Phil Kippen, Snowflake, Dave Whittington, AT&T & Roddy Tranum, AT&T | | MWC Barcelona 2023
(gentle music) >> Narrator: "TheCUBE's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Hello everybody, welcome back to day four of "theCUBE's" coverage of MWC '23. We're here live at the Fira in Barcelona. Wall-to-wall coverage, John Furrier is in our Palo Alto studio, banging out all the news. Really, the whole week we've been talking about the disaggregation of the telco network, the new opportunities in telco. We're really excited to have AT&T and Snowflake here. Dave Whittington is the AVP, at the Chief Data Office at AT&T. Roddy Tranum is the Assistant Vice President, for Channel Performance Data and Tools at AT&T. And Phil Kippen, the Global Head Of Industry-Telecom at Snowflake, Snowflake's new telecom business. Snowflake just announced earnings last night. Typical Scarpelli, they beat earnings, very conservative guidance, stocks down today, but we like Snowflake long term, they're on that path to 10 billion. Guys, welcome to "theCUBE." Thanks so much >> Phil: Thank you. >> for coming on. >> Dave and Roddy: Thanks Dave. >> Dave, let's start with you. The data culture inside of telco, We've had this, we've been talking all week about this monolithic system. Super reliable. You guys did a great job during the pandemic. Everything shifting to landlines. We didn't even notice, you guys didn't miss a beat. Saved us. But the data culture's changing inside telco. Explain that. >> Well, absolutely. So, first of all IoT and edge processing is bringing forth new and exciting opportunities all the time. So, we're bridging the world between a lot of the OSS stuff that we can do with edge processing. But bringing that back, and now we're talking about working, and I would say traditionally, we talk data warehouse. Data warehouse and big data are now becoming a single mesh, all right? And the use cases and the way you can use those, especially I'm taking that edge data and bringing it back over, now I'm running AI and ML models on it, and I'm pushing back to the edge, and I'm combining that with my relational data. So that mesh there is making all the difference. We're getting new use cases that we can do with that. And it's just, and the volume of data is immense. >> Now, I love ChatGPT, but I'm hoping your data models are more accurate than ChatGPT. I never know. Sometimes it's really good, sometimes it's really bad. But enterprise, you got to be clean with your AI, don't you? >> Not only you have to be clean, you have to monitor it for bias and be ethical about it. We're really good about that. First of all with AT&T, our brand is Platinum. We take care of that. So, we may not be as cutting-edge risk takers as others, but when we go to market with an AI or an ML or a product, it's solid. >> Well hey, as telcos go, you guys are leaning into the Cloud. So I mean, that's a good starting point. Roddy, explain your role. You got an interesting title, Channel Performance Data and Tools, what's that all about? >> So literally anything with our consumer, retail, concenters' channels, all of our channels, from a data perspective and metrics perspective, what it takes to run reps, agents, all the way to leadership levels, scorecards, how you rank in the business, how you're driving the business, from sales, service, customer experience, all that data infrastructure with our great partners on the CDO side, as well as Snowflake, that comes from my team. >> And that's traditionally been done in a, I don't mean the pejorative, but we're talking about legacy, monolithic, sort of data warehouse technologies. >> Absolutely. >> We have a love-hate relationship with them. It's what we had. It's what we used, right? And now that's evolving. And you guys are leaning into the Cloud. >> Dramatic evolution. And what Snowflake's enabled for us is impeccable. We've talked about having, people have dreamed of one data warehouse for the longest time and everything in one system. Really, this is the only way that becomes a reality. The more you get in Snowflake, we can have golden source data, and instead of duplicating that 50 times across AT&T, it's in one place, we just share it, everybody leverages it, and now it's not duplicated, and the process efficiency is just incredible. >> But it really hinges on that separation of storage and compute. And we talk about the monolithic warehouse, and one of the nightmares I've lived with, is having a monolithic warehouse. And let's just go with some of my primary, traditional customers, sales, marketing and finance. They are leveraging BSS OSS data all the time. For me to coordinate a deployment, I have to make sure that each one of these units can take an outage, if it's going to be a long deployment. With the separation of storage, compute, they own their own compute cluster. So I can move faster for these people. 'Cause if finance, I can implement his code without impacting finance or marketing. This brings in CI/CD to more reality. It brings us faster to market with more features. So if he wants to implement a new comp plan for the field reps, or we're reacting to the marketplace, where one of our competitors has done something, we can do that in days, versus waiting weeks or months. >> And we've reported on this a lot. This is the brilliance of Snowflake's founders, that whole separation >> Yep. >> from compute and data. I like Dave, that you're starting with sort of the business flexibility, 'cause there's a cost element of this too. You can dial down, you can turn off compute, and then of course the whole world said, "Hey, that's a good idea." And a VC started throwing money at Amazon, but Redshift said, "Oh, we can do that too, sort of, can't turn off the compute." But I want to ask you Phil, so, >> Sure. >> it looks from my vantage point, like you're taking your Data Cloud message which was originally separate compute from storage simplification, now data sharing, automated governance, security, ultimately the marketplace. >> Phil: Right. >> Taking that same model, break down the silos into telecom, right? It's that same, >> Mm-hmm. >> sorry to use the term playbook, Frank Slootman tells me he doesn't use playbooks, but he's not a pattern matcher, but he's a situational CEO, he says. But the situation in telco calls for that type of strategy. So explain what you guys are doing in telco. >> I think there's, so, what we're launching, we launched last week, and it really was three components, right? So we had our platform as you mentioned, >> Dave: Mm-hmm. >> and that platform is being utilized by a number of different companies today. We also are adding, for telecom very specifically, we're adding capabilities in marketplace, so that service providers can not only use some of the data and apps that are in marketplace, but as well service providers can go and sell applications or sell data that they had built. And then as well, we're adding our ecosystem, it's telecom-specific. So, we're bringing partners in, technology partners, and consulting and services partners, that are very much focused on telecoms and what they do internally, but also helping them monetize new services. >> Okay, so it's not just sort of generic Snowflake into telco? You have specific value there. >> We're purposing the platform specifically for- >> Are you a telco guy? >> I am. You are, okay. >> Total telco guy absolutely. >> So there you go. You see that Snowflake is actually an interesting organizational structure, 'cause you're going after verticals, which is kind of rare for a company of your sort of inventory, I'll say, >> Absolutely. >> I don't mean that as a negative. (Dave laughs) So Dave, take us through the data journey at AT&T. It's a long history. You don't have to go back to the 1800s, but- (Dave laughs) >> Thank you for pointing out, we're a 149-year-old company. So, Jesse James was one of the original customers, (Dave laughs) and we have no longer got his data. So, I'll go back. I've been 17 years singular AT&T, and I've watched it through the whole journey of, where the monolithics were growing, when the consolidation of small, wireless carriers, and we went through that boom. And then we've gone through mergers and acquisitions. But, Hadoop came out, and it was going to solve all world hunger. And we had all the aspects of, we're going to monetize and do AI and ML, and some of the things we learned with Hadoop was, we had this monolithic warehouse, we had this file-based-structured Hadoop, but we really didn't know how to bring this all together. And we were bringing items over to the relational, and we were taking the relational and bringing it over to the warehouse, and trying to, and it was a struggle. Let's just go there. And I don't think we were the only company to struggle with that, but we learned a lot. And so now as tech is finally emerging, with the cloud, companies like Snowflake, and others that can handle that, where we can create, we were discussing earlier, but it becomes more of a conducive mesh that's interoperable. So now we're able to simplify that environment. And the cloud is a big thing on that. 'Cause you could not do this on-prem with on-prem technologies. It would be just too cost prohibitive, and too heavy of lifting, going back and forth, and managing the data. The simplicity the cloud brings with a smaller set of tools, and I'll say in the data space specifically, really allows us, maybe not a single instance of data for all use cases, but a greatly reduced ecosystem. And when you simplify your ecosystem, you simplify speed to market and data management. >> So I'm going to ask you, I know it's kind of internal organizational plumbing, but it'll inform my next question. So, Dave, you're with the Chief Data Office, and Roddy, you're kind of, you all serve in the business, but you're really serving the, you're closer to those guys, they're banging on your door for- >> Absolutely. I try to keep the 130,000 users who may or may not have issues sometimes with our data and metrics, away from Dave. And he just gets a call from me. >> And he only calls when he has a problem. He's never wished me happy birthday. (Dave and Phil laugh) >> So the reason I asked that is because, you describe Dave, some of the Hadoop days, and again love-hate with that, but we had hyper-specialized roles. We still do. You've got data engineers, data scientists, data analysts, and you've got this sort of this pipeline, and it had to be this sequential pipeline. I know Snowflake and others have come to simplify that. My question to you is, how is that those roles, how are those roles changing? How is data getting closer to the business? Everybody talks about democratizing business. Are you doing that? What's a real use example? >> From our perspective, those roles, a lot of those roles on my team for years, because we're all about efficiency, >> Dave: Mm-hmm. >> we cut across those areas, and always have cut across those areas. So now we're into a space where things have been simplified, data processes and copying, we've gone from 40 data processes down to five steps now. We've gone from five steps to one step. We've gone from days, now take hours, hours to minutes, minutes to seconds. Literally we're seeing that time in and time out with Snowflake. So these resources that have spent all their time on data engineering and moving data around, are now freed up more on what they have skills for and always have, the data analytics area of the business, and driving the business forward, and new metrics and new analysis. That's some of the great operational value that we've seen here. As this simplification happens, it frees up brain power. >> So, you're pumping data from the OSS, the BSS, the OKRs everywhere >> Everywhere. >> into Snowflake? >> Scheduling systems, you name it. If you can think of what drives our retail and centers and online, all that data, scheduling system, chat data, call center data, call detail data, all of that enters into this common infrastructure to manage the business on a day in and day out basis. >> How are the roles and the skill sets changing? 'Cause you're doing a lot less ETL, you're doing a lot less moving of data around. There were guys that were probably really good at that. I used to joke in the, when I was in the storage world, like if your job is bandaging lungs, you need to look for a new job, right? So, and they did and people move on. So, are you able to sort of redeploy those assets, and those people, those human resources? >> These folks are highly skilled. And we were talking about earlier, SQL hasn't gone away. Relational databases are not going away. And that's one thing that's made this migration excellent, they're just transitioning their skills. Experts in legacy systems are now rapidly becoming experts on the Snowflake side. And it has not been that hard a transition. There are certainly nuances, things that don't operate as well in the cloud environment that we have to learn and optimize. But we're making that transition. >> Dave: So just, >> Please. >> within the Chief Data Office we have a couple of missions, and Roddy is a great partner and an example of how it works. We try to bring the data for democratization, so that we have one interface, now hopefully know we just have a logical connection back to these Snowflake instances that we connect. But we're providing that governance and cleansing, and if there's a business rule at the enterprise level, we provide it. But the goal at CDO is to make sure that business units like Roddy or marketing or finance, that they can come to a platform that's reliable, robust, and self-service. I don't want to be in his way. So I feel like I'm providing a sub-level of platform, that he can come to and anybody can come to, and utilize, that they're not having to go back and undo what's in Salesforce, or ServiceNow, or in our billers. So, I'm sort of that layer. And then making sure that that ecosystem is robust enough for him to use. >> And that self-service infrastructure is predominantly through the Azure Cloud, correct? >> Dave: Absolutely. >> And you work on other clouds, but it's predominantly through Azure? >> We're predominantly in Azure, yeah. >> Dave: That's the first-party citizen? >> Yeah. >> Okay, I like to think in terms sometimes of data products, and I know you've mentioned upfront, you're Gold standard or Platinum standard, you're very careful about personal information. >> Dave: Yeah. >> So you're not trying to sell, I'm an AT&T customer, you're not trying to sell my data, and make money off of my data. So the value prop and the business case for Snowflake is it's simpler. You do things faster, you're in the cloud, lower cost, et cetera. But I presume you're also in the business, AT&T, of making offers and creating packages for customers. I look at those as data products, 'cause it's not a, I mean, yeah, there's a physical phone, but there's data products behind it. So- >> It ultimately is, but not everybody always sees it that way. Data reporting often can be an afterthought. And we're making it more on the forefront now. >> Yeah, so I like to think in terms of data products, I mean even if the financial services business, it's a data business. So, if we can think about that sort of metaphor, do you see yourselves as data product builders? Do you have that, do you think about building products in that regard? >> Within the Chief Data Office, we have a data product team, >> Mm-hmm. >> and by the way, I wouldn't be disingenuous if I said, oh, we're very mature in this, but no, it's where we're going, and it's somewhat of a journey, but I've got a peer, and their whole job is to go from, especially as we migrate from cloud, if Roddy or some other group was using tables three, four and five and joining them together, it's like, "Well look, this is an offer for data product, so let's combine these and put it up in the cloud, and here's the offer data set product, or here's the opportunity data product," and it's a journey. We're on the way, but we have dedicated staff and time to do this. >> I think one of the hardest parts about that is the organizational aspects of it. Like who owns the data now, right? It used to be owned by the techies, and increasingly the business lines want to have access, you're providing self-service. So there's a discussion about, "Okay, what is a data product? Who's responsible for that data product? Is it in my P&L or your P&L? Somebody's got to sign up for that number." So, it sounds like those discussions are taking place. >> They are. And, we feel like we're more the, and CDO at least, we feel more, we're like the guardians, and the shepherds, but not the owners. I mean, we have a role in it all, but he owns his metrics. >> Yeah, and even from our perspective, we see ourselves as an enabler of making whatever AT&T wants to make happen in terms of the key products and officers' trade-in offers, trade-in programs, all that requires this data infrastructure, and managing reps and agents, and what they do from a channel performance perspective. We still ourselves see ourselves as key enablers of that. And we've got to be flexible, and respond quickly to the business. >> I always had empathy for the data engineer, and he or she had to service all these different lines of business with no business context. >> Yeah. >> Like the business knows good data from bad data, and then they just pound that poor individual, and they're like, "Okay, I'm doing my best. It's just ones and zeros to me." So, it sounds like that's, you're on that path. >> Yeah absolutely, and I think, we do have refined, getting more and more refined owners of, since Snowflake enables these golden source data, everybody sees me and my organization, channel performance data, go to Roddy's team, we have a great team, and we go to Dave in terms of making it all happen from a data infrastructure perspective. So we, do have a lot more refined, "This is where you go for the golden source, this is where it is, this is who owns it. If you want to launch this product and services, and you want to manage reps with it, that's the place you-" >> It's a strong story. So Chief Data Office doesn't own the data per se, but it's your responsibility to provide the self-service infrastructure, and make sure it's governed properly, and in as automated way as possible. >> Well, yeah, absolutely. And let me tell you more, everybody talks about single version of the truth, one instance of the data, but there's context to that, that we are taking, trying to take advantage of that as we do data products is, what's the use case here? So we may have an entity of Roddy as a prospective customer, and we may have a entity of Roddy as a customer, high-value customer over here, which may have a different set of mix of data and all, but as a data product, we can then create those for those specific use cases. Still point to the same data, but build it in different constructs. One for marketing, one for sales, one for finance. By the way, that's where your data engineers are struggling. >> Yeah, yeah, of course. So how do I serve all these folks, and really have the context-common story in telco, >> Absolutely. >> or are these guys ahead of the curve a little bit? Or where would you put them? >> I think they're definitely moving a lot faster than the industry is generally. I think the enabling technologies, like for instance, having that single copy of data that everybody sees, a single pane of glass, right, that's definitely something that everybody wants to get to. Not many people are there. I think, what AT&T's doing, is most definitely a little bit further ahead than the industry generally. And I think the successes that are coming out of that, and the learning experiences are starting to generate momentum within AT&T. So I think, it's not just about the product, and having a product now that gives you a single copy of data. It's about the experiences, right? And now, how the teams are getting trained, domains like network engineering for instance. They typically haven't been a part of data discussions, because they've got a lot of data, but they're focused on the infrastructure. >> Mm. >> So, by going ahead and deploying this platform, for platform's purpose, right, and the business value, that's one thing, but also to start bringing, getting that experience, and bringing new experience in to help other groups that traditionally hadn't been data-centric, that's also a huge step ahead, right? So you need to enable those groups. >> A big complaint of course we hear at MWC from carriers is, "The over-the-top guys are killing us. They're riding on our networks, et cetera, et cetera. They have all the data, they have all the client relationships." Do you see your client relationships changing as a result of sort of your data culture evolving? >> Yes, I'm not sure I can- >> It's a loaded question, I know. >> Yeah, and then I, so, we want to start embedding as much into our network on the proprietary value that we have, so we can start getting into that OTT play, us as any other carrier, we have distinct advantages of what we can do at the edge, and we just need to start exploiting those. But you know, 'cause whether it's location or whatnot, so we got to eat into that. Historically, the network is where we make our money in, and we stack the services on top of it. It used to be *69. >> Dave: Yeah. >> If anybody remembers that. >> Dave: Yeah, of course. (Dave laughs) >> But you know, it was stacked on top of our network. Then we stack another product on top of it. It'll be in the edge where we start providing distinct values to other partners as we- >> I mean, it's a great business that you're in. I mean, if they're really good at connectivity. >> Dave: Yeah. >> And so, it sounds like it's still to be determined >> Dave: Yeah. >> where you can go with this. You have to be super careful with private and for personal information. >> Dave: Yep. >> Yeah, but the opportunities are enormous. >> There's a lot. >> Yeah, particularly at the edge, looking at, private networks are just an amazing opportunity. Factories and name it, hospital, remote hospitals, remote locations. I mean- >> Dave: Connected cars. >> Connected cars are really interesting, right? I mean, if you start communicating car to car, and actually drive that, (Dave laughs) I mean that's, now we're getting to visit Xen Fault Tolerance people. This is it. >> Dave: That's not, let's hold the traffic. >> Doesn't scare me as much as we actually learn. (all laugh) >> So how's the show been for you guys? >> Dave: Awesome. >> What're your big takeaways from- >> Tremendous experience. I mean, someone who doesn't go outside the United States much, I'm a homebody. The whole experience, the whole trip, city, Mobile World Congress, the technologies that are out here, it's been a blast. >> Anything, top two things you learned, advice you'd give to others, your colleagues out in general? >> In general, we talked a lot about technologies today, and we talked a lot about data, but I'm going to tell you what, the accelerator that you cannot change, is the relationship that we have. So when the tech and the business can work together toward a common goal, and it's a partnership, you get things done. So, I don't know how many CDOs or CIOs or CEOs are out there, but this connection is what accelerates and makes it work. >> And that is our audience Dave. I mean, it's all about that alignment. So guys, I really appreciate you coming in and sharing your story in "theCUBE." Great stuff. >> Thank you. >> Thanks a lot. >> All right, thanks everybody. Thank you for watching. I'll be right back with Dave Nicholson. Day four SiliconANGLE's coverage of MWC '23. You're watching "theCUBE." (gentle music)
SUMMARY :
