Irene Dankwa-Mullan, Marti Health | WiDS 2023
(light upbeat music) >> Hey, everyone. Welcome back to theCUBE's day long coverage of Women in Data Science 2023. Live from Stanford University, I'm Lisa Martin. We've had some amazing conversations today with my wonderful co-host, as you've seen. Tracy Zhang joins me next for a very interesting and inspiring conversation. I know we've been bringing them to you, we're bringing you another one here. Dr. Irene Dankwa-Mullan joins us, the Chief Medical Officer at Marti Health, and a speaker at WIDS. Welcome, Irene, it's great to have you. >> Thank you. I'm delighted to be here. Thank you so much for this opportunity. >> So you have an MD and a Master of Public Health. Covid must have been an interesting time for you, with an MPH? >> Very much so. >> Yeah, talk a little bit about you, your background, and Marti Health? This is interesting. This is a brand new startup. This is a digital health equity startup. >> Yes, yes. So, I'll start with my story a little bit about myself. So I was actually born in Ghana. I finished high school there and came here for college. What would I say? After I finished my undergraduate, I went to medical school at Dartmouth and I always knew I wanted to go into public health as well as medicine. So my medical education was actually five years. I did the MPH and my medical degree, at the same time, I got my MPH from Yale School of Public Health. And after I finished, I trained in internal medicine, Johns Hopkins, and after that I went into public health. I am currently living in Maryland, so I'm in Bethesda, Maryland, and that's where I've been. And really enjoyed public health, community health, combining that aspect of sort of prevention and wellness and also working in making sure that we have community health clinics and safety net clinics. So a great experience there. I also had the privilege, after eight years in public health, I went to the National Institute of Health. >> Oh, wow. >> Where I basically worked in clinical research, basically on minority health and health disparities. So, I was in various leadership roles and helped to advance the science of health equity, working in collaboration with a lot of scientists and researchers at the NIH, really to advance the science. >> Where did your interest in health equity come from? Was there a defining moment when you were younger and you thought "There's a lot of inequities here, we have to do something about this." Where did that interest start? >> That's a great question. I think this influence was basically maybe from my upbringing as well as my family and also what I saw around me in Ghana, a lot of preventable diseases. I always say that my grandfather on my father's side was a great influence, inspired me and influenced my career because he was the only sibling, really, that went to school. And as a result, he was able to earn enough money and built, you know, a hospital. >> Oh wow. >> In their hometown. >> Oh my gosh! >> It started as a 20 bed hospital and now it's a 350 bed hospital. >> Oh, wow, that's amazing! >> In our hometown. And he knew that education was important and vital as well for wellbeing. And so he really inspired, you know, his work inspired me. And I remember in residency I went with a group of residents to this hospital in Ghana just to help over a summer break. So during a summer where we went and helped take care of the sick patients and actually learned, right? What it is like to care for so many patients and- >> Yeah. >> It was really a humbling experience. But that really inspired me. I think also being in this country. And when I came to the U.S. and really saw firsthand how patients are treated differently, based on their background or socioeconomic status. I did see firsthand, you know, that kind of unconscious bias. And, you know, drew me to the field of health disparities research and wanted to learn more and do more and contribute. >> Yeah. >> Yeah. So, I was curious. Just when did the data science aspect tap in? Like when did you decide that, okay, data science is going to be a problem solving tool to like all the problems you just said? >> Yeah, that's a good question. So while I was at the NIH, I spent eight years there, and precision medicine was launched at that time and there was a lot of heightened interest in big data and how big data could help really revolutionize medicine and healthcare. And I got the opportunity to go, you know, there was an opportunity where they were looking for physicians or deputy chief health officer at IBM. And so I went to IBM, Watson Health was being formed as a new business unit, and I was one of the first deputy chief health officers really to lead the data and the science evidence. And that's where I realized, you know, we could really, you know, the technology in healthcare, there's been a lot of data that I think we are not really using or optimizing to make sure that we're taking care of our patients. >> Yeah. >> And so that's how I got into data science and making sure that we are building technologies using the right data to advance health equity. >> Right, so talk a little bit about health equity? We mentioned you're with Marti Health. You've been there for a short time, but Marti Health is also quite new, just a few months old. Digital health equity, talk about what Marti's vision is, what its mission is to really help start dialing down a lot of the disparities that you talked about that you see every day? >> Yeah, so, I've been so privileged. I recently joined Marti Health as their Chief Medical Officer, Chief Health Officer. It's a startup that is actually trying to promote a value-based care, also promote patient-centered care for patients that are experiencing a social disadvantage as a result of their race, ethnicity. And were starting to look at and focused on patients that have sickle cell disease. >> Okay. >> Because we realize that that's a population, you know, we know sickle cell disease is a genetic disorder. It impacts a lot of patients that are from areas that are endemic malaria. >> Yeah. >> Yeah. >> And most of our patients here are African American, and when, you know, they suffer so much stigma and discrimination in the healthcare system and complications from their sickle cell disease. And so what we want to do that we feel like sickle cell is a litmus test for disparities. And we want to make sure that they get in patient-centered care. We want to make sure that we are leveraging data and the research that we've done in sickle cell disease, especially on the continent of Africa. >> Okay. >> And provide, promote better quality care for the patients. >> That's so inspiring. You know, we've heard so many great stories today. Were you able to watch the keynote this morning? >> Yes. >> I loved how it always inspires me. This conference is always, we were talking about this all day, how you walk in the Arrillaga Alumni Center here where this event is held every year, the vibe is powerful, it's positive, it's encouraging. >> Inspiring, yeah. >> Absolutely. >> Inspiring. >> Yeah, yeah. >> It's a movement, WIDS is a movement. They've created this community where you feel, I don't know, kind of superhuman. "Why can't I do this? Why not me?" We heard some great stories this morning about data science in terms of applications. You have a great application in terms of health equity. We heard about it in police violence. >> Yes. >> Which is an epidemic in this country for sure, as we know. This happens too often. How can we use data and data science as a facilitator of learning more about that, so that that can stop? I think that's so important for more people to understand all of the broad applications of data science, whether it's police violence or climate change or drug discovery or health inequities. >> Irene: Yeah. >> The potential, I think we're scratching the surface. But the potential is massive. >> Tracy: It is. >> And this is an event that really helps women and underrepresented minorities think, "Why not me? Why can't I get involved in that?" >> Yeah, and I always say we use data to make an make a lot of decisions. And especially in healthcare, we want to be careful about how we are using data because this is impacting the health and outcomes of our patients. And so science evidence is really critical, you know? We want to make sure that data is inclusive and we have quality data. >> Yes. >> And it's transparent. Our clinical trials, I always say are not always diverse and inclusive. And if that's going to form the evidence base or data points then we're doing more harm than good for our patients. And so data science, it's huge. I mean, we need a robust, responsible, trustworthy data science agenda. >> "Trust" you just brought up "trust." >> Yeah. >> I did. >> When we talk about data, we can't not talk about security and privacy and ethics but trust is table stakes. We have to be able to evaluate the data and trust in it. >> Exactly. >> And what it says and the story that can be told from it. So that trust factor is, I think, foundational to data science. >> We all see what happened with Covid, right? I mean, when the pandemic came out- >> Absolutely. >> Everyone wanted information. We wanted data, we wanted data we could trust. There was a lot of hesitancy even with the vaccine. >> Yeah. >> Right? And so public health, I mean, like you said, we had to do a lot of work making sure that the right information from the right data was being translated or conveyed to the communities. And so you are totally right. I mean, data and good information, relevant data is always key. >> Well- >> Is there any- Oh, sorry. >> Go ahead. >> Is there anything Marti Health is doing in like ensuring that you guys get the right data that you can put trust in it? >> Yes, absolutely. And so this is where we are, you know, part of it would be getting data, real world evidence data for patients who are being seen in the healthcare system with sickle cell disease, so that we can personalize the data to those patients and provide them with the right treatment, the right intervention that they need. And so part of it would be doing predictive modeling on some of the data, risk, stratifying risk, who in the sickle cell patient population is at risk of progressing. Or getting, you know, they all often get crisis, vaso-occlusive crisis because the cells, you know, the blood cell sickles and you want to avoid those chest crisis. And so part of what we'll be doing is, you know, using predictive modeling to target those at risk of the disease progressing, so that we can put in preventive measures. It's all about prevention. It's all about making sure that they're not being, you know, going to the hospital or the emergency room where sometimes they end up, you know, in pain and wanting pain medicine. And so. >> Do you see AI as being a critical piece in the transformation of healthcare, especially where inequities are concerned? >> Absolutely, and and when you say AI, I think it's responsible AI. >> Yes. >> And making sure that it's- >> Tracy: That's such a good point. >> Yeah. >> Very. >> With the right data, with relevant data, it's definitely key. I think there is so much data points that healthcare has, you know, in the healthcare space there's fiscal data, biological data, there's environmental data and we are not using it to the full capacity and full potential. >> Tracy: Yeah. >> And I think AI can do that if we do it carefully, and like I said, responsibly. >> That's a key word. You talked about trust, responsibility. Where data science, AI is concerned- >> Yeah. >> It has to be not an afterthought, it has to be intentional. >> Tracy: Exactly. >> And there needs to be a lot of education around it. Most people think, "Oh, AI is just for the technology," you know? >> Yeah, right. >> Goop. >> Yes. >> But I think we're all part, I mean everyone needs to make sure that we are collecting the right amount of data. I mean, I think we all play a part, right? >> We do. >> We do. >> In making sure that we have responsible AI, we have, you know, good data, quality data. And the data sciences is a multi-disciplinary field, I think. >> It is, which is one of the things that's exciting about it is it is multi-disciplinary. >> Tracy: Exactly. >> And so many of the people that we've talked to in data science have these very non-linear paths to get there, and so I think they bring such diversity of thought and backgrounds and experiences and thoughts and voices. That helps train the AI models with data that's more inclusive. >> Irene: Yes. >> Dropping down the volume on the bias that we know is there. To be successful, it has to. >> Definitely, I totally agree. >> What are some of the things, as we wrap up here, that you're looking forward to accomplishing as part of Marti Health? Like, maybe what's on the roadmap that you can share with us for Marti as it approaches the the second half of its first year? >> Yes, it's all about promoting health equity. It's all about, I mean, there's so much, well, I would start with, you know, part of the healthcare transformation is making sure that we are promoting care that's based on value and not volume, care that's based on good health outcomes, quality health outcomes, and not just on, you know, the quantity. And so Marti Health is trying to promote that value-based care. We are envisioning a world in which everyone can live their full life potential. Have the best health outcomes, and provide that patient-centered precision care. >> And we all want that. We all want that. We expect that precision and that personalized experience in our consumer lives, why not in healthcare? Well, thank you, Irene, for joining us on the program today. >> Thank you. >> Talking about what you're doing to really help drive the volume up on health equity, and raise awareness for the fact that there's a lot of inequities in there we have to fix. We have a long way to go. >> We have, yes. >> Lisa: But people like you are making an impact and we appreciate you joining theCUBE today and sharing what you're doing, thank you. >> Thank you. >> Thank you- >> Thank you for having me here. >> Oh, our pleasure. For our guest and Tracy Zhang, this is Lisa Martin from WIDS 2023, the eighth Annual Women in Data Science Conference brought to you by theCUBE. Stick around, our show wrap will be in just a minute. Thanks for watching. (light upbeat music)
SUMMARY :
we're bringing you another one here. Thank you so much for this opportunity. So you have an MD and This is a brand new startup. I did the MPH and my medical and researchers at the NIH, and you thought "There's and built, you know, a hospital. and now it's a 350 bed hospital. And so he really inspired, you I did see firsthand, you know, to like all the problems you just said? And I got the opportunity to go, you know, that we are building that you see every day? It's a startup that is that that's a population, you know, and when, you know, they care for the patients. the keynote this morning? how you walk in the community where you feel, all of the broad But the potential is massive. Yeah, and I always say we use data And if that's going to form the We have to be able to evaluate and the story that can be told from it. We wanted data, we wanted And so you are totally right. Is there any- And so this is where we are, you know, Absolutely, and and when you say AI, that healthcare has, you know, And I think AI can do That's a key word. It has to be And there needs to be a I mean, I think we all play a part, right? we have, you know, good the things that's exciting And so many of the that we know is there. and not just on, you know, the quantity. and that personalized experience and raise awareness for the fact and we appreciate you brought to you by theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Irene | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Ghana | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Irene Dankwa-Mullan | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
NIH | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
National Institute of Health | ORGANIZATION | 0.99+ |
eight years | QUANTITY | 0.99+ |
Yale School of Public Health | ORGANIZATION | 0.99+ |
20 bed | QUANTITY | 0.99+ |
Marti Health | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Watson Health | ORGANIZATION | 0.99+ |
pandemic | EVENT | 0.99+ |
U.S. | LOCATION | 0.99+ |
first | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Marti | ORGANIZATION | 0.98+ |
Marti | PERSON | 0.97+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
second half | QUANTITY | 0.96+ |
African American | OTHER | 0.94+ |
theCUBE | ORGANIZATION | 0.92+ |
Johns Hopkins | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Stanford University | ORGANIZATION | 0.91+ |
350 bed hospital | QUANTITY | 0.9+ |
WiDS 2023 | EVENT | 0.88+ |
malaria | OTHER | 0.84+ |
Africa | LOCATION | 0.83+ |
Dartmouth | ORGANIZATION | 0.82+ |
Women in Data Science 2023 | TITLE | 0.82+ |
Covid | PERSON | 0.8+ |
Arrillaga Alumni Center | LOCATION | 0.79+ |
every year | QUANTITY | 0.75+ |
WIDS | ORGANIZATION | 0.69+ |
Bethesda, Maryland | LOCATION | 0.69+ |
Dr. | PERSON | 0.63+ |
2023 | EVENT | 0.57+ |
Kelly Hoang, Gilead | WiDS 2023
(upbeat music) >> Welcome back to The Cubes coverage of WIDS 2023 the eighth Annual Women in Data Science Conference which is held at Stanford University. I'm your host, Lisa Martin. I'm really excited to be having some great co-hosts today. I've got Hannah Freytag with me, who is a data journalism master student at Stanford. We have yet another inspiring woman in technology to bring to you today. Kelly Hoang joins us, data scientist at Gilead. It's so great to have you, Kelly. >> Hi, thank you for having me today. I'm super excited to be here and share my journey with you guys. >> Let's talk about that journey. You recently got your PhD in information sciences, congratulations. >> Thank you. Yes, I just graduated, I completed my PhD in information sciences from University of Illinois Urbana-Champaign. And right now I moved to Bay Area and started my career as a data scientist at Gilead. >> And you're in better climate. Well, we do get snow here. >> Kelly: That's true. >> We proved that the last... And data science can show us all the climate change that's going on here. >> That's true. That's the topic of the data fund this year, right? To understand the changes in the climate. >> Yeah. Talk a little bit about your background. You were mentioning before we went live that you come from a whole family of STEM students. So you had that kind of in your DNA. >> Well, I consider myself maybe I was a lucky case. I did grew up in a family in the STEM environment. My dad actually was a professor in computer science. So I remember when I was at a very young age, I already see like datas, all of these computer science concepts. So grew up to be a data scientist is always something like in my mind. >> You aspired to be. >> Yes. >> I love that. >> So I consider myself in a lucky place in that way. But also, like during this journey to become a data scientist you need to navigate yourself too, right? Like you have this roots, like this foundation but then you still need to kind of like figure out yourself what is it? Is it really the career that you want to pursue? But I'm happy that I'm end up here today and where I am right now. >> Oh, we're happy to have you. >> Yeah. So you' re with Gilead now after you're completing your PhD. And were you always interested in the intersection of data science and health, or is that something you explored throughout your studies? >> Oh, that's an excellent question. So I did have background in computer science but I only really get into biomedical domain when I did my PhD at school. So my research during my PhD was natural language processing, NLP and machine learning and their applications in biomedical domains. And then when I graduated, I got my first job in Gilead Science. Is super, super close and super relevant to what my research at school. And at Gilead, I am working in the advanced analytics department, and our focus is to bring artificial intelligence and machine learning into supporting clinical decision making. And really the ultimate goal is how to use AI to accelerate the precision medicine. So yes, it's something very like... I'm very lucky to get the first job that which is very close to my research at school. >> That's outstanding. You know, when we talk about AI, we can't not talk about ethics, bias. >> Kelly: Right. >> We know there's (crosstalk) Yes. >> Kelly: In healthcare. >> Exactly. Exactly. Equities in healthcare, equities in so many things. Talk a little bit about what excites you about AI, what you're doing at Gilead to really influence... I mean this, we're talking about something that's influencing life and death situations. >> Kelly: Right. >> How are you using AI in a way that is really maximizing the opportunities that AI can bring and maximizing the value in the data, but helping to dial down some of the challenges that come with AI? >> Yep. So as you may know already with the digitalization of medical records, this is nowaday, we have a tremendous opportunities to fulfill the dream of precision medicine. And what I mean by precision medicines, means now the treatments for people can be really tailored to individual patients depending on their own like characteristic or demographic or whatever. And nature language processing and machine learning, and AI in general really play a key role in that innovation, right? Because like there's a vast amount of information of patients and patient journeys or patient treatment is conducted and recorded in text. So that's why our group was established. Actually our department, advanced analytic department in Gilead is pretty new. We established our department last year. >> Oh wow. >> But really our mission is to bring AI into this field because we see the opportunity now. We have a vast amount of data about patient about their treatments, how we can mine these data how we can understand and tailor the treatment to individuals. And give everyone better care. >> I love that you brought up precision medicine. You know, I always think, if I kind of abstract everything, technology, data, connectivity, we have this expectation in our consumer lives. We can get anything we want. Not only can we get anything we want but we expect whoever we're engaging with, whether it's Amazon or Uber or Netflix to know enough about me to get me that precise next step. I don't think about precision medicine but you bring up such a great point. We expect these tailored experiences in our personal lives. Why not expect that in medicine as well? And have a tailored treatment plan based on whatever you have, based on data, your genetics, and being able to use NLP, machine learning and AI to drive that is really exciting. >> Yeah. You recap it very well, but then you also bring up a good point about the challenges to bring AI into this field right? Definitely this is an emerging field, but also very challenging because we talk about human health. We are doing the work that have direct impact to human health. So everything need to be... Whatever model, machine learning model that you are building, developing you need to be precise. It need to be evaluated properly before like using as a product, apply into the real practice. So it's not like recommendation systems for shopping or anything like that. We're talking about our actual health. So yes, it's challenging that way. >> Yeah. With that, you already answered one of the next questions I had because like medical data and health data is very sensitive. And how you at Gilead, you know, try to protect this data to protect like the human beings, you know, who are the data in the end. >> The security aspect is critical. You bring up a great point about sensitive data. We think of healthcare as sensitive data. Or PII if you're doing a bank transaction. We have to be so careful with that. Where is security, data security, in your everyday work practices within data science? Is it... I imagine it's a fundamental piece. >> Yes, for sure. We at Gilead, for sure, in data science organization we have like intensive trainings for employees about data privacy and security, how you use the data. But then also at the same time, when we work directly with dataset, it's not that we have like direct information about patient at like very granular level. Everything is need to be kind of like anonymized at some points to protect patient privacy. So we do have rules, policies to follow to put that in place in our organization. >> Very much needed. So some of the conversations we heard, were you able to hear the keynote this morning? >> Yes. I did. I attended. Like I listened to all of them. >> Isn't it fantastic? >> Yes, yes. Especially hearing these women from different backgrounds, at different level of their professional life, sharing their journeys. It's really inspiring. >> And Hannah, and I've been talking about, a lot of those journeys look like this. >> I know >> You just kind of go... It's very... Yours is linear, but you're kind of the exception. >> Yeah, this is why I consider my case as I was lucky to grow up in STEM environment. But then again, back to my point at the beginning, sometimes you need to navigate yourself too. Like I did mention about, I did my pa... Sorry, my bachelor degree in Vietnam, in STEM and in computer science. And that time, there's only five girls in a class of 100 students. So I was not the smartest person in the room. And I kept my minority in that areas, right? So at some point I asked myself like, "Huh, I don't know. Is this really my careers." It seems that others, like male people or students, they did better than me. But then you kind of like, I always have this passion of datas. So you just like navigate yourself, keep pushing yourself over those journey. And like being where I am right now. >> And look what you've accomplished. >> Thank you. >> Yeah. That's very inspiring. And yeah, you mentioned how you were in the classroom and you were only one of the few women in the room. And what inspired or motivated you to keep going, even though sometimes you were at these points where you're like, "Okay, is this the right thing?" "Is this the right thing for me?" What motivated you to keep going? >> Well, I think personally for me, as a data scientist or for woman working in data science in general, I always try to find a good story from data. Like it's not, when you have a data set, well it's important for you to come up with methodologies, what are you going to do with the dataset? But I think it's even more important to kind of like getting the context of the dataset. Like think about it like what is the story behind this dataset? What is the thing that you can get out of it and what is the meaning behind? How can we use it to help use it in a useful way. To have in some certain use case. So I always have that like curiosity and encouragement in myself. Like every time someone handed me a data set, I always think about that. So it's helped me to like build up this kind of like passion for me. And then yeah. And then become a data scientist. >> So you had that internal drive. I think it's in your DNA as well. When you were one of five. You were 5% women in your computer science undergrad in Vietnam. Yet as Hannah was asking you, you found a lot of motivation from within. You embrace that, which is so key. When we look at some of the statistics, speaking of data, of women in technical roles. We've seen it hover around 25% the last few years, probably five to 10. I was reading some data from anitab.org over the weekend, and it shows that it's now, in 2022, the number of women in technical roles rose slightly, but it rose, 27.6%. So we're seeing the needle move slowly. But one of the challenges that still remains is attrition. Women who are leaving the role. You've got your PhD. You have a 10 month old, you've got more than one child. What would you advise to women who might be at that crossroads of not knowing should I continue my career in climbing the ladder, or do I just go be with my family or do something else? What's your advice to them in terms of staying the path? >> I think it's really down to that you need to follow your passion. Like in any kind of job, not only like in data science right? If you want to be a baker, or you want to be a chef, or you want to be a software engineer. It's really like you need to ask yourself is it something that you're really passionate about? Because if you really passionate about something, regardless how difficult it is, like regardless like you have so many kids to take care of, you have the whole family to take care of. You have this and that. You still can find your time to spend on it. So it's really like let yourself drive your own passion. Drive the way where you leading to. I guess that's my advice. >> Kind of like following your own North Star, right? Is what you're suggesting. >> Yeah. >> What role have mentors played in your career path, to where you are now? Have you had mentors on the way or people who inspired you? >> Well, I did. I certainly met quite a lot of women who inspired me during my journey. But right now, at this moment, one person, particular person that I just popped into my mind is my current manager. She's also data scientist. She's originally from Caribbean and then came to the US, did her PhDs too, and now led a group, all women. So believe it or not, I am in a group of all women working in data science. So she's really like someone inspire me a lot, like someone I look up to in this career. >> I love that. You went from being one of five females in a class of 100, to now having a PhD in information sciences, and being on an all female data science team. That's pretty cool. >> It's great. Yeah, it's great. And then you see how fascinating that, how things shift right? And now today we are here in a conference that all are women in data science. >> Yeah. >> It's extraordinary. >> So this year we're fortunate to have WIDS coincide this year with the actual International Women's Day, March 8th which is so exciting. Which is always around this time of year, but it's great to have it on the day. The theme of this International Women's Day this year is embrace equity. When you think of that theme, and your career path, and what you're doing now, and who inspires you, how can companies like Gilead benefit from embracing equity? What are your thoughts on that as a theme? >> So I feel like I'm very lucky to get my first job at Gilead. Not only because the work that we are doing here very close to my research at school, but also because of the working environment at Gilead. Inclusion actually is one of the five core values of Gilead. >> Nice. >> So by that, we means we try to create and creating a working environment that all of the differences are valued. Like regardless your background, your gender. So at Gilead, we have women at Gilead which is a global network of female employees, that help us to strengthen our inclusion culture, and also to influence our voices into the company cultural company policy and practice. So yeah, I'm very lucky to work in the environment nowadays. >> It's impressive to not only hear that you're on an all female data science team, but what Gilead is doing and the actions they're taking. It's one thing, we've talked about this Hannah, for companies, and regardless of industry, to say we're going to have 50% women in our workforce by 2030, 2035, 2040. It's a whole other ballgame for companies like Gilead to actually be putting pen to paper. To actually be creating a strategy that they're executing on. That's awesome. And it must feel good to be a part of a company who's really adapting its culture to be more inclusive, because there's so much value that comes from inclusivity, thought diversity, that ultimately will help Gilead produce better products and services. >> Yeah. Yes. Yeah. Actually this here is the first year Gilead is a sponsor of the WIDS Conference. And we are so excited to establish this relationship, and looking forward to like having more collaboration with WIDS in the future. >> Excellent. Kelly we've had such a pleasure having you on the program. Thank you for sharing your linear path. You are definitely a unicorn. We appreciate your insights and your advice to those who might be navigating similar situations. Thank you for being on theCUBE today. >> Thank you so much for having me. >> Oh, it was our pleasure. For our guests, and Hannah Freytag this is Lisa Martin from theCUBE. Coming to you from WIDS 2023, the eighth annual conference. Stick around. Our final guest joins us in just a minute.
SUMMARY :
in technology to bring to you today. and share my journey with you guys. You recently got your PhD And right now I moved to Bay Area And you're in better climate. We proved that the last... That's the topic of the So you had that kind of in your DNA. in the STEM environment. that you want to pursue? or is that something you and our focus is to bring we can't not talk about ethics, bias. what excites you about AI, really tailored to individual patients to bring AI into this field I love that you brought about the challenges to bring And how you at Gilead, you know, We have to be so careful with that. Everything is need to be So some of the conversations we heard, Like I listened to all of them. at different level of And Hannah, and I've kind of the exception. So you just like navigate yourself, And yeah, you mentioned how So it's helped me to like build up So you had that internal drive. I think it's really down to that you Kind of like following and then came to the US, five females in a class of 100, And then you see how fascinating that, but it's great to have it on the day. but also because of the So at Gilead, we have women at Gilead And it must feel good to be a part and looking forward to like Thank you for sharing your linear path. Coming to you from WIDS 2023,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kelly | PERSON | 0.99+ |
Kelly Hoang | PERSON | 0.99+ |
Hannah Freytag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Caribbean | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Vietnam | LOCATION | 0.99+ |
Gilead | ORGANIZATION | 0.99+ |
2030 | DATE | 0.99+ |
2035 | DATE | 0.99+ |
2022 | DATE | 0.99+ |
2040 | DATE | 0.99+ |
Bay Area | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
50% | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
5% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
WIDS | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
five girls | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
first job | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
100 students | QUANTITY | 0.99+ |
March 8th | DATE | 0.99+ |
more than one child | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
International Women's Day | EVENT | 0.98+ |
five core | QUANTITY | 0.98+ |
Gilead Science | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
one person | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
five females | QUANTITY | 0.97+ |
University of Illinois Urbana-Champaign | ORGANIZATION | 0.97+ |
10 month old | QUANTITY | 0.96+ |
North Star | ORGANIZATION | 0.96+ |
theCUBE | ORGANIZATION | 0.93+ |
first year | QUANTITY | 0.93+ |
The Cubes | ORGANIZATION | 0.93+ |
around 25% | QUANTITY | 0.91+ |
one thing | QUANTITY | 0.89+ |
WIDS 2023 | EVENT | 0.88+ |
WIDS | EVENT | 0.88+ |
this morning | DATE | 0.88+ |
anitab.org | OTHER | 0.86+ |
Gilead | PERSON | 0.86+ |
Stanford | ORGANIZATION | 0.85+ |
100 | QUANTITY | 0.79+ |
Stanford University | LOCATION | 0.79+ |
eighth annual conference | QUANTITY | 0.78+ |
TheCUBE Insights | WiDS 2023
(energetic music) >> Everyone, welcome back to theCUBE's coverage of WiDS 2023. This is the eighth annual Women in Data Science Conference. As you know, WiDS is not just a conference or an event, it's a movement. This is going to include over 100,000 people in the next year WiDS 2023 in 200-plus countries. It is such a powerful movement. If you've had a chance to be part of the Livestream or even be here in person with us at Stanford University, you know what I'm talking about. This is Lisa Martin. I have had the pleasure all day of working with two fantastic graduate students in Stanford's Data Journalism Master's Program. Hannah Freitag has been here. Tracy Zhang, ladies, it's been such a pleasure working with you today. >> Same wise. >> I want to ask you both what are, as we wrap the day, I'm so inspired, I feel like I could go build an airplane. >> Exactly. >> Probably can't. But WiDS is just the inspiration that comes from this event. When you walk in the front door, you can feel it. >> Mm-hmm. >> Tracy, talk a little bit about what some of the things are that you heard today that really inspired you. >> I think one of the keyword that's like in my mind right now is like finding a mentor. >> Yeah. >> And I think, like if I leave this conference if I leave the talks, the conversations with one thing is that I'm very positive that if I want to switch, say someday, from Journalism to being a Data Analyst, to being like in Data Science, I'm sure that there are great role models for me to look up to, and I'm sure there are like mentors who can guide me through the way. So, like that, I feel reassured for some reason. >> It's a good feeling, isn't it? What do you, Hannah, what about you? What's your takeaway so far of the day? >> Yeah, one of my key takeaways is that anything's possible. >> Mm-hmm. >> So, if you have your vision, you have the role model, someone you look up to, and even if you have like a different background, not in Data Science, Data Engineering, or Computer Science but you're like, "Wow, this is really inspiring. I would love to do that." As long as you love it, you're passionate about it, and you are willing to, you know, take this path even though it won't be easy. >> Yeah. >> Then you can achieve it, and as you said, Tracy, it's important to have mentors on the way there. >> Exactly. >> But as long as you speak up, you know, you raise your voice, you ask questions, and you're curious, you can make it. >> Yeah. >> And I think that's one of my key takeaways, and I was just so inspiring to hear like all these women speaking on stage, and also here in our conversations and learning about their, you know, career path and what they learned on their way. >> Yeah, you bring up curiosity, and I think that is such an important skill. >> Mm-hmm. >> You know, you could think of Data Science and think about all the hard skills that you need. >> Mm, like coding. >> But as some of our guests said today, you don't have to be a statistician or an engineer, or a developer to get into this. Data Science applies to every facet of every part of the world. >> Mm-hmm. >> Finances, marketing, retail, manufacturing, healthcare, you name it, Data Science has the power and the potential to unlock massive achievements. >> Exactly. >> It's like we're scratching the surface. >> Yeah. >> But that curiosity, I think, is a great skill to bring to anything that you do. >> Mm-hmm. >> And I think we... For the female leaders that we're on stage, and that we had a chance to talk to on theCUBE today, I think they all probably had that I think as a common denominator. >> Exactly. >> That curious mindset, and also something that I think as hard is the courage to raise your hand. I like this, I'm interested in this. I don't see anybody that looks like me. >> But that doesn't mean I shouldn't do it. >> Exactly. >> Exactly, in addition to the curiosity that all the women, you know, bring to the table is that, in addition to that, being optimistic, and even though we don't see gender equality or like general equality in companies yet, we make progress and we're optimistic about it, and we're not like negative and complaining the whole time. But you know, this positive attitude towards a trend that is going in the right direction, and even though there's still a lot to be done- >> Exactly. >> We're moving it that way. >> Right. >> Being optimistic about this. >> Yeah, exactly, like even if it means that it's hard. Even if it means you need to be your own role model it's still like worth a try. And I think they, like all of the great women speakers, all the female leaders, they all have that in them, like they have the courage to like raise their hand and be like, "I want to do this, and I'm going to make it." And they're role models right now, so- >> Absolutely, they have drive. >> They do. >> Right. They have that ambition to take something that's challenging and complicated, and help abstract end users from that. Like we were talking to Intuit. I use Intuit in my small business for financial management, and she was talking about how they can from a machine learning standpoint, pull all this data off of documents that you upload and make that, abstract that, all that complexity from the end user, make something that's painful taxes. >> Mm-hmm. >> Maybe slightly less painful. It's still painful when you have to go, "Do I have to write you a check again?" >> Yeah. (laughs) >> Okay. >> But talking about just all the different applications of Data Science in the world, I found that to be very inspiring and really eye-opening. >> Definitely. >> I hadn't thought about, you know, we talk about climate change all the time, especially here in California, but I never thought about Data Science as a facilitator of the experts being able to make sense of what's going on historically and in real-time, or the application of Data Science in police violence. We see far too many cases of police violence on the news. It's an epidemic that's a horrible problem. Data Science can be applied to that to help us learn from that, and hopefully, start moving the needle in the right direction. >> Absolutely. >> Exactly. >> And especially like one sentence from Guitry from the very beginnings I still have in my mind is then when she said that arguments, no, that data beats arguments. >> Yes. >> In a conversation that if you be like, okay, I have this data set and it can actually show you this or that, it's much more powerful than just like being, okay, this is my position or opinion on this. And I think in a world where increasing like misinformation, and sometimes, censorship as we heard in one of the talks, it's so important to have like data, reliable data, but also acknowledge, and we talked about it with one of our interviewees that there's spices in data and we also need to be aware of this, and how to, you know, move this forward and use Data Science for social good. >> Mm-hmm. >> Yeah, for social good. >> Yeah, definitely, I think they like data, and the question about, or like the problem-solving part about like the social issues, or like some just questions, they definitely go hand-in-hand. Like either of them standing alone won't be anything that's going to be having an impact, but combining them together, you have a data set that illustrate a point or like solves the problem. I think, yeah, that's definitely like where Data Set Science is headed to, and I'm glad to see all these great women like making their impact and combining those two aspects together. >> It was interesting in the keynote this morning. We were all there when Margot Gerritsen who's one of the founders of WiDS, and Margot's been on the program before and she's a huge supporter of what we do and vice versa. She asked the non-women in the room, "Those who don't identify as women, stand up," and there was a handful of men, and she said, "That's what it's like to be a female in technology." >> Oh, my God. >> And I thought that vision give me goosebumps. >> Powerful. (laughs) >> Very powerful. But she's right, and one of the things I think that thematically another common denominator that I think we heard, I want to get your opinions as well from our conversations today, is the importance of community. >> Mm-hmm. >> You know, I was mentioning this stuff from AnitaB.org that showed that in 2022, the percentage of females and technical roles is 27.6%. It's a little bit of an increase. It's been hovering around 25% for a while. But one of the things that's still a problem is attrition. It doubled last year. >> Right. >> And I was asking some of the guests, and we've all done that today, "How would you advise companies to start moving the needle down on attrition?" >> Mm-hmm. >> And I think the common theme was network, community. >> Exactly. >> It takes a village like this. >> Mm-hmm. >> So you can see what you can be to help start moving that needle and that's, I think, what underscores the value of what WiDS delivers, and what we're able to showcase on theCUBE. >> Yeah, absolutely. >> I think it's very important to like if you're like a woman in tech to be able to know that there's someone for you, that there's a whole community you can rely on, and that like you are, you have the same mindset, you're working towards the same goal. And it's just reassuring and like it feels very nice and warm to have all these women for you. >> Lisa: It's definitely a warm fuzzy, isn't it? >> Yeah, and both the community within the workplace but also outside, like a network of family and friends who support you to- >> Yes. >> To pursue your career goals. I think that was also a common theme we heard that it's, yeah, necessary to both have, you know your community within your company or organization you're working but also outside. >> Definitely, I think that's also like how, why, the reason why we feel like this in like at WiDS, like I think we all feel very positive right now. So, yeah, I think that's like the power of the connection and the community, yeah. >> And the nice thing is this is like I said, WiDS is a movement. >> Yes. >> This is global. >> Mm-hmm. >> We've had some WiDS ambassadors on the program who started WiDS and Tel Aviv, for example, in their small communities. Or in Singapore and Mumbai that are bringing it here and becoming more of a visible part of the community. >> Tracy: Right. >> I loved seeing all the young faces when we walked in the keynote this morning. You know, we come here from a journalistic perspective. You guys are Journalism students. But seeing all the potential in the faces in that room just seeing, and hearing stories, and starting to make tangible connections between Facebook and data, and the end user and the perspectives, and the privacy and the responsibility of AI is all... They're all positive messages that need to be reinforced, and we need to have more platforms like this to be able to not just raise awareness, but sustain it. >> Exactly. >> Right. It's about the long-term, it's about how do we dial down that attrition, what can we do? What can we do? How can we help? >> Mm-hmm. >> Both awareness, but also giving women like a place where they can connect, you know, also outside of conferences. Okay, how do we make this like a long-term thing? So, I think WiDS is a great way to, you know, encourage this connectivity and these women teaming up. >> Yeah, (chuckles) girls help girls. >> Yeah. (laughs) >> It's true. There's a lot of organizations out there, girls who Code, Girls Inc., et cetera, that are all aimed at helping women kind of find their, I think, find their voice. >> Exactly. >> And find that curiosity. >> Yeah. Unlock that somewhere back there. Get some courage- >> Mm-hmm. >> To raise your hand and say, "I think I want to do this," or "I have a question. You explained something and I didn't understand it." Like, that's the advice I would always give to my younger self is never be afraid to raise your hand in a meeting. >> Mm-hmm. >> I guarantee you half the people weren't listening or, and the other half may not have understood what was being talked about. >> Exactly. >> So, raise your hand, there goes Margot Gerritsen, the founder of WiDS, hey, Margot. >> Hi. >> Keep alumni as you know, raise your hand, ask the question, there's no question that's stupid. >> Mm-hmm. >> And I promise you, if you just take that chance once it will open up so many doors, you won't even know which door to go in because there's so many that are opening. >> And if you have a question, there's at least one more person in the room who has the exact same question. >> Exact same question. >> Yeah, we'll definitely keep that in mind as students- >> Well, I'm curious how Data Journalism, what you heard today, Tracy, we'll start with you, and then, Hannah, to you. >> Mm-hmm. How has it influenced how you approach data-driven, and storytelling? Has it inspired you? I imagine it has, or has it given you any new ideas for, as you round out your Master's Program in the next few months? >> I think like one keyword that I found really helpful from like all the conversations today, was problem-solving. >> Yeah. >> Because I think, like we talked a lot about in our program about how to put a face on data sets. How to put a face, put a name on a story that's like coming from like big data, a lot of numbers but you need to like narrow it down to like one person or one anecdote that represents a bigger problem. And I think essentially that's problem-solving. That's like there is a community, there is like say maybe even just one person who has, well, some problem about something, and then we're using data. We're, by giving them a voice, by portraying them in news and like representing them in the media, we're solving this problem somehow. We're at least trying to solve this problem, trying to make some impact. And I think that's like what Data Science is about, is problem-solving, and, yeah, I think I heard a lot from today's conversation, also today's speakers. So, yeah, I think that's like something we should also think about as Journalists when we do pitches or like what kind of problem are we solving? >> I love that. >> Or like kind of what community are we trying to make an impact in? >> Yes. >> Absolutely. Yeah, I think one of the main learnings for me that I want to apply like to my career in Data Journalism is that I don't shy away from complexity because like Data Science is oftentimes very complex. >> Complex. >> And also data, you're using for your stories is complex. >> Mm-hmm. >> So, how can we, on the one hand, reduce complexity in a way that we make it accessible for broader audience? 'Cause, we don't want to be this like tech bubble talking in data jargon, we want to, you know, make it accessible for a broader audience. >> Yeah. >> I think that's like my purpose as a Data Journalist. But at the same time, don't reduce complexity when it's needed, you know, and be open to dive into new topics, and data sets and circling back to this of like raising your hand and asking questions if you don't understand like a certain part. >> Yeah. >> So, that's definitely a main learning from this conference. >> Definitely. >> That like, people are willing to talk to you and explain complex topics, and this will definitely facilitate your work as a Data Journalist. >> Mm-hmm. >> So, that inspired me. >> Well, I can't wait to see where you guys go from here. I've loved co-hosting with you today, thank you. >> Thank you. >> For joining me at our conference. >> Wasn't it fun? >> Thank you. >> It's a great event. It's, we, I think we've all been very inspired and I'm going to leave here probably floating above the ground a few inches, high on the inspiration of what this community can deliver, isn't that great? >> It feels great, I don't know, I just feel great. >> Me too. (laughs) >> So much good energy, positive energy, we love it. >> Yeah, so we want to thank all the organizers of WiDS, Judy Logan, Margot Gerritsen in particular. We also want to thank John Furrier who is here. And if you know Johnny, know he gets FOMO when he is not hosting. But John and Dave Vellante are such great supporters of women in technology, women in technical roles. We wouldn't be here without them. So, shout out to my bosses. Thank you for giving me the keys to theCube at this event. I know it's painful sometimes, but we hope that we brought you great stories all day. We hope we inspired you with the females and the one male that we had on the program today in terms of raise your hand, ask a question, be curious, don't be afraid to pursue what you're interested in. That's my soapbox moment for now. So, for my co-host, I'm Lisa Martin, we want to thank you so much for watching our program today. You can watch all of this on-demand on thecube.net. You'll find write-ups on siliconeangle.com, and, of course, YouTube. Thanks, everyone, stay safe and we'll see you next time. (energetic music)
SUMMARY :
I have had the pleasure all day of working I want to ask you both But WiDS is just the inspiration that you heard today I think one of the keyword if I leave the talks, is that anything's possible. and even if you have like mentors on the way there. you know, you raise your And I think that's one Yeah, you bring up curiosity, the hard skills that you need. of the world. and the potential to unlock bring to anything that you do. and that we had a chance to I don't see anybody that looks like me. But that doesn't all the women, you know, of the great women speakers, documents that you upload "Do I have to write you a check again?" I found that to be very of the experts being able to make sense from the very beginnings and how to, you know, move this and the question about, or of the founders of WiDS, and And I thought (laughs) of the things I think But one of the things that's And I think the common like this. So you can see what you and that like you are, to both have, you know and the community, yeah. And the nice thing and becoming more of a and the privacy and the It's about the long-term, great way to, you know, et cetera, that are all aimed Unlock that somewhere back there. Like, that's the advice and the other half may not have understood the founder of WiDS, hey, Margot. ask the question, there's if you just take that And if you have a question, and then, Hannah, to you. as you round out your Master's Program from like all the conversations of numbers but you need that I want to apply like to And also data, you're using you know, make it accessible But at the same time, a main learning from this conference. people are willing to talk to you with you today, thank you. at our conference. and I'm going to leave know, I just feel great. (laughs) positive energy, we love it. that we brought you great stories all day.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Johnny | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
Singapore | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Judy Logan | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
2022 | DATE | 0.99+ |
Code | ORGANIZATION | 0.99+ |
Mumbai | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
siliconeangle.com | OTHER | 0.99+ |
WiDS | ORGANIZATION | 0.99+ |
two aspects | QUANTITY | 0.99+ |
Guitry | PERSON | 0.98+ |
both | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
one | QUANTITY | 0.98+ |
thecube.net | OTHER | 0.98+ |
Both | QUANTITY | 0.98+ |
over 100,000 people | QUANTITY | 0.98+ |
WiDS 2023 | EVENT | 0.98+ |
one keyword | QUANTITY | 0.98+ |
next year | DATE | 0.98+ |
200-plus countries | QUANTITY | 0.98+ |
one sentence | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.97+ |
Girls Inc. | ORGANIZATION | 0.97+ |
YouTube | ORGANIZATION | 0.96+ |
one person | QUANTITY | 0.95+ |
two fantastic graduate students | QUANTITY | 0.95+ |
Stanford University | ORGANIZATION | 0.94+ |
Women in Data Science Conference | EVENT | 0.94+ |
around 25% | QUANTITY | 0.93+ |
Stanford | ORGANIZATION | 0.93+ |
this morning | DATE | 0.92+ |
theCUBE | ORGANIZATION | 0.88+ |
half the people | QUANTITY | 0.87+ |
Data Journalism Master's Program | TITLE | 0.86+ |
one thing | QUANTITY | 0.85+ |
eighth annual | QUANTITY | 0.83+ |
at least one more person | QUANTITY | 0.8+ |
next few months | DATE | 0.78+ |
half | QUANTITY | 0.74+ |
one anecdote | QUANTITY | 0.73+ |
AnitaB.org | OTHER | 0.71+ |
key takeaways | QUANTITY | 0.71+ |
TheCUBE | ORGANIZATION | 0.71+ |
Gabriela de Queiroz, Microsoft | WiDS 2023
(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)
SUMMARY :
but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy Yuan | PERSON | 0.99+ |
Megan Smith | PERSON | 0.99+ |
Gabriela de Queiroz | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Gabriela | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Brazil | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
2012 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Obama | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
27.6 | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
15 languages | QUANTITY | 0.99+ |
R Ladies | ORGANIZATION | 0.99+ |
two tutorials | QUANTITY | 0.99+ |
Anitab | ORGANIZATION | 0.99+ |
10 people | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
55 plus countries | QUANTITY | 0.99+ |
first part | QUANTITY | 0.99+ |
more than 200 cities | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
nine | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
WIDS 23 | EVENT | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
CUBE | ORGANIZATION | 0.97+ |
Stanford | LOCATION | 0.97+ |
Women in Data Science | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Disneyland | LOCATION | 0.96+ |
English | OTHER | 0.96+ |
one mentor | QUANTITY | 0.96+ |
Women in Data Science Conference | EVENT | 0.96+ |
once a year | QUANTITY | 0.95+ |
WIDS | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Meetup.com | ORGANIZATION | 0.91+ |
ORGANIZATION | 0.9+ | |
Hadoop | TITLE | 0.89+ |
WiDS 2023 | EVENT | 0.88+ |
Anitab.org | ORGANIZATION | 0.87+ |
ChatJTP | TITLE | 0.86+ |
One | QUANTITY | 0.86+ |
one day | QUANTITY | 0.85+ |
ChatGPT | TITLE | 0.84+ |
pandemic | EVENT | 0.81+ |
Fast Company | ORGANIZATION | 0.78+ |
CTO | PERSON | 0.76+ |
Open | ORGANIZATION | 0.76+ |
Shir Meir Lador, Intuit | WiDS 2023
(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.
