have to allow our developers to develop, not have them, the gatekeepers to the rial, content to users want. And in today's world, with data growing at much larger and faster levels than we've ever seen. And with that shelf life or value of that data being much shorter and that data itself being much more fragmented, there's no developer or analysts that can create enough visualizations or dashboards in the world to keep the consumption or desire for these users to get access to information up to speed. Clients today require the ability to sift through this information on their own to customize their own content. And if we don't support this methodology, our users are gonna end up feeling powerless and frustrated and coming back to us. The gatekeepers of that information for more information. Loyalty, conversely, can be created when we give the users the ability toe access this information on their own. That is what product like growth is all about in thought spot, as you know we're all about search. It's simple. It's guided as we type. It gives a super fast responses, but it's also smart on the back end handling complexities, and it's really safe from a governance and as well as who gets access to what perspective it's unknown learned environment. Equally important in that learned environment is this expectation that it's not just search on music. It's actually gonna recommend content to me on the fly instantly as I try content I might not even thought of before. Just the way Spotify recommends music to us or Netflix recommends a movie. This is a expected learned behavior, and we don't want to support that so that they can get benefit and get to the ah ha moments much quicker. In the end, which consumption layer do you want to use, the one that leads you to the Dead End Street or the one that gets you to the ah ha moment quickly and easily and does it in an autonomous fashion. Needless to say, the benefits of autonomous user access are well documented today. Natural language search is the wave of the future. It is today. By 2004 75% of organizations are going to be using it. The dashboard is dead. It's no longer going to be utilized through search today, I if we can improve customer satisfaction and customer productivity, we're going to increase pretensions of our retention of our applications. And if we do that just a little bit, it's gonna have a tremendous impact to our bottom line. The way we deploy hotspots. As you know, from today's conversations in the cloud, it could be a manage class, not offering or could be software that runs in your own VPC. We've talked about that at length at this conference. We've also talked about the transformation of application delivery from a Cloud Analytics perspective at length here it beyond. But we apply those same principles to your product development. The benefits are astronomical because not only do you get architectural flexibility to scale up and scale down and right size, but your engineers will increase their productivity because their offerings, because their time and effort is not going to be spent on delivering analytics but delivering their offerings. The speed of innovation isn't gonna be released twice a year or four times a year. It's gonna It can happen on a weekly basis, so your time to market in your margins should increase significantly. At this point, I want a hand. The microphone over to Revert. Tesche was going to tell you a little bit about what they're doing. It hes for cash. >>Thanks, Rick. I just want to introduce myself to the audience. My name is Rotational. Mention the CTO Europe ace. I'm joined my today by my colleague Gillian Ruffles or doctor of product management will be demoing what we have built with thoughts about, >>um but >>just to my introduction, I'm going to talk about five key things. Talk about what we do. What hes, uh we have Really, um what we went through the select that spot with other competitors What we have built with that spot very quickly and last but not least, some lessons learned during the implementation. So just to start with what we do, uh, we're age. We are health care compliance and revenue integrity platform were a saas platform voter on AWS were very short of l A. That's it. Use it on these around 1 50 customers across the U. S. On these include large academic Medical Insight on. We have been in the compliant space for the last 30 plus years, and we were traditionally consulting company. But very recently we have people did more towards software platform model, uh, in terms off why we chose that spot. There were three business problems that I faced when I took this job last year. At age number one is, uh, should be really rapidly deliver new functionality, nor platform, and he agile because some of our product development cycles are in weeks and not months. Hey had a lot of data, which we collected traditionally from the SAS platform, and all should be really create inside stretch experience for our customers. And then the third Big one is what we saw Waas large for customers but really demanding self service capabilities. But they were really not going for the static dash boats and and curated content, but instead they wanted to really use the cell service capabilities. Thio mind the data and get some interesting answers during their questions. So they elevated around three products around these problems statements, and there were 14 reasons why we just start spot number one wars off course. The performance and speed to insights. Uh, we had around 800 to a billion robot of data and we wanted to really kind of mind the data and set up the data in seconds on not minutes and hours. We had a lot of out of the box capabilities with that spot, be it natural language search, predictive algorithms. And also the interactive visualization, which, which was which, Which gave us the agility Thio deliver these products very quickly. And then, uh, the end user experience. We just wanted to make sure that I would users can use this interface s so that they can very quickly, um, do some discovery of data and get some insights very quickly. On last but not least, talksport add a lot of robust AP ice around the platform which helped us embed tot spot into are offering. But those are the four key reasons which we went for thoughts part which we thought was, uh, missing in in the other products we evaluated performance and search, uh, the interactive visualization, the end user experience, and last but not least flexible AP ice, which we could customize into our platform in terms of what we built. We were trying to solve to $50 billion problem in health care, which is around denials. Um so every year, around 2, 50 to $300 billion are denied by players thes air claims which are submitted by providers. And we built offering, which we called it US revenue optimizer. But in plain English, what revenue optimizer does is it gives the capability tow our customers to mind that denials data s so that they can really understand why the claims were being denied. And under what category? Recent reasons. We're all the providers and quarters who are responsible for these claims, Um, that were dryland denials, how they could really do some, uh, prediction off. It is trending based on their historical denial reasons. And then last but not least, we also build some functionality in the platform where we could close the loop between insights, action and outcome that Leon will be showing where we could detect some compliance and revenue risks in the platform. On more importantly, we could, uh, take those risks, put it in a I would say, shopping card and and push it to the stakeholders to take corrective action so the revenue optimizer is something which we built in three months from concept to lunch and and that that pretty much prove the value proposition of thoughts. But while we could kind of take it the market within a short period of time Next leopard >>in terms >>off lessons learned during the implementation thes air, some of the things that came to my mind asses, we're going through this journey. The first one is, uh, focus on the use case formulation, outcomes and wishful story boarding. And that is something that hot spot that's really balance. Now you can you can focus on your business problem formulation and not really focus on your custom dash boarding and technology track, etcetera. So I think it really helped our team to focus on the versus problem, to focus on the outcomes from the problem and more importantly, really spend some time on visualizing What story are we say? Are we trying to say to our customers through revenue optimizer The second lesson learned first When we started this implementation, we did not dualistic data volume and capacity planning exercise and we learned it our way. When we are we loaded a lot of our data sets into that spot. And then Aziz were doing performance optimization. XYZ. We figured out that we had to go back and shot the infrastructure because the data volumes are growing exponentially and we did not account for it. So the biggest lesson learned This is part of your architectural er planning, exercise, always future proof your infrastructure and make sure that you work very closely with the transport engineering team. Um, to make sure that the platform can scale. Uh, the last two points are passport as a robust set of AP Ice and we were able to plug into those AP ice to seamlessly ended the top spot software into a platform. And last but not least, one thing I would like to closest as we start these projects, it's very common that the solution design we run into a lot of surprises. The one thing I should say is, along those 12 weeks, we very closely work with the thoughts, part architecture and accounting, and they were a great partner to work with us to really understand our business problem, and they were along the way to kind of government suggested, recommends and workarounds and more importantly, also, helpers put some other features and functionality which you requested in their engineering roadmap. So it's been a very successful partnership. Um, So I think the biggest take of it is please make sure that you set up your project and operating model value ember thoughts what resources and your team to make sure that they can help you as you. It's some obstacles in the projects so that you can meet your time ones. Uh, those are the key lessons learned from the implementation. And with that, I would pass this to my colleague Leon Rough was going to show you a demo off what we go. >>Thanks for Tesh. So when we were looking Thio provide this to our customer base, we knew that not everyone needed do you access or have available to them the same types of information or at the same particular level of information. And we do have different roles within RMD auto Enterprise platform. So we did, uh, minimize some roles to certain information. We drew upon a persona centric approach because we knew that those different personas had different goals and different reasons for wanting to drive into these insights, and those different personas were on three different levels. So we're looking at the executive level, which is more on the C suite. Chief Compliance Officer. We have a denial trending analyses pin board, which is more for the upper, uh, managers and also exact relatives if they're interested. And then really, um, the targeted denial analysis is more for the day to day analysts, um, the usage so that they could go in and they can really see where the trends are going and how they need to take action and launch into the auditing workflow so within the executive or review, Um, and not to mention that we were integrating and implementing this when everyone was we were focused on co vid. So as you can imagine, just without covert in the picture, our customers are concentrated on denials, and that's why they utilize our platform so they could minimize those risks and then throw in the covert factor. Um, you know, those denial dollars increase substantially over the course of spring and the summer, and we wanted to be able to give them ah, good view of the denials in aggregate as well as's we focus some curated pin boards specific to those areas that were accounting for those high developed denials. So on the Executive Overview Board, we created some banner tiles. The banner tiles are pretty much a blast of information for executives thes air, particular areas where there concentrating and their look looking at those numbers consistently so it provides them away to take a good look at that and have that quick snapshot. Um, more importantly, we did offer as I mentioned some curated pin boards so that it would give customers this turnkey access. They wouldn't necessarily have to wonder, You know, what should I be doing now on Day one, but the day one that we're providing to them these curated insights leads the curiosity and increases that curiosity so that they can go in and start creating their own. But the base curated set is a good overview of their denial dollars and those risks, and we used, um, a subject matter expert within our organization who worked in the field. So it's important to know you know what you're targeting and why you're targeting it and what's important to these personas. Um, not everyone is necessarily interests in all the same information, and you want to really hit on those critical key point to draw them and, um, and allowed them that quick access and answer those questions they may have. So in this particular example, the curated insight that we created was a monthly denial amount by functional area. And as I was mentioning being uber focused on co vid, you know, a lot of scrutiny goes back to those organizations, especially those coding and H i M departments, um, to ensure that their coding correctly, making sure that players aren't sitting on, um, those payments or denying those payments. So if I were in executive and I came in here and this was interesting to me and I want to drill down a little bit, I might say, You know, let me focus more on the functional area than I know probably is our main concern. And that's coating and h i M. And because of it hit in about the early winter. I know that those claims came in and they weren't getting paid until springtime. So that's where I start to see a spike. And what's nice is that the executive can drill down, they may have a hunch, or they can utilize any of the data attributes we made available to them from the Remittance file. So all of these data, um, attributes are related to what's being sent on the 8 35 fear familiar with the anti 8 35 file. So in particular, if I was curious and had a suspicion that these were co vid related or just want to concentrate in that area, um, we have particular flag set up. So the confirmed and suspected cases are pulling in certain diagnosis and procedure codes. And I might say 1.27 million is pretty high. Um, toe look at for that particular month, and then they have the ability to drill down even further. Maybe they want to look at a facility level or where that where that's coming from. Furthermore, on the executive level, we did take advantage of Let me stop here where, um also provided some lagged a so leg. This is important to organizations in this area because they wanna know how long does it take before they re submit a claim that was originally denied before they get paid industry benchmark is about 10 days of 10 days is a fairly good, good, um, basis to look at. And then, obviously anything over that they're going to take a little bit more scrutiny on and want to drill in and understand why that is. And again, they have that capabilities in order to drill down and really get it. Those answers that they're looking for, we also for this particular pin board. And these users thought it would be helpful to utilize the time Siri's forecasting that's made available. So again, thes executives need thio need to keep track and forecast where they're trends were going or what those numbers may look like in the future. And we thought by providing the prediction pins and we have a few prediction pins, um would give them that capability to take a look at that and be able to drill down and use that within, um, certain reporting and such for their organization. Another person, a level that I will go to is, um, Mawr on the analyst side, where those folks are utilizing, um, are auditing workflow and being in our platform, creating audits, completing audits, we have it segregated by two different areas. And this is by claim types so professional or institutional, I'm going to jump in here. And then I am going to go to present mode. So in this particular, um, in this particular view or insight, we're providing that analysts view with something that's really key and critical in their organization is denials related Thio HCC s andi. That's a condition category that kind of forecast, the risk of treatment. And, you know, if that particular patient is probably going to be seen again and have more conditions and higher costs, higher health care spending. So in this example, we're looking at the top 15 attending providers that had those HCC denials. And this is, um, critical because at this point, it really peaks in analyst curiosity. Especially, You know, they'll see providers here and then see the top 15 on the top is generating Ah, hide denial rate. Hi, denial. The dollars for those HCC's and that's a that's a real risk to the organization, because if that behavior continues, um, then those those dollars won't go down. That number won't go down so that analysts then can go in and they can drill down um, I'm going to drill down on diagnosis and then look at the diagnosis name because I have a suspicion, but I'm not exactly sure. And what's great is that they can easily do this. Change the view. Um, you know, it's showing a lot of diagnoses, but what's important is the first one is sepsis and substance is a big one. Substances something that those organizations see a lot of. And if they hover, they can see that 49.57 million, um, is attributed to that. So they may want to look further into that. They'd probably be interested in closing that loop and creating an audit. And so what allowed us to be able to do that for them is we're launching directly into our auditing workflow. So they noticed something in the carried insight. It sparked some investigation, and then they don't have to leave that insight to be able to jump into the auditing workflow and complete that. Answer that question. Okay, so now they're at the point where we've pulled back all the cases that attributed to that dollar amount that we saw on the Insight and the users launching into their auditing workflow. They have the ability Thio select be selective about what cases they wanna pull into the audit or if they were looking, um, as we saw with sepsis, they could pull in their 1600 rose, but they could take a sampling size, which is primarily what they would do. They went audit all 1600 cases, and then from this point in they're into, they're auditing workflow and they'd continue down the path. Looking at those cases they just pulled in and being able Thio finalized the audit and determine, you know, if further, um, education with that provider is needed. So that concludes the demo of how we integrated thought spot into our platform. >>Thank you, LeAnn. And thank you. Re test for taking the time to walk us through. Not only your company, but how Thought spot is helping you Power analytics for your clients. At this point, we want to open this up for a little Q and A, but we want to leave you with the fact that thought spot everywhere. Specifically, it cannot only do this for Hayes, but could do it for any company anywhere they need. Analytical applications providing these applications for their customers, their partners, providers or anybody within their network for more about this, you can see that the website attached below >>Thanks, Rick and thanks for tests and Leon that I find it just fascinating hearing what our customers are doing with our technology. And I certainly have learned 100% more about sepsis than I ever knew before this session. So thank you so much for sharing that it's really is great to see how you're taking our software and putting it into your application. So that's it for this session. But do stay tuned for the next session, which is all about getting the most out of your data and amplifying your insights. With the help of A, I will be joined by two thought spot leaders who will share their first hand experiences. So take a quick breather and come right back
SUMMARY :
on how to create an autonomous this experience for your end users. that so that they can get benefit and get to the ah ha moments much quicker. Mention the CTO Europe ace. to a billion robot of data and we wanted to really kind of mind the data the last two points are passport as a robust set of AP Ice and we Um, and not to mention that we were integrating and implementing this when everyone Re test for taking the time to walk us through. And I certainly have learned 100% more about sepsis than I ever knew before this session.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Gillian Ruffles | PERSON | 0.99+ |
Rick | PERSON | 0.99+ |
LeAnn | PERSON | 0.99+ |
Leon Roof | PERSON | 0.99+ |
70% | QUANTITY | 0.99+ |
10 days | QUANTITY | 0.99+ |
49.57 million | QUANTITY | 0.99+ |
$50 billion | QUANTITY | 0.99+ |
14 reasons | QUANTITY | 0.99+ |
100% | QUANTITY | 0.99+ |
Siri | TITLE | 0.99+ |
Phillips Spot | ORGANIZATION | 0.99+ |
1.27 million | QUANTITY | 0.99+ |
Leon Rough | PERSON | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
HCC | ORGANIZATION | 0.99+ |
Leon | PERSON | 0.99+ |
Rick DeMARE | PERSON | 0.99+ |
2004 | DATE | 0.99+ |
Aziz | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Spotify | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
Fox Spot | ORGANIZATION | 0.99+ |
12 weeks | QUANTITY | 0.99+ |
1600 cases | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Rick Dimel | PERSON | 0.99+ |
three months | QUANTITY | 0.98+ |
second lesson | QUANTITY | 0.98+ |
around 1 50 customers | QUANTITY | 0.98+ |
8 35 | OTHER | 0.98+ |
One | QUANTITY | 0.98+ |
AWS | ORGANIZATION | 0.98+ |
twice a year | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
three business problems | QUANTITY | 0.98+ |
four key reasons | QUANTITY | 0.98+ |
Global OPM | ORGANIZATION | 0.98+ |
$300 billion | QUANTITY | 0.97+ |
around 800 | QUANTITY | 0.97+ |
around 2, 50 | QUANTITY | 0.97+ |
U. S. | LOCATION | 0.97+ |
both | QUANTITY | 0.97+ |
Day one | QUANTITY | 0.96+ |
English | OTHER | 0.96+ |
75% | QUANTITY | 0.95+ |
a billion | QUANTITY | 0.95+ |
Tesh | PERSON | 0.94+ |
Tesche | PERSON | 0.93+ |
Global Oh am | ORGANIZATION | 0.93+ |
four times a year | QUANTITY | 0.93+ |
two points | QUANTITY | 0.93+ |
first few days | QUANTITY | 0.92+ |
top 15 | QUANTITY | 0.9+ |
five key things | QUANTITY | 0.9+ |
three products | QUANTITY | 0.9+ |
last 30 plus years | DATE | 0.9+ |
US | LOCATION | 0.87+ |
CTO Europe | ORGANIZATION | 0.87+ |
uber | ORGANIZATION | 0.87+ |
about 10 days | QUANTITY | 0.86+ |
Dead End Street | LOCATION | 0.86+ |
Thio HCC | ORGANIZATION | 0.85+ |
talksport | ORGANIZATION | 0.85+ |
day one | QUANTITY | 0.85+ |
two thought spot leaders | QUANTITY | 0.83+ |
Revert | PERSON | 0.81+ |
Today | DATE | 0.8+ |
Hayes | PERSON | 0.79+ |
top 15 attending providers | QUANTITY | 0.77+ |
three | QUANTITY | 0.76+ |
two different areas | QUANTITY | 0.75+ |
one thing | QUANTITY | 0.73+ |
Thio | PERSON | 0.72+ |
age number one | QUANTITY | 0.66+ |
Thio | ORGANIZATION | 0.65+ |
third Big one | QUANTITY | 0.64+ |
first hand | QUANTITY | 0.62+ |
Deep Dive into ThoughtSpot One | Beyond.2020 Digital
>>Yeah, >>yeah. Hello and welcome to this track to creating engaging analytics experiences for all. I'm Hannah Sinden Thought spots Omiya director of marketing on. I'm delighted to have you here today. A boy Have we got to show for you now? I might be a little bit biased as the host of this track, but in my humble opinion, you've come to a great place to start because this track is all about everything. Thought spot. We'll be talking about embedded search in a I thought spot one spot I. Q. We've got great speakers from both thoughts about andare customers as well as some cool product demos. But it's not all product talk. We'll be looking at how to leverage the tech to give your users a great experience. So first up is our thoughts about one deep dive. This session will be showing you how we've built on our already superb search experience to make it even easier for users across your company to get insight. We've got some great speakers who are going to be telling you about the cool stuff they've been working on to make it really fantastic and easy for non technical people to get the answers they need. So I'm really delighted to introduce Bob Baxley s VP of design and experience That thought spot on Vishal Kyocera Thought spots director of product management. So without further ado, I'll hand it over to Bob. Thanks, >>Hannah. It's great to be here with everybody today and really excited to be able to present to you thought spot one. We've been working on this for months and months and are super excited to share it before we get to the demo with Shawl, though, I just want to set things up a little bit to help people understand how we think about design here. A thought spot. The first thing is that we really try to think in terms of thought. Spot is a consumer grade product, terms what we wanted. Consumer grade you x for an analytics. And that means that for reference points rather than looking at other enterprise software companies, we tend to look at well known consumer brands like Google, YouTube and WhatsApp. We firmly believe that people are people, and it doesn't matter if they're using software for their own usage or thought are they're using software at work We wanted to have a great experience. The second piece that we were considering with thoughts about one is really what we call the desegregation of bundles. So instead of having all of your insights wraps strictly into dashboards, we want to allow users to get directly to individual answers. This is similar to what we saw in music. Were instead of you having to buy the entire album, of course, you could just buy individual songs. You see this in iTunes, Spotify and others course. Another key idea was really getting rid of gate keepers and curators and kind of changing people from owning the information, helping enable users to gather together the most important and interesting insights So you can follow curator rather than feeling like you're limited in the types of information you can get. And finally, we wanted to make search the primary way, for people are thinking about thought spot. As you'll see, we've extended search from beyond simply searching for your data toe, also searching to be able to find pin boards and answers that have been created by other people. So with that, I'll turn it over to my good friend Rachel Thio introduce more of thought, spot one and to show you a demo of the product. >>Thank you, Bob. It's a pleasure to be here to Hello, everyone. My name is Michelle and Andy, product management for Search. And I'm really, really excited to be here talking about thoughts about one our Consumer analytics experience in the Cloud. Now, for my part of the talk, we're gonna first to a high level overview of thoughts about one. Then we're going to dive into a demo, and then we're gonna close with just a few thoughts about what's coming next. So, without any today, let's get started now at thought spot. Our mission is to empower every user regardless of their expertise, to easily engage with data on make better data driven decisions. We want every user, the nurse, the neighborhood barista, the teacher, the sales person, everyone to be able to do their jobs better by using data now with thoughts about one. We've made it even more intuitive for all these business users to easily connect with the insights that are most relevant for them, and we've made it even easier for analysts to do their jobs more effectively and more efficiently. So what does thoughts about one have? There's a lot off cool new features, but they all fall into three main categories. The first main category is enhanced search capabilities. The second is a brand new homepage that's built entirely for you, and the third is powerful tools for the analysts that make them completely self service and boost their productivity. So let's see how these work Thought Spot is the pioneer for search driven analytics. We invented search so that business users can ask questions of data and create new insights. But over the years we realized that there was one key piece off functionality that was missing from our search, and that was the ability to discover insights and content that had already been created. So to clarify, our search did allow users to create new content, but we until now did not have the ability to search existing content. Now, why does that matter? Let's take an example. I am a product manager and I am always in thought spot, asking questions to better understand how are users are using the product so we can improve it now. Like me, A lot of my colleagues are doing the same thing. Ah, lot of questions that I asked have already been answered either completely are almost completely by many of my colleagues, but until now there's been no easy way for me to benefit from their work. And so I end up recreating insights that already exists, leading to redundant work that is not good for the productivity off the organization. In addition, even though our search technology is really intuitive, it does require a little bit of familiarity with the underlying data. You do need to know what metric you care about and what grouping you care about so that you can articulate your questions and create new insights. Now, if I consider in New employees product manager who joins Hotspot today and wants to ask questions, then the first time they use thought spot, they may not have that data familiarity. So we went back to the drawing board and asked ourselves, Well, how can we augment our search so that we get rid off or reduced the redundant work that I described? And in addition, empower users, even new users with very little expertise, maybe with no data familiarity, to succeed in getting answers to their questions the first time they used Hot Spot, and we're really proud and excited to announce search answers. Search answers allows users to search across existing content to get answers to their questions, and its a great compliment to search data, which allows them to search the underlying data directly to create new content. Now, with search answers were shipping in number of cool features like Answer Explainer, Personalized search Results, Answer Explorer, etcetera that make it really intuitive and powerful. And we'll see how all of these work in action in the demo. Our brand new homepage makes it easier than ever for all these business users to connect with the insights that are most relevant to them. These insights could be insights that these users already know about and want to track regularly. For example, as you can see, the monitor section at the top center of the screen thes air, the KP eyes that I may care most about, and I may want to look at them every day, and I can see them every day right here on my home page. By the way, there's a monitoring these metrics in the bankrupt these insights that I want to connect with could also be insights that I want to know more about the search experience that I just spoke about ISS seamlessly integrated into the home page. So right here from the home page, I can fire my searchers and ask whatever questions I want. Finally, and most interestingly, the homepage also allows me to connect with insights that I should know about, even if I didn't explicitly ask for them. So what's an example? If you look at the panel on the right, I can discover insights that are trending in my organization. If I look at the panel on the left, I can discover insights based on my social graph based on the people that I'm following. Now you might wonder, How do we create this personalized home page? Well, our brand new, personalized on boarding experience makes it a piece of cake as a new business user. The very first time I log into thought spot, I pay three people I want to follow and three metrics that I want to follow, and I picked these from a pool of suggestions that Ai has generated. And just like that, the new home page gets created. And let's not forget about analysts. We have a personalized on boarding experience specifically for analysts that's optimized for their needs. Now, speaking of analysts, I do want to talk about the tools that I spoke off earlier that made the analysts completely self service and greatly boost their productivity's. We want analysts to go from zero to search in less than 30 minutes, and with our with our new augmented data modeling features and thoughts about one, they can do just that. They get a guided experience where they can connect, model and visualize their data. With just a few clicks, our AI engine takes care off a number of tasks, including figuring out joints and, you know, cleaning up column names. In fact, our AI engine also helps them create a number of answers to get started quickly so that these analysts can spend their time and energy on what matters most answering the most complicated and challenging and impactful questions for the business. So I spoke about a number of different capabilities off thoughts about one, but let's not forget that they are all packaged in a delightful user experience designed by Bob and his team, and it powers really, really intuitive and powerful user flows, from personalized on boarding to searching to discover insights that already exist on that are ranked based on personalized algorithms to making refinements to these insights with a assistance to searching, to create brand new insights from scratch. And finally sharing all the insights that you find interesting with your colleagues so that it drives conversations, decisions and, most importantly, actions so that your business can improve. With that said, let's drive right into the demo for this demo. We're going to use sales data set for a company that runs a chain off retail stores selling apparel. Our user is a business user. Her name is Charlotte. She's a merchandiser, She's new to this company, and she is going to be leading the genes broader category. She's really excited about job. She wants to use data to make better decisions, so she comes to thought spot, and this is what she sees. There are three main sections on the home page that she comes to. The central section allows you to browse through items that she has access to and filter them in various ways. Based for example, on author or on tags or based on what she has favorited. The second section is this panel on the right hand side, which allows her to discover insights that are trending within her company. This is based on what other people within her company are viewing and also personalized to her. Finally, there's this search box that seamlessly integrated into the home page. Now Charlotte is really curious to learn how the business is doing. She wants to learn more about sales for the business, so she goes to the search box and searches for sales, and you can see that she's taken to a page with search results. Charlotte start scanning the search results, and she sees the first result is very relevant. It shows her what the quarterly results were for the last year, but the result that really catches her attention is regional sales. She'd love to better understand how sales are broken down by regions. Now she's interested in the search result, but she doesn't yet want to commit to clicking on it and going to that result. She wants to learn more about this result before she does that, and she could do that very easily simply by clicking anywhere on the search result card. Doing that reveals our answer. Explain our technology and you can see this information panel on the right side. It shows more details about the search results that she selected, and it also gives her an easy to understand explanation off the data that it contains. You can see that it tells her that the metrics sales it's grouped by region and splitter on last year. She can also click on this preview button to see a preview off the chart that she would see if she went to that result. It shows her that region is going to be on the X axis and sales on the Y axis. All of this seems interesting to her, and she wants to learn more. So she clicks on this result, and she's brought to this chart now. This contains the most up to date data, and she can interact with this data. Now, as she's looking at this data, she learns that Midwest is the region with the highest sales, and it has a little over $23 million in sales, and South is the region with the lowest sales, and it has about $4.24 million in sales. Now, as Charlotte is looking at this chart, she's reminded off a conversation she had with Suresh, another new hire at the company who she met at orientation just that morning. Suresh is responsible for leading a few different product categories for the Western region off the business, and she thinks that he would find this chart really useful Now she can share this chart with Suresh really easily from right here by clicking the share button. As Charlotte continues to look at this chart and understand the data, she thinks, uh, that would be great for her to understand. How do these sales numbers across regions look for just the genes product category, since that's the product category that she is going to be leading? And she can easily narrow this data to just the genes category by using her answer Explorer technology. This panel on the right hand side allows her to make the necessary refinements. Now she can do that simply by typing in the search box, or she can pick from one off the AI generated suggestions that are personalized for her now. In this case, the AI has already suggested genes as a prototype for her. So with just a single click, she can narrow the data to show sales data for just jeans broken down by region. And she can see that Midwest is still the region with the highest sales for jeans, with $1.35 million in sales. Now let's spend a minute thinking about what we just saw. This is the first time that Charlotte is using Thought spot. She does not know anything about the data sources. She doesn't know anything about measures or attributes. She doesn't know the names of the columns. And yet she could get to insights that are relevant for her really easily using a search interface that's very much like Google. And as she started interacting with search results, she started building a slightly better understanding off the underlying data. When she found an insight that she thought would be useful to a colleague offers, it was really seamless for her to share it with that colleague from where she Waas. Also, even though she's searching over content that has already been created by her colleagues in search answers. She was in no way restricted to exactly that data as we just saw. She could refine the data in an insight that she found by narrowing it. And there's other things you can do so she could interact with the data for the inside that she finds using search answers. Let's take a slightly more complex question that Charlotte may have. Let's assume she wanted to learn about sales broken down by, um, by category so that she can compare her vertical, which is jeans toe other verticals within the company. Again, she can see that the very first result that she gets is very relevant. It shows her search Sorry, sales by category for last year. But what really catches her attention about this result is the name of the author. She's thrilled to note that John, who is the author of this result, was also an instructor for one off for orientation sessions and clearly someone who has a lot of insight into the sales data at this company. Now she would love to see mawr results by John, and to do that, all she has to do is to click on his name now all of the search results are only those that have been authored by John. In fact, this whole panel at the top of the results allow her to filter her search results or sort them in different ways. By clicking on these authors filter, she can discover other authors who are reputed for the topic that she's searching for. She can also filter by tags, and she can sort these results in different ways. This whole experience off doing a search and then filtering search results easily is similar to how we use e commerce search engines in the consumer world. For example, Amazon, where you may search for a product and then filter by price range or filter by brand. For example, Let's also spend a minute talking about how do we determine relevance for these results and how they're ranked. Um, when considering relevance for these results, we consider three main categories of things. We want to first make sure that the result is in fact relevant to the question that the user is asking, and for that we look at various fields within the result. We look at the title, the author, the description, but also the technical query underpinning that result. We also want to make sure that the results are trustworthy, because we want users to be able to make business decisions based on the results that they find. And for that we look at a number of signals as well. For example, how popular that result is is one of those signals. And finally, we want to make sure the results are relevant to the users themselves. So we look at signals to personalize the result for that user. So those are all the different categories of signals that we used to determine overall ranking for a search result. You may be wondering what happens if if Charlotte asks a question for which nobody has created any answer, so no answers exist. Let's say she wants to know what the total sales of genes for last year and no one's created that well. It's really easy for her to switch from searching for answers, which is searching for content that has already been created to searching the data directly so she can create a new insight from scratch. Let's see how that works. She could just click here, and now she's in the search data in her face and for the question that I just talked about. She can just type genes sales last year. And just like that, she could get an answer to her question. The total sales for jeans last year were almost $4.6 million. As you can see, the two modes off search searching for answers and searching, the data are complementary, and it's really easy to switch from one to the other. Now we understand that some business users may not be motivated to create their own insights from scratch. Or sometimes some of these business users may have questions that are too complicated, and so they may struggle to create their own inside from scratch. Now what happens usually in these circumstances is that these users will open a ticket, which would go to the analyst team. The analyst team is usually overrun with these tickets and have trouble prioritizing them. And so we started thinking, How can we make that entire feedback loop really efficient so that analysts can have a massive impact with as little work as possible? Let me show you what we came up with. Search answers comes with this system generated dashboard that analysts can see to see analytics on the queries that business users are asking in search answers so it contains high level K P. I is like, You know how many searches there are and how many users there are. It also contains one of the most popular queries that users are asking. But most importantly, it contains information about what are popular queries where users are failing. So the number on the top right tells you that about 10% off queries in this case ended with no results. So the user clearly failed because there were no results on the table. Right below it shows you here are the top search queries for original results exist. So, for example, the highlighted row there says jean sales with the number three, which tells the analysts that last week there were three searches for the query jean sales and the resulted in no results on search answers. Now, when an analyst sees a report like this, they can use it to prioritize what kind of content they could be creating or optimizing. Now, in addition to giving them inside into queries which led to no results or zero results. This dashboard also contains reports on creatives that lead to poor results because the user did get some results but didn't click on anything, meaning that they didn't get the answer that they were looking for. Taking all these insights, analysts can better prioritize and either create or optimize their content to have maximum impact for their business users with the least amount of for. So that was the demo. As you can see with search answers, we've created a very consumer search interface that any business user can use to get the answers to their questions by leveraging data or answers that have already been created in the system by other users in their organization. In addition, we're creating tools that allow analysts toe create or optimized content that can have the highest impact for these business users. All right, so that was the demo or thoughts about one and hope you guys liked it. We're really excited about it. Now Let me just spend a minute talking about what's coming next. As I've mentioned before, we want to connect every business user with the insights that are most relevant for them, and for that we will continue to invest in Advanced AI and personalization, and some of the ways you will see it is improved relevance in ranking in recommendations in how we understand your questions across the product within search within the home page everywhere. The second team that will continue to invest in is powerful analyst tools. We talked about tools and, I assure you, tools that make the analysts more self service. We are committed to improving the analyst experience so that they can make the most off their time. An example of a tool that we're really excited about is one that allows them to bridge the vocabulary difference that this even business user asks questions. A user asked a question like revenue, but the column name for the metric in the data set its sales. Now analysts can get insights into what are the words that users air using in their questions that aren't matching anything in the data set and easily create synonyms so that that vocabulary difference gets breached. But that's just one example of how we're thinking about empowering the analysts so that with minimal work, they can amplify their impact and help their business users succeed. So there's a lot coming, and we're really excited about how we're planning to evolve thoughts about one. With all that said, Um, there's just, well, one more thing that my friend Bob wants to talk to you guys about. So back to you, Bob. >>Thanks, Michelle. It's such a great demo and so fun to see all the new work that's going on with thought. Spot one. All the happenings for the new features coming out that will be under the hood. But of course, on the design side, we're going to continue to evolve the front end as well, and this is what we're hoping to move towards. So here you'll see a new log in screen and then the new homepage. So compared to the material that you saw just a few minutes ago, you'll notice this look is much lighter. A little bit nicer use of color up in the top bar with search the features over here to allow you to switch between searching against answers at versus creating new answers, the settings and user profile controls down here and then on the search results page itself also lighter look and feel again. Mork color up in the search bar up the top. A little bit nicer treatments here. We'll continue to evolve the look and feel the product in coming months and quarters and look forward to continue to constantly improving thoughts about one Hannah back to you. >>Thanks, Bob, and thank you both for showing us the next generation of thought spot. I'd love to go a bit deeper on some of the points you touched on there. I've got a couple of questions here. Bob, how do you think about designing for consumer experience versus designing for enterprise solutions? >>Yes, I mentioned Hannah. We don't >>really try to distinguish so much between enterprise users and consumer users. It's really kind of two different context of use. But we still always think that users want some product and feature and experience that's easy to use and makes sense to them. So instead of trying to think about those is two completely different design processes I think about it may be the way Frank Lloyd Wright would approached architecture. >>Er I >>mean, in his career, he fluidly moved between residential architecture like falling water and the Robie House. But he also designed marquis buildings like the Johnson wax building. In each case, he simply looked at the requirements, thought about what was necessary for those users and designed accordingly. And that's really what we do. A thought spot. We spend time talking to customers. We spend time talking to users, and we spent a lot of time thinking through the problem and trying to solve it holistically. And it's simply a possible >>thanks, Bob. That's a beautiful analogy on one last question for you. Bischel. How frequently will you be adding features to this new experience, >>But I'm glad you asked that, Hannah, because this is something that we are really really excited about with thoughts about one being in the cloud. We want to go really, really fast. So we expect to eventually get to releasing new innovations every day. We expect that in the near future, we'll get to, you know, every month and every week, and we hope to get to everyday eventually fingers crossed on housing. That can happen. Great. Thanks, >>Michelle. And thank you, Bob. I'm so glad you could all join us this morning to hear more about thoughts about one. Stay close and get ready for the next session. which will be beginning in a few minutes. In it will be introduced to thoughts for >>everywhere are >>embedded analytics product on. We'll be hearing directly from our customers at Hayes about how they're using embedded analytics to help healthcare providers across billing compliance on revenue integrity functions. To make more informed decisions on make effective actions to avoid risk and maximize revenue. See you there.