that drive human progress. And Phil Kippen, the Global But the data culture's of the OSS stuff that we But enterprise, you got to be So, we may not be as cutting-edge Channel Performance Data and all the way to leadership I don't mean the pejorative, And you guys are leaning into the Cloud. and the process efficiency and one of the nightmares I've lived with, This is the brilliance of the business flexibility, like you're taking your Data Cloud message But the situation in telco and that platform is being utilized You have specific value there. I am. So there you go. I don't mean that as a negative. and some of the things we and Roddy, you're kind of, And he just gets a call from me. (Dave and Phil laugh) and it had to be this sequential pipeline. and always have, the data all of that enters into How are the roles and in the cloud environment that But the goal at CDO is to and I know you've mentioned upfront, So the value prop and the on the forefront now. I mean even if the and by the way, I wouldn't and increasingly the business and the shepherds, but not the owners. and respond quickly to the business. and he or she had to service Like the business knows and we go to Dave in terms doesn't own the data per se, and we may have a entity and really have the and having a product now that gives you and the business value, that's one thing, They have all the data, on the proprietary value that we have, Dave: Yeah, of course. It'll be in the edge business that you're in. You have to be super careful Yeah, but the particularly at the edge, and actually drive that, let's hold the traffic. much as we actually learn. the whole trip, city, is the relationship that we have. and sharing your story in "theCUBE." Thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Whittington | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Roddy | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Phil | PERSON | 0.99+ |
Phil Kippen | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Jesse James | PERSON | 0.99+ |
AT&T. | ORGANIZATION | 0.99+ |
five steps | QUANTITY | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
50 times | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Roddy Tranum | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
one step | QUANTITY | 0.99+ |
17 years | QUANTITY | 0.99+ |
130,000 users | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
1800s | DATE | 0.99+ |
last week | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
last night | DATE | 0.99+ |
MWC '23 | EVENT | 0.98+ |
telco | ORGANIZATION | 0.98+ |
one system | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
40 data processes | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one place | QUANTITY | 0.97+ |
P&L | ORGANIZATION | 0.97+ |
telcos | ORGANIZATION | 0.97+ |
CDO | ORGANIZATION | 0.97+ |
149-year-old | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
single | QUANTITY | 0.96+ |
three components | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
Paola Peraza Calderon & Viraj Parekh, Astronomer | Cube Conversation
(soft electronic music) >> Hey everyone, welcome to this CUBE conversation as part of the AWS Startup Showcase, season three, episode one, featuring Astronomer. I'm your host, Lisa Martin. I'm in the CUBE's Palo Alto Studios, and today excited to be joined by a couple of guests, a couple of co-founders from Astronomer. Viraj Parekh is with us, as is Paola Peraza-Calderon. Thanks guys so much for joining us. Excited to dig into Astronomer. >> Thank you so much for having us. >> Yeah, thanks for having us. >> Yeah, and we're going to be talking about the role of data orchestration. Paola, let's go ahead and start with you. Give the audience that understanding, that context about Astronomer and what it is that you guys do. >> Mm-hmm. Yeah, absolutely. So, Astronomer is a, you know, we're a technology and software company for modern data orchestration, as you said, and we're the driving force behind Apache Airflow. The Open Source Workflow Management tool that's since been adopted by thousands and thousands of users, and we'll dig into this a little bit more. But, by data orchestration, we mean data pipeline, so generally speaking, getting data from one place to another, transforming it, running it on a schedule, and overall just building a central system that tangibly connects your entire ecosystem of data services, right. So what, that's Redshift, Snowflake, DVT, et cetera. And so tangibly, we build, we at Astronomer here build products powered by Apache Airflow for data teams and for data practitioners, so that they don't have to. So, we sell to data engineers, data scientists, data admins, and we really spend our time doing three things. So, the first is that we build Astro, our flagship cloud service that we'll talk more on. But here, we're really building experiences that make it easier for data practitioners to author, run, and scale their data pipeline footprint on the cloud. And then, we also contribute to Apache Airflow as an open source project and community. So, we cultivate the community of humans, and we also put out open source developer tools that actually make it easier for individual data practitioners to be productive in their day-to-day jobs, whether or not they actually use our product and and pay us money or not. And then of course, we also have professional services and education and all of these things around our commercial products that enable folks to use our products and use Airflow as effectively as possible. So yeah, super, super happy with everything we've done and hopefully that gives you an idea of where we're starting. >> Awesome, so when you're talking with those, Paola, those data engineers, those data scientists, how do you define data orchestration and what does it mean to them? >> Yeah, yeah, it's a good question. So, you know, if you Google data orchestration you're going to get something about an automated process for organizing silo data and making it accessible for processing and analysis. But, to your question, what does that actually mean, you know? So, if you look at it from a customer's perspective, we can share a little bit about how we at Astronomer actually do data orchestration ourselves and the problems that it solves for us. So, as many other companies out in the world do, we at Astronomer need to monitor how our own customers use our products, right? And so, we have a weekly meeting, for example, that goes through a dashboard and a dashboarding tool called Sigma where we see the number of monthly customers and how they're engaging with our product. But, to actually do that, you know, we have to use data from our application database, for example, that has behavioral data on what they're actually doing in our product. We also have data from third party API tools, like Salesforce and HubSpot, and other ways in which our customer, we actually engage with our customers and their behavior. And so, our data team internally at Astronomer uses a bunch of tools to transform and use that data, right? So, we use FiveTran, for example, to ingest. We use Snowflake as our data warehouse. We use other tools for data transformations. And even, if we at Astronomer don't do this, you can imagine a data team also using tools like, Monte Carlo for data quality, or Hightouch for Reverse ETL, or things like that. And, I think the point here is that data teams, you know, that are building data-driven organizations have a plethora of tooling to both ingest the right data and come up with the right interfaces to transform and actually, interact with that data. And so, that movement and sort of synchronization of data across your ecosystem is exactly what data orchestration is responsible for. Historically, I think, and Raj will talk more about this, historically, schedulers like KRON and Oozie or Control-M have taken a role here, but we think that Apache Airflow has sort of risen over the past few years as the defacto industry standard for writing data pipelines that do tasks, that do data jobs that interact with that ecosystem of tools in your organization. And so, beyond that sort of data pipeline unit, I think where we see it is that data acquisition is not only writing those data pipelines that move your data, but it's also all the things around it, right, so, CI/CD tool and Secrets Management, et cetera. So, a long-winded answer here, but I think that's how we talk about it here at Astronomer and how we're building our products. >> Excellent. Great context, Paola. Thank you. Viraj, let's bring you into the conversation. Every company these days has to be a data company, right? They've got to be a software company- >> Mm-hmm. >> whether it's my bank or my grocery store. So, how are companies actually doing data orchestration today, Viraj? >> Yeah, it's a great question. So, I think one thing to think about is like, on one hand, you know, data orchestration is kind of a new category that we're helping define, but on the other hand, it's something that companies have been doing forever, right? You need to get data moving to use it, you know. You've got it all in place, aggregate it, cleaning it, et cetera. So, when you look at what companies out there are doing, right. Sometimes, if you're a more kind of born in the cloud company, as we say, you'll adopt all these cloud native tooling things your cloud provider gives you. If you're a bank or another sort of institution like that, you know, you're probably juggling an even wider variety of tools. You're thinking about a cloud migration. You might have things like Kron running in one place, Uzi running somewhere else, Informatics running somewhere else, while you're also trying to move all your workloads to the cloud. So, there's quite a large spectrum of what the current state is for companies. And then, kind of like Paola was saying, Apache Airflow started in 2014, and it was actually started by Airbnb, and they put out this blog post that was like, "Hey here's how we use Apache Airflow to orchestrate our data across all their sources." And really since then, right, it's almost been a decade since then, Airflow emerged as the open source standard, and there's companies of all sorts using it. And, it's really used to tie all these tools together, especially as that number of tools increases, companies move to hybrid cloud, hybrid multi-cloud strategies, and so on and so forth. But you know, what we found is that if you go to any company, especially a larger one and you say like, "Hey, how are you doing data orchestration?" They'll probably say something like, "Well, I have five data teams, so I have eight different ways I do data orchestration." Right. This idea of data orchestration's been there but the right way to do it, kind of all the abstractions you need, the way your teams need to work together, and so on and so forth, hasn't really emerged just yet, right? It's such a quick moving space that companies have to combine what they were doing before with what their new business initiatives are today. So, you know, what we really believe here at Astronomer is Airflow is the core of how you solve data orchestration for any sort of use case, but it's not everything. You know, it needs a little more. And, that's really where our commercial product, Astro comes in, where we've built, not only the most tried and tested airflow experience out there. We do employ a majority of the Airflow Core Committers, right? So, we're kind of really deep in the project. We've also built the right things around developer tooling, observability, and reliability for customers to really rely on Astro as the heart of the way they do data orchestration, and kind of think of it as the foundational layer that helps tie together all the different tools, practices and teams large companies have to do today. >> That foundational layer is absolutely critical. You've both mentioned open source software. Paola, I want to go back to you, and just give the audience an understanding of how open source really plays into Astronomer's mission as a company, and into the technologies like Astro. >> Mm-hmm. Yeah, absolutely. I mean, we, so we at Astronomers started using Airflow and actually building our products because Airflow is open source and we were our own customers at the beginning of our company journey. And, I think the open source community is at the core of everything we do. You know, without that open source community and culture, I think, you know, we have less of a business, and so, we're super invested in continuing to cultivate and grow that. And, I think there's a couple sort of concrete ways in which we do this that personally make me really excited to do my own job. You know, for one, we do things like we organize meetups and we sponsor the Airflow Summit and there's these sort of baseline community efforts that I think are really important and that reminds you, hey, there just humans trying to do their jobs and learn and use both our technology and things that are out there and contribute to it. So, making it easier to contribute to Airflow, for example, is another one of our efforts. As Viraj mentioned, we also employ, you know, engineers internally who are on our team whose full-time job is to make the open source project better. Again, regardless of whether or not you're a customer of ours or not, we want to make sure that we continue to cultivate the Airflow project in and of itself. And, we're also building developer tooling that might not be a part of the Apache Open Source project, but is still open source. So, we have repositories in our own sort of GitHub organization, for example, with tools that individual data practitioners, again customers are not, can use to make them be more productive in their day-to-day jobs with Airflow writing Dags for the most common use cases out there. The last thing I'll say is how important I think we've found it to build sort of educational resources and documentation and best practices. Airflow can be complex. It's been around for a long time. There's a lot of really, really rich feature sets. And so, how do we enable folks to actually use those? And that comes in, you know, things like webinars, and best practices, and courses and curriculum that are free and accessible and open to the community are just some of the ways in which I think we're continuing to invest in that open source community over the next year and beyond. >> That's awesome. It sounds like open source is really core, not only to the mission, but really to the heart of the organization. Viraj, I want to go back to you and really try to understand how does Astronomer fit into the wider modern data stack and ecosystem? Like what does that look like for customers? >> Yeah, yeah. So, both in the open source and with our commercial customers, right? Folks everywhere are trying to tie together a huge variety of tools in order to start making sense of their data. And you know, I kind of think of it almost like as like a pyramid, right? At the base level, you need things like data reliability, data, sorry, data freshness, data availability, and so on and so forth, right? You just need your data to be there. (coughs) I'm sorry. You just need your data to be there, and you need to make it predictable when it's going to be there. You need to make sure it's kind of correct at the highest level, some quality checks, and so on and so forth. And oftentimes, that kind of takes the case of ELT or ETL use cases, right? Taking data from somewhere and moving it somewhere else, usually into some sort of analytics destination. And, that's really what businesses can do to just power the core parts of getting insights into how their business is going, right? How much revenue did I had? What's in my pipeline, salesforce, and so on and so forth. Once that kind of base foundation is there and people can get the data they need, how they need it, it really opens up a lot for what customers can do. You know, I think one of the trendier things out there right now is MLOps, and how do companies actually put machine learning into production? Well, when you think about it you kind of have to squint at it, right? Like, machine learning pipelines are really just any other data pipeline. They just have a certain set of needs that might not not be applicable to ELT pipelines. And, when you kind of have a common layer to tie together all the ways data can move through your organization, that's really what we're trying to make it so companies can do. And, that happens in financial services where, you know, we have some customers who take app data coming from their mobile apps, and actually run it through their fraud detection services to make sure that all the activity is not fraudulent. We have customers that will run sports betting models on our platform where they'll take data from a bunch of public APIs around different sporting events that are happening, transform all of that in a way their data scientist can build models with it, and then actually bet on sports based on that output. You know, one of my favorite use cases I like to talk about that we saw in the open source is we had there was one company whose their business was to deliver blood transfusions via drone into remote parts of the world. And, it was really cool because they took all this data from all sorts of places, right? Kind of orchestrated all the aggregation and cleaning and analysis that happened had to happen via airflow and the end product would be a drone being shot out into a real remote part of the world to actually give somebody blood who needed it there. Because it turns out for certain parts of the world, the easiest way to deliver blood to them is via drone and not via some other, some other thing. So, these kind of, all the things people do with the modern data stack is absolutely incredible, right? Like you were saying, every company's trying to be a data-driven company. What really energizes me is knowing that like, for all those best, super great tools out there that power a business, we get to be the connective tissue, or the, almost like the electricity that kind of ropes them all together and makes so people can actually do what they need to do. >> Right. Phenomenal use cases that you just described, Raj. I mean, just the variety alone of what you guys are able to do and impact is so cool. So Paola, when you're with those data engineers, those data scientists, and customer conversations, what's your pitch? Why use Astro? >> Mm-hmm. Yeah, yeah, it's a good question. And honestly, to piggyback off of Viraj, there's so many. I think what keeps me so energized is how mission critical both our product and data orchestration is, and those use cases really are incredible and we work with customers of all shapes and sizes. But, to answer your question, right, so why use Astra? Why use our commercial products? There's so many people using open source, why pay for something more than that? So, you know, the baseline for our business really is that Airflow has grown exponentially over the last five years, and like we said has become an industry standard that we're confident there's a huge opportunity for us as a company and as a team. But, we also strongly believe that being great at running Airflow, you know, doesn't make you a successful company at what you do. What makes you a successful company at what you do is building great products and solving problems and solving pin points of your own customers, right? And, that differentiating value isn't being amazing at running Airflow. That should be our job. And so, we want to abstract those customers from meaning to do things like manage Kubernetes infrastructure that you need to run Airflow, and then hiring someone full-time to go do that. Which can be hard, but again doesn't add differentiating value to your team, or to your product, or to your customers. So, folks to get away from managing that infrastructure sort of a base, a base layer. Folks who are looking for differentiating features that make their team more productive and allows them to spend less time tweaking Airflow configurations and more time working with the data that they're getting from their business. For help, getting, staying up with Airflow releases. There's a ton of, we've actually been pretty quick to come out with new Airflow features and releases, and actually just keeping up with that feature set and working strategically with a partner to help you make the most out of those feature sets is a key part of it. And, really it's, especially if you're an organization who currently is committed to using Airflow, you likely have a lot of Airflow environments across your organization. And, being able to see those Airflow environments in a single place and being able to enable your data practitioners to create Airflow environments with a click of a button, and then use, for example, our command line to develop your Airflow Dags locally and push them up to our product, and use all of the sort of testing and monitoring and observability that we have on top of our product is such a key. It sounds so simple, especially if you use Airflow, but really those things are, you know, baseline value props that we have for the customers that continue to be excited to work with us. And of course, I think we can go beyond that and there's, we have ambitions to add whole, a whole bunch of features and expand into different types of personas. >> Right? >> But really our main value prop is for companies who are committed to Airflow and want to abstract themselves and make use of some of the differentiating features that we now have at Astronomer. >> Got it. Awesome. >> Thank you. One thing, one thing I'll add to that, Paola, and I think you did a good job of saying is because every company's trying to be a data company, companies are at different parts of their journey along that, right? And we want to meet customers where they are, and take them through it to where they want to go. So, on one end you have folks who are like, "Hey, we're just building a data team here. We have a new initiative. We heard about Airflow. How do you help us out?" On the farther end, you know, we have some customers that have been using Airflow for five plus years and they're like, "Hey, this is awesome. We have 10 more teams we want to bring on. How can you help with this? How can we do more stuff in the open source with you? How can we tell our story together?" And, it's all about kind of taking this vast community of data users everywhere, seeing where they're at, and saying like, "Hey, Astro and Airflow can take you to the next place that you want to go." >> Which is incredibly- >> Mm-hmm. >> and you bring up a great point, Viraj, that every company is somewhere in a different place on that journey. And it's, and it's complex. But it sounds to me like a lot of what you're doing is really stripping away a lot of the complexity, really enabling folks to use their data as quickly as possible, so that it's relevant and they can serve up, you know, the right products and services to whoever wants what. Really incredibly important. We're almost out of time, but I'd love to get both of your perspectives on what's next for Astronomer. You give us a a great overview of what the company's doing, the value in it for customers. Paola, from your lens as one of the co-founders, what's next? >> Yeah, I mean, I think we'll continue to, I think cultivate in that open source community. I think we'll continue to build products that are open sourced as part of our ecosystem. I also think that we'll continue to build products that actually make Airflow, and getting started with Airflow, more accessible. So, sort of lowering that barrier to entry to our products, whether that's price wise or infrastructure requirement wise. I think making it easier for folks to get started and get their hands on our product is super important for us this year. And really it's about, I think, you know, for us, it's really about focused execution this year and all of the sort of core principles that we've been talking about. And continuing to invest in all of the things around our product that again, enable teams to use Airflow more effectively and efficiently. >> And that efficiency piece is, everybody needs that. Last question, Viraj, for you. What do you see in terms of the next year for Astronomer and for your role? >> Yeah, you know, I think Paola did a really good job of laying it out. So it's, it's really hard to disagree with her on anything, right? I think executing is definitely the most important thing. My own personal bias on that is I think more than ever it's important to really galvanize the community around airflow. So, we're going to be focusing on that a lot. We want to make it easier for our users to get get our product into their hands, be that open source users or commercial users. And last, but certainly not least, is we're also really excited about Data Lineage and this other open source project in our umbrella called Open Lineage to make it so that there's a standard way for users to get lineage out of different systems that they use. When we think about what's in store for data lineage and needing to audit the way automated decisions are being made. You know, I think that's just such an important thing that companies are really just starting with, and I don't think there's a solution that's emerged that kind of ties it all together. So, we think that as we kind of grow the role of Airflow, right, we can also make it so that we're helping solve, we're helping customers solve their lineage problems all in Astro, which is our kind of the best of both worlds for us. >> Awesome. I can definitely feel and hear the enthusiasm and the passion that you both bring to Astronomer, to your customers, to your team. I love it. We could keep talking more and more, so you're going to have to come back. (laughing) Viraj, Paola, thank you so much for joining me today on this showcase conversation. We really appreciate your insights and all the context that you provided about Astronomer. >> Thank you so much for having us. >> My pleasure. For my guests, I'm Lisa Martin. You're watching this Cube conversation. (soft electronic music)
