Image Title

Search Results for Finman:

Dhabaleswar “DK” Panda, Ohio State State University | SuperComputing 22


 

>>Welcome back to The Cube's coverage of Supercomputing Conference 2022, otherwise known as SC 22 here in Dallas, Texas. This is day three of our coverage, the final day of coverage here on the exhibition floor. I'm Dave Nicholson, and I'm here with my co-host, tech journalist extraordinaire, Paul Gillum. How's it going, >>Paul? Hi, Dave. It's going good. >>And we have a wonderful guest with us this morning, Dr. Panda from the Ohio State University. Welcome Dr. Panda to the Cube. >>Thanks a lot. Thanks a lot to >>Paul. I know you're, you're chopping at >>The bit, you have incredible credentials, over 500 papers published. The, the impact that you've had on HPC is truly remarkable. But I wanted to talk to you specifically about a product project you've been working on for over 20 years now called mva, high Performance Computing platform that's used by more than 32 organ, 3,200 organizations across 90 countries. You've shepherded this from, its, its infancy. What is the vision for what MVA will be and and how is it a proof of concept that others can learn from? >>Yeah, Paul, that's a great question to start with. I mean, I, I started with this conference in 2001. That was the first time I came. It's very coincidental. If you remember the Finman Networking Technology, it was introduced in October of 2000. Okay. So in my group, we were working on NPI for Marinette Quadrics. Those are the old technology, if you can recollect when Finman was there, we were the very first one in the world to really jump in. Nobody knew how to use Infin van in an HPC system. So that's how the Happy Project was born. And in fact, in super computing 2002 on this exhibition floor in Baltimore, we had the first demonstration, the open source happy, actually is running on an eight node infinite van clusters, eight no zeros. And that was a big challenge. But now over the years, I means we have continuously worked with all infinite van vendors, MPI Forum. >>We are a member of the MPI Forum and also all other network interconnect. So we have steadily evolved this project over the last 21 years. I'm very proud of my team members working nonstop, continuously bringing not only performance, but scalability. If you see now INFIN event are being deployed in 8,000, 10,000 node clusters, and many of these clusters actually use our software, stack them rapid. So, so we have done a lot of, like our focuses, like we first do research because we are in academia. We come up with good designs, we publish, and in six to nine months, we actually bring it to the open source version and people can just download and then use it. And that's how currently it's been used by more than 3000 orange in 90 countries. And, but the interesting thing is happening, your second part of the question. Now, as you know, the field is moving into not just hvc, but ai, big data, and we have those support. This is where like we look at the vision for the next 20 years, we want to design this MPI library so that not only HPC but also all other workloads can take advantage of it. >>Oh, we have seen libraries that become a critical develop platform supporting ai, TensorFlow, and, and the pie torch and, and the emergence of, of, of some sort of default languages that are, that are driving the community. How, how important are these frameworks to the, the development of the progress making progress in the HPC world? >>Yeah, no, those are great. I mean, spite our stencil flow, I mean, those are the, the now the bread and butter of deep learning machine learning. Am I right? But the challenge is that people use these frameworks, but continuously models are becoming larger. You need very first turnaround time. So how do you train faster? How do you do influencing faster? So this is where HPC comes in and what exactly what we have done is actually we have linked floor fighters to our happy page because now you see the MPI library is running on a million core system. Now your fighters and tenor four clan also be scaled to to, to those number of, large number of course and gps. So we have actually done that kind of a tight coupling and that helps the research to really take advantage of hpc. >>So if, if a high school student is thinking in terms of interesting computer science, looking for a place, looking for a university, Ohio State University, bruns, world renowned, widely known, but talk about what that looks like from a day on a day to day basis in terms of the opportunity for undergrad and graduate students to participate in, in the kind of work that you do. What is, what does that look like? And is, and is that, and is that a good pitch to for, for people to consider the university? >>Yes. I mean, we continuously, from a university perspective, by the way, the Ohio State University is one of the largest single campus in, in us, one of the top three, top four. We have 65,000 students. Wow. It's one of the very largest campus. And especially within computer science where I am located, high performance computing is a very big focus. And we are one of the, again, the top schools all over the world for high performance computing. And we also have very strength in ai. So we always encourage, like the new students who like to really work on top of the art solutions, get exposed to the concepts, principles, and also practice. Okay. So, so we encourage those people that wish you can really bring you those kind of experience. And many of my past students, staff, they're all in top companies now, have become all big managers. >>How, how long, how long did you say you've been >>At 31 >>Years? 