SUMMARY :
I'm delighted to have you here today. It's great to be here with everybody today and really excited to be able to present to you thought spot one. And she can see that Midwest is still the region with the highest sales for jeans, So compared to the material that you saw just a few minutes ago, you'll notice this look is much lighter. I'd love to go a bit deeper on some of the points you touched on there. We don't that's easy to use and makes sense to them. In each case, he simply looked at the requirements, thought about what was necessary for those users and designed How frequently will you be adding features to this new experience, We expect that in the near future, and get ready for the next session. actions to avoid risk and maximize revenue.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Suresh | PERSON | 0.99+ |
Michelle | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Rachel Thio | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Amazon | ORGANIZATION | 0.99+ |
Frank Lloyd Wright | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
$1.35 million | QUANTITY | 0.99+ |
Charlotte | PERSON | 0.99+ |
Bob Baxley | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
last week | DATE | 0.99+ |
last year | DATE | 0.99+ |
third | QUANTITY | 0.99+ |
Bischel | PERSON | 0.99+ |
Hannah Sinden | PERSON | 0.99+ |
second section | QUANTITY | 0.99+ |
about $4.24 million | QUANTITY | 0.99+ |
each case | QUANTITY | 0.99+ |
less than 30 minutes | QUANTITY | 0.99+ |
second piece | QUANTITY | 0.99+ |
Hotspot | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
over $23 million | QUANTITY | 0.99+ |
first result | QUANTITY | 0.99+ |
zero | QUANTITY | 0.98+ |
two modes | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
three main categories | QUANTITY | 0.98+ |
three searches | QUANTITY | 0.98+ |
second team | QUANTITY | 0.98+ |
iTunes | TITLE | 0.98+ |
Hayes | ORGANIZATION | 0.98+ |
three main sections | QUANTITY | 0.98+ |
one key piece | QUANTITY | 0.97+ |
one last question | QUANTITY | 0.97+ |
both | QUANTITY | 0.97+ |
both thoughts | QUANTITY | 0.97+ |
three metrics | QUANTITY | 0.97+ |
zero results | QUANTITY | 0.96+ |
about 10% | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
three people | QUANTITY | 0.96+ |
one example | QUANTITY | 0.95+ |
almost $4.6 million | QUANTITY | 0.94+ |
two | QUANTITY | 0.92+ |
one more thing | QUANTITY | 0.9+ |
Answer Explorer | TITLE | 0.88+ |
Omiya | PERSON | 0.87+ |
Midwest | LOCATION | 0.87+ |
few minutes ago | DATE | 0.86+ |
X axis | ORGANIZATION | 0.85+ |
How T-Mobile is Building a Data-Driven Organization | Beyond.2020 Digital
>>Yeah, yeah, hello again and welcome to our last session of the day before we head to the meat. The experts roundtables how T Mobile is building a data driven organization with thought spot and whip prone. Today we'll hear how T Mobile is leaving Excel hell by enabling all employees with self service analytics so they can get instant answers on curated data. We're lucky to be closing off the day with these two speakers. Evo Benzema, manager of business intelligence services at T Mobile Netherlands, and Sanjeev Chowed Hurry, lead architect AT T Mobile, Netherlands, from Whip Chrome. Thank you both very much for being with us today, for today's session will cover how mobile telco markets have specific dynamics and what it waas that T Mobile was facing. We'll also go over the Fox spot and whip pro solution and how they address T mobile challenges. Lastly, but not least, of course, we'll cover Team Mobil's experience and learnings and takeaways that you can use in your business without further ado Evo, take us away. >>Thank you very much. Well, let's first talk a little bit about T Mobile, Netherlands. We are part off the larger deutsche Telekom Group that ISS operating in Europe and the US We are the second largest mobile phone company in the Netherlands, and we offer the full suite awful services that you expect mobile landline in A in an interactive TV. And of course, Broadbent. Um so this is what the Mobile is appreciation at at the moment, a little bit about myself. I'm already 11 years at T Mobile, which is we part being part of the furniture. In the meantime, I started out at the front line service desk employee, and that's essentially first time I came into a touch with data, and what I found is that I did not have any possibility of myself to track my performance. Eso I build something myself and here I saw that this need was there because really quickly, roughly 2020 off my employer colleagues were using us as well. This was a little bit where my efficient came from that people need to have access to data across the organization. Um, currently, after 11 years running the BR Services Department on, I'm driving this transformation now to create a data driven organization with a heavy customer focus. Our big goal. Our vision is that within two years, 8% of all our employees use data on a day to day basis to make their decisions and to improve their decision. So over, tuition Chief. Now, thank >>you. Uh, something about the proof. So we prize a global I T and business process consulting and delivery company. Uh, we have a comprehensive portfolio of services with presents, but in 61 countries and maybe 1000 plus customers. As we're speaking with Donald, keep customers Region Point of view. We primary look to help our customers in reinventing the business models with digital first approach. That's how we look at our our customers toe move to digitalization as much as possible as early as possible. Talking about myself. Oh, I have little over two decades of experience in the intelligence and tell cope landscape. Calico Industries. I have worked with most of the telcos totally of in us in India and in Europe is well now I have well known cream feed on brownfield implementation off their house on big it up platforms. At present, I'm actively working with seminal data transform initiative mentioned by evil, and we are actively participating in defining the logical and physical footprint for future architectures for criminal. I understand we are also, in addition, taking care off and two and ownership off off projects, deliveries on operations, back to you >>so a little bit over about the general telco market dynamics. It's very saturated market. Everybody has mobile phones already. It's the growth is mostly gone, and what you see is that we have a lot of trouble around customer brand loyalty. People switch around from provider to provider quite easily, and new customers are quite expensive. So our focus is always to make customer loyal and to keep them in the company. And this is where the opportunities are as well. If we increase the retention of customers or reduce what we say turned. This is where the big potential is for around to use of data, and we should not do this by only offering this to the C suite or the directors or the mark managers data. But this needs to be happening toe all employees so that they can use this to really help these customers and and services customers is situated. This that we can create his loyalty and then This is where data comes in as a big opportunity going forward. Yeah. So what are these challenges, though? What we're facing two uses the data. And this is, uh, these air massive over our big. At least let's put it like that is we have a lot of data. We create around four billion new record today in our current platforms. The problem is not everybody can use or access this data. You need quite some technical expertise to add it, or they are pre calculated into mawr aggregated dashboard. So if you have a specific question, uh, somebody on the it side on the buy side should have already prepared something so that you can get this answer. So we have a huge back lock off questions and data answers that currently we cannot answer on. People are limited because they need technical expertise to use this data. These are the challenges we're trying to solve going forward. >>Uh, so the challenge we see in the current landscape is T mobile as a civil mentioned number two telco in Europe and then actually in Netherlands. And then we have a lot of acquisitions coming in tow of the landscape. So overall complexity off technical stack increases year by year and acquisition by acquisition it put this way. So we at this time we're talking about Claudia Irureta in for Matic Uh, aws and many other a complex silo systems. We actually are integrated where we see multiple. In some cases, the data silos are also duplicated. So the challenge here is how do we look into this data? How do we present this data to business and still ensure that Ah, mhm Kelsey of the data is reliable. So in this project, what we looked at is we curated that around 10% off the data of us and made it ready for business to look at too hot spot. And this also basically help us not looking at the A larger part of the data all together in one shot. What's is going to step by step with manageable set of data, obviously manages the time also and get control on cost has. >>So what did we actually do and how we did? Did we do it? And what are we going to do going forward? Why did we chose to spot and what are we measuring to see if we're successful is is very simply, Some stuff I already alluded to is usual adoption. This needs to be a tool that is useable by everybody. Eso This is adoption. The user experience is a major key to to focus on at the beginning. Uh, but lastly, and this is just also cold hard. Fact is, it needs to save time. It needs to be faster. It needs to be smarter than the way we used to do it. So we focused first on setting up the environment with our most used and known data set within the company. The data set that is used already on the daily basis by a large group. We know what it's how it works. We know how it acts on this is what we decided to make available fire talksport this cut down the time around, uh, data modeling a lot because we had this already done so we could go right away into training users to start using this data, and this is already going on very successfully. We have now 40 heavily engaged users. We go went life less than a month ago, and we see very successful feedback on user experience. We had either yesterday, even a beautiful example off loading a new data set and and giving access to user that did not have a training for talk sport or did not know what thoughts, what Waas. And we didn't in our he was actively using this data set by building its own pin boards and asking questions already. And this shows a little bit the speed off delivery we can have with this without, um, much investments on data modeling, because that's part was already done. So our second stage is a little bit more ambitious, and this is making sure that all this information, all our information, is available for frontline uh, employees. So a customer service but also chills employees that they can have data specifically for them that make them their life easier. So this is performance KP ice. But it could also be the beautiful word that everybody always uses customer Terry, 60 fuse. But this is giving the power off, asking questions and getting answers quickly to everybody in the company. That's the big stage two after that, and this is going forward a little bit further in the future and we are not completely there yet, is we also want Thio. Really? After we set up the government's properly give the power to add your own data to our curated data sets that that's when you've talked about. And then with that, we really hope that Oh, our ambition and our plan is to bring this really to more than 800 users on a daily basis to for uses on a daily basis across our company. So this is not for only marketing or only technology or only one segment. This is really an application that we want to set in our into system that works for everybody. And this is our ambition that we will work through in these three, uh, steps. So what did we learn so far? And and Sanjeev, please out here as well, But one I already said, this is no which, which data set you start. This is something. Start with something. You know, start with something that has a wide appeal to more than one use case and make sure that you make this decision. Don't ask somebody else. You know what your company needs? The best you should be in the driver seat off this decision. And this is I would be saying really the big one because this will enable you to kickstart this really quickly going forward. Um, second, wellness and this is why we introduce are also here together is don't do this alone. Do this together with, uh I t do this together with security. Do this together with business to tackle all these little things that you don't think about yourself. Maybe security, governance, network connections and stuff like that. Make sure that you do this as a company and don't try to do this on your own, because there's also again it's removes. Is so much obstacles going forward? Um, lastly, I want to mention is make sure that you measure your success and this is people in the data domain sometimes forget to measure themselves. Way can make sure everybody else, but we forget ourselves. But really try to figure out what makes its successful for you. And we use adoption percentages, usual experience, surveys and and really calculations about time saved. We have some rough calculations that we can calculate changes thio monetary value, and this will save us millions in years. by just automating time that is now used on, uh, now to taken by people on manual work. So, do you have any to adhere? A swell You, Susan, You? >>Yeah. So I'll just pick on what you want to mention about. Partner goes live with I t and other functions. But that is a very keating, because from my point of view, you see if you can see that the data very nice and data quality is also very clear. If we have data preparing at the right level, ready to be consumed, and data quality is taken, care off this feel 30 less challenges. Uh, when the user comes and questioned the gator, those are the things which has traded Quiz it we should be sure about before we expose the data to the Children. When you're confident about your data, you are confident that the user will also get the right numbers they're looking for and the number they have. Their mind matches with what they see on the screen. And that's where you see there. >>Yeah, and that that that again helps that adoption, and that makes it so powerful. So I fully agree. >>Thank you. Eva and Sanjeev. This is the picture perfect example of how a thought spot can get up and running, even in a large, complex organization like T Mobile and Sanjay. Thank you for sharing your experience on how whip rose system integration expertise paved the way for Evo and team to realize value quickly. Alright, everyone's favorite part. Let's get to some questions. Evil will start with you. How have your skill? Data experts reacted to thought spot Is it Onley non technical people that seem to be using the tool or is it broader than that? You may be on. >>Yes, of course, that happens in the digital environment. Now this. This is an interesting question because I was a little bit afraid off the direction off our data experts and are technically skilled people that know how to work in our fight and sequel on all these things. But here I saw a lot of enthusiasm for the tool itself and and from two sides, either to use it themselves because they see it's a very easy way Thio get to data themselves, but also especially that they see this as a benefit, that it frees them up from? Well, let's say mundane questions they get every day. And and this is especially I got pleasantly surprised with their reaction on that. And I think maybe you can also say something. How? That on the i t site that was experienced. >>Well, uh, yeah, from park department of you, As you mentioned, it is changing the way business is looking at. The data, if you ask me, have taken out talkto data rather than looking at it. Uh, it is making the interactivity that that's a keyword. But I see that the gap between the technical and function folks is also diminishing, if I may say so over a period of time, because the technical folks now would be able to work with functional teams on the depth and coverage of the data, rather than making it available and looking at the technical side off it. So now they can have a a fair discussion with the functional teams on. Okay, these are refute. Other things you can look at because I know this data is available can make it usable for you, especially the time it takes for the I t. G. When graduate dashboard, Uh, that time can we utilize toe improve the quality and reliability of the data? That's yeah. See the value coming. So if you ask me to me, I see the technical people moving towards more of a technical functional role. Tools such as >>That's great. I love that saying now we can talk to data instead of just looking at it. Um Alright, Evo, I think that will finish up with one last question for you that I think you probably could speak. Thio. Given your experience, we've seen that some organizations worry about providing access to data for everyone. How do you make sure that everyone gets the same answer? >>Yes. The big data Girlfriends question thesis What I like so much about that the platform is completely online. Everything it happens online and everything is terrible. Which means, uh, in the good old days, people will do something on their laptop. Beirut at a logic to it, they were aggregated and then they put it in a power point and they will share it. But nobody knew how this happened because it all happened offline. With this approach, everything is transparent. I'm a big I love the word transparency in this. Everything is available for everybody. So you will not have a discussion anymore. About how did you get to this number or how did you get to this? So the question off getting two different answers to the same question is removed because everything happens. Transparency, online, transparent, online. And this is what I think, actually, make that question moot. Asl Long as you don't start exporting this to an offline environment to do your own thing, you are completely controlling, complete transparent. And this is why I love to share options, for example and on this is something I would really keep focusing on. Keep it online, keep it visible, keep it traceable. And there, actually, this problem then stops existing. >>Thank you, Evelyn. Cindy, That was awesome. And thank you to >>all of our presenters. I appreciate your time so much. I hope all of you at home enjoyed that as much as I did. I know a lot of you did. I was watching the chat. You know who you are. I don't think that I'm just a little bit in awe and completely inspired by where we are from a technological perspective, even outside of thoughts about it feels like we're finally at a time where we can capitalize on the promise that cloud and big data made to us so long ago. I loved getting to see Anna and James describe how you can maximize the investment both in time and money that you've already made by moving your data into a performance cloud data warehouse. It was cool to see that doubled down on with the session, with AWS seeing a direct query on Red Shift. And even with something that's has so much scale like TV shows and genres combining all of that being able to search right there Evo in Sanjiv Wow. I mean being able to combine all of those different analytics tools being able to free up these analysts who could do much more important and impactful work than just making dashboards and giving self service analytics to so many different employees. That's incredible. And then, of course, from our experts on the panel, I just think it's so fascinating to see how experts that came from industries like finance or consulting, where they saw the imperative that you needed to move to thes third party data sets enriching and organizations data. So thank you to everyone. It was fascinating. I appreciate everybody at home joining us to We're not quite done yet. Though. I'm happy to say that we after this have the product roadmap session and that we are also then going to move into hearing and being able to ask directly our speakers today and meet the expert session. So please join us for that. We'll see you there. Thank you so much again. It was really a pleasure having you.
SUMMARY :
takeaways that you can use in your business without further ado Evo, the Netherlands, and we offer the full suite awful services that you expect mobile landline deliveries on operations, back to you somebody on the it side on the buy side should have already prepared something so that you can get this So the challenge here is how do we look into this data? And this shows a little bit the speed off delivery we can have with this without, And that's where you see there. Yeah, and that that that again helps that adoption, and that makes it so powerful. Onley non technical people that seem to be using the tool or is it broader than that? And and this is especially I got pleasantly surprised with their But I see that the gap between I love that saying now we can talk to data instead of just looking at And this is what I think, actually, And thank you to I loved getting to see Anna and James describe how you can maximize the investment
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Europe | LOCATION | 0.99+ |
Claudia Irureta | PERSON | 0.99+ |
Eva | PERSON | 0.99+ |
Donald | PERSON | 0.99+ |
Evelyn | PERSON | 0.99+ |
T Mobile | ORGANIZATION | 0.99+ |
Cindy | PERSON | 0.99+ |
Netherlands | LOCATION | 0.99+ |
Evo Benzema | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Calico Industries | ORGANIZATION | 0.99+ |
Sanjeev | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
8% | QUANTITY | 0.99+ |
11 years | QUANTITY | 0.99+ |
Kelsey | PERSON | 0.99+ |
Today | DATE | 0.99+ |
Sanjeev Chowed Hurry | PERSON | 0.99+ |
yesterday | DATE | 0.99+ |
BR Services Department | ORGANIZATION | 0.99+ |
more than 800 users | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Whip Chrome | ORGANIZATION | 0.99+ |
Anna | PERSON | 0.99+ |
James | PERSON | 0.99+ |
Team Mobil | ORGANIZATION | 0.99+ |
T mobile | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
today | DATE | 0.99+ |
second stage | QUANTITY | 0.99+ |
Susan | PERSON | 0.99+ |
millions | QUANTITY | 0.99+ |
three | QUANTITY | 0.98+ |
Sanjay | ORGANIZATION | 0.98+ |
61 countries | QUANTITY | 0.98+ |
one shot | QUANTITY | 0.98+ |
deutsche Telekom Group | ORGANIZATION | 0.98+ |
Thio | PERSON | 0.98+ |
Broadbent | ORGANIZATION | 0.98+ |
two years | QUANTITY | 0.98+ |
1000 plus customers | QUANTITY | 0.98+ |
T-Mobile | ORGANIZATION | 0.98+ |
one last question | QUANTITY | 0.97+ |
around 10% | QUANTITY | 0.97+ |
Fox | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
AT T Mobile | ORGANIZATION | 0.97+ |
two speakers | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
telco | ORGANIZATION | 0.96+ |
Evo | PERSON | 0.95+ |
less than a month ago | DATE | 0.95+ |
first approach | QUANTITY | 0.94+ |
over two decades | QUANTITY | 0.94+ |
one segment | QUANTITY | 0.94+ |
Red Shift | TITLE | 0.93+ |
Matic Uh | ORGANIZATION | 0.92+ |
two different answers | QUANTITY | 0.92+ |
second | QUANTITY | 0.91+ |
second largest mobile phone | QUANTITY | 0.89+ |
60 fuse | QUANTITY | 0.89+ |
ISS | ORGANIZATION | 0.89+ |
T Mobile Netherlands | ORGANIZATION | 0.86+ |
Mobile | ORGANIZATION | 0.86+ |
more than one use case | QUANTITY | 0.84+ |
30 less challenges | QUANTITY | 0.83+ |
Sanjiv | TITLE | 0.82+ |
around four billion new record | QUANTITY | 0.81+ |
aws | ORGANIZATION | 0.8+ |
Terry | PERSON | 0.8+ |
40 heavily engaged users | QUANTITY | 0.79+ |
2020 | DATE | 0.75+ |
one | QUANTITY | 0.57+ |
Evo | ORGANIZATION | 0.48+ |
Beyond.2020 | ORGANIZATION | 0.43+ |
From Zero to Search | Beyond.2020 Digital
>>Yeah, >>yeah. Hello and welcome to Day two at Beyond. I am so excited that you've chosen to join the building a vibrant data ecosystem track. I might be just a little bit biased, but I think it's going to be the best track of the day. My name is Mallory Lassen and I run partner Marketing here, a thought spot, and that might give you a little bit of a clue as to why I'm so excited about the four sessions we're about to hear from. We'll start off hearing from two thought spotters on how the power of embrace can allow you to directly query on the cloud data warehouse of your choice Next up. And I shouldn't choose favorites, but I'm very excited to watch Cindy housing moderate a panel off true industry experts. We'll hear from Deloitte Snowflake and Eagle Alfa as they describe how you can enrich your organization's data and better understand and benchmark by using third party data. They may even close off with a prediction or two about the future that could prove to be pretty thought provoking. So I'd stick around for that. Next we'll hear from the cloud juggernaut themselves AWS. We'll even get to see a live demo using TV show data, which I'm pretty sure is near and dear to our hearts. At this point in time and then last, I'm very excited to welcome our customer from T Mobile. They're going to describe how they partnered with whip pro and developed a full solution, really modernizing their analytics and giving self service to so many employees. We'll see what that's done for them. But first, let's go over to James Bell Z and Ana Son on the zero to search session. James, take us away. >>Thanks, Mallory. I'm James Bell C and I look after the solutions engineering and customer success teams have thought spot here in Asia Pacific and Japan today I'm joined by my colleague Anderson to give you a look at just how simple and quick it is to connect thought spot to your cloud data warehouse and extract value from the data within in the demonstration, and I will show you just how we can connect to data, make it simple for the business to search and then search the data itself or within this short session. And I want to point out that everything you're going to see in the demo is Run Live against the Cloud Data Warehouse. In this case, we're using snowflake, and there's no cashing of data or summary tables in terms of what you're going to see. But >>before we >>jump into the demo itself, I just like to provide a very brief overview of the value proposition for thought spot. If you're already familiar with thought spot, this will come as no surprise. But for those new to the platform, it's all about empowering the business to answer their own questions about data in the most simple way possible Through search, the personalized user experience provides a familiar search based way for anyone to get answers to their questions about data, not just the analysts. The search, indexing and ranking makes it easy to find the data you're looking for using business terms that you understand. While the smart ranking constantly adjust the index to ensure the most relevant information is provided to you. The query engine removes the complexity of SQL and complex joint paths while ensuring that users will always get thio the correct answers their questions. This is all backed up by an architecture that's designed to be consumed entirely through a browser with flexibility on deployment methods. You can run thought spot through our thoughts about cloud offering in your own cloud or on premise. The choice is yours, so I'm sure you're thinking that all sounds great. But how difficult is it to get this working? Well, I'm happy to tell you it's super easy. There's just forced steps to unlock the value of your data stored in snowflake, Red Shift, Google, Big Query or any of the other cloud data warehouses that we support. It's a simple is connecting to the Cloud Data Warehouse, choosing what data you want to make available in thought spot, making it user friendly. That column that's called cussed underscore name in the database is great for data management, but when users they're searching for it, they'll probably want to use customer or customer name or account or even client. Also, the business shouldn't need to know that they need to get data from multiple tables or the joint parts needed to get the correct results in thought spot. The worksheet allows you to make all of this simple for the users so they can simply concentrate on getting answers to their questions on Once the worksheet is ready, you can start asking those questions by now. I'm sure you're itching to see this in action. So without further ado, I'm gonna hand over to Anna to show you exactly how this works over to you. Anna, >>In this demo, I'm going to go to cover three areas. First, we'll start with how simple it is to get answers to your questions in class spot. Then we'll have a look at how to create a new connection to Cloud Data Warehouse. And lastly, how to create a use of friendly data layer. Let's get started to get started. I'm going to show you the ease off search with thoughts Spot. As you can see thought spot is or were based. I'm simply lobbying. Divide a browser. This means you don't need to install an application. Additionally, possible does not require you to move any data. So all your data stays in your cloud data warehouse and doesn't need to be moved around. Those sports called differentiator is used experience, and that is primarily search. As soon as we come into the search bar here, that's what suggestion is guiding uses through to the answers? Let's let's say that I would wanna have a look at spending across the different product categories, and we want Thio. Look at that for the last 12 months, and we also want to focus on a trending on monthly. And just like that, we get our answer straightaway without alive from Snowflake. Now let's say we want to focus on 11 product category here. We want to have a look at the performance for finished goods. As I started partially typing my search them here, Thoughts was already suggesting the data value that's available for me to use as a filter. The indexing behind the scene actually index everything about the data which allowed me to get to my data easily and quickly as an end user. Now I've got my next to my data answer here. I can also go to the next level of detail in here. In third spot to navigate on the next level of detail is simply one click away. There's no concept off drill path, pre defined drill path in here. That means we've ordered data that's available to me from Snowflake. I'm able to navigate to the level of detail. Allow me to answer those questions. As you can see as a business user, I don't need to do any coding. There's no dragon drop to get to the answer that I need right here. And she can see other calculations are done on the fly. There is no summary tables, no cubes building are simply able to ask the questions. Follow my train or thoughts, and this provides a better use experience for users as anybody can search in here, the more we interact with the spot, the more it learns about my search patterns and make those suggestions based on the ranking in here and that a returns on the fly from Snowflake. Now you've seen example of a search. Let's go ahead and have a look at How do we create a connection? Brand new one toe a cloud at a warehouse. Here we are here, let me add a new connection to the data were healthy by just clicking at new connection. Today we're going to connect Thio retail apparel data step. So let's start with the name. As you can see, we can easily connect to all the popular data warehouse easily. By just one single click here today, we're going to click to Snowflake. I'm gonna ask some detail he'd let me connect to my account here. Then we quickly enter those details here, and this would determine what data is available to me. I can go ahead and specify database to connect to as well, but I want to connect to all the tables and view. So let's go ahead and create a connection. Now the two systems are talking to each other. I can see all the data that's available available for me to connect to. Let's go ahead and connect to the starter apparel data source here and expanding that I can see all the data tables as available to me. I could go ahead and click on any table here, so there's affect herbal containing all the cells information. I also have the store and product information here I can make. I can choose any Data column that I want to include in my search. Available in soft spot, what can go ahead and select entire table, including all the data columns. I will. I would like to point out that this is important because if any given table that you have contains hundreds of columns it it may not be necessary for you to bring across all of those data columns, so thoughts would allow you to select what's relevant for your analysis. Now that's selected all the tables. Let's go ahead and create a connection. Now force what confirms the data columns that we have selected and start to read the medic metadata from Snowflake and automatically building that search index behind the scene. Now, if your daughter does contain information such as personal, identifiable information, then you can choose to turn those investing off. So none of that would be, um, on a hot spots platform. Now that my tables are ready here, I can actually go ahead and search straight away. Let's go ahead and have a look at the table here. I'm going to click on the fact table heat on the left hand side. It shows all the data column that we've brought across from Snowflake as well as the metadata that also brought over here as well. A preview off the data shows me off the data that's available on my snowflake platform. Let's take a look at the joints tap here. The joint step shows may relationship that has already been defined the foreign and primary care redefining snowflake, and we simply inherited he in fourth spot. However, you don't have toe define all of this relationship in snowflake to add a joint. He is also simple and easy. If I click on at a joint here, I simply select the table that I wanted to create a connection for. So select the fact table on the left, then select the product table onto the right here and then simply selected Data column would wish to join those two tables on Let's select Product ID and clicking next, and that's always required to create a joint between those two tables. But since we already have those strong relationship brought over from Snow Flag, I won't go ahead and do that Now. Now you have seen how the tables have brought over Let's go and have a look at how easy is to search coming to search here. Let's start with selecting the data table would brought over expanding the tables. You can see all the data column that we have previously seen from snowflake that. Let's say I wanna have a look at sales in last year. Let's start to type. And even before I start to type anything in the search bar passport already showing me all those suggestions, guiding me to the answers that's relevant to my need. Let's start with having a look at sales for 2019. And I want to see this across monthly for my trend and out off all of these product line he. I also want to focus on a product line called Jackets as I started partially typing the product line jacket for sport, already proactively recommending me all the matches that it has. So all the data values available for me to search as a filter here, let's go ahead and select jacket. And just like that, I get my answer straight away from Snowflake. Now that's relatively simple. Let's try something a little bit more complex. Let's say I wanna have a look at sales comparing across different regions, um, in us. So I want compare West compared to Southwest, and then I want to combat it against Midwest as well as against based on still and also want to see these trending monthly as well. Let's have look at monthly. If you can see that I can use terms such as monthly Key would like that to look at different times. Buckets. Now all of these is out of the box. As she can see, I didn't have to do any indexing. I didn't have to do any formulas in here. As long as there is a date column in the data set, crossbows able to dynamically calculate those time bucket so she can see. Just by doing that search, I was able to create dynamic groupings segment of different sales across the United States on the sales data here. Now that we've done doing search, you can see that across different tables here might not be the most user friendly layer we don't want uses having to individually select tables. And then, um, you know, selecting different columns with cryptic names in here. We want to make this easy for users, and that's when a work ship comes in. But those were were sheet encapsulate all of the data you want to make available for search as well as formulas, as well as business terminologies that the users are familiar with for a specific business area. Let's start with adding the daughter columns we need for this work shape. Want to slack all of the tables that we just brought across from Snowflake? Expanding each of those tables from the facts type of want sales from the fax table. We want sales as well as the date. Then on the store's table. We want store name as well as the stay eating, then expanding to the product we want name and finally product type. Now that we've got our work shit ready, let's go ahead and save it Now, in order to provide best experience for users to search, would want to optimize the work sheet here. So coming to the worksheet here, you can see the data column that we have selected. Let's start with changing this name to be more user friendly, so let's call it fails record. They will want to call it just simply date, store name, call it store, and then we also want state to be in lower case product name. Simply call it product and finally, product type can also further optimize this worksheet by adding, uh, other areas such as synonyms, so allow users to use terms of familiar with to do that search. So in sales, let's call this revenue and we all cannot also further configure the geo configuration. So want to identify state in here as state for us. And finally, we want Thio. Also add more friendly on a display on a currency. So let's change the currency type. I want to show it in U. S. Dollars. That's all we need. So let's try to change and let's get started on our search now coming back to the search here, Let's go ahead. Now select out worksheet that we have just created. If I don't select any specific tables or worksheets, force what Simply a search across everything that's available to you. Expanding the worksheet. We can see all of the data columns in heat that's we've made available and clicking on search bar for spot already. Reckon, making those recommendations in here to start off? Let's have a look at I wanna have a look at the revenue across different states for here today, so let's use the synonym that we have defined across the different states and we want to see this for here today. Um yesterday as well. I know that I also want to focus on the product line jacket that we have seen before, so let's go ahead and select jacket. Yeah, and just like that, I was able to get the answer straight away in third spot. Let's also share some data label here so we can see exactly the Mount as well to state that police performance across us in here. Now I've got information about the sales of jackets on the state. I want to ask next level question. I want to draw down to the store that has been selling these jackets right Click e. I want to drill down. As you can see out of the box. I didn't have to pre define any drill paths on a target. Reports simply allow me to navigate to the next level of detail to answer my own questions. One Click away. Now I see the same those for the jackets by store from year to date, and this is directly from snowflake data life Not gonna start relatively simple question. Let's go ahead and ask a question that's a little bit more complex. Imagine one. Have a look at Silas this year, and I want to see that by month, month over month or so. I want to see a month. Yeah, and I also want to see that our focus on a sale on the last week off the month. So that's where we see most. Sales comes in the last week off the month, so I want to focus on that as well. Let's focus on last week off each month. And on top of that, I also want to only focus on the top performing stores from last year. So I want to focus on the top five stores from last year, so only store in top five in sales store and for last year. And with that, we also want to focus just on the populist product types as well. So product type. Now, this could be very reasonable question that a business user would like to ask. But behind the scenes, this could be quite complex. But First part takes cares, or the complexity off the data allow the user to focus on the answer they want to get to. If we quickly have a look at the query here, this shows how forceful translate the search that were put in there into queries into that, we can pass on the snowflake. As you can see, the search uses all three tables as well shooting, utilizing the joints and the metadata layer that we have created. Switching over to the sequel here, this sequel actually generate on the fly pass on the snowflake in order for the snowflake to bring back to result and presented in the first spot. I also want to mention that in the latest release Off Hot Spot, we also bringing Embraced um, in the latest version, Off tosspot 6.3 story Q is also coming to embrace. That means one click or two analysis. Those who are in power users to monitor key metrics on kind of anomalies, identify leading indicators and isolate trends, as you can see in a matter of minutes. Using thought spot, we were able to connect to most popular on premise or on cloud data warehouses. We were able to get blazing fast answers to our searches, allow us to transform raw data to incite in the speed off thoughts. Ah, pass it back to you, James. >>Thanks, Anna. Wow, that was awesome. It's incredible to see how much committee achieved in such a short amount of time. I want to close this session by referring to a customer example of who, For those of you in the US, I'm sure you're familiar with who, Lou. But for our international audience, who Lou our immediate streaming service similar to a Netflix or Disney Plus, As you can imagine, the amount of data created by a service like this is massive, with over 32 million subscribers and who were asking questions of over 16 terabytes of data in snow folk. Using regular B I tools on top of this size of data would usually mean using summary or aggregate level data, but with thoughts. What? Who are able to get granular insights into the data, allowing them to understand what they're subscribes of, watching how their campaigns of performing and how their programming is being received, and take advantage of that data to reduce churn and increase revenue. So thank you for your time today. Through the session, you've seen just how simple it is to get thought spot up and running on your cloud data warehouse toe. Unlock the value of your data and minutes. If you're interested in trying this on your own data, you can sign up for a free 14 day trial of thoughts. What cloud? Right now? Thanks again, toe Anna for such awards and demo. And if you have any questions, please feel free to let us know. >>Awesome. Thank you, James and Anna. That was incredible. To see it in action and how it all came together on James. We do actually have a couple of questions in our last few minutes here, Anna. >>The first one will be >>for you. Please. This will be a two part question. One. What Cloud Data Warehouses does embrace support today. And to can we use embrace to connect to multiple data warehouses. Thank you, Mallory. Today embrace supports. Snowflake Google, Big query. Um, Red shift as you assign that Teradata advantage and essay Bahana with more sources to come in the future. And, yes, you can connect on live query from notable data warehouses. Most of our enterprise customers have gotta spread across several data warehouses like just transactional data and red Shift and South will start. It's not like, excellent on James will have the final question go to you, You please. Are there any size restrictions for how much data thought spot can handle? And does one need to optimize their database for performance, for example? Aggregations. >>Yeah, that's a great question. So, you know, as we've just heard from our customer, who there's, there's really no limits in terms of the amount of data that you can bring into thoughts Ponant connect to. We have many customers that have, in excess of 10 terabytes of data that they're connecting to in those cloud data warehouses. And, yeah, there's there's no need to pre aggregate or anything. Thought Spot works best with that transactional level data being able to get right down into the details behind it and surface those answers to the business uses. >>Excellent. Well, thank you both so much. And for everyone at home watching thank you for joining us for that session. You have a few minutes toe. Get up, get some water, get a bite of food. What? You won't want to miss this next panel in it. We have our chief data strategy off Officer Cindy, Housing speaking toe experts in the field from Deloitte Snowflake and Eagle Alfa. All on best practices for leveraging external data sources. See you there
SUMMARY :
I might be just a little bit biased, but I think it's going to be the best track of the day. to give you a look at just how simple and quick it is to connect thought spot to your cloud data warehouse and extract adjust the index to ensure the most relevant information is provided to you. source here and expanding that I can see all the data tables as available to me. Who are able to get granular insights into the data, We do actually have a couple of questions in our last few sources to come in the future. of data that they're connecting to in those cloud data warehouses. And for everyone at home watching thank you for joining
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
James | PERSON | 0.99+ |
Anna | PERSON | 0.99+ |
2019 | DATE | 0.99+ |
two tables | QUANTITY | 0.99+ |
T Mobile | ORGANIZATION | 0.99+ |
Asia Pacific | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
14 day | QUANTITY | 0.99+ |
Mallory | PERSON | 0.99+ |
two systems | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
today | DATE | 0.99+ |
Japan | LOCATION | 0.99+ |
Ana Son | PERSON | 0.99+ |
Deloitte Snowflake | ORGANIZATION | 0.99+ |
Eagle Alfa | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
Mallory Lassen | PERSON | 0.99+ |
Today | DATE | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
last week | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
U. S. | LOCATION | 0.99+ |
Anderson | PERSON | 0.99+ |
four sessions | QUANTITY | 0.99+ |
first spot | QUANTITY | 0.99+ |
each month | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
ORGANIZATION | 0.99+ | |
one click | QUANTITY | 0.99+ |
Eagle Alfa | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.98+ |
Day two | QUANTITY | 0.98+ |
First part | QUANTITY | 0.98+ |
10 terabytes | QUANTITY | 0.98+ |
11 product | QUANTITY | 0.98+ |
over 32 million subscribers | QUANTITY | 0.98+ |
over 16 terabytes | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
Cindy | PERSON | 0.98+ |
One | QUANTITY | 0.98+ |
third spot | QUANTITY | 0.97+ |
each | QUANTITY | 0.97+ |
Disney Plus | ORGANIZATION | 0.97+ |
both | QUANTITY | 0.96+ |
fourth spot | QUANTITY | 0.96+ |
first one | QUANTITY | 0.96+ |
Teradata | ORGANIZATION | 0.95+ |
One Click | QUANTITY | 0.94+ |
two analysis | QUANTITY | 0.92+ |
five stores | QUANTITY | 0.91+ |
Off tosspot | TITLE | 0.9+ |
Off Hot Spot | TITLE | 0.89+ |
Beyond | ORGANIZATION | 0.89+ |
Thio | ORGANIZATION | 0.89+ |
one single | QUANTITY | 0.89+ |
Lou | PERSON | 0.88+ |
two part question | QUANTITY | 0.87+ |
two thought spotters | QUANTITY | 0.87+ |
Silas | ORGANIZATION | 0.87+ |
6.3 | QUANTITY | 0.86+ |
three tables | QUANTITY | 0.85+ |
last 12 months | DATE | 0.85+ |
James Bell C | PERSON | 0.8+ |
Snowflake | TITLE | 0.79+ |
five | QUANTITY | 0.77+ |
Midwest | LOCATION | 0.75+ |
three | QUANTITY | 0.75+ |
hundreds of columns | QUANTITY | 0.75+ |
Cindi Howson, ThoughtSpot and Kent Graziano, Snowflake | CUBE Conversation, December 2020
>> Narrator: From theCUBE Studios in Palo Alto and Boston, connecting with thought leaders all around the world. This is a CUBE conversation. >> Hi, everyone. Welcome to this CUBE conversation. I'm John Furrier here in the Palo Alto Studios. Yeah, during the pandemic, we're not in person. Usually we are, but we are doing remote interviews and as a lead-up to ThoughtSpot Beyond 2020 a virtual event coming up, we got two awesome visionaries here to have a conversation around data and the role of data. Cindi Howson, who's the Chief Data Strategy Officer at ThoughtSpot and Kent Graziano, Chief Technical Evangelist at Snowflake which has been great success. Welcome to the program. Thanks for coming on. >> Thanks for having us, John. >> So Kent, >> Yeah, happy to be here. >> Dave Volante who's just a fan boy of Snowflake. I mean, he's just gushing over the success of the company. I see Frank Slootman who you've known for years. Congratulations on your success. Great stuff. >> Yeah, thank you very much. >> Well, the topic I want to get into immediately is obviously data. You know, we're seeing in the heels of Amazon reinvent conference, the role of data cloud in the cloud and also on premise, you're seeing both things going on and companies are adopting this. Now it's a do or die situation for companies to either get on board with a full on data strategy. Can you guys talk about how that move to the cloud is imperative and so important? >> Yeah, I mean, as you said, John, it's the do or die moment and we've seen even pre-pandemic, many organizations were in the process of modernizing their cloud data and analytics moving to the cloud, but COVID has really just accelerated that. The ones that innovated sooner here are performing better and the ones that are still dragging their heels, the laggards, I am not convinced they will survive. >> Kent, do you have thoughts? You guys are born in the cloud data company. I mean, you can't get any more born in the cloud than you guys. >> No, obviously I started out in the on-prem world. I've been with Snowflake for five years now, but exactly what Cindi was saying there. And I've been telling folks, as I've talked to them over the last five years, that it's things are changing. The world is changing, things are changing and this was even pre-pandemic. Things were changing faster than anyone could have imagined and the only way to really keep pace with the growth of data and the diversity of data in my mind was to go to the cloud and this concept of having a data cloud where we can easily share and govern data is the game changer, right? And making customers and organizations so much more successful by being able to do things with data that they just couldn't do in the on-prem world. The elasticity and the power in the cloud is just giving people unprecedented access to do just amazing things. >> Yeah, whether you are a startup or a big company or on-premise trying to transform with digital transformation, you're either inventing or reinventing or creating a category or redefining a category and data is going to be the critical piece of it. And the cloud can actually scale that. So I want to get your thoughts on this notion of re-invention. How does data become because you could be a category creator and redefine a category, but the people have to understand, the customers have to first understand that their problem that they have is something that can be solved with data. This is a critical moment of connection, the product market fit kind of thing, where they go, okay, I get it now. Cindi, when do they have that moment? The aha moment of, I see the problem I got to do this. >> Yeah, well, there's two things. The aha moment and, John, I have to preface this. If I may, you know, many people listening to you may not have met me or Kent until now, Kent and I go way back, both previously independent analysts but we remain with this North star of helping our customers unlock the value of data. So I don't want people to think, oh, we're pushing cloud because we work for these companies. Now, it really is a belief. You have to use this to innovate faster. So when did that aha come? It depends, for some people it's only just now staring at them and that's why there's been a lot of churn in leadership, but let's go back even a few years ago, you can take Walmart as an example as they were maybe losing to Amazon, they went to digital, they went to cloud and are now competing beautifully. So it happens at different paces. Capital One, of course, was earlier here, there's a lot of financial services, organizations that really are moving too slowly to the cloud. And you see how well Capital One is doing versus some of the others that have moved too slow. >> Well, Kent, you guys go way back. You know, you've seen the old school, old guard as Andy Jassy at Amazon calls it, but there is a real shift happening now finally. It's not just the old school data warehouse model anymore, there's new requirements and there's new benefits for being in the cloud that you don't get on-prem or with a data warehouse. You know, you've got a different kind of access to more scale, maybe another company with an API. So the idea of connecting in the cloud, cloud native is completely different. Can you share your view on how that helps people understand the cloud better? >> Oh, yeah. Yeah, and I've certainly seen that. Like I grew up in the on-prem data warehouse world which is where Cindi and I met. And what I'm seeing now is the lines are being blurred between some of what we would have thought of as the traditional silos of data in the on-prem world. The data lake and data warehouse are foremost in my mind is with the data cloud, that line's not really there anymore. It's now about the workload and the use case than it is about, I'll say the structure of the data or the location of the data. We're able to eliminate the data silos by getting them all up into a platform like Snowflake and the form of the data is less important than it was. We can start with a very raw form and be doing data profiling and having data scientists look at it and maybe even feeding a machine learning engine in the process. And then as you discover the important bits in that data, maybe curated, some are cause we do need some data governance, we need some data quality. And that goes more into what you would think of traditionally as a data warehouse type format or a data mart format for running and supporting dashboards. But we're now able to unify all this data and really get to this concept of having a single source of truth and be agile at the same time. That's one of the things that attracted me to Snowflake out of my independent consulting world at the time to jump on board with Snowflake, I was just so amazed at what we could do in the cloud with that power and the elasticity that was unheard of and unthinkable in the on-prem world that we just can make so much more progress. And so, you know, fewer constraints, faster time to value, all kinds of things like that that just were amazing to me. >> Okay. Kent, it's been too long since we've jointly met with customers. You used dashboard, that's a dirty word. We're trying to get rid of those. We'll say cloud flying. >> Well, that's a good point. I mean, let's talk about the dashboard is what people are comfortable with. That's what they're used to, is kind of the first gen but now going beyond the traditional analytics this is where you start to see machine learning and AI become the value and that's the one thing that's constant now is okay, data's accessible. You get cloud scale, massive amounts of data. How fast can you put it to work? Sounds trivial, but it's not. What do you guys react to that comment? >> Yeah, and it's not trivial on the impact, but I would say it's become more trivial to make it happen because you have that unlimited compute or elastic compute, Snowflake separates the compute and storage. So you can do analytics that were just not possible in an on-premises world, on-premises discourages experimentation because of the high fixed costs to even get going. And with ThoughtSpot, the AI driven insights lets you find the anomalies, the correlations without a data scientist on all your data. So granular, every, you know, terabytes, just millions of records within your Snowflake data warehouse. And I think it's also combining the different workloads that in the past used to be separate, right? Kent, they would take the data out and do it on the desktop or in the data lake even, the data scientists anyway. >> Yeah, exactly. I mean, well in the past the repositories themselves were even separate, right? You often have very different technologies and I've worked with customers that would have data replicated across two massive data warehouses, one for loading, one for reporting. And then they'd be extracting that very same data into Hadoop cluster to put it in the same place with the semi-structured data, so the data scientists could go at it. So they really had three copies of that same data and the amount of engineering and synchronization required to make that work so that everybody was sort of working off of the same data. And we've been able to now eliminate all of that with Snowflake to put it all in one place, just once and let everyone work on it and really democratize the access to that data in one place. So whether it is, you know, machine learning and AI being one of the really big use cases that's certainly growing now and getting to it faster, you know, driving that time to value in those insights with products like ThoughtSpot to be able to get in there and make it so much easier for professionals to look at that data and analyze that data and find those insights that they really need. >> Yeah. You know, that's a great point. You mentioned, you know, the old way of setting up a dupe cluster and all the time, you know, we all know what happened there. I mean, there was too much engineering going into setting up clusters than getting the value out of the clusters and then in comes Spark and then in comes to Amazon. Hello, you know, Goodbye Hadoop. Right, so Cloudera certainly has shifted, they merged with Hortonworks. You know, they're going back into the clouds, smart, smart move. But the data world has changed. Obviously you guys are leaders in this new data in the cloud phenomenon with new business models, new value propositions. But I got to ask you about kind of the old personnel files that are out there. You talk about people, you know, there's people's jobs, where's the DBA? I ran the data where I set up those clusters. So, you know, I hear what you're saying, Kent, but like the data administrators, do their jobs go away? So take me through the impact because this is a big challenge to how to redeploy and how to retrain or leverage the existing personnel. >> Yeah, and I've been using the agile term refactor, we have to refactor the database administrator's job to be more of an architect or a platform builder. And we're talking more now about having, you know, data coaches, data storytellers. Cindi's talking about that all the time is it's different skillsets, but folks that have been in the space for awhile are very adaptable. And if they're data experts at some level, then, you know, it's just looking at it a little differently. And in reality, when I talk to DBAs, when you look at it and say, well, where do you really get the most joy out of your work? It's delivering the value. Nobody's overly excited about backup and recovery, right? That's not where they're getting their job satisfaction from, it's getting the business access to the data. And so now with the advances in technology we're able to give them that opportunity to really become, you know, data providers and to work in partnership with the business to get the business access to the data they need from new sources, different data types, but, you know, in a more timely manner rather than having to spend 70% of their day working on really manual mundane administration just to keep the platform up and running. And we've had customers tell us that, that they've seen is, you know, 50, 60, 70, 80% reduction or more in the amount of administration necessary, which means that their staff is actually more productive... >> And that's going to be a good shift. Cindi take us through the ship because, you know, one mega trend that's happening and you see chips coming out there with more horsepower, with built-in machine learning, you're seeing this kind of new layer of democratization for insights and storytelling and analytics and then you've got this embedded model and you guys do search embedded into all your activities. You've got three layers, almost a stack of data of software, you know, built in, you know, easy to use and simple and then completely forgotten by the user because it's built into some apps somewhere, right? So you're starting to see this change. How does that affect like who works on stuff? >> Yeah, so it does shift. You have to think the analyst, we talk about the analyst of the future in a way similar to what Kent was saying with the DBAs trying to become data engineers, the analysts of the future really want to be this strategic business champions and even a research report from TDWI talked about how most feel beaten down, they can't keep up with it, but 36% would say if you freed up our time, we would become more strategic business advisors. So that's kind of the core analysts now, the embedded that you're talking about is really where data becomes a product and it's the product managers that are embedding data in these applications. But this people change management is super hard and in fact, Harvard Business Review said the lack of accounting for people change management is one of the top reasons why technology is not adopted for these frontline decision makers. We can make it easy, consumer grade, but if we're not looking at how we change these people's roles, it's still a tough hill to climb. >> Well, I got to ask you both kind of the real question that's kind of in the middle of the table here is you both have seen waves of innovation before, what's going on now? And it's pretty obvious, it's playing out in the real world right now, it's in full display as we see it with COVID and digital transformation how do people do it? What's the playbook? How do you advise folks who are saying, cause you see both sides of the table, you've been there. You now see the other sides, Snowflake and ThoughtSpot. What's the mindset, what's the playbook? What do people do? How do they get going? >> Yeah. So start small with the business outcome, with your biggest pain or your biggest opportunity, learn, figure out how you're going to change the people and then run fast, run faster than you ever have before. The rate of creative destruction has never been faster. >> Yeah. In the agile world they talk about failing fast, so exactly to Cindi's point. Things are changing so rapidly, you don't have time to sit around and mull it over for very long. And so really adopting an agile mindset is very important to being successful today. And certainly with the pandemic, we've seen, you know, many organizations come to the top and those were folks that were able to rapidly adapt. And in part that as their mindset, the willingness to adapt not to sit around and overly complicate the issue, overly discuss the issue, too many committees, all of that, but really getting into that mindset of what can we do today? What technology do we have at hand to take advantage of today to make a significant difference? And that's where, you know, Snowflake we've certainly seen an increase in adoption from many of our customers where they're actually, you know, using Snowflake more, they're creating new use cases and they're able to use that flexibility and the agility of the platform to make significant business changes in a short period of time. But back to Cindi's point, you've got to have the right culture in place, right? And the right mindset in place to even see that as a possibility. >> You know, there are three things that make business go great. You make things easy to use and simple and provide value fast is a really good formula, you guys do that. Kent, congratulations on your success at Snowflake. I know Frank Slootman is going to be speaking at the ThoughtSpot Beyond 2020. You guys had great depths of business success, your customers are voting with their wallet. ThoughtSpot, you guys are having innovative formula, doing very well as well to AI and built in search and all the greatness, the new models are here. And so congratulations. Thanks for watching theCUBE. I'm John Furrrier. To learn more aboutS Snowflake and ThoughtSpot working together, check out Beyond 2020. It's a virtual event on December 9th and 10th and you can register at thoughtspot.com/beyond2020, that's thoughtspot.com/beyond2020. I'm John Furrier from theCUBE, thanks for watching this CUBE conversation. (upbeat music)