SUMMARY :
to this CUBE conversation Thank you so much and what it is that you guys do. and hopefully that gives you an idea and the problems that it solves for us. to be a data company, right? So, how are companies actually kind of all the abstractions you need, and just give the And that comes in, you of the organization. and analysis that happened that you just described, Raj. that you need to run Airflow, that we now have at Astronomer. Awesome. and I think you did a good job of saying and you bring up a great point, Viraj, and all of the sort of core principles and for your role? and needing to audit the and all the context that you (soft electronic music)
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
Astronomer | ORGANIZATION | 0.99+ |
Paola Peraza-Calderon | PERSON | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
Airflow | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
five plus years | QUANTITY | 0.99+ |
Astro | ORGANIZATION | 0.99+ |
Raj | PERSON | 0.99+ |
Uzi | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Kron | ORGANIZATION | 0.99+ |
10 more teams | QUANTITY | 0.98+ |
Astronomers | ORGANIZATION | 0.98+ |
Astra | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Airflow | TITLE | 0.98+ |
Informatics | ORGANIZATION | 0.98+ |
Monte Carlo | TITLE | 0.98+ |
this year | DATE | 0.98+ |
HubSpot | ORGANIZATION | 0.98+ |
one company | QUANTITY | 0.97+ |
Astronomer | TITLE | 0.97+ |
next year | DATE | 0.97+ |
Apache | ORGANIZATION | 0.97+ |
Airflow Summit | EVENT | 0.97+ |
AWS | ORGANIZATION | 0.95+ |
both worlds | QUANTITY | 0.93+ |
KRON | ORGANIZATION | 0.93+ |
CUBE | ORGANIZATION | 0.92+ |
M | ORGANIZATION | 0.92+ |
Redshift | TITLE | 0.91+ |
Snowflake | TITLE | 0.91+ |
five data teams | QUANTITY | 0.91+ |
GitHub | ORGANIZATION | 0.91+ |
Oozie | ORGANIZATION | 0.9+ |
Data Lineage | ORGANIZATION | 0.9+ |
AWS Startup Showcase S3E1
(upbeat electronic music) >> Hello everyone, welcome to this CUBE conversation here from the studios in the CUBE in Palo Alto, California. I'm John Furrier, your host. We're featuring a startup, Astronomer. Astronomer.io is the URL, check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI, and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder of Astronomer, and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table who've worked very hard to get this company to the point that it's at. We have long ways to go, right? But there's been a lot of people involved that have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders, sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry to kind of highlight this shift that's happening. It's real, we've been chronicalizing, take a minute to explain what you guys do. >> Yeah, sure, we can get started. So, yeah, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data, and we were using an open source project called Apache Airflow that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into, and that running Airflow is actually quite challenging, and that there's a big opportunity for us to create a set of commercial products and an opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item in the old classic data infrastructure. But with AI, you're seeing a lot more emphasis on scale, tuning, training. Data orchestration is the center of the value proposition, when you're looking at coordinating resources, it's one of the most important things. Can you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one, and Viraj, feel free to jump in. So if you google data orchestration, here's what you're going to get. You're going to get something that says, "Data orchestration is the automated process" "for organizing silo data from numerous" "data storage points, standardizing it," "and making it accessible and prepared for data analysis." And you say, "Okay, but what does that actually mean," right, and so let's give sort of an an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Okay, give me a dashboard in Sigma, for example, for the number of customers or monthly active users, and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have in product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran to ingest data, a data warehouse, like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration, in our view, is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on and the company advances. And so, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run, and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CICD tooling, secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that it's the heartbeat, we think, of of the data ecosystem, and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> One of the things that jumped out, Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out. You mentioned a variety of things. You look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are fundamental, that were once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier, or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over the last however many years is that if a data team is using a bunch of tools to get what they need done, and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them, and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have some sort of base layer, right? That's kind of like, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, things like SageMaker, Redshift, whatever, but they also might need things that their cloud can't provide. Something like Fivetran, or Hightouch, those are other tools. And where data orchestration really shines, and something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need? So that somebody can read a dashboard and trust the number that it says, or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines, or machine learning, or whatever, you need different things to do them, and Airflow helps tie them together in a way that's really specific for a individual business' needs. >> Take a step back and share the journey of what you guys went through as a company startup. So you mentioned Apache, open source. I was just having an interview with a VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone/Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. Are you guys helping them? Take us through, 'cause you guys are on the front end of a big, big wave, and that is to make sense of the chaos, rain it in. Take us through your journey and why this is important. >> Yeah, Paola, I can take a crack at this, then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source, because we started using Airflow as an end user and started to say like, "Hey wait a second," "more and more people need this." Airflow, for background, started at Airbnb, and they were actually using that as a foundation for their whole data stack. Kind of how they made it so that they could give you recommendations, and predictions, and all of the processes that needed orchestrated. Airbnb created Airflow, gave it away to the public, and then fast forward a couple years and we're building a company around it, and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us, it's really been about watching the community and our customers take these problems, find a solution to those problems, standardize those solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting in their ELP infrastructure, they've solved that problem and now they're moving on to things like doing machine learning with their data, because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build a layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Viraj, I'll let you take that one too. (group laughs) >> So you know, a lot of it is... It goes across the gamut, right? Because it doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from other disparate sources into one place and then building on top of that. Be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection, because Airflow's orchestrating how transactions go, transactions get analyzed. They do things like analyzing marketing spend to see where your highest ROI is. And then you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers, kind of analyze and aggregating that at scale, and trying to automate decision making processes. So it goes from your most basic, what we call data plumbing, right? Just to make sure data's moving as needed, all the ways to your more exciting expansive use cases around automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future, is how critical Airflow is to all of those processes, and I think when you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic questions about your business and the growth of your company for so many organizations that we work with. So it's, I think, one of the things that gets Viraj and I and the rest of our company up every single morning is knowing how important the work that we do for all of those use cases across industries, across company sizes, and it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models is that you can integrate data into these models from outside. So you're starting to see the integration easier to deal with. Still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Has it already been disrupted? Would you categorize it as a new first inning kind of opportunity, or what's the state of the data orchestration area right now? Both technically and from a business model standpoint. How would you guys describe that state of the market? >> Yeah, I mean, I think in a lot of ways, in some ways I think we're category creating. Schedulers have been around for a long time. I released a data presentation sort of on the evolution of going from something like Kron, which I think was built in like the 1970s out of Carnegie Mellon. And that's a long time ago, that's 50 years ago. So sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out industry has 5X'd over the last 10 years. And so obviously as that ecosystem grows, and grows, and grows, and grows, the need for orchestration only increases. And I think, as Astronomer, I think we... And we work with so many different types of companies, companies that have been around for 50 years, and companies that got started not even 12 months ago. And so I think for us it's trying to, in a ways, category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration, and then there's folks who have such advanced use case, 'cause they're hitting sort of a ceiling and only want to go up from there. And so I think we, as a company, care about both ends of that spectrum, and certainly want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point, Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. If you rewind the clock like 5 or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business, and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is right on the money. And what we're finding is the need for it is spreading to all parts of the data team, naturally where Airflow's emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. We've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data, and that's data engineering, and then you're got to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I have to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers, or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean, there's so many... Sorry, Viraj, you can jump in. So there's so many companies using Airflow, right? So the baseline is that the open source project that is Airflow that came out of Airbnb, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in their organization, and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Viraj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's to start at the baseline, as we continue to grow our our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way, in a more efficient way, and that's really the crux of who we sell to. And so to answer your question on, we get a lot of inbound because they're... >> You have a built in audience. (laughs) >> The world that use it. Those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean, the power of the opensource community is really just so, so big, and I think that's also one of the things that makes this job fun. >> And you guys are in a great position. Viraj, you can comment a little, get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of productizing it, operationalizing it. This is a huge new dynamic, I mean, in the past 5 or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do, because we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running an e-commerce business, or maybe you're running, I don't know, some sort of like, any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it, you want to be able to google something and get answers for it, you want the benefits of open source. You don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, that you can benefit from, that you can learn from. But you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolve. We used a debate 10 years ago, can there be another Red Hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company? The milestones of Astromer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Viraj and I have obviously been at Astronomer along with our other founding team and leadership folks for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people, solving, again, mission critical problems for so many types of organizations. We've had some funding that has allowed us to invest in the team that we have and in the software that we have, and that's been really phenomenal. And so that investment, I think, keeps us confident, even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us that we know can get valuable out of what we do, and making developers' lives better, and growing the open source community and making sure that everything that we're doing makes it easier for folks to get started, to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> Don't know what the total is, but it's in the ballpark over $200 million. It feels good to... >> A little bit of capital. Got a little bit of cap to work with there. Great success. I know as a Series C Financing, you guys have been down. So you're up and running, what's next? What are you guys looking to do? What's the big horizon look like for you from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done. But really investing our product over the next, at least over the course of our company lifetime. And there's a lot of ways we want to make it more accessible to users, easier to get started with, easier to use, kind of on all areas there. And really, we really want to do more for the community, right, like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways, in more kind of events and everything else that we can keep those folks galvanized and just keep them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. I think we'll keep growing the team this year. We've got a couple of offices in the the US, which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York, and we're excited to be engaging with our coworkers in person finally, after years of not doing so. We've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world, and really focusing on our product and the open source community is where our heads are at this year. So, excited. >> Congratulations. 200 million in funding, plus. Good runway, put that money in the bank, squirrel it away. It's a good time to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open source community does, and good luck with the venture, continue to be successful, and we'll see you at the Startup Showcase. >> Thank you. >> Yeah, thanks so much, John. Appreciate it. >> Okay, that's the CUBE Conversation featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model, good solution for the next gen cloud scale data operations, data stacks that are emerging. I'm John Furrier, your host, thanks for watching. (soft upbeat music)
SUMMARY :
and that is the future of for the path we've been on so far. for the AI industry to kind of highlight So the crux of what we center of the value proposition, that it's the heartbeat, One of the things and the number of tools they're using of what you guys went and all of the processes That's a beautiful thing. all the tools that they need, What are some of the companies Viraj, I'll let you take that one too. all of the machine learning and the growth of your company that state of the market? and the value that we can provide and the data scientists that the data market's And so the folks that we sell to You have a built in audience. one of the things that makes this job fun. in the past 5 or so years, 10 years, that you can build on top of, the history of the company? and in the software that we have, How much have you guys raised? but it's in the ballpark What's the big horizon look like for you Kind of one of the best and worst things and continuing to hire the work you guys do. Yeah, thanks so much, John. for the next gen cloud
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
2017 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
New York | LOCATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Two | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
1970s | DATE | 0.99+ |
first question | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Airflow | TITLE | 0.99+ |
both | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
Astronomer | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
10 years ago | DATE | 0.99+ |
HubSpot | ORGANIZATION | 0.98+ |
Fivetran | ORGANIZATION | 0.98+ |
50 years ago | DATE | 0.98+ |
over five years | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
10 years | QUANTITY | 0.97+ |
Both | QUANTITY | 0.97+ |
Apache Airflow | TITLE | 0.97+ |
both worlds | QUANTITY | 0.97+ |
CNCF | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
ChatGPT | ORGANIZATION | 0.97+ |
5 | DATE | 0.97+ |
next year | DATE | 0.96+ |
Astromer | ORGANIZATION | 0.96+ |
today | DATE | 0.95+ |
5X | QUANTITY | 0.95+ |
over five years ago | DATE | 0.95+ |
CUBE | ORGANIZATION | 0.94+ |
two things | QUANTITY | 0.94+ |
each | QUANTITY | 0.93+ |
one person | QUANTITY | 0.93+ |
First | QUANTITY | 0.92+ |
S3 | TITLE | 0.91+ |
Carnegie Mellon | ORGANIZATION | 0.91+ |
Startup Showcase | EVENT | 0.91+ |
AWS Startup Showcase S3E1
(soft music) >> Hello everyone, welcome to this Cube conversation here from the studios of theCube in Palo Alto, California. John Furrier, your host. We're featuring a startup, Astronomer, astronomer.io is the url. Check it out. And we're going to have a great conversation around one of the most important topics hitting the industry, and that is the future of machine learning and AI and the data that powers it underneath it. There's a lot of things that need to get done, and we're excited to have some of the co-founders of Astronomer here. Viraj Parekh, who is co-founder and Paola Peraza Calderon, another co-founder, both with Astronomer. Thanks for coming on. First of all, how many co-founders do you guys have? >> You know, I think the answer's around six or seven. I forget the exact, but there's really been a lot of people around the table, who've worked very hard to get this company to the point that it's at. And we have long ways to go, right? But there's been a lot of people involved that are, have been absolutely necessary for the path we've been on so far. >> Thanks for that, Viraj, appreciate that. The first question I want to get out on the table, and then we'll get into some of the details, is take a minute to explain what you guys are doing. How did you guys get here? Obviously, multiple co-founders sounds like a great project. The timing couldn't have been better. ChatGPT has essentially done so much public relations for the AI industry. Kind of highlight this shift that's happening. It's real. We've been chronologicalizing, take a minute to explain what you guys do. >> Yeah, sure. We can get started. So yeah, when Astronomer, when Viraj and I joined Astronomer in 2017, we really wanted to build a business around data and we were using an open source project called Apache Airflow, that we were just using sort of as customers ourselves. And over time, we realized that there was actually a market for companies who use Apache Airflow, which is a data pipeline management tool, which we'll get into. And that running Airflow is actually quite challenging and that there's a lot of, a big opportunity for us to create a set of commercial products and opportunity to grow that open source community and actually build a company around that. So the crux of what we do is help companies run data pipelines with Apache Airflow. And certainly we've grown in our ambitions beyond that, but that's sort of the crux of what we do for folks. >> You know, data orchestration, data management has always been a big item, you know, in the old classic data infrastructure. But with AI you're seeing a lot more emphasis on scale, tuning, training. You know, data orchestration is the center of the value proposition when you're looking at coordinating resources, it's one of the most important things. Could you guys explain what data orchestration entails? What does it mean? Take us through the definition of what data orchestration entails. >> Yeah, for sure. I can take this one and Viraj feel free to jump in. So if you google data orchestration, you know, here's what you're going to get. You're going to get something that says, data orchestration is the automated process for organizing silo data from numerous data storage points to organizing it and making it accessible and prepared for data analysis. And you say, okay, but what does that actually mean, right? And so let's give sort of an example. So let's say you're a business and you have sort of the following basic asks of your data team, right? Hey, give me a dashboard in Sigma, for example, for the number of customers or monthly active users and then make sure that that gets updated on an hourly basis. And then number two, a consistent list of active customers that I have in HubSpot so that I can send them a monthly product newsletter, right? Two very basic asks for all sorts of companies and organizations. And when that data team, which has data engineers, data scientists, ML engineers, data analysts get that request, they're looking at an ecosystem of data sources that can help them get there, right? And that includes application databases, for example, that actually have end product user behavior and third party APIs from tools that the company uses that also has different attributes and qualities of those customers or users. And that data team needs to use tools like Fivetran, to ingest data, a data warehouse like Snowflake or Databricks to actually store that data and do analysis on top of it, a tool like DBT to do transformations and make sure that that data is