SUMMARY :
Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hannah Freitag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Israel | LOCATION | 0.99+ |
Bangalore | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Margaret | PERSON | 0.99+ |
Shir Meir Lador | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Bay Area | LOCATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Shir | PERSON | 0.99+ |
20 submission | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Tracy | PERSON | 0.99+ |
2030 | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
35% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
2015 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
sixth conference | QUANTITY | 0.99+ |
Intuits | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
OpenAI | ORGANIZATION | 0.99+ |
This year | DATE | 0.99+ |
Stanford | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
2018 | DATE | 0.98+ |
over 200 submissions | QUANTITY | 0.98+ |
Eighth Annual Women In Data Science | EVENT | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
TurboTax | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
over 50% | QUANTITY | 0.98+ |
over 35% | QUANTITY | 0.97+ |
five and a half years ago back | DATE | 0.97+ |
Stanford University | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
Netflix | ORGANIZATION | 0.96+ |
one woman | QUANTITY | 0.96+ |
Mobile World Congress | EVENT | 0.94+ |
one thing | QUANTITY | 0.94+ |
AnitaB.org | ORGANIZATION | 0.93+ |
25% | QUANTITY | 0.92+ |
PyData Meetups | EVENT | 0.9+ |
Rhonda Crate, Boeing | WiDS 2023
(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)
SUMMARY :
Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy | PERSON | 0.99+ |
Nairanjana Dasgupta | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Rhonda | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Rhonda Crate | PERSON | 0.99+ |
Susan Doniz | PERSON | 0.99+ |
Susan | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
WSU College of Arts and Sciences | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Iran | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
11 credits | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
last year | DATE | 0.99+ |
51% | QUANTITY | 0.99+ |
Washington State University | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Ahmad Yaghoobi | PERSON | 0.99+ |
200 different events | QUANTITY | 0.99+ |
Carly Fiorina | PERSON | 0.99+ |
60 plus countries | QUANTITY | 0.99+ |
1980s | DATE | 0.99+ |
US | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
100,000 plus people | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
'22 | DATE | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
two separate programs | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
Global Diversity Report | TITLE | 0.98+ |
this year | DATE | 0.98+ |
Myriam Fayad & Alexandre Lapene, TotalEnergies | WiDS 2023
(upbeat music) >> Hey, girls and guys. Welcome back to theCUBE. We are live at Stanford University, covering the 8th Annual Women in Data Science Conference. One of my favorite events. Lisa Martin here. Got a couple of guests from Total Energies. We're going to be talking all things data science, and I think you're going to find this pretty interesting and inspirational. Please welcome Alexandre Lapene, Tech Advisor Data Science at Total Energy. It's great to have you. >> Thank you. >> And Myriam Fayad is here as well, product and value manager at Total Energies. Great to have you guys on theCUBE today. Thank you for your time. >> Thank you for - >> Thank you for receiving us. >> Give the audience, Alexandre, we'll start with you, a little bit about Total Energies, so they understand the industry, and what it is that you guys are doing. >> Yeah, sure, sure. So Total Energies, is a former Total, so we changed name two years ago. So we are a multi-energy company now, working over 130 countries in the world, and more than 100,000 employees. >> Lisa: Oh, wow, big ... >> So we're a quite big company, and if you look at our new logo, you will see there are like seven colors. That's the seven energy that we basically that our business. So you will see the red for the oil, the blue for the gas, because we still have, I mean, a lot of oil and gas, but you will see other color, like blue for hydrogen. >> Lisa: Okay. >> Green for gas, for biogas. >> Lisa: Yeah. >> And a lot of other solar and wind. So we're definitely multi-energy company now. >> Excellent, and you're both from Paris? I'm jealous, I was supposed to go. I'm not going to be there next month. Myriam, talk a little bit about yourself. I'd love to know a little bit about your role. You're also a WiDS ambassador this year. >> Myriam: Yes. >> Lisa: Which is outstanding, but give us a little bit of your background. >> Yes, so today I'm a product manager at the Total Energies' Digital Factory. And at the Digital Factory, our role is to develop digital solutions for all of the businesses of Total Energies. And as a background, I did engineering school. So, and before that I, I would say, I wasn't really aware of, I had never asked myself if being a woman could stop me from being, from doing what I want to do in the professional career. But when I started my engineering school, I started seeing that women are becoming, I would say, increasingly rare in the environment >> Lisa: Yes. >> that, where I was evolving. >> Lisa: Yes. >> So that's why I was, I started to think about, about such initiatives. And then when I started working in the tech field, that conferred me that women are really rare in the tech field and data science field. So, and at Total Energies, I met ambassadors of, of the WiDS initiatives. And that's how I, I decided to be a WiDS Ambassador, too. So our role is to organize events locally in the countries where we work to raise awareness about the importance of having women in the tech and data fields. And also to talk about the WiDS initiative more globally. >> One of my favorite things about WiDS is it's this global movement, it started back in 2015. theCUBE has been covering it since then. I think I've been covering it for theCUBE since 2017. It's always a great day full of really positive messages. One of the things that we talk a lot about when we're focusing on the Q1 Women in Tech, or women in technical roles is you can't be what you can't see. We need to be able to see these role models, but also it, we're not just talking about women, we're talking about underrepresented minorities, we're talking about men like you, Alexander. Talk to us a little bit about what your thoughts are about being at a Women and Data Science Conference and your sponsorship, I'm sure, of many women in Total, and other industries that appreciate having you as a guide. >> Yeah, yeah, sure. First I'm very happy because I'm back to Stanford. So I did my PhD, postdoc, sorry, with Margot, I mean, back in 20, in 2010, so like last decade. >> Lisa: Yeah, yep. >> I'm a film mechanics person, so I didn't start as data scientist, but yeah, WiDS is always, I mean, this great event as you describe it, I mean, to see, I mean it's growing every year. I mean, it's fantastic. And it's very, I mean, I mean, it's always also good as a man, I mean, to, to be in the, in the situation of most of the women in data science conferences. And when Margo, she asked at the beginning of the conference, "Okay, how many men do we have? Okay, can you stand up?" >> Lisa: Yes. I saw that >> It was very interesting because - >> Lisa: I could count on one hand. >> What, like 10 or ... >> Lisa: Yeah. >> Maximum. >> Lisa: Yeah. >> And, and I mean, you feel that, I mean, I mean you could feel what what it is to to be a woman in the field and - >> Lisa: Absolutely. >> Alexandre: That's ... >> And you, sounds like you experienced it. I experienced the same thing. But one of the things that fascinates me about data science is all of the different real world problems it's helping to solve. Like, I keep saying this, we're, we're in California, I'm a native Californian, and we've been in an extreme drought for years. Well, we're getting a ton of rain and snow this year. Climate change. >> Guests: Yeah. We're not used to driving in the rain. We are not very good at it either. But the, just thinking about data science as a facilitator of its understanding climate change better; to be able to make better decisions, predictions, drive better outcomes, or things like, police violence or healthcare inequities. I think the power of data science to help unlock a lot of the unknown is so great. And, and we need that thought diversity. Miriam, you're talking about being in engineering. Talk to me a little bit about what projects interest you with respect to data science, and how you are involved in really creating more diversity and thought. >> Hmm. In fact, at Total Energies in addition to being an energy company we're also a data company in the sense that we produce a lot of data in our activities. For example with the sensors on the fuel on the platforms. >> Lisa: Yes. >> Or on the wind turbines, solar panels and even data related to our clients. So what, what is really exciting about being, working in the data science field at Total Energies is that we really feel the impact of of the project that we're working on. And we really work with the business to understand their problems. >> Lisa: Yeah. >> Or their issues and try to translate it to a technical problem and to solve it with the data that we have. So that's really exciting, to feel the impact of the projects we're working on. So, to take an example, maybe, we know that one of the challenges of the energy transition is the storage of of energy coming from renewable power. >> Yes. >> So I'm working currently on a project to improve the process of creating larger batteries that will help store this energy, by collecting the data, and helping the business to improve the process of creating these batteries. To make it more reliable, and with a better quality. So this is a really interesting project we're working on. >> Amazing, amazing project. And, you know, it's, it's fun I think to think of all of the different people, communities, countries, that are impacted by what you're doing. Everyone, everyone knows about data. Sometimes we think about it as we're paying we're always paying for a lot of data on our phone or "data rates may apply" but we may not be thinking about all of the real world impact that data science is making in our lives. We have this expectation in our personal lives that we're connected 24/7. >> Myriam: Yeah. >> I can get whatever I want from my phone wherever I am in the world. And that's all data driven. And we expect that if I'm dealing with Total Energies, or a retailer, or a car dealer that they're going to have the data, the data to have a personal conversation, conversation with me. We have this expectation. I don't think a lot of people that aren't in data science or technology really realize the impact of data all around their lives. Alexander, talk about some of the interesting data science projects that you're working on. >> There's one that I'm working right now, so I stake advisor. I mean, I'm not the one directly working on it. >> Lisa: Okay. >> But we have, you know, we, we are from the digital factory where we, we make digital products. >> Lisa: Okay. >> And we have different squads. I mean, it's a group of different people with different skills. And one of, one of the, this squad, they're, they're working on the on, on the project that is about safety. We have a lot of site, work site on over the world where we deploy solar panels on on parkings, on, on buildings everywhere. >> Lisa: Okay. Yeah. >> And there's, I mean, a huge, I mean, but I mean, we, we have a lot of, of worker and in term of safety we want to make sure that the, they work safely and, and we want to prevent accidents. So what we, what we do is we, we develop some computer vision approach to help them at improving, you know, the, the, the way they work. I mean the, the basic things is, is detecting, detecting some equipment like the, the the mean the, the vest and so on. But we, we, we, we are working, we're working to really extend that to more concrete recommendation. And that's one a very exciting project. >> Lisa: Yeah. >> Because it's very concrete. >> Yeah. >> And also, I, I'm coming from the R&D of the company and that's one, that's one of this project that started in R&D and is now into the Digital Factory. And it will become a real product deployed over the world on, on our assets. So that's very great. >> The influence and the impact that data can have on every business always is something that, we could talk about that for a very long time. >> Yeah. >> But one of the things I want to address is there, I'm not sure if you're familiar with AnitaB.org the Grace Hopper Institute? It's here in the States and they do this great event every year. It's very pro-women in technology and technical roles. They do a lot of, of survey of, of studies. So they have data demonstrating where are we with respect to women in technical roles. And we've been talking about it for years. It's been, for a while hovering around 25% of technical roles are held by women. I noticed in the AnitaB.org research findings from 2022, It's up to 27.6% I believe. So we're seeing those numbers slowly go up. But one of the things that's a challenge is attrition; of women getting in the roles and then leaving. Miryam, as a woman in, in technology. What inspires you to continue doing what you're doing and to elevate your career in data science? >> What motivates me, is that data science, we really have to look at it as a mean to solve a problem and not a, a fine, a goal in itself. So the fact that we can apply data science to so many fields and so many different projects. So here, for example we took examples of more industrial, maybe, applications. But for example, recently I worked on, on a study, on a data science study to understand what to, to analyze Google reviews of our clients on the service stations and to see what are the the topics that, that are really important to them. So we really have a, a large range of topics, and a diversity of topics that are really interesting, so. >> And that's so important, the diversity of topics alone. There's, I think we're just scratching the surface. We're just at the very beginning of what data science can empower for our daily lives. For businesses, small businesses, large businesses. I'd love to get your perspective as our only male on the show today, Alexandre, you have that elite title. The theme of International Women's Day this year which is today, March 8th, is "Embrace equity." >> Alexandre: Yes. >> Lisa: What is that, when you hear that theme as as a male in technology, as a male in the, in a role where you can actually elevate women and really bring in that thought diversity, what is embracing equity, what does it look like to you? >> To me, it, it's really, I mean, because we, we always talk about how we can, you know, I mean improve, but actually we are fixing a problem, an issue. I mean, it's such a reality. I mean, and the, the reality and and I mean, and force in, in the company. And that's, I think in Total Energy, we, we still have, I mean things, I mean, we, we haven't reached our objective but we're working hard and especially at the Digital Factory to, to, to improve on that. And for example, we have 40% of our women in tech. >> Lisa: 40? >> 40% of our tech people that are women. >> Lisa: Wow, that's fantastic! >> Yeah. That's, that's ... >> You're way ahead of, of the global average. >> Alexandre: Yeah. Yeah. >> That outstanding. >> We're quite proud of that. >> You should be. >> But we, we still, we still know that we, we have at least 10% >> Lisa: Yes. because it's not 50. The target is, the target is to 50 or more. And, and, but I want to insist on the fact that we have, we are correcting an issue. We are fixing an issue. We're not trying to improve something. I mean, that, that's important to have that in mind. >> Lisa: It is. Absolutely. >> Yeah. >> Miryam, I'd love to get your advice to your younger self, before you studied engineering. Obviously you had an interest when you were younger. What advice would you give to young Miriam now, looking back at what you've accomplished and being one of our female, visible females, in a technical role? What do you, what would you say to your younger self? >> Maybe I would say to continue as I started. So as I was saying at the beginning of the interview, when I was at high school, I have never felt like being a woman could stop me from doing anything. >> Lisa: Yeah. Yeah. >> So maybe to continue thinking this way, and yeah. And to, to stay here for, to, to continue this way. Yeah. >> Lisa: That's excellent. Sounds like you have the confidence. >> Mm. Yeah. >> And that's something that, that a lot of people ... I struggled with it when I was younger, have the confidence, "Can I do this?" >> Alexandre: Yeah. >> "Should I do this?" >> Myriam: Yeah. >> And you kind of went, "Why not?" >> Myriam: Yes. >> Which is, that is such a great message to get out to our audience and to everybody else's. Just, "I'm interested in this. I find it fascinating. Why not me?" >> Myriam: Yeah. >> Right? >> Alexandre: Yeah, true. >> And by bringing out, I think, role models as we do here at the conference, it's a, it's a way to to help young girls to be inspired and yeah. >> Alexandre: Yeah. >> We need to have women in leadership positions that we can see, because there's a saying here that we say a lot in the States, which is: "You can't be what you can't see." >> Alexandre: Yeah, that's true. >> And so we need more women and, and men supporting women and underrepresented minorities. And the great thing about WiDS is it does just that. So we thank you so much for your involvement in WiDS, Ambassador, our only male on the program today, Alexander, we thank you. >> I'm very proud of it. >> Awesome to hear that Total Energies has about 40% of females in technical roles and you're on that path to 50% or more. We, we look forward to watching that journey and we thank you so much for joining us on the show today. >> Alexandre: Thank you. >> Myriam: Thank you. >> Lisa: All right. For my guests, I'm Lisa Martin. You're watching theCUBE Live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. We'll be back after a short break, so stick around. (upbeat music)
SUMMARY :
covering the 8th Annual Women Great to have you guys on theCUBE today. and what it is that you guys are doing. So we are a multi-energy company now, That's the seven energy that we basically And a lot of other solar and wind. I'm not going to be there next month. bit of your background. for all of the businesses of the WiDS initiatives. One of the things that we talk a lot about I'm back to Stanford. of most of the women in of the different real world problems And, and we need that thought diversity. in the sense that we produce a lot of the project that we're working on. the data that we have. and helping the business all of the real world impact have the data, the data to I mean, I'm not the one But we have, you know, we, on the project that is about safety. and in term of safety we and is now into the Digital Factory. The influence and the I noticed in the AnitaB.org So the fact that we can apply data science as our only male on the show today, and I mean, and force in, in the company. of the global average. on the fact that we have, Lisa: It is. Miryam, I'd love to get your beginning of the interview, So maybe to continue Sounds like you have the confidence. And that's something that, and to everybody else's. here at the conference, We need to have women So we thank you so much for and we thank you so much for of the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Miriam | PERSON | 0.99+ |
Myriam Fayad | PERSON | 0.99+ |
Alexander | PERSON | 0.99+ |
Alexandre | PERSON | 0.99+ |
Myriam | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Total Energies | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Miryam | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
Alexandre Lapene | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Paris | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
2015 | DATE | 0.99+ |
Grace Hopper Institute | ORGANIZATION | 0.99+ |
Total Energy | ORGANIZATION | 0.99+ |
40 | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
California | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
next month | DATE | 0.99+ |
Margot | PERSON | 0.99+ |
more than 100,000 employees | QUANTITY | 0.99+ |
two years ago | DATE | 0.99+ |
TotalEnergies | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
AnitaB.org | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
8th Annual Women in Data Science Conference | EVENT | 0.99+ |
International Women's Day | EVENT | 0.99+ |
Stanford University | ORGANIZATION | 0.98+ |
Total | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
over 130 countries | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
One | QUANTITY | 0.98+ |
seven colors | QUANTITY | 0.98+ |
Gayatree Ganu, Meta | WiDS 2023
(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.
SUMMARY :
in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Susan Wojcicki | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Hannah Freitag | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Gayatree | PERSON | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Tahoe | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Sheryl | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
two spouses | QUANTITY | 0.99+ |
Engagement Ecosystem | ORGANIZATION | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
last week | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
Mumbai, India | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
over 12 years | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
200 million businesses | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Women in Data Science 2023 | TITLE | 0.98+ |
ORGANIZATION | 0.98+ | |
Gayatree Ganu | PERSON | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
second month | QUANTITY | 0.97+ |
nadb.org | ORGANIZATION | 0.97+ |
sixth grade | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
'22 | DATE | 0.97+ |
Jacqueline Kuo, Dataiku | WiDS 2023
(upbeat music) >> Morning guys and girls, welcome back to theCUBE's live coverage of Women in Data Science WIDS 2023 live at Stanford University. Lisa Martin here with my co-host for this segment, Tracy Zhang. We're really excited to be talking with a great female rockstar. You're going to learn a lot from her next, Jacqueline Kuo, solutions engineer at Dataiku. Welcome, Jacqueline. Great to have you. >> Thank you so much. >> Thank for being here. >> I'm so excited to be here. >> So one of the things I have to start out with, 'cause my mom Kathy Dahlia is watching, she's a New Yorker. You are a born and raised New Yorker and I learned from my mom and others. If you're born in New York no matter how long you've moved away, you are a New Yorker. There's you guys have like a secret club. (group laughs) >> I am definitely very proud of being born and raised in New York. My family immigrated to New York, New Jersey from Taiwan. So very proud Taiwanese American as well. But I absolutely love New York and I can't imagine living anywhere else. >> Yeah, yeah. >> I love it. >> So you studied, I was doing some research on you you studied mechanical engineering at MIT. >> Yes. >> That's huge. And you discovered your passion for all things data-related. You worked at IBM as an analytics consultant. Talk to us a little bit about your career path. Were you always interested in engineering STEM-related subjects from the time you were a child? >> I feel like my interests were ranging in many different things and I ended up landing in engineering, 'cause I felt like I wanted to gain a toolkit like a toolset to make some sort of change with or use my career to make some sort of change in this world. And I landed on engineering and mechanical engineering specifically, because I felt like I got to, in my undergrad do a lot of hands-on projects, learn every part of the engineering and design process to build products which is super-transferable and transferable skills sort of is like the trend in my career so far. Where after undergrad I wanted to move back to New York and mechanical engineering jobs are kind of few and fall far in between in the city. And I ended up landing at IBM doing analytics consulting, because I wanted to understand how to use data. I knew that data was really powerful and I knew that working with it could allow me to tell better stories to influence people across different industries. And that's also how I kind of landed at Dataiku to my current role, because it really does allow me to work across different industries and work on different problems that are just interesting. >> Yeah, I like the way that, how you mentioned building a toolkit when doing your studies at school. Do you think a lot of skills are still very relevant to your job at Dataiku right now? >> I think that at the core of it is just problem solving and asking questions and continuing to be curious or trying to challenge what is is currently given to you. And I think in an engineering degree you get a lot of that. >> Yeah, I'm sure. >> But I think that we've actually seen that a lot in the panels today already, that you get that through all different types of work and research and that kind of thoughtfulness comes across in all different industries too. >> Talk a little bit about some of the challenges, that data science is solving, because every company these days, whether it's an enterprise in manufacturing or a small business in retail, everybody has to be data-driven, because the end user, the end customer, whoever that is whether it's a person, an individual, a company, a B2B, expects to have a personalized custom experience and that comes from data. But you have to be able to understand that data treated properly, responsibly. Talk about some of the interesting projects that you're doing at Dataiku or maybe some that you've done in the past that are really kind of transformative across things climate change or police violence, some of the things that data science really is impacting these days. >> Yeah, absolutely. I think that what I love about coming to these conferences is that you hear about those really impactful social impact projects that I think everybody who's in data science wants to be working on. And I think at Dataiku what's great is that we do have this program called Ikig.AI where we work with nonprofits and we support them in their data and analytics projects. And so, a project I worked on was with the Clean Water, oh my goodness, the Ocean Cleanup project, Ocean Cleanup organization, which was amazing, because it was sort of outside of my day-to-day and it allowed me to work with them and help them understand better where plastic is being aggregated across the world and where it appears, whether that's on beaches or in lakes and rivers. So using data to help them better understand that. I feel like from a day-to-day though, we, in terms of our customers, they're really looking at very basic problems with data. And I say basic, not to diminish it, but really just to kind of say that it's high impact, but basic problems around how do they forecast sales better? That's a really kind of, sort of basic problem, but it's actually super-complex and really impactful for people, for companies when it comes to forecasting how much headcount they need to have in the next year or how much inventory to have if they're retail. And all of those are going to, especially for smaller companies, make a huge impact on whether they make profit or not. And so, what's great about working at Dataiku is you get to work on these high-impact projects and oftentimes I think from my perspective, I work as a solutions engineer on the commercial team. So it's just, we work generally with smaller customers and sometimes talking to them, me talking to them is like their first introduction to what data science is and what they can do with that data. And sort of using our platform to show them what the possibilities are and help them build a strategy around how they can implement data in their day-to-day. >> What's the difference? You were a data scientist by title and function, now you're a solutions engineer. Talk about the ascendancy into that and also some of the things that you and Tracy will talk about as those transferable, those transportable skills that probably maybe you learned in engineering, you brought data science now you're bringing to solutions engineering. >> Yeah, absolutely. So data science, I love working with data. I love getting in the weeds of things and I love, oftentimes that means debugging things or looking line by line at your code and trying to make it better. I found that on in the data science role, while those things I really loved, sometimes it also meant that I didn't, couldn't see or didn't have visibility into the broader picture of well like, well why are we doing this project? And who is it impacting? And because oftentimes your day-to-day is very much in the weeds. And so, I moved into sales or solutions engineering at Dataiku to get that perspective, because what a sales engineer does is support the sale from a technical perspective. And so, you really truly understand well, what is the customer looking for and what is going to influence them to make a purchase? And how do you tell the story of the impact of data? Because oftentimes they need to quantify well, if I purchase a software like Dataiku then I'm able to build this project and make this X impact on the business. And that is really powerful. That's where the storytelling comes in and that I feel like a lot of what we've been hearing today about connecting data with people who can actually do something with that data. That's really the bridge that we as sales engineers are trying to connect in that sales process. >> It's all about connectivity, isn't it? >> Yeah, definitely. We were talking about this earlier that it's about making impact and it's about people who we are analyzing data is like influencing. And I saw that one of the keywords or one of the biggest thing at Dataiku is everyday AI, so I wanted to just ask, could you please talk more about how does that weave into the problem solving and then day-to-day making an impact process? >> Yes, so I started working on Dataiku around three years ago and I fell in love with the product itself. The product that we have is we allow for people with different backgrounds. If you're coming from a data analyst background, data science, data engineering, maybe you are more of like a business subject matter expert, to all work in one unified central platform, one user interface. And why that's powerful is that when you're working with data, it's not just that data scientist working on their own and their own computer coding. We've heard today that it's all about connecting the data scientists with those business people, with maybe the data engineers and IT people who are actually going to put that model into production or other folks. And so, they all use different languages. Data scientists might use Python and R, your business people are using PowerPoint and Excel, everyone's using different tools. How do we bring them all in one place so that you can have conversations faster? So the business people can understand exactly what you're building with the data and can get their hands on that data and that model prediction faster. So that's what Dataiku does. That's the product that we have. And I completely forgot your question, 'cause I got so invested in talking about this. Oh, everyday AI. Yeah, so the goal of of Dataiku is really to allow for those maybe less technical people with less traditional data science backgrounds. Maybe they're data experts and they understand the data really well and they've been working in SQL for all their career. Maybe they're just subject matter experts and want to get more into working with data. We allow those people to do that through our no and low-code tools within our platform. Platform is very visual as well. And so, I've seen a lot of people learn data science, learn machine learning by working in the tool itself. And that's sort of, that's where everyday AI comes in, 'cause we truly believe that there are a lot of, there's a lot of unutilized expertise out there that we can bring in. And if we did give them access to data, imagine what we could do in the kind of work that they can do and become empowered basically with that. >> Yeah, we're just scratching the surface. I find data science so fascinating, especially when you talk about some of the real world applications, police violence, health inequities, climate change. Here we are in California and I don't know if you know, we're experiencing an atmospheric river again tomorrow. Californians and the rain- >> Storm is coming. >> We are not good... And I'm a native Californian, but we all know about climate change. People probably don't associate all of the data that is helping us understand it, make decisions based on what's coming what's happened in the past. I just find that so fascinating. But I really think we're truly at the beginning of really understanding the impact that being data-driven can actually mean whether you are investigating climate change or police violence or health inequities or your a grocery store that needs to become data-driven, because your consumer is expecting a personalized relevant experience. I want you to offer me up things that I know I was doing online grocery shopping, yesterday, I just got back from Europe and I was so thankful that my grocer is data-driven, because they made the process so easy for me. And but we have that expectation as consumers that it's going to be that easy, it's going to be that personalized. And what a lot of folks don't understand is the data the democratization of data, the AI that's helping make that a possibility that makes our lives easier. >> Yeah, I love that point around data is everywhere and the more we have, the actually the more access we actually are providing. 'cause now compute is cheaper, data is literally everywhere, you can get access to it very easily. And so, I feel like more people are just getting themselves involved and that's, I mean this whole conference around just bringing more women into this industry and more people with different backgrounds from minority groups so that we get their thoughts, their opinions into the work is so important and it's becoming a lot easier with all of the technology and tools just being open source being easier to access, being cheaper. And that I feel really hopeful about in this field. >> That's good. Hope is good, isn't it? >> Yes, that's all we need. But yeah, I'm glad to see that we're working towards that direction. I'm excited to see what lies in the future. >> We've been talking about numbers of women, percentages of women in technical roles for years and we've seen it hover around 25%. I was looking at some, I need to AnitaB.org stats from 2022 was just looking at this yesterday and the numbers are going up. I think the number was 26, 27.6% of women in technical roles. So we're seeing a growth there especially over pre-pandemic levels. Definitely the biggest challenge that still seems to be one of the biggest that remains is attrition. I would love to get your advice on what would you tell your younger self or the previous prior generation in terms of having the confidence and the courage to pursue engineering, pursue data science, pursue a technical role, and also stay in that role so you can be one of those females on stage that we saw today? >> Yeah, that's the goal right there one day. I think it's really about finding other people to lift and mentor and support you. And I talked to a bunch of people today who just found this conference through Googling it, and the fact that organizations like this exist really do help, because those are the people who are going to understand the struggles you're going through as a woman in this industry, which can get tough, but it gets easier when you have a community to share that with and to support you. And I do want to definitely give a plug to the WIDS@Dataiku team. >> Talk to us about that. >> Yeah, I was so fortunate to be a WIDS ambassador last year and again this year with Dataiku and I was here last year as well with Dataiku, but we have grown the WIDS effort so much over the last few years. So the first year we had two events in New York and also in London. Our Dataiku's global. So this year we additionally have one in the west coast out here in SF and another one in Singapore which is incredible to involve that team. But what I love is that everyone is really passionate about just getting more women involved in this industry. But then also what I find fortunate too at Dataiku is that we have a strong female, just a lot of women. >> Good. >> Yeah. >> A lot of women working as data scientists, solutions engineer and sales and all across the company who even if they aren't doing data work in a day-to-day, they are super-involved and excited to get more women in the technical field. And so. that's like our Empower group internally that hosts events and I feel like it's a really nice safe space for all of us to speak about challenges that we encounter and feel like we're not alone in that we have a support system to make it better. So I think from a nutrition standpoint every organization should have a female ERG to just support one another. >> Absolutely. There's so much value in a network in the community. I was talking to somebody who I'm blanking on this may have been in Barcelona last week, talking about a stat that showed that a really high percentage, 78% of people couldn't identify a female role model in technology. Of course, Sheryl Sandberg's been one of our role models and I thought a lot of people know Sheryl who's leaving or has left. And then a whole, YouTube influencers that have no idea that the CEO of YouTube for years has been a woman, who has- >> And she came last year to speak at WIDS. >> Did she? >> Yeah. >> Oh, I missed that. It must have been, we were probably filming. But we need more, we need to be, and it sounds like Dataiku was doing a great job of this. Tracy, we've talked about this earlier today. We need to see what we can be. And it sounds like Dataiku was pioneering that with that ERG program that you talked about. And I completely agree with you. That should be a standard program everywhere and women should feel empowered to raise their hand ask a question, or really embrace, "I'm interested in engineering, I'm interested in data science." Then maybe there's not a lot of women in classes. That's okay. Be the pioneer, be that next Sheryl Sandberg or the CTO of ChatGPT, Mira Murati, who's a female. We need more people that we can see and lean into that and embrace it. I think you're going to be one of them. >> I think so too. Just so that young girls like me like other who's so in school, can see, can look up to you and be like, "She's my role model and I want to be like her. And I know that there's someone to listen to me and to support me if I have any questions in this field." So yeah. >> Yeah, I mean that's how I feel about literally everyone that I'm surrounded by here. I find that you find role models and people to look up to in every conversation whenever I'm speaking with another woman in tech, because there's a journey that has had happen for you to get to that place. So it's incredible, this community. >> It is incredible. WIDS is a movement we're so proud of at theCUBE to have been a part of it since the very beginning, since 2015, I've been covering it since 2017. It's always one of my favorite events. It's so inspiring and it just goes to show the power that data can have, the influence, but also just that we're at the beginning of uncovering so much. Jacqueline's been such a pleasure having you on theCUBE. Thank you. >> Thank you. >> For sharing your story, sharing with us what Dataiku was doing and keep going. More power to you girl. We're going to see you up on that stage one of these years. >> Thank you so much. Thank you guys. >> Our pleasure. >> Our pleasure. >> For our guests and Tracy Zhang, this is Lisa Martin, you're watching theCUBE live at WIDS '23. #EmbraceEquity is this year's International Women's Day theme. Stick around, our next guest joins us in just a minute. (upbeat music)
SUMMARY :
We're really excited to be talking I have to start out with, and I can't imagine living anywhere else. So you studied, I was the time you were a child? and I knew that working Yeah, I like the way and continuing to be curious that you get that through and that comes from data. And I say basic, not to diminish it, and also some of the I found that on in the data science role, And I saw that one of the keywords so that you can have conversations faster? Californians and the rain- that it's going to be that easy, and the more we have, Hope is good, isn't it? I'm excited to see what and also stay in that role And I talked to a bunch of people today is that we have a strong and all across the company that have no idea that the And she came last and lean into that and embrace it. And I know that there's I find that you find role models but also just that we're at the beginning We're going to see you up on Thank you so much. #EmbraceEquity is this year's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sheryl | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Jacqueline | PERSON | 0.99+ |
Kathy Dahlia | PERSON | 0.99+ |
Jacqueline Kuo | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Dataiku | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Taiwan | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
last week | DATE | 0.99+ |
two events | QUANTITY | 0.99+ |
26, 27.6% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
this year | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Dataiku | PERSON | 0.99+ |
New York, New Jersey | LOCATION | 0.99+ |
tomorrow | DATE | 0.99+ |
2017 | DATE | 0.99+ |
SF | LOCATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
78% | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Ocean Cleanup | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
next year | DATE | 0.98+ |
International Women's Day | EVENT | 0.97+ |
R | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Californians | PERSON | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
one day | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
WIDS | ORGANIZATION | 0.89+ |
first introduction | QUANTITY | 0.88+ |
Stanford University | LOCATION | 0.87+ |
one place | QUANTITY | 0.87+ |
Keynote Analysis | WiDS 2023
(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)
SUMMARY :
So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mira Murati | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Boeing Air Company | ORGANIZATION | 0.99+ |
Berlin | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
78% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
12 year | QUANTITY | 0.99+ |
three year | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Humboldt University | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
hundreds of thousands | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
'22 | DATE | 0.98+ |
today | DATE | 0.98+ |
WiDS | EVENT | 0.98+ |
John Furrier | PERSON | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
two co-hosts | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
first step | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
six | QUANTITY | 0.97+ |
'21 | DATE | 0.97+ |
about 350 people | QUANTITY | 0.96+ |
100 million-plus users | QUANTITY | 0.95+ |
2021 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
AnitaB.org | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
Wayne Duso, AWS & Iyad Tarazi, Federated Wireless | MWC Barcelona 2023