31 years. 31 years. So, so you, you've had people who weren't alive when you were already doing this stuff? That's correct. They then were born. Yes. They then grew up, yes. Went to university graduate school, and now they're on, >>Now they're in many top companies, national labs, all over the universities, all over the world. So they have been trained very well. Well, >>You've, you've touched a lot of lives, sir. >>Yes, thank you. Thank >>You. We've seen really a, a burgeoning of AI specific hardware emerge over the last five years or so. And, and architectures going beyond just CPUs and GPUs, but to Asics and f PGAs and, and accelerators, does this excite you? I mean, are there innovations that you're seeing in this area that you think have, have great promise? >>Yeah, there is a lot of promise. I think every time you see now supercomputing technology, you see there is sometime a big barrier comes barrier jump. Rather I'll say, new technology comes some disruptive technology, then you move to the next level. So that's what we are seeing now. A lot of these AI chips and AI systems are coming up, which takes you to the next level. But the bigger challenge is whether it is cost effective or not, can that be sustained longer? And this is where commodity technology comes in, which commodity technology tries to take you far longer. So we might see like all these likes, Gaudi, a lot of new chips are coming up, can they really bring down the cost? If that cost can be reduced, you will see a much more bigger push for AI solutions, which are cost effective. >>What, what about on the interconnect side of things, obvi, you, you, your, your start sort of coincided with the initial standards for Infin band, you know, Intel was very, very, was really big in that, in that architecture originally. Do you see interconnects like RDMA over converged ethernet playing a part in that sort of democratization or commoditization of things? Yes. Yes. What, what are your thoughts >>There for internet? No, this is a great thing. So, so we saw the infinite man coming. Of course, infinite Man is, commod is available. But then over the years people have been trying to see how those RDMA mechanisms can be used for ethernet. And then Rocky has been born. So Rocky has been also being deployed. But besides these, I mean now you talk about Slingshot, the gray slingshot, it is also an ethernet based systems. And a lot of those RMA principles are actually being used under the hood. Okay. So any modern networks you see, whether it is a Infin and Rocky Links art network, rock board network, you name any of these networks, they are using all the very latest principles. And of course everybody wants to make it commodity. And this is what you see on the, on the slow floor. Everybody's trying to compete against each other to give you the best performance with the lowest cost, and we'll see whoever wins over the years. >>Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number of years in terms of the fastest supercomputer performance. How important do you think it is for the US to maintain leadership in this area? >>Big, big thing, significantly, right? We are saying that I think for the last five to seven years, I think we lost that lead. But now with the frontier being the number one, starting from the June ranking, I think we are getting that leadership back. And I think it is very critical not only for fundamental research, but for national security trying to really move the US to the leading edge. So I hope us will continue to lead the trend for the next few years until another new system comes out. >>And one of the gating factors, there is a shortage of people with data science skills. Obviously you're doing what you can at the university level. What do you think can change at the secondary school level to prepare students better to, for data science careers? >>Yeah, I mean that is also very important. I mean, we, we always call like a pipeline, you know, that means when PhD levels we are expecting like this even we want to students to get exposed to, to, to many of these concerts from the high school level. And, and things are actually changing. I mean, these days I see a lot of high school students, they, they know Python, how to program in Python, how to program in sea object oriented things. Even they're being exposed to AI at that level. So I think that is a very healthy sign. And in fact we, even from Ohio State side, we are always engaged with all this K to 12 in many different programs and then gradually trying to take them to the next level. And I think we need to accelerate also that in a very significant manner because we need those kind of a workforce. It is not just like a building a system number one, but how do we really utilize it? How do we utilize that science? How do we propagate that to the community? Then we need all these trained personal. So in fact in my group, we are also