standardized in the way that it needs to be, a tool like Hightouch for reverse ETL. I mean, we could go on and on. There's so many partners of ours in this industry that are doing really, really exciting and critical things for those data movements. And the whole point here is that, you know, data teams have this plethora of tooling that they use to both ingest the right data and come up with the right interfaces to transform and interact with that data. And data orchestration in our view is really the heartbeat of all of those processes, right? And tangibly the unit of data orchestration, you know, is a data pipeline, a set of tasks or jobs that each do something with data over time and eventually run that on a schedule to make sure that those things are happening continuously as time moves on. And, you know, the company advances. And so, you know, for us, we're building a business around Apache Airflow, which is a workflow management tool that allows you to author, run and monitor data pipelines. And so when we talk about data orchestration, we talk about sort of two things. One is that crux of data pipelines that, like I said, connect that large ecosystem of data tooling in your company. But number two, it's not just that data pipeline that needs to run every day, right? And Viraj will probably touch on this as we talk more about Astronomer and our value prop on top of Airflow. But then it's all the things that you need to actually run data and production and make sure that it's trustworthy, right? So it's actually not just that you're running things on a schedule, but it's also things like CI/CD tooling, right? Secure secrets management, user permissions, monitoring, data lineage, documentation, things that enable other personas in your data team to actually use those tools. So long-winded way of saying that, it's the heartbeat that we think of the data ecosystem and certainly goes beyond scheduling, but again, data pipelines are really at the center of it. >> You know, one of the things that jumped out Viraj, if you can get into this, I'd like to hear more about how you guys look at all those little tools that are out there. You mentioned a variety of things. You know, if you look at the data infrastructure, it's not just one stack. You've got an analytic stack, you've got a realtime stack, you've got a data lake stack, you got an AI stack potentially. I mean you have these stacks now emerging in the data world that are >> Yeah. - >> fundamental, but we're once served by either a full package, old school software, and then a bunch of point solution. You mentioned Fivetran there, I would say in the analytics stack. Then you got, you know, S3, they're on the data lake stack. So all these things are kind of munged together. >> Yeah. >> How do you guys fit into that world? You make it easier or like, what's the deal? >> Great question, right? And you know, I think that one of the biggest things we've found in working with customers over, you know, the last however many years, is that like if a data team is using a bunch of tools to get what they need done and the number of tools they're using is growing exponentially and they're kind of roping things together here and there, that's actually a sign of a productive team, not a bad thing, right? It's because that team is moving fast. They have needs that are very specific to them and they're trying to make something that's exactly tailored to their business. So a lot of times what we find is that customers have like some sort of base layer, right? That's kind of like, you know, it might be they're running most of the things in AWS, right? And then on top of that, they'll be using some of the things AWS offers, you know, things like SageMaker, Redshift, whatever. But they also might need things that their Cloud can't provide, you know, something like Fivetran or Hightouch or anything of those other tools and where data orchestration really shines, right? And something that we've had the pleasure of helping our customers build, is how do you take all those requirements, all those different tools and whip them together into something that fulfills a business need, right? Something that makes it so that somebody can read a dashboard and trust the number that it says or somebody can make sure that the right emails go out to their customers. And Airflow serves as this amazing kind of glue between that data stack, right? It's to make it so that for any use case, be it ELT pipelines or machine learning or whatever, you need different things to do them and Airflow helps tie them together in a way that's really specific for a individual business's needs. >> Take a step back and share the journey of what your guys went through as a company startup. So you mentioned Apache open source, you know, we were just, I was just having an interview with the VC, we were talking about foundational models. You got a lot of proprietary and open source development going on. It's almost the iPhone, Android moment in this whole generative space and foundational side. This is kind of important, the open source piece of it. Can you share how you guys started? And I can imagine your customers probably have their hair on fire and are probably building stuff on their own. How do you guys, are you guys helping them? Take us through, 'cuz you guys are on the front end of a big, big wave and that is to make sense of the chaos, reigning it in. Take us through your journey and why this is important. >> Yeah Paola, I can take a crack at this and then I'll kind of hand it over to you to fill in whatever I miss in details. But you know, like Paola is saying, the heart of our company is open source because we started using Airflow as an end user and started to say like, "Hey wait a second". Like more and more people need this. Airflow, for background, started at Airbnb and they were actually using that as the foundation for their whole data stack. Kind of how they made it so that they could give you recommendations and predictions and all of the processes that need to be or needed to be orchestrated. Airbnb created Airflow, gave it away to the public and then, you know, fast forward a couple years and you know, we're building a company around it and we're really excited about that. >> That's a beautiful thing. That's exactly why open source is so great. >> Yeah, yeah. And for us it's really been about like watching the community and our customers take these problems, find solution to those problems, build standardized solutions, and then building on top of that, right? So we're reaching to a point where a lot of our earlier customers who started to just using Airflow to get the base of their BI stack down and their reporting and their ELP infrastructure, you know, they've solved that problem and now they're moving onto things like doing machine learning with their data, right? Because now that they've built that foundation, all the connective tissue for their data arriving on time and being orchestrated correctly is happening, they can build the layer on top of that. And it's just been really, really exciting kind of watching what customers do once they're empowered to pick all the tools that they need, tie them together in the way they need to, and really deliver real value to their business. >> Can you share some of the use cases of these customers? Because I think that's where you're starting to see the innovation. What are some of the companies that you're working with, what are they doing? >> Raj, I'll let you take that one too. (all laughing) >> Yeah. (all laughing) So you know, a lot of it is, it goes across the gamut, right? Because all doesn't matter what you are, what you're doing with data, it needs to be orchestrated. So there's a lot of customers using us for their ETL and ELT reporting, right? Just getting data from all the disparate sources into one place and then building on top of that, be it building dashboards, answering questions for the business, building other data products and so on and so forth. From there, these use cases evolve a lot. You do see folks doing things like fraud detection because Airflow's orchestrating how transactions go. Transactions get analyzed, they do things like analyzing marketing spend to see where your highest ROI is. And then, you know, you kind of can't not talk about all of the machine learning that goes on, right? Where customers are taking data about their own customers kind of analyze and aggregating that at scale and trying to automate decision making processes. So it goes from your most basic, what we call like data plumbing, right? Just to make sure data's moving as needed. All the ways to your more exciting and sexy use cases around like automated decision making and machine learning. >> And I'd say, I mean, I'd say that's one of the things that I think gets me most excited about our future is how critical Airflow is to all of those processes, you know? And I think when, you know, you know a tool is valuable is when something goes wrong and one of those critical processes doesn't work. And we know that our system is so mission critical to answering basic, you know, questions about your business and the growth of your company for so many organizations that we work with. So it's, I think one of the things that gets Viraj and I, and the rest of our company up every single morning, is knowing how important the work that we do for all of those use cases across industries, across company sizes. And it's really quite energizing. >> It was such a big focus this year at AWS re:Invent, the role of data. And I think one of the things that's exciting about the open AI and all the movement towards large language models, is that you can integrate data into these models, right? From outside, right? So you're starting to see the integration easier to deal with, still a lot of plumbing issues. So a lot of things happening. So I have to ask you guys, what is the state of the data orchestration area? Is it ready for disruption? Is it already been disrupted? Would you categorize it as a new first inning kind of opportunity or what's the state of the data orchestration area right now? Both, you know, technically and from a business model standpoint, how would you guys describe that state of the market? >> Yeah, I mean I think, I think in a lot of ways we're, in some ways I think we're categoric rating, you know, schedulers have been around for a long time. I recently did a presentation sort of on the evolution of going from, you know, something like KRON, which I think was built in like the 1970s out of Carnegie Mellon. And you know, that's a long time ago. That's 50 years ago. So it's sort of like the basic need to schedule and do something with your data on a schedule is not a new concept. But to our point earlier, I think everything that you need around your ecosystem, first of all, the number of data tools and developer tooling that has come out the industry has, you know, has some 5X over the last 10 years. And so obviously as that ecosystem grows and grows and grows and grows, the need for orchestration only increases. And I think, you know, as Astronomer, I think we, and there's, we work with so many different types of companies, companies that have been around for 50 years and companies that got started, you know, not even 12 months ago. And so I think for us, it's trying to always category create and adjust sort of what we sell and the value that we can provide for companies all across that journey. There are folks who are just getting started with orchestration and then there's folks who have such advanced use case 'cuz they're hitting sort of a ceiling and only want to go up from there. And so I think we as a company, care about both ends of that spectrum and certainly have want to build and continue building products for companies of all sorts, regardless of where they are on the maturity curve of data orchestration. >> That's a really good point Paola. And I think the other thing to really take into account is it's the companies themselves, but also individuals who have to do their jobs. You know, if you rewind the clock like five or 10 years ago, data engineers would be the ones responsible for orchestrating data through their org. But when we look at our customers today, it's not just data engineers anymore. There's data analysts who sit a lot closer to the business and the data scientists who want to automate things around their models. So this idea that orchestration is this new category is spot on, is right on the money. And what we're finding is it's spreading, the need for it, is spreading to all parts of the data team naturally where Airflows have emerged as an open source standard and we're hoping to take things to the next level. >> That's awesome. You know, we've been up saying that the data market's kind of like the SRE with servers, right? You're going to need one person to deal with a lot of data and that's data engineering and then you're going to have the practitioners, the democratization. Clearly that's coming in what you're seeing. So I got to ask, how do you guys fit in from a value proposition standpoint? What's the pitch that you have to customers or is it more inbound coming into you guys? Are you guys doing a lot of outreach, customer engagements? I'm sure they're getting a lot of great requirements from customers. What's the current value proposition? How do you guys engage? >> Yeah, I mean we've, there's so many, there's so many. Sorry Raj, you can jump in. - >> It's okay. So there's so many companies using Airflow, right? So our, the baseline is that the open source project that is Airflow that was, that came out of Airbnb, you know, over five years ago at this point, has grown exponentially in users and continues to grow. And so the folks that we sell to primarily are folks who are already committed to using Apache Airflow, need data orchestration in the organization and just want to do it better, want to do it more efficiently, want to do it without managing that infrastructure. And so our baseline proposition is for those organizations. Now to Raj's point, obviously I think our ambitions go beyond that, both in terms of the personas that we addressed and going beyond that data engineer, but really it's for, to start at the baseline. You know, as we continue to grow our company, it's really making sure that we're adding value to folks using Airflow and help them do so in a better way, in a larger way and a more efficient way. And that's really the crux of who we sell to. And so to answer your question on, we actually, we get a lot of inbound because they're are so many - >> A built-in audience. >> In the world that use it, that those are the folks who we talk to and come to our website and chat with us and get value from our content. I mean the power of the open source community is really just so, so big. And I think that's also one of the things that makes this job fun, so. >> And you guys are in a great position, Viraj, you can comment, to get your reaction. There's been a big successful business model to starting a company around these big projects for a lot of reasons. One is open source is continuing to be great, but there's also supply chain challenges in there. There's also, you know, we want to continue more innovation and more code and keeping it free and and flowing. And then there's the commercialization of product-izing it, operationalizing it. This is a huge new dynamic. I mean, in the past, you know, five or so years, 10 years, it's been happening all on CNCF from other areas like Apache, Linux Foundation, they're all implementing this. This is a huge opportunity for entrepreneurs to do this. >> Yeah, yeah. Open source is always going to be core to what we do because, you know, we wouldn't exist without the open source community around us. They are huge in numbers. Oftentimes they're nameless people who are working on making something better in a way that everybody benefits from it. But open source is really hard, especially if you're a company whose core competency is running a business, right? Maybe you're running e-commerce business or maybe you're running, I don't know, some sort of like any sort of business, especially if you're a company running a business, you don't really want to spend your time figuring out how to run open source software. You just want to use it, you want to use the best of it, you want to use the community around it. You want to take, you want to be able to google something and get answers for it. You want the benefits of open source. You don't want to have, you don't have the time or the resources to invest in becoming an expert in open source, right? And I think that dynamic is really what's given companies like us an ability to kind of form businesses around that, in the sense that we'll make it so people get the best of both worlds. You'll get this vast open ecosystem that you can build on top of, you can benefit from, that you can learn from, but you won't have to spend your time doing undifferentiated heavy lifting. You can do things that are just specific to your business. >> It's always been great to see that business model evolved. We used to debate 10 years ago, can there be another red hat? And we said, not really the same, but there'll be a lot of little ones that'll grow up to be big soon. Great stuff. Final question, can you guys share the history of the company, the milestones of the Astronomer's journey in data orchestration? >> Yeah, we could. So yeah, I mean, I think, so Raj and I have obviously been at astronomer along with our other founding team and leadership folks, for over five years now. And it's been such an incredible journey of learning, of hiring really amazing people. Solving again, mission critical problems for so many types of organizations. You know, we've had some funding that has allowed us to invest in the team that we have and in the software that we have. And that's been really phenomenal. And so that investment, I think, keeps us confident even despite these sort of macroeconomic conditions that we're finding ourselves in. And so honestly, the milestones for us are focusing on our product, focusing on our customers over the next year, focusing on that market for us, that we know can get value out of what we do. And making developers' lives better and growing the open source community, you know, and making sure that everything that we're doing makes it easier for folks to get started to contribute to the project and to feel a part of the community that we're cultivating here. >> You guys raised a little bit of money. How much have you guys raised? >> I forget what the total is, but it's in the ballpark of 200, over $200 million. So it feels good - >> A little bit of capital. Got a little bit of cash to work with there. Great success. I know it's a Series C financing, you guys been down, so you're up and running. What's next? What are you guys looking to do? What's the big horizon look like for you? And from a vision standpoint, more hiring, more product, what is some of the key things you're looking at doing? >> Yeah, it's really a little of all of the above, right? Like, kind of one of the best and worst things about working at earlier stage startups is there's always so much to do and you often have to just kind of figure out a way to get everything done, but really invest in our product over the next, at least the next, over the course of our company lifetime. And there's a lot of ways we wanting to just make it more accessible to users, easier to get started with, easier to use all kind of on all areas there. And really, we really want to do more for the community, right? Like I was saying, we wouldn't be anything without the large open source community around us. And we want to figure out ways to give back more in more creative ways, in more code driven ways and more kind of events and everything else that we can do to keep those folks galvanized and just keeping them happy using Airflow. >> Paola, any final words as we close out? >> No, I mean, I'm super excited. You know, I think we'll keep growing the team this year. We've got a couple of offices in the US which we're excited about, and a fully global team that will only continue to grow. So Viraj and I are both here in New York and we're excited to be engaging with our coworkers in person. Finally, after years of not doing so, we've got a bustling office in San Francisco as well. So growing those teams and continuing to hire all over the world and really focusing on our product and the open source community is where our heads are at this year, so. >> Congratulations. - >> Excited. 200 million in funding plus good runway. Put that money in the bank, squirrel it away. You know, it's good to kind of get some good interest on it, but still grow. Congratulations on all the work you guys do. We appreciate you and the open sourced community does and good luck with the venture. Continue to be successful and we'll see you at the Startup Showcase. >> Thank you. - >> Yeah, thanks so much, John. Appreciate it. - >> It's theCube conversation, featuring astronomer.io, that's the website. Astronomer is doing well. Multiple rounds of funding, over 200 million in funding. Open source continues to lead the way in innovation. Great business model. Good solution for the next gen, Cloud, scale, data operations, data stacks that are emerging. I'm John Furrier, your host. Thanks for watching. (soft music)
SUMMARY :
and that is the future of for the path we've been on so far. take a minute to explain what you guys do. and that there's a lot of, of the value proposition And that data team needs to use tools You know, one of the and then a bunch of point solution. and the number of tools they're using and that is to make sense of the chaos, and all of the processes that need to be That's a beautiful thing. you know, they've solved that problem What are some of the companies Raj, I'll let you take that one too. And then, you know, and the growth of your company So I have to ask you guys, and companies that got started, you know, and the data scientists that the data market's kind of you can jump in. And so the folks that we and come to our website and chat with us I mean, in the past, you to what we do because, you history of the company, and in the software that we have. How much have you guys raised? but it's in the ballpark What are you guys looking to do? and you often have to just kind of and the open source community the work you guys do. Yeah, thanks so much, John. that's the website.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Raj | PERSON | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
2017 | DATE | 0.99+ |
New York | LOCATION | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Apache | ORGANIZATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
1970s | DATE | 0.99+ |
10 years | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
over 200 million | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
over $200 million | QUANTITY | 0.99+ |
Linux Foundation | ORGANIZATION | 0.99+ |
50 years ago | DATE | 0.99+ |
one | QUANTITY | 0.99+ |
five | DATE | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
this year | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
Airflow | TITLE | 0.98+ |
10 years ago | DATE | 0.98+ |
Carnegie Mellon | ORGANIZATION | 0.98+ |
over five years | QUANTITY | 0.98+ |
200 | QUANTITY | 0.98+ |
12 months ago | DATE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
5X | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
one stack | QUANTITY | 0.97+ |
one person | QUANTITY | 0.97+ |
two things | QUANTITY | 0.97+ |
Fivetran | ORGANIZATION | 0.96+ |
seven | QUANTITY | 0.96+ |
next year | DATE | 0.96+ |
today | DATE | 0.95+ |
50 years | QUANTITY | 0.95+ |
each | QUANTITY | 0.95+ |
theCube | ORGANIZATION | 0.94+ |
HubSpot | ORGANIZATION | 0.93+ |
Sigma | ORGANIZATION | 0.92+ |
Series C | OTHER | 0.92+ |
Astronomer | ORGANIZATION | 0.91+ |
astronomer.io | OTHER | 0.91+ |
Hightouch | TITLE | 0.9+ |
one place | QUANTITY | 0.9+ |
Android | TITLE | 0.88+ |
Startup Showcase | EVENT | 0.88+ |
Apache Airflow | TITLE | 0.86+ |
CNCF | ORGANIZATION | 0.86+ |
Breaking Analysis: Enterprise Technology Predictions 2023