(light music) >> Announcer: TheCUBE's live coverage is made possible by funding from Dell Technologies. Creating technologies that drive human progress. (upbeat music) >> Welcome back to the Fira in Barcelona. Dave Vellante with Dave Nicholson. Lisa Martin's been here all week. John Furrier is in our Palo Alto studio, banging out all the news. Don't forget to check out siliconangle.com, thecube.net. This is day four, our last segment, winding down. MWC23, super excited to be here. Wayne Duso, friend of theCUBE, VP of engineering from products at AWS is here with Iyad Tarazi, who's the CEO of Federated Wireless. Gents, welcome. >> Good to be here. >> Nice to see you. >> I'm so stoked, Wayne, that we connected before the show. We texted, I'm like, "You're going to be there. I'm going to be there. You got to come on theCUBE." So thank you so much for making time, and thank you for bringing a customer partner, Federated Wireless. Everybody knows AWS. Iyad, tell us about Federated Wireless. >> We're a software and services company out of Arlington, Virginia, right outside of Washington, DC, and we're really focused on this new technology called Shared Spectrum and private wireless for 5G. Think of it as enterprises consuming 5G, the way they used to consume WiFi. >> Is that unrestricted spectrum, or? >> It is managed, organized, interference free, all through cloud platforms. That's how we got to know AWS. We went and got maybe about 300 products from AWS to make it work. Quite sophisticated, highly available, and pristine spectrum worth billions of dollars, but available for people like you and I, that want to build enterprises, that want to make things work. Also carriers, cable companies everybody else that needs it. It's really a new revolution for everyone. >> And that's how you, it got introduced to AWS. Was that through public sector, or just the coincidence that you're in DC >> No, I, well, yes. The center of gravity in the world for spectrum is literally Arlington. You have the DOD spectrum people, you have spectrum people from National Science Foundation, DARPA, and then you have commercial sector, and you have the FCC just an Uber ride away. So we went and found the scientists that are doing all this work, four or five of them, Virginia Tech has an office there too, for spectrum research for the Navy. Come together, let's have a party and make a new model. >> So I asked this, I'm super excited to have you on theCUBE. I sat through the keynotes on Monday. I saw Satya Nadella was in there, Thomas Kurian there was no AWS. I'm like, where's AWS? AWS is everywhere. I mean, you guys are all over the show. I'm like, "Hey, where's the number one cloud?" So you guys have made a bunch of announcements at the show. Everybody's talking about the cloud. What's going on for you guys? >> So we are everywhere, and you know, we've been coming to this show for years. But this is really a year that we can demonstrate that what we've been doing for the IT enterprise, IT people for 17 years, we're now bringing for telcos, you know? For years, we've been, 17 years to be exact, we've been bringing the cloud value proposition, whether it's, you know, cost efficiencies or innovation or scale, reliability, security and so on, to these enterprise IT folks. Now we're doing the same thing for telcos. And so whether they want to build in region, in a local zone, metro area, on-prem with an outpost, at the edge with Snow Family, or with our IoT devices. And no matter where they want to start, if they start in the cloud and they want to move to the edge, or they start in the edge and they want to bring the cloud value proposition, like, we're demonstrating all of that is happening this week. And, and very much so, we're also demonstrating that we're bringing the same type of ecosystem that we've built for enterprise IT. We're bringing that type of ecosystem to the telco companies, with CSPs, with the ISP vendors. We've seen plenty of announcements this week. You know, so on and so forth. >> So what's different, is it, the names are different? Is it really that simple, that you're just basically taking the cloud model into telco, and saying, "Hey, why do all this undifferentiated heavy lifting when we can do it for you? Don't worry about all the plumbing." Is it really that simple? I mean, that straightforward. >> Well, simple is probably not what I'd say, but we can make it straightforward. >> Conceptually. >> Conceptually, yes. Conceptually it is the same. Because if you think about, firstly, we'll just take 5G for a moment, right? The 5G folks, if you look at the architecture for 5G, it was designed to run on a cloud architecture. It was designed to be a set of services that you could partition, and run in different places, whether it's in the region or at the edge. So in many ways it is sort of that simple. And let me give you an example. Two things, the first one is we announced integrated private wireless on AWS, which allows enterprise customers to come to a portal and look at the industry solutions. They're not worried about their network, they're worried about solving a problem, right? And they can come to that portal, they can find a solution, they can find a service provider that will help them with that solution. And what they end up with is a fully validated offering that AWS telco SAS have actually put to its paces to make sure this is a real thing. And whether they get it from a telco, and, and quite frankly in that space, it's SIs such as Federated that actually help our customers deploy those in private environments. So that's an example. And then added to that, we had a second announcement, which was AWS telco network builder, which allows telcos to plan, deploy, and operate at scale telco network capabilities on the cloud, think about it this way- >> As a managed service? >> As a managed service. So think about it this way. And the same way that enterprise IT has been deploying, you know, infrastructure as code for years. Telco network builder allows the telco folks to deploy telco networks and their capabilities as code. So it's not simple, but it is pretty straightforward. We're making it more straightforward as we go. >> Jump in Dave, by the way. He can geek out if you want. >> Yeah, no, no, no, that's good, that's good, that's good. But actually, I'm going to ask an AWS question, but I'm going to ask Iyad the AWS question. So when we, when I hear the word cloud from Wayne, cloud, AWS, typically in people's minds that denotes off-premises. Out there, AWS data center. In the telecom space, yes, of course, in the private 5G space, we're talking about a little bit of a different dynamic than in the public 5G space, in terms of the physical infrastructure. But regardless at the edge, there are things that need to be physically at the edge. Do you feel that AWS is sufficiently, have they removed the H word, hybrid, from the list of bad words you're not allowed to say? 'Cause there was a point in time- >> Yeah, of course. >> Where AWS felt that their growth- >> They'll even say multicloud today, (indistinct). >> No, no, no, no, no. But there was a period of time where, rightfully so, AWS felt that the growth trajectory would be supported solely by net new things off premises. Now though, in this space, it seems like that hybrid model is critical. Do you see AWS being open to the hybrid nature of things? >> Yeah, they're, absolutely. I mean, just to explain from- we're a services company and a solutions company. So we put together solutions at the edge, a smart campus, smart agriculture, a deployment. One of our biggest deployment is a million square feet warehouse automation project with the Marine Corps. >> That's bigger than the Fira. >> Oh yeah, it's bigger, definitely bigger than, you know, a small section of here. It's actually three massive warehouses. So yes, that is the edge. What the cloud is about is that massive amount of efficiency has happened by concentrating applications in data centers. And that is programmability, that is APIs that is solutions, that is applications that can run on it, where people know how to do it. And so all that efficiency now is being ported in a box called the edge. What AWS is doing for us is bringing all the business and technical solutions they had into the edge. Some of the data may send back and forth, but that's actually a smaller piece of the value for us. By being able to bring an AWS package at the edge, we're bringing IoT applications, we're bringing high speed cameras, we're able to integrate with the 5G public network. We're able to bring in identity and devices, we're able to bring in solutions for students, embedded laptops. All of these things that you can do much much faster and cheaper if you are able to tap in the 4,000, 5,000 partners and all the applications and all the development and all the models that AWS team did. By being able to bring that efficiency to the edge why reinvent that? And then along with that, there are partners that you, that help do integration. There are development done to make it hardened, to make the data more secure, more isolated. All of these things will contribute to an edge that truly is a carbon copy of the data center. >> So Wayne, it's AWS, Regardless of where the compute, networking and storage physically live, it's AWS. Do you think that the term cloud will sort of drift away from usage? Because if, look, it's all IT, in this case it's AWS and federated IT working together. How, what's your, it's sort of a obscure question about cloud, because cloud is so integrated. >> You Got this thing about cloud, it's just IT. >> I got thing about cloud too, because- >> You and Larry Ellison. >> Because it's no, no, no, I'm, yeah, well actually there's- >> There's a lot of IT that's not cloud, just say that okay. >> Now, a lot of IT that isn't cloud, but I would say- >> But I'll (indistinct) cloud is an IT tool, and you see AWS obviously with the Snow fill in the blank line of products and outpost type stuff. Fair to say that you're, doesn't matter where it is, it could be AWS if it's on the edge, right? >> Well, you know, everybody wants to define the cloud as what it may have been when it started. But if you look at what it was when it started and what it is today, it is different. But the ability to bring the experience, the AWS experience, the services, the operational experience and all the things that Iyad had been talking about from the region all to all the way to, you know, the IoT device, if you would, that entire continuum. And it doesn't matter where you start. Like if you start in region and you need to bring your value to other places because your customers are asking you to do so, we're enabling that experience where you need to bring it. If you started at the edge, and- but you want to build cloud value, you know, whether it's again, cost efficiency, scalability, AI, ML or analytics into those capabilities, you can start at the edge with the same APIs, with the same service, the same capabilities, and you can build that value in right from the get go. You don't build this bifurcation or many separations and try to figure out how do I glue them together? There is no gluing together. So if you think of cloud as being elastic, scalable flexible, where you can drive innovation, it's the same exact model on the continuum. And you can start at either end, it's up to you as a customer. >> And I think if, the key to me is the ecosystem. I mean, if you can do for this industry what you've done for the technology- enterprise technology business from an ecosystem standpoint, you know everybody talks about flywheel, but that gives you like the massive flywheel. I don't know what the ratio is, but it used to be for every dollar spent on a VMware license, $15 is spent in the ecosystem. I've never heard similar ratios in the AWS ecosystem, but it's, I go to reinvent and I'm like, there's some dollars being- >> That's a massive ecosystem. >> (indistinct). >> And then, and another thing I'll add is Jose Maria Alvarez, who's the chairman of Telefonica, said there's three pillars of the future-ready telco, low latency, programmable networks, and he said cloud and edge. So they recognizing cloud and edge, you know, low latency means you got to put the compute and the data, the programmable infrastructure was invented by Amazon. So what's the strategy around the telco edge? >> So, you know, at the end, so those are all great points. And in fact, the programmability of the network was a big theme in the show. It was a huge theme. And if you think about the cloud, what is the cloud? It's a set of APIs against a set of resources that you use in whatever way is appropriate for what you're trying to accomplish. The network, the telco network becomes a resource. And it could be described as a resource. We, I talked about, you know, network as in code, right? It's same infrastructure in code, it's telco infrastructure as code. And that code, that infrastructure, is programmable. So this is really, really important. And in how you build the ecosystem around that is no different than how we built the ecosystem around traditional IT abstractions. In fact, we feel that really the ecosystem is the killer app for 5G. You know, the killer app for 4G, data of sorts, right? We started using data beyond simple SMS messages. So what's the killer app for 5G? It's building this ecosystem, which includes the CSPs, the ISVs, all of the partners that we bring to the table that can drive greater value. It's not just about cost efficiency. You know, you can't save your way to success, right? At some point you need to generate greater value for your customers, which gives you better business outcomes, 'cause you can monetize them, right? The ecosystem is going to allow everybody to monetize 5G. >> 5G is like the dot connector of all that. And then developers come in on top and create new capabilities >> And how different is that than, you know, the original smartphones? >> Yeah, you're right. So what do you guys think of ChatGPT? (indistinct) to Amazon? Amazon turned the data center into an API. It's like we're visioning this world, and I want to ask that technologist, like, where it's turning resources into human language interfaces. You know, when you see that, you play with ChatGPT at all, or I know you guys got your own. >> So I won't speak directly to ChatGPT. >> No, don't speak from- >> But if you think about- >> Generative AI. >> Yeah generative AI is important. And, and we are, and we have been for years, in this space. Now you've been talking to AWS for a long time, and we often don't talk about things we don't have yet. We don't talk about things that we haven't brought to market yet. And so, you know, you'll often hear us talk about something, you know, a year from now where others may have been talking about it three years earlier, right? We will be talking about this space when we feel it's appropriate for our customers and our partners. >> You have talked about it a little bit, Adam Selipsky went on an interview with myself and John Furrier in October said you watch, you know, large language models are going to be enormous and I know you guys have some stuff that you're working on there. >> It's, I'll say it's exciting. >> Yeah, I mean- >> Well proof point is, Siri is an idiot compared to Alexa. (group laughs) So I trust one entity to come up with something smart. >> I have conversations with Alexa and Siri, and I won't judge either one. >> You don't need, you could be objective on that one. I definitely have a preference. >> Are the problems you guys solving in this space, you know, what's unique about 'em? What are they, can we, sort of, take some examples here (indistinct). >> Sure, the main theme is that the enterprise is taking control. They want to have their own networks. They want to focus on specific applications, and they want to build them with a skeleton crew. The one IT person in a warehouse want to be able to do it all. So what's unique about them is that they're now are a lot of automation on robotics, especially in warehousing environment agriculture. There simply aren't enough people in these industries, and that required precision. And so you need all that integration to make it work. People also want to build these networks as they want to control it. They want to figure out how do we actually pick this team and migrate it. Maybe just do the front of the house first. Maybe it's a security team that monitor the building, maybe later on upgrade things that use to open doors and close doors and collect maintenance data. So that ability to pick what you want to do from a new processors is really important. And then you're also seeing a lot of public-private network interconnection. That's probably the undercurrent of this show that haven't been talked about. When people say private networks, they're also talking about something called neutral host, which means I'm going to build my own network, but I want it to work, my Verizon (indistinct) need to work. There's been so much progress, it's not done yet. So much progress about this bring my own network concept, and then make sure that I'm now interoperating with the public network, but it's my domain. I can create air gaps, I can create whatever security and policy around it. That is probably the power of 5G. Now take all of these tiny networks, big networks, put them all in one ecosystem. Call it the Amazon marketplace, call it the Amazon ecosystem, that's 5G. It's going to be tremendous future. >> What does the future look like? We're going to, we just determined we're going to be orchestrating the network through human language, okay? (group laughs) But seriously, what's your vision for the future here? You know, both connectivity and cloud are on on a continuum. It's, they've been on a continuum forever. They're going to continue to be on a continuum. That being said, those continuums are coming together, right? They're coming together to bring greater value to a greater set of customers, and frankly all of us. So, you know, the future is now like, you know, this conference is the future, and if you look at what's going on, it's about the acceleration of the future, right? What we announced this week is really the acceleration of listening to customers for the last handful of years. And, we're going to continue to do that. We're going to continue to bring greater value in the form of solutions. And that's what I want to pick up on from the prior question. It's not about the network, it's not about the cloud, it's about the solutions that we can provide the customers where they are, right? And if they're on their mobile phone or they're in their factory floor, you know, they're looking to accelerate their business. They're looking to accelerate their value. They're looking to create greater safety for their employees. That's what we can do with these technologies. So in fact, when we came out with, you know, our announcement for integrated private wireless, right? It really was about industry solutions. It really isn't about, you know, the cloud or the network. It's about how you can leverage those technologies, that continuum, to deliver you value. >> You know, it's interesting you say that, 'cause again, when we were interviewing Adam Selipsky, everybody, you know, all journalists analysts want to know, how's Adam Selipsky going to be different from Andy Jassy, what's the, what's he going to do to Amazon to change? And he said, listen, the real answer is Amazon has changed. If Andy Jassy were here, we'd be doing all, you know, pretty much the same things. Your point about 17 years ago, the cloud was S3, right, and EC2. Now it's got to evolve to be solutions. 'Cause if that's all you're selling, is the bespoke services, then you know, the future is not as bright as the past has been. And so I think it's key to look for what are those outcomes or solutions that customers require and how you're going to meet 'em. And there's a lot of challenges. >> You continue to build value on the value that you've brought, and you don't lose sight of why that value is important. You carry that value proposition up the stack, but the- what you're delivering, as you said, becomes maybe a bigger or or different. >> And you are getting more solution oriented. I mean, you're not hardcore solutions yet, but we're seeing more and more of that. And that seems to be a trend. We've even seen in the database world, making things easier, connecting things. Not really an abstraction layer, which is sort of antithetical to your philosophy, but it creates a similar outcome in terms of simplicity. Yeah, you're smiling 'cause you guys always have a different angle, you know? >> Yeah, we've had this conversation. >> It's right, it's, Jassy used to say it's okay to be misunderstood. >> That's Right. For a long time. >> Yeah, right, guys, thanks so much for coming to theCUBE. I'm so glad we could make this happen. >> It's always good. Thank you. >> Thank you so much. >> All right, Dave Nicholson, for Lisa Martin, Dave Vellante, John Furrier in the Palo Alto studio. We're here at the Fira, wrapping out MWC23. Keep it right there, thanks for watching. (upbeat music)
SUMMARY :
that drive human progress. banging out all the news. and thank you for bringing the way they used to consume WiFi. but available for people like you and I, or just the coincidence that you're in DC and you have the FCC excited to have you on theCUBE. and you know, we've been the cloud model into telco, and saying, but we can make it straightforward. that you could partition, And the same way that enterprise Jump in Dave, by the way. that need to be physically at the edge. They'll even say multicloud AWS felt that the growth trajectory I mean, just to explain from- and all the models that AWS team did. the compute, networking You Got this thing about cloud, not cloud, just say that okay. on the edge, right? But the ability to bring the experience, but that gives you like of the future-ready telco, And in fact, the programmability 5G is like the dot So what do you guys think of ChatGPT? to ChatGPT. And so, you know, you'll often and I know you guys have some stuff it's exciting. Siri is an idiot compared to Alexa. and I won't judge either one. You don't need, you could Are the problems you that the enterprise is taking control. that continuum, to deliver you value. is the bespoke services, then you know, and you don't lose sight of And that seems to be a trend. it's okay to be misunderstood. For a long time. so much for coming to theCUBE. It's always good. in the Palo Alto studio.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Marine Corps | ORGANIZATION | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
National Science Foundation | ORGANIZATION | 0.99+ |
Wayne | PERSON | 0.99+ |
Iyad Tarazi | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Jose Maria Alvarez | PERSON | 0.99+ |
Thomas Kurian | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Federated Wireless | ORGANIZATION | 0.99+ |
Wayne Duso | PERSON | 0.99+ |
$15 | QUANTITY | 0.99+ |
October | DATE | 0.99+ |
Satya Nadella | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
17 years | QUANTITY | 0.99+ |
Monday | DATE | 0.99+ |
Telefonica | ORGANIZATION | 0.99+ |
DARPA | ORGANIZATION | 0.99+ |
Arlington | LOCATION | 0.99+ |
Larry Ellison | PERSON | 0.99+ |
Virginia Tech | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Siri | TITLE | 0.99+ |
five | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
four | QUANTITY | 0.99+ |
Washington, DC | LOCATION | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
FCC | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
Jassy | PERSON | 0.99+ |
DC | LOCATION | 0.99+ |
One | QUANTITY | 0.99+ |
telco | ORGANIZATION | 0.98+ |
thecube.net | OTHER | 0.98+ |
this week | DATE | 0.98+ |
second announcement | QUANTITY | 0.98+ |
three years earlier | DATE | 0.98+ |
Ajay Singh, Zebrium & Michael Nappi, ScienceLogic | AWS re:Invent 2022
(upbeat music) >> Good afternoon, fellow cloud nerds, and welcome back to theCUBE's live coverage of AWS re:Invent, here in a fabulous Sin City, Las Vegas, Nevada. My name is Savannah Peterson, joined by my fabulous co-host, John Furrier. John, how you feeling? >> Great, feeling good Just getting going. Day one of four more, three more days after today. >> Woo! Yeah. >> So much conversation. Talking about business transformation as cloud goes next level- >> Hot topic here for sure. >> Next generation. Data's classic is still around, but the next gen cloud's here, it's changing the game. Lot more AI, machine learning, a lot more business value. I think it's going to be exciting. Next segment's going to be awesome. >> It feels like one of those years where there's just a ton of momentum. I don't think it's just because we're back in person at scale, you can see the literally thousands of people behind us while we're here on set conducting these interviews. Our bold and brave guests, just like the two we have here, combating the noise, the libations, and everything else going on on the show floor. Please help me welcome Mike from Science Logic and Ajay from Zebrium. Gentlemen, welcome to the show floor. >> Thank you. >> Thank you Savannah. It's great to be here. >> How you feeling? Are you feeling the buzz, Mike? Feeling the energy? >> It's tough to not feel and hear the buzz, Savannah >> Savannah: Yeah. (all laughing) >> John: Can you hear me? >> Savannah: Yeah, yeah, yeah. Can you hear me now? What about you, Ajay? How's it feel to be here? >> Yeah, this is high energy. I'm really happy it's bounced back from COVID. I was a little concerned about attendance. This is hopping. >> Yeah, I feel it. It just, you can definitely feel the energy, the sense of community. We're all here for the right reasons. So I know that, I want to set the stage for everyone watching, Zebrium was recently acquired by Science Logic. Mike, can you tell us a little bit about that and what it means for the company? >> Mike: Sure, sure. Well, first of all, science logic, as you may know, has been in the monitoring space for a long time now, and what- >> Savannah: 20 years I believe. >> Yeah. >> Savannah: Just about. >> And what we've seen is a shift from kind of monitoring infrastructure, to monitoring these increasingly complex modern cloud native applications, right? And so this is part of a journey that we've been on at Science Logic to really modernize how enterprises of all sizes manage their IT estate. Okay? So, managing, now workloads that are increasingly in the public cloud, outside the four walls of the enterprise, workloads that are increasingly complex. They're microservices based, they're container based. >> Mhmm. >> Mike: And the rate of change, just because of things like CICD, and agile development has also increased the complexity in the typical IT environment. So all these things have conspired to make the traditional tools and processes of managing IT and IT applications much more difficult. They just don't scale. One of the things that we've seen recently, Savannah is this shift in sort of moving to cloud native applications, right? >> Huge shift. >> Mike: Today it only incorporates about roughly 25% of the typical IT portfolio, but most of the projections we've seen indicate that that's going to invert in about three years. 75% of applications will be what I call cloud native. And so this really requires different technologies to understand what's going on with those applications. And so Zebrium interested us when we were looking at partners at the beginning of this year as they have a super innovative approach to understanding really what's going on with any cloud native application. And they really distill, they separate the complexity out of the equation and they used machine learning to tremendous effect to rapidly understand the root cause of an application failure. And so I was introduced to Ajay, beginning of this year, actually. It feels like it's been a long time now. But we've been on this journey together throughout 2022, and we're thrilled to have Zebrium now, part of the Science Logic family. >> Ajay, Zebrium saves people a lot of time. Obviously, I've worked with developers and seen that struggle when things break, shortening that time to recovery and understanding is so critical. Can you tell us a little bit about what's under the hood and how the ML works to make that happen? >> Ajay: Yeah. So the goal is to figure out not just that something went wrong, but what went wrong. >> Savannah: Right. >> And we took, you know, based on a couple of decades of experience from my co-founders- >> Savannah: Casual couple of decades, came into went into this product just to call that out. Yeah, great. >> Exactly. It took some general learnings about the nature of software and when software breaks, what tends to happen, you tend to see unusual things happen, and they lead to bad things happening. It's very simple. >> Yes. >> It turns out- >> Savannah: Mutations lead to bad things happening, generally speaking. >> So what Zebrium's really good at is identifying those rare things accurately and then figuring out how they connect, or correlate to the bad things, the errors, the warnings, the alerts. So the machine learning has many stages to it, but at its heart it's classifying the event, catalog of any application stack, figuring out what's rare, and when things start to break it's telling you this cluster of events is both unusual, and unlikely to be random, and it's very likely the root cause report for the problem you're trying to solve. We then added some nice enhancements, such as correlation with knowledge spaces in, on the public internet. If someone's ever solved that problem before, we're able to find a match, and pull that back into our platform. But the at the heart, it was a technology that can find rare events and find the connections with other events. >> John: Yeah, and this is the theme of re:Invent this year, data, the role of data, solving end-to-end complexities. One, you mentioned that. Two, I think the Mike, your point about developers and the CICD pipeline is where DevOps is. That is what IT now is. So, if you take digital transformation to its conclusion, or its path and continue it, IT is DevOps. So the developers are actually doing the IT in their coding, hence the shift to autonomous IT. >> Mike: Right, right. Now, those other functions at IT used to be a department, not anymore, or they still are, so, but they'll go away, is security and data teams. You're starting to see the formation of- >> Mike: Yep. >> New replacements to IT as a function to support the developers who are building the applications that will be the company. >> That's right. Yeah. >> John: I mean that's, and do you agree with that statement? >> Yeah, I really do. And you know, collectively independent of whether it's like traditional IT, or it's DevOps, or whatever it is, the enterprise as a whole needs to understand how the infrastructure is deployed, the health of that infrastructure, and more importantly the applications that are hosted in the infrastructure. How are they doing? What's the health? And what we are seeing, and what we're trying to facilitate at Science Logic is really changed the lens of IT, from being low level compute, storage, and networking, to looking at everything through a services lens, looking at the services being delivered by IT, back to the business, and understanding things through a services lens. And Zebrium really compliments that mission that we've been on, by providing, cause a lot of cases, service equal equal application, and they can provide that kind of very real time view of service health in, you know, kind of the IT- >> And automation is beautiful there too, because, as you get into some of the scale- >> Yeah >> Ajay's. understanding how to do this fast is a key component. >> Yeah. So scale, you, you've pinpointed one of the dimensions that makes AI really important when it comes to troubleshooting. The humans just can't scale as fast as data, nor can they keep up with complexity of modern applications. And the third element that we feel is really important is the velocity with which people are now rolling out changes. People develop new features within hours, push them out to production. And in a world like that, the human has just no ability or time to understand what's normal, what's bad, to update their alert rules. And you need a machine, or an AI technology, to go help you with that. And that's basically what we're about. >> So this is where AI Ops comes in, right? Perfectly. Yeah. >> Yeah. You know, and John started to allude to it earlier, but having the insight on what's going on, we believe is only half of the equation, right? Once you understand what's going on, you naturally want to take action to remediate it or optimize it. And we believe automation should not be an exercise that's left to the reader. >> Yeah. >> As a lot of traditional platforms have done. Instead, we have a very robust, no-code, low-code automation built into our platform that allows you to take action in context with what you're seeing right then and there with the service. >> John: Yeah. Essentially monitoring, a term you use observability, some used as a fancy word today, is critical in all operating environments. So if we, if we kind of holistically, hey we're a distributed computing system, aka cloud, you got to track stuff at scale and you got to understand what it, what the impact is from a systems perspective. There's consequences to understanding what goes wrong. So as you look at that, what's the challenge for customers to do that? Because that seems to be the hard part as they lift and shift to the cloud, run their apps on the cloud, now they got to go take it to the next level, which is more developer velocity, faster productivity, and secure. >> Yeah. >> I mean, that seems to be the table stakes now. >> Yeah. >> How are companies forming around that? Are they there yet? Are they halfway there? Are they, where are they in the progression of, one, are they changing? And if so- >> Yeah that's a great question. I mean, I think whether it's an IT use case or a security use case, you can't manage what you don't know about. So visibility, discoverability, understanding what's going on, in a lot of ways that's the really hard problem to solve. And traditionally, we've approached that by like, harvesting data off of all these machines and devices in the infrastructure. But as we've seen with Zebrium and with related machine learning technologies, there's multiple ways of gaining insight as to what's going on. Once you have the insight be it an IT issue, like a service outage, or a security vulnerability, then you can take action. And the idea is you want to make that action as seamless as possible. But I think to answer your question, John, enterprises are still kind of getting their heads around how can we break down all the silos that have built up over the last decade or two, internally, and get visibility across the estate that really matters. And I think that's the real challenge. >> And I mean, and, at the velocity that applications are growing, just looking at our notes here, number of applications scaling from 64 million in 2017 to 147 million in 2021. That goes to what you were talking about, even with those other metrics earlier, 582 million by 2026 is what Morgan Stanley predicts. So, not only do we need to get out of silos we need to be able to see everything all the time, all at once, from the past legacy, as well as as we extend at scale. How are you thinking about that, Ajay? You're now with a big partner as an umbrella. What's next for you all? How, how are you going to help people solve problems faster? >> Yeah, so one of the attractions to the Zebrium team about Science Logic, aside from the team, and the culture, was the product portfolio was so complimentary. As Mike mentioned, you need visibility, you need mapping from low level building blocks to business services. And the end, at the end of the spectrum, once you know something's wrong you need to be able to take action automatically. And again, Science Logic has a very strong product, set of product capabilities and automated actions. What we bring to the table is the middle layer, which is from visibility, understanding what went wrong, figuring out the root cause. So to us, it was really exciting to be a very nice tuck in into this broader platform where we helped complete the story. >> Savannah: Yeah, that's, that's exciting. >> John: Should we do the Insta challenge? >> I was just getting ready to do that. You go for it John. You go ahead and kick it off. >> So we have this little tradition now, Instagram real, short and sweet. If you were going to see yourself on Instagram, what would be the Instagram reel of why this year's re:Invent is so important, and why people should pay attention to what's going on right now in the industry, or your company? >> Well, I think partly what Ajay was saying it's good to be back, right? So seeing just the energy and being back in 3D, you know en mass, is awesome again. It really is. >> Yeah. >> Mike: But, you know, I think this is where it's happening. We are at an inflection point of our industry and we're seeing a sea change in the way that applications and software delivered to businesses, to enterprises. And it's happening right here. This is the nexus of it. And so we're thrilled to be here as a part of all this, and excited about the future. >> All right, Ajay- >> Well done. He passes >> Your Instagram reel. >> Knowing what's happening in the broader economy, in the business context, it's, it feels even more important that companies like us are working on technologies that empower the same number of people to do more. Because it may not be realistic to just add on more headcount given what's going on in the world. But your deliverables and your roadmaps aren't slowing down. So, still the same amount of complexity, the same growth rates, but you're going to have to deal with all of that with fewer resources and be smarter about it. So, the approaches we're taking feel very much off the moment, you know, given what's going on in the real world. >> I love it. I love it. I've got, I've got kind of a finger to the wind, potentially hardball question for you here to close it out. But, given that you both have your finger really on the pulse right here, what percentage of current IT operations do you think will eventually be automated by AI and ML? Or AI ops? >> Well, I think a large percentage of traditional IT operations, and I'm talking about, you know, network operating center type of, you know, checking heartbeat monitors of compute storage and networking health. I think a lot of those things are going to be automated, right? Machine learning, just because of the scale. You can't scale, you can't hire enough NOC engineers to scale that kind of complexity. But I think IT talents, and what they're going to be focusing on is going shift, and they're going to be focusing on different parts. And I believe a lot of IT is going to be a much more of an enabler for the business, versus just managing things when they go wrong. So that's- >> All right. >> That's what I believe is part of the change. >> That's your, all right Ajay what about your hot take? >> Knowing how error-prone predictions are, (all laughing) I'll caveat my with- >> Savannah: We're allowing for human error here. >> I could be wildly wrong, but if I had to guess, you know, in 10 years you know, as much as 50% of the tasks will be automated. >> Mike: Oh, you- >> I love it. >> Mike: You threw a number out there. >> I love it. I love that he put his finger out- >> You got to see, you got to say the matrix. We're all going to be part of the matrix. >> Well, you know- >> And Star Trek- >> Skynet >> We can only turn back to this footage in a few years and quote you exactly when you have the, you know Mackenzie Research or the Morgan Stanley research that we've been mentioning here tonight and say that you've called it accurately. So I appreciate that. Ajay, it was wonderful to have you here. Congratulations on the acquisition. Thank you. Mike, thank you so much for being here on the Science Logic side, and congratulations to the team on 20 years. That's very exciting. John. Thank you. >> I try, I tried. Thank you. >> You try, you succeed. And thank you to all of our fabulous viewers out there at home. Be sure and tweet us at theCUBE. Say hello, Furrier, Sav is savvy. Let us know what you're thinking of AWS re:Invent where we are live from Las Vegas all week. You're watching theCUBE, the leader in high tech coverage. My name's Savannah Peterson, and we'll see you soon. (upbeat music)
SUMMARY :
John, how you feeling? Day one of four more, Yeah. So much conversation. I think it's going to be exciting. just like the two we have here, It's great to be here. Savannah: Yeah. How's it feel to be here? I was a little concerned about attendance. We're all here for the right reasons. has been in the monitoring space in the public cloud, One of the things that we've but most of the projections we've seen and how the ML works to make that happen? So the goal is to figure out just to call that out. and they lead to bad things happening. to bad things happening, and find the connections hence the shift to autonomous IT. You're starting to see the formation of- the developers who are Yeah. and more importantly the applications how to do this fast And the third element that So this is where AI of the equation, right? that allows you to take action and you got to understand what it, I mean, that seems to And the idea is you That goes to what you were talking about, And the end, at the end of the spectrum, Savannah: Yeah, I was just getting ready to do that. If you were going to see So seeing just the energy This is the nexus of it. that empower the same of a finger to the wind, and they're going to be is part of the change. Savannah: We're allowing you know, as much as 50% of the tasks I love that You got to see, you and congratulations to I try, I tried. and we'll see you soon.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Savannah | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Mike | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Ajay | PERSON | 0.99+ |
Ajay Singh | PERSON | 0.99+ |
Michael Nappi | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Star Trek | TITLE | 0.99+ |
20 years | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Mackenzie Research | ORGANIZATION | 0.99+ |
75% | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
10 years | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
Science Logic | ORGANIZATION | 0.99+ |
64 million | QUANTITY | 0.99+ |
third element | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
50% | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
Zebrium | PERSON | 0.98+ |
2026 | DATE | 0.98+ |
582 million | QUANTITY | 0.98+ |
Zebrium | ORGANIZATION | 0.97+ |
both | QUANTITY | 0.97+ |
tonight | DATE | 0.97+ |
Sin City, Las Vegas, Nevada | LOCATION | 0.97+ |
Zebrium | TITLE | 0.97+ |
One | QUANTITY | 0.97+ |
four | QUANTITY | 0.96+ |
Morgan Stanley | ORGANIZATION | 0.96+ |
147 million | QUANTITY | 0.95+ |
Sav | PERSON | 0.95+ |
ORGANIZATION | 0.94+ | |
thousands of people | QUANTITY | 0.94+ |
AWS | ORGANIZATION | 0.93+ |
about three years | QUANTITY | 0.93+ |
Day one | QUANTITY | 0.92+ |
one | QUANTITY | 0.9+ |
ScienceLogic | ORGANIZATION | 0.89+ |
this year | DATE | 0.88+ |
Skynet | TITLE | 0.87+ |
theCUBE | ORGANIZATION | 0.87+ |
three more days | QUANTITY | 0.85+ |
half | QUANTITY | 0.85+ |
Dhabaleswar “DK” Panda, Ohio State State University | SuperComputing 22
>>Welcome back to The Cube's coverage of Supercomputing Conference 2022, otherwise known as SC 22 here in Dallas, Texas. This is day three of our coverage, the final day of coverage here on the exhibition floor. I'm Dave Nicholson, and I'm here with my co-host, tech journalist extraordinaire, Paul Gillum. How's it going, >>Paul? Hi, Dave. It's going good. >>And we have a wonderful guest with us this morning, Dr. Panda from the Ohio State University. Welcome Dr. Panda to the Cube. >>Thanks a lot. Thanks a lot to >>Paul. I know you're, you're chopping at >>The bit, you have incredible credentials, over 500 papers published. The, the impact that you've had on HPC is truly remarkable. But I wanted to talk to you specifically about a product project you've been working on for over 20 years now called mva, high Performance Computing platform that's used by more than 32 organ, 3,200 organizations across 90 countries. You've shepherded this from, its, its infancy. What is the vision for what MVA will be and and how is it a proof of concept that others can learn from? >>Yeah, Paul, that's a great question to start with. I mean, I, I started with this conference in 2001. That was the first time I came. It's very coincidental. If you remember the Finman Networking Technology, it was introduced in October of 2000. Okay. So in my group, we were working on NPI for Marinette Quadrics. Those are the old technology, if you can recollect when Finman was there, we were the very first one in the world to really jump in. Nobody knew how to use Infin van in an HPC system. So that's how the Happy Project was born. And in fact, in super computing 2002 on this exhibition floor in Baltimore, we had the first demonstration, the open source happy, actually is running on an eight node infinite van clusters, eight no zeros. And that was a big challenge. But now over the years, I means we have continuously worked with all infinite van vendors, MPI Forum. >>We are a member of the MPI Forum and also all other network interconnect. So we have steadily evolved this project over the last 21 years. I'm very proud of my team members working nonstop, continuously bringing not only performance, but scalability. If you see now INFIN event are being deployed in 8,000, 10,000 node clusters, and many of these clusters actually use our software, stack them rapid. So, so we have done a lot of, like our focuses, like we first do research because we are in academia. We come up with good designs, we publish, and in six to nine months, we actually bring it to the open source version and people can just download and then use it. And that's how currently it's been used by more than 3000 orange in 90 countries. And, but the interesting thing is happening, your second part of the question. Now, as you know, the field is moving into not just hvc, but ai, big data, and we have those support. This is where like we look at the vision for the next 20 years, we want to design this MPI library so that not only HPC but also all other workloads can take advantage of it. >>Oh, we have seen libraries that become a critical develop platform supporting ai, TensorFlow, and, and the pie torch and, and the emergence of, of, of some sort of default languages that are, that are driving the community. How, how important are these frameworks to the, the development of the progress making progress in the HPC world? >>Yeah, no, those are great. I mean, spite our stencil flow, I mean, those are the, the now the bread and butter of deep learning machine learning. Am I right? But the challenge is that people use these frameworks, but continuously models are becoming larger. You need very first turnaround time. So how do you train faster? How do you do influencing faster? So this is where HPC comes in and what exactly what we have done is actually we have linked floor fighters to our happy page because now you see the MPI library is running on a million core system. Now your fighters and tenor four clan also be scaled to to, to those number of, large number of course and gps. So we have actually done that kind of a tight coupling and that helps the research to really take advantage of hpc. >>So if, if a high school student is thinking in terms of interesting computer science, looking for a place, looking for a university, Ohio State University, bruns, world renowned, widely known, but talk about what that looks like from a day on a day to day basis in terms of the opportunity for undergrad and graduate students to participate in, in the kind of work that you do. What is, what does that look like? And is, and is that, and is that a good pitch to for, for people to consider the university? >>Yes. I mean, we continuously, from a university perspective, by the way, the Ohio State University is one of the largest single campus in, in us, one of the top three, top four. We have 65,000 students. Wow. It's one of the very largest campus. And especially within computer science where I am located, high performance computing is a very big focus. And we are one of the, again, the top schools all over the world for high performance computing. And we also have very strength in ai. So we always encourage, like the new students who like to really work on top of the art solutions, get exposed to the concepts, principles, and also practice. Okay. So, so we encourage those people that wish you can really bring you those kind of experience. And many of my past students, staff, they're all in top companies now, have become all big managers. >>How, how long, how long did you say you've been >>At 31 >>Years? 31 years. 31 years. So, so you, you've had people who weren't alive when you were already doing this stuff? That's correct. They then were born. Yes. They then grew up, yes. Went to university graduate school, and now they're on, >>Now they're in many top companies, national labs, all over the universities, all over the world. So they have been trained very well. Well, >>You've, you've touched a lot of lives, sir. >>Yes, thank you. Thank >>You. We've seen really a, a burgeoning of AI specific hardware emerge over the last five years or so. And, and architectures going beyond just CPUs and GPUs, but to Asics and f PGAs and, and accelerators, does this excite you? I mean, are there innovations that you're seeing in this area that you think have, have great promise? >>Yeah, there is a lot of promise. I think every time you see now supercomputing technology, you see there is sometime a big barrier comes barrier jump. Rather I'll say, new technology comes some disruptive technology, then you move to the next level. So that's what we are seeing now. A lot of these AI chips and AI systems are coming up, which takes you to the next level. But the bigger challenge is whether it is cost effective or not, can that be sustained longer? And this is where commodity technology comes in, which commodity technology tries to take you far longer. So we might see like all these likes, Gaudi, a lot of new chips are coming up, can they really bring down the cost? If that cost can be reduced, you will see a much more bigger push for AI solutions, which are cost effective. >>What, what about on the interconnect side of things, obvi, you, you, your, your start sort of coincided with the initial standards for Infin band, you know, Intel was very, very, was really big in that, in that architecture originally. Do you see interconnects like RDMA over converged ethernet playing a part in that sort of democratization or commoditization of things? Yes. Yes. What, what are your thoughts >>There for internet? No, this is a great thing. So, so we saw the infinite man coming. Of course, infinite Man is, commod is available. But then over the years people have been trying to see how those RDMA mechanisms can be used for ethernet. And then Rocky has been born. So Rocky has been also being deployed. But besides these, I mean now you talk about Slingshot, the gray slingshot, it is also an ethernet based systems. And a lot of those RMA principles are actually being used under the hood. Okay. So any modern networks you see, whether it is a Infin and Rocky Links art network, rock board network, you name any of these networks, they are using all the very latest principles. And of course everybody wants to make it commodity. And this is what you see on the, on the slow floor. Everybody's trying to compete against each other to give you the best performance with the lowest cost, and we'll see whoever wins over the years. >>Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number of years in terms of the fastest supercomputer performance. How important do you think it is for the US to maintain leadership in this area? >>Big, big thing, significantly, right? We are saying that I think for the last five to seven years, I think we lost that lead. But now with the frontier being the number one, starting from the June ranking, I think we are getting that leadership back. And I think it is very critical not only for fundamental research, but for national security trying to really move the US to the leading edge. So I hope us will continue to lead the trend for the next few years until another new system comes out. >>And one of the gating factors, there is a shortage of people with data science skills. Obviously you're doing what you can at the university level. What do you think can change at the secondary school level to prepare students better to, for data science careers? >>Yeah, I mean that is also very important. I mean, we, we always call like a pipeline, you know, that means when PhD levels we are expecting like this even we want to students to get exposed to, to, to many of these concerts from the high school level. And, and things are actually changing. I mean, these days I see a lot of high school students, they, they know Python, how to program in Python, how to program in sea object oriented things. Even they're being exposed to AI at that level. So I think that is a very healthy sign. And in fact we, even from Ohio State side, we are always engaged with all this K to 12 in many different programs and then gradually trying to take them to the next level. And I think we need to accelerate also that in a very significant manner because we need those kind of a workforce. It is not just like a building a system number one, but how do we really utilize it? How do we utilize that science? How do we propagate that to the community? Then we need all these trained personal. So in fact in my group, we are also involved in a lot of cyber training activities for HPC professionals. So in fact, today there is a bar at 1 1 15 I, yeah, I think 1215 to one 15. We'll be talking more about that. >>About education. >>Yeah. Cyber training, how do we do for professionals? So we had a funding together with my co-pi, Dr. Karen Tom Cook from Ohio Super Center. We have a grant from NASA Science Foundation to really educate HPT professionals about cyber infrastructure and ai. Even though they work on some of these things, they don't have the complete knowledge. They don't get the time to, to learn. And the field is moving so fast. So this is how it has been. We got the initial funding, and in fact, the first time we advertised in 24 hours, we got 120 application, 24 hours. We couldn't even take all of them. So, so we are trying to offer that in multiple phases. So, so there is a big need for those kind of training sessions to take place. I also offer a lot of tutorials at all. Different conference. We had a high performance networking tutorial. Here we have a high performance deep learning tutorial, high performance, big data tutorial. So I've been offering tutorials at, even at this conference since 2001. Good. So, >>So in the last 31 years, the Ohio State University, as my friends remind me, it is properly >>Called, >>You've seen the world get a lot smaller. Yes. Because 31 years ago, Ohio, in this, you know, of roughly in the, in the middle of North America and the United States was not as connected as it was to everywhere else in the globe. So that's, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, but globally, and we talk about the world getting smaller, we're sort of in the thick of, of the celebratory seasons where, where many, many groups of people exchange gifts for varieties of reasons. If I were to offer you a holiday gift, that is the result of what AI can deliver the world. Yes. What would that be? What would, what would, what would the first thing be? This is, this is, this is like, it's, it's like the genie, but you only get one wish. >>I know, I know. >>So what would the first one be? >>Yeah, it's very hard to answer one way, but let me bring a little bit different context and I can answer this. I, I talked about the happy project and all, but recently last year actually we got awarded an S f I institute award. It's a 20 million award. I am the overall pi, but there are 14 universities involved. >>And who is that in that institute? >>What does that Oh, the I ici. C e. Okay. I cycle. You can just do I cycle.ai. Okay. And that lies with what exactly what you are trying to do, how to bring lot of AI for masses, democratizing ai. That's what is the overall goal of this, this institute, think of like a, we have three verticals we are working think of like one is digital agriculture. So I'll be, that will be my like the first ways. How do you take HPC and AI to agriculture the world as though we just crossed 8 billion people. Yeah, that's right. We need continuous food and food security. How do we grow food with the lowest cost and with the highest yield? >>Water >>Consumption. Water consumption. Can we minimize or minimize the water consumption or the fertilization? Don't do blindly. Technologies are out there. Like, let's say there is a weak field, A traditional farmer see that, yeah, there is some disease, they will just go and spray pesticides. It is not good for the environment. Now I can fly it drone, get images of the field in the real time, check it against the models, and then it'll tell that, okay, this part of the field has disease. One, this part of the field has disease. Two, I indicate to the, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. That has a big impact. So this is what we are developing in that NSF A I institute I cycle ai. We also have, we have chosen two additional verticals. One is animal ecology, because that is very much related to wildlife conservation, climate change, how do you understand how the animals move? Can we learn from them? And then see how human beings need to act in future. And the third one is the food insecurity and logistics. Smart food distribution. So these are our three broad goals in that institute. How do we develop cyber infrastructure from below? Combining HP c AI security? We have, we have a large team, like as I said, there are 40 PIs there, 60 students. We are a hundred members team. We are working together. So, so that will be my wish. How do we really democratize ai? >>Fantastic. I think that's a great place to wrap the conversation here On day three at Supercomputing conference 2022 on the cube, it was an honor, Dr. Panda working tirelessly at the Ohio State University with his team for 31 years toiling in the field of computer science and the end result, improving the lives of everyone on Earth. That's not a stretch. If you're in high school thinking about a career in computer science, keep that in mind. It isn't just about the bits and the bobs and the speeds and the feeds. It's about serving humanity. Maybe, maybe a little, little, little too profound a statement, I would argue not even close. I'm Dave Nicholson with the Queue, with my cohost Paul Gillin. Thank you again, Dr. Panda. Stay tuned for more coverage from the Cube at Super Compute 2022 coming up shortly. >>Thanks a lot.