SUMMARY :
leaders all around the world. and as a lead-up to the success of the company. in the heels of Amazon and the ones that are the cloud data company. and the diversity of data but the people have to understand, people listening to you for being in the cloud and the form of the data is since we've jointly met with customers. and that's the one thing that in the past used and getting to it faster, you know, and all the time, you know, to really become, you know, data providers and you guys do search embedded and it's the product managers in the real world right now, going to change the people and the agility of the platform and all the greatness,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Volante | PERSON | 0.99+ |
Cindi Howson | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
TDWI | ORGANIZATION | 0.99+ |
John Furrrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
70% | QUANTITY | 0.99+ |
Capital One | ORGANIZATION | 0.99+ |
50 | QUANTITY | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
60 | QUANTITY | 0.99+ |
70 | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Kent Graziano | PERSON | 0.99+ |
Hortonworks | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
Cindi | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
10th | DATE | 0.99+ |
five years | QUANTITY | 0.99+ |
36% | QUANTITY | 0.99+ |
December 2020 | DATE | 0.99+ |
Kent | PERSON | 0.99+ |
two things | QUANTITY | 0.99+ |
December 9th | DATE | 0.99+ |
one place | QUANTITY | 0.99+ |
both sides | QUANTITY | 0.99+ |
both | QUANTITY | 0.98+ |
first gen | QUANTITY | 0.98+ |
two awesome visionaries | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
CUBE | ORGANIZATION | 0.98+ |
two massive data warehouses | QUANTITY | 0.97+ |
three layers | QUANTITY | 0.97+ |
Palo Alto Studios | LOCATION | 0.97+ |
Snowflake | EVENT | 0.96+ |
millions of records | QUANTITY | 0.96+ |
three copies | QUANTITY | 0.96+ |
first | QUANTITY | 0.96+ |
both things | QUANTITY | 0.95+ |
three things | QUANTITY | 0.94+ |
Snowflake | ORGANIZATION | 0.93+ |
theCUBE Studios | ORGANIZATION | 0.93+ |
thoughtspot.com/beyond2020 | OTHER | 0.93+ |
Cloudera | ORGANIZATION | 0.92+ |
few years ago | DATE | 0.91+ |
Hadoop | PERSON | 0.91+ |
single source | QUANTITY | 0.9+ |
Snowflake | TITLE | 0.9+ |
one thing | QUANTITY | 0.9+ |
pandemic | EVENT | 0.88+ |
once | QUANTITY | 0.85+ |
Ajeet Singh, ThoughtSpot | CUBE Conversation, November 2020
>> Narrator: From theCUBE studios in Palo Alto, in Boston, connecting with thought leaders all around the world. This is theCUBE conversation. >> Everyone welcome to this special CUBE conversation. I'm John Furrier, host of theCUBE here in our Palo Alto studios. During this time of the pandemic, we're doing a lot of remote interviews, supporting a lot of events. theCUBE virtual is our new brand because there's no events to go to, but we certainly want to talk to the best people and get the most important stories. And today I have a great segment with a world-class entrepreneur, Ajeet Singh co-founder and executive chairman of ThoughtSpot. And they've got an event coming up, which is going to be coming up in December 9th and 10th. But this interview is really about what it takes to be a world-class leader and what it takes to see the future and be a visionary, but then execute an opportunity because this is the time that we're in right now is there's a lot of change, data, technology, a sea change is happening and it's upon us and leadership around technology and how to capture opportunities is really what we need right now. And so Ajeet I want to thank you for coming on to theCUBE conversation. >> Thanks for having me, John. Pleasure to be here. >> For the folks watching, the startup that you've been doing for many, many years now, ThoughtSpot you're the co-founder executive chairman, but you also were involved in Nutanix as the co-founder of that company as well. You know, a little about unicorns and creating value and doing things early, but you're a visionary and you're a technologist and a leader. I want to go in and explore that because now more than ever, the role of data, the role of the truth is super important. And as the co-founder, your company is well positioned to do that. I mean, your tagline today on the website says insight is the speed of thought, but going back to the beginning, probably wasn't the tagline. It was probably maybe like we got to leverage data, take us through the vision initially when you founded the company in 2012. What was the thinking? What was on your mind? Take us through the journey. >> Yeah. So as an entrepreneur, I think visionary is a very big term. I don't know if I qualify for that or not, but what I'm really passionate about is identifying very large markets, with very, very big problems. And then going to the white board and from scratch, building a solution that is perfectly designed for the big problem that the market might be facing from scratch. And just an absolute honest way of approaching the problem and finding the best possible solution. So when we were starting ThoughtSpot, the market that we identified was analytics, analytics software. And the big problem that we saw was that while on one hand, companies were building very big data lakes, data warehouses, there was a lot of money being spent in capturing and storing data how that data was consumed by the end-users, the non-technical people, the sales, marketing, HR people, the doctors, the nurses, that process was not changing. That process was still stuck in old times where you have to ask an analyst to go and build a dashboard for you. And at the same time, we saw that in the consumer space, when anyone had a question they wanted to learn about something, they would just go to Google and ask that question. So we said, why can't analytics be as easy as Google? If I have a question, why do I have to wait for three weeks for some data experts to bring some insights to me for most simple questions, if I'm doing some very deep analysis, trying to come up with fraud algorithms, it's understood, you know, you need data expert. But if I'm just trying to understand how my business is doing, how my customers are doing, I shouldn't have to wait. And so that's how we identified the market and the problem. And then we build a solution that is designed for that non-technical user with a very design thinking UX first approach to make it super easy for anyone to ask that question. So that was the Genesis of the company. >> You know, I just love the thinking because you're solving a problem with a clean sheet piece of paper, you're looking at what can be done. And it's just, you can bring up Google because you know, you think about Google's motto was find what you're looking for. And they had a little gimmicky buttons, like I'm feeling lucky, which just took you to a random webpage at that time while everyone else was tryna build these walled gardens and this structural apparatus, Google wanted you in and out with your results fast. And that mindset just never came over to the enterprise and with all that legacy structure and all the baggage associated with it. So I totally loved the vision, but I got to ask you, how did you get to beachhead? How did you get that first success milestone? When did you see results in your thinking? >> Yeah, so I mean, I believe that once you've identified a big market and a big problem, it comes down to the people. So I sort of went on a recruit recruiting mission and I recruited perhaps the best technology and business team that you can find in any enterprise segment, not only just analytics, some of the early engineers, my co-founder, he was at Google before that, Amit Prakash, before that he was at Microsoft working on Bing. So it took a lot of very deliberate effort to find the right kind of people who have a builder's mentality and are also deep experts in areas like search large-scale distributed systems. Very passionate about user experience. And then you start building the product, you know, it took us almost, I would say one and a half three years to get the initial working version of the product. And we were lucky enough to engage with some of the largest companies in the world, such as Walmart who are very interested in our solution because they were facing these kinds of problems. And we almost co-developed this technology with our early customers, focusing on ease of use, scale, security, governance, all of that, because it's one thing to have a concept where you want to make access to data as easy as Google, you have a certain interface people can type and get an answer. But when you are talking about enterprise data and enterprise needs, they are nowhere similar to what you have in consumer space. Consumer space is free for all, all the information is there you can crawl it and then you can access it. In enterprise, for you to take this idea of search, but make it production grid, make it real and not just a concept card. You need to invest a lot in building deep technology and then enabling security and scalability and all of that. So it took us almost , I would say a two and a half to three years to get to the initial version of the product and the problem we are solving and the area of technology search that we are working on. We brought it to the market. It's almost an infinite game. You know, you can keep making things easier and easier. And we've seen how Google has continued to evolve their search over time And it is still evolving. We just feel so lucky to be in this market, taking the direction that we have taken. >> Yeah. It's easy to talk a big game in this area because like you said, it's a hard technical problem because it'll structural data, whether it's schema databases or whatever, legacy baggage, but to make it easy, hard. And I like what you guys go with this, find the right information and put it in the right place, the right time. It's a really hard problem. And the beautiful thing is you guys are building a category while there's spend in the market that needs the problem today. So category creation with an existing market that needs it. So I got to ask you, if you could do me a favor and define for the audience, what is search-driven analytics? What does that mean from your standpoint? >> Yeah, what it means is for the end user, it looks like search but under the hood is driving large scale analytics. I like to say that our product looks like a search engine on the surface, but under the hood, it's a massive number crunching machine. So Search and AI driven analytics. There's two goals there. One, if the user has, any user and we're talking about non-technical users here, we're not talking about necessarily data experts, but if a user has a question, they should be able to get an answer instantly. They shouldn't have to wait. That is what we achieve with Search and with Spot IQ, our AI engine, we help surface insights where people may not even know that those are the questions they should be asking because data has become so complex. People often don't even know what question they should be asking. And we give them a pool that's very easy to use, but it helps surface insights to them. So there is both a pool model that we enabled through Search and a push model that we enable through Spot IQ. >> So I have to ask you that you guys are pioneering this segment you're in first. And sometimes when you're first, you have arrows in your back as you know, it's not all the beginners survive, they get competition copies, but you guys have had a lead. You had success. What's different today as you have competition coming in trying to say, "Oh, we got Search too." So what's different today with ThoughtSpot? How are you guys differentiated? >> Yeah. I mean, that's always a sign of success. If what you are trying to do, if others are saying we have it too, you have done something that is valuable. And that happens in all industry. I think the best example is Tesla. They were the first to look at this very well-known problem. I mean, we haven't had a very sort of unique take on the existence of the problem itself. Everybody knows that there is a problem with access to data, but the technology that we have built is so deep that it's very, very hard to really copy it and make it work in real world with Tesla in automotive industry in cars, there is obviously so many other companies that have launched battery powered cars, electric cars, but there is Tesla and there is all the other electric cars which are a bit of an afterthought, because if you want to build an analytics product, where Search is at the core, Search cannot be added on the top, Search has to be the core, and then you build around it. And that requires you to build a fundamental architecture from the ground up. And you can't take an existing BI product that is built for dash boarding and add a search bar. I have always said that adding a search bar in a UI is perhaps, you know, 10 to 20 lines of JavaScript code. Anyone can add it and there is so much open source stuff out there that you can just take it and plug it. And many people have tried to do that, but taking off the shelf, Search technology that is built for unstructured data and sticking it on to a product that is required to do analytics on enterprise data, that doesn't work. We built a search technology that understands enterprise data at a very deep level, so that when our customers take our product and bring it into their environment, they don't have to fundamentally change how they manage their data. Our goal is to add value to their existing enterprise data Cloud Data Warehouses and deliver this amazing Search experience where our Search engine is enable to understand what's in their data Lake, what's in their Cloud Data Warehouse. What are the schema, the tables, the joints, the cardinality, the data archive, the security requirements, all of things have to be understood by the technology for you to deliver the experience. So now that said, we pride ourselves in not resting on our laurels. You know, we have this sort of motto in the company. We say we are only 2% done. So we are on our own sort of a continuous journey of innovation. And we have been working on taking our Search technology to the next level. And that is something really powerful that we are going to unveil at our upcoming conference, Beyond, in December. And that is one to create even more distance between us and the competition. And it's all driven by what we have seen with our customers, how they're using our product or learnings what they like, what they don't like, where we see gaps and where we see opportunity to make it even easier to deliver value to our customers and our users. >> I think that's a really profound insight you just shared, because if you look at what you just said around thinking about Search as an embedded architectural foundational, you know, embedded in the architecture, that's different than bolting on a feature where you said Java code or some open source library. You know, we see in the security market, people bolted on security had huge problems. Now, all you hear is, "Oh, you got a big security in from the beginning." You actually have baked Search into everything from the beginning. And it's not just a utility, it's a mindset. And it's also a technology metadata data about data software, and all kinds of tech is involved. Am I getting that right? I mean, cause I think this is what I heard you say. It's like, you got to have the data. >> This is totally right. I mean, if I can use an analogy, there is Google search and obviously Yahoo also tried to bring their own search Yahoo search Yahoo actually, Yahoo versus Google is a perfect example or a perfect analogy to compare with ThoughtSpot versus other BI product Yahoo was built for predefined content consumption. You know, you had a homepage, somebody defined it. You could make some customizations. And there is predefined content you can consume it. Now, they also did add search, but that didn't really go so far. While Google said, we will vary from scratch ability to crawl all the data, ability to index all the data and then build a serving infrastructure that deliver this amazing performance and interactivity and relevance for the user. Relevance is where Google already shined. And you can't do those things until you think about the architecture from the ground up. >> Ajeet I'm looking forward to having more deep dive conversations on that one topic. But for the folks who might not be old enough, like me to remember Google back at that time, Yahoo was the best search engine and it was directory basically with a keyword search. It was trivial, technically speaking, but they got big. And then the portal wars came out, we got to have a portal. Google was very much not looked down as an innovator, but they had great technical chops and they just stayed the course. They had a mission to provide the best search engine to help users find what they're looking for. And they never wavered. And it was not fashionable about that time to your point. And then Yahoo was number one, then Google just became Google and the rest is history. So I really think that's super notable because companies face the same problem. What looks like fashionable tech today might not be the right one. I think that's... >> Yeah, and I totally agree. And I think a lot of times in our space, there's a lot of sort of hype around AI and machine learning. We as a company have tried to stay close to our customers and users and build things that will work for them. And a lot of stuff that we are doing, it has never been done before. So it's not to say that along the way, we don't have our own failures. We do have failures and we learn from them. >> Yeah. Yeah. Just don't make the same mistake twice. >> Yeah, I think if you have a process of learning quickly, improving quickly, those are the companies that will have a competitive advantage. In today's world, nobody gets it right the first time. If you're trying to do something fundamentally different, if you're copying somebody else, then you're too late already. >> I totally agree. >> If you do something new, it's about how fast you penetrate And that's... >> That's a great mindset. That's a great mindset. And I think that's worth capturing calling out, but I got to ask you because what's first of all, distinguished history and I love your mindset and just solving problems, big problems. All great. I want to ask you something about the industry and where you guys were in 2012 alright when you started the company, you were literally in what I call the before Cloud phase. Cause it was before Cloud companies and then during Cloud companies and then after Cloud, you know, Amazon clearly took advantage of that for a lot of startups. So right around 2012 through 2016, I'd call that the Amazon is growing up years. How did the Cloud impact your thinking around the product and how you guys were executing because you were right on that wave. You were probably in the sweet spot of your development. >> Yeah. >> Pre business planning. You were in the pre-business planning mode, incomes, Amazon. I'm sure you're probably using Amazon cause your starters and all start up sort of use Amazon at first, but I just think about, do we all have found premise with a data center? How did that impact you guys? And how does that change today? >> Certainly. Yeah it's been fascinating to see how the world is evolving how enterprises have also really evolved in depth, thinking on how they leverage the cloud infrastructure now. In the Cloud, there is the compute and storage infrastructure. And then you have a Cloud Data Warehouse, the analytics stack in the Cloud. That's becoming more popular now with a company like Google, having BigQuery and then Snowflake really amazing concepts and things like that. So when we started, we looked at where our customers are , where is their data. And what kind of infrastructure is available to us at the time there wasn't enough compute to drive the search engine that we wanted to build. There were also not any significant Cloud Data Warehousing at the time, but our engineering team our co-founders, they came from companies like Google, where building a Cloud based architecture and elastic architecture, service oriented architecture is in their DNA. So we architected the product to run on infrastructure that is very elastic that can be run practically anywhere. But our initial customers and applies the Global 2000. They had their data on-prem. So we had started more with on-prem as a go-to-market strategy. and then about four and a half years ago, once cloud infrastructure I'm talking about the compute infrastructure started to become more mature, we certified our software, to run on all three clouds So today we have more than 75 to 80% of our customers already running our software in the Cloud. And as now, because we connect to our primary data sources, our Cloud Data Warehouses, Cloud Data Lakes. Now with Snowflake and BigQuery and Synapse and Redshift, we have enough of our customers who have deployed Cloud Data Warehouses. So we are also able to directly integrate with them. And that's why we launched our own hosted SaaS Offering about a month ago. So I would say our journey in this area has been sort of similar to companies like Splunk or Elastic, which started with a software model initially deployed more on-prem, but then evolved with the customers to the Cloud. So we have a lot of focus and momentum and lot of our customers, as they're moving their data to the Cloud, they're asking us as well to be in the Cloud and provide a hosted offering. And that is what we have built for the last one year. And we launched it a month ago. >> It's nice to be on the right side of history. I got to say, when you're on the way to be there. And that also makes integrations easy too. I love the Cloud play. Let's get to the final segment here. I want to get your thoughts on your customers, your advice. There's a huge untapped opportunity for companies when it comes to data, a lot of them are realizing that the pandemic is highlighting a lot of areas where they have to go faster and then to go to Cloud, they're going to build modern apps more data's coming in than ever before. Where are these untapped opportunities for customers to take advantage of the data? And what's your opinion on where they should look and what they should do? >> Yeah, I really think that the pandemics has shown for the first, the value of data to society at large, there is probably more than a billion people in the world that have seen a chart for the first time in their life. Everybody is being... and COVID has done some magic. But everybody was looking at charts of infection and so on and so forth. So there is a lot more broad awareness of what data can do in improving our society at large for the businesses of course, in the last six, seven months, you heard it enough from lot of leaders that digital transformation is accelerating. Everybody is realizing that the way to interact in the world is becoming more and more digital expecting your customers to come to your branch to do banking is not really an option. And people are also seeing how all the SaaS companies and SaaS businesses, digital businesses, they have really taken off. So if a company like Zoom can suddenly have a a hundred, $150 billion valuation, because you are able to do everything remote, all the enterprises are looking to really touch their customers and partners in a lot more digital way than they could do before. And definitely COVID has also really created this almost, you know, pool buckets of organization. There is lot of companies that have tremendously benefited from it. And there a lot of companies that have been poorly affected, really in a difficult place. And I think both of them for the first category, they are looking at how do I maintain this revenue even after COVID, because one of this thing, you know, hopefully early next year we have a vaccine and things can start to look better again sometime next year. But we have learned so much. We have attracted so many new customers, how do we retain and grow them further? And that means I need to invest more and more in my technology. Now, companies that are not doing well, they really want to figure out how to become more operationally efficient. And they are really under pressure to get more value from there and both categories, improving your revenue, retaining customers. You need to understand the customer behavior. You need to understand which products they are buying at a fine grain level, not with the law of averages, not by looking at a dashboard and saying our average customer likes this kind of product. That one doesn't really work. You have to offer people personalized services and that personalization is just not possible at scale, without really using data on the front lines. You can't have just manager sitting in their office, looking at dashboards and charts and saying these are the kinds of campaigns I need to run because my average customer seems to like these kinds of offers. I need to really empower my sales people, my individual frontline workers, who are interfacing with the customer to be able to make customized offers of services and products to them. And that is possible on the data. So we see a really, a lot more focus in getting value from data, delivering value quickly and digital transformation broadly but definitely leveraging data in businesses. There is tremendous acceleration that is happening and, you know, next five years, it's all going to be about being able to monetize data on the front lines when you are interfacing with your customers and partners >> Ajeet, that's great insight. And I really appreciate what you're saying. And you know, I wrote a blog post in 2007. I said, data will be the new development kit. Back then we used to call development kits, software user development. >> John, you are the real visionary. It took me until 2012 to be able to do this. >> Well, it wasn't clear, but you saw other data was going to have to be programmed be part of the programming. And I think, what you're getting at here is so profound because we're living 2020 people can see the value of data at the right time. It changes the conversations, it changes what's going on in the real time communications of our world with real-time access to information, whether that's machine to machine or machine to human, having data in the right place, changes the context. >> Yap. >> And that is a true, not a tech thing, that's just life, right? I think this year, I think we're going to look back and say, this was the year that everyone realized that real time communications, real-time society needs real time data. And I think it's going to be more important than ever. So it's a really big problem and important one. And thank you for sharing that. >> Yeah. And actually you bring up a very good point programming, developing big data. Data as a development kit. We are also going to announce a new product at Beyond, which will be about bringing ThoughtSpot everywhere, where a lot of business users are in their business applications. And by using ThoughtSpot product, using our full experience, they can obviously do enterprise wide analytics and look at all the data. But if they're looking for insights and nuggets, and they want to ask questions in their business workflows. We are also launching a product capability that will allow software developers to inject data in their business applications and enable and empower their own business users to be able to ask any questions that they might have without having to go to yet another BI product. >> It's data as code. I mean, you almost think about like software metaphors, where's the compiler? Where's the source code? Where's the data code? You start to get into this new mindset of thinking about data as code, because you got to have data about the data. Is it clean data, dirty data? Is it real time? Is it useful? There's a lot of intelligence needed to manage this. This is like a pretty big deal. And it's fairly new in the sense in the science side. Yeah, machine learning has been around for a while and you know, there's tracks for that. But thinking of this way as an operating system mindset, it's not just being a data geek. You know what I'm saying? So I think you're on the right track Ajeet. I really appreciate your thoughts here. Thank you. >> Thank you John. >> Okay. This is a cube conversation. Unpacking the data. The data is the future. We're living in a real-time world and in real-time data can change the outcomes of all kinds of contexts. And with truth, you need data and Ajeet Singh co-founder executive chairman of ThoughtSpot shares his thoughts here in theCUBE. I'm John furrier. Thanks for watching. (soft upbeat music)
SUMMARY :
leaders all around the world. and get the most important stories. Pleasure to be here. And as the co-founder, And at the same time, we saw and all the baggage associated with it. and the problem we are solving And the beautiful thing is you and a push model that we So I have to ask you And that is one to is what I heard you say. and relevance for the user. about that time to your point. And a lot of stuff that we are doing, Just don't make the same mistake twice. gets it right the first time. about how fast you penetrate but I got to ask you How did that impact you guys? and applies the Global 2000. and then to go to Cloud, And that is possible on the data. And you know, I wrote a blog post in 2007. to be able to do this. data in the right place, And I think it's going to and look at all the data. And it's fairly new in the And with truth, you need data
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
2012 | DATE | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
2007 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Yahoo | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
10 | QUANTITY | 0.99+ |
November 2020 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
December | DATE | 0.99+ |
Amit Prakash | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
December 9th | DATE | 0.99+ |
two goals | QUANTITY | 0.99+ |
2016 | DATE | 0.99+ |
Java | TITLE | 0.99+ |
both categories | QUANTITY | 0.99+ |
three weeks | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
first category | QUANTITY | 0.99+ |
10th | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Ajeet Singh | PERSON | 0.99+ |
One | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
today | DATE | 0.99+ |
twice | QUANTITY | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
early next year | DATE | 0.99+ |
a month ago | DATE | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
20 lines | QUANTITY | 0.99+ |
theCUBE | ORGANIZATION | 0.98+ |
more than a billion people | QUANTITY | 0.98+ |
one and a half three years | QUANTITY | 0.98+ |
one thing | QUANTITY | 0.98+ |
Bing | ORGANIZATION | 0.97+ |
Zoom | ORGANIZATION | 0.97+ |
pandemics | EVENT | 0.97+ |
JavaScript | TITLE | 0.97+ |
COVID | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
Cloud Data Warehouse | TITLE | 0.97+ |
CUBE | ORGANIZATION | 0.97+ |
2% | QUANTITY | 0.96+ |
ThoughtSpot Keynote
>>Data is at the heart of transformation and the change. Every company needs to succeed, but it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions all at the speed of digital. The transformation starts with you. It's time to lead the way it's time for thought leaders. >>Welcome to thought leaders, a digital event brought to you by ThoughtSpot. My name is Dave Volante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. >>And today we're going to hear from experienced leaders who are transforming their organizations with data insights and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my cohosts from ThoughtSpot first chief data strategy officer, the ThoughtSpot is Cindy Hausen. Cindy is an analytics and BI expert with 20 plus years experience and the author of successful business intelligence unlock the value of BI and big data. Cindy was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindy. Great to see you welcome to the show. Thank you, Dave. Nice to join you virtually. Now our second cohost and friend of the cube is ThoughtSpot CEO, sedition air. Hello. Sudheesh how are you doing today? I am validating. It's good to talk to you again. That's great to see you. Thanks so much for being here now Sateesh please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today. >>Thanks, Dave. >>I wish you were there to introduce me into every room that I walk into because you have such an amazing way of doing it. It makes me feel also good. Um, look, since we have all been, you know, cooped up in our homes, I know that the vendors like us, we have amped up know sort of effort to reach out to you with invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time. Then this is going to be used. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people that you want to hang around with long after this event is over. >>And number three, has we planned through this? You know, we are living through these difficult times. You want an event to be this event, to be more of an uplifting and inspiring event. Now, the challenge is how do you do that with the team being change agents? Because teens can, as much as we romanticize it, it is not one of those uplifting things that everyone wants to do, or like through the VA. I think of it changes sort of like if you've ever done bungee jumping and it's like standing on the edges waiting to make that one more step, uh, you know, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take change requires a lot of courage. And when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation, most businesses, it is somewhat scary. >>Change becomes all the more difficult, ultimately change requires courage, courage. To first of all, challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that, you know, maybe I don't have the power to make the change that the company needs. Sometimes they feel like I don't have the skills. Sometimes they've may feel that I'm, I'm probably not the right person to do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about, you know, that are people in the company who are going to have the data because they know how to manage the data, how to inquire and extract. They know how to speak data. They have the skills to do that, but they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. >>So there is the silo of people with the answers, and there is a silo of people with the questions. And there is gap. This sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force. Sometimes it could be a tool. It could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is, you may need to bring some external stimuli to start the domino of the positive changes that are necessarily the group of people that we are brought in. The four people, including Cindy, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to trust the rope, that you will be safe. And you're going to have fun. You will have that exhilarating feeling of jumping for a bungee jump. >>So we're going to take a hard pivot now and go from football to Ternopil Chernobyl. What went wrong? 1986, as the reactors were melting down, they had the data to say, this is going to be catastrophic. And yet the culture said, no, we're perfect. Hide it. Don't dare tell anyone which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, the additional thousands, getting cancer and 20,000 years before the ground around there and even be inhabited again, this is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with. And this is why I want you to focus on having fostering a data driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. >>So I'll talk about culture and technology. Isn't really two sides of the same coin, real world impacts. And then some best practices you can use to disrupt and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, you know, Cindy, I actually think this is two sides of the same coin. One reflects the other. What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting largely parameterized reports on premises, data, warehouses, or not even that operational reports at best one enterprise, nice data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change complacency. >>And sometimes that complacency it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and it or individual stakeholders is the norm. So data is hoarded. Let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics search and AI driven insights, not on premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data Lake and in a data warehouse, a logical data warehouse, the collaboration is being a newer methods, whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish that there is an ability to confront the bad news. >>It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. None of this. Oh, well, I didn't invent that. I'm not going to look at that. There's still proud of that ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas, fail fast, and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized and double monetized, not just for people, how are users or analysts, but really at the of impact what we like to call the new decision makers or really the front line workers. So Harvard business review partnered with us to develop this study to say, just how important is this? We've been working at BI and analytics as an industry for more than 20 years. >>Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor, 87% said they would be more successful if frontline workers were empowered with data driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality only 20% of organizations are actually doing this. These are the data driven leaders. So this is the culture and technology. How did we get here? It's because state of the art keeps changing. So the first generation BI and analytics platforms were deployed on premises on small datasets, really just taking data out of ERP systems that were also on premises. And state-of-the-art was maybe getting a management report, an operational report over time, visual based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data sometimes coming from a data warehouse, the current state of the art though, Gartner calls it augmented analytics at ThoughtSpot, we call it search and AI driven analytics. >>And this was pioneered for large scale data sets, whether it's on premises or leveraging the cloud data warehouses. And I think this is an important point. Oftentimes you, the data and analytics leaders will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody's hard coding of report, it's typing in search keywords and very robust keywords contains rank top bottom, getting to a visual visualization that then can be pinned to an existing Pinboard that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves modernizing the data and analytics portfolio is hard because the pace of change has accelerated. >>You use to be able to create an investment place. A bet for maybe 10 years, a few years ago, that time horizon was five years now, it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier the data science, tier data preparation and virtualization. But I would also say equally important is the cloud data warehouse and pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So thoughts about was the first to market with search and AI driven insights, competitors have followed suit, but be careful if you look at products like power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like snowflake, Amazon Redshift, or, or Azure synapse or Google big query, they do not. >>They re require you to move it into a smaller in memory engine. So it's important how well these new products inter operate the pace of change. It's acceleration Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI. And that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you read any of my books or used any of the maturity models out there, whether the Gardner it score that I worked on, or the data warehousing Institute also has the maturity model. We talk about these five pillars to really become data driven. As Michelle spoke about it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology, and also the processes. >>And often when I would talk about the people in the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for thought leaders, you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data driven. It's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years. But look at what happened in the face of negative news with data, it said, Hey, we're not doing good cross selling customers do not have both a checking account and a credit card and a savings account and a mortgage. >>They opened fake accounts, basing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples, Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker spinal implant diabetes, you know, this brand and at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture or Verizon, a major telecom organization looking at late payments of their customers. And even though the us federal government said, well, you can't turn them off. >>He said, we'll extend that even beyond the mandated guidelines and facing a slow down in the business because of the tough economy, he said, you know what? We will spend the time upskilling our people, giving them the time to learn more about the future of work, the skills and data and analytics for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent, identify the relevance, or I like to call it with them and organize for collaboration. So the CDO, whatever your title is, chief analytics, officer chief, digital officer, you are the most important change agent. And this is where you will hear that. Oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe, you have the CDO of just eat a takeout food delivery organization coming from the airline industry or in Australia, national Australian bank, taking a CDO within the same sector from TD bank going to NAB. >>So these change agents come in disrupt. It's a hard job. As one of you said to me, it often feels like Sisyphus. I make one step forward and I get knocked down again. I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is with them, what is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor, okay. We could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your seventies or eighties for the teachers, teachers, you ask them about data. They'll say we don't, we don't need that. I care about the student. So if you can use data to help a student perform better, that is with them. And sometimes we spend so much time talking the technology, we forget, what is the value we're trying to deliver with this? And we forget the impact on the people that it does require change. In fact, the Harvard business review study found that 44% said lack of change. Management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data driven insights. >>The third point organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC a BI competency center was considered state of the art. Now for the biggest impact, what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then in bed, these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact the most leaders. So as we look ahead to the months ahead to the year ahead and exciting time, because data is helping organizations better navigate a tough economy, lock in the customer loyalty. And I look forward to seeing how you foster that culture. That's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at thought leaders. And next I'm pleased to introduce our first change agent, Tom Masa, Pharaoh, chief data officer of Western union. And before joining Western union, Tom made his Mark at HSBC and JP Morgan chase spearheading digital innovation in technology, operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. >>Very happy to be here and, uh, looking forward to, uh, to talking to all of you today. So as we look to move organizations to a data-driven, uh, capability into the future, there is a lot that needs to be done on the data side, but also how did it connect and enable different business teams and technology teams into the future. As we look across, uh, our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive an organization from a data standpoint into the future. That includes being able to have the right information with the right quality of data at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot to actually bring in the technology to help us drive that as part of that partnership. >>And it's how we've looked to integrate it into our overall business as a whole we've looked at how do we make sure that our, that our business and our professional lives right, are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go on to google.com or you go on to being, you gone to Yahoo and you search for what you want search to find an answer ThoughtSpot for us, it's the same thing, but in the business world. So using ThoughtSpot and other AI capability is it's allowed us to actually enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end users or the business executives, right. >>Search for what they need, what they want at the exact time that action needed to go and drive the business forward. This is truly one of those transformational things that we've put in place on top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology or our Elequil environments. And as we move that we've actually picked to our cloud providers going to AWS and GCP. We've also adopted snowflake to really drive into organize our information and our data then drive these new solutions and capabilities forward. So the portion of us though, is culture. So how do we engage with the business teams and bring the, the, the it teams together to really hit the drive, these holistic end to end solution, the capabilities to really support the actual business into the future. >>That's one of the keys here, as we look to modernize and to really enhance our organizations to become data driven. This is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what does this is maybe be made and actually provide those answers to the business teams before they're even asking for it, that is really becoming a data driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon industries, based upon markets, as upon products, solutions or partnerships into the future. These are really some of the keys that, uh, that become crucial as you move forward, right, uh, into this, uh, into this new age, especially with COVID with COVID now taking place across the world, right? >>Many of these markets, many of these digital transformations are celebrating and are changing rapidly to accommodate and to support customers. And these, these very difficult times as part of that, you need to make sure you have the right underlying foundation ecosystems and solutions to really drive those, those capabilities. And those solutions forward as we go through this journey, uh, boasted both of my career, but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change has only a celebrating. So as part of that, you have to make sure that you stay up to speed up to date with new technology changes both on the platform standpoint tools, but also what our customers want, what our customers need and how do we then surface them with our information, with our data, with our platform, with our products and our services to meet those needs and to really support and service those customers into the future. >>This is all around becoming a more data driven organization, such as how do you use your data to support the current business lines, but how do you actually use your information, your data, to actually better support your customers and to support your business there's important, your employees, your operations teams, and so forth, and really creating that full integration in that ecosystem is really when he talked to get large dividends from his investments into the future. But that being said, uh, I hope you enjoyed the segment on how to become and how to drive a data driven organization. And I'm looking forward to talking to you again soon. Thank you, >>Tom. That was great. Thanks so much. Now I'm going to have to brag on you for a second as a change agent. You've come in this rusted. And how long have you been at Western union? >>Uh, well in nine months. So just, uh, just started this year, but, uh, there'd be some great opportunities and great changes and we were a lot more to go, but we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >>Tom, thank you so much. That was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent most recently, Schneider electric, but even going back to Sam's clubs. Gustavo. Welcome. >>So hi everyone. My name is Gustavo Canton and thank you so much, Cindy, for the intro, as you mentioned, doing transformations is a high effort, high reward situation. I have empowerment transformations and I have less many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North star and you know where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so in today I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also, how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are nontraditional sometimes. >>And so how do we get started? So I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand not only what is happening in your function or your field, but you have to be very into what is happening, society, socioeconomically speaking, wellbeing. You know, the common example is a great example. And for me personally, it's an opportunity because the number one core value that I have is wellbeing. I believe that for human potential, for customers and communities to grow wellbeing should be at the center of every decision. And as somebody mentioned is great to be, you know, stay in tune and have the skillset and the Koresh. But for me personally, to be honest, to have this courage is not about Nadina afraid. You're always afraid when you're making big changes in your swimming upstream. >>But what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. What I do it thinking about the mission of how do I make change for the bigger, eh, you know, workforce? So the bigger, good, despite the fact that this might have a perhaps implication. So my own self interest in my career, right? Because you have to have that courage sometimes to make choices that are not well seeing politically speaking, what are the right thing to do and you have to push through it. So the bottom line for me is that I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past. >>And what they show is that if you look at the four main barriers that are basically keeping us behind budget, inability to add cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindy has mentioned, these topic about culture is sexually gaining, gaining more and more traction. And in 2018, there was a story from HBR and he wants about 45%. I believe today it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation in set us state, eh, deadline to say, Hey, in two years, we're going to make this happen. Why do we need to do, to empower and enable this change engines to make it happen? >>You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you examples of some of the roadblocks that I went through. As I think the transformations most recently, as Cindy mentioned in Schneider, there are three main areas, legacy mindset. And what that means is that we've been doing this in a specific way for a long time. And here is how having successful while working the past is not going to work. Now, the opportunity there is that there is a lot of leaders who have a digital mindset and their up and coming leaders that are perhaps not yet fully developed. We need to mentor those leaders and take bets on some of these talents, including young talent. We cannot be thinking in the past and just wait for people, you know, three to five years for them to develop because the world is going to in a, in a way that is super fast, the second area, and this is specifically to implementation of AI is very interesting to me because just the example that I have with ThoughtSpot, right? >>We went on implementation and a lot of the way the it team function. So the leaders look at technology, they look at it from the prison of the prior auth success criteria for the traditional BIS. And that's not going to work again, your opportunity here is that you need to really find what success look like. In my case, I want the user experience of our workforce to be the same as this experience you have at home is a very simple concept. And so we need to think about how do we gain that user experience with this augmented analytics tools and then work backwards to have the right talent processes and technology to enable that. And finally, and obviously with, with COVID a lot of pressuring organizations and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs sometimes and cut budget. >>We have to do the opposite. We have to actually invest some growth areas, but do it by business question. Don't do it by function. If you actually invest. And these kind of solutions, if you actually invest on developing your talent, your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work in working very hard, but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there. And you just to put into some perspective, there have been some studies in the past about, you know, how do we kind of measure the impact of data? And obviously this is going to vary by your organization. >>Maturity is going to be a lot of factors. I've been in companies who have very clean, good data to work with. And I've been with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study, what I think is interesting is they try to put a tagline or attack price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work. When you have data that is flawed as opposed to have imperfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do a hundred things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be a hundred dollars. >>But now let's say you have 80% perfect data and 20% flow data by using this assumption that Florida is 10 times as costly as perfect data. Your total costs now becomes $280 as opposed to a hundred dollars. This just for you to really think about as a CIO CTO, CSRO CEO, are we really paying attention and really close in the gaps that we have on our data infrastructure. If we don't do that, it's hard sometimes to see this snowball effect or to measure the overall impact. But as you can tell, the price tag goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these various, right. I think the key is I am in analytics. I know statistics obviously, and, and, and love modeling and, you know, data and optimization theory and all that stuff. >>That's what I came to analytics. But now as a leader and as a change agent, I need to speak about value. And in this case, for example, for Schneider, there was this tagline coffee of your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the right leaders, because you need to focus on the leaders that you're going to make the most progress. You know, again, low effort, high value. You need to make sure you centralize all the data as you can. You need to bring in some kind of augmented analytics solution. And finally you need to make it super simple for the, you know, in this case, I was working with the HR teams and other areas, so they can have access to one portal. >>They don't have to be confused and looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data driven culture, that's where you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to, you know, it, get leadership support, find the budgeting, you know, get everybody on board, make sure the success criteria was correct. And we call this initiative, the people analytics, I pulled up, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers. But one thing that is really important is as you bring along your audience on this, you know, you're going from Excel, you know, in some cases or Tablo to other tools like, you know, you need to really explain them. >>What is the difference in how these two can truly replace some of the spreadsheets or some of the views that you might have on these other kinds of tools? Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit. But in my case, personally, I feel that you need to have one portal going back to Cindy's point. I really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to the station. Like I said, it's been years for us to kind of lay the foundation, get the leadership in shape the culture so people can understand why you truly need to invest, but I meant analytics. >>And so what I'm showing here is an example of how do we use basically to capture in video the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, our safe user experience and adoption. So for our safe or a mission was to have 10 hours per week per employee save on average user experience or ambition was 4.5 and adoption, 80% in just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings. I used to experience for 4.3 out of five and adoption of 60%, really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from it, legal communications, obviously the operations teams and the users in HR safety and other areas that might be, eh, basically stakeholders in this whole process. >>So just to summarize this kind of effort takes a lot of energy. You hire a change agent, you need to have the courage to make this decision and understand that. I feel that in this day and age, with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very souls for this organization. And that gave me the confidence to know that the work has been done and we are now in a different stage for the organization. And so for me, it says to say, thank you for everybody who has believed, obviously in our vision, everybody wants to believe in, you know, the word that we were trying to do and to make the life for, you know, workforce or customers that in community better, as you can tell, there is a lot of effort. >>There is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied. We, the accomplishments of this transformation, and I just, I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream, you know, what would mentors, where we, people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort bodies, well worth it. And with that said, I hope you are well. And it's been a pleasure talking to you. Take care. Thank you, Gustavo. That was amazing. All right, let's go to the panel. >>I think we can all agree how valuable it is to hear from practitioners. And I want to thank the panel for sharing their knowledge with the community. And one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision making in your organizations and you combine two of your most valuable assets to do that and create leverage employees on the front lines. And of course the data, as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. You know, the old saying, if it ain't broke, don't fix it. We'll COVID is broken everything. And it's great to hear from our experts, you know, how to move forward. So let's get right into, so Gustavo, let's start with you. If, if I'm an aspiring change agent and let's say I'm a, I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >>I think curiosity is very important. You need to be, like I say, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business, as you know, I come from, you know, Sam's club, Walmart, retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do is I try to go into areas, different certain transformations that make me, you know, stretch and develop as a leader. That's what I'm looking to do. So I can help to inform the functions organizations and do the change management decision of mindset as required for these kinds of efforts. A thank you for that, that is inspiring. And, and Sydney, you love data. And the data's pretty clear that diversity is a good business, but I wonder if you can add your perspective to this conversation. >>Yeah. So Michelle has a new fan here because she has found her voice. I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad. So he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before. And this is by gender, by race, by age, by just different ways of working in thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible, >>Great perspectives. Thank you, Tom. I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans. We've seen a massive growth actually in a digital business over the last 12 months, really, uh, even in celebration, right? Once, once COBIT hit, uh, we really saw that, uh, that, uh, in the 200 countries and territories that we operate in today and service our customers. And today that, uh, been a huge need, right? To send money, to support family, to support, uh, friends and loved ones across the world. And as part of that, uh, we, you know, we we're, we are, uh, very, uh, honored to get to support those customers that we across all the centers today. But as part of that acceleration, we need to make sure that we had the right architecture and the right platforms to basically scale, right, to basically support and provide the right kind of security for our customers going forward. >>So as part of that, uh, we, we did do some, uh, some the pivots and we did, uh, a solo rate, some of our plans on digital to help support that overall growth coming in there to support our customers going forward, because there were these times during this pandemic, right? This is the most important time. And we need to support those, those that we love and those that we care about and doing that it's one of those ways is actually by sending money to them, support them financially. And that's where, uh, really our part that our services come into play that, you know, we really support those families. So it was really a, a, a, a, a great opportunity for us to really support and really bring some of our products to the next level and supporting our business going forward. Awesome. Thank you. Now, I want to come back to Gustavo, Tom. I'd love for you to chime in too. Did you guys ever think like you were, you were pushing the envelope too much in, in doing things with, with data or the technology that was just maybe too bold, maybe you felt like at some point it was, it was, it was failing or you're pushing your people too hard. Can you share that experience and how you got through it? >>Yeah, the way I look at it is, you know, again, whenever I go to an organization, I ask the question, Hey, how fast you would like to conform. And, you know, based on the agreements on the leadership and the vision that we want to take place, I take decisions. And I collaborate in a specific way now, in the case of COVID, for example, right? It forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it. When you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay, you know, the varying points or making repetitive business cases onto people, connect with the decision because you understand, and you are seeing that, Hey, the CEO is making a one two year, you know, efficiency goal. >>The only way for us to really do more with less is for us to continue this path. We cannot just stay with the status quo. We need to find a way to accelerate it's information. That's the way, how, how about Utah? We were talking earlier was sedation Cindy, about that bungee jumping moment. What can you share? Yeah. You know, I think you hit upon, uh, right now, the pace of change will be the slowest pace that you see for the rest of your career. So as part of that, right, that's what I tell my team. This is that you need to be, need to feel comfortable being uncomfortable. I mean, that we have to be able to basically, uh, scale, right, expand and support that the ever changing needs in the marketplace and industry and our customers today, and that pace of change that's happening. >>Right. And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, you know, as you look at what, uh, how you're operating today and your current business model, right. Things are only going to get faster. So you have to plan into align and to drive the actual transformation so that you can scale even faster in the future. So as part of that is what we're putting in place here, right. Is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindy, last question, you've worked with hundreds of organizations, and I got to believe that, you know, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. You know, they're not on my watch for whatever variety of reasons, but it's being forced on them now. But knowing what you know now that you know, we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >>Yeah. Well, first off, Tom just freaked me out. What do you mean? This is the slowest ever even six months ago. I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, um, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, um, very aware of the power and politics and how to bring people along in a way that they are comfortable. And now I think it's, you know, what? You can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So if you really want to survive as, as Tom and Gustavo said, get used to being uncomfortable, the power and politics are gonna happen. Break the rules, get used to that and be bold. Do not, do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's the dish gonna go on to junk >>Guys. Fantastic discussion, really, thanks again, to all the panelists and the guests. It was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in the cube program. Recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just as I said before, lip service is sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done, right, the right culture is going to deliver tournament, tremendous results. Know what does that mean? Getting it right? Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. >>And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive you revenue, cut costs, speed, access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay. Let's bring back Sudheesh and wrap things up. So these please bring us home. Thank you. Thank you, Dave. Thank you. The cube team, and thanks. Thanks goes to all of our customers and partners who joined us and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I was simply put it. She said it really well. That is be brave and drive. >>Don't go for a drive along. That is such an important point. Often times, you know that I think that you have to make the positive change that you want to see happen when you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I picked up from Michelle's talk, Cindy talked about finding the importance of finding your voice, taking that chair, whether it's available or not, and making sure that your ideas, your voices are heard, and if it requires some force and apply that force, make sure your ideas are we start with talking about the importance of building consensus, not going at things all alone, sometimes building the importance of building the Koran. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it, Tom, instead of a single take away. >>What I was inspired by is the fact that a company that is 170 years old, 170 years sold 200 companies, 200 countries they're operating in and they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to topspot.com/nfl because our team has made an app for NFL on snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle stock. And the last thing is these go to topspot.com/beyond our global user conferences happening in this December, we would love to have you join us. It's again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we've been up to since last year, we, we have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. You'll be sharing things that you have been working to release something that will come out next year. And also some of the crazy ideas or engineers. All of those things will be available for you at hotspot beyond. Thank you. Thank you so much.
SUMMARY :
It's time to lead the way it's of speakers and our goal is to provide you with some best practices that you can bring back It's good to talk to you again. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it Now, the challenge is how do you do that with the team being change agents? are afraid to challenge the status quo because they are thinking that, you know, maybe I don't have the power or how small the company is, you may need to bring some external stimuli to start And this is why I want you to focus on having fostering a CDO said to me, you know, Cindy, I actually think this And the data is not in one place, but really at the of impact what we like to call the So the first generation BI and analytics platforms were deployed but you have to look at the BI and analytics tier in lockstep with your So you have these different components, And if you read any of my books or used And let's take an example of where you can have great data, And even though the us federal government said, well, you can't turn them off. agent, identify the relevance, or I like to call it with them and organize or eighties for the teachers, teachers, you ask them about data. forward to seeing how you foster that culture. Very happy to be here and, uh, looking forward to, uh, to talking to all of you today. You go on to google.com or you go on to being, you gone to Yahoo and you search for what you want the capabilities to really support the actual business into the future. If you can really start to provide answers part of that, you need to make sure you have the right underlying foundation ecosystems and solutions And I'm looking forward to talking to you again soon. Now I'm going to have to brag on you for a second as to support those customers going forward. And now I'm excited to it's really hard to predict the future, but if you have a North star and you know where you're going, So I think the answer to that is you have to what are the right thing to do and you have to push through it. And what they show is that if you look at the four main barriers that are basically keeping the second area, and this is specifically to implementation of AI is very And the solution that most leaders I see are taking is to just minimize costs is going to offset all those hidden costs and inefficiencies that you have on your system, it's going to cost you a dollar. But as you can tell, the price tag goes up very, very quickly. how to bring in the right leaders, because you need to focus on the leaders that you're going to make I think if you can actually have And I will show you some of the findings that we had in the pilot in the last two months. legal communications, obviously the operations teams and the users in HR And that gave me the confidence to know that the work has And with that said, I hope you are well. And of course the data, as you rightly pointed out, Tom, the pandemic I can do this for 50 years plus, but I think you need to understand wellbeing other areas don't care what type of minority you are finding your voice, And as part of that, uh, we, you know, we we're, we are, uh, very, that experience and how you got through it? Hey, the CEO is making a one two year, you know, right now, the pace of change will be the slowest pace that you see for the rest of your career. and to drive the actual transformation so that you can scale even faster in the future. I do think you have to do that with empathy, as Michelle said, and Gustavo, right, the right culture is going to deliver tournament, tremendous results. And that means making it accessible to the people in your organization that are empowered to make decisions, that you have to make the positive change that you want to see happen when you wait for someone else to do it, And the last thing is these go to topspot.com/beyond our
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tom | PERSON | 0.99+ |
Michelle | PERSON | 0.99+ |
Cindy | PERSON | 0.99+ |
Gustavo | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Australia | LOCATION | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Cindy Hausen | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Tom Masa | PERSON | 0.99+ |
HSBC | ORGANIZATION | 0.99+ |
two sides | QUANTITY | 0.99+ |
$280 | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Wells Fargo | ORGANIZATION | 0.99+ |
60% | QUANTITY | 0.99+ |
50 years | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
20,000 | QUANTITY | 0.99+ |
20 plus years | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
last year | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
three years | QUANTITY | 0.99+ |
44% | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
next year | DATE | 0.99+ |
Kiev | LOCATION | 0.99+ |
1990s | DATE | 0.99+ |
Sateesh | PERSON | 0.99+ |
Western union | ORGANIZATION | 0.99+ |
4.3 | QUANTITY | 0.99+ |
Schneider electric | ORGANIZATION | 0.99+ |
1986 | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
200 companies | QUANTITY | 0.99+ |
seventies | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
JP Morgan | ORGANIZATION | 0.99+ |
4.5 | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
65% | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
Pharaoh | PERSON | 0.99+ |
Sudheesh | PERSON | 0.99+ |
87% | QUANTITY | 0.99+ |
Thought.Leaders Digital 2020
>> Voice Over: Data is at the heart of transformation, and the change every company needs to succeed. But it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions, all at the speed of digital. The transformation starts with you, it's time to lead the way, it's time for thought leaders. (soft upbeat music) >> Welcome to Thought.Leaders a digital event brought to you by ThoughtSpot, my name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers, and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not, ThoughtSpot is disrupting analytics, by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core, requires not only modern technology but leadership, a mindset and a culture, that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action? And today we're going to hear from experienced leaders who are transforming their organizations with data, insights, and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot. First, chief data strategy officer of the ThoughtSpot is Cindi Howson, Cindi is an analytics and BI expert with 20 plus years experience, and the author of Successful Business Intelligence: Unlock the Value of BI & Big Data. Cindi was previously the lead analyst at Gartner for the data and analytics Magic Quadrant. In early last year, she joined ThoughtSpot to help CEOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi great to see you, welcome to the show. >> Thank you Dave, nice to join you virtually. >> Now our second cohost and friend of theCUBE is ThoughtSpot CEO Sudheesh Nair Hello Sudheesh, how are you doing today? >> I'm well, good to talk to you again. >> That's great to see you, thanks so much for being here. Now Sudheesh, please share with us why this discussion is so important to your customers and of course to our audience, and what they're going to learn today. (upbeat music) >> Thanks Dave, I wish you were there to introduce me into every room that I walk into because you have such an amazing way of doing it. It makes me feel also good. Look, since we have all been you know, cooped up in our homes, I know that the vendors like us, we have amped up our sort of effort to reach out to you with, invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one, that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time, we want to make sure that we value your time, then this is going to be used. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people, that you want to hang around with long after this event is over. And number three, as we plan through this, you know we are living through these difficult times we want this event to be more of an uplifting and inspiring event too. Now, the challenge is how do you do that with the team being change agents, because teens and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do or likes to do. The way I think of it, changes sort of like, if you've ever done bungee jumping, and it's like standing on the edges, waiting to make that one more step you know, all you have to do is take that one step and gravity will do the rest, but that is the hardest step today. Change requires a lot of courage, and when we are talking about data and analytics, which is already like such a hard topic not necessarily an uplifting and positive conversation most businesses, it is somewhat scary, change becomes all the more difficult. Ultimately change requires courage, courage to first of all, challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that you know, maybe I don't have the power to make the change that the company needs, sometimes they feel like I don't have the skills, sometimes they may feel that I'm probably not the right person to do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations when it comes to data and insights that you talked about. You know, that are people in the company who are going to have the data because they know how to manage the data, how to inquire and extract, they know how to speak data, they have the skills to do that. But they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is the silo of people with the answers, and there is a silo of people with the questions, and there is gap, this sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force sometimes. It could be a tool, it could be a platform, it could be a person, it could be a process but sometimes no matter how big the company is or how small the company is you may need to bring some external stimuli to start the domino of the positive changes that are necessary. The group of people that we are brought in, the four people, including Cindi that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to dress the rope, that you will be safe and you're going to have fun, you will have that exhilarating feeling of jumping for a bungee jump, all four of them are exceptional, but my owner is to introduce Michelle. And she's our first speaker, Michelle I am very happy after watching our presentation and reading your bio that there are no country vital worldwide competition for cool parents, because she will beat all of us. Because when her children were small, they were probably into Harry Potter and Disney and she was managing a business and leading change there. And then as her kids grew up and got to that age where they like football and NFL, guess what? She's the CIO of NFL, what a cool mom. I am extremely excited to see what she's going to talk about. I've seen this slides, a bunch of amazing pictures, I'm looking to see the context behind it, I'm very thrilled to make that client so far, Michelle, I'm looking forward to her talk next. Welcome Michelle, it's over to you. (soft upbeat music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one, and I thought this is about as close as I'm ever going to get. So I want to talk to you about quarterbacking our digital revolution using insights data, and of course as you said, leadership. First a little bit about myself, a little background as I said, I always wanted to play football, and this is something that I wanted to do since I was a child, but when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines, and a female official on the field. I'm a lifelong fan and student of the game of football, I grew up in the South, you can tell from the accent and in the South is like a religion and you pick sides. I chose Auburn University working in the Athletic Department, so I'm testament to you can start the journey can be long it took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well, not actually not so little, he played offensive line for the Alabama Crimson Tide. And for those of you who know SEC football you know, this is a really big rivalry. And when you choose sides, your family is divided, so it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL he just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands. Delivering memories and amazing experiences that delight from Universal Studios, Disney to my current position as CIO of the NFL. In this job I'm very privileged to have the opportunity to work with the team, that gets to bring America's game to millions of people around the world. Often I'm asked to talk about how to create amazing experiences for fans, guests, or customers. But today I really wanted to focus on something different and talk to you about being behind the scenes and backstage. Because behind every event every game, every awesome moment is execution, precise repeatable execution. And most of my career has been behind the scenes, doing just that, assembling teams to execute these plans, and the key way that companies operate at these exceptional levels, is making good decisions, the right decisions at the right time and based upon data, so that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves. And it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kinds of world-class experiences are often seeking out and leveraging next generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute. A little bit first about Disney, in the 90s I was at Disney, leading a project called destination Disney, which it's a data project, it was a data project, but it was CRM before CRM was even cool. And then certainly before anything like a data-driven culture was ever brought up. But way back then we were creating a digital backbone that enabled many technologies for the things that you see today, like the magic band, just these magical express. My career at Disney began in finance, but Disney was very good about rotating you around, and it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team, asking for data more and more data. And I learned that all of that valuable data was locked up in our systems, all of our point of sales systems, our reservation systems, our operation systems, and so I became a shadow IT person in marketing, ultimately leading to moving into IT, and I haven't looked back since. In the early 2000s I was at Universal Studios Theme Park as their CIO, preparing for and launching the wizarding world of Harry Potter. Bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wand selects you at a wine shop. As today at the NFL, I am constantly challenged to do leading edge technologies using things like sensors, AI, machine learning, and all new communication strategies, and using data to drive everything from player performance, contracts to where we build new stadiums and hold events. With this year being the most challenging, yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contract tracing devices joined with testing data. Talk about data, actually enabling your business without it we wouldn't be having a season right now. I'm also on the board of directors of two public companies, where data and collaboration are paramount. First RingCentral, it's a cloud based unified communications platform, and collaboration with video message and phone, all in one solution in the cloud. And Quotient Technologies, whose product is actually data. The tagline at quotient is the result in knowing. I think that's really important, because not all of us are data companies, where your product is actually data. But we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about, as thought leaders in your companies. First just hit on it is change, how to be a champion and a driver of change. Second, how to use data to drive performance for your company, and measure performance of your company. Third, how companies now require intense collaboration to operate, and finally, how much of this is accomplished through solid data-driven decisions. First let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it, and thankfully for the most part knock on wood we were prepared for it. But this year everyone's cheese was moved, all the people in the back rooms, IT, data architects and others, were suddenly called to the forefront. Because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, the 2020 Draft. We went from planning, a large event in Las Vegas under the bright lights red carpet stage to smaller events in club facilities. And then ultimately to one where everyone coaches, GMs, prospects and even our commissioner were at home in their basements. And we only had a few weeks to figure it out. I found myself for the first time being in the live broadcast event space, talking about bungee dress jumping, this is really what it felt like. It was one in which no one felt comfortable, because it had not been done before. But leading through this, I stepped up, but it was very scary, it was certainly very risky but it ended up being Oh, so rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at this level, highest level. As an example, the NFL has always measured performance obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field, you can see points being scored and stats, and you immediately know that impact, those with the best stats, usually win the games. The NFL has always recorded stats, since the beginning of time, here at the NFL a little this year as our 100 and first year and athletes ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us, is both how much more we can measure, and the immediacy with which it can be measured. And I'm sure in your business, it's the same, the amount of data you must have has got to have quadrupled recently and how fast you need it and how quickly you need to analyze it, is so important. And it's very important to break the silos between the keys to the data and the use of the data. Our next generation stats platform is taking data to a next level, it's powered by Amazon Web Services, and we gathered this data real time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast, and of course it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize, route patterns speed, matchups, et cetera, so much faster than ever before. We're continuing to roll out sensors too, that we'll gather more and more information about player's performance as it relates to their health and safety. The third trend is really I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes it's important to think about for those of you that are IT professionals and developers, you know more than 10 years ago, agile practices began sweeping companies or small teams would work together rapidly in a very flexible, adaptive and innovative way, and it proved to be transformational. However today, of course, that is no longer just small teams the next big wave of change, and we've seen it through this pandemic is that it's the whole enterprise that must collaborate and be agile. If I look back on my career when I was at Disney, we owned everything 100%, we made a decision, we implemented it, we were a collaborative culture but it was much easier to push change because you own the whole decision. If there was buy in from the top down, you got the people from the bottom up to do it, and you executed. At Universal, we were a joint venture, our attractions and entertainment was licensed, our hotels were owned and managed by other third parties. So influence and collaboration and how to share across companies became very important. And now here I am at the NFL and even the bigger ecosystem. We have 32 clubs that are all separate businesses 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved centralized control has gotten less and less and has been replaced by intense collaboration not only within your own company, but across companies. The ability to work in a collaborative way across businesses and even other companies that has been a big key to my success in my career. I believe this whole vertical integration and big top down decision making is going by the wayside in favor of ecosystems that require cooperation, yet competition to coexist. I mean the NFL is a great example of what we call coopertition, which is cooperation and competition. When in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data-driven decisions and culture. Data on its own isn't good enough, you must be able to turn it to insights, partnerships between technology teams who usually hold the keys to the raw data, and business units who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be, data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask? It's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with first of all making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave, and drive, don't do the ride along program, it's very important to drive, driving can be high risk but it's also high reward. Embracing the uncertainty of what will happen, is how you become brave, get more and more comfortable with uncertainty be calm and let data be your map on your journey, thanks. >> Michelle, thank you so much. So you and I share a love of data, and a love of football. You said you want to be the quarterback, I'm more an old wine person. (Michelle laughing) >> Well, then I can do my job without you. >> Great, and I'm getting the feeling now you know, Sudheesh is talking about bungee jumping. My boat is when we're past this pandemic, we both take them to the Delaware Water Gap and we do the cliff jumping. >> That sounds good, I'll watch. >> You'll watch, okay, so Michelle, you have so many stakeholders when you're trying to prioritize the different voices, you have the players, you have the owners you have the league, as you mentioned to the broadcasters your, your partners here and football mamas like myself. How do you prioritize when there's so many different stakeholders that you need to satisfy? I think balancing across stakeholders starts with aligning on a mission. And if you spend a lot of time understanding where everyone's coming from, and you can find the common thread ties them all together you sort of do get them to naturally prioritize their work, and I think that's very important. So for us at the NFL, and even at Disney, it was our core values and our core purpose is so well known, and when anything challenges that we're able to sort of lay that out. But as a change agent, you have to be very empathetic, and I would say empathy is probably your strongest skill if you're a change agent. And that means listening to every single stakeholder even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic and having a mission and understanding it, is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling. So I thank you for your metership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. (soft upbeat music) >> So we're going to take a hard pivot now and go from football to Chernobyl, Chernobyl, what went wrong? 1986, as the reactors were melting down they had the data to say, this is going to be catastrophic and yet the culture said, "No, we're perfect, hide it. Don't dare tell anyone," which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure the additional thousands getting cancer, and 20,000 years before the ground around there and even be inhabited again, This is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with, and this is why I want you to focus on having fostering a data-driven culture. I don't want you to be a laggard, I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology, isn't really two sides of the same coin, real-world impacts and then some best practices you can use to disrupt and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology, and recently a CDO said to me, "You know Cindi, I actually think this is two sides of the same coin. One reflects the other, what do you think?" Let me walk you through this, so let's take a laggard. What is the technology look like? Is it based on 1990s BI and reporting largely parameterized reports on-premises data warehouses, or not even that operational reports, at best one enterprise data warehouse very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to. Or is there also a culture of fear, afraid of failure, resistance to change complacency and sometimes that complacency it's not because people are lazy, it's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and IT or individual stakeholders is the norm. So data is hoarded, let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics, search and AI-driven insights not on-premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data lake, and in a data warehouse, a logical data warehouse. The collaboration is being a newer methods whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust, there is a trust that data will not be used to punish, that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. There's none of this, oh, well, I didn't invent that, I'm not going to look at that. There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas to fail fast, and they're energized, knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized and democratized, not just for power users or analysts, but really at the point of impact what we like to call the new decision makers. Or really the frontline workers. So Harvard business review partnered with us to develop this study to say, just how important is this? They've been working at BI and analytics as an industry for more than 20 years. Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager a warehouse manager, a financial services advisor. 87% said they would be more successful if frontline workers were empowered with data-driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools, the sad reality only 20% of organizations are actually doing this, these are the data-driven leaders. So this is the culture and technology, how did we get here? It's because state of the art keeps changing. So the first generation BI and analytics platforms were deployed on-premises, on small datasets really just taking data out of ERP systems that were also on-premises, and state of the art was maybe getting a management report, an operational report. Over time visual based data discovery vendors, disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data sometimes coming from a data warehouse, the current state of the art though, Gartner calls it augmented analytics, at ThoughtSpot, we call it search and AI-driven analytics. And this was pioneered for large scale data sets, whether it's on-premises or leveraging the cloud data warehouses, and I think this is an important point. Oftentimes you, the data and analytics leaders, will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights, and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot I'll just show you what this looks like, instead of somebody's hard coding a report, it's typing in search keywords and very robust keywords contains rank, top, bottom getting to a visualization that then can be pinned to an existing Pinboard that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves. Modernizing the data and analytics portfolio is hard, because the pace of change has accelerated. You used to be able to create an investment, place a bet for maybe 10 years. A few years ago, that time horizon was five years, now it's maybe three years, and the time to maturity has also accelerated. So you have these different components the search and AI tier, the data science tier, data preparation and virtualization. But I would also say equally important is the cloud data warehouse. And pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI-driven insights. Competitors have followed suit, but be careful if you look at products like Power BI or SAP Analytics Cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift or Azure Synapse or Google BigQuery, they do not. They require you to move it into a smaller in memory engine. So it's important how well these new products inter operate. The pace of change, it's acceleration, Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI, and that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you've read any of my books or used any of the maturity models out there whether the Gartner IT score that I worked on, or the data warehousing institute also has a maturity model. We talk about these five pillars to really become data-driven, as Michelle spoke about, it's focusing on the business outcomes, leveraging all the data, including new data sources. It's the talent, the people, the technology, and also the processes, and often when I would talk about the people in the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for thought leaders you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar, and in fact, in polls that we've done in these events, look at how much more important culture is, as a barrier to becoming data-driven. It's three times as important as any of these other pillars. That's how critical it is, and let's take an example of where you can have great data but if you don't have the right culture there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years, but look at what happened in the face of negative news with data, that said, "Hey, we're not doing good cross selling, customers do not have both a checking account and a credit card and a savings account and a mortgage." They opened fake accounts, facing billions in fines, change in leadership, that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying that culture has not changed. Let's contrast that with some positive examples, Medtronic a worldwide company in 150 countries around the world, they may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant, diabetes you know, this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients, they took the bold move of making their IP for ventilators publicly available, that is the power of a positive culture. Or Verizon, a major telecom organization, looking at late payments of their customers, and even though the US federal government said "Well, you can't turn them off." They said, "We'll extend that even beyond the mandated guidelines," and facing a slow down in the business because of the tough economy, he said, "You know what? We will spend the time upskilling our people giving them the time to learn more about the future of work, the skills and data and analytics," for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent identify the relevance, or I like to call it WIIFM, and organize for collaboration. So the CDO whatever your title is, chief analytics officer chief digital officer, you are the most important change agent. And this is where you will hear, that oftentimes a change agent has to come from outside the organization. So this is where, for example in Europe, you have the CDO of Just Eat takeout food delivery organization, coming from the airline industry or in Australia, National Australian Bank, taking a CDO within the same sector from TD Bank going to NAB. So these change agents come in disrupt, it's a hard job. As one of you said to me, it often feels like Sisyphus, I make one step forward and I get knocked down again, I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIIFM, what is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline as well as those analysts, as well as the executives. So if we're talking about players in the NFL they want to perform better, and they want to stay safe. That is why data matters to them. If we're talking about financial services this may be a wealth management advisor, okay, we could say commissions, but it's really helping people have their dreams come true whether it's putting their children through college, or being able to retire without having to work multiple jobs still into your 70s or 80s. For the teachers, teachers, you asked them about data, they'll say, "We don't need that, I care about the student." So if you can use data to help a student perform better that is WIIFM. And sometimes we spend so much time talking the technology, we forget what is the value we're trying to deliver with it. And we forget the impact on the people that it does require change. In fact, the Harvard Business Review Study, found that 44% said lack of change management is the biggest barrier to leveraging both new technology but also being empowered to act on those data-driven insights. The third point, organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI Competency Center was considered state of the art. Now for the biggest impact, what I recommend is that you have a federated model, centralized for economies of scale, that could be the common data, but then in bed, these evangelists, these analysts of the future, within every business unit, every functional domain, and as you see this top bar, all models are possible but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead, an exciting time, because data is helping organizations better navigate a tough economy lock in the customer loyalty, and I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at thought leaders, and next I'm pleased to introduce our first change agent Thomas Mazzaferro, chief data officer of Western Union, and before joining Western Union, Tom made his mark at HSBC and JP Morgan Chase spearheading digital innovation in technology operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. (soft upbeat music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable, different business teams and technology teams into the future. As we look across our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive over the shift from a data standpoint, into the future. That includes being able to have the right information with the right quality of data at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot to actually bring in the technology to help us drive that, as part of that partnership, and it's how we've looked to integrated into our overall business as a whole. We've looked at how do we make sure that our business and our professional lives, right? Are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go on to google.com or you go on to Bing, or go to Yahoo and you search for what you want, search to find an answer. ThoughtSpot for us as the same thing, but in the business world. So using ThoughtSpot and other AI capability is allowed us to actually enable our overall business teams in our company, to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end users or the business executives, right? Search for what they need, what they want, at the exact time that action needed, to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology or our (indistinct) environments, and as we move that we've actually picked to our cloud providers going to AWS and GCP. We've also adopted Snowflake to really drive into organize our information and our data, then drive these new solutions and capabilities forward. So big portion of us though is culture, so how do we engage with the business teams and bring the IT teams together to really drive these holistic end to end solutions and capabilities, to really support the actual business into the future. That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven, this is the key. If you can really start to provide answers to business questions before they're even being asked, and to predict based upon different economic trends or different trends in your business, what does is be made and actually provide those answers to the business teams before they're even asking for it. That is really becoming a data-driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon industries, based upon markets, based upon products, solutions, or partnerships into the future. These are really some of the keys that become crucial as you move forward right into this new age, especially with COVID, with COVID now taking place across the world, right? Many of these markets, many of these digital transformations are celebrating, and are changing rapidly to accommodate and to support customers in these very difficult times. As part of that, you need to make sure you have the right underlying foundation, ecosystems and solutions to really drive those capabilities, and those solutions forward. As we go through this journey, both of my career but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only a celebrating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes both on the platform standpoint, tools, but also what our customers want, what do our customers need, and how do we then surface them with our information, with our data, with our platform, with our products and our services, to meet those needs and to really support and service those customers into the future. This is all around becoming a more data-driven organization such as how do you use your data to support the current business lines. But how do you actually use your information your data, to actually better support your customers better support your business, better support your employees, your operations teams and so forth, and really creating that full integration in that ecosystem is really when you start to get large dividends from these investments into the future. With that being said I hope you enjoyed the segment on how to become and how to drive a data-driven organization, and looking forward to talking to you again soon, thank you. >> Tom, that was great, thanks so much. Now I'm going to have to brag on you for a second, as a change agent you've come in disrupted, and how long have you been at Western Union? >> Only nine months, I just started this year, but there'd be some great opportunities and big changes, and we have a lot more to go, but we're really driving things forward in partnership with our business teams, and our colleagues to support those customers forward. >> Tom, thank you so much that was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent. Most recently with Schneider Electric, but even going back to Sam's Club, Gustavo welcome. (soft upbeat music) >> So hi everyone my name is Gustavo Canton and thank you so much Cindi for the intro. As you mentioned, doing transformations is a you know, high effort, high reward situation. I have empowerment in transformation and I have led many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North Star and you know where you're going, the one thing that I want you to take away from this discussion today, is that you need to be bold to evolve. And so in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are nontraditional sometimes. And so how do we get started? So I think the answer to that is, you have to start for you, yourself as a leader and stay tuned. And by that, I mean you need to understand not only what is happening in your function or your field, but you have to be very into what is happening in society, socioeconomically speaking, wellbeing, you know, the common example is a great example. And for me personally, it's an opportunity because the number one core value that I have is wellbeing. I believe that for human potential, for customers and communities to grow, wellbeing should be at the center of every decision. And as somebody mentioned, it's great to be you know, stay in tune and have the skillset and the courage. But for me personally, to be honest to have this courage is not about not being afraid. You're always afraid when you're making big changes and your swimming upstream. But what gives me the courage is the empathy part, like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business, and what the leaders are trying to do, what I do it thinking about the mission of how do I make change for the bigger, you know workforce so the bigger good, despite the fact that this might have a perhaps implication, so my own self interest in my career, right? Because you have to have that courage sometimes to make choices, that are not well seeing politically speaking what are the right thing to do, and you have to push through it. So the bottom line for me is that, I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past, and what they show is that if you look at the four main barriers, that are basically keeping us behind budget, inability to add, cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, this topic about culture is actually gaining more and more traction, and in 2018, there was a story from HBR and it was for about 45%. I believe today, it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand, and are aware that we need to transform, commit to the transformation and set us deadline to say, "Hey, in two years, we're going to make this happen, what do we need to do to empower and enable these search engines to make it happen?" You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you samples of some of the roadblocks that I went through, as I think the intro information most recently as Cindi mentioned in Schneider. There are three main areas, legacy mindset, and what that means is that we've been doing this in a specific way for a long time, and here is how we have been successful. We're working the past is not going to work now, the opportunity there is that there is a lot of leaders who have a digital mindset, and their up and coming leaders that are perhaps not yet fully developed. We need to mentor those leaders and take bets on some of these talents, including young talent. We cannot be thinking in the past and just wait for people you know, three to five years for them to develop, because the world is going to in a way that is super fast. The second area and this is specifically to implementation of AI is very interesting to me, because just example that I have with ThoughtSpot, right? We went to an implementation and a lot of the way the IT team functions, so the leaders look at technology, they look at it from the prism of the prior or success criteria for the traditional BIs, and that's not going to work. Again, your opportunity here is that you need to really find what success look like, in my case, I want the user experience of our workforce to be the same as your experience you have at home. It's a very simple concept, and so we need to think about how do we gain that user experience with this augmented analytics tools, and then work backwards to have the right talent, processes and technology to enable that. And finally, and obviously with COVID a lot of pressure in organizations and companies to do more with less, and the solution that most leaders I see are taking is to just minimize cost sometimes and cut budget. We have to do the opposite, we have to actually invest some growth areas, but do it by business question. Don't do it by function, if you actually invest in these kind of solutions, if you actually invest on developing your talent, your leadership, to see more digitally, if you actually invest on fixing your data platform is not just an incremental cost, it's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work in working very hard but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there, and you just to put it into some perspective, there have been some studies in the past about you know, how do we kind of measure the impact of data? And obviously this is going to vary by organization, maturity there's going to be a lot of factors. I've been in companies who have very clean, good data to work with, and I think with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study what I think is interesting is, they try to put a tagline or attack price to what is a cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work, when you have data that is flawed as opposed to have imperfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be a $100. But now let's say you have any percent perfect data and 20% flow data, by using this assumption that flow data is 10 times as costly as perfect data, your total costs now becomes $280 as opposed to $100, this just for you to really think about as a CIO, CTO, you know CSRO, CEO, are we really paying attention and really closing the gaps that we have on our infrastructure? If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact, but as you can tell, the price tag goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these barriers, right? I think the key is I am in analytics, I know statistics obviously, and love modeling and you know, data and optimization theory and all that stuff, that's what I can do analytics, but now as a leader and as a change agent, I need to speak about value, and in this case, for example for Schneider, there was this tagline coffee of your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the right leaders, because you need to, you know, focus on the leaders that you're going to make the most progress. You know, again, low effort, high value, you need to make sure you centralize all the data as you can, you need to bring in some kind of augmented analytics, you know, solution, and finally you need to make it super simple for the you know, in this case, I was working with the HR teams and other areas, so they can have access to one portal. They don't have to be confused and looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation but it was two years for this component of augmented analytics. It took about two years to talk to, you know, IT, get leadership support, find the budgeting, you know, get everybody on board, make sure the success criteria was correct. And we call this initiative, the people analytics, I pulled up, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers, but one thing that is really important is as you bring along your audience on this, you know, you're going from Excel, you know in some cases or Tableau to other tools like you know, ThoughtSpot, you need to really explain them, what is the difference, and how these two can truly replace some of the spreadsheets or some of the views that you might have on these other kind of tools. Again, Tableau, I think it's a really good tool, there are other many tools that you might have in your toolkit. But in my case, personally I feel that you need to have one portal going back to seeing these points that really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to these stations. Like I said it's been years for us to kind of lay the foundation, get the leadership and chasing culture, so people can understand why you truly need to invest what I meant analytics. And so what I'm showing here is an example of how do we use basically, you know a tool to capturing video, the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, hours saved, user experience and adoption. So for hours saved, our ambition was to have 10 hours per week per employee save on average, user experience or ambition was 4.5 and adoption 80%. In just two months, two months and a half of the pilot we were able to achieve five hours, per week per employee savings. I used to experience for 4.3 out of five, and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications obviously the operations things and the users, in HR safety and other areas that might be basically stakeholders in this whole process. So just to summarize this kind of effort takes a lot of energy, you are a change agent, you need to have a courage to make these decision and understand that, I feel that in this day and age with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very souls for this organization, and that gave me the confidence to know that the work has been done, and we are now in a different stage for the organization. And so for me it safe to say, thank you for everybody who has believed obviously in our vision, everybody who has believed in, you know, the word that we were trying to do and to make the life for, you know workforce or customers that are in community better. As you can tell, there is a lot of effort, there is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied with the accomplishments of this transformation, and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream you know, what would mentors what people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort but is well worth it. And with that said, I hope you are well and it's been a pleasure talking to you, talk to you soon, take care. >> Thank you Gustavo, that was amazing. All right, let's go to the panel. (soft upbeat music) >> I think we can all agree how valuable it is to hear from practitioners, and I want to thank the panel for sharing their knowledge with the community, and one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top, why? Because it directs the middle, and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard, is that you all prioritize database decision making in your organizations, and you combine two of your most valuable assets to do that, and create leverage, employees on the front lines, and of course the data. That was rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. You know, the old saying, if it ain't broke, don't fix it, well COVID's broken everything. And it's great to hear from our experts, you know, how to move forward, so let's get right into it. So Gustavo let's start with you if I'm an aspiring change agent, and let's say I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >> I think curiosity is very important. You need to be, like I say, in tune to what is happening not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business as you know, I come from, you know, Sam's Club Walmart retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement that's just going to take you so far. What you have to do is and that's what I tried to do is I try to go into areas, businesses and transformations that make me, you know stretch and develop as a leader. That's what I'm looking to do, so I can help transform the functions organizations, and do these change management and decisions mindset as required for these kinds of efforts. >> Thank you for that is inspiring and Cindi, you love data, and the data is pretty clear that diversity is a good business, but I wonder if you can add your perspectives to this conversation. >> Yeah, so Michelle has a new fan here because she has found her voice, I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad, so he did teach me how to work in a predominantly male environment. But why I think diversity matters more now than ever before, and this is by gender, by race, by age, by just different ways of working and thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models, and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority, you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible >> Great perspectives thank you, Tom, I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth actually you know, in a digital business over the last 12 months really, even in celebration, right? Once COVID hit, we really saw that in the 200 countries and territories that we operate in today and service our customers and today, that there's been a huge need, right? To send money, to support family, to support friends and loved ones across the world. And as part of that, you know, we are very honored to support those customers that we across all the centers today. But as part of that celebration, we need to make sure that we had the right architecture and the right platforms to basically scale, right? To basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did celebrate some of our plans on digital to help support that overall growth coming in, and to support our customers going forward. Because there were these times during this pandemic, right? This is the most important time, and we need to support those that we love and those that we care about. And in doing that, it's one of those ways is actually by sending money to them, support them financially. And that's where really are part of that our services come into play that, you know, I really support those families. So it was really a great opportunity for us to really support and really bring some of our products to this level, and supporting our business going forward. >> Awesome, thank you. Now I want to come back to Gustavo, Tom, I'd love for you to chime in too. Did you guys ever think like you were pushing the envelope too much and doing things with data or the technology that was just maybe too bold, maybe you felt like at some point it was failing, or you pushing your people too hard, can you share that experience and how you got through it? >> Yeah, the way I look at it is, you know, again, whenever I go to an organization I ask the question, Hey, how fast you would like to conform?" And, you know, based on the agreements on the leadership and the vision that we want to take place, I take decisions and I collaborate in a specific way. Now, in the case of COVID, for example, right? It forces us to remove silos and collaborate in a faster way, so to me it was an opportunity to actually integrate with other areas and drive decisions faster. But make no mistake about it, when you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay, you know debating points or making repetitive business cases onto people connect with the decision because you understand, and you are seeing that, hey, the CEO is making a one, two year, you know, efficiency goal, the only way for us to really do more with less is for us to continue this path. We cannot just stay with the status quo, we need to find a way to accelerate transformation... >> How about you Tom, we were talking earlier was Sudheesh had said about that bungee jumping moment, what can you share? >> Yeah you know, I think you hit upon it. Right now, the pace of change will be the slowest pace that you see for the rest of your career. So as part of that, right? That's what I tell my team is that you need to feel comfortable being uncomfortable. I mean, that we have to be able to basically scale, right? Expand and support that the ever changing needs the marketplace and industry and our customers today and that pace of change that's happening, right? And what customers are asking for, and the competition the marketplace, it's only going to accelerate. So as part of that, you know, as we look at what how you're operating today in your current business model, right? Things are only going to get faster. So you have to plan into align, to drive the actual transformation, so that you can scale even faster into the future. So as part of that, so we're putting in place here, right? Is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> We're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindi, last question, you've worked with hundreds of organizations, and I got to believe that you know, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. You know, they're not on my watch for whatever variety of reasons, but it's being forced on them now, but knowing what you know now that you know, we're all in this isolation economy how would you say that advice has changed, has it changed? What's your number one action and recommendation today? >> Yeah well, first off, Tom just freaked me out. What do you mean this is the slowest ever? Even six months ago, I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, very aware of the power in politics and how to bring people along in a way that they are comfortable, and now I think it's, you know what? You can't get comfortable. In fact, we know that the organizations that were already in the cloud, have been able to respond and pivot faster. So if you really want to survive as Tom and Gustavo said, get used to being uncomfortable, the power and politics are going to happen. Break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's Sudheesh going to go on bungee jumping? (all chuckling) >> That's fantastic discussion really. Thanks again to all the panelists and the guests, it was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in theCUBE program recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just as I said before lip service. And sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done right, the right culture is going to deliver tremendous results. Yeah, what does that mean getting it right? Everybody's trying to get it right. My biggest takeaway today, is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions that can drive you revenue, cut costs, speed, access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay, let's bring back Sudheesh and wrap things up. Sudheesh please bring us home. >> Thank you, thank you Dave, thank you theCUBE team, and thanks goes to all of our customers and partners who joined us, and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I was simply put it, she said it really well, that is be brave and drive. Don't go for a drive along, that is such an important point. Often times, you know that I think that you have to do to make the positive change that you want to see happen. But you wait for someone else to do it, why not you? Why don't you be the one making that change happen? That's the thing that I picked up from Michelle's talk. Cindi talked about finding the importance of finding your voice, taking that chair, whether it's available or not and making sure that your ideas, your voices are heard and if it requires some force then apply that force, make sure your ideas are good. Gustavo talked about the importance of building consensus, not going at things all alone sometimes building the importance of building the courtroom. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom instead of a single take away, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in, and they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to thoughtspot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is, please go to thoughtspot.com/beyond, our global user conferences happening in this December, we would love to have you join us. It's again, virtual, you can join from anywhere, we are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we would have been up to since the last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing, you'll be sharing things that you have been working to release something that will come out next year. And also some of the crazy ideas for engineers I've been cooking up. All of those things will be available for you at ThoughtSpot Beyond, thank you, thank you so much.