involved in a lot of cyber training activities for HPC professionals. So in fact, today there is a bar at 1 1 15 I, yeah, I think 1215 to one 15. We'll be talking more about that. >>About education. >>Yeah. Cyber training, how do we do for professionals? So we had a funding together with my co-pi, Dr. Karen Tom Cook from Ohio Super Center. We have a grant from NASA Science Foundation to really educate HPT professionals about cyber infrastructure and ai. Even though they work on some of these things, they don't have the complete knowledge. They don't get the time to, to learn. And the field is moving so fast. So this is how it has been. We got the initial funding, and in fact, the first time we advertised in 24 hours, we got 120 application, 24 hours. We couldn't even take all of them. So, so we are trying to offer that in multiple phases. So, so there is a big need for those kind of training sessions to take place. I also offer a lot of tutorials at all. Different conference. We had a high performance networking tutorial. Here we have a high performance deep learning tutorial, high performance, big data tutorial. So I've been offering tutorials at, even at this conference since 2001. Good. So, >>So in the last 31 years, the Ohio State University, as my friends remind me, it is properly >>Called, >>You've seen the world get a lot smaller. Yes. Because 31 years ago, Ohio, in this, you know, of roughly in the, in the middle of North America and the United States was not as connected as it was to everywhere else in the globe. So that's, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, but globally, and we talk about the world getting smaller, we're sort of in the thick of, of the celebratory seasons where, where many, many groups of people exchange gifts for varieties of reasons. If I were to offer you a holiday gift, that is the result of what AI can deliver the world. Yes. What would that be? What would, what would, what would the first thing be? This is, this is, this is like, it's, it's like the genie, but you only get one wish. >>I know, I know. >>So what would the first one be? >>Yeah, it's very hard to answer one way, but let me bring a little bit different context and I can answer this. I, I talked about the happy project and all, but recently last year actually we got awarded an S f I institute award. It's a 20 million award. I am the overall pi, but there are 14 universities involved. >>And who is that in that institute? >>What does that Oh, the I ici. C e. Okay. I cycle. You can just do I cycle.ai. Okay. And that lies with what exactly what you are trying to do, how to bring lot of AI for masses, democratizing ai. That's what is the overall goal of this, this institute, think of like a, we have three verticals we are working think of like one is digital agriculture. So I'll be, that will be my like the first ways. How do you take HPC and AI to agriculture the world as though we just crossed 8 billion people. Yeah, that's right. We need continuous food and food security. How do we grow food with the lowest cost and with the highest yield? >>Water >>Consumption. Water consumption. Can we minimize or minimize the water consumption or the fertilization? Don't do blindly. Technologies are out there. Like, let's say there is a weak field, A traditional farmer see that, yeah, there is some disease, they will just go and spray pesticides. It is not good for the environment. Now I can fly it drone, get images of the field in the real time, check it against the models, and then it'll tell that, okay, this part of the field has disease. One, this part of the field has disease. Two, I indicate to the, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. That has a big impact. So this is what we are developing in that NSF A I institute I cycle ai. We also have, we have chosen two additional verticals. One is animal ecology, because that is very much related to wildlife conservation, climate change, how do you understand how the animals move? Can we learn from them? And then see how human beings need to act in future. And the third one is the food insecurity and logistics. Smart food distribution. So these are our three broad goals in that institute. How do we develop cyber infrastructure from below? Combining HP c AI security? We have, we have a large team, like as I said, there are 40 PIs there, 60 students. We are a hundred members team. We are working together. So, so that will be my wish. How do we really democratize ai? >>Fantastic. I think that's a great place to wrap the conversation here On day three at Supercomputing conference 2022 on the cube, it was an honor, Dr. Panda working tirelessly at the Ohio State University with his team for 31 years toiling in the field of computer science and the end result, improving the lives of everyone on Earth. That's not a stretch. If you're in high school thinking about a career in computer science, keep that in mind. It isn't just about the bits and the bobs and the speeds and the feeds. It's about serving humanity. Maybe, maybe a little, little, little too profound a statement, I would argue not even close. I'm Dave Nicholson with the Queue, with my cohost Paul Gillin. Thank you again, Dr. Panda. Stay tuned for more coverage from the Cube at Super Compute 2022 coming up shortly. >>Thanks a lot.