SUMMARY :
Welcome back to The Cube's coverage of Supercomputing Conference 2022, And we have a wonderful guest with us this morning, Dr. Thanks a lot to But I wanted to talk to you specifically about a product project you've So in my group, we were working on NPI for So we have steadily evolved this project over the last 21 years. that are driving the community. So we have actually done that kind of a tight coupling and that helps the research And is, and is that, and is that a good pitch to for, So, so we encourage those people that wish you can really bring you those kind of experience. you were already doing this stuff? all over the world. Thank this area that you think have, have great promise? I think every time you see now supercomputing technology, with the initial standards for Infin band, you know, Intel was very, very, was really big in that, And this is what you see on the, Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number the number one, starting from the June ranking, I think we are getting that leadership back. And one of the gating factors, there is a shortage of people with data science skills. And I think we need to accelerate also that in a very significant and in fact, the first time we advertised in 24 hours, we got 120 application, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, I am the overall pi, And that lies with what exactly what you are trying to do, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. I think that's a great place to wrap the conversation here On
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Nicholson | PERSON | 0.99+ |
Paul Gillum | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Paul Gillin | PERSON | 0.99+ |
October of 2000 | DATE | 0.99+ |
Paul | PERSON | 0.99+ |
NASA Science Foundation | ORGANIZATION | 0.99+ |
2001 | DATE | 0.99+ |
Baltimore | LOCATION | 0.99+ |
8,000 | QUANTITY | 0.99+ |
14 universities | QUANTITY | 0.99+ |
31 years | QUANTITY | 0.99+ |
20 million | QUANTITY | 0.99+ |
24 hours | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Karen Tom Cook | PERSON | 0.99+ |
60 students | QUANTITY | 0.99+ |
Ohio State University | ORGANIZATION | 0.99+ |
90 countries | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
Panda | PERSON | 0.99+ |
today | DATE | 0.99+ |
65,000 students | QUANTITY | 0.99+ |
3,200 organizations | QUANTITY | 0.99+ |
North America | LOCATION | 0.99+ |
Python | TITLE | 0.99+ |
United States | LOCATION | 0.99+ |
Dallas, Texas | LOCATION | 0.99+ |
over 500 papers | QUANTITY | 0.99+ |
June | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
more than 32 organ | QUANTITY | 0.99+ |
120 application | QUANTITY | 0.99+ |
Ohio | LOCATION | 0.99+ |
more than 3000 orange | QUANTITY | 0.99+ |
first ways | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
nine months | QUANTITY | 0.99+ |
40 PIs | QUANTITY | 0.99+ |
Asics | ORGANIZATION | 0.99+ |
MPI Forum | ORGANIZATION | 0.98+ |
China | ORGANIZATION | 0.98+ |
Two | QUANTITY | 0.98+ |
Ohio State State University | ORGANIZATION | 0.98+ |
8 billion people | QUANTITY | 0.98+ |
Intel | ORGANIZATION | 0.98+ |
HP | ORGANIZATION | 0.97+ |
Dr. | PERSON | 0.97+ |
over 20 years | QUANTITY | 0.97+ |
US | ORGANIZATION | 0.97+ |
Finman | ORGANIZATION | 0.97+ |
Rocky | PERSON | 0.97+ |
Japan | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
first demonstration | QUANTITY | 0.96+ |
31 years ago | DATE | 0.96+ |
Ohio Super Center | ORGANIZATION | 0.96+ |
three broad goals | QUANTITY | 0.96+ |
one wish | QUANTITY | 0.96+ |
second part | QUANTITY | 0.96+ |
31 | QUANTITY | 0.96+ |
Cube | ORGANIZATION | 0.95+ |
eight | QUANTITY | 0.95+ |
over 31 years | QUANTITY | 0.95+ |
10,000 node clusters | QUANTITY | 0.95+ |
day three | QUANTITY | 0.95+ |
first | QUANTITY | 0.95+ |
INFIN | EVENT | 0.94+ |
seven years | QUANTITY | 0.94+ |
Dhabaleswar “DK” Panda | PERSON | 0.94+ |
three | QUANTITY | 0.93+ |
S f I institute | TITLE | 0.93+ |
first thing | QUANTITY | 0.93+ |
Anshu Sharma | AWS Summit New York 2022
(upbeat music) >> Man: We're good. >> Hey everyone. Welcome back to theCube's live coverage of AWS Summit NYC. We're in New York City, been here all day. Lisa Martin, John Furrier, talking with AWS partners ecosystem folks, customers, AWS folks, you name it. Next up, one of our alumni, rejoins us. Please welcome Anshu Sharma the co-founder and CEO of Skyflow. Anshu great to have you back on theCube. >> Likewise, I'm excited to be back. >> So I love how you guys founded this company. Your inspiration was the zero trust data privacy vault pioneered by two of our favorites, Apple and Netflix. You started with a simple question. What if privacy had an API? So you built a data privacy vault delivered as an API. Talk to us, and it's only in the last three and a half years. Talk to us about a data privacy vault and what's so unique about it. >> Sure. I think if you think about all the key challenges we are seeing in our personal lives when we are dealing with technology companies a lot of anxiety is around what happens to my data, right? If you want to go to a pharmacy they want to know not just your health ID number but they want to know your social security number your credit card number, your phone number and all of that information is actually useful because they need to be able to engage with you. And it's true for hospitals, health systems. It's true for your bank. It's true for pretty much anybody you do business with even an event like this. But then question that keeps coming up is where does this data go? And how is it protected? And the state of the art here has always been to keep kind of, keep it protected when it's in storage but almost all the breaches, all the hacks happen not because you've steal somebody's disc, but because someone enters through an API or a portal. So the question we asked was we've been building different shapes of containers for different types of data. You don't store your logs in a data warehouse. You don't store your analytical data in a regular RDBMS. Similarly, you don't store your passwords and usernames you store them in identity systems. So if PI is so special why isn't it a container that's used for storing PII? So that's how the idea of Pii.World came up. >> So you guys just got a recent funding, a series B financing which means for the folks out there that don't know the inside baseball, must people do, means you're doing well. It's hard to get that round of funding means you're up and growing to the right. What's the differentiator? Why are you guys so successful? Why the investment growth, what's the momentum driver? >> So I think in some ways we took one of the most complex problems, data privacy, like half the people can't even describe like, does data privacy mean like I have to be GDPR compliant or does it actually mean I'm protecting the data? So you have multiple stakeholders in any company. If you're a pharma company, you may have a chief privacy officer, a data officer, this officer, that officer, and all of these people were talking and the answer was buy more tools. So if you look around behind our back, there's probably dozens of companies out there. One protecting data in an API call another protecting data in a database, another one data warehouse. But as a CEO, CTO, I want to know what happens to my social security number from a customer end to end. So we said, if you can radically simplify the whole thing and the key insight was you can simplify it by actually isolating and protecting this data. And this architecture evolved on its own at companies like Apple and other places, but it takes dozens of engineers for those companies to build it out. So we like, well, the pattern will makes sense. It logically kind is just common sense. So instead of selling dozens of tools, we can just give you a very simple product, which is like one API call, you know, protect this data... >> So like Stripe is for a plugin for a financial transaction you plug it into the app, similar dynamic here, right? >> Exactly. So it's Stripe for payments, Twilio for Telephony. We have API for everything, but if you have social security numbers or pan numbers you still are like relying on DIY. So I think what differentiated us and attracted the investors was, if this works, >> It's huge. every company needs it. >> Well, that's the integration has become the key thing. I got to ask you because you mentioned GDPR and all the complexities around the laws and the different regulations. That could be a real blocker in a wet blanket for innovation. >> Anshu: Yes. >> And with the market we're seeing here at, at your Summit New York, small event. 10,000 people, more people here than were at Snowflake Summit as an example. And they're the hottest company in data. So this small little New York event is proven that that world is growing. So why should this wet blanket, these rules slow it down? How do you balance it? 'Cause that's a concern. If you checking all the boxes you're never actually building anything. >> So, you know, we just ran into a couple of customers who still are struggling with moving from the data center to AWS Cloud. Now the fact that here means they want to but something is holding them back. I also met the AI team of Amazon. They're doing some amazing work and they're like, the biggest hindrance for them is making customers feel safe when they do the machine learning. Because now you're opening up the data sets to more people. And in all of those cases your innovation basically stops because CSO is like, look you can't put PII in the cloud unprotected. And with the vault architecture we call it privacy by architecture. So there's a term called privacy by design. I'm like what the, is privacy by design, right? >> John: It's an architecture. (John laughing) >> But if you are an architecture and a developer like me I was like, I know what architecture is. I don't know what privacy by design is. >> So you guys are basically have that architecture by design which means foundational based services. So you're providing that as a service. So other people don't have to build the complex. >> Anshu: Exactly. >> You know that you will be Apple's backend team to build that privacy with you you get all that benefit. >> Exactly. And traditionally, people have had to make compromises. If you encrypt the data and secure it, then you can't use it. Using a proprietary polymorphic encryption technology you can actually have your cake and eat it to. So what that means for customers is, if you want to protect data in Snowflake or REDshare, use Skyflow with it. We have integrations to databases, to data lakes, all the common workflow tools. >> Can you give us a customer example that you think really articulates the value of what Skyflow is delivering? >> Well, I'll give you two examples. One in the FinTech space, one in the health space. So in the FinTech space this is a company called Nomi Health. They're a large payments processor for the health insurance market. And funnily enough, their CTO actually came from Goldman Sachs. He actually built apple card. (John laughing) Right? That if we all have in our phones. And he saw our product and he's like, for my new company, I'm going to just use you guys because I don't want to go hire 20 engineers. So for them, we had a HIPAA compliant environment a PCI compliant environment, SOC 2 compliant environment. And he can sleep better at night because he doesn't have to worry what is my engineer in Poland or Ukraine doing right now? I have a vault. I have rules set up. I can audit it. Everything is logged. Similarly for Science 37, they run clinical trials globally. They wanted to solve data residency. So for them the problem was, how do I run one common global instance? When the rules say you have to break everything up and that's very expensive. >> And so I love this. I'm a customer. For them a customer. I love it. You had me at hello, API integration. I love it. How much does it cost? What's it going to cost me? How do I need to think about my operationalizing? 'Cause I know with an API, I can do that. Am I paying by the usage, by the drink? How do I figure out? >> So we have programs for startups where it's really really inexpensive. We get them credits. And then for enterprises, we basically have a platform fee. And then based on the amount of data PII, we charge them. We don't nickel and dime the customers. We don't like the usage based model because, you don't know how many times you're going to hit an API. So we usually just based on the number of customer records that you have and you can hit them as many time as you want. There's no API limits. >> So unlimited record based. >> Exactly. that's your variable. >> Exactly. We think about you buying odd zero, for example, for authentication you pay them by the number of active users you have. So something similar. >> So you run on AWS, but you just announced a couple of new GTM partners, MuleSoft and plan. Can you talk to us about, start with MuleSoft? What are you doing and why? And the same with VLA? >> Sure. I mean, MuleSoft was very interesting customers who were adopting our products at, you know, we are buying this product for our new applications but what about our legacy code? We can't go in there and add APIs there. So the simplest way to do integration in the legacy world is to use an integration broker. So that's where MuleSoft integration came out and we announced that. It's a logical place for you to swap out real social security numbers with, you know, fake ones. And then we also announced a partnership with SnowFlake, same thing. I think every workload as it's moving to the cloud needs some kind of data protection with it. So I think going forward we are going to be announcing even more partnerships. So you can imagine all the places you're storing PII today whether it's in a call center solution or analytics solution, there's a PII story there. >> Talk about the integration aspect because I love the momentum. I get everything makes secure the customers all these environments, integrations are super important to plug into. And then how do I essentially operate you on my side? Do I import the records? How do you connect to my environment in my databases? >> So it's really, really easy when you encrypt the data and use Skyflow wall, we create what is called a format preserving token, which is essentially replacing a social security number with something that looks like an SSN but it's not. So that there's no schema changes involved. You just have to do that one time swap over and then in terms of integrations, most of these integrations are prebuilt. So Snowflake integration is prebuilt. MuleSoft integration is prebuilt. We're going to announce some new ones. So the goal is for off the table in platforms like Snowflake and MuleSoft, we prebuilt all the integrations. You can build your own. It takes about like a day. And then in terms of data import basically it's the same standard process that you would use with any other data store. >> Got to ask you about data breaches. Obviously the numbers in 2021 were huge. We're seeing so much change in the cyber security landscape ransomware becoming a household word, a matter of when but not if... How does Skyflow help organizations protect themselves or reduce the number of breaches so that they are not the next headline? >> You know, the funny thing about breaches is again and again, we see people doing the same mistakes, right? So Equifax had a breach four years ago where a customer portal, you know, no customer support rep should have access to a 100 million people's data. Like is that customer agent really accessing 100 million? But because we've been using legacy security tools they either give you access or don't give you access. And that's not how it's going to work. Because if I'm going to engage with the pharmacy and airline they need to be able to use my data in multiple different places. So you need to have fine grain controls around it. So I think the reason we keep getting breaches is cybersecurity industry is selling, 10s of billions of dollars worth of tools in the name of security but they cannot be applied at a fine grain level enough. I can't say things like for my call center agent that's living in Phoenix, Arizona they can only verify last four digits, but the same call center worker in Philippines can't even see that. So how do you get all that granular control in place? Is really why we keep seeing data breaches. So the Equifax breach, the Shopify breach the Twitter breaches, they're all the same. Like again and again, it's either an inside person or an external person who's gotten in. And once you're in and this is the whole idea of zero trust as you know. Once you're in, you can access all the data. Zero trust means that you don't assume that you actually isolate PII separately. >> A lot of the cybersecurity issues as you were talking about, are people based. Somebody clicking on something or gaining access. And I always talk to security experts about how do you control for the people aspect besides training, awareness, education. Is Skyflow a facilitator of that in a way that we haven't seen before? >> Yeah. So I think what ends up happening is, people even after they have breaches, they will lock down the system that had the breach, but then they have the same data sitting in a partner database, maybe a customer database maybe a billing system. So by centralizing and isolating PII in one system you can then post roles based access control rules. You can put limitations around it. But if you try to do that across hundreds of DS bases, you're just not going to be able to do it because it's basically just literally impossible, so... >> My final question for you is on, for me is you're here at AWS Summits, 10,000 people like I said. More people here than some big events and we're just in New York city. Okay. You actually work with AWS. What's next for you guys as you got the fresh funding, you guys looking for more talent, what's your next mountain you're going to climb? Tell us what's next for the company. Share your vision, put a plug in for the company. >> Well, it's actually very simple. Today we actually announced that we have a new chief revenue officer who's joining us. Tammy, she's joined us from LaunchDarkly which is it grew from like, you know, single digits to like over nine digits in revenue. And the reason she's joining Skyflow is because she sees the same inflection point hitting us. And for us that means more marketing, more sales, more growth in more geographies and more partnerships. And we think there's never been a better time to solve privacy. Literally everything that we deal with even things like rove evade issues eventually ties back into a issue around privacy. >> Lisa: Yes. >> AWS gets the model API, you know, come on, right? That's their model. >> Exactly. So I think if you look at the largest best companies that have been built in the last 20 years they took something that should have been simple but was not. There used to be Avayas of the world, selling Telephony intel, Twilio came and said, look an API. And we are trying to do the same to the entire security compliance and privacy industry is to narrow the problem down and solve it once. >> (indistinct) have it. We're going to get theCube API. (Lisa laughing) That's what we're going to do. All right. >> Thank you so much. >> Awesome. Anshu, thank you for joining us, talking to us about what's new at Skyflow. It sounds like you got that big funding investment. Probably lots of strategic innovation about to happen. So you'll have to come back in a few months and maybe at next reinvent in six months and tell us what's new, what's going on. >> Last theCube interview was very well received. People really like the kind of questions you guys asked. So I love this show and I think... >> It's great when you're a star like you, you got good market, great team, smart. I mean, look at this. I mean, what slow down are we talking about here? >> Yeah. I don't see... >> There is no slow down on the enterprise. >> Privacy's hot and it's incredibly important and we're only going to be seeing more and more of it. >> You can talk to any CIO, CSO, CTO or the board and they will tell you there is no limit to the budget they have for solving the core privacy issues. We love that. >> John: So you want to move on to building? >> Lisa: Obviously that must make you smile. >> John: You solved a big problem. >> Thank you. >> Awesome. Anshu, thank you again. Congrats on the momentum and we'll see you next time and hear more on the evolution of Skyflow. Thank you for your time. >> Thank you. >> For John furrier, I'm Lisa Martin. You're watching theCube live from New York City at AWS Summit NYC 22. We'll be right back with our next guest. So stick around. (upbeat music)
SUMMARY :
Anshu great to have you back on theCube. So I love how you guys So the question we asked was So you guys just got a recent funding, So we said, if you can radically but if you have social It's huge. I got to ask you because How do you balance it? the data sets to more people. (John laughing) But if you are an architecture So you guys are basically to build that privacy with you if you want to protect data When the rules say you Am I paying by the usage, by the drink? and you can hit them as that's your variable. of active users you have. So you run on AWS, So you can imagine all the How do you connect to my So the goal is for off the table Got to ask you about data breaches. So how do you get all that about how do you control But if you try to do that as you got the fresh funding, you know, single digits to like you know, come on, right? that have been built in the last 20 years We're going to get theCube API. It sounds like you got that of questions you guys asked. you got good market, great team, smart. down on the enterprise. and we're only going to be and they will tell you must make you smile. and we'll see you next time So stick around.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Poland | LOCATION | 0.99+ |
Ukraine | LOCATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tammy | PERSON | 0.99+ |
Anshu Sharma | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Philippines | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Anshu | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
New York City | LOCATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
SnowFlake | ORGANIZATION | 0.99+ |
2021 | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
100 million | QUANTITY | 0.99+ |
MuleSoft | ORGANIZATION | 0.99+ |
20 engineers | QUANTITY | 0.99+ |
Nomi Health | ORGANIZATION | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Shopify | ORGANIZATION | 0.99+ |
Equifax | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
Twilio | ORGANIZATION | 0.99+ |
100 million people | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
10,000 people | QUANTITY | 0.99+ |
GDPR | TITLE | 0.99+ |
dozens of tools | QUANTITY | 0.99+ |
Skyflow | ORGANIZATION | 0.99+ |
Snowflake | TITLE | 0.99+ |
HIPAA | TITLE | 0.99+ |
Phoenix, Arizona | LOCATION | 0.98+ |
four years ago | DATE | 0.98+ |
dozens of engineers | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
AWS Summit | EVENT | 0.98+ |
LaunchDarkly | ORGANIZATION | 0.98+ |
Skyflow | TITLE | 0.97+ |
Snowflake Summit | EVENT | 0.97+ |
John furrier | PERSON | 0.97+ |
Zero trust | QUANTITY | 0.97+ |
SOC 2 | TITLE | 0.96+ |
one system | QUANTITY | 0.95+ |
ORGANIZATION | 0.95+ | |
hundreds | QUANTITY | 0.95+ |
Telephony | ORGANIZATION | 0.95+ |
Pii.World | ORGANIZATION | 0.94+ |
six months | QUANTITY | 0.93+ |
AWS Summits | EVENT | 0.93+ |
Stripe | ORGANIZATION | 0.93+ |
10s of | QUANTITY | 0.93+ |
zero trust | QUANTITY | 0.92+ |
zero | QUANTITY | 0.92+ |
dozens of companies | QUANTITY | 0.91+ |
VLA | ORGANIZATION | 0.91+ |
MuleSoft | TITLE | 0.88+ |
Summit | EVENT | 0.87+ |
one time | QUANTITY | 0.87+ |
Breaking Analysis: H1 of ‘22 was ugly…H2 could be worse Here’s why we’re still optimistic
>> From theCUBE Studios in Palo Alto in Boston, bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two-year epic run in tech, 2022 has been an epically bad year. Through yesterday, The NASDAQ composite is down 30%. The S$P 500 is off 21%. And the Dow Jones Industrial average 16% down. And the poor holders at Bitcoin have had to endure a nearly 60% decline year to date. But judging by the attendance and enthusiasm, in major in-person tech events this spring. You'd never know that tech was in the tank. Moreover, walking around the streets of Las Vegas, where most tech conferences are held these days. One can't help but notice that the good folks of Main Street, don't seem the least bit concerned that the economy is headed for a recession. Hello, and welcome to this weeks Wiki Bond Cube Insights powered by ETR. In this Breaking Analysis we'll share our main takeaways from the first half of 2022. And talk about the outlook for tech going forward, and why despite some pretty concerning headwinds we remain sanguine about tech generally, but especially enterprise tech. Look, here's the bumper sticker on why many folks are really bearish at the moment. Of course, inflation is high, other than last year, the previous inflation high this century was in July of 2008, it was 5.6%. Inflation has proven to be very, very hard to tame. You got gas at $7 dollars a gallon. Energy prices they're not going to suddenly drop. Interest rates are climbing, which will eventually damage housing. Going to have that ripple effect, no doubt. We're seeing layoffs at companies like Tesla and the crypto names are also trimming staff. Workers, however are still in short supply. So wages are going up. Companies in retail are really struggling with the right inventory, and they can't even accurately guide on their earnings. We've seen a version of this movie before. Now, as it pertains to tech, Crawford Del Prete, who's the CEO of IDC explained this on theCUBE this very week. And I thought he did a really good job. He said the following, >> Matt, you have a great statistic that 80% of companies used COVID as their point to pivot into digital transformation. And to invest in a different way. And so what we saw now is that tech is now where I think companies need to focus. They need to invest in tech. They need to make people more productive with tech and it played out in the numbers. Now so this year what's fascinating is we're looking at two vastly different markets. We got gasoline at $7 a gallon. We've got that affecting food prices. Interesting fun fact recently it now costs over $1,000 to fill an 18 wheeler. All right, based on, I mean, this just kind of can't continue. So you think about it. >> Don't put the boat in the water. >> Yeah, yeah, yeah. Good luck if ya, yeah exactly. So a family has kind of this bag of money, and that bag of money goes up by maybe three, 4% every year, depending upon earnings. So that is sort of sloshing around. So if food and fuel and rent is taking up more, gadgets and consumer tech are not, you're going to use that iPhone a little longer. You're going to use that Android phone a little longer. You're going to use that TV a little longer. So consumer tech is getting crushed, really it's very, very, and you saw it immediately in ad spending. You've seen it in Meta, you've seen it in Facebook. Consumer tech is doing very, very, it is tough. Enterprise tech, we haven't been in the office for two and a half years. We haven't upgraded whether that be campus wifi, whether that be servers, whether that be commercial PCs as much as we would have. So enterprise tech, we're seeing double digit order rates. We're seeing strong, strong demand. We have combined that with a component shortage, and you're seeing some enterprise companies with a quarter of backlog, I mean that's really unheard of. >> And higher prices, which also profit. >> And therefore that drives up the prices. >> And this is a theme that we've heard this year at major tech events, they've really come roaring back. Last year, theCUBE had a huge presence at AWS Reinvent. The first Reinvent since 2019, it was really well attended. Now this was before the effects of the omicron variant, before they were really well understood. And in the first quarter of 2022, things were pretty quiet as far as tech events go But theCUBE'a been really busy this spring and early into the summer. We did 12 physical events as we're showing here in the slide. Coupa, did Women in Data Science at Stanford, Coupa Inspire was in Las Vegas. Now these are both smaller events, but they were well attended and beat expectations. San Francisco Summit, the AWS San Francisco Summit was a bit off, frankly 'cause of the COVID concerns. They were on the rise, then we hit Dell Tech World which was packed, it had probably around 7,000 attendees. Now Dockercon was virtual, but we decided to include it here because it was a huge global event with watch parties and many, many tens of thousands of people attending. Now the Red Hat Summit was really interesting. The choice that Red Hat made this year. It was purposefully scaled down and turned into a smaller VIP event in Boston at the Western, a couple thousand people only. It was very intimate with a much larger virtual presence. VeeamON was very well attended, not as large as previous VeeamON events, but again beat expectations. KubeCon and Cloud Native Con was really successful in Spain, Valencia, Spain. PagerDuty Summit was again a smaller intimate event in San Francisco. And then MongoDB World was at the new Javits Center and really well attended over the three day period. There were lots of developers there, lots of business people, lots of ecosystem partners. And then the Snowflake summit in Las Vegas, it was the most vibrant from the standpoint of the ecosystem with nearly 10,000 attendees. And I'll come back to that in a moment. Amazon re:Mars is the Amazon AI robotic event, it's smaller but very, very cool, a lot of innovation. And just last week we were at HPE Discover. They had around 8,000 people attending which was really good. Now I've been to over a dozen HPE or HPE Discover events, within Europe and the United States over the past decade. And this was by far the most vibrant, lot of action. HPE had a little spring in its step because the company's much more focused now but people was really well attended and people were excited to be there, not only to be back at physical events, but also to hear about some of the new innovations that are coming and HPE has a long way to go in terms of building out that ecosystem, but it's starting to form. So we saw that last week. So tech events are back, but they are smaller. And of course now a virtual overlay, they're hybrid. And just to give you some context, theCUBE did, as I said 12 physical events in the first half of 2022. Just to compare that in 2019, through June of that year we had done 35 physical events. Yeah, 35. And what's perhaps more interesting is we had our largest first half ever in our 12 year history because we're doing so much hybrid and virtual to compliment the physical. So that's the new format is CUBE plus digital or sometimes just digital but that's really what's happening in our business. So I think it's a reflection of what's happening in the broader tech community. So everyone's still trying to figure that out but it's clear that events are back and there's no replacing face to face. Or as I like to say, belly to belly, because deals are done at physical events. All these events we've been to, the sales people are so excited. They're saying we're closing business. Pipelines coming out of these events are much stronger, than they are out of the virtual events but the post virtual event continues to deliver that long tail effect. So that's not going to go away. The bottom line is hybrid is the new model. Okay let's look at some of the big themes that we've taken away from the first half of 2022. Now of course, this is all happening under the umbrella of digital transformation. I'm not going to talk about that too much, you've had plenty of DX Kool-Aid injected into your veins over the last 27 months. But one of the first observations I'll share is that the so-called big data ecosystem that was forming during the hoop and around, the hadoop infrastructure days and years. then remember it dispersed, right when the cloud came in and kind of you know, not wiped out but definitely dampened the hadoop enthusiasm for on-prem, the ecosystem dispersed, but now it's reforming. There are large pockets that are obviously seen in the various clouds. And we definitely see a ecosystem forming around MongoDB and the open source community gathering in the data bricks ecosystem. But the most notable momentum is within the Snowflake ecosystem. Snowflake is moving fast to win the day in the data ecosystem. They're providing a single platform that's bringing different data types together. Live data from systems of record, systems of engagement together with so-called systems of insight. These are converging and while others notably, Oracle are architecting for this new reality, Snowflake is leading with the ecosystem momentum and a new stack is emerging that comprises cloud infrastructure at the bottom layer. Data PaaS layer for app dev and is enabling an ecosystem of partners to build data products and data services that can be monetized. That's the key, that's the top of the stack. So let's dig into that further in a moment but you're seeing machine intelligence and data being driven into applications and the data and application stacks they're coming together to support the acceleration of physical into digital. It's happening right before our eyes in every industry. We're also seeing the evolution of cloud. It started with the SaaS-ification of the enterprise where organizations realized that they didn't have to run their own software on-prem and it made sense to move to SaaS for CRM or HR, certainly email and collaboration and certain parts of ERP and early IS was really about getting out of the data center infrastructure management business called that cloud 1.0, and then 2.0 was really about changing the operating model. And now we're seeing that operating model spill into on-prem workloads finally. We're talking about here about initiatives like HPE's Green Lake, which we heard a lot about last week at Discover and Dell's Apex, which we heard about in May, in Las Vegas. John Furrier had a really interesting observation that basically this is HPE's and Dell's version of outposts. And I found that interesting because outpost was kind of a wake up call in 2018 and a shot across the bow at the legacy enterprise infrastructure players. And they initially responded with these flexible financial schemes, but finally we're seeing real platforms emerge. Again, we saw this at Discover and at Dell Tech World, early implementations of the cloud operating model on-prem. I mean, honestly, you're seeing things like consoles and billing, similar to AWS circa 2014, but players like Dell and HPE they have a distinct advantage with respect to their customer bases, their service organizations, their very large portfolios, especially in the case of Dell and the fact that they have more mature stacks and knowhow to run mission critical enterprise applications on-prem. So John's comment was quite interesting that these firms are basically building their own version of outposts. Outposts obviously came into their wheelhouse and now they've finally responded. And this is setting up cloud 3.0 or Supercloud, as we like to call it, an abstraction layer, that sits above the clouds that serves as a unifying experience across a continuum of on-prem across clouds, whether it's AWS, Azure, or Google. And out to both the near and far edge, near edge being a Lowes or a Home Depot, but far edge could be space. And that edge again is fragmented. You've got the examples like the retail stores at the near edge. Outer space maybe is the far edge and IOT devices is perhaps the tiny edge. No one really knows how the tiny edge is going to play out but it's pretty clear that it's not going to comprise traditional X86 systems with a cool name tossed out to the edge. Rather, it's likely going to require a new low cost, low power, high performance architecture, most likely RM based that will enable things like realtime AI inferencing at that edge. Now we've talked about this a lot on Breaking Analysis, so I'm not going to double click on it. But suffice to say that it's very possible that new innovations are going to emerge from the tiny edge that could really disrupt the enterprise in terms of price performance. Okay, two other quick observations. One is that data protection is becoming a much closer cohort to the security stack where data immutability and air gaps and fast recovery are increasingly becoming a fundamental component of the security strategy to combat ransomware and recover from other potential hacks or disasters. And I got to say from our observation, Veeam is leading the pack here. It's now claiming the number one revenue spot in a statistical dead heat with the Dell's data protection business. That's according to Veeam, according to IDC. And so that space continues to be of interest. And finally, Broadcom's acquisition of Dell. It's going to have ripple effects throughout the enterprise technology business. And there of course, there are a lot of questions that remain, but the one other thing that John Furrier and I were discussing last night John looked at me and said, "Dave imagine if VMware runs better on Broadcom components and OEMs that use Broadcom run VMware better, maybe Broadcom doesn't even have to raise prices on on VMware licenses. Maybe they'll just raise prices on the OEMs and let them raise prices to the end customer." Interesting thought, I think because Broadcom is so P&L focused that it's probably not going to be the prevailing model but we'll see what happens to some of the strategic projects rather like Monterey and Capitola and Thunder. We've talked a lot about project Monterey, the others we'll see if they can make the cut. That's one of the big concerns because it's how OEMs like the ones that are building their versions of outposts are going to compete with the cloud vendors, namely AWS in the future. I want to come back to the comment on the data stack for a moment that we were talking about earlier, we talked about how the big data ecosystem that was once coalescing around hadoop dispersed. Well, the data value chain is reforming and we think it looks something like this picture, where cloud infrastructure lives at the bottom. We've said many times the cloud is expanding and evolving. And if companies like Dell and HPE can truly build a super cloud infrastructure experience then they will be in a position to capture more of the data value. If not, then it's going to go to the cloud players. And there's a live data layer that is increasingly being converged into platforms that not only simplify the movement in ELTing of data but also allow organizations to compress the time to value. Now there's a layer above that, we sometimes call it the super PaaS layer if you will, that must comprise open source tooling, partners are going to write applications and leverage platform APIs and build data products and services that can be monetized at the top of the stack. So when you observe the battle for the data future it's unlikely that any one company is going to be able to do this all on their own, which is why I often joke that the 2020s version of a sweaty Steve Bomber running around the stage, screaming, developers, developers developers, and getting the whole audience into it is now about ecosystem ecosystem ecosystem. Because when you need to fill gaps and accelerate features and provide optionality a list of capabilities on the left hand side of this chart, that's going to come from a variety of different companies and places, we're talking about catalogs and AI tools and data science capabilities, data quality, governance tools and it should be of no surprise to followers of Breaking Analysis that on the right hand side of this chart we're including the four principles of data mesh, which of course were popularized by Zhamak Dehghani. So decentralized data ownership, data as products, self-serve platform and automated or computational governance. Now whether this vision becomes a reality via a proprietary platform like Snowflake or somehow is replicated by an open source remains to be seen but history generally shows that a defacto standard for more complex problems like this is often going to emerge prior to an open source alternative. And that would be where I would place my bets. Although even that proprietary platform has to include open source optionality. But it's not a winner take all market. It's plenty of room for multiple players and ecosystem innovators, but winner will definitely take more in my opinion. Okay, let's close with some ETR data that looks at some of those major platform plays who talk a lot about digital transformation and world changing impactful missions. And they have the resources really to compete. This is an XY graphic. It's a view that we often show, it's got net score on the vertical access. That's a measure of spending momentum, and overlap or presence in the ETR survey. That red, that's the horizontal access. The red dotted line at 40% indicates that the platform is among the highest in terms of spending velocity. Which is why I always point out how impressive that makes AWS and Azure because not only are they large on the horizontal axis, the spending momentum on those two platforms rivals even that of Snowflake which continues to lead all on the vertical access. Now, while Google has momentum, given its goals and resources, it's well behind the two leaders. We've added Service Now and Salesforce, two platform names that have become the next great software companies. Joining likes of Oracle, which we show here and SAP not shown along with IBM, you can see them on this chart. We've also plotted MongoDB, which we think has real momentum as a company generally but also with Atlas, it's managed cloud database as a service specifically and Red Hat with trying to become the standard for app dev in Kubernetes environments, which is the hottest trend right now in application development and application modernization. Everybody's doing something with Kubernetes and of course, Red Hat with OpenShift wants to make that a better experience than do it yourself. The DYI brings a lot more complexity. And finally, we've got HPE and Dell both of which we've talked about pretty extensively here and VMware and Cisco. Now Cisco is executing on its portfolio strategy. It's got a lot of diverse components to its company. And it's coming at the cloud of course from a networking and security perspective. And that's their position of strength. And VMware is a staple of the enterprise. Yes, there's some uncertainty with regards to the Broadcom acquisition, but one thing is clear vSphere isn't going anywhere. It's entrenched and will continue to run lots of IT for years to come because it's the best platform on the planet. Now, of course, these are just some of the players in the mix. We expect that numerous non-traditional technology companies this is important to emerge as new cloud players. We've put a lot of emphasis on the data ecosystem because to us that's really going to be the main spring of digital, i.e., a digital company is a data company and that means an ecosystem of data partners that can advance outcomes like better healthcare, faster drug discovery, less fraud, cleaner energy, autonomous vehicles that are safer, smarter, more efficient grids and factories, better government and virtually endless litany of societal improvements that can be addressed. And these companies will be building innovations on top of cloud platforms creating their own super clouds, if you will. And they'll come from non-traditional places, industries, finance that take their data, their software, their tooling bring them to their customers and run them on various clouds. Okay, that's it for today. Thanks to Alex Myerson, who is on production and does the podcast for Breaking Analysis, Kristin Martin and Cheryl Knight, they help get the word out. And Rob Hoofe is our editor and chief over at Silicon Angle who helps edit our posts. Remember all these episodes are available as podcasts wherever you listen. All you got to do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me at dvellante, or comment on my LinkedIn posts. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE's Insights powered by ETR. Thanks for watching be well. And we'll see you next time on Breaking Analysis. (upbeat music)