SUMMARY :
and the change every to you by ThoughtSpot, to join you virtually. and of course to our audience, and insights that you talked about. and talk to you about being So you and I share a love of Great, and I'm getting the feeling now and you can find the common So I thank you for your metership here. and the time to maturity or go to Yahoo and you and how long have you and we have a lot more to go, a change agent that I've had the pleasure in the past about you know, All right, let's go to the panel. and of course the data. that's just going to take you so far. and the data is pretty and the models, and how they're applied, in our businesses in some way, and the right platforms and how you got through it? and the vision that we want to that you see for the rest of your career. to believe that you know, and how to bring people along in a way the right culture is going to the changes to last, you want to make sure
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
Sudheesh | PERSON | 0.99+ |
Gustavo | PERSON | 0.99+ |
Michelle | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
October 19 | DATE | 0.99+ |
HSBC | ORGANIZATION | 0.99+ |
1987 | DATE | 0.99+ |
January 2017 | DATE | 0.99+ |
Cindi | PERSON | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Thomas Mazzaferro | PERSON | 0.99+ |
October 18 | DATE | 0.99+ |
2.5 billion | QUANTITY | 0.99+ |
Wells Fargo | ORGANIZATION | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
2018 | DATE | 0.99+ |
TD Bank | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
five hours | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
10 hours | QUANTITY | 0.99+ |
March 13th | DATE | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
two sides | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
$280 | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
10 times | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
$100 | QUANTITY | 0.99+ |
Schneider Electric | ORGANIZATION | 0.99+ |
July 19 | DATE | 0.99+ |
EMC | ORGANIZATION | 0.99+ |
Alabama Crimson Tide | ORGANIZATION | 0.99+ |
60% | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
1986 | DATE | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
12-month | QUANTITY | 0.99+ |
48.1% | QUANTITY | 0.99+ |
JP Morgan Chase | ORGANIZATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Kiev | LOCATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
53 percent | QUANTITY | 0.99+ |
20,000 | QUANTITY | 0.99+ |
Thought.Leaders Digital 2020 | Japan
(speaks in foreign language) >> Narrator: Data is at the heart of transformation and the change every company needs to succeed, but it takes more than new technology. It's about teams, talent, and cultural change. Empowering everyone on the front lines to make decisions, all at the speed of digital. The transformation starts with you. It's time to lead the way, it's time for thought leaders. >> Welcome to Thought Leaders, a digital event brought to you by ThoughtSpot. My name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis, and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core, requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. And today, we're going to hear from experienced leaders, who are transforming their organizations with data, insights and creating digital-first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot. First, Chief Data Strategy Officer for ThoughtSpot is Cindi Hausen. Cindi is an analytics and BI expert with 20 plus years experience and the author of Successful Business Intelligence Unlock The Value of BI and Big Data. Cindi was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi, great to see you, welcome to the show. >> Thank you, Dave. Nice to join you virtually. >> Now our second cohost and friend of theCUBE is ThoughtSpot CEO Sudheesh Nair. Hello Sudheesh, how are you doing today? >> I am well Dave, it's good to talk to you again. >> It's great to see you. Thanks so much for being here. Now Sudheesh, please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today? (gentle music) >> Thanks, Dave, I wish you were there to introduce me into every room that I walk into because you have such an amazing way of doing it. It makes me feel also good. Look, since we have all been cooped up in our homes, I know that the vendors like us, we have amped up our, you know, sort of effort to reach out to you with invites for events like this. So we are getting way more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time, and this is going to be useful. Number two, we want to put you in touch with industry leaders and thought leaders, and generally good people that you want to hang around with long after this event is over. And number three, as we plan through this, you know, we are living through these difficult times, we want an event to be, this event to be more of an uplifting and inspiring event too. Now, the challenge is, how do you do that with the team being change agents? Because change and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do or likes to do. The way I think of it, change is sort of like, if you've ever done bungee jumping. You know, it's like standing on the edges, waiting to make that one more step. You know, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take. Change requires a lot of courage and when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation, in most businesses it is somewhat scary. Change becomes all the more difficult. Ultimately change requires courage. Courage to to, first of all, challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that, "You know, maybe I don't have the power to make the change that the company needs. Sometimes I feel like I don't have the skills." Sometimes they may feel that, I'm probably not the right person to do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about. You know, there are people in the company, who are going to hog the data because they know how to manage the data, how to inquire and extract. They know how to speak data, they have the skills to do that, but they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is this silo of people with the answers and there is a silo of people with the questions, and there is gap. These sort of silos are standing in the way of making that necessary change that we all I know the business needs, and the last change to sort of bring an external force sometimes. It could be a tool, it could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is. You may need to bring some external stimuli to start that domino of the positive changes that are necessary. The group of people that we have brought in, the four people, including Cindi, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to trust the rope that you will be safe and you're going to have fun. You will have that exhilarating feeling of jumping for a bungee jump. All four of them are exceptional, but my honor is to introduce Michelle and she's our first speaker. Michelle, I am very happy after watching her presentation and reading her bio, that there are no country vital worldwide competition for cool patents, because she will beat all of us because when her children were small, you know, they were probably into Harry Potter and Disney and she was managing a business and leading change there. And then as her kids grew up and got to that age, where they like football and NFL, guess what? She's the CIO of NFL. What a cool mom. I am extremely excited to see what she's going to talk about. I've seen the slides with a bunch of amazing pictures, I'm looking to see the context behind it. I'm very thrilled to make the acquaintance of Michelle. I'm looking forward to her talk next. Welcome Michelle. It's over to you. (gentle music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one. This is about as close as I'm ever going to get. So, I want to talk to you about quarterbacking our digital revolution using insights, data and of course, as you said, leadership. First, a little bit about myself, a little background. As I said, I always wanted to play football and this is something that I wanted to do since I was a child but when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines and a female official on the field. I'm a lifelong fan and student of the game of football. I grew up in the South. You can tell from the accent and in the South football is like a religion and you pick sides. I chose Auburn University working in the athletic department, so I'm testament. Till you can start, a journey can be long. It took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well not actually not so little, he played offensive line for the Alabama Crimson Tide. And for those of you who know SEC football, you know this is a really big rivalry, and when you choose sides your family is divided. So it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL, he just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands, delivering memories and amazing experiences that delight. From Universal Studios, Disney, to my current position as CIO of the NFL. In this job, I'm very privileged to have the opportunity to work with a team that gets to bring America's game to millions of people around the world. Often, I'm asked to talk about how to create amazing experiences for fans, guests or customers. But today, I really wanted to focus on something different and talk to you about being behind the scenes and backstage. Because behind every event, every game, every awesome moment, is execution. Precise, repeatable execution and most of my career has been behind the scenes doing just that. Assembling teams to execute these plans and the key way that companies operate at these exceptional levels is making good decisions, the right decisions, at the right time and based upon data. So that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves, and it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kind of world class experiences are often seeking out and leveraging next generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute. A little bit first about Disney. In '90s I was at Disney leading a project called Destination Disney, which it's a data project. It was a data project, but it was CRM before CRM was even cool and then certainly before anything like a data-driven culture was ever brought up. But way back then we were creating a digital backbone that enabled many technologies for the things that you see today. Like the MagicBand, Disney's Magical Express. My career at Disney began in finance, but Disney was very good about rotating you around. And it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team asking for data, more and more data. And I learned that all of that valuable data was locked up in our systems. All of our point of sales systems, our reservation systems, our operation systems. And so I became a shadow IT person in marketing, ultimately, leading to moving into IT and I haven't looked back since. In the early 2000s, I was at Universal Studio's theme park as their CIO preparing for and launching the Wizarding World of Harry Potter. Bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wand selects you at a wand shop. As today at the NFL, I am constantly challenged to do leading edge technologies, using things like sensors, AI, machine learning and all new communication strategies, and using data to drive everything, from player performance, contracts, to where we build new stadiums and hold events. With this year being the most challenging, yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contact tracing devices joined with testing data. Talk about data actually enabling your business. Without it we wouldn't be having a season right now. I'm also on the board of directors of two public companies, where data and collaboration are paramount. First, RingCentral, it's a cloud based unified communications platform and collaboration with video message and phone, all-in-one solution in the cloud and Quotient Technologies, whose product is actually data. The tagline at Quotient is The Result in Knowing. I think that's really important because not all of us are data companies, where your product is actually data, but we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about as thought leaders in your companies. First, just hit on it, is change. how to be a champion and a driver of change. Second, how to use data to drive performance for your company and measure performance of your company. Third, how companies now require intense collaboration to operate and finally, how much of this is accomplished through solid data-driven decisions. First, let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it. And thankfully, for the most part, knock on wood, we were prepared for it. But this year everyone's cheese was moved. All the people in the back rooms, IT, data architects and others were suddenly called to the forefront because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, The 2020 Draft. We went from planning a large event in Las Vegas under the bright lights, red carpet stage, to smaller events in club facilities. And then ultimately, to one where everyone coaches, GMs, prospects and even our commissioner were at home in their basements and we only had a few weeks to figure it out. I found myself for the first time, being in the live broadcast event space. Talking about bungee jumping, this is really what it felt like. It was one in which no one felt comfortable because it had not been done before. But leading through this, I stepped up, but it was very scary, it was certainly very risky, but it ended up being also rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at its level, highest level. As an example, the NFL has always measured performance, obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field, you can see points being scored and stats, and you immediately know that impact. Those with the best stats usually win the games. The NFL has always recorded stats. Since the beginning of time here at the NFL a little... This year is our 101st year and athlete's ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us is both how much more we can measure and the immediacy with which it can be measured and I'm sure in your business it's the same. The amount of data you must have has got to have quadrupled recently. And how fast do you need it and how quickly you need to analyze it is so important. And it's very important to break the silos between the keys to the data and the use of the data. Our next generation stats platform is taking data to the next level. It's powered by Amazon Web Services and we gather this data, real-time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast. And of course, it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize, route patterns, speed, match-ups, et cetera, so much faster than ever before. We're continuing to roll out sensors too, that will gather more and more information about a player's performance as it relates to their health and safety. The third trend is really, I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes, it's important to think about, for those of you that are IT professionals and developers, you know, more than 10 years ago agile practices began sweeping companies. Where small teams would work together rapidly in a very flexible, adaptive and innovative way and it proved to be transformational. However today, of course that is no longer just small teams, the next big wave of change and we've seen it through this pandemic, is that it's the whole enterprise that must collaborate and be agile. If I look back on my career, when I was at Disney, we owned everything 100%. We made a decision, we implemented it. We were a collaborative culture but it was much easier to push change because you own the whole decision. If there was buy-in from the top down, you got the people from the bottom up to do it and you executed. At Universal, we were a joint venture. Our attractions and entertainment was licensed. Our hotels were owned and managed by other third parties, so influence and collaboration, and how to share across companies became very important. And now here I am at the NFL an even the bigger ecosystem. We have 32 clubs that are all separate businesses, 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved, centralized control has gotten less and less and has been replaced by intense collaboration, not only within your own company but across companies. The ability to work in a collaborative way across businesses and even other companies, that has been a big key to my success in my career. I believe this whole vertical integration and big top-down decision-making is going by the wayside in favor of ecosystems that require cooperation, yet competition to co-exist. I mean, the NFL is a great example of what we call co-oppetition, which is cooperation and competition. We're in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data-driven decisions and culture. Data on its own isn't good enough. You must be able to turn it to insights. Partnerships between technology teams who usually hold the keys to the raw data and business units, who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be, data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask? It's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with, first of all, making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today, looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave and drive. Don't do the ride along program, it's very important to drive. Driving can be high risk, but it's also high reward. Embracing the uncertainty of what will happen is how you become brave. Get more and more comfortable with uncertainty, be calm and let data be your map on your journey. Thanks. >> Michelle, thank you so much. So you and I share a love of data and a love of football. You said you want to be the quarterback. I'm more an a line person. >> Well, then I can't do my job without you. >> Great and I'm getting the feeling now, you know, Sudheesh is talking about bungee jumping. My vote is when we're past this pandemic, we both take him to the Delaware Water Gap and we do the cliff jumping. >> Oh that sounds good, I'll watch your watch. >> Yeah, you'll watch, okay. So Michelle, you have so many stakeholders, when you're trying to prioritize the different voices you have the players, you have the owners, you have the league, as you mentioned, the broadcasters, your partners here and football mamas like myself. How do you prioritize when there are so many different stakeholders that you need to satisfy? >> I think balancing across stakeholders starts with aligning on a mission and if you spend a lot of time understanding where everyone's coming from, and you can find the common thread that ties them all together. You sort of do get them to naturally prioritize their work and I think that's very important. So for us at the NFL and even at Disney, it was our core values and our core purpose is so well known and when anything challenges that, we're able to sort of lay that out. But as a change agent, you have to be very empathetic, and I would say empathy is probably your strongest skill if you're a change agent and that means listening to every single stakeholder. Even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic, and having a mission, and understanding it is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling, so thank you for your leadership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. >> (gentle music) So we're going to take a hard pivot now and go from football to Chernobyl. Chernobyl, what went wrong? 1986, as the reactors were melting down, they had the data to say, "This is going to be catastrophic," and yet the culture said, "No, we're perfect, hide it. Don't dare tell anyone." Which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, additional thousands getting cancer and 20,000 years before the ground around there can even be inhabited again. This is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with and this is why I want you to focus on having, fostering a data-driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology, is it really two sides of the same coin? Real-world impacts and then some best practices you can use to disrupt and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, "You know, Cindi, I actually think this is two sides of the same coin, one reflects the other." What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting, largely parametrized reports, on-premises data warehouses, or not even that operational reports. At best one enterprise data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change, complacency. And sometimes that complacency, it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, "No, we're measured on least to serve." So politics and distrust, whether it's between business and IT or individual stakeholders is the norm, so data is hoarded. Let's contrast that with the leader, a data and analytics leader, what does their technology look like? Augmented analytics, search and AI driven insights, not on-premises but in the cloud and maybe multiple clouds. And the data is not in one place but it's in a data lake and in a data warehouse, a logical data warehouse. The collaboration is via newer methods, whether it's Slack or Teams, allowing for that real-time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish, that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals. Whether it's the best fan experience and player safety in the NFL or best serving your customers, it's innovative and collaborative. There's none of this, "Oh, well, I didn't invent that. I'm not going to look at that." There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas, to fail fast and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized and democratized, not just for power users or analysts, but really at the point of impact, what we like to call the new decision-makers or really the frontline workers. So Harvard Business Review partnered with us to develop this study to say, "Just how important is this? We've been working at BI and analytics as an industry for more than 20 years, why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor." 87% said they would be more successful if frontline workers were empowered with data-driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality only 20% of organizations are actually doing this. These are the data-driven leaders. So this is the culture and technology, how did we get here? It's because state-of-the-art keeps changing. So the first generation BI and analytics platforms were deployed on-premises, on small datasets, really just taking data out of ERP systems that were also on-premises and state-of-the-art was maybe getting a management report, an operational report. Over time, visual based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data, sometimes coming from a data warehouse. The current state-of-the-art though, Gartner calls it augmented analytics. At ThoughtSpot, we call it search and AI driven analytics, and this was pioneered for large scale data sets, whether it's on-premises or leveraging the cloud data warehouses. And I think this is an important point, oftentimes you, the data and analytics leaders, will look at these two components separately. But you have to look at the BI and analytics tier in lock-step with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody hard coding a report, it's typing in search keywords and very robust keywords contains rank, top, bottom, getting to a visual visualization that then can be pinned to an existing pin board that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non-analyst to create themselves. Modernizing the data and analytics portfolio is hard because the pace of change has accelerated. You used to be able to create an investment, place a bet for maybe 10 years. A few years ago, that time horizon was five years. Now, it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier, the data science tier, data preparation and virtualization but I would also say, equally important is the cloud data warehouse. And pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI driven insights. Competitors have followed suit, but be careful, if you look at products like Power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift, or Azure Synapse, or Google BigQuery, they do not. They require you to move it into a smaller in-memory engine. So it's important how well these new products inter-operate. The pace of change, its acceleration, Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI and that is roughly three times the prediction they had just a couple of years ago. So let's talk about the real world impact of culture and if you've read any of my books or used any of the maturity models out there, whether the Gartner IT Score that I worked on or the Data Warehousing Institute also has a maturity model. We talk about these five pillars to really become data-driven. As Michelle spoke about, it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology and also the processes. And often when I would talk about the people in the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for thought leaders. You have told me now culture is absolutely so important, and so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data-driven. It's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say I have been a loyal customer of Wells Fargo for more than 20 years, but look at what happened in the face of negative news with data. It said, "Hey, we're not doing good cross-selling, customers do not have both a checking account and a credit card and a savings account and a mortgage." They opened fake accounts facing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture and they're trying to fix this, but even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples. Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant, diabetes, you know this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture. Or Verizon, a major telecom organization looking at late payments of their customers and even though the U.S. Federal Government said, "Well, you can't turn them off." They said, "We'll extend that even beyond the mandated guidelines," and facing a slow down in the business because of the tough economy, They said, "You know what? We will spend the time upskilling our people, giving them the time to learn more about the future of work, the skills and data and analytics for 20,000 of their employees rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions. Bring in a change agent, identify the relevance or I like to call it WIIFM and organize for collaboration. So the CDO, whatever your title is, Chief Analytics Officer, Chief Digital Officer, you are the most important change agent. And this is where you will hear that oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe you have the CDO of Just Eat, a takeout food delivery organization coming from the airline industry or in Australia, National Australian Bank taking a CDO within the same sector from TD Bank going to NAB. So these change agents come in, disrupt. It's a hard job. As one of you said to me, it often feels like. I make one step forward and I get knocked down again, I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIIFM What's In It For Me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So, if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor. Okay, we could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your 70s or 80s. For the teachers, teachers you ask them about data. They'll say, "We don't need that, I care about the student." So if you can use data to help a student perform better, that is WIIFM and sometimes we spend so much time talking the technology, we forget, what is the value we're trying to deliver with this? And we forget the impact on the people that it does require change. In fact, the Harvard Business Review study found that 44% said lack of change management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data-driven insights. The third point, organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI competency center was considered state of the art. Now for the biggest impact, what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then embed these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead, an exciting time because data is helping organizations better navigate a tough economy, lock in the customer loyalty and I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at Thought Leaders. And next, I'm pleased to introduce our first change agent, Tom Mazzaferro Chief Data Officer of Western Union and before joining Western Union, Tom made his Mark at HSBC and JP Morgan Chase spearheading digital innovation in technology, operations, risk compliance and retail banking. Tom, thank you so much for joining us today. (gentle music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable different business teams and the technology teams into the future? As we look across our data ecosystems and our platforms, and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive an organization from a data standpoint, into the future. That includes being able to have the right information with the right quality of data, at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot to actually bring in the technology to help us drive that. As part of that partnership and it's how we've looked to integrate it into our overall business as a whole. We've looked at, how do we make sure that our business and our professional lives, right? Are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go onto google.com or you go onto Bing or you go onto Yahoo and you search for what you want, search to find an answer. ThoughtSpot for us is the same thing, but in the business world. So using ThoughtSpot and other AI capability is it's allowed us to actually enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone, or an engineer to go pull information or pull data. We actually can have the end users or the business executives, right. Search for what they need, what they want, at the exact time that they actually need it, to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on a journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology, our... The local environments and as we move that, we've actually picked two of our cloud providers going to AWS and to GCP. We've also adopted Snowflake to really drive and to organize our information and our data, then drive these new solutions and capabilities forward. So a big portion of it though is culture. So how do we engage with the business teams and bring the IT teams together, to really help to drive these holistic end-to-end solutions and capabilities, to really support the actual business into the future. That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven. This is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what decisions need to be made and actually provide those answers to the business teams before they're even asking for it. That is really becoming a data-driven organization and as part of that, it really then enables the business to act quickly and take advantage of opportunities as they come in based upon industries, based upon markets, based upon products, solutions or partnerships into the future. These are really some of the keys that become crucial as you move forward, right, into this new age, Especially with COVID. With COVID now taking place across the world, right? Many of these markets, many of these digital transformations are celebrating and are changing rapidly to accommodate and to support customers in these very difficult times. As part of that, you need to make sure you have the right underlying foundation, ecosystems and solutions to really drive those capabilities and those solutions forward. As we go through this journey, both in my career but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only accelerating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes, both on the platform standpoint, tools, but also what do our customers want, what do our customers need and how do we then service them with our information, with our data, with our platform, and with our products and our services to meet those needs and to really support and service those customers into the future. This is all around becoming a more data-driven organization, such as how do you use your data to support your current business lines, but how do you actually use your information and your data to actually better support your customers, better support your business, better support your employees, your operations teams and so forth. And really creating that full integration in that ecosystem is really when you start to get large dividends from these investments into the future. With that being said, I hope you enjoyed the segment on how to become and how to drive a data-driven organization, and looking forward to talking to you again soon. Thank you. >> Tom, that was great. Thanks so much and now going to have to drag on you for a second. As a change agent you've come in, disrupted and how long have you been at Western Union? >> Only nine months, so just started this year, but there have been some great opportunities to integrate changes and we have a lot more to go, but we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >> Tom, thank you so much. That was wonderful. And now, I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe and he is a serial change agent. Most recently with Schneider Electric but even going back to Sam's Clubs. Gustavo, welcome. (gentle music) >> So, hey everyone, my name is Gustavo Canton and thank you so much, Cindi, for the intro. As you mentioned, doing transformations is, you know, a high reward situation. I have been part of many transformations and I have led many transformations. And, what I can tell you is that it's really hard to predict the future, but if you have a North Star and you know where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so, in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started, barriers or opportunities as I see it, the value of AI and also, how you communicate. Especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are non-traditional sometimes. And so, how do we get started? So, I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand, not only what is happening in your function or your field, but you have to be very in tune what is happening in society socioeconomically speaking, wellbeing. You know, the common example is a great example and for me personally, it's an opportunity because the number one core value that I have is wellbeing. I believe that for human potential for customers and communities to grow, wellbeing should be at the center of every decision. And as somebody mentioned, it's great to be, you know, stay in tune and have the skillset and the courage. But for me personally, to be honest, to have this courage is not about not being afraid. You're always afraid when you're making big changes and you're swimming upstream, but what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. But I do it thinking about the mission of, how do I make change for the bigger workforce or the bigger good despite the fact that this might have perhaps implication for my own self interest in my career. Right? Because you have to have that courage sometimes to make choices that are not well seen, politically speaking, but are the right thing to do and you have to push through it. So the bottom line for me is that, I don't think we're they're transforming fast enough. And the reality is, I speak with a lot of leaders and we have seen stories in the past and what they show is that, if you look at the four main barriers that are basically keeping us behind budget, inability to act, cultural issues, politics and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, these topic about culture is actually gaining more and more traction. And in 2018, there was a story from HBR and it was about 45%. I believe today, it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation and set a deadline to say, "Hey, in two years we're going to make this happen. What do we need to do, to empower and enable these change agents to make it happen? You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So, I'll give you examples of some of the roadblocks that I went through as I've been doing transformations, most recently, as Cindi mentioned in Schneider. There are three main areas, legacy mindset and what that means is that, we've been doing this in a specific way for a long time and here is how we have been successful. What worked in the past is not going to work now. The opportunity there is that there is a lot of leaders, who have a digital mindset and they're up and coming leaders that are perhaps not yet fully developed. We need to mentor those leaders and take bets on some of these talents, including young talent. We cannot be thinking in the past and just wait for people, you know, three to five years for them to develop because the world is going in a way that is super-fast. The second area and this is specifically to implementation of AI. It's very interesting to me because just the example that I have with ThoughtSpot, right? We went on implementation and a lot of the way the IT team functions or the leaders look at technology, they look at it from the prism of the prior or success criteria for the traditional BIs, and that's not going to work. Again, the opportunity here is that you need to redefine what success look like. In my case, I want the user experience of our workforce to be the same user experience you have at home. It's a very simple concept and so we need to think about, how do we gain that user experience with these augmented analytics tools and then work backwards to have the right talent, processes, and technology to enable that. And finally and obviously with COVID, a lot of pressure in organizations and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs sometimes and cut budget. We have to do the opposite. We have to actually invest on growth areas, but do it by business question. Don't do it by function. If you actually invest in these kind of solutions, if you actually invest on developing your talent and your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work and working very hard but it's not efficient and it's not working in the way that you might want to work. So there is a lot of opportunity there and just to put in terms of perspective, there have been some studies in the past about, you know, how do we kind of measure the impact of data? And obviously, this is going to vary by organization maturity, there's going to be a lot of factors. I've been in companies who have very clean, good data to work with and I've been with companies that we have to start basically from scratch. So it all depends on your maturity level. But in this study, what I think is interesting is they try to put a tagline or a tag price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work when you have data that is flawed as opposed to having perfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be $100. But now let's say you have 80% perfect data and 20% flawed data. By using this assumption that flawed data is 10 times as costly as perfect data, your total costs now becomes $280 as opposed to $100. This just for you to really think about as a CIO, CTO, you know CHRO, CEO, "Are we really paying attention and really closing the gaps that we have on our data infrastructure?" If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact, but as you can tell, the price tag goes up very, very quickly. So now, if I were to say, how do I communicate this or how do I break through some of these challenges or some of these barriers, right? I think the key is, I am in analytics, I know statistics obviously and love modeling, and, you know, data and optimization theory, and all that stuff. That's what I came to analytics, but now as a leader and as a change agent, I need to speak about value and in this case, for example, for Schneider. There was this tagline, make the most of your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that, I understood what kind of language to use, how to connect it to the overall strategy and basically, how to bring in the right leaders because you need to, you know, focus on the leaders that you're going to make the most progress, you know. Again, low effort, high value. You need to make sure you centralize all the data as you can, you need to bring in some kind of augmented analytics, you know, solution. And finally, you need to make it super-simple for the, you know, in this case, I was working with the HR teams and other areas, so they can have access to one portal. They don't have to be confused and looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to, you know, IT, get leadership support, find the budgeting, you know, get everybody on board, make sure the success criteria was correct. And we call this initiative, the people analytics portal. It was actually launched in July of this year and we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many, many factors but one thing that is really important is as you bring along your audience on this, you know. You're going from Excel, you know, in some cases or Tableu to other tools like, you know, ThoughtSpot. You need to really explain them what is the difference and how this tool can truly replace some of the spreadsheets or some of the views that you might have on these other kinds of tools. Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit but in my case, personally, I feel that you need to have one portal. Going back to Cindi's points, that really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory and I will tell you why, because it took a lot of effort for us to get to this stage and like I said, it's been years for us to kind of lay the foundation, get the leadership, initiating culture so people can understand, why you truly need to invest on augmented analytics. And so, what I'm showing here is an example of how do we use basically, you know, a tool to capturing video, the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics. Hours saved, user experience and adoption. So for hours saved, our ambition was to have 10 hours per week for employee to save on average. User experience, our ambition was 4.5 and adoption 80%. In just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings, a user experience for 4.3 out of five and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications, obviously the operations things and the users. In HR safety and other areas that might be basically stakeholders in this whole process. So just to summarize, this kind of effort takes a lot of energy. You are a change agent, you need to have courage to make this decision and understand that, I feel that in this day and age with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these great resource for this organization and that give me the confident to know that the work has been done and we are now in a different stage for the organization. And so for me, it's just to say, thank you for everybody who has belief, obviously in our vision, everybody who has belief in, you know, the work that we were trying to do and to make the life of our, you know, workforce or customers and community better. As you can tell, there is a lot of effort, there is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied with the accomplishments of this transformation and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream, you know, work with mentors, work with people in the industry that can help you out and guide you on this kind of transformation. It's not easy to do, it's high effort, but it's well worth it. And with that said, I hope you are well and it's been a pleasure talking to you. Talk to you soon. Take care. >> Thank you, Gustavo. That was amazing. All right, let's go to the panel. (light music) Now I think we can all agree how valuable it is to hear from practitioners and I want to thank the panel for sharing their knowledge with the community. Now one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision making in your organizations. And you combine two of your most valuable assets to do that and create leverage, employees on the front lines, and of course the data. Now as as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. You know, the old saying, if it ain't broke, don't fix it, well COVID has broken everything and it's great to hear from our experts, you know, how to move forward, so let's get right into it. So Gustavo, let's start with you. If I'm an aspiring change agent and let's say I'm a budding data leader, what do I need to start doing? What habits do I need to create for long-lasting success? >> I think curiosity is very important. You need to be, like I said, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I've been doing it for 50 years plus, but I think you need to understand wellbeing of the areas across not only a specific business. As you know, I come from, you know, Sam's Club, Walmart retail. I've been in energy management, technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to just continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do, is I try to go into areas, businesses and transformations, that make me, you know, stretch and develop as a leader. That's what I'm looking to do, so I can help transform the functions, organizations, and do the change management, the essential mindset that's required for this kind of effort. >> Well, thank you for that. That is inspiring and Cindi you love data and the data is pretty clear that diversity is a good business, but I wonder if you can, you know, add your perspectives to this conversation? >> Yeah, so Michelle has a new fan here because she has found her voice. I'm still working on finding mine and it's interesting because I was raised by my dad, a single dad, so he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before and this is by gender, by race, by age, by just different ways of working and thinking, is because as we automate things with AI, if we do not have diverse teams looking at the data, and the models, and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are, finding your voice, having a seat at the table and just believing in the impact of your work has never been more important and as Michelle said, more possible. >> Great perspectives, thank you. Tom, I want to go to you. So, I mean, I feel like everybody in our businesses is in some way, shape, or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth, actually, in our digital business over the last 12 months really, even acceleration, right, once COVID hit. We really saw that in the 200 countries and territories that we operate in today and service our customers in today, that there's been a huge need, right, to send money to support family, to support friends, and to support loved ones across the world. And as part of that we are very honored to be able to support those customers that, across all the centers today, but as part of the acceleration, we need to make sure that we have the right architecture and the right platforms to basically scale, right? To basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did accelerate some of our plans on digital to help support that overall growth coming in and to support our customers going forward, because during these times, during this pandemic, right, this is the most important time and we need to support those that we love and those that we care about. And doing that some of those ways is actually by sending money to them, support them financially. And that's where really our products and our services come into play that, you know, and really support those families. So, it was really a great opportunity for us to really support and really bring some of our products to the next level and supporting our business going forward. >> Awesome, thank you. Now, I want to come back to Gustavo. Tom, I'd love for you to chime in too. Did you guys ever think like you were pushing the envelope too much in doing things with data or the technology that it was just maybe too bold, maybe you felt like at some point it was failing, or you're pushing your people too hard? Can you share that experience and how you got through it? >> Yeah, the way I look at it is, you know, again, whenever I go to an organization, I ask the question, "Hey, how fast you would like to conform?" And, you know, based on the agreements on the leadership and the vision that we want to take place, I take decisions and I collaborate in a specific way. Now, in the case of COVID, for example, right, it forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it, when you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension or you need to be okay, you know, debating points or making repetitive business cases until people connect with the decision because you understand and you are seeing that, "Hey, the CEO is making a one, two year, you know, efficiency goal. The only way for us to really do more with less is for us to continue this path. We can not just stay with the status quo, we need to find a way to accelerate the transformation." That's the way I see it. >> How about Utah, we were talking earlier with Sudheesh and Cindi about that bungee jumping moment. What can you share? >> Yeah, you know, I think you hit upon it. Right now, the pace of change will be the slowest pace that you see for the rest of your career. So as part of that, right, this is what I tell my team, is that you need to be, you need to feel comfortable being uncomfortable. Meaning that we have to be able to basically scale, right? Expand and support the ever changing needs in the marketplace and industry and our customers today, and that pace of change that's happening, right? And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, you know, as you look at how you're operating today in your current business model, right? Things are only going to get faster. So you have to plan and to align and to drive the actual transformation, so that you can scale even faster into the future. So it's part of that, that's what we're putting in place here, right? It's how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So Cindi, last question, you've worked with hundreds of organizations and I got to believe that, you know, some of the advice you gave when you were at Gartner, which was pre-COVID, maybe sometimes clients didn't always act on it. You know, not my watch or for whatever, variety of reasons, but it's being forced on them now. But knowing what you know now that, you know, we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >> Yeah, well first off, Tom, just freaked me out. What do you mean, this is the slowest ever? Even six months ago I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more very aware of the power in politics and how to bring people along in a way that they are comfortable and now I think it's, you know what, you can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So, if you really want to survive, as Tom and Gustavo said, get used to being uncomfortable. The power and politics are going to happen, break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where Sudheesh is going to go bungee jumping. (all chuckling) >> Guys, fantastic discussion, really. Thanks again to all the panelists and the guests, it was really a pleasure speaking with you today. Really, virtually all of the leaders that I've spoken to in theCUBE program recently, they tell me that the pandemic is accelerating so many things. Whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise-wide digital transformation, not just as I said before, lip service. You know, sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done right, the right culture is going to deliver tournament results. You know, what does that mean? Getting it right. Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive new revenue, cut costs, speed access to critical care, whatever the mission is of your organization, data can create insights and informed decisions that drive value. Okay, let's bring back Sudheesh and wrap things up. Sudheesh, please bring us home. >> Thank you, thank you, Dave. Thank you, theCUBE team, and thanks goes to all of our customers and partners who joined us, and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I heard from all four of our distinguished speakers. First, Michelle, I will simply put it, she said it really well. That is be brave and drive, don't go for a drive alone. That is such an important point. Often times, you know the right thing that you have to do to make the positive change that you want to see happen, but you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I picked up from Michelle's talk. Cindi talked about finding, the importance of finding your voice. Taking that chair, whether it's available or not, and making sure that your ideas, your voice is heard and if it requires some force, then apply that force. Make sure your ideas are heard. Gustavo talked about the importance of building consensus, not going at things all alone sometimes. The importance of building the quorum, and that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom, instead of a single takeaway, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in and they were able to make the change that is necessary through this difficult time in a matter of months. If they could do it, anyone could. The second thing I want to do is to leave you with a takeaway, that is I would like you to go to ThoughtSpot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is, please go to ThoughtSpot.com/beyond. Our global user conference is happening in this December. We would love to have you join us, it's, again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people and we would love to have you join and see what we've been up to since last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. We'll be sharing things that we have been working to release, something that will come out next year. And also some of the crazy ideas our engineers have been cooking up. All of those things will be available for you at ThoughtSpot Beyond. Thank you, thank you so much.