(upbeat music beginning) >> From the Cube Studios in Palo Alto and Boston, bringing you data-driven insights from the Cube and ETR, this is "Breaking Analysis" with Dave Vellante. >> Making predictions about the future of enterprise tech is more challenging if you strive to lay down forecasts that are measurable. In other words, if you make a prediction, you should be able to look back a year later and say, with some degree of certainty, whether the prediction came true or not, with evidence to back that up. Hello and welcome to this week's Wikibon Cube Insights, powered by ETR. In this breaking analysis, we aim to do just that, with predictions about the macro IT spending environment, cost optimization, security, lots to talk about there, generative AI, cloud, and of course supercloud, blockchain adoption, data platforms, including commentary on Databricks, snowflake, and other key players, automation, events, and we may even have some bonus predictions around quantum computing, and perhaps some other areas. To make all this happen, we welcome back, for the third year in a row, my colleague and friend Eric Bradley from ETR. Eric, thanks for all you do for the community, and thanks for being part of this program. Again. >> I wouldn't miss it for the world. I always enjoy this one. Dave, good to see you. >> Yeah, so let me bring up this next slide and show you, actually come back to me if you would. I got to show the audience this. These are the inbounds that we got from PR firms starting in October around predictions. They know we do prediction posts. And so they'll send literally thousands and thousands of predictions from hundreds of experts in the industry, technologists, consultants, et cetera. And if you bring up the slide I can show you sort of the pattern that developed here. 40% of these thousands of predictions were from cyber. You had AI and data. If you combine those, it's still not close to cyber. Cost optimization was a big thing. Of course, cloud, some on DevOps, and software. Digital... Digital transformation got, you know, some lip service and SaaS. And then there was other, it's kind of around 2%. So quite remarkable, when you think about the focus on cyber, Eric. >> Yeah, there's two reasons why I think it makes sense, though. One, the cybersecurity companies have a lot of cash, so therefore the PR firms might be working a little bit harder for them than some of their other clients. (laughs) And then secondly, as you know, for multiple years now, when we do our macro survey, we ask, "What's your number one spending priority?" And again, it's security. It just isn't going anywhere. It just stays at the top. So I'm actually not that surprised by that little pie chart there, but I was shocked that SaaS was only 5%. You know, going back 10 years ago, that would've been the only thing anyone was talking about. >> Yeah. So true. All right, let's get into it. First prediction, we always start with kind of tech spending. Number one is tech spending increases between four and 5%. ETR has currently got it at 4.6% coming into 2023. This has been a consistently downward trend all year. We started, you know, much, much higher as we've been reporting. Bottom line is the fed is still in control. They're going to ease up on tightening, is the expectation, they're going to shoot for a soft landing. But you know, my feeling is this slingshot economy is going to continue, and it's going to continue to confound, whether it's supply chains or spending. The, the interesting thing about the ETR data, Eric, and I want you to comment on this, the largest companies are the most aggressive to cut. They're laying off, smaller firms are spending faster. They're actually growing at a much larger, faster rate as are companies in EMEA. And that's a surprise. That's outpacing the US and APAC. Chime in on this, Eric. >> Yeah, I was surprised on all of that. First on the higher level spending, we are definitely seeing it coming down, but the interesting thing here is headlines are making it worse. The huge research shop recently said 0% growth. We're coming in at 4.6%. And just so everyone knows, this is not us guessing, we asked 1,525 IT decision-makers what their budget growth will be, and they came in at 4.6%. Now there's a huge disparity, as you mentioned. The Fortune 500, global 2000, barely at 2% growth, but small, it's at 7%. So we're at a situation right now where the smaller companies are still playing a little bit of catch up on digital transformation, and they're spending money. The largest companies that have the most to lose from a recession are being more trepidatious, obviously. So they're playing a "Wait and see." And I hope we don't talk ourselves into a recession. Certainly the headlines and some of their research shops are helping it along. But another interesting comment here is, you know, energy and utilities used to be called an orphan and widow stock group, right? They are spending more than anyone, more than financials insurance, more than retail consumer. So right now it's being driven by mid, small, and energy and utilities. They're all spending like gangbusters, like nothing's happening. And it's the rest of everyone else that's being very cautious. >> Yeah, so very unpredictable right now. All right, let's go to number two. Cost optimization remains a major theme in 2023. We've been reporting on this. You've, we've shown a chart here. What's the primary method that your organization plans to use? You asked this question of those individuals that cited that they were going to reduce their spend and- >> Mhm. >> consolidating redundant vendors, you know, still leads the way, you know, far behind, cloud optimization is second, but it, but cloud continues to outpace legacy on-prem spending, no doubt. Somebody, it was, the guy's name was Alexander Feiglstorfer from Storyblok, sent in a prediction, said "All in one becomes extinct." Now, generally I would say I disagree with that because, you know, as we know over the years, suites tend to win out over, you know, individual, you know, point products. But I think what's going to happen is all in one is going to remain the norm for these larger companies that are cutting back. They want to consolidate redundant vendors, and the smaller companies are going to stick with that best of breed and be more aggressive and try to compete more effectively. What's your take on that? >> Yeah, I'm seeing much more consolidation in vendors, but also consolidation in functionality. We're seeing people building out new functionality, whether it's, we're going to talk about this later, so I don't want to steal too much of our thunder right now, but data and security also, we're seeing a functionality creep. So I think there's further consolidation happening here. I think niche solutions are going to be less likely, and platform solutions are going to be more likely in a spending environment where you want to reduce your vendors. You want to have one bill to pay, not 10. Another thing on this slide, real quick if I can before I move on, is we had a bunch of people write in and some of the answer options that aren't on this graph but did get cited a lot, unfortunately, is the obvious reduction in staff, hiring freezes, and delaying hardware, were three of the top write-ins. And another one was offshore outsourcing. So in addition to what we're seeing here, there were a lot of write-in options, and I just thought it would be important to state that, but essentially the cost optimization is by and far the highest one, and it's growing. So it's actually increased in our citations over the last year. >> And yeah, specifically consolidating redundant vendors. And so I actually thank you for bringing that other up, 'cause I had asked you, Eric, is there any evidence that repatriation is going on and we don't see it in the numbers, we don't see it even in the other, there was, I think very little or no mention of cloud repatriation, even though it might be happening in this in a smattering. >> Not a single mention, not one single mention. I went through it for you. Yep. Not one write-in. >> All right, let's move on. Number three, security leads M&A in 2023. Now you might say, "Oh, well that's a layup," but let me set this up Eric, because I didn't really do a great job with the slide. I hid the, what you've done, because you basically took, this is from the emerging technology survey with 1,181 responses from November. And what we did is we took Palo Alto and looked at the overlap in Palo Alto Networks accounts with these vendors that were showing on this chart. And Eric, I'm going to ask you to explain why we put a circle around OneTrust, but let me just set it up, and then have you comment on the slide and take, give us more detail. We're seeing private company valuations are off, you know, 10 to 40%. We saw a sneak, do a down round, but pretty good actually only down 12%. We've seen much higher down rounds. Palo Alto Networks we think is going to get busy. Again, they're an inquisitive company, they've been sort of quiet lately, and we think CrowdStrike, Cisco, Microsoft, Zscaler, we're predicting all of those will make some acquisitions and we're thinking that the targets are somewhere in this mess of security taxonomy. Other thing we're predicting AI meets cyber big time in 2023, we're going to probably going to see some acquisitions of those companies that are leaning into AI. We've seen some of that with Palo Alto. And then, you know, your comment to me, Eric, was "The RSA conference is going to be insane, hopping mad, "crazy this April," (Eric laughing) but give us your take on this data, and why the red circle around OneTrust? Take us back to that slide if you would, Alex. >> Sure. There's a few things here. First, let me explain what we're looking at. So because we separate the public companies and the private companies into two separate surveys, this allows us the ability to cross-reference that data. So what we're doing here is in our public survey, the tesis, everyone who cited some spending with Palo Alto, meaning they're a Palo Alto customer, we then cross-reference that with the private tech companies. Who also are they spending with? So what you're seeing here is an overlap. These companies that we have circled are doing the best in Palo Alto's accounts. Now, Palo Alto went and bought Twistlock a few years ago, which this data slide predicted, to be quite honest. And so I don't know if they necessarily are going to go after Snyk. Snyk, sorry. They already have something in that space. What they do need, however, is more on the authentication space. So I'm looking at OneTrust, with a 45% overlap in their overall net sentiment. That is a company that's already existing in their accounts and could be very synergistic to them. BeyondTrust as well, authentication identity. This is something that Palo needs to do to move more down that zero trust path. Now why did I pick Palo first? Because usually they're very inquisitive. They've been a little quiet lately. Secondly, if you look at the backdrop in the markets, the IPO freeze isn't going to last forever. Sooner or later, the IPO markets are going to open up, and some of these private companies are going to tap into public equity. In the meantime, however, cash funding on the private side is drying up. If they need another round, they're not going to get it, and they're certainly not going to get it at the valuations they were getting. So we're seeing valuations maybe come down where they're a touch more attractive, and Palo knows this isn't going to last forever. Cisco knows that, CrowdStrike, Zscaler, all these companies that are trying to make a push to become that vendor that you're consolidating in, around, they have a chance now, they have a window where they need to go make some acquisitions. And that's why I believe leading up to RSA, we're going to see some movement. I think it's going to pretty, a really exciting time in security right now. >> Awesome. Thank you. Great explanation. All right, let's go on the next one. Number four is, it relates to security. Let's stay there. Zero trust moves from hype to reality in 2023. Now again, you might say, "Oh yeah, that's a layup." A lot of these inbounds that we got are very, you know, kind of self-serving, but we always try to put some meat in the bone. So first thing we do is we pull out some commentary from, Eric, your roundtable, your insights roundtable. And we have a CISO from a global hospitality firm says, "For me that's the highest priority." He's talking about zero trust because it's the best ROI, it's the most forward-looking, and it enables a lot of the business transformation activities that we want to do. CISOs tell me that they actually can drive forward transformation projects that have zero trust, and because they can accelerate them, because they don't have to go through the hurdle of, you know, getting, making sure that it's secure. Second comment, zero trust closes that last mile where once you're authenticated, they open up the resource to you in a zero trust way. That's a CISO of a, and a managing director of a cyber risk services enterprise. Your thoughts on this? >> I can be here all day, so I'm going to try to be quick on this one. This is not a fluff piece on this one. There's a couple of other reasons this is happening. One, the board finally gets it. Zero trust at first was just a marketing hype term. Now the board understands it, and that's why CISOs are able to push through it. And what they finally did was redefine what it means. Zero trust simply means moving away from hardware security, moving towards software-defined security, with authentication as its base. The board finally gets that, and now they understand that this is necessary and it's being moved forward. The other reason it's happening now is hybrid work is here to stay. We weren't really sure at first, large companies were still trying to push people back to the office, and it's going to happen. The pendulum will swing back, but hybrid work's not going anywhere. By basically on our own data, we're seeing that 69% of companies expect remote and hybrid to be permanent, with only 30% permanent in office. Zero trust works for a hybrid environment. So all of that is the reason why this is happening right now. And going back to our previous prediction, this is why we're picking Palo, this is why we're picking Zscaler to make these acquisitions. Palo Alto needs to be better on the authentication side, and so does Zscaler. They're both fantastic on zero trust network access, but they need the authentication software defined aspect, and that's why we think this is going to happen. One last thing, in that CISO round table, I also had somebody say, "Listen, Zscaler is incredible. "They're doing incredibly well pervading the enterprise, "but their pricing's getting a little high," and they actually think Palo Alto is well-suited to start taking some of that share, if Palo can make one move. >> Yeah, Palo Alto's consolidation story is very strong. Here's my question and challenge. Do you and me, so I'm always hardcore about, okay, you've got to have evidence. I want to look back at these things a year from now and say, "Did we get it right? Yes or no?" If we got it wrong, we'll tell you we got it wrong. So how are we going to measure this? I'd say a couple things, and you can chime in. One is just the number of vendors talking about it. That's, but the marketing always leads the reality. So the second part of that is we got to get evidence from the buying community. Can you help us with that? >> (laughs) Luckily, that's what I do. I have a data company that asks thousands of IT decision-makers what they're adopting and what they're increasing spend on, as well as what they're decreasing spend on and what they're replacing. So I have snapshots in time over the last 11 years where I can go ahead and compare and contrast whether this adoption is happening or not. So come back to me in 12 months and I'll let you know. >> Now, you know, I will. Okay, let's bring up the next one. Number five, generative AI hits where the Metaverse missed. Of course everybody's talking about ChatGPT, we just wrote last week in a breaking analysis with John Furrier and Sarjeet Joha our take on that. We think 2023 does mark a pivot point as natural language processing really infiltrates enterprise tech just as Amazon turned the data center into an API. We think going forward, you're going to be interacting with technology through natural language, through English commands or other, you know, foreign language commands, and investors are lining up, all the VCs are getting excited about creating something competitive to ChatGPT, according to (indistinct) a hundred million dollars gets you a seat at the table, gets you into the game. (laughing) That's before you have to start doing promotion. But he thinks that's what it takes to actually create a clone or something equivalent. We've seen stuff from, you know, the head of Facebook's, you know, AI saying, "Oh, it's really not that sophisticated, ChatGPT, "it's kind of like IBM Watson, it's great engineering, "but you know, we've got more advanced technology." We know Google's working on some really interesting stuff. But here's the thing. ETR just launched this survey for the February survey. It's in the field now. We circle open AI in this category. They weren't even in the survey, Eric, last quarter. So 52% of the ETR survey respondents indicated a positive sentiment toward open AI. I added up all the sort of different bars, we could double click on that. And then I got this inbound from Scott Stevenson of Deep Graham. He said "AI is recession-proof." I don't know if that's the case, but it's a good quote. So bring this back up and take us through this. Explain this chart for us, if you would. >> First of all, I like Scott's quote better than the Facebook one. I think that's some sour grapes. Meta just spent an insane amount of money on the Metaverse and that's a dud. Microsoft just spent money on open AI and it is hot, undoubtedly hot. We've only been in the field with our current ETS survey for a week. So my caveat is it's preliminary data, but I don't care if it's preliminary data. (laughing) We're getting a sneak peek here at what is the number one net sentiment and mindshare leader in the entire machine-learning AI sector within a week. It's beating Data- >> 600. 600 in. >> It's beating Databricks. And we all know Databricks is a huge established enterprise company, not only in machine-learning AI, but it's in the top 10 in the entire survey. We have over 400 vendors in this survey. It's number eight overall, already. In a week. This is not hype. This is real. And I could go on the NLP stuff for a while. Not only here are we seeing it in open AI and machine-learning and AI, but we're seeing NLP in security. It's huge in email security. It's completely transforming that area. It's one of the reasons I thought Palo might take Abnormal out. They're doing such a great job with NLP in this email side, and also in the data prep tools. NLP is going to take out data prep tools. If we have time, I'll discuss that later. But yeah, this is, to me this is a no-brainer, and we're already seeing it in the data. >> Yeah, John Furrier called, you know, the ChatGPT introduction. He said it reminded him of the Netscape moment, when we all first saw Netscape Navigator and went, "Wow, it really could be transformative." All right, number six, the cloud expands to supercloud as edge computing accelerates and CloudFlare is a big winner in 2023. We've reported obviously on cloud, multi-cloud, supercloud and CloudFlare, basically saying what multi-cloud should have been. We pulled this quote from Atif Kahn, who is the founder and CTO of Alkira, thanks, one of the inbounds, thank you. "In 2023, highly distributed IT environments "will become more the norm "as organizations increasingly deploy hybrid cloud, "multi-cloud and edge settings..." Eric, from one of your round tables, "If my sources from edge computing are coming "from the cloud, that means I have my workloads "running in the cloud. "There is no one better than CloudFlare," That's a senior director of IT architecture at a huge financial firm. And then your analysis shows CloudFlare really growing in pervasion, that sort of market presence in the dataset, dramatically, to near 20%, leading, I think you had told me that they're even ahead of Google Cloud in terms of momentum right now. >> That was probably the biggest shock to me in our January 2023 tesis, which covers the public companies in the cloud computing sector. CloudFlare has now overtaken GCP in overall spending, and I was shocked by that. It's already extremely pervasive in networking, of course, for the edge networking side, and also in security. This is the number one leader in SaaSi, web access firewall, DDoS, bot protection, by your definition of supercloud, which we just did a couple of weeks ago, and I really enjoyed that by the way Dave, I think CloudFlare is the one that fits your definition best, because it's bringing all of these aspects together, and most importantly, it's cloud agnostic. It does not need to rely on Azure or AWS to do this. It has its own cloud. So I just think it's, when we look at your definition of supercloud, CloudFlare is the poster child. >> You know, what's interesting about that too, is a lot of people are poo-pooing CloudFlare, "Ah, it's, you know, really kind of not that sophisticated." "You don't have as many tools," but to your point, you're can have those tools in the cloud, Cloudflare's doing serverless on steroids, trying to keep things really simple, doing a phenomenal job at, you know, various locations around the world. And they're definitely one to watch. Somebody put them on my radar (laughing) a while ago and said, "Dave, you got to do a breaking analysis on CloudFlare." And so I want to thank that person. I can't really name them, 'cause they work inside of a giant hyperscaler. But- (Eric laughing) (Dave chuckling) >> Real quickly, if I can from a competitive perspective too, who else is there? They've already taken share from Akamai, and Fastly is their really only other direct comp, and they're not there. And these guys are in poll position and they're the only game in town right now. I just, I don't see it slowing down. >> I thought one of your comments from your roundtable I was reading, one of the folks said, you know, CloudFlare, if my workloads are in the cloud, they are, you know, dominant, they said not as strong with on-prem. And so Akamai is doing better there. I'm like, "Okay, where would you want to be?" (laughing) >> Yeah, which one of those two would you rather be? >> Right? Anyway, all right, let's move on. Number seven, blockchain continues to look for a home in the enterprise, but devs will slowly begin to adopt in 2023. You know, blockchains have got a lot of buzz, obviously crypto is, you know, the killer app for blockchain. Senior IT architect in financial services from your, one of your insight roundtables said quote, "For enterprises to adopt a new technology, "there have to be proven turnkey solutions. "My experience in talking with my peers are, "blockchain is still an open-source component "where you have to build around it." Now I want to thank Ravi Mayuram, who's the CTO of Couchbase sent in, you know, one of the predictions, he said, "DevOps will adopt blockchain, specifically Ethereum." And he referenced actually in his email to me, Solidity, which is the programming language for Ethereum, "will be in every DevOps pro's playbook, "mirroring the boom in machine-learning. "Newer programming languages like Solidity "will enter the toolkits of devs." His point there, you know, Solidity for those of you don't know, you know, Bitcoin is not programmable. Solidity, you know, came out and that was their whole shtick, and they've been improving that, and so forth. But it, Eric, it's true, it really hasn't found its home despite, you know, the potential for smart contracts. IBM's pushing it, VMware has had announcements, and others, really hasn't found its way in the enterprise yet. >> Yeah, and I got to be honest, I don't think it's going to, either. So when we did our