Published Date : Nov 17 2022

SUMMARY :

Welcome back to The Cube's coverage of Supercomputing Conference 2022, And we have a wonderful guest with us this morning, Dr. Thanks a lot to But I wanted to talk to you specifically about a product project you've So in my group, we were working on NPI for So we have steadily evolved this project over the last 21 years. that are driving the community. So we have actually done that kind of a tight coupling and that helps the research And is, and is that, and is that a good pitch to for, So, so we encourage those people that wish you can really bring you those kind of experience. you were already doing this stuff? all over the world. Thank this area that you think have, have great promise? I think every time you see now supercomputing technology, with the initial standards for Infin band, you know, Intel was very, very, was really big in that, And this is what you see on the, Sort of a macroeconomic question, Japan, the US and China have been leapfrogging each other for a number the number one, starting from the June ranking, I think we are getting that leadership back. And one of the gating factors, there is a shortage of people with data science skills. And I think we need to accelerate also that in a very significant and in fact, the first time we advertised in 24 hours, we got 120 application, that's pro that's, I i it kind of boggles the mind when you think of that progression over 31 years, I am the overall pi, And that lies with what exactly what you are trying to do, to the tractor or the sprayer saying, okay, spray only pesticide one, you have pesticide two here. I think that's a great place to wrap the conversation here On

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Paul GillumPERSON

0.99+

DavePERSON

0.99+

Paul GillinPERSON

0.99+

October of 2000DATE

0.99+

PaulPERSON

0.99+

NASA Science FoundationORGANIZATION

0.99+

2001DATE

0.99+

BaltimoreLOCATION

0.99+

8,000QUANTITY

0.99+

14 universitiesQUANTITY

0.99+

31 yearsQUANTITY

0.99+

20 millionQUANTITY

0.99+

24 hoursQUANTITY

0.99+

last yearDATE

0.99+

Karen Tom CookPERSON

0.99+

60 studentsQUANTITY

0.99+

Ohio State UniversityORGANIZATION

0.99+

90 countriesQUANTITY

0.99+

sixQUANTITY

0.99+

EarthLOCATION

0.99+

PandaPERSON

0.99+

todayDATE

0.99+

65,000 studentsQUANTITY

0.99+

3,200 organizationsQUANTITY

0.99+

North AmericaLOCATION

0.99+

PythonTITLE

0.99+

United StatesLOCATION

0.99+

Dallas, TexasLOCATION

0.99+

over 500 papersQUANTITY

0.99+

JuneDATE

0.99+

OneQUANTITY

0.99+

more than 32 organQUANTITY

0.99+

120 applicationQUANTITY

0.99+

OhioLOCATION

0.99+

more than 3000 orangeQUANTITY

0.99+

first waysQUANTITY

0.99+

oneQUANTITY

0.99+

nine monthsQUANTITY

0.99+

40 PIsQUANTITY

0.99+

AsicsORGANIZATION

0.99+

MPI ForumORGANIZATION

0.98+

ChinaORGANIZATION

0.98+

TwoQUANTITY

0.98+

Ohio State State UniversityORGANIZATION

0.98+

8 billion peopleQUANTITY

0.98+

IntelORGANIZATION

0.98+

HPORGANIZATION

0.97+

Dr.PERSON

0.97+

over 20 yearsQUANTITY

0.97+

USORGANIZATION

0.97+

FinmanORGANIZATION

0.97+

RockyPERSON

0.97+

JapanORGANIZATION

0.97+

first timeQUANTITY

0.97+

first demonstrationQUANTITY

0.96+

31 years agoDATE

0.96+

Ohio Super CenterORGANIZATION

0.96+

three broad goalsQUANTITY

0.96+

one wishQUANTITY

0.96+

second partQUANTITY

0.96+

31QUANTITY

0.96+

CubeORGANIZATION

0.95+

eightQUANTITY

0.95+

over 31 yearsQUANTITY

0.95+

10,000 node clustersQUANTITY

0.95+

day threeQUANTITY

0.95+

firstQUANTITY

0.95+

INFINEVENT

0.94+

seven yearsQUANTITY

0.94+

Dhabaleswar “DK” PandaPERSON

0.94+

threeQUANTITY

0.93+

S f I instituteTITLE

0.93+

first thingQUANTITY

0.93+