SUMMARY :
and the change every to you by ThoughtSpot. Nice to join you virtually. Hello Sudheesh, how are you doing today? good to talk to you again. is so important to your and the last change to sort of and talk to you about being So you and I share a love of do my job without you. Great and I'm getting the feeling now, Oh that sounds good, stakeholders that you need to satisfy? and you can find the common so thank you for your leadership here. and the time to maturity at the right time to drive to drag on you for a second. to support those customers going forward. but even going back to Sam's Clubs. in the way that you might want to work. and of course the data. that's just going to take you so far. but I wonder if you can, you know, and the models, and how they're applied, everybody in our businesses and to support loved and how you got through it? and the vision that we want to take place, What can you share? and to drive the actual transformation, to believe that, you know, I do think you have to the right culture is going to and thanks to all of you for
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tom | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Sudheesh | PERSON | 0.99+ |
Michelle | PERSON | 0.99+ |
Cindi | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
TD Bank | ORGANIZATION | 0.99+ |
Europe | LOCATION | 0.99+ |
1987 | DATE | 0.99+ |
$100 | QUANTITY | 0.99+ |
Tom Mazzaferro | PERSON | 0.99+ |
Gustavo | PERSON | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
Cindi Hausen | PERSON | 0.99+ |
$280 | QUANTITY | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
Universal Studios | ORGANIZATION | 0.99+ |
2018 | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Wells Fargo | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
HSBC | ORGANIZATION | 0.99+ |
10 times | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
Sudheesh Nair | PERSON | 0.99+ |
4.3 | QUANTITY | 0.99+ |
20 plus years | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Kiev | LOCATION | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
Schneider Electric | ORGANIZATION | 0.99+ |
two sidelines | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
101st year | QUANTITY | 0.99+ |
March 13th | DATE | 0.99+ |
80% | QUANTITY | 0.99+ |
Alabama Crimson Tide | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
4.5 | QUANTITY | 0.99+ |
JP Morgan Chase | ORGANIZATION | 0.99+ |
Sam's Club | ORGANIZATION | 0.99+ |
1990s | DATE | 0.99+ |
20,000 | QUANTITY | 0.99+ |
32 clubs | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
50 years | QUANTITY | 0.99+ |
ThoughtSpot Keynote v6
>> Data is at the heart of transformation and the change every company needs to succeed, but it takes more than new technology. It's about teams, talent and cultural change. Empowering everyone on the front lines to make decisions all at the speed of digital. The transformation starts with you. It's time to lead the way it's time for Thought leaders. >> Welcome to "Thought Leaders" a digital event brought to you by ThoughtSpot. My name is Dave Vellante. The purpose of this day is to bring industry leaders and experts together to really try and understand the important issues around digital transformation. We have an amazing lineup of speakers and our goal is to provide you with some best practices that you can bring back and apply to your organization. Look, data is plentiful, but insights are not. ThoughtSpot is disrupting analytics by using search and machine intelligence to simplify data analysis and really empower anyone with fast access to relevant data. But in the last 150 days, we've had more questions than answers. Creating an organization that puts data and insights at their core requires not only modern technology, but leadership, a mindset and a culture that people often refer to as data-driven. What does that mean? How can we equip our teams with data and fast access to quality information that can turn insights into action. And today we're going to hear from experienced leaders who are transforming their organizations with data, insights and creating digital first cultures. But before we introduce our speakers, I'm joined today by two of my co-hosts from ThoughtSpot first chief data strategy officer at the ThoughtSpot is Cindi Howson. Cindi is an analytics and BI expert with 20 plus years experience and the author of "Successful Business Intelligence "Unlock the Value of BI & Big Data." Cindi was previously the lead analyst at Gartner for the data and analytics magic quadrant. And early last year, she joined ThoughtSpot to help CDOs and their teams understand how best to leverage analytics and AI for digital transformation. Cindi, great to see you welcome to the show. >> Thank you, Dave. Nice to join you virtually. >> Now our second cohost and friend of the cube is ThoughtSpot CEO Sudheesh Nair Hello, Sudheesh how are you doing today? >> I'm well Dave, it's good to talk to you again. >> It's great to see you thanks so much for being here. Now Sudheesh please share with us why this discussion is so important to your customers and of course, to our audience and what they're going to learn today. (upbeat music) >> Thanks, Dave. I wish you were there to introduce me into every room and that I walk into because you have such an amazing way of doing it. Makes me feel all so good. Look, since we have all been cooped up in our homes, I know that the vendors like us, we have amped up our sort of effort to reach out to you with invites for events like this. So we are getting very more invites for events like this than ever before. So when we started planning for this, we had three clear goals that we wanted to accomplish. And our first one that when you finish this and walk away, we want to make sure that you don't feel like it was a waste of time. We want to make sure that we value your time and this is going to be useful. Number two, we want to put you in touch with industry leaders and thought leaders, generally good people that you want to hang around with long after this event is over. And number three, as we plan through this, we are living through these difficult times. We want an event to be this event, to be more of an uplifting and inspiring event too. Now, the challenge is how do you do that with the team being change agents because change and as much as we romanticize it, it is not one of those uplifting things that everyone wants to do, or like to do. The way I think of it sort of like a, if you've ever done bungee jumping and it's like standing on the edges waiting to make that one more step, all you have to do is take that one step and gravity will do the rest, but that is the hardest step to take. Change requires a lot of courage. And when we are talking about data and analytics, which is already like such a hard topic, not necessarily an uplifting and positive conversation in most businesses, it is somewhat scary. Change becomes all the more difficult. Ultimately change requires courage. Courage to first of all challenge the status quo. People sometimes are afraid to challenge the status quo because they are thinking that maybe I don't have the power to make the change that the company needs. Sometimes they feel like I don't have the skills. Sometimes they may feel that I'm probably not the right person do it. Or sometimes the lack of courage manifest itself as the inability to sort of break the silos that are formed within the organizations, when it comes to data and insights that you talked about. There are people in the company who are going to hog the data because they know how to manage the data, how to inquire and extract. They know how to speak data. They have the skills to do that. But they are not the group of people who have sort of the knowledge, the experience of the business to ask the right questions off the data. So there is the silo of people with the answers, and there is a silo of people with the questions. And there is gap. This sort of silos are standing in the way of making that necessary change that we all know the business needs. And the last change to sort of bring an external force sometimes. It could be a tool. It could be a platform, it could be a person, it could be a process, but sometimes no matter how big the company is or how small the company is, you may need to bring some external stimuli to start the domino of the positive changes that are necessary. The group of people that we are brought in, the four people, including Cindi, that you will hear from today are really good at practically telling you how to make that step, how to step off that edge, how to dress the rope, that you will be safe and you're going to have fun. You will have that exhilarating feeling of jumping, for a bungee jump. All four of them are exceptional, but my honor is to introduce Michelle and she's our first speaker. Michelle, I am very happy after watching her presentation and reading our bio, that there are no country vital worldwide competition for cool patterns, because she will beat all of us because when her children were small, they were probably into Harry Potter and Disney. She was managing a business and leading change there. And then as her kids grew up and got to that age where they like football and NFL, guess what? She's the CIO of NFL. What a cool mom? I am extremely excited to see what she's going to talk about. I've seen the slides, tons of amazing pictures. I'm looking to see the context behind it. I'm very thrilled to make the acquaintance of Michelle and looking forward to her talk next. Welcome Michelle, it's over to you. (upbeat music) >> I'm delighted to be with you all today to talk about thought leadership. And I'm so excited that you asked me to join you because today I get to be a quarterback. I always wanted to be one. And I thought this is about as close as I'm ever going to get. So I want to talk to you about quarterbacking, our digital revolution using insights data. And of course, as you said, leadership, first a little bit about myself, a little background, as I said, I always wanted to play football. And this is something that I wanted to do since I was a child. But when I grew up, girls didn't get to play football. I'm so happy that that's changing and girls are now doing all kinds of things that they didn't get to do before. Just this past weekend on an NFL field, we had a female coach on two sidelines and a female official on the field. I'm a lifelong fan and student of the game of football. I grew up in the South. You can tell from the accent. And in the South football is like a religion and you pick sides. I chose Auburn university working in the athletic department. So I'm Testament to you can start the journey can be long. It took me many, many years to make it into professional sports. I graduated in 1987 and my little brother, well, not actually not so little. He played offensive line for the Alabama Crimson Tide. And for those of you who know SCC football, you know this is a really big rivalry. And when you choose sides, your family is divided. So it's kind of fun for me to always tell the story that my dad knew his kid would make it to the NFL. He just bet on the wrong one. My career has been about bringing people together for memorable moments at some of America's most iconic brands, delivering memories and amazing experiences that delight from Universal Studios, Disney to my current position as CIO of the NFL. In this job I'm very privileged to have the opportunity to work with the team that gets to bring America's game to millions of people around the world. Often I'm asked to talk about how to create amazing experiences for fans, guests, or customers. But today I really wanted to focus on something different and talk to you about being behind the scenes and backstage because behind every event, every game, every awesome moment is execution, precise, repeatable execution. And most of my career has been behind the scenes doing just that assembling teams to execute these plans. And the key way that companies operate at these exceptional levels is making good decisions, the right decisions at the right time and based upon data so that you can translate the data into intelligence and be a data-driven culture. Using data and intelligence is an important way that world-class companies do differentiate themselves. And it's the lifeblood of collaboration and innovation. Teams that are working on delivering these kinds of world casts experiences are often seeking out and leveraging next-generation technologies and finding new ways to work. I've been fortunate to work across three decades of emerging experiences, which each required emerging technologies to execute a little bit first about Disney in the 90s, I was at Disney leading a project called destination Disney, which it's a data project. It was a data project, but it was CRM before CRM was even cool. And then certainly before anything like a data-driven culture was ever brought up, but way back then we were creating a digital backbone that enabled many technologies for the things that you see today, like the magic band, Disney's magical express. My career at Disney began in finance, but Disney was very good about rotating you around. And it was during one of these rotations that I became very passionate about data. I kind of became a pain in the butt to the IT team asking for data more and more data. And I learned that all of that valuable data was locked up in our systems. All of our point of sales systems, our reservation systems, our operation systems. And so I became a shadow IT person in marketing, ultimately leading to moving into IT. And I haven't looked back since. In the early two thousands, I was at universal studios theme park as their CIO preparing for and launching "The Wizarding World of Harry Potter" bringing one of history's most memorable characters to life required many new technologies and a lot of data. Our data and technologies were embedded into the rides and attractions. I mean, how do you really think a wan selects you at a wan shop. As today at the NFL? I am constantly challenged to do leading edge technologies, using things like sensors, AI, machine learning, and all new communication strategies and using data to drive everything from player performance, contracts, to where we build new stadiums and hold events with this year being the most challenging yet rewarding year in my career at the NFL. In the middle of a global pandemic, the way we are executing on our season is leveraging data from contract tracing devices joined with testing data, talk about data, actually enabling your business without it w wouldn't be having a season right now. I'm also on the board of directors of two public companies where data and collaboration are paramount. First RingCentral, it's a cloud based unified communications platform and collaboration with video message and phone all in one solution in the cloud and Quotient technologies whose product is actually data. The tagline at Quotient is the result in knowing I think that's really important because not all of us are data companies where your product is actually data, but we should operate more like your product is data. I'd also like to talk to you about four areas of things to think about as thought leaders in your companies. First just hit on it is change how to be a champion and a driver of change. Second, how do you use data to drive performance for your company and measure performance of your company? Third, how companies now require intense collaboration to operate. And finally, how much of this is accomplished through solid data driven decisions. First let's hit on change. I mean, it's evident today more than ever, that we are in an environment of extreme change. I mean, we've all been at this for years and as technologists we've known it, believed it, lived it and thankfully for the most part, knock on what we were prepared for it. But this year everyone's cheese was moved. All the people in the back rooms, IT, data architects and others were suddenly called to the forefront because a global pandemic has turned out to be the thing that is driving intense change in how people work and analyze their business. On March 13th, we closed our office at the NFL in the middle of preparing for one of our biggest events, our kickoff event, the 2020 draft. We went from planning a large event in Las Vegas under the bright lights, red carpet stage to smaller events in club facilities. And then ultimately to one where everyone coaches GM's prospects and even our commissioner were at home in their basements. And we only had a few weeks to figure it out. I found myself for the first time being in the live broadcast event space, talking about bungee jumping. This is really what it felt like. It was one in which no one felt comfortable because it had not been done before. But leading through this, I stepped up, but it was very scary. It was certainly very risky, but it ended up being all so rewarding when we did it. And as a result of this, some things will change forever. Second, managing performance. I mean, data should inform how you're doing and how to get your company to perform at it's level. Highest level. As an example, the NFL has always measured performance, obviously, and it is one of the purest examples of how performance directly impacts outcome. I mean, you can see performance on the field. You can see points being scored in stats, and you immediately know that impact those with the best stats usually when the games. The NFL has always recorded stats since the beginning of time here at the NFL a little this year is our 101 year and athletes ultimate success as a player has also always been greatly impacted by his stats. But what has changed for us is both how much more we can measure and the immediacy with which it can be measured. And I'm sure in your business it's the same. The amount of data you must have has got to have quadrupled and how fast you need it and how quickly you need to analyze it is so important. And it's very important to break the silos between the keys, to the data and the use of the data. Our next generation stats platform is taking data to a next level. It's powered by Amazon web services. And we gathered this data real-time from sensors that are on players' bodies. We gather it in real time, analyze it, display it online and on broadcast. And of course it's used to prepare week to week in addition to what is a normal coaching plan would be. We can now analyze, visualize route patterns, speed match-ups, et cetera. So much faster than ever before. We're continuing to roll out sensors too that will gather more and more information about a player's performance as it relates to their health and safety. The third trend is really, I think it's a big part of what we're feeling today and that is intense collaboration. And just for sort of historical purposes, it's important to think about for those of you that are IT professionals and developers, more than 10 years ago, agile practices began sweeping companies where small teams would work together rapidly in a very flexible, adaptive, and innovative way. And it proved to be transformational. However, today, of course, that is no longer just small teams, the next big wave of change. And we've seen it through this pandemic is that it's the whole enterprise that must collaborate and be agile. If I look back on my career, when I was at Disney, we owned everything 100%. We made a decision, we implemented it. We were a collaborative culture, but it was much easier to push change because you own the whole decision. If there was buy-in from the top down, you've got the people from the bottom up to do it and you executed. At Universal we were a joint venture. Our attractions and entertainment was licensed. Our hotels were owned and managed by other third parties. So influence and collaboration and how to share across companies became very important. And now here I am at the NFL and even the bigger ecosystem, we have 32 clubs that are all separate businesses. 31 different stadiums that are owned by a variety of people. We have licensees, we have sponsors, we have broadcast partners. So it seems that as my career has evolved, centralized control has gotten less and less and has been replaced by intense collaboration, not only within your own company, but across companies. The ability to work in a collaborative way across businesses and even other companies that has been a big key to my success in my career. I believe this whole vertical integration and big top-down decision-making is going by the wayside in favor of ecosystems that require cooperation yet competition to co-exist. I mean, the NFL is a great example of what we call co-op petition, which is cooperation and competition. We're in competition with each other, but we cooperate to make the company the best it can be. And at the heart of these items really are data driven decisions and culture. Data on its own isn't good enough. You must be able to turn it to insights. Partnerships between technology teams who usually hold the keys to the raw data and business units who have the knowledge to build the right decision models is key. If you're not already involved in this linkage, you should be. Data mining isn't new for sure. The availability of data is quadrupling and it's everywhere. How do you know what to even look at? How do you know where to begin? How do you know what questions to ask it's by using the tools that are available for visualization and analytics and knitting together strategies of the company. So it begins with first of all, making sure you do understand the strategy of the company. So in closing, just to wrap up a bit, many of you joined today, looking for thought leadership on how to be a change agent, a change champion, and how to lead through transformation. Some final thoughts are be brave and drive. Don't do the ride along program. It's very important to drive. Driving can be high risk, but it's also high reward. Embracing the uncertainty of what will happen is how you become brave. Get more and more comfortable with uncertainty, be calm and let data be your map on your journey. Thanks. >> Michelle, tank you so much. So you and I share a love of data and a love of football. You said you want to be the quarterback. I'm more an old line person. (Michelle and Cindi laughing) >> Well, then I can do my job without you. >> Great. And I'm getting the feeling now, Sudheesh is talking about bungee jumping. My vote is when we're past this pandemic, we both take them to the Delaware water gap and we do the cliff jumping. >> That sounds good, I'll watch. >> Yeah, you'll watch, okay. So Michelle, you have so many stakeholders when you're trying to prioritize the different voices. You have the players, you have the owners, you have the league, as you mentioned, the broadcasters, your partners here and football mamas like myself. How do you prioritize when there's so many different stakeholders that you need to satisfy? >> I think balancing across stakeholders starts with, aligning on a mission. And if you spend a lot of time understanding where everyone's coming from, and you can find the common thread that ties them all together, you sort of do get them to naturally prioritize their work. And I think that's very important. So for us, at the NFL and even at Disney, it was our core values and our core purpose, is so well known and when anything challenges that we're able to sort of lay that out. But as a change agent, you have to be very empathetic. And I would say empathy is probably your strongest skill if you're a change agent. And that means listening to every single stakeholder, even when they're yelling at you, even when they're telling you your technology doesn't work and you know that it's user error, or even when someone is just emotional about what's happening to them and that they're not comfortable with it. So I think being empathetic and having a mission and understanding it is sort of how I prioritize and balance. >> Yeah, empathy, a very popular word this year. I can imagine those coaches and owners yelling. So, thank you for your leadership here. So Michelle, I look forward to discussing this more with our other customers and disruptors joining us in a little bit. (upbeat music) So we're going to take a hard pivot now and go from football to Chernobyl. Chernobyl what went wrong? 1986, as the reactors were melting down, they had the data to say, this is going to be catastrophic. And yet the culture said, "no, we're perfect, hide it. "Don't dare tell anyone." Which meant they went ahead and had celebrations in Kiev. Even though that increased the exposure, the additional thousands getting cancer and 20,000 years before the ground around there can even be inhabited again, this is how powerful and detrimental a negative culture, a culture that is unable to confront the brutal facts that hides data. This is what we have to contend with. And this is why I want you to focus on having, fostering a data-driven culture. I don't want you to be a laggard. I want you to be a leader in using data to drive your digital transformation. So I'll talk about culture and technology. Is it really two sides of the same coin, real-world impacts and then some best practices you can use to and innovate your culture. Now, oftentimes I would talk about culture and I talk about technology. And recently a CDO said to me, "Cindi, I actually think this is two sides "of the same coin. "One reflects the other." What do you think? Let me walk you through this. So let's take a laggard. What does the technology look like? Is it based on 1990s BI and reporting largely parametrized reports, on premises data, warehouses, or not even that operational reports at best one enterprise data warehouse, very slow moving and collaboration is only email. What does that culture tell you? Maybe there's a lack of leadership to change, to do the hard work that Sudheesh referred to, or is there also a culture of fear, afraid of failure, resistance to change complacency. And sometimes that complacency it's not because people are lazy. It's because they've been so beaten down every time a new idea is presented. It's like, no we're measured on least cost to serve. So politics and distrust, whether it's between business and IT or individual stakeholders is the norm. So data is hoarded. Let's contrast that with a leader, a data and analytics leader, what is their technology look like? Augmented analytics search and AI driven insights, not on premises, but in the cloud and maybe multiple clouds. And the data is not in one place, but it's in a data Lake and in a data warehouse, a logical data warehouse. The collaboration is being a newer methods, whether it's Slack or teams allowing for that real time decisioning or investigating a particular data point. So what is the culture in the leaders? It's transparent and trust. There is a trust that data will not be used to punish that there is an ability to confront the bad news. It's innovation, valuing innovation in pursuit of the company goals, whether it's the best fan experience and player safety in the NFL or best serving your customers. It's innovative and collaborative. There's none of this. Oh, well, I didn't invent that. I'm not going to look at that. There's still pride of ownership, but it's collaborating to get to a better place faster. And people feel empowered to present new ideas to fail fast, and they're energized knowing that they're using the best technology and innovating at the pace that business requires. So data is democratized. And democratized, not just for power users or analysts, but really at the point of impact what we like to call the new decision-makers or really the frontline workers. So Harvard business review partnered with us to develop this study to say, just how important is this? We've been working at BI and analytics as an industry for more than 20 years. Why is it not at the front lines? Whether it's a doctor, a nurse, a coach, a supply chain manager, a warehouse manager, a financial services advisor. Everyone said that if our 87% said, they would be more successful if frontline workers were empowered with data driven insights, but they recognize they need new technology to be able to do that. It's not about learning hard tools. The sad reality, only 20% of organizations are actually doing this. These are the data-driven leaders. So this is the culture in technology. How did we get here? It's because state-of-the-art keeps changing. So the first-generation BI and analytics platforms were deployed on premises on small datasets, really just taking data out of ERP systems that were also on premises. And state-of-the-art was maybe getting a management report, an operational report. Over time visual-based data discovery vendors disrupted these traditional BI vendors, empowering now analysts to create visualizations with the flexibility on a desktop, sometimes larger data, sometimes coming from a data warehouse. The current state of the art though, Gartner calls it augmented analytics at ThoughtSpot, we call it search and AI driven analytics. And this was pioneered for large scale datasets, whether it's on premises or leveraging the cloud data warehouses. And I think this is an important point. Oftentimes you, the data and analytics leaders will look at these two components separately, but you have to look at the BI and analytics tier in lockstep with your data architectures to really get to the granular insights and to leverage the capabilities of AI. Now, if you've never seen ThoughtSpot, I'll just show you what this looks like. Instead of somebody hard coding, a report it's typing in search keywords and very robust keywords contains rank top bottom, getting to a visual visualization that then can be pinned to an existing Pin board that might also contain insights generated by an AI engine. So it's easy enough for that new decision maker, the business user, the non analyst to create themselves. Modernizing the data and analytics portfolio is hard because the pace of change has accelerated. You use to be able to create an investment place a bet for maybe 10 years, a few years ago, that time horizon was five years, now it's maybe three years and the time to maturity has also accelerated. So you have these different components, the search and AI tier, the data science tier, data preparation and virtualization. But I would also say equally important is the cloud data warehouse and pay attention to how well these analytics tools can unlock the value in these cloud data warehouses. So ThoughtSpot was the first to market with search and AI driven insights. Competitors have followed suit, but be careful if you look at products like power BI or SAP analytics cloud, they might demo well, but do they let you get to all the data without moving it in products like Snowflake, Amazon Redshift, or Azure synapse or Google big query, they do not. They require you to move it into a smaller in memory engine. So it's important how well these new products inter operate. the pace of change, its acceleration Gartner recently predicted that by 2022, 65% of analytical queries will be generated using search or NLP or even AI. And that is roughly three times the prediction they had just a couple years ago. So let's talk about the real world impact of culture. And if you read any of my books or used any of the maturity models out there, whether the Gartner IT score that I worked on, or the data warehousing Institute also has the money surety model. We talk about these five pillars to really become data-driven. As Michelle, I spoke about it's focusing on the business outcomes, leveraging all the data, including new data sources, it's the talent, the people, the technology, and also the processes. And often when I would talk about the people and the talent, I would lump the culture as part of that. But in the last year, as I've traveled the world and done these digital events for Thought leaders, you have told me now culture is absolutely so important. And so we've pulled it out as a separate pillar. And in fact, in polls that we've done in these events, look at how much more important culture is as a barrier to becoming data-driven it's three times as important as any of these other pillars. That's how critical it is. And let's take an example of where you can have great data, but if you don't have the right culture, there's devastating impacts. And I will say, I have been a loyal customer of Wells Fargo for more than 20 years. But look at what happened in the face of negative news with data, it said, "hey, we're not doing good cross selling, "customers do not have both a checking account "and a credit card and a savings account and a mortgage." They opened fake accounts facing billions in fines, change in leadership that even the CEO attributed to a toxic sales culture, and they're trying to fix this. But even recently there's been additional employee backlash saying the culture has not changed. Let's contrast that with some positive examples, Medtronic, a worldwide company in 150 countries around the world. They may not be a household name to you, but if you have a loved one or yourself, you have a pacemaker, spinal implant diabetes, you know this brand. And at the start of COVID when they knew their business would be slowing down, because hospitals would only be able to take care of COVID patients. They took the bold move of making their IP for ventilators publicly available. That is the power of a positive culture. Or Verizon, a major telecom organization looking at late payments of their customers. And even though the U.S federal government said, "well, you can't turn them off. They said, "we'll extend that even beyond "the mandated guidelines." And facing a slow down in the business because of the tough economy, they said, you know what? "We will spend the time up skilling our people, "giving them the time to learn more "about the future of work, the skills and data "and analytics," for 20,000 of their employees, rather than furloughing them. That is the power of a positive culture. So how can you transform your culture to the best in class? I'll give you three suggestions, bring in a change agent, identify the relevance, or I like to call it WIFM and organize for collaboration. So the CDO, whatever your title is, chief analytics officer, chief digital officer, you are the most important change agent. And this is where you will hear that oftentimes a change agent has to come from outside the organization. So this is where, for example, in Europe, you have the CDO of Just Eat a takeout food delivery organization coming from the airline industry or in Australia, National Australian bank, taking a CDO within the same sector from TD bank going to NAB. So these change agents come in disrupt. It's a hard job. As one of you said to me, it often feels like Sisyphus. I make one step forward and I get knocked down again. I get pushed back. It is not for the faint of heart, but it's the most important part of your job. The other thing I'll talk about is WIFM. What is in it for me? And this is really about understanding the motivation, the relevance that data has for everyone on the frontline, as well as those analysts, as well as the executives. So if we're talking about players in the NFL, they want to perform better and they want to stay safe. That is why data matters to them. If we're talking about financial services, this may be a wealth management advisor. Okay we could say commissions, but it's really helping people have their dreams come true, whether it's putting their children through college or being able to retire without having to work multiple jobs still into your 70s or 80s for the teachers, teachers, you ask them about data. They'll say we don't, we don't need that. I care about the student. So if you can use data to help a student perform better, that is WIFM. And sometimes we spend so much time talking the technology, we forget what is the value we're trying to deliver with it. And we forget the impact on the people that it does require change. In fact, the Harvard business review study found that 44% said lack of change management is the biggest barrier to leveraging both new technology, but also being empowered to act on those data-driven insights. The third point organize for collaboration. This does require diversity of thought, but also bringing the technology, the data and the business people together. Now there's not a single one size fits all model for data and analytics. At one point in time, even having a BICC, a BI competency center was considered state-of-the-art. Now for the biggest impact what I recommend is that you have a federated model centralized for economies of scale. That could be the common data, but then in bed, these evangelists, these analysts of the future within every business unit, every functional domain. And as you see this top bar, all models are possible, but the hybrid model has the most impact, the most leaders. So as we look ahead to the months ahead, to the year ahead an exciting time, because data is helping organizations better navigate a tough economy, lock in the customer loyalty. And I look forward to seeing how you foster that culture that's collaborative with empathy and bring the best of technology, leveraging the cloud, all your data. So thank you for joining us at Thought Leaders. And next I'm pleased to introduce our first change agent, Tom Mazzaferro chief data officer of Western union. And before joining Western union, Tom made his Mark at HSBC and JPMorgan Chase spearheading digital innovation in technology, operations, risk compliance, and retail banking. Tom, thank you so much for joining us today. (upbeat music) >> Very happy to be here and looking forward to talking to all of you today. So as we look to move organizations to a data-driven, capability into the future, there is a lot that needs to be done on the data side, but also how does data connect and enable different business teams and technology teams into the future. As you look across, our data ecosystems and our platforms and how we modernize that to the cloud in the future, it all needs to basically work together, right? To really be able to drive and over the shift from a data standpoint, into the future, that includes being able to have the right information with the right quality of data, at the right time to drive informed business decisions, to drive the business forward. As part of that, we actually have partnered with ThoughtSpot, to actually bring in the technology to help us drive that as part of that partnership. And it's how we've looked to integrate it into our overall business as a whole we've looked at how do we make sure that our business and our professional lives right, are enabled in the same ways as our personal lives. So for example, in your personal lives, when you want to go and find something out, what do you do? You go onto google.com or you go on to Bing we go onto Yahoo and you search for what you want search to find and answer. ThoughtSpot for us as the same thing, but in the business world. So using ThoughtSpot and other AI capability it's allowed us to actually, enable our overall business teams in our company to actually have our information at our fingertips. So rather than having to go and talk to someone or an engineer to go pull information or pull data, we actually can have the end-users or the business executives, right. Search for what they need, what they want at the exact time that action need it to go and drive the business forward. This is truly one of those transformational things that we've put in place. On top of that, we are on the journey to modernize our larger ecosystem as a whole. That includes modernizing our underlying data warehouses, our technology, or our Eloqua environments. And as we move that, we've actually picked two of our cloud providers going to AWS and GCP. We've also adopted Snowflake to really drive and to organize our information and our data then drive these new solutions and capabilities forward. So they portion of us though is culture. So how do we engage with the business teams and bring the IT teams together to really drive these holistic end to end solutions and capabilities to really support the actual business into the future? That's one of the keys here, as we look to modernize and to really enhance our organizations to become data-driven, this is the key. If you can really start to provide answers to business questions before they're even being asked and to predict based upon different economic trends or different trends in your business, what does this is maybe be made and actually provide those answers to the business teams before they're even asking for it, that is really becoming a data-driven organization. And as part of that, it's really then enables the business to act quickly and take advantage of opportunities as they come in based upon, industries based upon markets, based upon products, solutions, or partnerships into the future. These are really some of the keys that become crucial as you move forward, right, into this new age, especially with COVID. With COVID now taking place across the world, right? Many of these markets, many of these digital transformations are accelerating and are changing rapidly to accommodate and to support customers in these very difficult times, as part of that, you need to make sure you have the right underlying foundation ecosystems and solutions to really drive those capabilities and those solutions forward. As we go through this journey, both of my career, but also each of your careers into the future, right? It also needs to evolve, right? Technology has changed so drastically in the last 10 years, and that change is only accelerating. So as part of that, you have to make sure that you stay up to speed, up to date with new technology changes both on the platform standpoint tools, but also what do our customers want? What do our customers need and how do we then service them with our information, with our data, with our platform and with our products and our services to meet those needs and to really support and service those customers into the future. This is all around becoming a more data organization such as how do you use your data to support the current business lines, but how do you actually use your information, your data to actually put a better support your customers, better support your business, better support your employees, your operations teams, and so forth, and really creating that full integration in that ecosystem is really when you start to get large dividends from this investments into the future. But that being said, hope you enjoy the segment on how to become and how to drive it data driven organization. And, looking forward to talking to you again soon. Thank you. >> Tom that was great thanks so much. Now I'm going to have to brag on you for a second as a change agent you've come in disrupted and how long have you been at Western union? >> Only nine months, so just started this year, but, doing some great opportunities and great changes. And we have a lot more to go, but, we're really driving things forward in partnership with our business teams and our colleagues to support those customers going forward. >> Tom, thank you so much. That was wonderful. And now I'm excited to introduce you to Gustavo Canton, a change agent that I've had the pleasure of working with meeting in Europe, and he is a serial change agent, most recently with Schneider electric, but even going back to Sam's clubs, Gustavo welcome. (upbeat music) >> So, hey everyone, my name is Gustavo Canton and thank you so much, Cindi, for the intro, as you mentioned, doing transformations is high effort, high reward situation. I have empowered many transformations and I have led many transformations. And what I can tell you is that it's really hard to predict the future, but if you have a North star and where you're going, the one thing that I want you to take away from this discussion today is that you need to be bold to evolve. And so in today, I'm going to be talking about culture and data, and I'm going to break this down in four areas. How do we get started barriers or opportunities as I see it, the value of AI, and also, how do you communicate, especially now in the workforce of today with so many different generations, you need to make sure that you are communicating in ways that are non-traditional sometimes. And so how do we get started? So I think the answer to that is you have to start for you yourself as a leader and stay tuned. And by that, I mean, you need to understand not only what is happening in your function or your field, but you have to be varying into what is happening in society, socioeconomically speaking wellbeing. The common example is a great example. And for me personally, it's an opportunity because the one core value that I have is well-being, I believe that for human potential, for customers and communities to grow wellbeing should be at the center of every decision. And as somebody mentioned is great to be, stay in tune and have the skillset and the courage. But for me personally, to be honest, to have this courage is not about not being afraid. You're always afraid when you're making big changes when you're swimming upstream, but what gives me the courage is the empathy part. Like I think empathy is a huge component because every time I go into an organization or a function, I try to listen very attentively to the needs of the business and what the leaders are trying to do. What I do it thinking about the mission of how do I make change for the bigger, workforce? for the bigger good. Despite this fact