top trends series, this was basically chosen as an anti-prediction, I would guess, that it just continues to not gain hold. And the reason why was that first comment, right? It's very much a niche solution that requires a ton of custom work around it. You can't just plug and play it. And at the end of the day, let's be very real what this technology is, it's a database ledger, and we already have database ledgers in the enterprise. So why is this a priority to move to a different database ledger? It's going to be very niche cases. I like the CTO comment from Couchbase about it being adopted by DevOps. I agree with that, but it has to be a DevOps in a very specific use case, and a very sophisticated use case in financial services, most likely. And that's not across the entire enterprise. So I just think it's still going to struggle to get its foothold for a little bit longer, if ever. >> Great, thanks. Okay, let's move on. Number eight, AWS Databricks, Google Snowflake lead the data charge with Microsoft. Keeping it simple. So let's unpack this a little bit. This is the shared accounts peer position for, I pulled data platforms in for analytics, machine-learning and AI and database. So I could grab all these accounts or these vendors and see how they compare in those three sectors. Analytics, machine-learning and database. Snowflake and Databricks, you know, they're on a crash course, as you and I have talked about. They're battling to be the single source of truth in analytics. They're, there's going to be a big focus. They're already started. It's going to be accelerated in 2023 on open formats. Iceberg, Python, you know, they're all the rage. We heard about Iceberg at Snowflake Summit, last summer or last June. Not a lot of people had heard of it, but of course the Databricks crowd, who knows it well. A lot of other open source tooling. There's a company called DBT Labs, which you're going to talk about in a minute. George Gilbert put them on our radar. We just had Tristan Handy, the CEO of DBT labs, on at supercloud last week. They are a new disruptor in data that's, they're essentially making, they're API-ifying, if you will, KPIs inside the data warehouse and dramatically simplifying that whole data pipeline. So really, you know, the ETL guys should be shaking in their boots with them. Coming back to the slide. Google really remains focused on BigQuery adoption. Customers have complained to me that they would like to use Snowflake with Google's AI tools, but they're being forced to go to BigQuery. I got to ask Google about that. AWS continues to stitch together its bespoke data stores, that's gone down that "Right tool for the right job" path. David Foyer two years ago said, "AWS absolutely is going to have to solve that problem." We saw them start to do it in, at Reinvent, bringing together NoETL between Aurora and Redshift, and really trying to simplify those worlds. There's going to be more of that. And then Microsoft, they're just making it cheap and easy to use their stuff, you know, despite some of the complaints that we hear in the community, you know, about things like Cosmos, but Eric, your take? >> Yeah, my concern here is that Snowflake and Databricks are fighting each other, and it's allowing AWS and Microsoft to kind of catch up against them, and I don't know if that's the right move for either of those two companies individually, Azure and AWS are building out functionality. Are they as good? No they're not. The other thing to remember too is that AWS and Azure get paid anyway, because both Databricks and Snowflake run on top of 'em. So (laughing) they're basically collecting their toll, while these two fight it out with each other, and they build out functionality. I think they need to stop focusing on each other, a little bit, and think about the overall strategy. Now for Databricks, we know they came out first as a machine-learning AI tool. They were known better for that spot, and now they're really trying to play catch-up on that data storage compute spot, and inversely for Snowflake, they were killing it with the compute separation from storage, and now they're trying to get into the MLAI spot. I actually wouldn't be surprised to see them make some sort of acquisition. Frank Slootman has been a little bit quiet, in my opinion there. The other thing to mention is your comment about DBT Labs. If we look at our emerging technology survey, last survey when this came out, DBT labs, number one leader in that data integration space, I'm going to just pull it up real quickly. It looks like they had a 33% overall net sentiment to lead data analytics integration. So they are clearly growing, it's fourth straight survey consecutively that they've grown. The other name we're seeing there a little bit is Cribl, but DBT labs is by far the number one player in this space. >> All right. Okay, cool. Moving on, let's go to number nine. With Automation mixer resurgence in 2023, we're showing again data. The x axis is overlap or presence in the dataset, and the vertical axis is shared net score. Net score is a measure of spending momentum. As always, you've seen UI path and Microsoft Power Automate up until the right, that red line, that 40% line is generally considered elevated. UI path is really separating, creating some distance from Automation Anywhere, they, you know, previous quarters they were much closer. Microsoft Power Automate came on the scene in a big way, they loom large with this "Good enough" approach. I will say this, I, somebody sent me a results of a (indistinct) survey, which showed UiPath actually had more mentions than Power Automate, which was surprising, but I think that's not been the case in the ETR data set. We're definitely seeing a shift from back office to front soft office kind of workloads. Having said that, software testing is emerging as a mainstream use case, we're seeing ML and AI become embedded in end-to-end automations, and low-code is serving the line of business. And so this, we think, is going to increasingly have appeal to organizations in the coming year, who want to automate as much as possible and not necessarily, we've seen a lot of layoffs in tech, and people... You're going to have to fill the gaps with automation. That's a trend that's going to continue. >> Yep, agreed. At first that comment about Microsoft Power Automate having less citations than UiPath, that's shocking to me. I'm looking at my chart right here where Microsoft Power Automate was cited by over 60% of our entire survey takers, and UiPath at around 38%. Now don't get me wrong, 38% pervasion's fantastic, but you know you're not going to beat an entrenched Microsoft. So I don't really know where that comment came from. So UiPath, looking at it alone, it's doing incredibly well. It had a huge rebound in its net score this last survey. It had dropped going through the back half of 2022, but we saw a big spike in the last one. So it's got a net score of over 55%. A lot of people citing adoption and increasing. So that's really what you want to see for a name like this. The problem is that just Microsoft is doing its playbook. At the end of the day, I'm going to do a POC, why am I going to pay more for UiPath, or even take on another separate bill, when we know everyone's consolidating vendors, if my license already includes Microsoft Power Automate? It might not be perfect, it might not be as good, but what I'm hearing all the time is it's good enough, and I really don't want another invoice. >> Right. So how does UiPath, you know, and Automation Anywhere, how do they compete with that? Well, the way they compete with it is they got to have a better product. They got a product that's 10 times better. You know, they- >> Right. >> they're not going to compete based on where the lowest cost, Microsoft's got that locked up, or where the easiest to, you know, Microsoft basically give it away for free, and that's their playbook. So that's, you know, up to UiPath. UiPath brought on Rob Ensslin, I've interviewed him. Very, very capable individual, is now Co-CEO. So he's kind of bringing that adult supervision in, and really tightening up the go to market. So, you know, we know this company has been a rocket ship, and so getting some control on that and really getting focused like a laser, you know, could be good things ahead there for that company. Okay. >> One of the problems, if I could real quick Dave, is what the use cases are. When we first came out with RPA, everyone was super excited about like, "No, UiPath is going to be great for super powerful "projects, use cases." That's not what RPA is being used for. As you mentioned, it's being used for mundane tasks, so it's not automating complex things, which I think UiPath was built for. So if you were going to get UiPath, and choose that over Microsoft, it's going to be 'cause you're doing it for more powerful use case, where it is better. But the problem is that's not where the enterprise is using it. The enterprise are using this for base rote tasks, and simply, Microsoft Power Automate can do that. >> Yeah, it's interesting. I've had people on theCube that are both Microsoft Power Automate customers and UiPath customers, and I've asked them, "Well you know, "how do you differentiate between the two?" And they've said to me, "Look, our users and personal productivity users, "they like Power Automate, "they can use it themselves, and you know, "it doesn't take a lot of, you know, support on our end." The flip side is you could do that with UiPath, but like you said, there's more of a focus now on end-to-end enterprise automation and building out those capabilities. So it's increasingly a value play, and that's going to be obviously the challenge going forward. Okay, my last one, and then I think you've got some bonus ones. Number 10, hybrid events are the new category. Look it, if I can get a thousand inbounds that are largely self-serving, I can do my own here, 'cause we're in the events business. (Eric chuckling) Here's the prediction though, and this is a trend we're seeing, the number of physical events is going to dramatically increase. That might surprise people, but most of the big giant events are going to get smaller. The exception is AWS with Reinvent, I think Snowflake's going to continue to grow. So there are examples of physical events that are growing, but generally, most of the big ones are getting smaller, and there's going to be many more smaller intimate regional events and road shows. These micro-events, they're going to be stitched together. Digital is becoming a first class citizen, so people really got to get their digital acts together, and brands are prioritizing earned media, and they're beginning to build their own news networks, going direct to their customers. And so that's a trend we see, and I, you know, we're right in the middle of it, Eric, so you know we're going to, you mentioned RSA, I think that's perhaps going to be one of those crazy ones that continues to grow. It's shrunk, and then it, you know, 'cause last year- >> Yeah, it did shrink. >> right, it was the last one before the pandemic, and then they sort of made another run at it last year. It was smaller but it was very vibrant, and I think this year's going to be huge. Global World Congress is another one, we're going to be there end of Feb. That's obviously a big big show, but in general, the brands and the technology vendors, even Oracle is going to scale down. I don't know about Salesforce. We'll see. You had a couple of bonus predictions. Quantum and maybe some others? Bring us home. >> Yeah, sure. I got a few more. I think we touched upon one, but I definitely think the data prep tools are facing extinction, unfortunately, you know, the Talons Informatica is some of those names. The problem there is that the BI tools are kind of including data prep into it already. You know, an example of that is Tableau Prep Builder, and then in addition, Advanced NLP is being worked in as well. ThoughtSpot, Intelius, both often say that as their selling point, Tableau has Ask Data, Click has Insight Bot, so you don't have to really be intelligent on data prep anymore. A regular business user can just self-query, using either the search bar, or even just speaking into what it needs, and these tools are kind of doing the data prep for it. I don't think that's a, you know, an out in left field type of prediction, but it's the time is nigh. The other one I would also state is that I think knowledge graphs are going to break through this year. Neo4j in our survey is growing in pervasion in Mindshare. So more and more people are citing it, AWS Neptune's getting its act together, and we're seeing that spending intentions are growing there. Tiger Graph is also growing in our survey sample. I just think that the time is now for knowledge graphs to break through, and if I had to do one more, I'd say real-time streaming analytics moves from the very, very rich big enterprises to downstream, to more people are actually going to be moving towards real-time streaming, again, because the data prep tools and the data pipelines have gotten easier to use, and I think the ROI on real-time streaming is obviously there. So those are three that didn't make the cut, but I thought deserved an honorable mention. >> Yeah, I'm glad you did. Several weeks ago, we did an analyst prediction roundtable, if you will, a cube session power panel with a number of data analysts and that, you know, streaming, real-time streaming was top of mind. So glad you brought that up. Eric, as always, thank you very much. I appreciate the time you put in beforehand. I know it's been crazy, because you guys are wrapping up, you know, the last quarter survey in- >> Been a nuts three weeks for us. (laughing) >> job. I love the fact that you're doing, you know, the ETS survey now, I think it's quarterly now, right? Is that right? >> Yep. >> Yep. So that's phenomenal. >> Four times a year. I'll be happy to jump on with you when we get that done. I know you were really impressed with that last time. >> It's unbelievable. This is so much data at ETR. Okay. Hey, that's a wrap. Thanks again. >> Take care Dave. Good seeing you. >> All right, many thanks to our team here, Alex Myerson as production, he manages the podcast force. Ken Schiffman as well is a critical component of our East Coast studio. Kristen Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hoof is our editor-in-chief. He's at siliconangle.com. He's just a great editing for us. Thank you all. Remember all these episodes that are available as podcasts, wherever you listen, podcast is doing great. Just search "Breaking analysis podcast." Really appreciate you guys listening. I publish each week on wikibon.com and siliconangle.com, or you can email me directly if you want to get in touch, david.vellante@siliconangle.com. That's how I got all these. I really appreciate it. I went through every single one with a yellow highlighter. It took some time, (laughing) but I appreciate it. You could DM me at dvellante, or comment on our LinkedIn post and please check out etr.ai. Its data is amazing. Best survey data in the enterprise tech business. This is Dave Vellante for theCube Insights, powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis." (upbeat music beginning) (upbeat music ending)
SUMMARY :
insights from the Cube and ETR, do for the community, Dave, good to see you. actually come back to me if you would. It just stays at the top. the most aggressive to cut. that have the most to lose What's the primary method still leads the way, you know, So in addition to what we're seeing here, And so I actually thank you I went through it for you. I'm going to ask you to explain and they're certainly not going to get it to you in a zero trust way. So all of that is the One is just the number of So come back to me in 12 So 52% of the ETR survey amount of money on the Metaverse and also in the data prep tools. the cloud expands to the biggest shock to me "Ah, it's, you know, really and Fastly is their really the folks said, you know, for a home in the enterprise, Yeah, and I got to be honest, in the community, you know, and I don't know if that's the right move and the vertical axis is shared net score. So that's really what you want Well, the way they compete So that's, you know, One of the problems, if and that's going to be obviously even Oracle is going to scale down. and the data pipelines and that, you know, Been a nuts three I love the fact I know you were really is so much data at ETR. and we'll see you next time
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Eric | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Rob Hoof | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Ravi Mayuram | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Atif Kahn | PERSON | 0.99+ |
November | DATE | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
APAC | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Palo | ORGANIZATION | 0.99+ |
David Foyer | PERSON | 0.99+ |
February | DATE | 0.99+ |
January 2023 | DATE | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
Rob Ensslin | PERSON | 0.99+ |
Scott Stevenson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
69% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
CrowdStrike | ORGANIZATION | 0.99+ |
4.6% | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2023 | DATE | 0.99+ |
Scott | PERSON | 0.99+ |
1,181 responses | QUANTITY | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
third year | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Alex | PERSON | 0.99+ |
thousands | QUANTITY | 0.99+ |
OneTrust | ORGANIZATION | 0.99+ |
45% | QUANTITY | 0.99+ |
33% | QUANTITY | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
two reasons | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
BeyondTrust | ORGANIZATION | 0.99+ |
7% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Analyst Predictions 2023: The Future of Data Management
(upbeat music) >> Hello, this is Dave Valente with theCUBE, and one of the most gratifying aspects of my role as a host of "theCUBE TV" is I get to cover a wide range of topics. And quite often, we're able to bring to our program a level of expertise that allows us to more deeply explore and unpack some of the topics that we cover throughout the year. And one of our favorite topics, of course, is data. Now, in 2021, after being in isolation for the better part of two years, a group of industry analysts met up at AWS re:Invent and started a collaboration to look at the trends in data and predict what some likely outcomes will be for the coming year. And it resulted in a very popular session that we had last year focused on the future of data management. And I'm very excited and pleased to tell you that the 2023 edition of that predictions episode is back, and with me are five outstanding market analyst, Sanjeev Mohan of SanjMo, Tony Baer of dbInsight, Carl Olofson from IDC, Dave Menninger from Ventana Research, and Doug Henschen, VP and Principal Analyst at Constellation Research. Now, what is it that we're calling you, guys? A data pack like the rat pack? No, no, no, no, that's not it. It's the data crowd, the data crowd, and the crowd includes some of the best minds in the data analyst community. They'll discuss how data management is evolving and what listeners should prepare for in 2023. Guys, welcome back. Great to see you. >> Good to be here. >> Thank you. >> Thanks, Dave. (Tony and Dave faintly speaks) >> All right, before we get into 2023 predictions, we thought it'd be good to do a look back at how we did in 2022 and give a transparent assessment of those predictions. So, let's get right into it. We're going to bring these up here, the predictions from 2022, they're color-coded red, yellow, and green to signify the degree of accuracy. And I'm pleased to report there's no red. Well, maybe some of you will want to debate that grading system. But as always, we want to be open, so you can decide for yourselves. So, we're going to ask each analyst to review their 2022 prediction and explain their rating and what evidence they have that led them to their conclusion. So, Sanjeev, please kick it off. Your prediction was data governance becomes key. I know that's going to knock you guys over, but elaborate, because you had more detail when you double click on that. >> Yeah, absolutely. Thank you so much, Dave, for having us on the show today. And we self-graded ourselves. I could have very easily made my prediction from last year green, but I mentioned why I left it as yellow. I totally fully believe that data governance was in a renaissance in 2022. And why do I say that? You have to look no further than AWS launching its own data catalog called DataZone. Before that, mid-year, we saw Unity Catalog from Databricks went GA. So, overall, I saw there was tremendous movement. When you see these big players launching a new data catalog, you know that they want to be in this space. And this space is highly critical to everything that I feel we will talk about in today's call. Also, if you look at established players, I spoke at Collibra's conference, data.world, work closely with Alation, Informatica, a bunch of other companies, they all added tremendous new capabilities. So, it did become key. The reason I left it as yellow is because I had made a prediction that Collibra would go IPO, and it did not. And I don't think anyone is going IPO right now. The market is really, really down, the funding in VC IPO market. But other than that, data governance had a banner year in 2022. >> Yeah. Well, thank you for that. And of course, you saw data clean rooms being announced at AWS re:Invent, so more evidence. And I like how the fact that you included in your predictions some things that were binary, so you dinged yourself there. So, good job. Okay, Tony Baer, you're up next. Data mesh hits reality check. As you see here, you've given yourself a bright green thumbs up. (Tony laughing) Okay. Let's hear why you feel that was the case. What do you mean by reality check? >> Okay. Thanks, Dave, for having us back again. This is something I just wrote and just tried to get away from, and this just a topic just won't go away. I did speak with a number of folks, early adopters and non-adopters during the year. And I did find that basically that it pretty much validated what I was expecting, which was that there was a lot more, this has now become a front burner issue. And if I had any doubt in my mind, the evidence I would point to is what was originally intended to be a throwaway post on LinkedIn, which I just quickly scribbled down the night before leaving for re:Invent. I was packing at the time, and for some reason, I was doing Google search on data mesh. And I happened to have tripped across this ridiculous article, I will not say where, because it doesn't deserve any publicity, about the eight (Dave laughing) best data mesh software companies of 2022. (Tony laughing) One of my predictions was that you'd see data mesh washing. And I just quickly just hopped on that maybe three sentences and wrote it at about a couple minutes saying this is hogwash, essentially. (laughs) And that just reun... And then, I left for re:Invent. And the next night, when I got into my Vegas hotel room, I clicked on my computer. I saw a 15,000 hits on that post, which was the most hits of any single post I put all year. And the responses were wildly pro and con. So, it pretty much validates my expectation in that data mesh really did hit a lot more scrutiny over this past year. >> Yeah, thank you for that. I remember that article. I remember rolling my eyes when I saw it, and then I recently, (Tony laughing) I talked to Walmart and they actually invoked Martin Fowler and they said that they're working through their data mesh. So, it takes a really lot of thought, and it really, as we've talked about, is really as much an organizational construct. You're not buying data mesh >> Bingo. >> to your point. Okay. Thank you, Tony. Carl Olofson, here we go. You've graded yourself a yellow in the prediction of graph databases. Take off. Please elaborate. >> Yeah, sure. So, I realized in looking at the prediction that it seemed to imply that graph databases could be a major factor