SUMMARY :
This is Breaking Analysis that the good folks of Main Street, and it played out in the numbers. haven't been in the office And higher prices, And therefore that is that the so-called big data ecosystem
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Rob Hoofe | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
July of 2008 | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
5.6% | QUANTITY | 0.99+ |
Matt | PERSON | 0.99+ |
Spain | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Boston | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Monterey | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
12 year | QUANTITY | 0.99+ |
2018 | DATE | 0.99+ |
Discover | ORGANIZATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2019 | DATE | 0.99+ |
May | DATE | 0.99+ |
June | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
Last year | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
Crawford Del Prete | PERSON | 0.99+ |
30% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
HPE | ORGANIZATION | 0.99+ |
12 physical events | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
KubeCon | EVENT | 0.99+ |
last week | DATE | 0.99+ |
United States | LOCATION | 0.99+ |
Android | TITLE | 0.99+ |
Dockercon | EVENT | 0.99+ |
40% | QUANTITY | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
35 physical events | QUANTITY | 0.99+ |
Steve Bomber | PERSON | 0.99+ |
Capitola | ORGANIZATION | 0.99+ |
Cloud Native Con | EVENT | 0.99+ |
Red Hat Summit | EVENT | 0.99+ |
two leaders | QUANTITY | 0.99+ |
San Francisco Summit | EVENT | 0.99+ |
last year | DATE | 0.99+ |
21% | QUANTITY | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Veeam | ORGANIZATION | 0.99+ |
yesterday | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
VeeamON | EVENT | 0.99+ |
this year | DATE | 0.99+ |
16% | QUANTITY | 0.99+ |
$7 a gallon | QUANTITY | 0.98+ |
each week | QUANTITY | 0.98+ |
over $1,000 | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
PagerDuty Summit | EVENT | 0.98+ |
Katie Laughlin, IQVIA & Prasanna Krishnan, Snowflake | Snowflake Summit 2022
(upbeat music) >> Hey everyone. Welcome back to the show floor in Las Vegas Snowflake Summit 22 with 7,000 plus folks here, Lisa Martin with Dave Vellante. Great to be back in person. We're excited to welcome a couple of guests that join us next. Persona Christian is here. The director of product for collaboration and Snowflake marketplace. Katie Laughlin joins us as well. The Global Head Offerings, Human Data Science Cloud at Customer IQVIA. Ladies, welcome to the program. >> Thank you. >> Thank you for having us. >> Dave: All right. Thanks for coming on. >> Katie, let's go ahead and start with you. Give the audience an overview of IQVIA. What you guys do, your mission, what you deliver? >> Yeah, sure. So, IQVIA is a healthcare focused data analytics and clinical research organization. We have 82,000 employees. We operate in a hundred countries and we have tens of thousands of data deliverables that we curate for our customers and deliver to them on a monthly basis. So, we're 100% healthcare focused, whether it's clinical research, helping our customers support their clinical trials, real world evidence, how are medicines operating in the market or commercial aspects. You know, how is your company performing overall in the market? >> How long have you been a customer of Snowflake's? >> A few years. Yeah. >> A few years, okay. Persona, tremendous growth going on right now. There's a rocket ship. You could even feel kind of like the whiplash from the keynote and all the announcements going on, but looking at the first quarter 23, fiscal 23 results, product revenue, 384 million, 85% growth tremendous momentum going on, big growth in customers. Talk to us about IQVIA, its partnership with Snowflake and the data driver award program. They, they just won. >> Yeah, absolutely. I'll start with a little bit about the Snowflake collaboration capabilities, which enable these thousands of customers to really collaborate on the data cloud to be able to break down silos between data and drive business decisions based on data and applications that live outside your own four walls as well. And this is where IQVIA, as a leader in healthcare data, bringing together data to enable healthcare organizations to be more data driven and to really drive insights. One, the data for good award, which we are really excited with for the partnership and really excited to have IQVIA be the winner of the award. >> And what does that mean? The data for good. We always love talking about that, Katie. >> Katie: Sure. What does that mean? How is that embodied at IQVIA? >> Can you say the last part? >> Yeah. How is that embodied at IQVIA? >> That's a great question. I think everyone that works at IQVIA believes in the mission, which is really to drive healthcare forward. We're really proud of a lot of the things that we do. So, with the advent of COVID, for example, we really had to pivot and help our customers. How do we keep executing on clinical trials? We supported a lot of the COVID trials that came forward and helped our customers understand how is this affecting patients in the real world? And how is it affecting your commercial operations? So, being in Vegas with tens of thousands of people around and almost nobody wearing masks, I think to myself, I'm part of the organization an organization that helped make that possible. >> So Frank Slootman today, Katie talked about compress. He talked about one pharmaceutical compressing from nine years to seven years, you guys have done a lot of obviously contract research over the years. So, what has that Snowflake journey been like? What's been the business impact of of working with that and the collaboration? >> Yeah. So my focus is really around our data as a service offering, which is where we're enabling our customers to ingest their data in modern ways. So if you imagine, you know, we've done everything from paper to big tapes of data for over 60 years of of our company being in business, now to VPN, SFTP, making multiple hops of data from one end to the other. I was just learning about one of our use cases where we're able to cut down processing time for our customers for two weeks. They data share some data with us. We do some additional processing on that. We serve it back to them and we're saving them two weeks of time to gain time to insights. >> Right. And Prasanna, collaboration transcends data sharing, right? It's almost like it's, that's, that's sort of the the first, the core of the concentric circle, right? >> Prasanna: Yeah. >> Talk about what else is embodied in collaboration. >> Yeah, that's a great question. So the first problem that we solved was getting access to data through our core sharing technology. And as you were talking about Katie, replacing FTPs and having to build APIs, which were cumbersome, and instead being able to access data on the data cloud without having to copy or move anything. That was the core sharing technology. But that solves the first problem, which is the access problem. The second problem is how do I discover what what's out there? How do I better understand it? How do I evaluate it? How do I try it and buy it? And those are all the problems that we're solving with the marketplace, which is now home to both data and applications that you can discover, try, and buy. >> Katie, talk to us about what IQVIA was doing before Snowflake? What was that life like before? How were you enabling customers to leverage data to make data driven decisions? >> Yeah, so we, as I said, we're a data and analytics company. So we provide some native analytics capabilities to our customers, but most customers, most of the large customers I would say, they're building their own data lakes. They have their own ecosystems. Some of them are adopting Snowflake and we really needed to partner with them on being able to get the data to them as quickly as possible. So like, I, I was just describing a minute ago we would have multiple hops where we deliver to a location, customer ingests it, customer does their QC. Then they process it and then it appears in their data warehouse. And now we're able to adopt their QC protocols within our own platform and deliver the data to them much more quickly. >> And what does that enable to your business from an outcomes perspective? If you look at overall Snowflake as an engine what is it enabling and empowering IQVIA to accomplish? >> So it helps us partner with our customers in modern ways. So I'm saying we've been in the data business for 60 years. So it's sometimes it's a legacy behemoth that you need to bring along to modern times. And I think for us, the shift has been night and day in terms of Snowflake's capabilities. >> So you will build data based apps in the Snowflake data cloud? Is that, is that where you're headed? >> Yes. So we have several applications that we built natively on Snowflake that we offer to our customers. >> And what will that bring you that you kind of couldn't do before? >> That we couldn't do before? I think the the ability to, we talk a lot about how you spend 80% of your time cooking the data, right? Getting it ready for insights and only 20% of your time being able to to bring those insights forward and Snowflake, it really helps us flip that ratio so that we don't have to worry so much about the scaling and the infrastructure and the data sourcing. We can focus more on driving those insights and innovations. >> So Prasanna, we talk a lot about, you have this application stack over here and it sends a database over here and then you have an analytics stack. It seems like you're enabling those worlds to come together. Is that, is that by design? Is that more organic? Can you talk about that? >> Yeah. I mean, that is essential to our our mission and our value prop is to bring it together. It's one product, it's seamless and lets you do more with your data. Benoit talked today in the opening keynote about running multiple workloads on your data and the way you do that is by having one product that allows you to to run your data, data queries but also build applications that can run against that data. >> Katie, can you share a little bit about the partnership? We'll say collaboration that IQVIA has with Snowflake in terms of your ability to influence the roadmap in the direction. We heard a lot of customer stories in the keynote and they talked a lot about Frank Slootman did, Benoit, Christian. We are listening to our customers. Do you feel that as a, a customer for the last few years? >> Yeah, absolutely. So we have a really broad partnership with Snowflake. We're a customer. We have OEM licensing where we're building applications on top of Snowflake. We're an SI partner where we're marrying our data healthcare expertise along with Snowflake technology expertise and helping customers build and utilize the data internally and as well as just, if nothing else, the Snowflake data share in order to deliver the data into their environment. >> Prasanna, what do you look for in a data driver winner? Like what stood out about IQVIA and others that aspire to that, what should they be focused on? >> Yeah, I mean, you know, we ultimately think that in every business you have business needs that you're trying to solve and business is inherently collaborative. You never solve problems with just what you have within your own four walls. And IQVIA is an example of someone that's really enabling outcomes for healthcare companies to be much faster through live access to data. Which is what we want to accomplish for the data cloud, help our company, help our customers solve business needs. >> Every company has to be a data company these days, right? There's no, you have no choice. We talked about, you know, software eating the world a few years. Now we're talking about data eating the world. For organizations, it's in any any vertical healthcare, life sciences, retail, finance. It's essential to not just have data, live data access to it, to be able to extract insights from it that you can act on. Talk about what you are doing at Snowflake as a differentiator? Is that goal of becoming the defacto standard data platform and what that enables partners like IQVIA to accomplish? >> Yeah. It starts with our fundamental architecture, which allows you to collaborate and access data without creating copies of it or sending around copies and built on top of that now, the ability to build applications and to monetize them really enables our customers to do more with their data and to monetize it and to be able to distribute it without having to deal with all the plumbing. >> That's nice. That saves you a lot of time. What do you think when you, Katie, if you talk to people that are your peers in either healthcare or other industries, what are like the top couple of recommendations that you would have for them? We have a data problem. It's all a data problem. How do we actually leverage value from this fast so we can be competitive? >> Yeah. So I think if I were to advise someone who is thinking about commercializing their data set, when if they haven't before, you know, you have to think about good data governance protocols, good data cataloging. Make sure you're, you know, conforming to all of the privacy rules that you need to and overseeing the management of that data, any changes in the data, you know, delivering that both to internal and external customers. But I think, just a quick plug for Snowflake, what I would say on a personal level is that their partner first mentality really is a pleasure, makes it a pleasure to work with them and makes it really easy for us to enable our services through, through Snowflake. >> Frank Slootman talked about mission alignment this morning, kind of a mission I thought of, of aligning on with the missions of their customers and partners. It sounds like that's what Katie's talking about from a cultural perspective. You've got that alignment here? >> Yes, absolutely. You know, we work with our partners to enable our customers to drive business value and solve the needs of their industry. >> What are some of the things that you are excited about? Fourth Annual Summit. We, I, I said 7,000 plus people we'll get numbers kind of later on. What are you excited about finally being back in person? >> Yes, of course. >> Being able to access this hugely growing population of customers and partners, what excites you about this Summit 22? >> What excites me most is the fact that we are now enabling our customers to do more, to build applications which has been a big theme at Summit, but also to be able to distribute and monetize this. So as Frank talked about this morning, helping customers drive value and more value from, from their data. >> Critical. Katie, last question for you. If we look at all the,it was a very technical keynote this morning. You talked about the great partnership, the synergies the alignment that IQVIA has with Snowflake. What are you excited about in terms of hearing and seeing and feeling and touching this week at Summit? >> Well, yesterday we won an award for Data Marketplace. Marketplace Partner of the year for healthcare and life sciences. That was really exciting for us. It was great recognition for us in terms of how we've been able to modernize on the cloud. But I'm really excited to see how much the Snowflake business has grown as well. Our General Manager for information management was telling me, he said, when I come to this conference a couple of years ago it was only a few thousand people and now it's really, it's really grown and really taken off. And it's really exciting to see how many of the different partnerships are interacting and and that we're able to take advantage of as well. >> Yeah, I think we heard earlier this morning that the first summit four years ago was a couple thousand people. Now here we are eight, eight to ten. We've also seen, Persona, I mentioned some of the product revenue numbers for fiscal 23 Q1. I also noticed that in the last four years, the number percentage of customers with a million plus ARR is grown over 1200%. Number of customers is growing, the high value customers are growing. It seems like you're on a rocket ship here with Snowflake. Would you agree? >> Yeah. We're excited with all the value that we're bringing to our customers and the growth we're seeing. >> Dave: Yeah. Way to amp it up. >> Yeah, absolutely. >> Excellent. Ladies, thank you so much for joining us talking about the partnership with IQVIA and Snowflake. Congratulations again. >> Katie: Thank you. >> Katie, on IQVIA winning the data driver award, Data for good >> Great to hear what you're doing together and how you're enabling organizations in the healthcare industry to maximize the value of data. We appreciate your insights. >> Thank you. >> Dave: Thank you guys. >> Thanks. >> For our guests, Dave Vellante, I'm Lisa Martin. You're watching the Cube's live coverage from Las Vegas of Snowflake Summit 22. Stick around, Dave and I will be right back with our next guest.
SUMMARY :
Great to be back in person. Thanks for coming on. What you guys do, your in the market or commercial aspects. Yeah. and the data driver award program. of customers to really And what does that mean? is that embodied at IQVIA? of the things that we do. and the collaboration? of time to gain time to insights. the first, the core of the Talk about what else is and applications that you most of the large customers I would say, legacy behemoth that you that we built natively on Snowflake that and the data sourcing. and then you have an analytics stack. and the way you do that is in the direction. in order to deliver the what you have within your own four walls. from it that you can act on. the ability to build applications to people that are your of the privacy rules that you need to on with the missions of and solve the needs of their industry. What are some of the things that enabling our customers to do You talked about the great partnership, Marketplace Partner of the year that the first summit four the value that we're bringing talking about the partnership in the healthcare industry to from Las Vegas of Snowflake Summit 22.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Katie | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Katie Laughlin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Frank | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
IQVIA | ORGANIZATION | 0.99+ |
Benoit | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
Prasanna | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
Vegas | LOCATION | 0.99+ |
Prasanna Krishnan | PERSON | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
nine years | QUANTITY | 0.99+ |
60 years | QUANTITY | 0.99+ |
85% | QUANTITY | 0.99+ |
first problem | QUANTITY | 0.99+ |
eight | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
second problem | QUANTITY | 0.99+ |
82,000 employees | QUANTITY | 0.99+ |
one product | QUANTITY | 0.99+ |
384 million | QUANTITY | 0.99+ |
fiscal 23 Q1 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
over 60 years | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
ten | QUANTITY | 0.99+ |
7,000 plus folks | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Snowflake Summit 22 | EVENT | 0.99+ |
Summit 22 | EVENT | 0.98+ |
four years ago | DATE | 0.98+ |
seven years | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
over 1200% | QUANTITY | 0.98+ |
COVID | OTHER | 0.98+ |
couple | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
Christian | PERSON | 0.97+ |
a minute ago | DATE | 0.97+ |
Snowflake Summit 2022 | EVENT | 0.97+ |
Snowflake | EVENT | 0.97+ |
20% | QUANTITY | 0.97+ |
Snowflake | TITLE | 0.97+ |
first | QUANTITY | 0.97+ |
Mani Thiru, AWS | Women in Tech: International Women's Day
>>Mm. >>Okay. Hello, and welcome to the Cubes Coverage of the International Women in Tech Showcase featuring National Women's Day. I'm John for a host of the Cube. We have a great guest here of any theory a PJ head of aerospace and satellite for A W S A P J s Asia Pacific in Japan. Great to have you on many thanks for joining us. Talk about Space and International Women's Day. Thanks for coming on. >>Thanks, John. It's such a pleasure to be here with you. >>So obviously, aerospace space satellite is an area that's growing. It's changing. AWS has made a lot of strides closure, and I had a conversation last year about this. Remember when Andy Jassy told me about this initiative to 2.5 years or so ago? It was like, Wow, that makes a lot of sense Ground station, etcetera. So it just makes a lot of sense, a lot of heavy lifting, as they say in the satellite aerospace business. So you're leading the charge over there in a p J. And you're leading women in space and beyond. Tell us what's the Storey? How did you get there? What's going on. >>Thanks, John. Uh, yes. So I need the Asia Pacific business for Clint, um, as part of Amazon Web services, you know, that we have in industry business vertical that's dedicated to looking after our space and space customers. Uh, my journey began really? Three or four years ago when I started with a W s. I was based out of Australia. Uh, and Australia had a space agency that was being literally being born. Um, and I had the great privilege of meeting the country's chief scientist. At that point. That was Dr Alan Finkel. Uh, and we're having a conversation. It was really actually an education conference. And it was focused on youth and inspiring the next generation of students. Uh, and we hit upon space. Um, and we had this conversation, and at that stage, we didn't have a dedicated industry business vertical at A W s well supported space customers as much as we did many other customers in the sector, innovative customers. And after the conversation with Dr Finkel, um, he offered to introduce me, uh, to Megan Clark, who was back back then the first CEO of the Australian Space Agency. So that's literally how my journey into space started. We had a conversation. We worked out how we could possibly support the Australian Space Agency's remit and roadmap as they started growing the industry. Uh, and then a whole industry whole vertical was set up, clinic came on board. I have now a global team of experts around me. Um, you know, they've pretty much got experience from everything creating building a satellite, launching a satellite, working out how to down link process all those amazing imagery that we see because, you know, um, contrary to what a lot of people think, Uh, space is not just technology for a galaxy far, far away. It is very much tackling complex issues on earth. Um, and transforming lives with information. Um, you know, arranges for everything from wildfire detection to saving lives. Um, smart, smart agriculture for for farmers. So the time of different things that we're doing, Um, and as part of the Asia Pacific sector, uh, my task here is really just to grow the ecosystem. Women are an important part of that. We've got some stellar women out here in region, both within the AWS team, but also in our customer and partner sectors. So it's a really interesting space to be. There's a lot of challenges. There's a lot of opportunities and there's an incredible amount of growth so specific, exciting space to be >>Well, I gotta say I'm super inspired by that. One of the things that we've been talking about the Cuban I was talking to my co host for many, many years has been the democratisation of digital transformation. Cloud computing and cloud scale has democratised and change and level the playing field for many. And now space, which was it's a very complex area is being I want kind of democratised. It's easier to get access. You can launch a satellite for very low cost compared to what it was before getting access to some of the technology and with open source and with software, you now have more space computing things going on that's not out of reach. So for the people watching, share your thoughts on on that dynamic and also how people can get involved because there are real world problems to solve that can be solved now. That might have been out of reach, but now it's cloud. Can you share your thoughts. >>That's right. So you're right, John. Satellites orbiting There's more and more satellites being launched every day. The sensors are becoming more sophisticated. So we're collecting huge amounts of data. Um, one of our customers to cut lab tell us that we're collecting today three million square kilometres a day. That's gonna increase to about three billion over the next five years. So we're already reaching a point where it's impossible to store, analyse and make sense of such massive amounts of data without cloud computing. So we have services which play a very critical role. You know, technologies like artificial intelligence machine learning. Help us help these customers build up products and solutions, which then allows us to generate intelligence that's serving a lot of other sectors. So it could be agriculture. It could be disaster response and recovery. Um, it could be military intelligence. I'll give you an example of something that's very relevant, and that's happening in the last couple of weeks. So we have some amazing customers. We have Max our technologies. They use a W S to store their 100 petabytes imagery library, and they have daily collection, so they're using our ground station to gather insight about a lot of changing conditions on Earth. Usually Earth observation. That's, you know, tracking water pollution, water levels of air pollution. But they're also just tracking, um, intelligence of things like military build up in certain areas. Capella space is another one of our customers who do that. So over the last couple of weeks, maybe a couple of months, uh, we've been watching, uh, images that have been collected by these commercial satellites, and they've been chronicling the build up, for instance, of Russian forces on Ukraine's borders and the ongoing invasion. They're providing intelligence that was previously only available from government sources. So when you talk about the democratisation of space, high resolution satellite images are becoming more and more ridiculous. Um, I saw the other day there was, uh, Anderson Cooper, CNN and then behind him, a screenshot from Capella, which is satellite imagery, which is very visible, high resolution transparency, which gives, um, respected journalists and media organisations regular contact with intelligence, direct intelligence which can help support media storytelling and help with the general public understanding of the crisis like what's happening in Ukraine. And >>I think on that point is, people can relate to it. And if you think about other things with computer vision, technology is getting so much stronger. Also, there's also metadata involved. So one of the things that's coming out of this Ukraine situation not only is tracking movements with the satellites in real time, but also misinformation and disinformation. Um, that's another big area because you can, uh, it's not just the pictures, it's what they mean. So it's well beyond just satellite >>well, beyond just satellite. Yeah, and you know, not to focus on just a crisis that's happening at the moment. There's 100 other use cases which were helping with customers around the globe. I want to give you a couple of other examples because I really want people to be inspired by what we're doing with space technology. So right here in Singapore, I have a company called Hero Factory. Um, now they use AI based on Earth observation. They have an analytics platform that basically help authorities around the region make key decisions to drive sustainable practises. So change detection for shipping Singapore is, you know, it's lots of traffic. And so if there's oil spills, that can be detected and remedy from space. Um, crop productivity, fruit picking, um, even just crop cover around urban areas. You know, climate change is an increasing and another increasing, uh, challenges global challenge that we need to tackle and space space technology actually makes it possible 15 50% of what they call e CVS. Essential climate variables can only be measured from space. So we have companies like satellite through, uh, one of our UK customers who are measuring, um, uh, carbon emissions. And so the you know, the range of opportunities that are out there, like you said previously untouched. We've just opened up doors for all sorts of innovations to become possible. >>It totally is intoxicating. Some of the fun things you can discuss with not only the future but solving today's problems. So it's definitely next level kind of things happening with space and space talent. So this is where you start to get into the conversation like I know some people in these major technical instance here in the US as sophomore second year is getting job offers. So there's a There's a there's a space race for talent if you will, um and women talent in particular is there on the table to So how How can you share that discussion? Because inspiration is one thing. But then people want to know what to do to get in. So how do you, um how do you handle the recruiting and motivating and or working with organisations to just pipeline interest? Because space is one of the things you get addicted to. >>Yeah. So I'm a huge advocate for science, technology, engineering, math. We you know, we highlights them as a pathway into space into technology. And I truly believe the next generation of talent will contribute to the grand challenges of our time. Whether that climate change or sustainability, Um, it's gonna come from them. I think I think that now we at Amazon Web services. We have several programmes that we're working on to engage kids and especially girls to be equipped with the latest cloud skills. So one of the programmes that we're delivering this year across Singapore Australia uh, we're partnering with an organisation called the Institute for Space Science, Exploration and Technology and we're launching a programme called Mission Discovery. It's basically students get together with an astronaut, NASA researcher, technology experts and they get an opportunity to work with these amazing characters, too. Create and design their own project and then the winning project will be launched will be taken up to the International space station. So it's a combination of technology skills, problem solving, confidence building. It's a it's a whole range and that's you know, we that's for kids from 14 to about 18. But actually it, in fact, because the pipeline build is so important not just for Amazon Web services but for industry sector for the growth of the overall industry sector. Uh, there's several programmes that were involved in and they range from sophomore is like you said all the way to to high school college a number of different programmes. So in Singapore, specifically, we have something called cloud Ready with Amazon Web services. It's a very holistic clouds killing programme that's curated for students from primary school, high school fresh graduates and then even earlier careers. So we're really determined to work together closely and it the lines really well with the Singapore government's economic national agenda, um so that that's one way and and then we have a tonne of other programmes specifically designed for women. So last year we launched a programme called She Does It's a Free online training learning programme, and the idea is really to inspire professional women to consider a career in the technology industry and show them pathways, support them through that learning process, bring them on board, help drive a community spirit. And, you know, we have a lot of affinity groups within Amazon, whether that's women in tech or a lot of affinity groups catering for a very specific niches. And all of those we find, uh, really working well to encourage that pipeline development that you talk about and bring me people that I can work with to develop and build these amazing solutions. >>Well, you've got so much passion. And by the way, if you have, if you're interested in a track on women in space, would be happy to to support that on our site, send us storeys, we'll we'll get We'll get them documented so super important to get the voices out there. Um and we really believe in it. So we love that. I have to ask you as the head of a PJ for a W S uh aerospace and satellite. You've you've seen You've been on a bunch of missions in the space programmes of the technologies. Are you seeing how that's trajectory coming to today and now you mentioned new generation. What problems do you see that need to be solved for this next generation? What opportunities are out there that are new? Because you've got the lens of the past? You're managing a big part of this new growing emerging business for us. But you clearly see the future. And you know, the younger generation is going to solve these problems and take the opportunities. What? What are they? >>Yes, Sometimes I think we're leaving a lot, uh, to solve. And then other times, I think, Well, we started some of those conversations. We started those discussions and it's a combination of policy technology. We do a lot of business coaching, so it's not just it's not just about the technology. We do think about the broader picture. Um, technology is transferring. We know that technology is transforming economies. We know that the future is digital and that diverse backgrounds, perspective, skills and experiences, particularly those of women minority, the youth must be part of the design creation and the management of the future roadmaps. Um, in terms of how do I see this going? Well, it's been sort of we've had under representation of women and perhaps youth. We we just haven't taken that into consideration for for a long time now. Now that gap is slowly becoming. It's getting closer and closer to being closed. Overall, we're still underrepresented. But I take heart from the fact that if we look at an agency like the US Mohammed bin Rashid Space Centre, that's a relatively young space agency in your A. I think they've got about three or 400 people working for them at this point in time, and the average age of that cohort John, is 28. Some 40% of its engineers and scientists are women. Um, this year, NASA is looking to recruit more female astronauts. Um, they're looking to recruit more people with disabilities. So in terms of changing in terms of solving those problems, whatever those problems are, we started the I guess we started the right representation mix, so it doesn't matter. Bring it on, you know, whether it is climate change or this ongoing crisis, productive. Um, global crisis around the world is going to require a lot more than just a single shot answer. And I think having diversity and having that representation, we know that it makes a difference to innovation outputs. We know that it makes a difference to productivity, growth, profit. But it's also just the right thing to do for so long. We haven't got it right, and I think if we can get this right, we will be able to solve the majority of some of the biggest things that we're looking at today. >>And the diversity of problems in the diversity of talent are two different things. But they come together because you're right. It's not about technology. It's about all fields of study sociology. It could be political science. Obviously you mentioned from the situation we have now. It could be cybersecurity. Space is highly contested. We dated long chat about that on the Last Cube interview with AWS. There's all these new new problems and so problem solving skills. You don't need to have a pedigree from Ivy League school to get into space. This is a great opportunity for anyone who can solve problems because their new No one's seen them before. >>That's exactly right. And you know, every time we go out, we have sessions with students or we're at universities. We tell them, Raise your voices. Don't be afraid to use your voice. It doesn't matter what you're studying. If you think you have something of value to say, say it. You know, by pushing your own limits, you push other people's limits, and you may just introduce something that simply hasn't been part of before. So your voice is important, and we do a lot of lot of coaching encouraging, getting people just to >>talk. >>And that in itself is a great start. I think >>you're in a very complex sector, your senior leader at AWS Amazon Web services in a really fun, exciting area, aerospace and satellite. And for the young people watching out there or who may see this video, what advice would you have for the young people who are trying to navigate through the complexities of now? Third year covid. You know, seeing all the global changes, um, seeing that massive technology acceleration with digital transformation, digitisation it's here, digital world we're in. >>It could >>be confusing. It could be weird. And so how would you talk to that person and say, Hey, it's gonna be okay? And what advice would you give? >>It is absolutely going to be okay. Look, from what I know, the next general are far more fluent in digital than I am. I mean, they speak nerd. They were born speaking nerd, so I don't have any. I can't possibly tell them what to do as far as technology is concerned because they're so gung ho about it. But I would advise them to spend time with people, explore new perspectives, understand what the other is trying to do or achieve, and investing times in a time in new relationships, people with different backgrounds and experience, they almost always have something to teach you. I mean, I am constantly learning Space tech is, um it's so complicated. Um, I can't possibly learn everything I have to buy myself just by researching and studying. I am totally reliant on my community of experts to help me learn. So my advice to the next generation kids is always always in this time in relationships. And the second thing is, don't be disheartened, You know, Um this has happened for millennia. Yes, we go up, then we come down. But there's always hope. You know, there there is always that we shape the future that we want. So there's no failure. We just have to learn to be resilient. Um, yeah, it's all a learning experience. So stay positive and chin up, because we can. We can do it. >>That's awesome. You know, when you mentioned the Ukraine in the Russian situation, you know, one of the things they did they cut the Internet off and all telecommunications and Elon Musk launched a star linked and gives them access, sending them terminals again. Just another illustration. That space can help. Um, and these in any situation, whether it's conflict or peace and so Well, I have you here, I have to ask you, what is the most important? Uh uh, storeys that are being talked about or not being talked about are both that people should pay attention to. And they look at the future of what aerospace satellite these emerging technologies can do for the world. What's your How would you kind of what are the most important things to pay attention to that either known or maybe not being talked about. >>They have been talked about John, but I'd love to see more prominent. I'd love to see more conversations about stirring the amazing work that's being done in our research communities. The research communities, you know, they work in a vast area of areas and using satellite imagery, for instance, to look at climate change across the world is efforts that are going into understanding how we tackle such a global issue. But the commercialisation that comes from the research community that's pretty slow. And and the reason it's loads because one is academics, academics churning out research papers. The linkage back into industry and industry is very, um, I guess we're always looking for how fast can it be done? And what sort of marginal profit am I gonna make for it? So there's not a lot of patients there for research that has to mature, generate outputs that you get that have a meaningful value for both sides. So, um, supporting our research communities to output some of these essential pieces of research that can Dr Impact for society as a whole, Um, maybe for industry to partner even more, I mean, and we and we do that all the time. But even more focus even more. Focus on. And I'll give you a small example last last year and it culminated this earlier this month, we signed an agreement with the ministry of With the Space Office in Singapore. Uh, so it's an MOU between AWS and the Singapore government, and we are determined to help them aligned to their national agenda around space around building an ecosystem. How do we support their space builders? What can we do to create more training pathways? What credits can we give? How do we use open datasets to support Singaporeans issues? And that could be claimed? That could be kind of change. It could be, um, productivity. Farming could be a whole range of things, but there's a lot that's happening that is not highlighted because it's not sexy specific, right? It's not the Mars mission, and it's not the next lunar mission, But these things are just as important. They're just focused more on earth rather than out there. >>Yeah, and I just said everyone speaking nerd these days are born with it, the next generations here, A lot of use cases. A lot of exciting areas. You get the big headlines, you know, the space launches, but also a lot of great research. As you mentioned, that's, uh, that people are doing amazing work, and it's now available open source. Cloud computing. All this is bringing to bear great conversation. Great inspiration. Great chatting with you. Love your enthusiasm for for the opportunity. And thanks for sharing your storey. Appreciate it. >>It's a pleasure to be with you, John. Thank you for the opportunity. Okay. >>Thanks, Manny. The women in tech showcase here, the Cube is presenting International Women's Day celebration. I'm John Ferrier, host of the Cube. Thanks for watching. Mm mm.