that this might have a perhaps implication on my own self-interest in my career, right? Because you have to have that courage sometimes to make choices that I know we'll see in politically speaking, what are the right thing to do? And you have to push through it. And you have to push through it. So the bottom line for me is that I don't think they're transforming fast enough. And the reality is I speak with a lot of leaders and we have seen stories in the past. And what they show is that if you look at the four main barriers that are basically keeping us behind budget, inability to act cultural issues, politics, and lack of alignment, those are the top four. But the interesting thing is that as Cindi has mentioned, these topics culture is actually gaining, gaining more and more traction. And in 2018, there was a story from HBR and it was about 45%. I believe today it's about 55%, 60% of respondents say that this is the main area that we need to focus on. So again, for all those leaders and all the executives who understand and are aware that we need to transform, commit to the transformation and set a state, deadline to say, "hey, in two years, we're going to make this happen. "What do we need to do to empower and enable "this change engines to make it happen?" You need to make the tough choices. And so to me, when I speak about being bold is about making the right choices now. So I'll give you samples of some of the roadblocks that I went through as I think transformation most recently, as Cindi mentioned in Schneider. There are three main areas, legacy mindset. And what that means is that we've been doing this in a specific way for a long time and here is how we have been successful what was working the past is not going to work now. The opportunity there is that there is a lot of leaders who have a digital mindset and there're up and coming leaders that are not yet fully developed. We need to mentor those leaders and take bets on some of these talent, including young talent. We cannot be thinking in the past and just wait for people, three to five years for them to develop because the world is going to in a way that is super fast. The second area, and this is specifically to implementation of AI is very interesting to me because just example that I have with ThoughtSpot, right, we went to implementation and a lot of the way is the IT team function of the leaders look at technology, they look at it from the prism of the prior all success criteria for the traditional Bi's. And that's not going to work. Again the opportunity here is that you need to really find what successful look like. In my case, I want the user experience of our workforce to be the same as user experience you have at home is a very simple concept. And so we need to think about how do we gain the user experience with this augmented analytics tools and then work backwards to have the right talent processes and technology to enable that. And finally, with COVID a lot of pressuring organizations, and companies to do more with less. And the solution that most leaders I see are taking is to just minimize costs, sometimes in cut budget, we have to do the opposite. We have to actually invest some growth areas, but do it by business question. Don't do it by function. If you actually invest in these kind of solutions, if you actually invest on developing your talent, your leadership to see more digitally, if you actually invest on fixing your data platform, it's not just an incremental cost. It's actually this investment is going to offset all those hidden costs and inefficiencies that you have on your system, because people are doing a lot of work and working very hard, but it's not efficiency, and it's not working in the way that you might want to work. So there is a lot of opportunity there. And you just to put into some perspective, there have studies in the past about, how do we kind of measure the impact of data. And obviously this is going to vary by your organization maturity, is going to, there's going to be a lot of factors. I've been in companies who have very clean, good data to work with. And I think with companies that we have to start basically from scratch. So it all depends on your maturity level, but in this study, what I think is interesting is they try to put attack line or attack price to what is the cost of incomplete data. So in this case, it's about 10 times as much to complete a unit of work when you have data that is flawed as opposed to have perfect data. So let me put that just in perspective, just as an example, right? Imagine you are trying to do something and you have to do 100 things in a project, and each time you do something, it's going to cost you a dollar. So if you have perfect data, the total cost of that project might be $100. But now let's say you have any percent perfect data and 20% flawed data by using this assumption that flawed data is 10 times as costly as perfect data. Your total costs now becomes $280 as opposed to $100. This is just for you to really think about as a CIO CTO, CHRO CEO, are we really paying attention and really closing the gaps that we have on our data infrastructure. If we don't do that, it's hard sometimes to see the snowball effect or to measure the overall impact. But as you can tell the price that goes up very, very quickly. So now, if I were to say, how do I communicate this? Or how do I break through some of these challenges or some of these various, right. I think the key is I am in analytics. I know statistics obviously, and love modeling and data and optimization theory and all that stuff. That's what I came to analytics. But now as a leader and as a change agent, I need to speak about value. And in this case, for example, for Schneider, there was this tagline called free up your energy. So the number one thing that they were asking from the analytics team was actually efficiency, which to me was very interesting. But once I understood that I understood what kind of language to use, how to connect it to the overall strategy and basically how to bring in the, the right leaders, because you need to focus on the leaders that you're going to make the most progress. Again, low effort, high value. You need to make sure you centralize all the data as you can. You need to bring in some kind of augmented analytics solution. And finally you need to make it super simple for the, in this case, I was working with the HR teams in other areas, so they can have access to one portal. They don't have to be confused in looking for 10 different places to find information. I think if you can actually have those four foundational pillars, obviously under the guise of having a data-driven culture, that's when you can actually make the impact. So in our case, it was about three years total transformation, but it was two years for this component of augmented analytics. It took about two years to talk to IT get leadership support, find the budgeting, get everybody on board, make sure the safe criteria was correct. And we call this initiative, the people analytics portal, it was actually launched in July of this year. And we were very excited and the audience was very excited to do this. In this case, we did our pilot in North America for many, many manufacturers. But one thing that is really important is as you bring along your audience on this, you're going from Excel, in some cases or Tableau to other tools like, ThoughtSpot, you need to really explain them what is the difference and how these tools can truly replace, some of the spreadsheets or some of the views that you might have on these other kind of tools. Again, Tableau, I think it's a really good tool. There are other many tools that you might have in your toolkit. But in my case, personally, I feel that you need to have one portal going back to Cindi's point. I really truly enable the end user. And I feel that this is the right solution for us, right? And I will show you some of the findings that we had in the pilot in the last two months. So this was a huge victory, and I will tell you why, because it took a lot of effort for us to get to the station. Like I said, it's been years for us to kind of lay the foundation, get the leadership, and shaping culture so people can understand why you truly need to invest on (indistinct) analytics. And so what I'm showing here is an example of how do we use basically, a tool to capture in video the qualitative findings that we had, plus the quantitative insights that we have. So in this case, our preliminary results based on our ambition for three main metrics, hours saved user experience and adoption. So for hours saved or a mission was to have 10 hours per week per employee save on average user experience, or ambition was 4.5. And adoption, 80%. In just two months, two months and a half of the pilot, we were able to achieve five hours per week per employee savings. Our user experience for 4.3 out of five and adoption of 60%. Really, really amazing work. But again, it takes a lot of collaboration for us to get to the stage from IT, legal, communications, obviously the operations teams and the users in HR safety and other areas that might be, basically stakeholders in this whole process. So just to summarize this kind of effort takes a lot of energy. You are a change agent. You need to have a courage to make the decision and understand that I feel that in this day and age, with all this disruption happening, we don't have a choice. We have to take the risk, right? And in this case, I feel a lot of satisfaction in how we were able to gain all these very source for this organization. And that gave me the confidence to know that the work has been done and we are now in a different stage for the organization. And so for me, it to say, thank you for everybody who has believed, obviously in our vision, everybody who has believe in the word that we were trying to do and to make the life of four workforce or customers or in community better. As you can tell, there is a lot of effort. There is a lot of collaboration that is needed to do something like this. In the end, I feel very satisfied. With the accomplishments of this transformation, and I just want to tell for you, if you are going right now in a moment that you feel that you have to swim upstream what would mentors, what would people in this industry that can help you out and guide you on this kind of a transformation is not easy to do is high effort, but is well worth it. And with that said, I hope you are well, and it's been a pleasure talking to you. Talk to you soon, take care. >> Thank you, Gustavo, that was amazing. All right, let's go to the panel. (air whooshing) >> Okay, now we're going to go into the panel and bring Cindi, Michelle, Tom, and Gustavo back and have an open discussion. And I think we can all agree how valuable it is to hear from practitioners. And I want to thank the panel for sharing their knowledge with the community. And one common challenge that I heard you all talk about was bringing your leadership and your teams along on the journey with you. We talk about this all the time, and it is critical to have support from the top. Why? Because it directs the middle and then it enables bottoms up innovation effects from the cultural transformation that you guys all talked about. It seems like another common theme we heard is that you all prioritize database decision-making in your organizations and you combine two of your most valuable assets to do that and create leverage, employees on the front lines. And of course the data. And as you rightly pointed out, Tom, the pandemic has accelerated the need for really leaning into this. The old saying, if it ain't broke don't fix it. Well COVID is broken everything. And it's great to hear from our experts, how to move forward. So let's get right into it. So Gustavo, let's start with you if I'm an aspiring change agent and let's say I'm a budding data leader. What do I need to start doing? What habits do I need to create for long lasting success? >> I think curiosity is very important. You need to be, like I say, in tune to what is happening, not only in your specific field, like I have a passion for analytics, I can do this for 50 years plus, but I think you need to understand wellbeing other areas across not only a specific business, as you know I come from, Sam's club Walmart, retail, I mean energy management technology. So you have to try to push yourself and basically go out of your comfort zone. I mean, if you are staying in your comfort zone and you want to use lean continuous improvement, that's just going to take you so far. What you have to do is, and that's what I try to do is I try to go into areas, businesses, and transformation that make me stretch and develop as a leader. That's what I'm looking to do so I can help transform the functions organizations and do the change management, change of mindset required for these kinds of efforts. >> Michelle, you're at the intersection of tech and sports and what a great combination, but they're both typically male oriented fields. I mean, we've talked a little bit about how that's changing, but two questions. Tell us how you found your voice and talk about why diversity matters so much more than ever now. >> No, I found my voice really as a young girl, and I think I had such amazing support from men in my life. And I think the support and sponsorship as well as sort of mentorship along the way, I've had amazing male mentors who have helped me understand that my voice is just as important as anyone else's. I mean, I have often heard, and I think it's been written about that a woman has to believe they'll 100% master topic before they'll talk about it where a man can feel much less mastery and go on and on. So I was that way as well. And I learned just by watching and being open, to have my voice. And honestly at times demand a seat at the table, which can be very uncomfortable. And you really do need those types of, support networks within an organization. And diversity of course is important and it has always been. But I think if anything, we're seeing in this country right now is that diversity among all types of categories is front and center. And we're realizing that we don't all think alike. We've always known this, but we're now talking about things that we never really talked about before. And we can't let this moment go unchecked and on, and not change how we operate. So having diverse voices within your company and in the field of tech and sports, I am often the first and only I'm was the first, CIO at the NFL, the first female senior executive. It was fun to be the first, but it's also, very challenging. And my responsibility is to just make sure that, I don't leave anyone behind and make sure that I leave it good for the next generation. >> Well, thank you for that. That is inspiring. And Cindi, you love data and the data's pretty clear that diversity is a good business, but I wonder if you can add your perspectives to this conversation? >> Yeah, so Michelle has a new fan here because she has found her voice. I'm still working on finding mine. And it's interesting because I was raised by my dad, a single dad. So he did teach me how to work in a predominantly male environment, but why I think diversity matters more now than ever before. And this is by gender, by race, by age, by just different ways of working in thinking is because as we automate things with AI, if we do not have diverse teams looking at the data and the models and how they're applied, we risk having bias at scale. So this is why I think I don't care what type of minority you are finding your voice, having a seat at the table and just believing in the impact of your work has never been more important. And as Michelle said more possible. >> Great perspectives, thank you. Tom I want to go to you. I mean, I feel like everybody in our businesses in some way, shape or form become a COVID expert, but what's been the impact of the pandemic on your organization's digital transformation plans? >> We've seen a massive growth actually in a digital business over the last, 12 months, really, even in celebration, right? Once COVID hit, we really saw that in the 200 countries and territories that we operate in today and service our customers, today, that there's been a huge need, right? To send money, to support family, to support, friends and support loved ones across the world. And as part of that we are very, honored to get to support those customers that we, across all the centers today. But as part of that acceleration we need to make sure that we had the right architecture and the right platforms to basically scale, right, to basically support and provide the right kind of security for our customers going forward. So as part of that, we did do some pivots and we did accelerate some of our plans on digital to help support that overall growth coming in and to support our customers going forward, because there were these times during this pandemic, right? This is the most important time. And we need to support those that we love and those that we care about and doing that it's one of those ways is actually by sending money to them, support them financially. And that's where, really our part of that our services come into play that we really support those families. So it was really a great opportunity for us to really support and really bring some of our products to this level and supporting our business going forward. >> Awesome, thank you. Now I want to come back to Gustavo, Tom I'd love for you to chime in too. Did you guys ever think like you were, you were pushing the envelope too much in doing things with data or the technology that was just maybe too bold, maybe you felt like at some point it was failing or you're pushing your people too hard. Can you share that experience and how you got through it? >> Yeah, the way I look at it is, again, whenever I go to an organization, I ask the question, hey, how fast you would like transform. And, based on the agreements from the leadership and the vision that we want to take place, I take decisions. And I collaborate in a specific way now, in the case of COVID, for example, right. It forces us to remove silos and collaborate in a faster way. So to me, it was an opportunity to actually integrate with other areas and drive decisions faster, but make no mistake about it. When you are doing a transformation, you are obviously trying to do things faster than sometimes people are comfortable doing, and you need to be okay with that. Sometimes you need to be okay with tension, or you need to be okay debating points or making repetitive business cases until people connect with the decision because you understand, and you are seeing that, "hey, the CEO is making a one two year, efficiency goal. "The only way for us to really do more with less "is for us to continue this path. "We cannot just stay with the status quo. "We need to find a way to accelerate the transformation." That's the way I see it. >> How about you Tom, we were talking earlier with Sudheesh and Cindi, about that bungee jumping moment. What could you share? >> Yeah, I think you hit upon it, right now, the pace of change with the slowest pace that you see for the rest of your career. So as part of that, right, that's what I tell my team is that you need to be, you need to feel comfortable being uncomfortable. I mean, that we have to be able to basically scale, right, expand and support that the ever-changing needs in the marketplace and industry our customers today, and that pace of change that's happening, right. And what customers are asking for and the competition in the marketplace, it's only going to accelerate. So as part of that, as you look at what, how you're operating today in your current business model, right. Things are only going to get faster. So you have to plan into a line into drive the agile transformation so that you can scale even faster in the future. So as part of that, that's what we're putting in place here, right, is how do we create that underlying framework and foundation that allows the organization to basically continue to scale and evolve into the future? >> Yeah, we're definitely out of our comfort zones, but we're getting comfortable with it. So, Cindi, last question, you've worked with hundreds of organizations, and I got to believe that, some of the advice you gave when you were at Gartner, which is pre COVID, maybe sometimes clients didn't always act on it. They're not on my watch for whatever variety of reasons, but it's being forced on them now. But knowing what you know now that we're all in this isolation economy, how would you say that advice has changed? Has it changed? What's your number one action and recommendation today? >> Yeah, well, first off, Tom just freaked me out. What do you mean? This is the slowest ever even six months ago I was saying the pace of change in data and analytics is frenetic. So, but I think you're right, Tom, the business and the technology together is forcing this change. Now, Dave, to answer your question, I would say the one bit of advice, maybe I was a little more, very aware of the power and politics and how to bring people along in a way that they are comfortable. And now I think it's, you know what you can't get comfortable. In fact, we know that the organizations that were already in the cloud have been able to respond and pivot faster. So if you really want to survive as Tom and Gustavo said, get used to being uncomfortable, the power and politics are going to happen. Break the rules, get used to that and be bold. Do not be afraid to tell somebody they're wrong and they're not moving fast enough. I do think you have to do that with empathy, as Michelle said, and Gustavo, I think that's one of the key words today besides the bungee jumping. So I want to know where's the dish going to go bungee jumping. >> Guys fantastic discussion, really. Thanks again to all the panelists and the guests. It was really a pleasure speaking with you today. Really virtually all of the leaders that I've spoken to in the Cube program. Recently, they tell me that the pandemic is accelerating so many things, whether it's new ways to work, we heard about new security models and obviously the need for cloud. I mean, all of these things are driving true enterprise wide digital transformation, not just, as I said before, lip service. Sometimes we minimize the importance and the challenge of building culture and in making this transformation possible. But when it's done, right, the right culture is going to deliver tremendous results. Yeah, what does that mean getting it right? Everybody's trying to get it right. My biggest takeaway today is it means making data part of the DNA of your organization. And that means making it accessible to the people in your organization that are empowered to make decisions, decisions that can drive new revenue, cut costs, speed access to critical care, whatever the mission is of your organization. Data can create insights and informed decisions that drive value. Okay. Let's bring back Sudheesh and wrap things up. Sudheesh, please bring us home. >> Thank you. Thank you, Dave. Thank you, the Cube team, and thank goes to all of our customers and partners who joined us and thanks to all of you for spending the time with us. I want to do three quick things and then close it off. The first thing is I want to summarize the key takeaways that I had from all four of our distinguished speakers. First, Michelle, I will simply put it. She said it really well. That is be brave and drive. Don't go for a drive along. That is such an important point. Oftentimes, you know that I think that you have to do to make the positive change that you want to see happen but you wait for someone else to do it, not just, why not you? Why don't you be the one making that change happen? That's the thing that I've picked up from Michelle's talk. Cindi talked about finding the importance of finding your voice. Taking that chair, whether it's available or not, and making sure that your ideas, your voices are heard, and if it requires some force, then apply that force. Make sure your ideas are heard. Gustavo talked about the importance of building consensus, not going at things all alone sometimes building the importance of building the quorum. And that is critical because if you want the changes to last, you want to make sure that the organization is fully behind it. Tom, instead of a single takeaway, what I was inspired by is the fact that a company that is 170 years old, 170 years old, 200 companies and 200 countries they're operating in. And they were able to make the change that is necessary through this difficult time. So in a matter of months, if they could do it, anyone could. The second thing I want to do is to leave you with a takeaway that is I would like you to go to topspot.com/nfl because our team has made an app for NFL on Snowflake. I think you will find this interesting now that you are inspired and excited because of Michelle's talk. And the last thing is please go to thoughtspot.com/beyond our global user conference is happening in this December. We would love to have you join us. It's again, virtual, you can join from anywhere. We are expecting anywhere from five to 10,000 people, and we would love to have you join and see what we've been up to since last year. We have a lot of amazing things in store for you, our customers, our partners, our collaborators, they will be coming and sharing. We'll be sharing things that we've have been working to release something that will come out next year. And also some of the crazy ideas our engineers have been cooking up. All of those things will be available for you at the Thought Spot Beyond. Thank you. Thank you so much.
SUMMARY :
and the change every Cindi, great to see you Nice to join you virtually. it's good to talk to you again. and of course, to our audience but that is the hardest step to take. and talk to you about being So you and I share a love of And I'm getting the feeling now, that you need to satisfy? And that means listening to and the time to maturity the business to act quickly and how long have you to support those customers going forward. And now I'm excited to are the right thing to do? All right, let's go to the panel. and it is critical to that's just going to take you so far. Tell us how you found your voice and in the field of tech and sports, and the data's pretty clear and the models and how they're applied, everybody in our businesses and the right platforms and how you got through it? and the vision that we want to take place, How about you Tom, is that you need to be, some of the advice you gave and how to bring people along the right culture is going to is to leave you with a takeaway
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tom | PERSON | 0.99+ |
Michelle | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Gustavo | PERSON | 0.99+ |
Cindi | PERSON | 0.99+ |
Sudheesh | PERSON | 0.99+ |
1987 | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
Dave | PERSON | 0.99+ |
Tom Mazzaferro | PERSON | 0.99+ |
Disney | ORGANIZATION | 0.99+ |
JPMorgan Chase | ORGANIZATION | 0.99+ |
Medtronic | ORGANIZATION | 0.99+ |
Australia | LOCATION | 0.99+ |
$100 | QUANTITY | 0.99+ |
HSBC | ORGANIZATION | 0.99+ |
Wells Fargo | ORGANIZATION | 0.99+ |
20,000 | QUANTITY | 0.99+ |
$280 | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
March 13th | DATE | 0.99+ |
50 years | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
10 times | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
two sides | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Alabama Crimson Tide | ORGANIZATION | 0.99+ |
1986 | DATE | 0.99+ |
20 plus years | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
Universal Studios | ORGANIZATION | 0.99+ |
Kiev | LOCATION | 0.99+ |
Cindi Howson | PERSON | 0.99+ |
10 years | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
4.5 | QUANTITY | 0.99+ |
101 year | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
4.3 | QUANTITY | 0.99+ |
Karthik Lakshminarayanan, Cloud Identity | Google Cloud Next 2018
>> Live from San Francisco. It's theCUBE covering Google Cloud Next 2018. Brought to you by Google Cloud and its ecosystem partners. >> Hey welcome back everyone. It's theCUBE live here in San Francisco for Google Next 2018. I'm John Furrier with Dave Vellante. This is day one of wall to wall three days of live coach here on the floor. Our next guest is Karthik Lakshminarayanan who is the director of product manage for cloud identity, one of the core products at the edge authenticating users, people, and applications and devices. Karthik thanks for coming on. >> Yeah thank you, it's great to be here. >> So take a minute to explain because obviously cloud identity, we've seen identity systems in the enterprise, anyone who's dealt in the enterprise who have been buying I.T., who have been buying I.T. stuff. >> Yes. >> That's around identity and then something new comes out and I got to refresh that, I got to buy this, rip this out, replace this. So identity has been super important but it's been kind of stovepiped within applications. The cloud is horizontally scaled but the benefit of the cloud is that you kind of do it once, if you do it right, architecturally you can scale it. >> Absolutely. >> Take a minute to explain how cloud identity works, and how does it fit into the future of what people expect from the cloud. >> Yeah, absolutely, thank you. And cloud identity, our solution is to help organizations securely manage people, applications, and devices in the cloud. So it's exactly like what you're talking about. User identity is evolving because organizations are now coming in and saying "What is this mobile cloud thing? "How do I adjust?" Because users are getting increasingly trained on continual like behavior they just want to turn on, connect to their cloud services, use their mobile devices and be up and running. Organizations have been trained for years to think about the corporate network as their security parameter, so how does that happen in the cloud when the data is no longer on premises? So that's what we do with cloud identity where we look at signals from your users, from your devices, and other things that we're trying to do and give you a different way of accessing the cloud. >> For the folks watching who might have missed the keynote it's going to be on demand, go to YouTube, but I'm sure it's on the Google Cloud channel. Now one of the things Diane Green said, and then also we saw in the demos, we were talking before we came on camera was, you showed a demo of basically cloud and on-prem solution, looked just like one dashboard just the note and the network, and everything's kind of clean. Diane Green then mentioned that when she came to Google Cloud 20 years ago, was to just share what was already built over 25 years or 20 years to the masses. So okay, that's cool. But the question I want to ask you is, people don't want to be like Google or buy Google stuff to implement it in their non Google environment. They want to use the Google services. So they want the benefits of what you guys have experienced, so this is kind of a cultural nuance within Google Cloud where it's like you don't have to tell them be like Google, just use the services. Identity is super important. You have all this institutional knowledge, and low latency signals, from whether it's Android, Chrome, search, user experience. How are you guys putting that into.. Does that help your product? Is that a benefit of the cusp? Or is that more of a future thing? Because when you're at a service I can almost see identity as a service scaling to a point where all these things are kind of taken care of. What's your vision? >> Yeah, absolutely. A couple things. One is something called BeyondCorp. I think a lot of folks are familiar with, it stands for beyond the corporate network. And I want to touch on a couple things. One, is that today we make the access decisions based on who you are as a user, the state of your device, and then context. And context is really king now in a cloud based world. Where we look at signals, signals around the data that we can get even from our consumer services, but carefully curated and making sure we meet all of the compliance policies. Where we can now look at these signals and we do what we call context server access. So the idea that, what are you trying to access? Where are you accessing from? And who are you as a user and what kind of device are you at? That's the perfect combination of what you just said and we call that context server access and that is absolutely central to how we offer cloud identity. >> That's the classic example I've seen that we are Gmail customers, with Gsuite So when I log in from Paris, "Hey wait a minute, you're not in Paris." So you guys, is this an example of that? >> Yeah, it's funny, I feel like you're part of our team because we call this the superman scenario. Because if you just logged in from say California, then a moment later we see an access request coming in from Paris, we know it's not just because you have the valid username or password, we know that's not right. That's just a trivial example. Like Google does a great job of crawling the web. So we don't just know what the good sides are, we know what the bad sides are. So you even try to access a bad site we can stop you. There's all kinds of things we do with this. >> So I wonder if I can ask you about enterprise I.T. John at our kick off this morning said Google's 10 or maybe even 15 years ahead. And as he was just saying, people can't go that fast to be like Google. So how do you.. I think of a caravan with the fastest truck in the military caravan, has to slow down so the whole caravan can keep up. How do you manage the fact that you're going so fast but enterprises move, we sometimes joke, they move at the speed of the CIO. What's your perspective on that and how do you deal with that challenge? >> No, absolutely. So I think our core philosophy and design philosophy is how we built the product is meeting customers from where they are that's key. So meeting customers where they are, so we recognize, take some of our advanced technology. And we recognize that organizations are still building a lot of applications on premises, so we took the power and made that available on premises. You just saw that today. Another example, we connect to systems of record. We know Microsoft Active directly is largely the identity record of choice in large organizations. So we connect very seamlessly with them, we sync with them, and we use a federated identity story so you don't have to move to all in Google Cloud, you connect Google Cloud, you augment your existing infrastructure and that's how we make it all work. So, really making sure that we are inclusive, and meeting customers where they are is how we've designed everything including cloud identity. >> And I follow up with, is architecturally, how do you future proof it? Now part of it is you have a lead on the rest of the world. You have visibility on things that others aren't going to see for years. But at the same time, you don't know, you can't predict the future, right? So how do you future proof your system architecturally? Maybe talk about that. >> Yeah, I think that a couple things for us, we are big on open systems, so we make sure that the cloud as we all know is built on standards. So as an example, the security keys that we talked about was largely invented at Google but we made sure we contributed that back into the standards community. That's an example. We are big on APIs, making sure all our APIs are out there and we support federated standards like Skim and those others things. So we make sure that an organization can use not just us, but whatever identity system of choice, and we interconnect to standards and APIs and I think that's the way forward. >> So I asked you since you do product management which is you're building products, I mean, I used to run a product group at a big company and products are built differently now, than they are with the cloud. So how has the role in building a product change? Product management, you got to have the right features, you got to have customers. We're living in a services world, where you have a service as the product or the platform is the product in a cloud centric world. How do you guys do that product and share some insights for the folks watching, customers get an insight into how you guys work because it's not your classic product management, or is it? How are you guys doing things differently because business models are being built as a service. Things are changing so fast that a new service like Istio can literally change someone's business overnight, leveraging some of these core services that you guys have. >> So let me share a couple things. I think some things are always going to be the same if we do our jobs right. Which is that customers, customer needs, and making sure the solutions we provide, not features, but solutions, meet customer needs. I think in that regard, whether you deliver it as a service, or as a on-prem, does not matter, that's a delivery model. But we want to make sure we take care of our customers. I think one of the challenges we find on the cloud side is the piece of which we are delivering features and a lot of times the I.T. person or the decision maker in an organization want to make sure they stay in the loop on this, they are getting ahead of planning. You don't want to change that vent out so rapidly that the users are confused, they're getting help desk calls and things like that. So we are have a very structured communications mechanism that we work with, we share roadmaps and timelines so it helps organizations really think about what's coming. I think the service delivery and service consumption is more of a partnership now, even though on the consumer side you might think it's just as a service we push a change. I think its really a partnership. >> And it's faster too, I imagine. >> Absolutely faster. >> Your acceleration of service is faster. >> I think we can meet needs exactly, we can meet needs a lot faster. I wanted to call out that Google consciously takes into account the fact that we don't want our changes to be so fast and so disruptive, we want them to be well received so we really partner with our partners in the custom organizations. >> Its interesting Dave mentioned the caravan example, I would say that enterprises move at a glacial pace. >> Any users feel that way. >> But they're buying I.T. in the past, now they're essentially leveraging scaled services that are prebuilt so they can get things going faster. This is the new normal where they'll be buying services not I.T. products. >> Correct. >> You mentioned solutions, solutions and services. Is that kind of what you're getting at? >> Yeah, I think absolutely. If you think about what's happened as mentioned earlier today, I.T. was a cost center, now they're moving into like, hey how do we get ahead and build a competitive advantage? So I think absolutely, you said it well so plus one. >> Karthik you talked about some of the standards that built up the internet, and now you're seeing with blockchain a spate of new protocols being developed, all this innovation, a lot of talk about K.Y.C. know your customer, and antimoney laundering, AML. Perspectives on what's happening in that blockchain world. Obviously it's relevant to identity, what are you thoughts on what's happening there? >> Yeah, a couple things. One is that we think blockchain is very interesting, it's something that we continue to look at. I personally look at blockchain as amazing technology but we go back to what are the use cases and needs that we need to solve. So let me throw something out there, it's not very well thought out, it's just an idea. But we think about one of the things we've tossed around is bring your own identity. There's a time when identity was think about your cell phone number, if you remember was once tied to your provider, you change your provider, you had to get a new number. And now you have portability you don't think about it. So if you think about you as a user you are who you are, and then there is an identity or a profile that exists on a personal side. There's identity that happens so there is protection in this context that is accessed things like that that blockchain can now enable 'cause you now take your identity and you go with you whether you are in the consumer context, you are in the work context, or even switching from one job to another or one role to another within the organization. So I think blockchain could be technology that is very foundational and fundamental to decentralize notions where I as an organization manage your policies and lots of other things but who you are as a person stays with you. >> The old model was bring your device to work. >> Yes. >> Your base was bring your identity to the world under one immutable own your own data, trustful way. Enabling, identity as a service on a whole 'nother level. >> Very different level. I think were not dead today because right now I think organizations are shifting mainly from wrap their arms around the user and the identity and they're super paranoid about moving to the cloud. I think the first step is making them fundamentally comfortable with everything they need. But once we build I think your trust point is key once you have that governance and that secure platform we can start shifting towards bring your own identity and how can that all coexist. >> And why do you think the consternation about moving to the cloud. Is it because it's still unknown? It's still somewhat new? Because I mean by all accounts when you talk to the experts, they'll admit the cloud is more secure than what I can do on prem. Why the consternation? >> Absolutely, I think the key part is the simplicity that comes and I think it's a new model that has not yet been mastered, so cloud is secure, yes, but when my users start doing things that I don't really want them to do, what we call is shadow I.T., they're very worried about it. And then on the flip side they've been trained for years, decades on this whole old model of corporate network and now were saying the cloud is open and the internet is your new network. So that I think scares a lot of people but customers when they come to Google and they see our BeyondCorp story and our cloud identity story, then they know that they can achieve both. Higher access for employees and advanced security for organizations. >> I think the Beyond Corporate is very relevant. We've been tracking that we find that super fascinating. On the shadow I.T., we've been reporting on shadow I.T., it's our ninth year today. But shadow I.T. though, is just an early adopter form of DevOps, so I think shadow I.T. has kind of regulated itself to as a stepping stone for cloud. SAP used to do shadow I.T. as presales and then customers moved everything to the cloud so I think shadow I.T. is much more of a kind of kindergarten or first step to DevOps. >> I think DevOps is where a lot of organizations are moving. I think depending on where the organization is going back they like the I.T. admin led model, they're experimenting with DevOps, there's a lot of experimentation going on. I think what I like about shadow I.T. and not from a security risk perspective but it's signal that clear intent from the user to the organization saying I want access to these services fast and make it simple. >> It's like an R and D sand box the way I look at it. Final question for you I know you got to go. Thanks for coming on, I appreciate your time. How are you guys going to roll out this identity as a service, who's your competition, how do you guys compare, what's the story, what's the vision? Share some of the competitive strengths and weakness. What's going on? >> Yeah, I think three things for us. It's already available today, you can go to cloud.google.com/identity. Sign up for a free trial and we give you everything from identity as a service to device management and all of that. The things that we focus on is like smart, secure, and simple. The idea that we can use ML based security to automatically protect, no longer can an I.T. admin go in and set reactive policies. We just have to use data and set proactive policies and protect them. To your points earlier about end points and other data coming into that's the smart piece. We also have a unified single pane of glass, unified administration, one admin controlled to manage everything because people are complaining about the complexity of these solutions that they got to put together. So you get cloud identity you get one thing everything from not just the administration but also the licensing. One price and you're done. You never have to worry about it. And the last but not the least, it has to be secure. The things we talked about from security keys, I've never changed my password for the two years I've been at Google. I use security keys and never typed an RSA key or anything like that. It's fascinating how simple we can make it so that's really what we like smart, secure, and simple. >> Awesome, well congratulations. Looking forward to see how this scales out certainly foundationally identity is super important. Identity is one of the bedrock of cloud. It's part of that system that scales theCUBE. Bringing you all the best content scaling here at Moscone with all the great content from Google Next. I'm John Furrier and Dave Vellante. Stay with us from day one coverage of three days of live coverage here in San Francisco. We'll be right back.