in the data world in 2022, which obviously didn't become the case. It was an error on my part in that I should have said it in the right context. It's really a three to five-year time period that graph databases will really become significant, because they still need accepted methodologies that can be applied in a business context as well as proper tools in order for people to be able to use them seriously. But I stand by the idea that it is taking off, because for one thing, Neo4j, which is the leading independent graph database provider, had a very good year. And also, we're seeing interesting developments in terms of things like AWS with Neptune and with Oracle providing graph support in Oracle database this past year. Those things are, as I said, growing gradually. There are other companies like TigerGraph and so forth, that deserve watching as well. But as far as becoming mainstream, it's going to be a few years before we get all the elements together to make that happen. Like any new technology, you have to create an environment in which ordinary people without a whole ton of technical training can actually apply the technology to solve business problems. >> Yeah, thank you for that. These specialized databases, graph databases, time series databases, you see them embedded into mainstream data platforms, but there's a place for these specialized databases, I would suspect we're going to see new types of databases emerge with all this cloud sprawl that we have and maybe to the edge. >> Well, part of it is that it's not as specialized as you might think it. You can apply graphs to great many workloads and use cases. It's just that people have yet to fully explore and discover what those are. >> Yeah. >> And so, it's going to be a process. (laughs) >> All right, Dave Menninger, streaming data permeates the landscape. You gave yourself a yellow. Why? >> Well, I couldn't think of a appropriate combination of yellow and green. Maybe I should have used chartreuse, (Dave laughing) but I was probably a little hard on myself making it yellow. This is another type of specialized data processing like Carl was talking about graph databases is a stream processing, and nearly every data platform offers streaming capabilities now. Often, it's based on Kafka. If you look at Confluent, their revenues have grown at more than 50%, continue to grow at more than 50% a year. They're expected to do more than half a billion dollars in revenue this year. But the thing that hasn't happened yet, and to be honest, they didn't necessarily expect it to happen in one year, is that streaming hasn't become the default way in which we deal with data. It's still a sidecar to data at rest. And I do expect that we'll continue to see streaming become more and more mainstream. I do expect perhaps in the five-year timeframe that we will first deal with data as streaming and then at rest, but the worlds are starting to merge. And we even see some vendors bringing products to market, such as K2View, Hazelcast, and RisingWave Labs. So, in addition to all those core data platform vendors adding these capabilities, there are new vendors approaching this market as well. >> I like the tough grading system, and it's not trivial. And when you talk to practitioners doing this stuff, there's still some complications in the data pipeline. And so, but I think, you're right, it probably was a yellow plus. Doug Henschen, data lakehouses will emerge as dominant. When you talk to people about lakehouses, practitioners, they all use that term. They certainly use the term data lake, but now, they're using lakehouse more and more. What's your thoughts on here? Why the green? What's your evidence there? >> Well, I think, I was accurate. I spoke about it specifically as something that vendors would be pursuing. And we saw yet more lakehouse advocacy in 2022. Google introduced its BigLake service alongside BigQuery. Salesforce introduced Genie, which is really a lakehouse architecture. And it was a safe prediction to say vendors are going to be pursuing this in that AWS, Cloudera, Databricks, Microsoft, Oracle, SAP, Salesforce now, IBM, all advocate this idea of a single platform for all of your data. Now, the trend was also supported in 2023, in that we saw a big embrace of Apache Iceberg in 2022. That's a structured table format. It's used with these lakehouse platforms. It's open, so it ensures portability and it also ensures performance. And that's a structured table that helps with the warehouse side performance. But among those announcements, Snowflake, Google, Cloud Era, SAP, Salesforce, IBM, all embraced Iceberg. But keep in mind, again, I'm talking about this as something that vendors are pursuing as their approach. So, they're advocating end users. It's very cutting edge. I'd say the top, leading edge, 5% of of companies have really embraced the lakehouse. I think, we're now seeing the fast followers, the next 20 to 25% of firms embracing this idea and embracing a lakehouse architecture. I recall Christian Kleinerman at the big Snowflake event last summer, making the announcement about Iceberg, and he asked for a show of hands for any of you in the audience at the keynote, have you heard of Iceberg? And just a smattering of hands went up. So, the vendors are ahead of the curve. They're pushing this trend, and we're now seeing a little bit more mainstream uptake. >> Good. Doug, I was there. It was you, me, and I think, two other hands were up. That was just humorous. (Doug laughing) All right, well, so I liked the fact that we had some yellow and some green. When you think about these things, there's the prediction itself. Did it come true or not? There are the sub predictions that you guys make, and of course, the degree of difficulty. So, thank you for that open assessment. All right, let's get into the 2023 predictions. Let's bring up the predictions. Sanjeev, you're going first. You've got a prediction around unified metadata. What's the prediction, please? >> So, my prediction is that metadata space is currently a mess. It needs to get unified. There are too many use cases of metadata, which are being addressed by disparate systems. For example, data quality has become really big in the last couple of years, data observability, the whole catalog space is actually, people don't like to use the word data catalog anymore, because data catalog sounds like it's a catalog, a museum, if you may, of metadata that you go and admire. So, what I'm saying is that in 2023, we will see that metadata will become the driving force behind things like data ops, things like orchestration of tasks using metadata, not rules. Not saying that if this fails, then do this, if this succeeds, go do that. But it's like getting to the metadata level, and then making a decision as to what to orchestrate, what to automate, how to do data quality check, data observability. So, this space is starting to gel, and I see there'll be more maturation in the metadata space. Even security privacy, some of these topics, which are handled separately. And I'm just talking about data security and data privacy. I'm not talking about infrastructure security. These also need to merge into a unified metadata management piece with some knowledge graph, semantic layer on top, so you can do analytics on it. So, it's no longer something that sits on the side, it's limited in its scope. It is actually the very engine, the very glue that is going to connect data producers and consumers. >> Great. Thank you for that. Doug. Doug Henschen, any thoughts on what Sanjeev just said? Do you agree? Do you disagree? >> Well, I agree with many aspects of what he says. I think, there's a huge opportunity for consolidation and streamlining of these as aspects of governance. Last year, Sanjeev, you said something like, we'll see more people using catalogs than BI. And I have to disagree. I don't think this is a category that's headed for mainstream adoption. It's a behind the scenes activity for the wonky few, or better yet, companies want machine learning and automation to take care of these messy details. We've seen these waves of management technologies, some of the latest data observability, customer data platform, but they failed to sweep away all the earlier investments in data quality and master data management. So, yes, I hope the latest tech offers, glimmers that there's going to be a better, cleaner way of addressing these things. But to my mind, the business leaders, including the CIO, only want to spend as much time and effort and money and resources on these sorts of things to avoid getting breached, ending up in headlines, getting fired or going to jail. So, vendors bring on the ML and AI smarts and the automation of these sorts of activities. >> So, if I may say something, the reason why we have this dichotomy between data catalog and the BI vendors is because data catalogs are very soon, not going to be standalone products, in my opinion. They're going to get embedded. So, when you use a BI tool, you'll actually use the catalog to find out what is it that you want to do, whether you are looking for data or you're looking for an existing dashboard. So, the catalog becomes embedded into the BI tool. >> Hey, Dave Menninger, sometimes you have some data in your back pocket. Do you have any stats (chuckles) on this topic? >> No, I'm glad you asked, because I'm going to... Now, data catalogs are something that's interesting. Sanjeev made a statement that data catalogs are falling out of favor. I don't care what you call them. They're valuable to organizations. Our research shows that organizations that have adequate data catalog technologies are three times more likely to express satisfaction with their analytics for just the reasons that Sanjeev was talking about. You can find what you want, you know you're getting the right information, you know whether or not it's trusted. So, those are good things. So, we expect to see the capabilities, whether it's embedded or separate. We expect to see those capabilities continue to permeate the market. >> And a lot of those catalogs are driven now by machine learning and things. So, they're learning from those patterns of usage by people when people use the data. (airy laughs) >> All right. Okay. Thank you, guys. All right. Let's move on to the next one. Tony Bear, let's bring up the predictions. You got something in here about the modern data stack. We need to rethink it. Is the modern data stack getting long at the tooth? Is it not so modern anymore? >> I think, in a way, it's got almost too modern. It's gotten too, I don't know if it's being long in the tooth, but it is getting long. The modern data stack, it's traditionally been defined as basically you have the data platform, which would be the operational database and the data warehouse. And in between, you have all the tools that are necessary to essentially get that data from the operational realm or the streaming realm for that matter into basically the data warehouse, or as we might be seeing more and more, the data lakehouse. And I think, what's important here is that, or I think, we have seen a lot of progress, and this would be in the cloud, is with the SaaS services. And especially you see that in the modern data stack, which is like all these players, not just the MongoDBs or the Oracles or the Amazons have their database platforms. You see they have the Informatica's, and all the other players there in Fivetrans have their own SaaS services. And within those SaaS services, you get a certain degree of simplicity, which is it takes all the housekeeping off the shoulders of the customers. That's a good thing. The problem is that what we're getting to unfortunately is what I would call lots of islands of simplicity, which means that it leads it (Dave laughing) to the customer to have to integrate or put all that stuff together. It's a complex tool chain. And so, what we really need to think about here, we have too many pieces. And going back to the discussion of catalogs, it's like we have so many catalogs out there, which one do we use? 'Cause chances are of most organizations do not rely on a single catalog at this point. What I'm calling on all the data providers or all the SaaS service providers, is to literally get it together and essentially make this modern data stack less of a stack, make it more of a blending of an end-to-end solution. And that can come in a number of different ways. Part of it is that we're data platform providers have been adding services that are adjacent. And there's some very good examples of this. We've seen progress over the past year or so. For instance, MongoDB integrating search. It's a very common, I guess, sort of tool that basically, that the applications that are developed on MongoDB use, so MongoDB then built it into the database rather than requiring an extra elastic search or open search stack. Amazon just... AWS just did the zero-ETL, which is a first step towards simplifying the process from going from Aurora to Redshift. You've seen same thing with Google, BigQuery integrating basically streaming pipelines. And you're seeing also a lot of movement in database machine learning. So, there's some good moves in this direction. I expect to see more than this year. Part of it's from basically the SaaS platform is adding some functionality. But I also see more importantly, because you're never going to get... This is like asking your data team and your developers, herding cats to standardizing the same tool. In most organizations, that is not going to happen. So, take a look at the most popular combinations of tools and start to come up with some pre-built integrations and pre-built orchestrations, and offer some promotional pricing, maybe not quite two for, but in other words, get two products for the price of two services or for the price of one and a half. I see a lot of potential for this. And it's to me, if the class was to simplify things, this is the next logical step and I expect to see more of this here. >> Yeah, and you see in Oracle, MySQL heat wave, yet another example of eliminating that ETL. Carl Olofson, today, if you think about the data stack and the application stack, they're largely separate. Do you have any thoughts on how that's going to play out? Does that play into this prediction? What do you think? >> Well, I think, that the... I really like Tony's phrase, islands of simplification. It really says (Tony chuckles) what's going on here, which is that all these different vendors you ask about, about how these stacks work. All these different vendors have their own stack vision. And you can... One application group is going to use one, and another application group is going to use another. And some people will say, let's go to, like you go to a Informatica conference and they say, we should be the center of your universe, but you can't connect everything in your universe to Informatica, so you need to use other things. So, the challenge is how do we make those things work together? As Tony has said, and I totally agree, we're never going to get to the point where people standardize on one organizing system. So, the alternative is to have metadata that can be shared amongst those systems and protocols that allow those systems to coordinate their operations. This is standard stuff. It's not easy. But the motive for the vendors is that they can become more active critical players in the enterprise. And of course, the motive for the customer is that things will run better and more completely. So, I've been looking at this in terms of two kinds of metadata. One is the meaning metadata, which says what data can be put together. The other is the operational metadata, which says basically where did it come from? Who created it? What's its current state? What's the security level? Et cetera, et cetera, et cetera. The good news is the operational stuff can actually be done automatically, whereas the meaning stuff requires some human intervention. And as we've already heard from, was it Doug, I think, people are disinclined to put a lot of definition into meaning metadata. So, that may be the harder one, but coordination is key. This problem has been with us forever, but with the addition of new data sources, with streaming data with data in different formats, the whole thing has, it's been like what a customer of mine used to say, "I understand your product can make my system run faster, but right now I just feel I'm putting my problems on roller skates. (chuckles) I don't need that to accelerate what's already not working." >> Excellent. Okay, Carl, let's stay with you. I remember in the early days of the big data movement, Hadoop movement, NoSQL was the big thing. And I remember Amr Awadallah said to us in theCUBE that SQL is the killer app for big data. So, your prediction here, if we bring that up is SQL is back. Please elaborate. >> Yeah. So, of course, some people would say, well, it never left. Actually, that's probably closer to true, but in the perception of the marketplace, there's been all this noise about alternative ways of storing, retrieving data, whether it's in key value stores or document databases and so forth. We're getting a lot of messaging that for a while had persuaded people that, oh, we're not going to do analytics in SQL anymore. We're going to use Spark for everything, except that only a handful of people know how to use Spark. Oh, well, that's a problem. Well, how about, and for ordinary conventional business analytics, Spark is like an over-engineered solution to the problem. SQL works just great. What's happened in the past couple years, and what's going to continue to happen is that SQL is insinuating itself into everything we're seeing. We're seeing all the major data lake providers offering SQL support, whether it's Databricks or... And of course, Snowflake is loving this, because that is what they do, and their success is certainly points to the success of SQL, even MongoDB. And we were all, I think, at the MongoDB conference where on one day, we hear SQL is dead. They're not teaching SQL in schools anymore, and this kind of thing. And then, a couple days later at the same conference, they announced we're adding a new analytic capability-based on SQL. But didn't you just say SQL is dead? So, the reality is that SQL is better understood than most other methods of certainly of retrieving and finding data in a data collection, no matter whether it happens to be relational or non-relational. And even in systems that are very non-relational, such as graph and document databases, their query languages are being built or extended to resemble SQL, because SQL is something people understand. >> Now, you remember when we were in high school and you had had to take the... Your debating in the class and you were forced to take one side and defend it. So, I was was at a Vertica conference one time up on stage with Curt Monash, and I had to take the NoSQL, the world is changing paradigm shift. And so just to be controversial, I said to him, Curt Monash, I said, who really needs acid compliance anyway? Tony Baer. And so, (chuckles) of course, his head exploded, but what are your thoughts (guests laughing) on all this? >> Well, my first thought is congratulations, Dave, for surviving being up on stage with Curt Monash. >> Amen. (group laughing) >> I definitely would concur with Carl. We actually are definitely seeing a SQL renaissance and if there's any proof of the pudding here, I see lakehouse is being icing on the cake. As Doug had predicted last year, now, (clears throat) for the record, I think, Doug was about a year ahead of time in his predictions that this year is really the year that I see (clears throat) the lakehouse ecosystems really firming up. You saw the first shots last year. But anyway, on this, data lakes will not go away. I've actually, I'm on the home stretch of doing a market, a landscape on the lakehouse. And lakehouse will not replace data lakes in terms of that. There is the need for those, data scientists who do know Python, who knows Spark, to go in there and basically do their thing without all the restrictions or the constraints of a pre-built, pre-designed table structure. I get that. Same thing for developing models. But on the other hand, there is huge need. Basically, (clears throat) maybe MongoDB was saying that we're not teaching SQL anymore. Well, maybe we have an oversupply of SQL developers. Well, I'm being facetious there, but there is a huge skills based in SQL. Analytics have been built on SQL. They came with lakehouse and why this really helps to fuel a SQL revival is that the core need in the data lake, what brought on the lakehouse was not so much SQL, it was a need for acid. And what was the best way to do it? It was through a relational table structure. So, the whole idea of acid in the lakehouse was not to turn it into a transaction database, but to make the data trusted, secure, and more granularly governed, where you could govern down to column and row level, which you really could not do in a data lake or a file system. So, while lakehouse can be queried in a manner, you can go in there with Python or whatever, it's built on a relational table structure. And so, for that end, for those types of data lakes, it becomes the end state. You cannot bypass that table structure as I learned the hard way during my research. So, the bottom line I'd say here is that lakehouse is proof that we're starting to see the revenge of the SQL nerds. (Dave chuckles) >> Excellent. Okay, let's bring up back up the predictions. Dave Menninger, this one's really thought-provoking and interesting. We're hearing things like data as code, new data applications, machines actually generating plans with no human involvement. And your prediction is the definition of data is expanding. What do you mean by that? >> So, I think, for too long, we've thought about data as the, I would say facts that we collect the readings off of devices and things like that, but data on its own is really insufficient. Organizations need to manipulate that data and examine derivatives of the data to really understand what's happening in their organization, why has it happened, and to project what might happen in the future. And my comment is that these data derivatives need to be supported and managed just like the data needs to be managed. We can't treat this as entirely separate. Think about all the governance discussions we've had. Think about the metadata discussions we've had. If you separate these things, now you've got more moving parts. We're talking about simplicity and simplifying the stack. So, if these things are treated separately, it creates much more complexity. I also think it creates a little bit of a myopic view on the part of the IT organizations that are acquiring these technologies. They need to think more broadly. So, for instance, metrics. Metric stores are becoming much more common part of the tooling that's part of a data platform. Similarly, feature stores are gaining traction. So, those are designed to promote the reuse and consistency across the AI and ML initiatives. The elements that are used in developing an AI or ML model. And let me go back to metrics and just clarify what I mean by that. So, any type of formula involving the data points. I'm distinguishing metrics from features that are used in AI and ML models. And the data platforms themselves are increasingly managing the models as an element of data. So, just like figuring out how to calculate a metric. Well, if you're going to have the features associated with an AI and ML model, you probably need to be managing the model that's associated with those features. The other element where I see expansion is around external data. Organizations for decades have been focused on the data that they generate within their own organization. We see more and more of these platforms acquiring and publishing data to external third-party sources, whether they're within some sort of a partner ecosystem or whether it's a commercial distribution of that information. And our research shows that when organizations use external data, they derive even more benefits from the various analyses that they're conducting. And the last great