SUMMARY :
I'm John for a host of the Cube. So it just makes a lot of sense, imagery that we see because, you know, um, contrary to what a lot of people think, So for the people watching, share your thoughts So when you talk about the democratisation of space, high resolution satellite images So one of the things that's coming out of this Ukraine situation not only is tracking movements And so the you know, the range of opportunities that are out there, Some of the fun things you can discuss with So one of the programmes that we're delivering this year across Singapore And by the way, if you have, if you're interested in a track But it's also just the right thing to do for so long. We dated long chat about that on the Last Cube interview with AWS. And you know, every time we go out, we have sessions with students or we're at universities. And that in itself is a great start. And for the young people watching And so how would you talk to that person and say, So my advice to the next generation kids is always You know, when you mentioned the Ukraine in the Russian situation, you know, one of the things they did they cut the And and the reason it's loads because one is academics, academics churning out research you know, the space launches, but also a lot of great research. It's a pleasure to be with you, John. I'm John Ferrier, host of the Cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Ferrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Megan Clark | PERSON | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
Institute for Space Science, Exploration and Technology | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Australia | LOCATION | 0.99+ |
CNN | ORGANIZATION | 0.99+ |
Manny | PERSON | 0.99+ |
Alan Finkel | PERSON | 0.99+ |
28 | QUANTITY | 0.99+ |
Australian Space Agency | ORGANIZATION | 0.99+ |
Earth | LOCATION | 0.99+ |
Ukraine | LOCATION | 0.99+ |
US | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
last year | DATE | 0.99+ |
Hero Factory | ORGANIZATION | 0.99+ |
Japan | LOCATION | 0.99+ |
Ivy League | ORGANIZATION | 0.99+ |
Finkel | PERSON | 0.99+ |
100 petabytes | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
National Women's Day | EVENT | 0.99+ |
second year | QUANTITY | 0.99+ |
Amazon Web | ORGANIZATION | 0.99+ |
earth | LOCATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
14 | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
both sides | QUANTITY | 0.99+ |
Anderson Cooper | PERSON | 0.99+ |
Asia Pacific | LOCATION | 0.99+ |
400 people | QUANTITY | 0.99+ |
Mars | LOCATION | 0.99+ |
International Women in Tech Showcase | EVENT | 0.99+ |
second thing | QUANTITY | 0.99+ |
one | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
UK | LOCATION | 0.98+ |
Third year | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
100 other use cases | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
Three | DATE | 0.98+ |
Mani Thiru | PERSON | 0.98+ |
earlier this month | DATE | 0.97+ |
15 50% | QUANTITY | 0.97+ |
One | QUANTITY | 0.96+ |
Singapore government | ORGANIZATION | 0.96+ |
With the Space Office | ORGANIZATION | 0.96+ |
40% | QUANTITY | 0.96+ |
space station | LOCATION | 0.95+ |
about three billion | QUANTITY | 0.94+ |
one way | QUANTITY | 0.94+ |
Clint | PERSON | 0.93+ |
three million square kilometres a day | QUANTITY | 0.92+ |
four years ago | DATE | 0.92+ |
Elon Musk | PERSON | 0.92+ |
two different things | QUANTITY | 0.91+ |
Sharon Hutchins, Intuit | WiDS 2022
>>Welcome everyone to the cubes coverage of women in data science conference width 2022. Live from Stanford at the Arriaga alumni center. I'm Lisa Martin. My next guest is joined me. Sharon Hutchins is here the VP and chief of AI plus data operations at Intuit Sharon. Welcome. Thank you. >>Excited to >>Be here. This is your first woods, very first but into it in words. >>That's right. Intuitively it's goes way back. I'm relatively new to the organization, but Intuit has been a long time sponsor of woods, and we love this organization. We have a great alignment with our goals, which has a passion and commitment to advancing women in technology and data science. And we have the same goal added to it. We are at 30% women in technology with the goal of hitting 37% by 2024. And I know that widths has a great goal of 30 by 30, so that's awesome. >>30 by 30. And here we are around, I think it's still less than 25% of stem positions are filled by women. But obviously you're ahead of that on Intuit congratulate. >>I think we're ahead of that. And I think part of the reason why we're ahead of that is because we've got great programs at Intuit to support women. One of our key programs is tech women at Intuit. And so it's an internal initiative where we focus on attracting, retaining and advancing women. So it's a great way for women across technology to support one another. Sure. You've heard of the term there's power in the pack, and we believe that when we connect women, we can help elevate their voices, which elevates our business and elevates our products. >>It does. In fact, there's some stats I was looking at recently that just showed if there was even 30% females at the executive level, how much more profitable organizations can be in how much higher performance they can have. So the data is there that suggests this is a really smart business decision to be making. >>Absolutely absolutely the data is, is no lie. I see it firsthand in my own business. And in fact, at Intuit, we've got a broader initiative around diversity and inclusion. It's led from the top. We have set goals across the company and we hold ourselves accountable because we know that if there are more women at the table and more diversity at the table, all around, we make better business decisions. And if you look at our product suite, which is a terrible tax, QuickBooks, mint, credit, karma, and MailChimp, we've got a diverse customer base of a hundred thousand, sorry, a hundred million customers. And so it's a lot of diversity in our customer base and we want a lot of diversity in the company. >>Fantastic. That there's such a dedicated effort to it. You just came in here from the career panel. Talk to me about that. What were some of the key things that were discussed? Yeah, >>I have my notebook open here because there were so many great takeaways from actually just from the day in general. I'm just so at, at the types of issues that women are tackling across different industries, they're tackling bias. And we know that bias is corrected when women are at the table, but from a career perspective, some of the things that were mentioned from the panel is the fact that women need to own their own careers and they need to actively manage their careers. And there's only so much your manager can do and should do. You've got to be in the driver's seat, driving your own career. One of the things that we've done at Intuit as we've implemented sort of a self promoting process. So twice a year during our promotion period, either your manager can nominate you for a promotion or you can self promote. So it's all about you creating a portfolio of all of your great work. And of course, you know, managers are very supportive of the process and support, you know, women and, and all technologists in crafting their portfolios for a fair chance at promotion. And so we just believe that if you take bias out of a career progression, you can close that fair and equitable gap that we see sometimes across industries with compensation. >>This is, that would be great if we can ever get there. One of the things that's nice about woods, I think it was last year or the year before they opened it up to high school students. So it was so nice walking in this morning, seeing the young, fresh faces, the mature faces, but you bring up a great point of women need to be their own mini to create their own personal board of directors and really be able to, to be at the helm of their career. Do you, did you find that the audience is receptive to that? Do they have the confidence to be able to do that? >>Yeah, absolutely. And, and that was a point that was raised a couple of times this morning, there were women who talked about having great mentors, but it is more important to have a board of your personal board of directors than one mentor, because you've got to make sure that you sort of tackle all aspects of your career life. And you know, it's not all about the technology, a good portion of how you spend your time and where you spend your time is collaborating and negotiating and communicating across the company. And so that's very important. And so that was a key message that folks shared this morning. >>That's good. That's incredibly important. I wish we had more time. You've got to run to the airport. Sharon, it's been a pleasure to have you on the program. Thank you for sharing what Intuit and woods are doing together, your involvement and some of the great messages, inspiring messages from the career panel. >>Exactly. And for all of the young expiring high school students. Yes. We want them to check out into it. www.intuit.com, careers, >>Intuit.com. Is it slash careers slash careers slash careers perfectly. I'm an Intuit customer. I will say. Awesome. It's been a pleasure talking to you. Thank you, Sharon. Bye-bye for Sharon Hutchins. I'm Lisa Martin. You're watching the cubes coverage of women in data science, 2022.
SUMMARY :
Welcome everyone to the cubes coverage of women in data science conference width This is your first woods, very first but into it in words. And we have the same goal added to it. are filled by women. You've heard of the term there's power in the pack, So the data is there that suggests and more diversity at the table, all around, we make You just came in here from the career And so we just believe that if you take bias out One of the things that's nice about woods, And so that was a key message that folks shared this morning. it's been a pleasure to have you on the program. And for all of the young expiring high school students. It's been a pleasure talking to you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sharon | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Sharon Hutchins | PERSON | 0.99+ |
Sharon Hutchins | PERSON | 0.99+ |
last year | DATE | 0.99+ |
30% | QUANTITY | 0.99+ |
2024 | DATE | 0.99+ |
30 | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
37% | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
one mentor | QUANTITY | 0.98+ |
2022 | DATE | 0.98+ |
less than 25% | QUANTITY | 0.98+ |
www.intuit.com | OTHER | 0.97+ |
Arriaga | ORGANIZATION | 0.95+ |
this morning | DATE | 0.95+ |
twice a year | QUANTITY | 0.94+ |
Intuit.com | ORGANIZATION | 0.86+ |
a hundred million customers | QUANTITY | 0.85+ |
a hundred thousand | QUANTITY | 0.84+ |
first woods | QUANTITY | 0.83+ |
2022 | OTHER | 0.78+ |
mint | ORGANIZATION | 0.75+ |
this morning | DATE | 0.67+ |
MailChimp | ORGANIZATION | 0.62+ |
QuickBooks | TITLE | 0.6+ |
Stanford | LOCATION | 0.59+ |
science | EVENT | 0.57+ |
karma | ORGANIZATION | 0.55+ |
woods | ORGANIZATION | 0.53+ |
things | QUANTITY | 0.49+ |
credit | ORGANIZATION | 0.47+ |
Nandi Leslie, Raytheon | WiDS 2022
(upbeat music) >> Hey everyone. Welcome back to theCUBE's live coverage of Women in Data Science, WiDS 2022, coming to live from Stanford University. I'm Lisa Martin. My next guest is here. Nandi Leslie, Doctor Nandi Leslie, Senior Engineering Fellow at Raytheon Technologies. Nandi, it's great to have you on the program. >> Oh it's my pleasure, thank you. >> This is your first WiDS you were saying before we went live. >> That's right. >> What's your take so far? >> I'm absolutely loving it. I love the comradery and the community of women in data science. You know, what more can you say? It's amazing. >> It is. It's amazing what they built since 2015, that this is now reaching 100,000 people 200 online event. It's a hybrid event. Of course, here we are in person, and the online event going on, but it's always an inspiring, energy-filled experience in my experience of WiDS. >> I'm thoroughly impressed at what the organizers have been able to accomplish. And it's amazing, that you know, you've been involved from the beginning. >> Yeah, yeah. Talk to me, so you're Senior Engineering Fellow at Raytheon. Talk to me a little bit about your role there and what you're doing. >> Well, my role is really to think about our customer's most challenging problems, primarily at the intersection of data science, and you know, the intersectional fields of applied mathematics, machine learning, cybersecurity. And then we have a plethora of government clients and commercial clients. And so what their needs are beyond those sub-fields as well, I address. >> And your background is mathematics. >> Yes. >> Have you always been a math fan? >> I have, I actually have loved math for many, many years. My dad is a mathematician, and he introduced me to, you know mathematical research and the sciences at a very early age. And so, yeah, I went on, I studied in a math degree at Howard undergrad, and then I went on to do my PhD at Princeton in applied math. And later did a postdoc in the math department at University of Maryland. >> And how long have you been with Raytheon? >> I've been with Raytheon about six years. Yeah, and before Raytheon, I worked at a small to midsize defense company, defense contracting company in the DC area, systems planning and analysis. And then prior to that, I taught in a math department where I also did my postdoc, at University of Maryland College Park. >> You have a really interesting background. I was doing some reading on you, and you have worked with the Navy. You've worked with very interesting organizations. Talk to the audience a little bit about your diverse background. >> Awesome yeah, I've worked with the Navy on submarine force security, and submarine tracking, and localization, sensor performance. Also with the Army and the Army Research Laboratory during research at the intersection of machine learning and cyber security. Also looking at game theoretic and graph theoretic approaches to understand network resilience and robustness. I've also supported Department of Homeland Security, and other government agencies, other governments, NATO. Yeah, so I've really been excited by the diverse problems that our various customers have you know, brought to us. >> Well, you get such great experience when you are able to work in different industries and different fields. And that really just really probably helps you have such a much diverse kind of diversity of thought with what you're doing even now with Raytheon. >> Yeah, it definitely does help me build like a portfolio of topics that I can address. And then when new problems emerge, then I can pull from a toolbox of capabilities. And, you know, the solutions that have previously been developed to address those wide array of problems, but then also innovate new solutions based on those experiences. So I've been really blessed to have those experiences. >> Talk to me about one of the things I heard this morning in the session I was able to attend before we came to set was about mentors and sponsors. And, you know, I actually didn't know the difference between that until a few years ago. But it's so important. Talk to me about some of the mentors you've had along the way that really helped you find your voice in research and development. >> Definitely, I mean, beyond just the mentorship of my my family and my parents, I've had amazing opportunities to meet with wonderful people, who've helped me navigate my career. One in particular, I can think of as and I'll name a number of folks, but Dr. Carlos Castillo-Chavez was one of my earlier mentors. I was an undergrad at Howard University. He encouraged me to apply to his summer research program in mathematical and theoretical biology, which was then at Cornell. And, you know, he just really developed an enthusiasm with me for applied mathematics. And for how it can be, mathematics that is, can be applied to epidemiological and theoretical immunological problems. And then I had an amazing mentor in my PhD advisor, Dr. Simon Levin at Princeton, who just continued to inspire me, in how to leverage mathematical approaches and computational thinking for ecological conservation problems. And then since then, I've had amazing mentors, you know through just a variety of people that I've met, through customers, who've inspired me to write these papers that you mentioned in the beginning. >> Yeah, you've written 55 different publications so far. 55 and counting I'm sure, right? >> Well, I hope so. I hope to continue to contribute to the conversation and the community, you know, within research, and specifically research that is computationally driven. That really is applicable to problems that we face, whether it's cyber security, or machine learning problems, or others in data science. >> What are some of the things, you're giving a a tech vision talk this afternoon. Talk to me a little bit about that, and maybe the top three takeaways you want the audience to leave with. >> Yeah, so my talk is entitled "Unsupervised Learning for Network Security, or Network Intrusion Detection" I believe. And essentially three key areas I want to convey are the following. That unsupervised learning, that is the mathematical and statistical approach, which tries to derive patterns from unlabeled data is a powerful one. And one can still innovate new algorithms in this area. Secondly, that network security, and specifically, anomaly detection, and anomaly-based methods can be really useful to discerning and ensuring, that there is information confidentiality, availability, and integrity in our data >> A CIA triad. >> There you go, you know. And so in addition to that, you know there is this wealth of data that's out there. It's coming at us quickly. You know, there are millions of packets to represent communications. And that data has, it's mixed, in terms of there's categorical or qualitative data, text data, along with numerical data. And it is streaming, right. And so we need methods that are efficient, and that are capable of being deployed real time, in order to detect these anomalies, which we hope are representative of malicious activities, and so that we can therefore alert on them and thwart them. >> It's so interesting that, you know, the amount of data that's being generated and collected is growing exponentially. There's also, you know, some concerning challenges, not just with respect to data that's reinforcing social biases, but also with cyber warfare. I mean, that's a huge challenge right now. We've seen from a cybersecurity perspective in the last couple of years during the pandemic, a massive explosion in anomalies, and in social engineering. And companies in every industry have to be super vigilant, and help the people understand how to interact with it, right. There's a human component. >> Oh, for sure. There's a huge human component. You know, there are these phishing attacks that are really a huge source of the vulnerability that corporations, governments, and universities face. And so to be able to close that gap and the understanding that each individual plays in the vulnerability of a network is key. And then also seeing the link between the network activities or the cyber realm, and physical systems, right. And so, you know, especially in cyber warfare as a remote cyber attack, unauthorized network activities can have real implications for physical systems. They can, you know, stop a vehicle from running properly in an autonomous vehicle. They can impact a SCADA system that's, you know there to provide HVAC for example. And much more grievous implications. And so, you know, definitely there's the human component. >> Yes, and humans being so vulnerable to those social engineering that goes on in those phishing attacks. And we've seen them get more and more personal, which is challenging. You talking about, you know, sensitive data, personally identifiable data, using that against someone in cyber warfare is a huge challenge. >> Oh yeah, certainly. And it's one that computational thinking and mathematics can be leveraged to better understand and to predict those patterns. And that's a very rich area for innovation. >> What would you say is the power of computational thinking in the industry? >> In industry at-large? >> At large. >> Yes, I think that it is such a benefit to, you know, a burgeoning scientist, if they want to get into industry. There's so many opportunities, because computational thinking is needed. We need to be more objective, and it provides that objectivity, and it's so needed right now. Especially with the emergence of data, and you know, across industries. So there are so many opportunities for data scientists, whether it's in aerospace and defense, like Raytheon or in the health industry. And we saw with the pandemic, the utility of mathematical modeling. There are just so many opportunities. >> Yeah, there's a lot of opportunities, and that's one of the themes I think, of WiDS, is just the opportunities, not just in data science, and for women. And there's obviously even high school girls that are here, which is so nice to see those young, fresh faces, but opportunities to build your own network and your own personal board of directors, your mentors, your sponsors. There's tremendous opportunity in data science, and it's really all encompassing, at least from my seat. >> Oh yeah, no I completely agree with that. >> What are some of the things that you've heard at this WiDS event that inspire you going, we're going in the right direction. If we think about International Women's Day tomorrow, "Breaking the Bias" is the theme, do you think we're on our way to breaking that bias? >> Definitely, you know, there was a panel today talking about the bias in data, and in a variety of fields, and how we are, you know discovering that bias, and creating solutions to address it. So there was that panel. There was another talk by a speaker from Pinterest, who had presented some solutions that her, and her team had derived to address bias there, in you know, image recognition and search. And so I think that we've realized this bias, and, you know, in AI ethics, not only in these topics that I've mentioned, but also in the implications for like getting a loan, so economic implications, as well. And so we're realizing those issues and bias now in AI, and we're addressing them. So I definitely am optimistic. I feel encouraged by the talks today at WiDS that you know, not only are we recognizing the issues, but we're creating solutions >> Right taking steps to remediate those, so that ultimately going forward. You know, we know it's not possible to have unbiased data. That's not humanly possible, or probably mathematically possible. But the steps that they're taking, they're going in the right direction. And a lot of it starts with awareness. >> Exactly. >> Of understanding there is bias in this data, regardless. All the people that are interacting with it, and touching it, and transforming it, and cleaning it, for example, that's all influencing the veracity of it. >> Oh, for sure. Exactly, you know, and I think that there are for sure solutions are being discussed here, papers written by some of the speakers here, that are driving the solutions to the mitigation of this bias and data problem. So I agree a hundred percent with you, that awareness is you know, half the battle, if not more. And then, you know, that drives creation of solutions >> And that's what we need the creation of solutions. Nandi, thank you so much for joining me today. It was a pleasure talking with you about what you're doing with Raytheon, what you've done and your path with mathematics, and what excites you about data science going forward. We appreciate your insights. >> Thank you so much. It was my pleasure. >> Good, for Nandi Leslie, I'm Lisa Martin. You're watching theCUBE's coverage of Women in Data Science 2022. Stick around, I'll be right back with my next guest. (upbeat flowing music)
SUMMARY :
have you on the program. This is your first WiDS you were saying You know, what more can you say? and the online event going on, And it's amazing, that you know, and what you're doing. and you know, the intersectional fields and he introduced me to, you And then prior to that, I and you have worked with the Navy. have you know, brought to us. And that really just And, you know, the solutions that really helped you that you mentioned in the beginning. 55 and counting I'm sure, right? and the community, you and maybe the top three takeaways that is the mathematical and so that we can therefore and help the people understand And so, you know, Yes, and humans being so vulnerable and to predict those patterns. and you know, across industries. and that's one of the themes I think, completely agree with that. that inspire you going, and how we are, you know And a lot of it starts with awareness. that's all influencing the veracity of it. And then, you know, that and what excites you about Thank you so much. of Women in Data Science 2022.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Nandi | PERSON | 0.99+ |
Carlos Castillo-Chavez | PERSON | 0.99+ |
Simon Levin | PERSON | 0.99+ |
Nandi Leslie | PERSON | 0.99+ |
Nandi Leslie | PERSON | 0.99+ |
NATO | ORGANIZATION | 0.99+ |
Raytheon | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
100,000 people | QUANTITY | 0.99+ |
Department of Homeland Security | ORGANIZATION | 0.99+ |
Raytheon Technologies | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
today | DATE | 0.99+ |
University of Maryland | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Army Research Laboratory | ORGANIZATION | 0.99+ |
Navy | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
pandemic | EVENT | 0.98+ |
millions of packets | QUANTITY | 0.97+ |
55 | QUANTITY | 0.97+ |
Cornell | ORGANIZATION | 0.97+ |
Howard University | ORGANIZATION | 0.97+ |
each individual | QUANTITY | 0.97+ |
about six years | QUANTITY | 0.97+ |
Howard | ORGANIZATION | 0.96+ |
55 different publications | QUANTITY | 0.96+ |
Stanford University | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
Unsupervised Learning for Network Security, or Network Intrusion Detection | TITLE | 0.96+ |
University of Maryland College Park | ORGANIZATION | 0.96+ |
Army | ORGANIZATION | 0.96+ |
WiDS | EVENT | 0.95+ |
Women in Data Science 2022 | TITLE | 0.95+ |
Women in Data Science | EVENT | 0.95+ |
Princeton | ORGANIZATION | 0.94+ |
hundred percent | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.93+ |
CIA | ORGANIZATION | 0.93+ |
Secondly | QUANTITY | 0.92+ |
tomorrow | DATE | 0.89+ |
WiDS | ORGANIZATION | 0.88+ |
Doctor | PERSON | 0.88+ |
200 online | QUANTITY | 0.87+ |
WiDS 2022 | EVENT | 0.87+ |
this afternoon | DATE | 0.85+ |
three takeaways | QUANTITY | 0.84+ |
last couple of years | DATE | 0.83+ |
this morning | DATE | 0.83+ |
few years ago | DATE | 0.82+ |
SCADA | ORGANIZATION | 0.78+ |
top | QUANTITY | 0.75+ |
three | QUANTITY | 0.71+ |
2022 | DATE | 0.7+ |
DC | LOCATION | 0.64+ |
Breaking the Bias | EVENT | 0.52+ |
WiDS | TITLE | 0.39+ |
Maggie Wang, Skydio | WiDS 2022
(upbeat music) >> Hey, everyone. Welcome back to theCUBE's live coverage of Women in Data Science Worldwide Conference, WiDS 2022, live from Stanford Uni&versity. I'm Lisa Martin. I have a guest next here with me. Maggie Wang is here, Autonomy Engineer at Skydio. Maggie, welcome to the program. >> Thanks so much. I'm so happy to be here. >> Excited to talk to you. You are one of the event speakers, but this is your first WiDS. What's your take so far? >> I'm really excited that there's a conference dedicated to getting more women in STEM. I think it's extremely important, and I'm so happy to be here. >> Were you always interested in STEM subjects when you were growing up? >> I think I've always been drawn to STEM, but not only STEM, but I've always been interested in arts, humanities. I'm getting more interested in the science as well. And I think STEM robotics was really my way to express myself and make things move in the real world. >> Nice. So you've got interests, I was reading about you, interests in motion planning, control theory, computer vision and deep learning. Talk to me about those interests. It sounds very fascinating. >> Yeah. So I think what really drew me into robotics was just how interdisciplinary the subject is. So I think a lot goes into creating a robot. So not only is it about actually understanding where you are in the world, it's also about seeing where you are in the world. And it's so interesting, because I feel like humans, you know, we take this all for granted, but it's actually so difficult to do that in an actual robot. So I'm excited about the possibilities of robotics now and in the future. >> Lots of possibilities. And you only graduated from Harvard last May, with a Bachelor's and a Masters? >> Yeah. >> Tell me a little bit about what you studied at Harvard. >> Yeah, so I studied Physics as my undergrad degree. And that was really interesting, because I've always been interested in science. And, actually, part of what got me interested in STEM was just learning about the universe and astrophysics. And that's what gets me excited. And I think I also wanted to supplement that with computer science and building things in the real world. And so that's why I got my Masters in that. And I always knew that I wanted to kind of blend a lot of different disciplines and study them. >> There's so much benefit from blending disciplines, in terms of even the thought diversity alone, which just opens up the opportunities to be almost endless. So you graduated in May. You're now at Skydio. Autonomy Engineer. Talk to me a little bit, first of all, tell me a bit about Skydio as a company, the products, what differentiates it, and then talk to me about what you're doing there specifically. >> So Skydio is a really amazing company. I'm super-fortunate to work there. So what they do is create autonomous drones, and what differentiates them is the autonomy. So in typical drones, it's very difficult to actually make sure that it has full understanding of the environment and obstacle avoidance. So what happens is we fly these drones manually, but we aren't able to harness the full potential of these drones because of lack of autonomy. So what we do is really push into this autonomous sphere, and make sure that we're able to understand the environment. We have deep learning algorithms on the drone, and we have really good planning and controls on the drone as well. So yeah, our company basically makes the most autonomous drones in the market. >> Nice. And tell me about your role specifically. >> Yeah. So as an autonomy engineer, I write algorithms that run on the drone, which is super-exciting. I can create some algorithms and design it, and then also fly it in simulation, and then fly it in the real world. So it's just really amazing to see the things I work with actually come to life. >> And talk to me about how you got involved in WiDS. You were saying it was your first WiDS, and Margot Gerritsen found you on LinkedIn, but what are some of the things that you've heard so far? I mean, I was in one of the panels this morning before we came out to the set, and I loved how they were talking about the importance of mentors and sponsors. Talk to me about some of your mentors along the way. >> Yeah, I had so many great mentors along the way. I definitely would not be here had it not been for them. Starting from my parents, they're immigrants from China, and they inspire me in so many ways. They're very hard-working, and they always encourage me to fail, and just be courageous, and, you know, follow my passions. And I think beyond that, like in high school, I had great mentors. One was an astrophysics professor. >> Wow. >> Yeah. So it was very amazing that I was able to have these opportunities at a young age. And even in high school, I was involved in all girls robotics team. And that really opened my eyes to how technology can be used and why more women should be in STEM. And that, you know, STEM should not be only for males. And it's really important for everyone to be involved. >> It is, for so many reasons. If we look at the data, and the workforce is about 50-50, but the number of women in STEM positions is less than 25%. It's something that's new to the tech industry. What are some of the things that... Do you see that, do you feel that, or are you just really excited to be able to focus on doing the autonomous engineering that you're doing? >> Well, I think that it's kind of easy to try to separate yourself and your identity from your work, but I don't necessarily agree with that. I think you need to, as best as possible, bring yourself to the table and bring your whole identity. And I think part of growing up for me was trying to understand who I was as a woman and also as an Asian American, and try to combine all of my identities into how I bring myself to the workplace. And I think as we become more vulnerable and try to understand ourselves and express ourselves to others, we're able to build more inclusive communities, in STEM and beyond. >> I agree. Very wise words. So you're going to be talking on the career panel today. What are some of the parts of wisdom are you going to leave the audience with this afternoon? >> Well, wisdom. I think everyone should be able to know, and have intuitive understanding of what they actually bring to the table. I think so many times women shy away from bringing themselves and showing up as themselves. And I think it's really important for a woman to understand that they hold a lot of power, that they have a voice that need to be heard. And I think I just want to encourage everyone to be passionate and show up. >> Be passionate and show up. That's great advice. One of the things that was talked about this morning, and we talk about this a lot when we talk about data or data science, is the inherent bias in data. Talk to me about the importance of data in robotics. Is there bias there? How do you navigate around that? >> Yeah, there's definitely bias in robotics. There's definitely a lot of data involved in robotics. So in many cases right now in robotics, we work in specialized fields, so you can see picking robots that will pick in specific factory locations. But if you bring them to other locations, like in your garage or something, and make it clean up, it's really difficult to do so. So I think having a lot of different streams of data and having very diverse sets of data is very important. And also being able to run these in the real world I think is also super-important, and something that Skydio addresses a lot. >> So you talked about Skydio, what you guys do there, and some of the differentiators. What are some of the technical challenges that you face in trying to do what you're doing? >> Well, first of all, Skydio's trying to run everything on board on the drone. So already there's a lot of technical challenges that goes into putting everything in a small form factor and making sure that we trade off between compute and all of these different resources. And yeah, making sure that we utilize all of our resources in the best possible way. So that's definitely one challenge. And making sure that we have these trade-offs, and understand the trade-offs that we make. >> That's a good point. Talk to me about why robotics researchers and industry practitioners, what should be some of the key things that they're focusing on? >> Yeah, so I think right now, as I said, a lot of robotics is in very specialized environments, and what we're trying to do in robotics is try to expand to more complex real world applications. And I think Skydio's at the forefront of this. And trying to get these drones in all different types of locations is very difficult, because you might not have good priors, you might not have good information on your data sources. So I think, yeah, getting good, diverse data and making sure that these robots can work in multiple environments can hopefully help us in the future when we use robots. >> Right. There's got to be so many real world a applications of that. >> Yeah, for sure. >> I imagine. Definitely. So talk to me about being a female in the drone industry. What's that like? Why do you think it's important to have the female voice in mind in the drone industry? >> Well, I think first of all, I think it's kind of sad to see not many women in the drone space, because I think there's a lot of potential for drones to be used for good in all the different areas that women care about. And for instance, like climate change, there's a lot of ways that drones can help in reducing waste in many different ways. Search and rescue, for instance. Those are huge issues, and potential solutions from drones. And I think that if women understand these solutions and understand how drones can be used for good, I think we could get more women in and excited about this. >> And how do you see your role in that, in helping to get more women excited, and maybe even just aware of it as a career opportunity? >> Yeah. So I think sometimes robotics can be a very niche subject, and a lot of people get into it from gaming or other things. But I think if we come to it as a way to solve humanity's greatest problems, I think that's what really inspires me. I think that's what would inspire a lot of young women, is to see that robotics is a way to help others. And also that it may not, if we don't consciously make it so that robotics helps others, and if we don't put our voices into the table, then potentially robotics will do harm. But we need to push it into the right direction. >> Do you feel it's going in the right direction? >> Yes, I think with more conferences like this, like WiDS, I think we're going in the right direction. >> Yeah, this is a great conference. It's one of my favorite shows to host. And you know, it only started back in 2015 as a one-day technical conference. And look at it now. It's a global movement. They found you. You're now part of the community. But there's hundreds of events going on in 60 countries. You have the opportunity there to really grow your network, but also reach a much bigger audience, just based on something like what Margot Gerritsen and the team have done with WiDS. What does that mean to you? >> It means a lot. I think it's so amazing that we're able to spread the word of how technology can be used in many different fields, not just robotics, but in healthcare, in search and rescue, in environmental protection. So just seeing the power that technology can bring, and spreading that to underserved communities, not just in the United States, I love how WiDS is a global community and there's regional chapters everywhere. And I think there should be more of this global collaboration in technology. >> I agree. You know, every company these days is a technology company, or a data company, or both. You think of even your local retailer or grocery store that has to be a technology company. So for women to get involved in technology, there's so many different applications of that. It doesn't have to be just coding, for example. You're doing work with drones. There's so much potential there. I think the more that we can do events like this, and leverage platforms like theCUBE, the more we can get that word out there. >> I agree. >> So you have the career panel. And then you're also doing a tech vision talk. >> Yeah, a tech talk. >> What are some of the things you're going to talk about there? >> Yeah, so I'm going to talk about... So at the career panel, just advice in general to young people who may be as confused and starting off their career, just like I am. And at the tech talk, I'll be talking about some different aspects of Skydio, and a specific use case, which is 3D scanning any physical object and putting that into a digital model. >> Ooh, wow. Tell me a little bit more about that. >> Yeah, so 3D scan is one of our products, and it allows for us to take pictures of anything in the physical world and make sure that we can put it into a digital form. So we can create digital twins into digital form, which is very cool. >> Very cool. So we're talking any type of physical object. >> Mm hm. So if you want to inspect a building, or any crumbling infrastructure, a lot of the times right now we use helicopters, or big snooper trucks, or just things that could be expensive or potentially dangerous. Instead, we can use a drone. So this is just one example of how drones can be used to help save lives, potentially. >> Tremendous amount of opportunity that drones provide. It's very exciting. What are some of the things that you're looking forward to this year? We are very early in calendar year 2022, but what are you excited about as the year progresses? >> Hmm. What am I excited about? I think there's a lot of really interesting drone-related companies, and also a lot of robotics companies in general, a lot of startups, and there's a lot of excitement there. And I think as the robotics community grows and grows, we'll be seeing more robots in real life. And I think that's just extremely exciting to me. >> It is. And you're at the forefront of that. Maggie, it's great to have you on the program. Thank you for sharing what you're doing at Skydio, your history, your past, and what you're going to be encouraging the audience to be able to go and achieve. We appreciate your time. >> Thanks so much. >> All right. From Maggie Wang. I'm Lisa Martin. You're watching theCUBE's coverage of Women in Data Science Worldwide Conference, WiDS 2022. Stick around. I'll be right back with my next guest. (upbeat music)
SUMMARY :
Welcome back to theCUBE's live coverage I'm so happy to be here. You are one of the event speakers, and I'm so happy to be here. I think I've always been drawn to STEM, Talk to me about those interests. and in the future. And you only graduated what you studied at Harvard. And I think I also and then talk to me about and make sure that we're able And tell me about your role specifically. to see the things I work And talk to me about how And I think beyond that, And that, you know, STEM What are some of the things that... And I think as we become more vulnerable What are some of the parts of wisdom I think everyone should be able to know, One of the things that was And also being able to run to do what you're doing? and making sure that we Talk to me about why robotics researchers And I think Skydio's at There's got to be so many real So talk to me about being a And I think that if women But I think if we come to it going in the right direction. and the team have done with WiDS. and spreading that to I think the more that we So you have the career panel. And at the tech talk, Tell me a little bit more about that. and make sure that we can So we're talking any a lot of the times right What are some of the things And I think as the robotics and what you're going to of Women in Data Science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Maggie | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Skydio | ORGANIZATION | 0.99+ |
Maggie Wang | PERSON | 0.99+ |
China | LOCATION | 0.99+ |
United States | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
one-day | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
May | DATE | 0.99+ |
last May | DATE | 0.99+ |
less than 25% | QUANTITY | 0.99+ |
one example | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
ORGANIZATION | 0.98+ | |
one | QUANTITY | 0.98+ |
60 countries | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
one challenge | QUANTITY | 0.98+ |
Women in Data Science Worldwide Conference | EVENT | 0.98+ |
WiDS | ORGANIZATION | 0.98+ |
WiDS | EVENT | 0.97+ |
WiDS 2022 | EVENT | 0.96+ |
Stanford Uni | ORGANIZATION | 0.96+ |
this morning | DATE | 0.96+ |
hundreds of events | QUANTITY | 0.96+ |
Harvard | ORGANIZATION | 0.95+ |
theCUBE | ORGANIZATION | 0.94+ |
this year | DATE | 0.94+ |
Asian American | OTHER | 0.88+ |
this afternoon | DATE | 0.81+ |
about 50-50 | QUANTITY | 0.81+ |
2022 | DATE | 0.67+ |
versity | ORGANIZATION | 0.42+ |
Tina Hernandez Boussard | WiDS 2022