SUMMARY :
Brought to you by Google Cloud of live coach here on the floor. So take a minute to explain and I got to refresh and how does it fit into the future and devices in the cloud. But the question I want to ask you is, and we do what we call that we are Gmail customers, with Gsuite we know it's not just because you have and how do you deal with that challenge? and that's how we make it all work. But at the same time, you don't know, the cloud as we all know that you guys have. and making sure the solutions we provide, and so disruptive, we want mentioned the caravan example, This is the new normal where Is that kind of what you're getting at? So I think absolutely, you said it well identity, what are you thoughts One is that we think bring your device to work. your own data, trustful way. and how can that all coexist. And why do you think the consternation and the internet is your new network. We've been tracking that we I think what I like about shadow I.T. I know you got to go. and we give you everything Identity is one of the bedrock of cloud.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Karthik | PERSON | 0.99+ |
Paris | LOCATION | 0.99+ |
Diane Green | PERSON | 0.99+ |
Karthik Lakshminarayanan | PERSON | 0.99+ |
San Francisco | LOCATION | 0.99+ |
three days | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
John Furrier | PERSON | 0.99+ |
20 years | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two years | QUANTITY | 0.99+ |
ninth year | QUANTITY | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
One price | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
first step | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
20 years ago | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
DevOps | TITLE | 0.98+ |
one role | QUANTITY | 0.98+ |
cloud.google.com/identity | OTHER | 0.98+ |
Android | TITLE | 0.98+ |
Chrome | TITLE | 0.97+ |
SAP | ORGANIZATION | 0.97+ |
over 25 years | QUANTITY | 0.97+ |
Istio | ORGANIZATION | 0.97+ |
Google Cloud | TITLE | 0.96+ |
Gmail | TITLE | 0.96+ |
one thing | QUANTITY | 0.96+ |
one job | QUANTITY | 0.95+ |
Google Cloud | TITLE | 0.95+ |
day one | QUANTITY | 0.95+ |
2018 | DATE | 0.94+ |
single pane | QUANTITY | 0.94+ |
Moscone | LOCATION | 0.93+ |
John | PERSON | 0.92+ |
shadow I.T. | TITLE | 0.9+ |
this morning | DATE | 0.9+ |
couple things | QUANTITY | 0.89+ |
decades | QUANTITY | 0.88+ |
Skim | TITLE | 0.84+ |
BeyondCorp | ORGANIZATION | 0.83+ |
one admin | QUANTITY | 0.81+ |
earlier today | DATE | 0.78+ |
theCUBE | ORGANIZATION | 0.77+ |
three things | QUANTITY | 0.75+ |
Google Next | ORGANIZATION | 0.74+ |
Google Cloud Next | TITLE | 0.72+ |
Google Cloud | ORGANIZATION | 0.72+ |
Beyond | ORGANIZATION | 0.71+ |
years | QUANTITY | 0.71+ |
Mike Grandinetti, Reduxio | Beyond The Blocks
>> Narrator: From the Silicon Angle Media office, in Boston, Massachusets. It's The Cube. Now here's you host, Stu Miniman. >> Hi, I'm Stu Miniman and we're coming to you from the Boston area studio here of The Cube. Excited to talk about some of my favorite topics. Talking about the culture, innovation, and really transformation in what's happening in data center. Digital transformation is on everybody's mind. Specifically happy to welcome Mike Grandinetti who is the Chief Marketing and Corporate Strategy Officer with Reduxio. Mike, thanks so much for joining us. >> Stu, thank you so much for having me. Great to be out here with you today. >> Alright, so you're a local guy? >> Mike: Yeah. >> We're glad that you could join us here. Before we jump into the company tells a little about your background, what you worked on, what brought you to Reduxio. >> In a nutshell I guess my background is all about innovation. I've sort of eat, breathe and slept innovation for the last 25 years of my career. So I started off as an engineer in Silicon Valley with HP back when Bill and Dave were still around. At a time when it was America's most admired company. Was a remarkable sort of introduction to what is possible. Went back, got my MBA, did several years at McKinzie doing corporate strategy consulting. Mostly around innovation related projects. And then I moved up here to Boston to be a part of the first of what is now eight consecutive enterprise venture capital backed start ups. And I've been lucky enough that two of those went public on the NASDAQ. The prior seven have all been acquired by companies like AT&T and Oracle. And now Reduxio is my eighth start up. We're really having a great time building this business. >> Great, we're definitely going to big into some of the innovations of Redux I O. >> Yes. >> So the name kind of tells itself. We've seen a few companies with the I O at the end. We've talked so much that when we've talked about kind of 2018 data is at the center of everything. Really what is driving business. So for an audience that hasn't run across Reduxio kind of give us the why and the what. >> Yeah, and so to your point, data's driving everything. Mark Andressen famously said software's eating the world. I think if we were to update that it's data is eating the world. And so I think you and I have had this discussion off camera. Whether it's fair or not, I think it's true. And it needs to be stated that the amount of innovation that has occurred in the storage industry over the last 20 years, has been disappointing at best. The solutions that have evolved have evolved in an extremely fragmented way. They are over, way too complex. They're way too expensive. And because it's a collection of piece parts, you've got to manage multiple screens, multiple learning curves. And a lot of things fall through the cracks. So when you go and look at some of the research data from a wide range of analysts, what you hear from them is there's this extraordinary lack of confidence that even though I've spend a ton of money, invested a lot of staff time and attention to building out this infrastructure, very lacking in confidence that I'm actually going to get that data back when I need it. So it's the old adage, it's time to fix it. So this is exactly what the founders of Reduxio saw. They were looking at this evolutionary path and saying people are just making it worse. So they did what many people would condsider to be radical. They threw out the entire playbook of what storage architecture has been and they took a clean sheet of paper, design centric approach. What are the use cases? Where are we in the world with regard to technology? And how do we design and experience for storage admin or BD admin or a person in the dev center that doesn't require a PhD in storage? And so that's kind of what the premise was. >> Yeah, so many things there that there are to dig into. Absolutely. I live, I worked for one of the storage companies for a decade. Absolutely complexity is how we would describe it. And what companies are looking for today, is they need simplicity. They need to focus on the business. Turing dials and worrying about do I have enough capacity? Do I have enough performance? Do I have enough of those things, is not what drives the business. >> Mike: Exactly. >> They need to focus on their applications. The bit flip we saw in big data, and we can argue whether or not big data was hype or whatever we had there, but it was oh my gosh I'm getting all this data to oh my gosh I have all of this data and therefore I can do more things, I can find more value. >> Mike: Absolutely. >> I worry a little bit when I hear things like oh, the storage admin. >> Yeah. >> The storage admin's job before was how to I triage and kind of deal with those issues? Many solutions now you look at the wave of hyper convergence. Let's push that to a cloud architect or the virtualization layer. How do we start with a clean slate and get out of the storage business and get into the data business? >> Mike: I love it. So I'm going to bring you back ten years to one of the most remarkable product introductions that has ever been conducted on this planet. It was the introduction of the iPhone. And if you recall in those first five minutes that Steve Jobs took the stage in a way that only Steve Jobs could. He went onto tease the audience by saying that we are going to be introducing three products today. And then over the next minute or two became clear that it wasn't three products, it was one very innovative product at the time. The iPhone. What they basically did is they integrated these three previously disparate pieces of technology. Certainly the mobile phone but also a music player and an internet navigator. Behind this gorgeous revolutionary user interface. So what we've tried to do is take a page out of the Job's iPhone innovation. We're integrating. And Forrester Research has written an incredible report about this and others, IDC and others, have consistently supported it. Chris Malore from the Register has written about this at length as well. Reduxio is integrating primary and secondary storage along with built in data protection. So those previously siloed capabilities are now one. We're also, like Jobs did, when you looked at the old style smart phone, the BlackBerry and the Trio and the- ya know all of those things that had all of those keyboards, is we've created a user interface using game designers so when our customers go home at night and they log into Reduxio, their little kids will say, hey dad what game are you playing? And dad will say, I'm not playing a game. I'm actually working on Reduxio. And so what that's done for us I think is it's allowed us to be able to drop a Reduxio system into any number of use cases with someone who may not have the luxury of being deep in storage. And literally get time to value that they put production workloads on the system that day. >> It's interesting, another piece that I'll draw from your analogy is when you talk about how did Apple take all of those pieces. And it's kind of certain technologies moving along. But there's one specific technology that really helped drive that adoption. And it's Flash. >> Mike: Yes. >> And the consumer adoption of Flash ten years ago drove the wave that we've seen in enterprise storage. >> Right. >> So help connect the dots for us, because we look at- I remember a decade ago primary to secondary storage oh I'll give you a big eleven refrigerator size cabinet and you can do both. >> Mike: Right, sure. >> But I put expensive stuff here, I put cheap stuff here. I used the software to put it together. I'm assuming I can consolidate it down and I think Flash has something to do with it. >> Yeah, and so it's a multi tiered system. The array itself. It's an appliance. And obviously most of the value is in the software. There's a management platform that allows us to peer deep into the data. But everything is time stamped and indexed. So we have a global view of the data. And you can tier it, the most hot data very mission critical, business app data, goes to Flash. Secondary data can go to spinning disk or now we can archive to the cloud. Specifically any S3 target, Amazon or any S3 target. But what I think makes it very relevant is we've illuminated the notion of snapshotting. So we've built something that we call the time OS or the time operating system. And it's a time machine for your data. What happens is rather than incur that incredible burden of having to schedule snapshots, that only requires you at another incredible heroic effort to bring the data back, you have continuous data protection. I can go back at any point in time and literally with a very graphical screen point and say I want to bring data back from two seconds ago. And one of our best examples of that is we had a customer who had been attacked, has suffered from a ransomware attack. They went down for a week, they went down hard for a week. And they came and found Reduxio. They got attacked again. And the second time around they lost only two minutes of data. And the recovery time was 20 minutes. So this is what we enable you to do. By being able to give you access to wherever you're data may be, anywhere in the world, you can- we're approaching near zero RPO and RTO. >> Mike, there's been a number of companies that come and said data protection's been broken. We've been hearing that for a while. I think right down the road from us, like Tiffeo, company that looked at data management. Companies like Cohesity and Rubric, have quite a bit of buzz. Give us a little compare, contrast how Redxio looks at it verses some of those other- >> Yeah, and I'd say again, for anybody watching I think the Forrester Research Report outlines Reduxio, Cohesity and Rubric, right? And of course Cohesity and Rubric are doing an extraordinary job. They're scaling rapidly. They've got world class in Silicon Valley money in the company. They've got a world class client base. I think the primary difference is that we are bringing that third component. We're integrating primary storage along with secondary storage in data protection. Both of them are focusing just on the secondary and the data protection. We take issue architecturally with the fact that you've got to make additional copies. We take issue with the fact that the way they're approaching this actually they're in some ways exacerbating the problem because they're creating more data. But at the same time, they're also, for a given amount of capability two to three times the cost. So what we're hearing from a lot of our customers and our vars that sell both is they're walking into a lot of more, let's call them price sensitive accounts. Where they don't believe that the incremental value of what Cohesity or Rubric is offering is easily justifiable. There's going to be some pretty extreme use cases to justify a $300,000 initial investment as you go into the data center. >> Another piece, when I talk to companies today, one of the biggest challenges they have is really figuring out what their strategy is and how that fits. You talked about tiering and how the cloud fits into it, but how does Reduxio fit in that overall cloud strategy for companies today? >> Again, it's very early in our product evolution and so with version three which we announced back in late June, we allow companies to archive to the cloud. But do instantaneous recovery from the cloud. So we have two capabilities. One is called no migrate. So there's no longer a need to migrate data. So you were at the Amazon invent show and you saw the snowmobile get rolled out. And the reason that Amazon rolled that snowmobile and at first I thought it was a joke, is because it takes an incredible amount of time and effort to move data from one data center to the next. Reduxio has this no migrate capability where if I need to move data from that data center, I set that data in motion. And I don't know if you're a Trekkie or not, but you remember the teleporter? In version three we've created a teleporter. You can move that data from the cloud and although it may take a long time for that data to actually get to its target, you can start working on that app as if that data had already been migrated. When we run usability tests, and I remember one of them very specifically. And I know that you speak a little bit of Hebrew. I speak zero Hebrew. But I can remember watching one of our Israeli customers seeing this happen and this visceral reaction, like oh my god, I can't believe they did that. So we're trying to bring that end to end ease of use experience to managing and protecting your data wherever it may be. Bringing it back with almost zero RPOs, zero RTO. >> Mike, one of the questions, I've been talking to a number of CMOs lately, and just you've worked for a number of start ups. Today, digital transformations on the mind, what's the changing role of the CMO today? What have you seen the last five to ten years that's different and exciting? >> It's a great question. And I'd say that, and again, I did my first start up in 1991. So I can't begin to tell you how much high tech marketing has changed. But everything changed with social, digital and inbound marketing. It used to be that the sales team was responsible for filling the funnel. It is very clear that is an incredibly non scalable unproductive effort. And so we now are all about acquiring high quality prospects. We're a hub spot shop. We're a highly automated shop. And we are very biased toward digital and social. Is doesn't mean that we're not going to events and things like that but we feel that the way that we're going to scale this business, especially when we compete against big guys like Dell EMC and HP and others, there's no way that we can go person to person. So I'm not a very big fan of cold calling. I'm not a very big fan of going to trade shows. And collecting business cards in fish bowls and giving away tee shirts. We really believe that our customers are too busy, the know what they need when they need it. They've built a fortress around themselves. They're getting hammered. Just like I'm a CMO. And I must get 150 LinkedIn inmails and emails a day telling me about the next great lead management service. I can't even imagine what our customers are putting up with. So our job is to find relevant personas with highly relevant content at the moment that that is relevant to them. And there's many ways to do that, but this is really what we have to do with the data. >> So, Mike, at the beginning of the conversation we talked a little bit about innovation. >> Mike: Yes. >> Those of us that have been in a while, they're too many peers of mine that I think if you say the word innovation they roll their eyes. You have the great opportunity, you're working with master students around the globe, talk to us the people coming out of those programs. What does innovation mean today? What are they looking for, from a career standpoint? >> It's a great question. I think you and I could probably go for the next three hours on this subject so we'll have to be careful. >> We'll make sure to post on the website the expanded audio. >> Okay, but I mean innovation is such an overused word. And most companies really can't spell it and they can't spell it because their culture doesn't allow for it. So first and foremost, I think any innovative company or any innovative team starts with a culture that is all about trying to manage at the bleeding edge of best practices and really understand what's current. I have the blessing of being both the Chief Marketing and Corporate Strategy Officer of Reduxio and a global professor of innovation entrepreneurship at the Hult International School of Business. I teach between 1,200 and 1,500 students a year. I teach them courses in entrepreneurship, in innovation, in digital marketing. And I run hackathons on campus. We do a lot of events that give me an insight into who's passionate about innovation. And it's one thing to think innovation is interesting, because you can get a good job. It's another thing to actually have the comfort level of living in a world of ambiguity and high velocity. So a lot of it is, I'm looking for students that really want to sort of push the envelope. And they exhibit that in the classroom, they exhibit that in hackathons. They exhibit that in some of the internships that we take. They exhibit it by getting certified on HubSpot. Without me telling them to. Getting certified on Idio without me telling them to. Going to conferences. Learning. And then me learning from them. Because nobody can know everything. It's just so much new stuff going on right now. I've now got a team of 11 people and nine of them were my former students. I had a chance to observe them in action over 18 months and they're world class. And they have that innovation gene in their DNA. We're really at a point where I'm learning from them everyday. It's a very symbiotic relationship. >> Mike, for closing comments, I want to give you the opportunity, people find out more about Reduxio. What should we be looking for in 2018? >> Yeah, and so again, the one thing is will say is we are now at 200 distinct customers. We have in a very short period of time, and you know, when you sell into the data center people don't have a real sense of humor. It's pretty important that the stuff works. So the first thing I would say is we've gotten to that point now where we've got a lot of very significant customer references across websites and a lot of peer review sites. So we're now, so 2018 is building on that foundation. I think what you're going to see from us is couple of very radically innovative new projects. One a software only project. That will allow us to drive an inflection point in growth. By making available some of our core capabilities to anybody. Whether they own a Reduxio system or not. We really want to go big now. We've validated the architecture. We've got some great early indications from the market that this stuff works as advertised. Our customers are telling us we're simplifying their lives, we're making them more productive. And 2018 is about to really kick this thing into high gear. >> Stu: Mike Grandinetti, pleasure chatting with you. Thanks so much for sharing. And thank you for watching The Cube. >> Mike: Great. (upbeat music)
SUMMARY :
Narrator: From the Silicon Angle Media office, Hi, I'm Stu Miniman and we're coming to you from Great to be out here with you today. We're glad that you could join us here. of the first of what is now eight consecutive of the innovations of Redux I O. about kind of 2018 data is at the center of everything. So it's the old adage, it's time to fix it. Do I have enough of those things, and we can argue whether or not big data was hype oh, the storage admin. and get out of the storage business So I'm going to bring you back ten years And it's kind of certain technologies moving along. And the consumer adoption of Flash ten years ago So help connect the dots for us, because we look at- and I think Flash has something to do with it. And obviously most of the value is in the software. like Tiffeo, company that looked at data management. and the data protection. one of the biggest challenges they have is really figuring And I know that you speak a little bit of Hebrew. Mike, one of the questions, I've been talking to So I can't begin to tell you how much So, Mike, at the beginning of the conversation You have the great opportunity, you're working with I think you and I could probably go for the next They exhibit that in some of the internships that we take. the opportunity, people find out more about Reduxio. Yeah, and so again, the one thing is will say And thank you for watching The Cube. Mike: Great.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris Malore | PERSON | 0.99+ |
Mike | PERSON | 0.99+ |
Mark Andressen | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Mike Grandinetti | PERSON | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
2018 | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Boston | LOCATION | 0.99+ |
1991 | DATE | 0.99+ |
20 minutes | QUANTITY | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Steve Jobs | PERSON | 0.99+ |
HP | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
nine | QUANTITY | 0.99+ |
$300,000 | QUANTITY | 0.99+ |
Bill | PERSON | 0.99+ |
Reduxio | ORGANIZATION | 0.99+ |
Both | QUANTITY | 0.99+ |
Stu | PERSON | 0.99+ |
Tiffeo | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
late June | DATE | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
ten years | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Cohesity | ORGANIZATION | 0.99+ |
150 | QUANTITY | 0.99+ |
Jobs | PERSON | 0.99+ |
Hult International School of Business | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
two minutes | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
third component | QUANTITY | 0.99+ |
Forrester Research | ORGANIZATION | 0.99+ |
second time | QUANTITY | 0.99+ |
11 people | QUANTITY | 0.99+ |
first five minutes | QUANTITY | 0.99+ |
Job | PERSON | 0.98+ |
Dell EMC | ORGANIZATION | 0.98+ |
One | QUANTITY | 0.98+ |
two capabilities | QUANTITY | 0.98+ |
McKinzie | ORGANIZATION | 0.98+ |
BlackBerry | ORGANIZATION | 0.98+ |
HubSpot | ORGANIZATION | 0.98+ |
Hebrew | OTHER | 0.98+ |
a week | QUANTITY | 0.98+ |
three products | QUANTITY | 0.98+ |
IDC | ORGANIZATION | 0.98+ |
NASDAQ | ORGANIZATION | 0.98+ |
three times | QUANTITY | 0.97+ |
200 distinct customers | QUANTITY | 0.97+ |
two seconds ago | DATE | 0.97+ |
Bill Mann, Centrify| AWS re:Invent
>> Announcer: Live from Las Vegas, it's theCUBE covering AWS re:Invent 2017. Presented by AWS, Intel, and our ecosystem of partners. (techno music) >> Welcome back here on theCUBE, of course, the flagship broadcast for SilconANGLE, along with Justin Warren, I am John Walls, and we are live at re:Invent, AWS' annual shin-dig here in Las Vegas, and certainly with great success, they have staged this year's event. We'll have more on that a little bit later on, right now we're joined by Bill Mann, who's the Chief Product Officer at Centrify, the latest newcomer to the AWS marketplace. >> Yes. >> John: Bill good to see you, thanks for the time today. >> Thanks for the time as well. >> Big week for you, right? >> Yup >> Joining the marketplace, tell us about the driver of that decision, and then what you're bringing, literally, to the marketplace? >> Sure, sure. Well, we're bringing our products to the marketplace. We're very excited about getting our products on the marketplace, and what was really the driver for us was, we wanted to really be part of the Amazon ecosystem, and we wanted to make, reduce the friction of selling to enterprise and mid-market customers, and this was the way to get to those customers. We realized really early on that, customers are already buying all the other services from Amazon already. They're buying their instances. They're buying their storage, and so forth. So, getting our products on the marketplace was just an important aspect of reaching those customers and removing the friction, and so forth. Also, with the move to the cloud, our customers were asking for how to secure servers in the cloud, and secure access to applications in the cloud, and then things just kind of lead, one thing leads to another, where you say, okay, let's put everything in one place as well. I kind of used the analogy of we buy our diapers from Amazon, now, and everything else, so, but the IT shop is working the same way. They don't want to deal with multiple vendors, and if you can reduce that friction, at least, my theory is, reducing that friction will mean, we can sell more product to the customer. >> That's an interesting image, diapers from... (laughter) >> It's the everything store. >> I didn't give a chance to talk about Centrify, a little bit. Security firm with the tag "The breach stops here", so, just tell for those at home who might not be familiar with Centrify, a little bit more about your specific offers. >> Sure, well, let's start with the breech stops here, the reason we have our tagline, "the breech stops here" is, it really is a definition of what's happening in the marketplace. If you look at most of the breaches out there, there's 80% of most breaches are to do with compromised credentials, our passwords, and that is really an area that we focus on. We are really trying to solve the problem, how users have access to the applications, like Sales Force, or any home grown applications, or how IT users have access to their servers, like a server on AWS, and using a password, and having too much privileges, is really the wrong way to do things, so we are solving that problem, and that's why we kinda start off with that line of the breach stops here, because we fundamentally believe that if you implement security based upon identity you're gonna be able to reduce your risk. >> Security is such a hot market right at the moment. We're hearing constantly, we were talking earlier on theCUBE, where we're talking IOT, and it immediately went to security. It was being really, really top of mind for people, so the things that you're doing with Centrify, there's kind of two prongs to it, if I understand it. So, one is identity management. So, knowing who people are. So that credentials management. And the other one's to do with the access, is that right? We were talking before we went to air that, about the Beyond Corp concept, where instead of having this, sort of inside protected crunchy layer, and then everything outside is bad, now it's just becoming everything everywhere should not be trusted, unless you are cleared by something like Centrify. >> So, yes, so, for those of you who are familiar with the Beyond Corp model, the model really is about zero trust. So, if you think of these two things here in our user, let's say a server instance, the thing in between you can't trust, and in the past we've been trusting the firewall to stop the bad guys from coming into our network. So really the concept is around, assume the bad actors are everywhere, and now that you've assumed that, let's now focus on what you can do to actually gain security. So the concepts are, let's do identity assurance. Let's make sure this is really Bill. Let's do, let's make sure Bill's coming from a trusted device, yeah, like a known mobile phone that hasn't been jailbroken, has the right configuration policies, et cetera. Then, let's do access control, or what we call, lease privilege, to the asset that they're trying to have access to. So, is Bill coming from this show, from his phone, allowed to access SalesForce.com? Or is Bill coming from this phone able login to a Unix instance on AWS, now? And what can he do on that instance? Can he go to root, and restart the Oracle database, or can he just run some lower level privilege commands? So, that's the scope of what we're doing. In fact, Beyond Corp is a great descriptor of what we do, if a company wants to implement Beyond Corp, that security paradigm, which I think a lot of modern companies are thinking that way, you can use the services that we provide on the Amazon Marketplace to implement that. We have a service called Application Service, which is all about securing your applications. We have a service called Endpoints Service, which is securing the endpoints, like the mobile phones and so forth, and we have a service called Infrastructure Service, which is securing instances in the cloud. Access to those instances, and those, all those services can be used together, as well, because, as you know I'm an IT user. One day, I'm using Outlook to read my email, and in the next second I'm logging onto a Unix instance. So, for me, it's bringing all these components together, and that's providing throughout by the marketplace. >> Yeah, and really, providing that security in context, as you mentioned. It could be the same person. Like, I'm at work, and I'm doing some things, and I've got access to all these great, all of this information inside the company, but when I go home, should I still have access to that? Probably not. So, if I'm sitting home and I'm using my device, as many of us do, I have children, and they sometimes put games on your phone, or load stuff on your computer. So, if I've got my work computer at home with me, and I suddenly start deciding, hmm I think I'll login and download all of the sales information, that shouldn't happen. >> That's absolutely right. So, the context is that core part of it, and that's what endpoint services does for us. So going back to an Amazon use case, if I'm at home, and I'm logging on to my Amazon console, yeah? From my home machine, let's say, and I'm kicking off an instance, should I be able to do that? I'm not using, maybe an endpoint that is authorized, but I could authorize an endpoint and say, this is a known endpoint, like a lot of IT workers do. And you could also do things like, I'm in Vegas now, and I'm using my Mac, and I'm trying to go to the Amazon console, should I be able to, because that's outside of my normal behavior, in which case, we would up-level your multi-factor authentication, it would re-prompt me to re-authenticate. So, all of that is built into our environment. So, our services are not just for Amazon. It's for on-premises, and for cloud apps, cause it's the whole gamut of what an enterprise has. As companies are moving, or migrating from one premises to the cloud, we can protect the applications, and servers on premises, as well as servers in cloud, and applications on premises, as well as SAAS apps, like Sales Force, or Concur, et cetera, et cetera. So, it's that gamut of giving a user access to applications and infrastructure that we're doing with this Beyond Corp model in mind. Which is, I think the cool, and the interesting thing about what we're doing, because we are connecting these components together, and that's the only way we're going to raise security, cause if you go back to the stat I gave you earlier about the 80%, that is the problem, right? A firewall will not protect you from these breaches, and we could have an argument about it, but if it was, then we wouldn't see the breaches, right? That's kind of the high-level. >> John: Yeah >> There's only so much that you as, like Amazon can do so much about securing their environment, but ultimately you as the customer need to spend a bunch of time, and -- >> Just like they did, share responsibility, right? >> Absolutely right. I mean, Amazon does an awesome job in defining the shared responsibility model, and we are relying on them to do their part of the responsibility, and we're proving the technology for the customers to worry about their aspect, right? So, Amazon does not worry about Bill coming from this device, having access to an instance, we're worrying about those things. So, absolutely, we're part of the shared responsibility model for Amazon. >> We're not going to worry about Bill coming in either. I think you're okay. I think it'll be alright. How do you guys, in the big picture, put on your bad guy hat? How do you look for, if you offer a product, this is our latest security offering, now let's go look for holes? Now let's, I mean, you're trying to beat it up all the time, right? You're always, you're looking for vulnerabilities? So, how do you switch gears like that, and go to the other side of the fence to think about what the next problem is going to be, or what the next vulnerability is going to be? >> Well, you know, I think we, like most other security, modern security companies, we are thinking, one side of our brain is thinking like the bad guys all the time. We have to, and, and honestly, they are always multiple steps ahead of us, and one of the things I like to really make sure customers understand is, some customers get really wound up about zero risk, right? They want it to be perfect before they implement a solution, and really the reality is, most companies don't even have multi-factor authentication for implemented for all of their employees, and if companies just implemented multi-factor authentication for all their users, for all their access, you would have a significant reduction in risk. So, the types of security we're focused on, is not about reducing risk to zero, or finding every single vulnerability out there. It's really trying to attack the problem that hasn't been attacked already. Let me give you another analogy. As we all know patching is a basic security model that we all need to know. Yeah, but how many vulnerabilities have there been in the news where patching was not done? We're like patching. You know, understanding the user is authenticating an environment without a password, and instead using multi-factor authentication, is the best precaution against the bad guys. It won't limitate risk, right, but its going to drastically reduce it. Now, as part of the services we're offering on Amazon, we have multi-factor authentication as a service, right? By definition, as it's a service means it can be implemented extremely fast for enterprise. It's a SAAS Service, right? It's pay by use, right? By definition. So, gone are the days where the technology was the reason you couldn't implement these sets of capabilities, cause they're easy to procure, they're in the cloud, they're mobile friendly, they're modern, et cetera, et cetera. So that's how we really deal with the aspect of the bad guys, right? They're going to be there all the time, but honestly speaking companies have spent so much time, and energy, and dollars on the wrong security products, right? Or focusing on the wrong stuff, and it was fine when you had a legacy, closed environment with no cloud, and no SAAS, but that's not the environment anybody lives in, especially a show like this. Everybody's using the cloud, it's like, the obvious thing, right? So, it should be obvious that these kind of controls need to be implemented. >> I agree. Just do the simple things. If you can do one or two simple things, multi-factor, absolutely. Just do these basic things. You will eliminate 80% of your risk. Do that first, then worry about the esoteric problems that are going to cost millions and millions of dollars to solve, just, you know, brush your teeth. Go for a walk. (John laughing) >> We define a maturity model of going towards Beyond Corp's slash zero trust, and the first thing on that maturity chart is identity assurance, i.e. multifactor authentication, and that's the first thing that organizations need to implement, and the issue is companies haven't implemented these products in the past, because they've been too expensive on-premise, hard to implement, not mobile friendly. So we're hoping once we're on Amazon's marketplace with the reach we've got with Amazon, we're going to see a lot of customers adopting those. So, it's good for us as a business, but ultimately it's good for enterprises. They're going to get safer, and our data is gonna be safeguarded, and so forth, which is the primary responsibility. >> I'm not sure. I think Justin just told you to take some time off. (laughing) I'm not sure. Bill, thanks for being with us. >> [Bill} Thank you very much. >> Thanks for the time, and congratulations on joining the marketplace, and we wish you continued success at Centrify. >> Cheers. Thank you. >> Thank you, sir. Bill Mann, Chief Product Officer at Centrify. Back with more here, Live at AWS. We're at re:Invent. Live at Las Vegas. Back with more on theCUBE, just in a bit. (techno music)
SUMMARY :
and our ecosystem of partners. at Centrify, the latest newcomer to the AWS marketplace. one thing leads to another, where you say, okay, That's an interesting image, diapers from... I didn't give a chance to talk about Centrify, of most breaches are to do with compromised credentials, our And the other one's to do with the access, is that right? on the Amazon Marketplace to implement that. download all of the sales information, So, the context is that core part of it, and that's what for the customers to worry about their aspect, right? side of the fence to think about what the next problem is and one of the things I like to really make sure customers Just do the simple things. that's the first thing that organizations need to implement, I think Justin just told you to take some time off. Thanks for the time, and congratulations on joining the Thank you. Back with more here, Live at AWS.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Justin Warren | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Bill Mann | PERSON | 0.99+ |
80% | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Justin | PERSON | 0.99+ |
Centrify | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
one | QUANTITY | 0.99+ |
Outlook | TITLE | 0.99+ |
millions | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Bill | PERSON | 0.99+ |
Mac | COMMERCIAL_ITEM | 0.99+ |
two things | QUANTITY | 0.99+ |
two prongs | QUANTITY | 0.99+ |
Beyond Corp | ORGANIZATION | 0.99+ |
millions of dollars | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
today | DATE | 0.97+ |
Intel | ORGANIZATION | 0.97+ |
re:Invent | EVENT | 0.97+ |
Sales Force | TITLE | 0.97+ |
zero | QUANTITY | 0.96+ |
Concur | TITLE | 0.96+ |
one place | QUANTITY | 0.96+ |
re:Invent 2017 | EVENT | 0.93+ |
Oracle | ORGANIZATION | 0.92+ |
One | QUANTITY | 0.92+ |
first thing | QUANTITY | 0.92+ |
Invent | EVENT | 0.91+ |
about zero trust | QUANTITY | 0.91+ |
two simple things | QUANTITY | 0.9+ |
SAAS | TITLE | 0.88+ |
one side | QUANTITY | 0.88+ |
this year | DATE | 0.85+ |
AWS' | ORGANIZATION | 0.84+ |
Unix | TITLE | 0.81+ |
single vulnerability | QUANTITY | 0.74+ |
about zero risk | QUANTITY | 0.7+ |
theCUBE | ORGANIZATION | 0.67+ |
Amazon Marketplace | TITLE | 0.65+ |
Brad Hibbert, BeyondTrust | Security in the Boardroom
>> Hey welcome back everybody. Jeff Frick here with theCUBE. We're at Palo Alto at the Security in the Boardroom event, it's put on by the Chertoff Group. They do a couple of these a year, all across the country and they're all about security, but what's interesting is it's not really the tech conversation of security or the gadgets, or a lot of the things we typically cover on theCUBE but really more this event's about the boardroom. And making it a boardroom topic and a boardroom conversation. So we're really excited to have our next guest. He's Brad Hibbert, he's the CTO of Beyond Trust. Brad, welcome. >> Thank you, glad to be here. >> Absolutely, so you just got off the keynote stage, talking about CSOs and how do you help those guys do their jobs, they're in a crazy position. >> That's right, I was just talking about how to make them feel more comfortable talking sort of the boardroom language and ways they can work with vendors to help out with that. So it was a good panel. I think I had a number of good perspectives on the subject. >> Beyond Trust. Give us a background on Beyond Trust. >> Yeah, sure. So Beyond Trust we're all about helping people manage their risks, sort of the internal risks of the environment. It's new area for cyber-security, it's a new layer of security if you will. A lot of people are familiar with sort of the perimeter-based security things like vulnerability scanning, which we do, so attack surface closures and so on. This is really more about when somebody's in the environment or compromised accounts, how do you really secure the environment from that type of access. So we have a number of products that can solve certain use cases around that. >> So this must be the PAM that you guys talk about all the time. >> Brad: That's right, Privileged Access Management. >> Privileged Access Management. >> That's right. >> So you say Privileged Access, so as you just said, that's people that are already on the inside. >> Yeah, so it could be anybody from administrators, leveraging shared accounts, any administrators that need elevated credentials, making sure that you control access to those credentials, and making sure that you ensure that they're using them appropriately, so not misusing them or misbehaving in some way, with all sorts of auditing capability behind that. It could be your desktop administrators, your developers, you just need elevated access in some way. What we're finding is that what hackers are doing now is, they're going after things once they kind of get a footprint in the environment. They're going after the credentials, they're going after privileges, because that gives them more access to the corporate data. >> So is it just that they're a more rich target for the hackers? Or is it because they have a different behavior than your typical person at the end of my phone or your typical access point in? >> It's a bit of both. I think one is, hackers are going to the path of least resistance. So as I mentioned from a privilege perspective, once you're inside the environment, controlling and seeing what people are doing, typically goes under the radar of the traditional security defenses. So once they can get that access, it becomes much more difficult to detect when somebody's doing something inappropriately within the environment. Also, a number of these credentials are not being managed very securely, so a lot of people sharing credentials, they never change their credentials, they use the same password on every router in the organization, they never rotate it, those sorts of things. So there are a lot of weaknesses or vulnerabilities around credentials, just like in the past there's vulnerabilities around assets, and vulnerabilities around applications, now there's vulnerabilities around how you manage access and credentials. And that seems to be an area that people are targeting. >> So you would assume that people that have privileged access would have a little bit higher education, behavior, practices on avoiding things that they're not supposed to do, but it sounds like not necessarily, or? >> Well, yeah, certainly on-- >> On paper that's what you would think. >> On paper, absolutely yeah, I think the tradeoff sometimes is from a password management perspective, it's difficult to do that manually if you think about the number of passwords in our organization, shared accounts on systems and applications, on networks, network devices and cloud apps, it's just a number of things out there. So people really need a way to harness that and control that in a more automated way. And they just lack that today. Sometimes it's around operations. When I was an admin, bad to say but I used the same password a number of different devices because for me it was easy to remember. Complex and changing passwords becomes difficult to manage in some cases, right? So password management, part of PAM, one of the components that we have, enables you to manage those things in a more automated and controlled way without putting a lot of burden on the administrative team, which is what people are looking for. >> So how far are we away from a better method than password? It amazes that we have phones with fingerprint readers and it still asks us for a password to get into our phone. We have Salesforce at work, and Salesforce is very secure so they make us change our passwords, whatever it is every four weeks or six weeks. And I've gone through kind of my core, my top 10 passwords and it still won't let me in. So it's such a not great way to access, and as you said this expanding level of applications and stuff now, our interaction with so many different things are so password-driven. Two-factor authentication is obviously helping, but when are we going to get beyond passwords? >> Well I think from my perspective, I think passwords are going to be around for a long time, because it's not just users that use passwords. Systems also use passwords. Application to application interfaces now use secrets or some sort of passwords, and so on. They're going to be around for a long time, even the ones that administrators and shared credentials, they're going to be around for ten years-plus. And I always say, even with multi-factor there's always something you have and something you know. So I always think there's a good reason to keep them in a lot of cases. But even beyond the passwords, even once you log in there's still other things that you want to make sure are being addressed. You want appropriate logging and controls, and analytics around what you're doing with those credentials. You might want to restrict when you should have access, so maybe I don't want my administrators to be able to go start patching a system or configuring a system unless appropriate tickets are in the ticketing system during certain times of the day. So you start adding more controls around when they can actually use these passwords, and then when they use them, ensuring that they're using them appropriately. So there's a number of different aspects around Privileged Access Management other than just the passwords themselves. >> But it's just funny even with all the procedures and processes, you still have, at the end of the day, behavior. It sounds like so many times people don't follow the right procedure, they like you say, share passwords, they don't apply the patches, and so you're fighting kind of the people-process thing always, in addition to the technology piece. >> Right, and sometimes it's difficult. In some organizations you still have end users that have full admin rights on their desktops, right? So if they get phished, the hacker gets on that machine, they have admin rights on that machine. Then they can use that as a footprint to go elsewhere. Then once they're on that machine of course, they could have line of sight to anything inside your environment. So if those things inside your environment aren't properly secured, network devices and so on, they could be susceptible if they're not being managed properly as well. So it's a big problem, and as I mentioned before, in a lot of organizations it's a missing security layer that they just don't have today. Which is why the market's growing so quickly. >> Well Brad, I think you got a lot of job security. (laughter) >> Well thanks for taking a few minutes out of your day, appreciate it. >> Absolutely, thanks. Alright, he's Brad Hibbert, I'm Jeff Frick. You're watching theCUBE from the Security in the Boardroom event put on by Chertoff. Thanks for watching.
SUMMARY :
or the gadgets, or a lot of the things Absolutely, so you just got off the keynote stage, So it was a good panel. Give us a background on Beyond Trust. of security if you will. that you guys talk about all the time. So you say Privileged Access, so as you just said, access to those credentials, and making sure that you ensure in the organization, they never rotate it, So password management, part of PAM, one of the components So it's such a not great way to access, and as you said But even beyond the passwords, even once you log in the right procedure, they like you say, share passwords, So if they get phished, the hacker gets on that machine, Well Brad, I think you got a lot of job security. Well thanks for taking a few minutes out of your day, event put on by Chertoff.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brad Hibbert | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Brad | PERSON | 0.99+ |
Chertoff | PERSON | 0.99+ |
ten years | QUANTITY | 0.99+ |
six weeks | QUANTITY | 0.99+ |
Chertoff Group | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Beyond Trust | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
today | DATE | 0.96+ |
Salesforce | ORGANIZATION | 0.96+ |
Two-factor | QUANTITY | 0.93+ |
every four weeks | QUANTITY | 0.88+ |
Privileged Access Management | OTHER | 0.88+ |
Privileged Access | OTHER | 0.84+ |
10 passwords | QUANTITY | 0.84+ |
theCUBE | ORGANIZATION | 0.8+ |
a year | QUANTITY | 0.76+ |
CTO | PERSON | 0.72+ |
BeyondTrust | ORGANIZATION | 0.7+ |
Access Management | OTHER | 0.61+ |
Security in | EVENT | 0.59+ |
Boardroom | EVENT | 0.55+ |
Security in the Boardroom | EVENT | 0.54+ |