(upbeat music) >> Hey, everyone, welcome to theCUBE's live coverage of the Women in Data Science Worldwide Conference 2022. I'm your host, Lisa Martin, coming to you live from Stanford University. I'm pleased to welcome fresh from the main stage, Tina Hernandez-Boussard the Associate Professor of medicine here at Stanford. Tina, it's great to have you on the program. >> Thank you so much for this opportunity. I love being here and I've been coming to WIDS for many years, so it's exciting to be part of this and participate. >> It is exciting, it's one of my favorite events since I was telling you before we went live. And if you think about, they only started back in 2015. And how it's now, it was a one day technical conference and now it's this worldwide- >> It's amazing >> Phenomenon in 60 countries, and Just 200 different local events. Talk to me about, I caught part of the panel that you were on this morning. And one of the things that I love that you were talking about was mentors and sponsors. Talk to me about what you guys were talking about on the panel overall and some of who your mentors were as you came up in your career. >> Yeah, so mentorship is so important and really it makes a difference in people's careers. So I come from first generation family. No one in my family has had any higher education. So having a mentor, an academic mentor just made all the difference in the world for me. So I started undergraduate and I was immediately paired with somebody, a mentor because I was first generation. And this person, he's no longer with us today, but he believed in me and he opened doors for me. And he opened my eyes to all of these different opportunities. And having somebody who believes in you and really can help you pursue these other ideas, it's so important. And so we talked about in the panel, we talked about the importance of having a mentor but we also talked about the importance of being a mentor. And you know, helping people and students coming into the field, find that place and develop the confidence that this is for everybody. There's something for everybody here. And you've got to try, you've got to put your name out there. And having support is really important. >> Oh, it's critical. Even some interviews I was doing last week for International Women's Day which is tomorrow, I was surprised at the number of women that I talked to who said, well, I was told no, no you can't study computer science. No, you can't study physics and talking- >> This is a really difficult field, are you sure you want to pursue this? Well, yeah. You know, yeah. >> So having those mentors and that encouragement to help build that confidence from within is a game changer. >> Absolutely. Absolutely. >> Tell me a little bit about your research. >> Yeah, so we use electronic health data, all types of different health data to really define and predict prognose healthcare outcomes. We develop AI algorithms, tools to analyze the data and we really try, and one incorporate the patient's voice in the tools we develop. And two, we try and get those back to point of care. So I think a lot of emphasis has been about model development and model performance, and we really focus on, okay, that's great but it's only useful if we can get it back to the hands of the clinician, back to the patients to really improve health outcomes. And so that's a big piece of what we do. And as part of that, understanding patient values and patient preferences is really a big, important aspect of developing optimal treatment and optimal models. >> That's good involving them in the process. How can data science promote health equity? First of all, what is health equity, and how can data science help drive it? >> So health equity is really an important topic and there's a lot of different definitions about what is health equity. Health equity, what we want is we want equal outcomes and that's not equal resources. And so a lot of times, there's this contingency behind, you know are we trying to have equal resources for every patient or is it equal outcomes? And so we really focus on equal outcomes. We want everyone to have the opportunity to have the same outcomes. So health equity requires that we really think about different populations and their different needs, different preferences, et cetera. So that's what we focus on. And so to your question about how data science can promote health equity, one of the things we've been working on is really thinking about the gold standard of clinical care which is the clinical trial, right? So a clinical trial is our gold standard for what treatments work, in what situation and for what populations. However, a lot of the clinical trials are developed in a non-represented population, right? So we have to have patients who can come into the care setting at multiple times during a period, they can't have particular diseases, They can't, you know, for example, in one particular trial we were looking at, they had to have a specific BMI, they couldn't have diabetes they couldn't have all of these other healthcare conditions which at the end of the day it doesn't really represent the community at risk. And so when we develop these models using clinical trial data, a lot of times it's not generalizable to routine care. And so AI can really help that. AI can help us understand, how we can better identify patients to include in trials, what patients are going to be more likely to complete the trials. And so there's a lot of opportunity there to think about how we diversify clinical trials and also how we can start thinking stimulating and doing pragmatic clinical trials if we don't have enough data to represent certain populations. >> Right, one of the, the exciting things about data science is all the things that it's informing. It's also, there's pros and cons. >> Absolutely, right. >> But when we talk about AI, we always talk about ethics. How is it being used in healthcare? How are you seeing it being used? Ethically and effectively in healthcare to really turn the table on some of those biases... >> Exactly. >> To your point, weren't representing some of the most vulnerable part of the community. >> Right. And I think we've been taking this holistic approach of the AI life cycle. So not just focusing on the data we capture, but the whole life cycle. So what does that mean? That means, you know where's the data coming from, who's capturing it, and in what setting, right. If we're only looking at the healthcare setting, well, we're missing another large population. It is only collected via a mobile device. There's another population we're missing. So thinking about where the data's coming from, and then thinking about who it represents and who's missing from that. The next step is really thinking about the questions we're asking. I'll give you a good example. We can ask, you know, can I use AI to predict a no-show appointment? Or can I use AI to identify barriers for this patient to access care? So really even thinking about how we can flip that question to make it more equitable, make it more diverse is really important. And then there's been a lot of work in model development and algorithm fairness, and so there's a lot of research on that. But then there's another piece that we don't really see a lot on, and that's model deployment. So what are the biases when you introduce this into the healthcare system? The clinicians, how do they understand the data we're giving them, the tools. How do they use that to make clinical decisions? And then also, what systems can actually deploy these AI algorithms because they're very resource intensive. So we think about the AI and equity along all of those aspects of the AI life cycle. And it really helps us get a more holistic view because each of these components intersects. >> They do, you're right. Tell me, I'm curious a little bit about your background. You are associate professor of medicine here at Stanford. Give the audience an overview of the path that you took to get where you are. >> Yeah, so not a straight path, which is often typical that we're hearing today. So I started getting a Master's in Epidemiology and Public Health. And from there, I was like, you know, I wasn't really sure what I wanted to do. I applied to medical school, but I'm like, I'm not sure that's what I want to do. So I went and got a PhD in Computational Biology. I'm always data savvy. And so thinking about how I could use data and I was interested in healthcare. And so I got my PhD in Computational Biology. And from there, I was thinking about, well, I was really interested in the application of data science to the healthcare field. So then I got a Master's in Health Services Research. So it's the combination of all these different degrees that make me really have, I think, a diverse view. I really understand the need for multidisciplinary teams and how we need opinions and viewpoints from so many different disciplines to really create something that's equitable and fair and something that is feasible and usable. >> Thought diversity is so important. >> Oh, it is. >> In every aspect of life, whether we're talking about business life, personal life and without it, there's bias. >> Absolutely. Absolutely. And so we see this, we'll have a clinician maybe come to us with a question and then we'll have, you know the health economists think about it. We'll have the other people think about it. And we kind of work it and we massage it to get to something that's meaningful and something that we can really use that's going to change care for patients or particular patients. And so it really important to have that diversity. >> Absolutely, talk to me about your team that you're working with. >> Yeah, so my team is very diverse and I'm very proud of that. We have diversity across every aspect. So we have racial-ethnic diversity. We're probably about 80% female on my team. And so interestingly, one of my members was like, wow, I didn't realize I'm such a minority on your team. It was a male. And so I'm like, and I'm very proud of that. But we also have very diverse disciplines. So we have a lot of medical students, medical faculty we have computer scientists, engineers, epidemiologists, health policy experts. And so it's very, very diverse. And what I like to do is I like to pair people up in teams. So I might put a health economist with a computer scientist and watch them go. And it's just amazing how they can learn from each other and the directions they go in. It's just, it's really incredible. >> Well, and the opportunities that that interdisciplinary relationship builds I mean, opportunities and possibilities must be endless. >> Yeah, and it also allows students to understand how to speak to different groups because we don't speak the same language, we really don't. And equity is a good example. So equity to me might have a certain meaning, but equity to the health policy expert might have a different meaning. And so even understanding how we speak to other groups is so important and being able to translate something in a simple language that other people get is really key. >> Absolutely. >> Yeah, now here we are, tomorrow was International Women's Day- >> Exciting. >> It is exciting and Women's History Month, we get a whole month to ourselves, which is fantastic. But one of the things, you know, when we look at the at the data, the workforce 50- 50 males to females, but the STEM positions are still so low, right? Below 25%. Are you seeing, obviously WIDS is a positive step in that direction to start shifting that. But what do you tell the younger set in terms of- >> Yeah, it is a challenge. It is a challenge to really, and this is the example I always give. As a woman, we've all walked into these rooms that are all male. >> Lisa: Oh, yes. >> We've all walked into these rooms where you're sitting at the table. Oh, can you take notes? And it's hard, it's really hard. But you know what, it takes courage. So again, that mentorship being able to speak up, being able to set your place at that table I think is really important. And we're doing better. We're doing better. But it really is through consistent mentorship, consistent confidence building, et cetera. >> It is. >> Yeah. Yeah. >> And this, this event is fantastic for that. It's going to reach about 100,000 people annually. >> Amazing. >> Yeah. Men and women of all, of all ages, of all different career backgrounds, which is fantastic. But the International Women's Day theme tomorrow, is "Breaking the Bias." Hashtag breaking the bias. Where do you think we are on that? >> I think we have a lot of ways to go. And so there's bias in our teams, there's bias in the way we think, there's bias in our data. And there's been a lot of publicity and hype about the bias in the data. And it is so true and certainly in healthcare systems. And, you know, it's important to understand that when we're developing AI and all these machine learning or data-driven models, they learn from the data we give it. So if we're giving it a biased data sample, or an unrepresented data sample, it's going to learnt those characteristics. And so I think it's important that we think about, you know how do we do a better job at capturing data, diversity, voices from different populations? And it's not just using the same tools and technology we have today and going to another community and saying, okay, here's what I have. You know, it's not working that way. So I think we need to think outside of the box. To think how do these people want to communicate with us? How do they want to share our data? It's about trust too, because trust is a big issue with that. So I think there's a lot of opportunities there to just further develop that. Do you think there really is going to be such a thing one of these days of an a non-biased unbiased set of data? >> I don't think so. I don't think so because the more we dig, the more biases we find and while we're making great strides in race and ethnicity, diversity in our data sets, there's other biases. You know, male, female, age biases, disease biases, et cetera. So just the more we dig into this, the more we identify. But it's great because when we find these gaps in our data or gaps, we take steps to address that and to mitigate those biases. So we're, we're moving in the right direction for sure putting the spotlight on it and being transparent about it, I think is key to move forward. >> I agree that transparency is critical. >> Yes, absolutely. >> And, you know, we often say she can't be what she can't see. Right, and so from a transparency perspective in data and also in the visibility of the leaders and the mentors and the sponsors, that transparency is table stakes. >> Absolutely. Absolutely. >> What are some of the things that you're looking forward to as we hopefully move out of the pandemic and to the end- I can imagine with the Masters in public health you have in MPH. Yes, your prospect must be so interesting on living through it during the pandemic. >> It is, and, and it's interesting because we've gone through the pandemic and now it's turning into this endemic, right? And so how do we deal with that? And one of the things I think that is really important is we find way to still meet and collaborate face to face, share ideas. This conference is amazing where we can share ideas, we can meet new people, we can learn new perspectives and being able to continue to do that is so important. I think that during the pandemic, we really took a big hit in the transfer of learning in our labs and in our teams. And now it's funny because my team they're like let's go to lunch, let's do a happy hour. Let's, you know, they just want that social interaction. And it's more to better understand the perspectives of where they're coming from with their questions, better understanding of the skills they bring to the table. But it's just this wonderful opportunity to think about how we move forward now in our new world, right? >> Yes. We're getting there slowly, but surely. Well, Tina, thank you for joining me talking about your role, what you're doing, the importance of mentors and sponsors, and the opportunity for data science in healthcare. We appreciate your insights. >> Absolutely. Thank you for having me. It's my pleasure. >> You're welcome. >> Excellent. >> Thank you, For Tina Hernandez-Boussard, I'm Lisa Martin. You're watching theCUBE's live coverage of Women In Data Science Worldwide Conference 2022. Stick around, my next guest will join me shortly. (gentle music)
SUMMARY :
coming to you live from so it's exciting to be part And if you think about, they And one of the things that I love And so we talked about in the panel, that I talked to who said, are you sure you want to pursue this? and that encouragement Absolutely. about your research. in the tools we develop. and how can data science help drive it? And so to your question about data science is all the Ethically and effectively in healthcare of the most vulnerable on the data we capture, of the path that you took and how we need opinions and viewpoints In every aspect of life, and something that we can really use Absolutely, talk to me about your team So we have a lot of medical Well, and the opportunities So equity to me might But one of the things, It is a challenge to really, being able to set your place at that table It's going to reach about is "Breaking the Bias." that we think about, you know So just the more we dig into and the mentors and the sponsors, Absolutely. the pandemic and to the end- And one of the things I think and the opportunity for Thank you for of Women In Data Science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
2015 | DATE | 0.99+ |
Tina | PERSON | 0.99+ |
Tina Hernandez-Boussard | PERSON | 0.99+ |
International Women's Day | EVENT | 0.99+ |
one day | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
25% | QUANTITY | 0.99+ |
Tina Hernandez Boussard | PERSON | 0.99+ |
tomorrow | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
50 | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
one | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two | QUANTITY | 0.98+ |
about 100,000 people | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
60 countries | QUANTITY | 0.98+ |
first generation | QUANTITY | 0.98+ |
each | QUANTITY | 0.97+ |
pandemic | EVENT | 0.97+ |
Women's History Month | EVENT | 0.96+ |
Women in Data Science Worldwide Conference 2022 | EVENT | 0.96+ |
about 80% | QUANTITY | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
200 different local events | QUANTITY | 0.94+ |
Women In Data Science Worldwide Conference 2022 | EVENT | 0.94+ |
First | QUANTITY | 0.9+ |
Stanford | LOCATION | 0.81+ |
trial | QUANTITY | 0.76+ |
this morning | DATE | 0.76+ |
annually | QUANTITY | 0.73+ |
one of my members | QUANTITY | 0.69+ |
events | QUANTITY | 0.54+ |
WiDS | EVENT | 0.37+ |
2022 | EVENT | 0.29+ |
Tierra Bills, UCLA | WiDS 2022
>>Welcome everyone to the cubes coverage of women in data science, worldwide conference 2022. I'm Lisa Martin, coming to you live from Stanford university at the Arriaga alumni center. It's great to be back at widths in person, and I'm pleased to welcome fresh from the main stage Tiara Bill's assistant professor at UCLA Tierra. Welcome to the program. >>I'm glad to be here. Thank you for having me. Tell >>Me a little bit about your background. You're a civil engineer and I was telling you, so it was my dad. So I'm, I'm partial to civil engineers, but give our audience an overview of your background, what you studied and all that. Good. >>Yeah. So I'm a civil engineer, um, specifically transportation engineer, um, at UCLA. I also have an appointment in the public policy department. And so, um, I'm split between the two, my work focuses on travel demand modeling and how to use these tools to better inform, uh, and learn more about transportation equity and how to advance transportation equity. Um, and what that means is that we are prioritizing the needs of vulnerable communities, um, in terms of the data that we're using, the models that we're using to guide decision-making, um, in terms of the very projects that we evaluate and ultimately the decisions that we make to invest in certain transportation improvements. How >>Did you get interested in transportation equity? >>Yeah, so I think it, it stems from growing up, uh, in Detroit, some or Detroit born and raised native, and it stems from growing up in an environment where it was very clear that space matters that where you live the most, that you have access to, uh, whether you have a car or not. Um, whether you have flexibility in your, in your travel, it all matters. And it all governs the opportunities that you have access to. So it was very clear to me, um, when I would realize that certain certain kids didn't really leave their neighborhood, you know, they didn't travel about the city, let alone outside of the city and abroad. And so, um, and there are also other, you know, examples of, um, there are examples and cases after case where it's clear that communities are, um, being exposed to a high level of emissions, for example, um, that might result from transportation, but they're not positioned to benefit, um, in the same ways that the people who own the infrastructure on the freight or what have you. So, um, these are all very real experiences that have motivated my interest in transportation equity. >>Interesting. It's something I actually had never thought about, but you bring up a great point. How are talk to me about the travel demand models, how they're relevant and, and where some of the biases are in travel data, >>Right? So travel demand models, they are they're computational tools. They're empirically estimated meaning that their estimated from raw data, um, everything about them is driven by the data that you have access to. And how they're used is in largely in regional transportation planning, when it is necessary for regions to assess 10, maybe 15, 20 years into the future. Um, how is transportation going to change as a result of changes in travel patterns, growth in the population, um, changes and how firms are distributed across the landscape. Um, environmental changes, all sorts of changes that, um, that guide and direct our transportation decisions at an individual level. So regions are assessing these things over time and they need these powerful travel demand models in order to perform those assessments. And then they also, once they have an understanding of what the need is, because for example, they expect traffic congestion to improve, or sorry to increase over time. Um, there needs to be a means of assessing alternatives for mitigating those issues. And so they use the same types of models to understand if we expand highway capacity, if we, uh, build a new form of transit, is that going to mitigate, uh, the challenges that we're going to face in the future >>And travel demand, modeling and equity? What's the connection there? I imagine there's a pretty good >>Deep connection, right? So the connection is that. So we're using these tools to decide on the future of transportation investments and because of a history of understanding that we have around how ignoring the conditions for vulnerable communities, ignoring how, um, uh, transportation decisions might differentially impact different, different groups, different segments. Um, if we ignore that, then it can lead to devastating outcomes. And so I'm citing, um, examples of the construction of the Eisenhower interstate system back in the fifties and sixties, where, uh, we know today that there were millions of black and minority communities that were, uh, displace. Um, they weren't fairly compensated all because of lack of consideration for, for outcomes to these communities and the planning process. And so we are aware that these kinds of things can happen. Um, and because of that, we now have federal regulations that require, uh, equity analysis to occur for any project that's going to leverage federal funding. And so it's, it's tied to our understanding of what can happen when we don't focus on equity is also tied to what the current regulations are, but challenge is that we need better guidance on how to do this, how to perform the equity analysis. What types of improvements are actually going to move the needle and advance us toward a state where we can prioritize the needs of the vulnerable travelers and residents? What >>Excites you about the work that you're doing? >>You know, I, I have a vested interest in seeing conditions improve for, um, for the underdog, if you will, for folks who, um, they, they work hard, but they still struggle, um, for folks who experience discrimination in different forms. Um, and so I have a vested interest in seeing conditions improve for them. And so I'm really excited about, uh, the time that we're in, I'm excited that equity is now at the height of many discussions, um, because it's opening up resources, right? To have, uh, more folks paying attention, more folks, researching more folks, developing methods and processes that will actually help to advance equity, >>Advancing equity. We definitely need that. And you're right. There's, there's good V visibility on it right now. And let's take advantage of that for the good things that can come out of it. Talk to me a little bit about what you talked about in your talk earlier today here at widths. >>Right? So today I got a chance to elaborate on how travel demand models can end up, um, uh, with, with issues of bias and under-representation, and it's tied to a number of things, but one of them is the data that reusing, because these are, uh, empirically estimated tools. They take their form, they take their, uh, significance. Everything about them is shaped by the data that we use. Um, and at the same time, we are aware that vulnerable communities are more prone to issues that contribute to data bias. And under-representation so issues, for example, like non-response, um, issues like coverage bias with means that, um, certain groups are for whatever reason, not in the sample link frame. Um, and so, because we know that these types of errors are more prevalent for vulnerable communities, it brings, uh, it raises questions about, um, the quality of the decisions that come out of these models that we estimate based on these data. >>And so I'm interested in weaving these parts together. Um, and part of it has to do with understanding the conditions that, um, that underlie the data. So what do I mean by conditions? I gave an example of, uh, cases where there is discrimination and as evidenced by the data that we have available as evidenced, uh, for example, by examining, um, the quality of service across racial groups, um, using Uber and Lyft, right? So we have information that, that, that presents this to us, but that information is still outside of what we typically use to estimate travel, demand models. That information is not being used to understand the context under which people are making decisions. It's not being used to better understand the constraints that people are facing when they're making, uh, decisions. And so what is the connection that means that we are using data, um, that does not will capture the target group. >>People who are low income, elderly, um, transit dependent, uh, we're not capturing these groups very well because of the prevalence of, of various types of survey bias. Um, and it is shaping our models in unknown ways. And so my group is really trying to make that connection between, okay, how do we collect Bader, better data, first of all, but second, what does that mean? What are the ramifications for prediction, accuracy for VR, for various groups, and then beyond that, what are the policy implications? Right. Um, I think that the risk is that we might be making wrong decisions, right? We might be assuming that, uh, certain types of improvements are actually going to improve quality of service for vulnerable communities when they actually don't. Right. Um, and so that's the worry and that's part of the unknown, and that's why I'm working in this >>Part of the anonymity. Also, I'm sure part of your passion and your interest international women's day is tomorrow. And the theme this year is break the bias of breaking the bias with >>Mercy back >>To travel equity. Where do you think we are on, on being able to start mitigating some of the biases that you've talked about? >>I think that it's all about phasing. I think that there are things that we can do now, right? And so, um, at the point of making decisions, um, we can view the results that we have through this lens, that it might be an incomplete picture. We can view it through a historical lens. We can also view it, um, using emerging data that allows for us to explore some of these constraints that, you know, might be exogenous to the models or X, not in, not included in how we estimate the models. Um, and so that's one thing that we can do in practice is okay. We already know that there are some challenges let's view this from a different lens, as opposed to assuming that it's giving us the complete picture. Right. Um, and that's kind of been my theme, uh, today is that, you know, as decision-makers, as analysts, as data scientists, as researchers, we do have tendency of assuming that the data that we have, the results that we have is giving us the complete picture when we know, but it's not, we know that we act as if it is, but we know that it's not right. >>So, you know, we need to, there's a lot of learning and changing of behaviors, um, that that has to happen. >>Changing behaviors is challenging. >>It is behavior changes is tough, but it's necessary, but it's necessary. It's necessary. And it's urgent. And it's critical, especially if you're going to, uh, improve conditions for vulnerable community. >>What are some of the things that excite you, that looking at where we are now, we've got a nice visibility on equity. There, there's the conscious understanding of the bias and data and the work to help to mitigate that. What are some of the things that excite you about what you're doing and maybe even some of the policies that you think should be enacted as a result of more encompassing datasets? >>It's a good question. Um, one thing I will say is what excites me is it's also tied to the emerging data that we have available. So I'm trying to go back to an example that I gave about measuring constraints. Think that we can now do that in interesting ways, because we're collecting data about everything we're collecting data about, um, not just about where we travel, but how we travel, why we travel. Um, you know, we, we collect information on who we're traveling with, you know, so there's a lot more information that we can make use of, um, in particular to understand constraints. So it's, it's really exciting to me. And when I say that again, um, talking about, um, how would we make a choice to take a certain mode of transportation or to leave our house at a certain time in the morning to, to get to work. >>Um, we're making that under some conditions, right? Right. And those conditions aren't always observed and traditional data sets. I think now we're at a time where emerging data sources can start to capture some of that. And so we can ask questions that we weren't able to, or answer questions that we weren't able to answer before. And the reason why it's important in the modeling is because in the models, you have this sort of choice driven side and you have the alternatives. So you're making a choice amongst some set of alternatives. We model the choices and we spend a lot of time and pay a lot of attention to the decision process. And what factors goes into making the choice, assuming that everyone really has the same set of universal choices. Right. I think that we need to take a little, pay a little more intention, um, to understanding the constraints that people have, um, and how that guides the overall outcomes. Right? So, so that's what I'm excited about. I mean, it's basically leveraging the new data in new ways that we weren't able to before >>Leveraging the data in new ways. Love it. Tierra, thank you for joining me, talking about transportation equity, what you're doing there, the opportunities and kind of where we are on that road. If you will. Thank you so much for having me, my pleasure. I'm Lisa Martin. You're watching the cubes coverage of women in data science conference, 2022. We'll be right back with our next guest.
SUMMARY :
I'm Lisa Martin, coming to you live from Stanford university at I'm glad to be here. So I'm, I'm partial to civil engineers, in terms of the very projects that we evaluate and ultimately the decisions that we make to invest And it all governs the opportunities that you have access to. the travel demand models, how they're relevant and, and where some of the biases are And so they use the same types of models to understand if we And so it's, it's tied to our understanding of what can happen when we don't focus for, um, for the underdog, if you will, And let's take advantage of that for the good things that can come out of it. Um, and at the same time, we are aware that vulnerable the quality of service across racial groups, um, using Uber and Lyft, Um, and so that's the worry and that's part of the unknown, And the theme this year is break the bias of breaking the bias with on being able to start mitigating some of the biases that you've talked about? at the point of making decisions, um, we can view the results that So, you know, we need to, there's a lot of learning and changing of behaviors, And it's critical, especially if you're going to, What are some of the things that excite you about what you're doing and maybe even some of the policies the emerging data that we have available. And so we can ask questions that we weren't able to, Leveraging the data in new ways.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Detroit | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Tiara Bill | PERSON | 0.99+ |
UCLA | ORGANIZATION | 0.99+ |
15 | QUANTITY | 0.99+ |
Lyft | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
millions | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
UCLA Tierra | ORGANIZATION | 0.99+ |
this year | DATE | 0.98+ |
second | QUANTITY | 0.98+ |
fifties | DATE | 0.97+ |
20 years | QUANTITY | 0.96+ |
one thing | QUANTITY | 0.95+ |
Arriaga | ORGANIZATION | 0.92+ |
women's day | EVENT | 0.87+ |
Tierra | PERSON | 0.85+ |
earlier today | DATE | 0.83+ |
Tierra Bills | ORGANIZATION | 0.83+ |
2022 | EVENT | 0.76+ |
Stanford university | ORGANIZATION | 0.71+ |
first | QUANTITY | 0.7+ |
black | QUANTITY | 0.55+ |
sixties | DATE | 0.55+ |
science | EVENT | 0.51+ |
Eisenhower | PERSON | 0.41+ |
WiDS | EVENT | 0.26+ |
Alex Hanna, The DAIR Institute | WiDS 2022
(upbeat music) >> Hey everyone. Welcome to theCUBE's coverage of Women in Data Science, 2022. I'm Lisa Martin, excited to be coming to you live from Stanford University at the Ariaga alumni center. I'm pleased to welcome fresh keynote stage Alex Hanna the director of research at the dare Institute. Alex, it's great to have you on the program. >> Yeah, lovely to be here. >> Talk to me a little bit about yourself. I know your background is in sociology. We were talking before we went live about your hobbies and roller derby, which I love. >> Yes. >> But talk to me a little bit about your background and what the DAIR Institute this is, distributed AI research Institute, what it actually is doing. >> Sure, absolutely. So happy to be here talking to the women in data science community. So my background's in sociology, but also in computer science and machine learning. So my dissertation work was actually focusing on developing some machine learning and natural language processing tools for analyzing protest event data and generating that and applying it to pertinent questions within social movement scholarship. After that, I was a faculty at University of Toronto and then research scientist at Google on the ethical AI team where I met Dr. Timnit Gebru who is the founder of DAIR. And so, DAIR is a nonprofit research Institute oriented on around independent community based AI work, focused really on, the kind of, lots of discussions around AI are done by big companies or companies focus on solutions that are very much oriented around collecting as much data as they can. Not really knowing if it's going to be for community benefit. At DAIR, we want to flip that, we want to really want to prioritize what that would mean if communities had input into data driven technologies what it would mean for those communities and how we can help there. >> Double click and just some of your research, where do your passions lie? >> So I'm a sociologist and a lot of that being, I think one of the big insights of sociology is to really highlight at how society can be more just, how we can interrogate inequality and understanding how to make those distances between people who are underserved and over served who already have quite a lot, how we can reduce the disparities. So finding out where that lies, especially in technology that's really what I'm passionate about. So it's not just technology, which I think can be helpful but it's really understanding what it means to reduce those gaps and make the world more just. >> And that's so important. I mean, as more and more data is generated, exponentially growing, so are some of the biases and the challenges that that causes. You just gave your tech vision talk which I had a chance to see most of it. And you were talking about something that's very interesting. That is the biases in facial recognition software. Maybe on a little bit about what you talked about and why that is such a challenge. And also what are some of the steps being made in the right direction where that's concerned? >> Yeah. So there's the work I was talking about in the talk was highlighting, not work I've done, but the work by doctors (indistinct) and (indistinct) focusing on the distance that exists and the biases that exist in facial recognition as a technical system. The fact remains also that facial recognition is used and is disproportionately deployed on marginalized population. So in the U.S, that means black and brown communities. That's where facial recognition is used disproportionately. And we also see this in refugee context where refugees will be leaving the country. And those facial recognition software will be used in those contexts and surveilling them. So these are people already in a really precarious place. And so, some of the movements there have been to debias some of the facial recognition tools. I actually don't think that's far enough. I'm fundamentally against facial recognition. I think that it shouldn't be used as a technology because it is used so pervasively in surveillance and policing. And if we're going to approach that we really need to think, rethink our models of security models of immigration and whatnot. >> Right, it's such an important topic to discuss because I think it needs more awareness about some of the the biases, but also some to your point about some of those vulnerable communities that are really potentially being harmed by technologies like that. We have to be, there's a fine line. Or maybe it's not so fine. >> I don't think it's that fine. So like, I think it's used, in an incredibly harsh way. And for instance there's research that's being done in which, so I'm a transgender woman and there's a research being done by researchers who collected data sets that people had on YouTube documenting their transitions. And already there was a researcher collecting those data and saying, well, we could have terrorists or something take hormones and cross borders. And you talk to any trans person, you're like, well, that's not how it works, first off. Second off, it's already viewing trans people and a trans body as kind of a mode of deception. And so that's, whereas researchers in this space were collecting those data and saying that well, we should collect these data to help make these facial recognitions more fair. But that's not fair if it's going to be used on a population that's already intensely surveilled and held in suspicion. >> Right. That's, the question of fairness is huge, absolutely. Were you always interested in tech, you talked about your background in sociology. Was it something that you always, were you a stem kid from the time you were little? Talk to me about your background and how you got to where you are now? >> Yeah. I've been using computers since I was four. I've been using, I was taking a part, my parents' gateway computer. yeah, when I was 10. Going to computer shows, slapping hard drives into things, seeing how much we could upgrade computer on our own and ruining more than in one computer, to my parents chagrin but I've always been that. I went to undergrad in triple major to computer science, math and sociology, and originally just in computer science and then added the other two where I got interested in things and understanding that, was really interested in this section of tech and society. And I think the more and more I sat within the field and went and did my graduate work in sociology and other social sciences really found that there was a place to interrogate those, that intersection of the two. >> Exactly. What are some of the things that excite you now about where technology is going? What are some of the positives that you see? >> I talk so much about the negatives. It's really hard to, I mean, there's I think, some of the things that I think that are positive are really the community driven initiatives that are saying, well, what can we do to remake this in such a way that is going to more be more positive for our community? And so seeing projects like, that try to do community control over certain kinds of AI models or really try to tie together different kinds of fields. I mean, that's exciting. And I think right now we're seeing a lot of people that are super politically and justice literate and they how to work and they know what's behind all these data driven technologies and they can really try to flip the script and try to understand what would it mean to kind of turn this into something that empowers us instead of being something that is really becoming centralized in a few companies >> Right. We need to be empowered with that for sure. How did you get involved with WIS? >> So Margo, one of the co-directors, we sit on a board together, the human rights data analysis group and I've been a huge fan of HR dag for a really long time because HR dag is probably one of the first projects I've seen that's really focused on using data for accountability for justice. Their methodology has been, called on to hold perpetrators of genocide to accounts to hold state violence, perpetrators to account. And I always thought that was really admirable. And so being on their board is sort of, kind of a dream. Not that they're actually coming to me for advice. So I met Margo and she said, come on down and let's do a thing for WIS and I happily obliged >> Is this your first Wis? >> This is my very first Wis. >> Oh, excellent. >> Yeah. >> What's your interpretation so far? >> I'm having a great time. I'm learning a lot meeting a lot of great people and I think it's great to bring folks from all levels here. Not only, people who are a super senior which they're not going to get the most out of it it's going to be the high school students the undergrads, grad students, folks who, and you're never too old to be mentored, so, fighting your own mentors too. >> You know, it's so great to see the young faces here and the mature faces as well. But one of the things that I was, I caught in the panel this morning was the the talk about mentors versus sponsors. And that's actually, I didn't know the difference until a few years ago in another women in tech event. And I thought it was such great advice for those panelists to be talking to the audience, talking about the importance of mentors, but also the difference between a mentor and sponsor. Who are some of your mentors? >> Yeah, I mean, great question. It's going to sound cheesy, but my boss (indistinct) I mean, she's been a huge mentor for me and with her and another mentor (indistinct) Mitchell, I wouldn't have been a research scientist. I was the first social scientist on the research scientist ladder at Google before I left and if it wasn't for their, they did sponsor but then they all also mentored me greatly. My PhD advisor, (indistinct) huge mentor by, and I mean, lots of primarily and then peer mentors, people that are kind of at the same stage as me academically but also in professionally, but are mentors. So folks like Anna Lauren Hoffman, who's at the UDub, she's a great inspiration in collaborating, co-conspirator, so yeah. >> Co-conspirator, I like that. I'm sure you have quite a few mentees as well. Talk to me a little bit about that and what excites you about being a mentor. >> Yeah. I have a lot of mentees either informally or formally. And I sought that out purposefully. I think one of the speakers this morning on the panel was saying, if you can mentor do it. And that's what I did and sought out that, I mean, it excites me because folks, I don't have all the answers, no one person does. You only get to those places, if you have a large community. And I think being smart is often something that people think comes like, there's kind of like a smart gene or whatever but like there probably is, like I'm not a biologist or a cognitive, anything, but what really takes cultivation is being kind and really advocating for other people and building solidarity. And so that's what mentorship really means to me is building that solidarity and really trying to lift other people up. I mean, I'm only here and where I'm at in my career, because many people were mentors and sponsors to me and that's only right to pay that forward. >> I love that, paying that forward. That's so true. There's nothing like a good community, right? I mean, there's so much opportunity that that ground swell just generates, which is what I love. We are, tomorrow is international women's day. And if we look at the numbers, women are 50% of the workforce, but only less than a quarter in stem positions. What's your advice and recommendation for those young girls who might be intimidated or might be being told even to this day, no, you can't do physics. You can't do computer science. What can you tell them? >> Yeah, I mean, so individual solutions to that are putting a bandaid on a very big wound. And I mean I think, finding other people in a working to change it, I mean, I think building structures of solidarity and care are really the only way we'll get out of that. >> I agree. Well, Alex, it's been great to have you on the program. Thank you for coming and sharing what you're doing at DAIR. The intersection of sociology and technology was fascinating and your roller derby, we'll have to talk well about that. >> For sure. >> Excellent. >> Thanks for joining me. >> Yeah, thank you Lisa. >> For Alex Hanna, I'm Lisa Martin. You're watching theCUBE's coverage live, of women in data science worldwide conference, 2022. Stick around, my next guest is coming right up. (upbeat music)
SUMMARY :
to be coming to you live Talk to me a little bit about yourself. But talk to me a little and applying it to pertinent questions and a lot of that being, and the challenges that that causes. and the biases that exist but also some to your point it's going to be used Talk to me about your background And I think the more and What are some of the and they how to work and they know what's We need to be empowered and I've been a huge fan of and I think it's great to bring I caught in the panel this morning people that are kind of at the and what excites you about being a mentor. and that's only right to pay that forward. even to this day, no, and care are really the only to have you on the program. of women in data science
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Alex Hanna | PERSON | 0.99+ |
Anna Lauren Hoffman | PERSON | 0.99+ |
Timnit Gebru | PERSON | 0.99+ |
DAIR | ORGANIZATION | 0.99+ |
Lisa | PERSON | 0.99+ |
Margo | PERSON | 0.99+ |
50% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Mitchell | PERSON | 0.99+ |
first | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
DAIR Institute | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
University of Toronto | ORGANIZATION | 0.99+ |
Second | QUANTITY | 0.99+ |
U.S | LOCATION | 0.99+ |
tomorrow | DATE | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
10 | QUANTITY | 0.98+ |
2022 | DATE | 0.98+ |
dare Institute | ORGANIZATION | 0.98+ |
four | QUANTITY | 0.97+ |
YouTube | ORGANIZATION | 0.97+ |
less than a quarter | QUANTITY | 0.96+ |
AI research Institute | ORGANIZATION | 0.96+ |
UDub | ORGANIZATION | 0.95+ |
WIS | ORGANIZATION | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
theCUBE | ORGANIZATION | 0.93+ |
Dr. | PERSON | 0.92+ |
few years ago | DATE | 0.91+ |
Double click | QUANTITY | 0.91+ |
this morning | DATE | 0.91+ |
HR dag | ORGANIZATION | 0.9+ |
first social | QUANTITY | 0.9+ |
first projects | QUANTITY | 0.88+ |
international women's day | EVENT | 0.8+ |
one computer | QUANTITY | 0.77+ |
triple | QUANTITY | 0.65+ |
Wis | ORGANIZATION | 0.65+ |
more | QUANTITY | 0.58+ |
WiDS | EVENT | 0.55+ |
Ariaga | ORGANIZATION | 0.52+ |
Rajesh Pohani and Dan Stanzione | CUBE Conversation, February 2022
(contemplative upbeat music) >> Hello and welcome to this CUBE Conversation. I'm John Furrier, your host of theCUBE, here in Palo Alto, California. Got a great topic on expanding capabilities for urgent computing. Dan Stanzione, he's Executive Director of TACC, the Texas Advanced Computing Center, and Rajesh Pohani, VP of PowerEdge, HPC Core Compute at Dell Technologies. Gentlemen, welcome to this CUBE Conversation. >> Thanks, John. >> Thanks, John, good to be here. >> Rajesh, you got a lot of computing in PowerEdge, HPC, Core Computing. I mean, I get a sense that you love compute, so we'll jump right into it. And of course, I got to love TACC, Texas Advanced Computing Center. I can imagine a lot of stuff going on there. Let's start with TACC. What is the Texas Advanced Computing Center? Tell us a little bit about that. >> Yeah, we're part of the University of Texas at Austin here, and we build large-scale supercomputers, data systems, AI systems, to support open science research. And we're mainly funded by the National Science Foundation, so we support research projects in all fields of science, all around the country and around the world. Actually, several thousand projects at the moment. >> But tied to the university, got a lot of gear, got a lot of compute, got a lot of cool stuff going on. What's the coolest thing you got going on right now? >> Well, for me, it's always the next machine, but I think science-wise, it's the machines we have. We just finished deploying Lonestar6, which is our latest supercomputer, in conjunction with Dell. A little over 600 nodes of those PowerEdge servers that Rajesh builds for us. Which makes more than 20,000 that we've had here over the years, of those boxes. But that one just went into production. We're designing new systems for a few years from now, where we'll be even larger. Our Frontera system was top five in the world two years ago, just fell out of the top 10. So we've got to fix that and build the new top-10 system sometime soon. We always have a ton going on in large-scale computing. >> Well, I want to get to the Lonestar6 in a minute, on the next talk track, but... What are some of the areas that you guys are working on that are making an impact? Take us through, and we talked before we came on camera about, obviously, the academic affiliation, but also there's a real societal impact of the work you're doing. What are some of the key areas that the TACC is making an impact? >> So there's really a huge range from new microprocessors, new materials design, photovoltaics, climate modeling, basic science and astrophysics, and quantum mechanics, and things like that. But I think the nearest-term impacts that people see are what we call urgent computing, which is one of the drivers around Lonestar and some other recent expansions that we've done. And that's things like, there's a hurricane coming, exactly where is it going to land? Can we refine the area where there's going to be either high winds or storm surge? Can we assess the damage from digital imagery afterwards? Can we direct first responders in the optimal routes? Similarly for earthquakes, and a lot recently, as you might imagine, around COVID. In 2020, we moved almost a third of our resources to doing COVID work, full-time. >> Rajesh, I want to get your thoughts on this, because Dave Vellante and I have been talking about this on theCUBE recently, a lot. Obviously, people see what cloud's, going on with the cloud technology, but compute and on-premises, private cloud's been growing. If you look at the hyperscale on-premises and the edge, if you include that in, you're seeing a lot more user consumption on-premises, and now, with 5G, you got edge, you mentioned first responders, Dan. This is now pointing to a new architectural shift. As the VP of PowerEdge and HPC and Core Compute, you got to look at this and go, "Hmm." If Compute's going to be everywhere, and in locations, you got to have that compute. How does that all work together? And how do you do advanced computing, when you have these urgent needs, as well as real-time in a new architecture? >> Yeah, John, I mean, it's a pretty interesting time when you think about some of the changing dynamics and how customers are utilizing Compute in the compute needs in the industry. Seeing a couple of big trends. One, the distribution of Compute outside of the data center, 5G is really accelerating that, and then you're generating so much data, whether what you do with it, the insights that come out of it, that we're seeing more and more push to AI, ML, inside the data center. Dan mentioned what he's doing at TACC with computational analysis and some of the work that they're doing. So what you're seeing is, now, this push that data in the data center and what you do with it, while data is being created out at the edge. And it's actually this interesting dichotomy that we're beginning to see. Dan mentioned some of the work that they're doing in medical and on COVID research. Even at Dell, we're making cycles available for COVID research using our Zenith cluster, that's located in our HPC and AI Innovation Lab. And we continue to partner with organizations like TACC and others on research activities to continue to learn about the virus, how it mutates, and then how you treat it. So if you think about all the things, and data that's getting created, you're seeing that distribution and it's really leading to some really cool innovations going forward. >> Yeah, I want to get to that COVID research, but first, you mentioned a few words I want to get out there. You mentioned Lonestar6. Okay, so first, what is Lonestar6, then we'll get into the system aspect of it. Take us through what that definition is, what is Lonestar6? >> Well, as Dan mentioned, Lonestar6 is a Dell technology system that we developed with TACC, it's located at the University of Texas at Austin. It consists of more than 800 Dell PowerEdge 6525 servers that are powered with 3rd Generation AMD EPYC processors. And just to give you an example of the scale of this cluster, it could perform roughly three quadrillion operations per second. That's three petaFLOPS, and to match what Lonestar6 can compute in one second, a person would have to do one calculation every second for a hundred million years. So it's quite a good-size system, and quite a powerful one as well. >> Dan, what's the role that the system plays, you've got petaFLOPS, what, three petaFLOPS, you mentioned? That's a lot of FLOPS! So obviously urgent computing, what's cranking through the system there? Take us through, what's it like? >> Sure, well, there there's a mix of workloads on it, and on all our systems. So there's the urgent computing work, right? Fast turnaround, near real-time, whether it's COVID research, or doing... Project now where we bring in MRI data and are doing sort of patient-specific dosing for radiation treatments and chemotherapy, tailored to your tumor, instead of just the sort of general for people your size. That all requires sort of real-time turnaround. There's a lot AI research going on now, we're incorporating AI in traditional science and engineering research. And that uses an awful lot of data, but also consumes a huge amount of cycles in training those models. And then there's all of our traditional, simulation-based workloads and materials and digital twins for aircraft and aircraft design, and more efficient combustion in more efficient photovoltaic materials, or photovoltaic materials without using as much lead, and things like that. And I'm sure I'm missing dozens of other topics, 'cause, like I said, that one really runs every field of science. We've really focused the Lonestar line of systems, and this is obviously the sixth one we built, around our sort of Texas-centric users. It's the UT Austin users, and then with contributions from Texas A&M , and Texas Tech and the University of Texas system, MD Anderson Healthcare Center, the University of North Texas. So users all around the state, and every research problem that you might imagine, those are into. We're just ramping up a project in disaster information systems, that's looking at the probabilities of flooding in coastal Texas and doing... Can we make building code changes to mitigate impact? Do we have to change the standard foundation heights for new construction, to mitigate the increasing storm surges from these sort of slow storms that sit there and rain, like hurricanes didn't used to, but seem to be doing more and more. All those problems will run on Lonestar, and on all the systems to come, yeah. >> It's interesting, you mentioned urgent computing, I love that term because it could be an event, it could be some slow kind of brewing event like that rain example you mentioned. It could also be, obviously, with the healthcare, and you mentioned COVID earlier. These are urgent, societal challenges, and having that available, the processing capability, the compute, the data. You mentioned digital twins. I can imagine all this new goodness coming from that. Compare that, where we were 10 years ago. I mean, just from a mind-blowing standpoint, you have, have come so far, take us through, try to give a context to the level of where we are now, to do this kind of work, and where we were years ago. Can you give us a feel for that? >> Sure, there's a lot of ways to look at that, and how the technology's changed, how we operate around those things, and then sort of what our capabilities are. I think one of the big, first, urgent computing things for us, where we sort of realized we had to adapt to this model of computing was about 15 years ago with the big BP Gulf Oil spill. And suddenly, we were dumping thousands of processors of load to figure out where that oil spill was going to go, and how to do mitigation, and what the potential impacts were, and where you need to put your containment, and things like that. And it was, well, at that point we thought of it as sort of a rare event. There was another one, that I think was the first real urgent computing one, where the space shuttle was in orbit, and they knew something had hit it during takeoff. And we were modeling, along with NASA and a bunch of supercomputers around the world, the heat shield and could they make reentry safely? You have until they come back to get that problem done, you don't have months or years to really investigate that. And so, what we've sort of learned through some of those, the Japanese tsunami was another one, there have been so many over the years, is that one, these sort of disasters are all the time, right? One thing or another, right? If we're not doing hurricanes, we're doing wildfires and drought threat, if it's not COVID. We got good and ready for COVID through SARS and through the swine flu and through HIV work, and things like that. So it's that we can do the computing very fast, but you need to know how to do the work, right? So we've spent a lot of time, not only being able to deliver the computing quickly, but having the data in place, and having the code in place, and having people who know the methods who know how to use big computers, right? That's been a lot of what the COVID Consortium, the White House COVID Consortium, has been about over the last few years. And we're actually trying to modify that nationally into a strategic computing reserve, where we're ready to go after these problems, where we've run drills, right? And if there's a, there's a train that derails, and there's a chemical spill, and it's near a major city, we have the tools and the data in place to do wind modeling, and we have the terrain ready to go. And all those sorts of things that you need to have to be ready. So we've really sort of changed our sort of preparedness and operational model around urgent computing in the last 10 years. Also, just the way we scheduled the system, the ability to sort of segregate between these long-running workflows for things that are really important, like we displaced a lot of cancer research to do COVID research. And cancer's still important, but it's less likely that we're going to make an impact in the next two months, right? So we have to shuffle how we operate things and then just, having all that additional capacity. And I think one of the things that's really changed in the models is our ability to use AI, to sort of adroitly steer our simulations, or prune the space when we're searching parameters for simulations. So we have the operational changes, the system changes, and then things like adding AI on the scientific side, since we have the capacity to do that kind of things now, all feed into our sort of preparedness for this kind of stuff. >> Dan, you got me sold, I want to come work with you. Come on, can I join the team over there? It sounds exciting. >> Come on down! We always need good folks around here, so. (laughs) >> Rajesh, when I- >> Almost 200 now, and we're always growing. >> Rajesh, when I hear the stories about kind of the evolution, kind of where the state of the art is, you almost see the innovation trajectory, right? The growth and the learning, adding machine learning only extends out more capabilities. But also, Dan's kind of pointing out this kind of response, rapid compute engine, that they could actually deploy with learnings, and then software, so is this a model where anyone can call up and get some cycles to, say, power an autonomous vehicle, or, hey, I want to point the machinery and the cycles at something? Is the service, do you guys see this going that direction, or... Because this sounds really, really good. >> Yeah, I mean, one thing that Dan talked about was, it's not just the compute, it's also having the right algorithms, the software, the code, right? The ability to learn. So I think when those are set up, yeah. I mean, the ability to digitally simulate in any number of industries and areas, advances the pace of innovation, reduces the time to market of whatever a customer is trying to do or research, or even vaccines or other healthcare things. If you can reduce that time through the leverage of compute on doing digital simulations, it just makes things better for society or for whatever it is that we're trying to do, in a particular industry. >> I think the idea of instrumenting stuff is here forever, and also simulations, whether it's digital twins, and doing these kinds of real-time models. Isn't really much of a guess, so I think this is a huge, historic moment. But you guys are pushing the envelope here, at University of Texas and at TACC. It's not just research, you guys got real examples. So where do you guys see this going next? I see space, big compute areas that might need some data to be cranked out. You got cybersecurity, you got healthcare, you mentioned oil spill, you got oil and gas, I mean, you got industry, you got climate change. I mean, there's so much to tackle. What's next? >> Absolutely, and I think, the appetite for computing cycles isn't going anywhere, right? And it's only going to, it's going to grow without bound, essentially. And AI, while in some ways it reduces the amount of computing we do, it's also brought this whole new domain of modeling to a bunch of fields that weren't traditionally computational, right? We used to just do engineering, physics, chemistry, were all super computational, but then we got into genome sequencers and imaging and a whole bunch of data, and that made biology computational. And with AI, now we're making things like the behavior of human society and things, computational problems, right? So there's this sort of growing amount of workload that is, in one way or another, computational, and getting bigger and bigger. So that's going to keep on growing. I think the trick is not only going to be growing the computation, but growing the software and the people along with it, because we have amazing capabilities that we can bring to bear. We don't have enough people to hit all of them at once. And so, that's probably going to be the next frontier in growing out both our AI and simulation capability, is the human element of it. >> It's interesting, when you think about society, right? If the things become too predictable, what does a democracy even look like? If you know the election's going to be over two years from now in the United States, or you look at these major, major waves >> Human companies don't know. >> of innovation, you say, "Hmm." So it's democracy, AI, maybe there's an algorithm for checking up on the AI 'cause biases... So, again, there's so many use cases that just come out of this. It's incredible. >> Yeah, and bias in AI is something that we worry about and we work on, and on task forces where we're working on that particular problem, because the AI is going to take... Is based on... Especially when you look at a deep learning model, it's 100% a product of the data you show it, right? So if you show it a biased data set, it's going to have biased results. And it's not anything intrinsic about the computer or the personality, the AI, it's just data mining, right? In essence, right, it's learning from data. And if you show it all images of one particular outcome, it's going to assume that's always the outcome, right? It just has no choice, but to see that. So how we deal with bias, how do we deal with confirmation, right? I mean, in addition, you have to recognize, if you haven't, if it gets data it's never seen before, how do you know it's not wrong, right? So there's about data quality and quality assurance and quality checking around AI. And that's where, especially in scientific research, we use what's starting to be called things like physics-informed or physics-constrained AI, where the neural net that you're using to design an aircraft still has to follow basic physical laws in its output, right? Or if you're doing some materials or astrophysics, you still have to obey conservation of mass, right? So I can't say, well, if you just apply negative mass on this other side and positive mass on this side, everything works out right for stable flight. 'Cause we can't do negative mass, right? So you have to constrain it in the real world. So this notion of how we bring in the laws of physics and constrain your AI to what's possible is also a big part of the sort of AI research going forward. >> You know, Dan, you just, to me just encapsulate the science that's still out there, that's needed. Computer science, social science, material science, kind of all converging right now. >> Yeah, engineering, yeah, >> Engineering, science, >> slipstreams, >> it's all there, >> physics, yeah, mmhmm. >> it's not just code. And, Rajesh, data. You mentioned data, the more data you have, the better the AI. We have a world what's going from silos to open control planes. We have to get to a world. This is a cultural shift we're seeing, what's your thoughts? >> Well, it is, in that, the ability to drive predictive analysis based on the data is going to drive different behaviors, right? Different social behaviors for cultural impacts. But I think the point that Dan made about bias, right, it's only as good as the code that's written and the way that the data is actually brought into the system. So making sure that that is done in a way that generates the right kind of outcome, that allows you to use that in a predictive manner, becomes critically important. If it is biased, you're going to lose credibility in a lot of that analysis that comes out of it. So I think that becomes critically important, but overall, I mean, if you think about the way compute is, it's becoming pervasive. It's not just in selected industries as damage, and it's now applying to everything that you do, right? Whether it is getting you more tailored recommendations for your purchasing, right? You have better options that way. You don't have to sift through a lot of different ideas that, as you scroll online. It's tailoring now to some of your habits and what you're looking for. So that becomes an incredible time-saver for people to be able to get what they want in a way that they want it. And then you look at the way it impacts other industries and development innovation, and it just continues to scale and scale and scale. >> Well, I think the work that you guys are doing together is scratching the surface of the future, which is digital business. It's about data, it's about out all these new things. It's about advanced computing meets the right algorithms for the right purpose. And it's a really amazing operation you guys got over there. Dan, great to hear the stories. It's very provocative, very enticing to just want to jump in and hang out. But I got to do theCUBE day job here, but congratulations on success. Rajesh, great to see you and thanks for coming on theCUBE. >> Thanks for having us, John. >> Okay. >> Thanks very much. >> Great conversation around urgent computing, as computing becomes so much more important, bigger problems and opportunities are around the corner. And this is theCUBE, we're documenting it all here. I'm John Furrier, your host. Thanks for watching. (contemplative music)
SUMMARY :
the Texas Advanced Computing Center, good to be here. And of course, I got to love TACC, and around the world. What's the coolest thing and build the new top-10 of the work you're doing. in the optimal routes? and now, with 5G, you got edge, and some of the work that they're doing. but first, you mentioned a few of the scale of this cluster, and on all the systems to come, yeah. and you mentioned COVID earlier. in the models is our ability to use AI, Come on, can I join the team over there? Come on down! and we're always growing. Is the service, do you guys see this going I mean, the ability to digitally simulate So where do you guys see this going next? is the human element of it. of innovation, you say, "Hmm." the AI is going to take... You know, Dan, you just, the more data you have, the better the AI. and the way that the data Rajesh, great to see you are around the corner.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dan | PERSON | 0.99+ |
Dan Stanzione | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Rajesh | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Rajesh Pohani | PERSON | 0.99+ |
National Science Foundation | ORGANIZATION | 0.99+ |
TACC | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Texas A&M | ORGANIZATION | 0.99+ |
February 2022 | DATE | 0.99+ |
NASA | ORGANIZATION | 0.99+ |
100% | QUANTITY | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Texas Advanced Computing Center | ORGANIZATION | 0.99+ |
United States | LOCATION | 0.99+ |
2020 | DATE | 0.99+ |
COVID Consortium | ORGANIZATION | 0.99+ |
Texas Tech | ORGANIZATION | 0.99+ |
one second | QUANTITY | 0.99+ |
Austin | LOCATION | 0.99+ |
Texas | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
University of Texas | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
first | QUANTITY | 0.99+ |
HPC | ORGANIZATION | 0.99+ |
AI Innovation Lab | ORGANIZATION | 0.99+ |
University of North Texas | ORGANIZATION | 0.99+ |
PowerEdge | ORGANIZATION | 0.99+ |
two years ago | DATE | 0.99+ |
White House COVID Consortium | ORGANIZATION | 0.99+ |
more than 20,000 | QUANTITY | 0.99+ |
10 years ago | DATE | 0.98+ |
Dell Technologies | ORGANIZATION | 0.98+ |
Texas Advanced Computing Center | ORGANIZATION | 0.98+ |
more than 800 | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
dozens | QUANTITY | 0.97+ |
PowerEdge 6525 | COMMERCIAL_ITEM | 0.97+ |
one calculation | QUANTITY | 0.96+ |
MD Anderson Healthcare Center | ORGANIZATION | 0.95+ |
top 10 | QUANTITY | 0.95+ |
first responders | QUANTITY | 0.95+ |
One | QUANTITY | 0.94+ |
AMD | ORGANIZATION | 0.93+ |
HIV | OTHER | 0.92+ |
Core Compute | ORGANIZATION | 0.92+ |
over two years | QUANTITY | 0.89+ |
Lonestar | ORGANIZATION | 0.88+ |
last 10 years | DATE | 0.88+ |
every second | QUANTITY | 0.88+ |
Gulf Oil spill | EVENT | 0.87+ |
Almost 200 | QUANTITY | 0.87+ |
a hundred million years | QUANTITY | 0.87+ |
Lonestar6 | COMMERCIAL_ITEM | 0.86+ |
Ben Amor, Palantir, and Sam Michael, NCATS | AWS PS Partner Awards 2021
>>Mhm Hello and welcome to the cubes coverage of AWS amazon web services, Global public Sector partner awards program. I'm john for your host of the cube here we're gonna talk about the best covid solution to great guests. Benham or with healthcare and life sciences lead at palantir Ben welcome to the cube SAm Michaels, Director of automation and compound management and Cats. National Center for advancing translational sciences and Cats. Part of the NIH National sort of health Gentlemen, thank you for coming on and and congratulations on the best covid solution. >>Thank you so much john >>so I gotta, I gotta ask you the best solution is when can I get the vaccine? How fast how long it's gonna last but I really appreciate you guys coming on. I >>hope you're vaccinated. I would say john that's outside of our hands. I would say if you've not got vaccinated, go get vaccinated right now, have someone stab you in the arm, you know, do not wait and and go for it. That's not on us. But you got that >>opportunity that we have that done. I got to get on a plane and all kinds of hoops to jump through. We need a better solution anyway. You guys have a great technical so I wanna I wanna dig in all seriousness aside getting inside. Um you guys have put together a killer solution that really requires a lot of data can let's step back and and talk about first. What was the solution that won the award? You guys have a quick second set the table for what we're talking about. Then we'll start with you. >>So the national covered cohort collaborative is a secure data enclave putting together the HR records from more than 60 different academic medical centers across the country and they're making it available to researchers to, you know, ask many and varied questions to try and understand this disease better. >>See and take us through the challenges here. What was going on? What was the hard problem? I'll see everyone had a situation with Covid where people broke through and cloud as he drove it amazon is part of the awards, but you guys are solving something. What was the problem statement that you guys are going after? What happened? >>I I think the problem statement is essentially that, you know, the nation has the electronic health records, but it's very fragmented, right. You know, it's been is highlighted is there's there's multiple systems around the country, you know, thousands of folks that have E H. R. S. But there is no way from a research perspective to actually have access in any unified location. And so really what we were looking for is how can we essentially provide a centralized location to study electronic health records. But in a Federated sense because we recognize that the data exist in other locations and so we had to figure out for a vast quantity of data, how can we get data from those 60 sites, 60 plus that Ben is referencing from their respective locations and then into one central repository, but also in a common format. Because that's another huge aspect of the technical challenge was there's multiple formats for electronic health records, there's different standards, there's different versions. And how do you actually have all of this data harmonised into something which is usable again for research? >>Just so many things that are jumping in my head right now, I want to unpack one at the time Covid hit the scramble and the imperative for getting answers quickly was huge. So it's a data problem at a massive scale public health impact. Again, we were talking before we came on camera, public health records are dirty, they're not clean. A lot of things are weird. I mean, just just massive amount of weird problems. How did you guys pull together take me through how this gets done? What what happened? Take us through the the steps He just got together and said, let's do this. How does it all happen? >>Yeah, it's a great and so john, I would say so. Part of this started actually several years ago. I explain this when people talk about in three C is that and Cats has actually established what we like to call, We support a program which is called the Clinical translation Science Award program is the largest single grant program in all of NIH. And it constitutes the bulk of the Cats budget. So this is extra metal grants which goes all over the country. And we wanted this group to essentially have a common research environment. So we try to create what we call the secure scientific collaborative platforms. Another example of this is when we call the rare disease clinical research network, which again is a consortium of 20 different sites around the nation. And so really we started working this several years ago that if we want to Build an environment that's collaborative for researchers around the country around the world, the natural place to do that is really with a cloud first strategy and we recognize this as and cats were about 600 people now. But if you look at the size of our actual research community with our grantees were in the thousands. And so from the perspective that we took several years ago was we have to really take a step back. And if we want to have a comprehensive and cohesive package or solution to treat this is really a mid sized business, you know, and so that means we have to treat this as a cloud based enterprise. And so in cats several years ago had really gone on this strategy to bring in different commercial partners, of which one of them is Palin tear. It actually started with our intramural research program and obviously very heavy cloud use with AWS. We use your we use google workspace, essentially use different cloud tools to enable our collaborative researchers. The next step is we also had a project. If we want to have an environment, we have to have access. And this is something that we took early steps on years prior that there is no good building environment if people can't get in the front door. So we invested heavily and create an application which we call our Federated authentication system. We call it unified and cats off. So we call it, you know, for short and and this is the open source in house project that we built it and cats. And we wanted to actually use this for all sorts of implementation, acting as the front door to this collaborative environment being one of them. And then also by by really this this this interest in electronic health records that had existed prior to the Covid pandemic. And so we've done some prior work via mixture of internal investments in grants with collaborative partners to really look at what it would take to harmonize this data at scale. And so like you mentioned, Covid hit it. Hit really hard. Everyone was scrambling for answers. And I think we had a bit of these pieces um, in play. And then that's I think when we turned to ban and the team at volunteer and we said we have these components, we have these pieces what we really need. Something independent that we can stand up quickly to really address some of these problems. One of the biggest one being that data ingestion and the harmonization step. And so I can let Ben really speak to that one. >>Yeah. Ben Library because you're solving a lot of collaboration problems, not just the technical problem but ingestion and harmonization ingestion. Most people can understand is that the data warehousing or in the database know that what that means? Take us through harmonization because not to put a little bit of shade on this, but most people think about, you know, these kinds of research or non profits as a slow moving, you know, standing stuff up sandwich saying it takes time you break it down. By the time you you didn't think things are over. This was agile. So take us through what made it an agile because that's not normal. I mean that's not what you see normally. It's like, hey we'll see you next year. We stand that up. Yeah. At the data center. >>Yeah, I mean so as as Sam described this sort of the question of data on interoperability is a really essential problem for working with this kind of data. And I think, you know, we have data coming from more than 60 different sites and one of the reasons were able to move quickly was because rather than saying oh well you have to provide the data in a certain format, a certain standard. Um and three C. was able to say actually just give us the data how you have it in whatever format is easiest for you and we will take care of that process of actually transforming it into a single standard data model, converting all of the medical vocabularies, doing all of the data quality assessment that's needed to ensure that data is actually ready for research and that was very much a collaborative endeavor. It was run out of a team based at johns Hopkins University, but in collaboration with a broad range of researchers who are all adding their expertise and what we were able to do was to provide the sort of the technical infrastructure for taking the transformation pipelines that are being developed, that the actual logic and the code and developing these very robust kind of centralist templates for that. Um, that could be deployed just like software is deployed, have changed management, have upgrades and downgrades and version control and change logs so that we can roll that out across a large number of sites in a very robust way very quickly. So that's sort of that, that that's one aspect of it. And then there was a bunch of really interesting challenges along the way that again, a very broad collaborative team of researchers worked on and an example of that would be unit harmonization and inference. So really simple things like when a lab result arrives, we talked about data quality, um, you were expected to have a unit right? Like if you're reporting somebody's weight, you probably want to know if it's in kilograms or pounds, but we found that a very significant proportion of the time the unit was actually missing in the HR record. And so unless you can actually get that back, that becomes useless. And so an approach was developed because we had data across 60 or more different sites, you have a large number of lab tests that do have the correct units and you can look at the data distributions and decide how likely is it that this missing unit is actually kilograms or pounds and save a huge portion of these labs. So that's just an example of something that has enabled research to happen that would not otherwise have been able >>just not to dig in and rat hole on that one point. But what time saving do you think that saves? I mean, I can imagine it's on the data cleaning side. That's just a massive time savings just in for Okay. Based on the data sampling, this is kilograms or pounds. >>Exactly. So we're talking there's more than 3.5 billion lab records in this data base now. So if you were trying to do this manually, I mean, it would take, it would take to thousands of years, you know, it just wouldn't be a black, it would >>be a black hole in the dataset, essentially because there's no way it would get done. Ok. Ok. Sam take me through like from a research standpoint, this normalization, harmonization the process. What does that enable for the, for the research and who decides what's the standard format? So, because again, I'm just in my mind thinking how hard this is. And then what was the, what was decided? Was it just on the base records what standards were happening? What's the impact of researchers >>now? It's a great quite well, a couple things I'll say. And Ben has touched on this is the other real core piece of N three C is the community, right? You know, And so I think there's a couple of things you mentioned with this, johN is the way we execute this is, it was very nimble, it was very agile and there's something to be said on that piece from a procurement perspective, the government had many covid authorities that were granted to make very fast decisions to get things procured quickly. And we were able to turn this around with our acquisition shop, which we would otherwise, you know, be dead in the water like you said, wait a year ago through a normal acquisition process, which can take time, but that's only one half the other half. And really, you're touching on this and Ben is touching on this is when he mentions the research as we have this entire courts entire, you know, research community numbering in the thousands from a volunteer perspective. I think it's really fascinating. This is a really a great example to me of this public private partnership between the companies we use, but also the academic participants that are actually make up the community. Um again, who the amount of time they have dedicated on this is just incredible. So, so really, what's also been established with this is core governance. And so, you know, you think from assistance perspective is, you know, the Palin tear this environment, the N three C environment belongs to the government, but the N 33 the entire actually, you know, program, I would say, belongs to the community. We have co governance on this. So who decides really is just a mixture between the folks on End Cats, but not just end cast as folks at End Cats, folks that, you know, and I proper, but also folks and other government agencies, but also the, the academic communities and entire these mixed governance teams that actually set the stage for all of this. And again, you know, who's gonna decide the standard, We decide we're gonna do this in Oman 5.3 point one um is the standard we're going to utilize. And then once the data is there, this is what gets exciting is then they have the different domain teams where they can ask different research questions depending upon what has interest scientifically to them. Um and so really, you know, we viewed this from the government's perspective is how do we build again the secure platform where we can enable the research, but we don't really want to dictate the research. I mean, the one criteria we did put your research has to be covid focused because very clearly in response to covid, so you have to have a Covid focus and then we have data use agreements, data use request. You know, we have entire governance committees that decide is this research in scope, but we don't want to dictate the research types that the domain teams are bringing to the table. >>And I think the National Institutes of Health, you think about just that their mission is to serve the public health. And I think this is a great example of when you enable data to be surfaced and available that you can really allow people to be empowered and not to use the cliche citizen analysts. But in a way this is what the community is doing. You're doing research and allowing people from volunteers to academics to students to just be part of it. That is citizen analysis that you got citizen journalism. You've got citizen and uh, research, you've got a lot of democratization happening here. Is that part of it was a result of >>this? Uh, it's both. It's a great question. I think it's both. And it's it's really by design because again, we want to enable and there's a couple of things that I really, you know, we we clamor with at end cats. I think NIH is going with this direction to is we believe firmly in open science, we believe firmly in open standards and how we can actually enable these standards to promote this open science because it's actually nontrivial. We've had, you know, the citizen scientists actually on the tricky problem from a governance perspective or we have the case where we actually had to have students that wanted access to the environment. Well, we actually had to have someone because, you know, they have to have an institution that they come in with, but we've actually across some of those bridges to actually get students and researchers into this environment very much by design, but also the spirit which was held enabled by the community, which, again, so I think they go they go hand in hand. I planned for >>open science as a huge wave, I'm a big fan, I think that's got a lot of headroom because open source, what that's done to software, the software industry, it's amazing. And I think your Federated idea comes in here and Ben if you guys can just talk through the Federated, because I think that might enable and remove some of the structural blockers that might be out there in terms of, oh, you gotta be affiliate with this or that our friends got to invite you, but then you got privacy access and this Federated ID not an easy thing, it's easy to say. But how do you tie that together? Because you want to enable frictionless ability to come in and contribute same time you want to have some policies around who's in and who's not. >>Yes, totally, I mean so Sam sort of already described the the UNa system which is the authentication system that encounters has developed. And obviously you know from our perspective, you know we integrate with that is using all of the standard kind of authentication protocols and it's very easy to integrate that into the family platform um and make it so that we can authenticate people correctly. But then if you go beyond authentication you also then to actually you need to have the access controls in place to say yes I know who this person is, but now what should they actually be able to see? Um And I think one of the really great things in Free C has done is to be very rigorous about that. They have their governance rules that says you should be using the data for a certain purpose. You must go through a procedure so that the access committee approves that purpose. And then we need to make sure that you're actually doing the work that you said you were going to. And so before you can get your data back out of the system where your results out, you actually have to prove that those results are in line with the original stated purpose and the infrastructure around that and having the access controls and the governance processes, all working together in a seamless way so that it doesn't, as you say, increase the friction on the researcher and they can get access to the data for that appropriate purpose. That was a big component of what we've been building out with them three C. Absolutely. >>And really in line john with what NIH is doing with the research, all service, they call this raz. And I think things that we believe in their standards that were starting to follow and work with them closely. Multifactor authentication because of the point Ben is making and you raised as well, you know, one you need to authenticate, okay. This you are who you say you are. And and we're recognizing that and you're, you know, the author and peace within the authors. E what do you authorized to see? What do you have authorization to? And they go hand in hand and again, non trivial problems. And especially, you know, when we basis typically a lot of what we're using is is we'll do direct integrations with our package. We using commons for Federated access were also even using login dot gov. Um, you know, again because we need to make sure that people had a means, you know, and login dot gov is essentially a runoff right? If they don't have, you know an organization which we have in common or a Federated access to generate a login dot gov account but they still are whole, you know beholden to the multi factor authentication step and then they still have to get the same authorizations because we really do believe access to these environment seamlessly is absolutely critical, you know, who are users are but again not make it restrictive and not make it this this friction filled process. That's very that's very >>different. I mean you think about nontrivial, totally agree with you and if you think about like if you were in a classic enterprise, I thought about an I. T. Problem like bring your own device to work and that's basically what the whole world does these days. So like you're thinking about access, you don't know who's coming in, you don't know where they're coming in from, um when the churn is so high, you don't know, I mean all this is happening, right? So you have to be prepared two Provisions and provide resource to a very lightweight access edge. >>That's right. And that's why it gets back to what we mentioned is we were taking a step back and thinking about this problem, you know, an M three C became the use case was this is an enterprise I. T. Problem. Right. You know, we have users from around the world that want to access this environment and again we try to hit a really difficult mark, which is secure but collaborative, Right? That's that's not easy, you know? But but again, the only place this environment could take place isn't a cloud based environment, right? Let's be real. You know, 10 years ago. Forget it. You know, Again, maybe it would have been difficult, but now it's just incredible how much they advanced that these real virtual research organizations can start to exist and they become the real partnerships. >>Well, I want to Well, that's a great point. I want to highlight and call out because I've done a lot of these interviews with awards programs over the years and certainly in public sector and open source over many, many years. One of the things open source allows us the code re use and also when you start getting in these situations where, okay, you have a crisis covid other things happen, nonprofits go, that's the same thing. They, they lose their funding and all the code disappears. Saying with these covid when it becomes over, you don't want to lose the momentum. So this whole idea of re use this platform is aged deplatforming of and re factoring if you will, these are two concepts with a cloud enables SAM, I'd love to get your thoughts on this because it doesn't go away when Covid's >>over, research still >>continues. So this whole idea of re platform NG and then re factoring is very much a new concept versus the old days of okay, projects over, move on to the next one. >>No, you're absolutely right. And I think what first drove us is we're taking a step back and and cats, you know, how do we ensure that sustainability? Right, Because my background is actually engineering. So I think about, you know, you want to build things to last and what you just described, johN is that, you know, that, that funding, it peaks, it goes up and then it wanes away and it goes and what you're left with essentially is nothing, you know, it's okay you did this investment in a body of work and it goes away. And really, I think what we're really building are these sustainable platforms that we will actually grow and evolve based upon the research needs over time. And I think that was really a huge investment that both, you know, again and and Cats is made. But NIH is going in a very similar direction. There's a substantial investment, um, you know, made in these, these these these really impressive environments. How do we make sure the sustainable for the long term? You know, again, we just went through this with Covid, but what's gonna come next? You know, one of the research questions that we need to answer, but also open source is an incredibly important piece of this. I think Ben can speak this in a second, all the harmonization work, all that effort, you know, essentially this massive, complex GTL process Is in the N three Seagate hub. So we believe, you know, completely and the open source model a little bit of a flavor on it too though, because, you know, again, back to the sustainability, john, I believe, you know, there's a room for this, this marriage between commercial platforms and open source software and we need both. You know, as we're strong proponents of N cats are both, but especially with sustainability, especially I think Enterprise I. T. You know, you have to have professional grade products that was part of, I would say an experiment we ran out and cast our thought was we can fund academic groups and we can have them do open source projects and you'll get some decent results. But I think the nature of it and the nature of these environments become so complex. The experiment we're taking is we're going to provide commercial grade tools For the academic community and the researchers and let them use them and see how they can be enabled and actually focus on research questions. And I think, you know, N3C, which we've been very successful with that model while still really adhering to the open source spirit and >>principles as an amazing story, congratulated, you know what? That's so awesome because that's the future. And I think you're onto something huge. Great point, Ben, you want to chime in on this whole sustainability because the public private partnership idea is the now the new model innovation formula is about open and collaborative. What's your thoughts? >>Absolutely. And I mean, we uh, volunteer have been huge proponents of reproducibility and openness, um in analyses and in science. And so everything done within the family platform is done in open source languages like python and R. And sequel, um and is exposed via open A. P. I. S and through get repository. So that as SaM says, we've we've pushed all of that E. T. L. Code that was developed within the platform out to the cats get hub. Um and the analysis code itself being written in those various different languages can also sort of easily be pulled out um and made available for other researchers in the future. And I think what we've also seen is that within the data enclave there's been an enormous amount of re use across the different research projects. And so actually having that security in place and making it secure so that people can actually start to share with each other securely as well. And and and be very clear that although I'm sharing this, it's still within the range of the government's requirements has meant that the, the research has really been accelerated because people have been able to build and stand on the shoulders of what earlier projects have done. >>Okay. Ben. Great stuff. 1000 researchers. Open source code and get a job. Where do I sign up? I want to get involved. This is amazing. Like it sounds like a great party. >>We'll send you a link if you do a search on on N three C, you know, do do a search on that and you'll actually will come up with a website hosted by the academic side and I'll show you all the information of how you can actually connect and john you're welcome to come in. Billion by all means >>billions of rows of data being solved. Great tech he's working on again. This is a great example of large scale the modern era of solving problems is here. It's out in the open, Open Science. Sam. Congratulations on your great success. Ben Award winners. You guys doing a great job. Great story. Thanks for sharing here with us in the queue. Appreciate it. >>Thank you, john. >>Thanks for having us. >>Okay. It is. Global public sector partner rewards best Covid solution palantir and and cats. Great solution. Great story. I'm john Kerry with the cube. Thanks for watching. Mm mm. >>Mhm
SUMMARY :
thank you for coming on and and congratulations on the best covid solution. so I gotta, I gotta ask you the best solution is when can I get the vaccine? go get vaccinated right now, have someone stab you in the arm, you know, do not wait and and go for it. Um you guys have put together a killer solution that really requires a lot of data can let's step you know, ask many and varied questions to try and understand this disease better. What was the problem statement that you guys are going after? I I think the problem statement is essentially that, you know, the nation has the electronic health How did you guys pull together take me through how this gets done? or solution to treat this is really a mid sized business, you know, and so that means we have to treat this as a I mean that's not what you see normally. do have the correct units and you can look at the data distributions and decide how likely do you think that saves? it would take, it would take to thousands of years, you know, it just wouldn't be a black, Was it just on the base records what standards were happening? And again, you know, who's gonna decide the standard, We decide we're gonna do this in Oman 5.3 And I think this is a great example of when you enable data to be surfaced again, we want to enable and there's a couple of things that I really, you know, we we clamor with at end ability to come in and contribute same time you want to have some policies around who's in and And so before you can get your data back out of the system where your results out, And especially, you know, when we basis typically I mean you think about nontrivial, totally agree with you and if you think about like if you were in a classic enterprise, you know, an M three C became the use case was this is an enterprise I. T. Problem. One of the things open source allows us the code re use and also when you start getting in these So this whole idea of re platform NG and then re factoring is very much a new concept And I think, you know, N3C, which we've been very successful with that model while still really adhering to Great point, Ben, you want to chime in on this whole sustainability because the And I think what we've also seen is that within the data enclave there's I want to get involved. will come up with a website hosted by the academic side and I'll show you all the information of how you can actually connect and It's out in the open, Open Science. I'm john Kerry with the cube.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
NIH | ORGANIZATION | 0.99+ |
National Institutes of Health | ORGANIZATION | 0.99+ |
Sam Michael | PERSON | 0.99+ |
Palantir | PERSON | 0.99+ |
john Kerry | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Ben | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
1000 researchers | QUANTITY | 0.99+ |
Ben Amor | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
60 sites | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
next year | DATE | 0.99+ |
60 | QUANTITY | 0.99+ |
amazon | ORGANIZATION | 0.99+ |
more than 60 different sites | QUANTITY | 0.99+ |
johns Hopkins University | ORGANIZATION | 0.99+ |
thousands of years | QUANTITY | 0.99+ |
python | TITLE | 0.99+ |
20 different sites | QUANTITY | 0.99+ |
SAm Michaels | PERSON | 0.99+ |
more than 60 different academic medical centers | QUANTITY | 0.99+ |
johN | PERSON | 0.99+ |
john | PERSON | 0.99+ |
Covid pandemic | EVENT | 0.98+ |
several years ago | DATE | 0.98+ |
one criteria | QUANTITY | 0.98+ |
more than 3.5 billion lab records | QUANTITY | 0.98+ |
N3C | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
Globa | PERSON | 0.98+ |
60 plus | QUANTITY | 0.98+ |
two concepts | QUANTITY | 0.97+ |
first strategy | QUANTITY | 0.97+ |
a year ago | DATE | 0.96+ |
R. | TITLE | 0.96+ |
thousands of folks | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
one aspect | QUANTITY | 0.96+ |
agile | TITLE | 0.95+ |
about 600 people | QUANTITY | 0.94+ |
AWS | EVENT | 0.94+ |
single grant program | QUANTITY | 0.94+ |
Covid | PERSON | 0.92+ |
ORGANIZATION | 0.91+ | |
second | QUANTITY | 0.91+ |
Free C | TITLE | 0.9+ |
one point | QUANTITY | 0.9+ |
End Cats | ORGANIZATION | 0.89+ |
National Center for advancing translational sciences and Cats | ORGANIZATION | 0.89+ |
Billion | QUANTITY | 0.88+ |
Seagate | ORGANIZATION | 0.88+ |
one half | QUANTITY | 0.88+ |
two Provisions | QUANTITY | 0.86+ |
one central repository | QUANTITY | 0.85+ |
login dot gov. | OTHER | 0.84+ |
Federated | ORGANIZATION | 0.84+ |
dot gov | OTHER | 0.83+ |
palantir | PERSON | 0.83+ |
billions of rows of data | QUANTITY | 0.82+ |