frontier in my opinion on this expanding world of data is the world of driver-based planning. Very few of the major data platform providers provide these capabilities today. These are the types of things you would do in a spreadsheet. And we all know the issues associated with spreadsheets. They're hard to govern, they're error-prone. And so, if we can take that type of analysis, collecting the occupancy of a rental property, the projected rise in rental rates, the fluctuations perhaps in occupancy, the interest rates associated with financing that property, we can project forward. And that's a very common thing to do. What the income might look like from that property income, the expenses, we can plan and purchase things appropriately. So, I think, we need this broader purview and I'm beginning to see some of those things happen. And the evidence today I would say, is more focused around the metric stores and the feature stores starting to see vendors offer those capabilities. And we're starting to see the ML ops elements of managing the AI and ML models find their way closer to the data platforms as well. >> Very interesting. When I hear metrics, I think of KPIs, I think of data apps, orchestrate people and places and things to optimize around a set of KPIs. It sounds like a metadata challenge more... Somebody once predicted they'll have more metadata than data. Carl, what are your thoughts on this prediction? >> Yeah, I think that what Dave is describing as data derivatives is in a way, another word for what I was calling operational metadata, which not about the data itself, but how it's used, where it came from, what the rules are governing it, and that kind of thing. If you have a rich enough set of those things, then not only can you do a model of how well your vacation property rental may do in terms of income, but also how well your application that's measuring that is doing for you. In other words, how many times have I used it, how much data have I used and what is the relationship between the data that I've used and the benefits that I've derived from using it? Well, we don't have ways of doing that. What's interesting to me is that folks in the content world are way ahead of us here, because they have always tracked their content using these kinds of attributes. Where did it come from? When was it created, when was it modified? Who modified it? And so on and so forth. We need to do more of that with the structure data that we have, so that we can track what it's used. And also, it tells us how well we're doing with it. Is it really benefiting us? Are we being efficient? Are there improvements in processes that we need to consider? Because maybe data gets created and then it isn't used or it gets used, but it gets altered in some way that actually misleads people. (laughs) So, we need the mechanisms to be able to do that. So, I would say that that's... And I'd say that it's true that we need that stuff. I think, that starting to expand is probably the right way to put it. It's going to be expanding for some time. I think, we're still a distance from having all that stuff really working together. >> Maybe we should say it's gestating. (Dave and Carl laughing) >> Sorry, if I may- >> Sanjeev, yeah, I was going to say this... Sanjeev, please comment. This sounds to me like it supports Zhamak Dehghani's principles, but please. >> Absolutely. So, whether we call it data mesh or not, I'm not getting into that conversation, (Dave chuckles) but data (audio breaking) (Tony laughing) everything that I'm hearing what Dave is saying, Carl, this is the year when data products will start to take off. I'm not saying they'll become mainstream. They may take a couple of years to become so, but this is data products, all this thing about vacation rentals and how is it doing, that data is coming from different sources. I'm packaging it into our data product. And to Carl's point, there's a whole operational metadata associated with it. The idea is for organizations to see things like developer productivity, how many releases am I doing of this? What data products are most popular? I'm actually in right now in the process of formulating this concept that just like we had data catalogs, we are very soon going to be requiring data products catalog. So, I can discover these data products. I'm not just creating data products left, right, and center. I need to know, do they already exist? What is the usage? If no one is using a data product, maybe I want to retire and save cost. But this is a data product. Now, there's a associated thing that is also getting debated quite a bit called data contracts. And a data contract to me is literally just formalization of all these aspects of a product. How do you use it? What is the SLA on it, what is the quality that I am prescribing? So, data product, in my opinion, shifts the conversation to the consumers or to the business people. Up to this point when, Dave, you're talking about data and all of data discovery curation is a very data producer-centric. So, I think, we'll see a shift more into the consumer space. >> Yeah. Dave, can I just jump in there just very quickly there, which is that what Sanjeev has been saying there, this is really central to what Zhamak has been talking about. It's basically about making, one, data products are about the lifecycle management of data. Metadata is just elemental to that. And essentially, one of the things that she calls for is making data products discoverable. That's exactly what Sanjeev was talking about. >> By the way, did everyone just no notice how Sanjeev just snuck in another prediction there? So, we've got- >> Yeah. (group laughing) >> But you- >> Can we also say that he snuck in, I think, the term that we'll remember today, which is metadata museums. >> Yeah, but- >> Yeah. >> And also comment to, Tony, to your last year's prediction, you're really talking about it's not something that you're going to buy from a vendor. >> No. >> It's very specific >> Mm-hmm. >> to an organization, their own data product. So, touche on that one. Okay, last prediction. Let's bring them up. Doug Henschen, BI analytics is headed to embedding. What does that mean? >> Well, we all know that conventional BI dashboarding reporting is really commoditized from a vendor perspective. It never enjoyed truly mainstream adoption. Always that 25% of employees are really using these things. I'm seeing rising interest in embedding concise analytics at the point of decision or better still, using analytics as triggers for automation and workflows, and not even necessitating human interaction with visualizations, for example, if we have confidence in the analytics. So, leading companies are pushing for next generation applications, part of this low-code, no-code movement we've seen. And they want to build that decision support right into the app. So, the analytic is right there. Leading enterprise apps vendors, Salesforce, SAP, Microsoft, Oracle, they're all building smart apps with the analytics predictions, even recommendations built into these applications. And I think, the progressive BI analytics vendors are supporting this idea of driving insight to action, not necessarily necessitating humans interacting with it if there's confidence. So, we want prediction, we want embedding, we want automation. This low-code, no-code development movement is very important to bringing the analytics to where people are doing their work. We got to move beyond the, what I call swivel chair integration, between where people do their work and going off to separate reports and dashboards, and having to interpret and analyze before you can go back and do take action. >> And Dave Menninger, today, if you want, analytics or you want to absorb what's happening in the business, you typically got to go ask an expert, and then wait. So, what are your thoughts on Doug's prediction? >> I'm in total agreement with Doug. I'm going to say that collectively... So, how did we get here? I'm going to say collectively as an industry, we made a mistake. We made BI and analytics separate from the operational systems. Now, okay, it wasn't really a mistake. We were limited by the technology available at the time. Decades ago, we had to separate these two systems, so that the analytics didn't impact the operations. You don't want the operations preventing you from being able to do a transaction. But we've gone beyond that now. We can bring these two systems and worlds together and organizations recognize that need to change. As Doug said, the majority of the workforce and the majority of organizations doesn't have access to analytics. That's wrong. (chuckles) We've got to change that. And one of the ways that's going to change is with embedded analytics. 2/3 of organizations recognize that embedded analytics are important and it even ranks higher in importance than AI and ML in those organizations. So, it's interesting. This is a really important topic to the organizations that are consuming these technologies. The good news is it works. Organizations that have embraced embedded analytics are more comfortable with self-service than those that have not, as opposed to turning somebody loose, in the wild with the data. They're given a guided path to the data. And the research shows that 65% of organizations that have adopted embedded analytics are comfortable with self-service compared with just 40% of organizations that are turning people loose in an ad hoc way with the data. So, totally behind Doug's predictions. >> Can I just break in with something here, a comment on what Dave said about what Doug said, which (laughs) is that I totally agree with what you said about embedded analytics. And at IDC, we made a prediction in our future intelligence, future of intelligence service three years ago that this was going to happen. And the thing that we're waiting for is for developers to build... You have to write the applications to work that way. It just doesn't happen automagically. Developers have to write applications that reference analytic data and apply it while they're running. And that could involve simple things like complex queries against the live data, which is through something that I've been calling analytic transaction processing. Or it could be through something more sophisticated that involves AI operations as Doug has been suggesting, where the result is enacted pretty much automatically unless the scores are too low and you need to have a human being look at it. So, I think that that is definitely something we've been watching for. I'm not sure how soon it will come, because it seems to take a long time for people to change their thinking. But I think, as Dave was saying, once they do and they apply these principles in their application development, the rewards are great. >> Yeah, this is very much, I would say, very consistent with what we were talking about, I was talking about before, about basically rethinking the modern data stack and going into more of an end-to-end solution solution. I think, that what we're talking about clearly here is operational analytics. There'll still be a need for your data scientists to go offline just in their data lakes to do all that very exploratory and that deep modeling. But clearly, it just makes sense to bring operational analytics into where people work into their workspace and further flatten that modern data stack. >> But with all this metadata and all this intelligence, we're talking about injecting AI into applications, it does seem like we're entering a new era of not only data, but new era of apps. Today, most applications are about filling forms out or codifying processes and require a human input. And it seems like there's enough data now and enough intelligence in the system that the system can actually pull data from, whether it's the transaction system, e-commerce, the supply chain, ERP, and actually do something with that data without human involvement, present it to humans. Do you guys see this as a new frontier? >> I think, that's certainly- >> Very much so, but it's going to take a while, as Carl said. You have to design it, you have to get the prediction into the system, you have to get the analytics at the point of decision has to be relevant to that decision point. >> And I also recall basically a lot of the ERP vendors back like 10 years ago, we're promising that. And the fact that we're still looking at the promises shows just how difficult, how much of a challenge it is to get to what Doug's saying. >> One element that could be applied in this case is (indistinct) architecture. If applications are developed that are event-driven rather than following the script or sequence that some programmer or designer had preconceived, then you'll have much more flexible applications. You can inject decisions at various points using this technology much more easily. It's a completely different way of writing applications. And it actually involves a lot more data, which is why we should all like it. (laughs) But in the end (Tony laughing) it's more stable, it's easier to manage, easier to maintain, and it's actually more efficient, which is the result of an MIT study from about 10 years ago, and still, we are not seeing this come to fruition in most business applications. >> And do you think it's going to require a new type of data platform database? Today, data's all far-flung. We see that's all over the clouds and at the edge. Today, you cache- >> We need a super cloud. >> You cache that data, you're throwing into memory. I mentioned, MySQL heat wave. There are other examples where it's a brute force approach, but maybe we need new ways of laying data out on disk and new database architectures, and just when we thought we had it all figured out. >> Well, without referring to disk, which to my mind, is almost like talking about cave painting. I think, that (Dave laughing) all the things that have been mentioned by all of us today are elements of what I'm talking about. In other words, the whole improvement of the data mesh, the improvement of metadata across the board and improvement of the ability to track data and judge its freshness the way we judge the freshness of a melon or something like that, to determine whether we can still use it. Is it still good? That kind of thing. Bringing together data from multiple sources dynamically and real-time requires all the things we've been talking about. All the predictions that we've talked about today add up to elements that can make this happen. >> Well, guys, it's always tremendous to get these wonderful minds together and get your insights, and I love how it shapes the outcome here of the predictions, and let's see how we did. We're going to leave it there. I want to thank Sanjeev, Tony, Carl, David, and Doug. Really appreciate the collaboration and thought that you guys put into these sessions. Really, thank you. >> Thank you. >> Thanks, Dave. >> Thank you for having us. >> Thanks. >> Thank you. >> All right, this is Dave Valente for theCUBE, signing off for now. Follow these guys on social media. Look for coverage on siliconangle.com, theCUBE.net. Thank you for watching. (upbeat music)
SUMMARY :
and pleased to tell you (Tony and Dave faintly speaks) that led them to their conclusion. down, the funding in VC IPO market. And I like how the fact And I happened to have tripped across I talked to Walmart in the prediction of graph databases. But I stand by the idea and maybe to the edge. You can apply graphs to great And so, it's going to streaming data permeates the landscape. and to be honest, I like the tough grading the next 20 to 25% of and of course, the degree of difficulty. that sits on the side, Thank you for that. And I have to disagree. So, the catalog becomes Do you have any stats for just the reasons that And a lot of those catalogs about the modern data stack. and more, the data lakehouse. and the application stack, So, the alternative is to have metadata that SQL is the killer app for big data. but in the perception of the marketplace, and I had to take the NoSQL, being up on stage with Curt Monash. (group laughing) is that the core need in the data lake, And your prediction is the and examine derivatives of the data to optimize around a set of KPIs. that folks in the content world (Dave and Carl laughing) going to say this... shifts the conversation to the consumers And essentially, one of the things (group laughing) the term that we'll remember today, to your last year's prediction, is headed to embedding. and going off to separate happening in the business, so that the analytics didn't And the thing that we're waiting for and that deep modeling. that the system can of decision has to be relevant And the fact that we're But in the end We see that's all over the You cache that data, and improvement of the and I love how it shapes the outcome here Thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Doug Henschen | PERSON | 0.99+ |
Dave Menninger | PERSON | 0.99+ |
Doug | PERSON | 0.99+ |
Carl | PERSON | 0.99+ |
Carl Olofson | PERSON | 0.99+ |
Dave Menninger | PERSON | 0.99+ |
Tony Baer | PERSON | 0.99+ |
Tony | PERSON | 0.99+ |
Dave Valente | PERSON | 0.99+ |
Collibra | ORGANIZATION | 0.99+ |
Curt Monash | PERSON | 0.99+ |
Sanjeev Mohan | PERSON | 0.99+ |
Christian Kleinerman | PERSON | 0.99+ |
Dave Valente | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Sanjeev | PERSON | 0.99+ |
Constellation Research | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Ventana Research | ORGANIZATION | 0.99+ |
2022 | DATE | 0.99+ |
Hazelcast | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Tony Bear | PERSON | 0.99+ |
25% | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
last year | DATE | 0.99+ |
65% | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
five-year | QUANTITY | 0.99+ |
TigerGraph | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
two services | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
David | PERSON | 0.99+ |
RisingWave Labs | ORGANIZATION | 0.99+ |
Breaking Analysis: CIOs in a holding pattern but ready to strike at monetization
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Recent conversations with IT decision makers show a stark contrast between exiting 2023 versus the mindset when we were leaving 2022. CIOs are generally funding new initiatives by pushing off or cutting lower priority items, while security efforts are still being funded. Those that enable business initiatives that generate revenue or taking priority over cleaning up legacy technical debt. The bottom line is, for the moment, at least, the mindset is not cut everything, rather, it's put a pause on cleaning up legacy hairballs and fund monetization. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we tap recent discussions from two primary sources, year-end ETR roundtables with IT decision makers, and CUBE conversations with data, cloud, and IT architecture practitioners. The sources of data for this breaking analysis come from the following areas. Eric Bradley's recent ETR year end panel featured a financial services DevOps and SRE manager, a CSO in a large hospitality firm, a director of IT for a big tech company, the head of IT infrastructure for a financial firm, and a CTO for global travel enterprise, and for our upcoming Supercloud2 conference on January 17th, which you can register free by the way, at supercloud.world, we've had CUBE conversations with data and cloud practitioners, specifically, heads of data in retail and financial services, a cloud architect and a biotech firm, the director of cloud and data at a large media firm, and the director of engineering at a financial services company. Now we've curated commentary from these sources and now we share them with you today as anecdotal evidence supporting what we've been reporting on in the marketplace for these last couple of quarters. On this program, we've likened the economy to the slingshot effect when you're driving, when you're cruising along at full speed on the highway, and suddenly you see red brake lights up ahead, so, you tap your own brakes and then you speed up again, and traffic is moving along at full speed, so, you think nothing of it, and then, all of a sudden, the same thing happens. You slow down to a crawl and you start wondering, "What the heck is happening?" And you become a lot more cautious about the rate of acceleration when you start moving again. Well, that's the trend in IT spend right now. Back in June, we reported that despite the macro headwinds, CIOs were still expecting 6% to 7% spending growth for 2022. Now that was down from 8%, which we reported at the beginning of 2022. That was before Ukraine, and Fed tightening, but given those two factors, you know that that seemed pretty robust, but throughout the fall, we began reporting consistently declining expectations where CIOs are now saying Q4 will come in at around 3% growth relative to last year, and they're expecting, or should we say hoping that it pops back up in 2023 to 4% to 5%. The recent ETR panelists, when they heard this, are saying based on their businesses and discussions with their peers, they could see low single digit growth for 2023, so, 1%, 2%, 3%, so, this sort of slingshotting, or sometimes we call it a seesaw economy, has caught everyone off guard. Amazon is a good example of this, and there are others, but Amazon entered the pandemic with around 800,000 employees. It doubled that workforce during the pandemic. Now, right before Thanksgiving in 2022, Amazon announced that it was laying off 10,000 employees, and, Jassy, the CEO of Amazon, just last week announced that number is now going to grow to 18,000. Now look, this is a rounding error at Amazon from a headcount standpoint and their headcount remains far above 2019 levels. Its stock price, however, does not and it's back down to 2019 levels. The point is that visibility is very poor right now and it's reflected in that uncertainty. We've seen a lot of layoffs, obviously, the stock market's choppy, et cetera. Now importantly, not everything is on hold, and this downturn is different from previous tech pullbacks in that the speed at which new initiatives can be rolled out is much greater thanks to the cloud, and if you can show a fast return, you're going to get funding. Organizations are pausing on the cleanup of technical debt, unless it's driving fast business value. They're holding off on modernization projects. Those business enablement initiatives are still getting funded. CIOs are finding the money by consolidating redundant vendors, and they're stealing from other pockets of budget, so, it's not surprising that cybersecurity remains the number one technology priority in 2023. We've been reporting that for quite some time now. It's specifically cloud, cloud native security container and API security. That's where all the action is, because there's still holes to plug from that forced march to digital that occurred during COVID. Cloud migration, kind of showing here on number two on this chart, still a high priority, while optimizing cloud spend is definitely a strategy that organizations are taking to cut costs. It's behind consolidating redundant vendors by a long shot. There's very little evidence that cloud repatriation, i.e., moving workloads back on prem is a major cost cutting trend. The data just doesn't show it. What is a trend is getting more real time with analytics, so, companies can do faster and more accurate customer targeting, and they're really prioritizing that, obviously, in this down economy. Real time, we sometimes lose it, what's real time? Real time, we sometimes define as before you lose the customer. Now in the hiring front, customers tell us they're still having a hard time finding qualified site reliability engineers, SREs, Kubernetes expertise, and deep analytics pros. These job markets remain very tight. Let's stay with security for just a moment. We said many times that, prior to COVID, zero trust was this undefined buzzword, and the joke, of course, is, if you ask three people, "What is zero trust?" You're going to get three different answers, but the truth is that virtually every security company that was resisting taking a position on zero trust in an attempt to avoid... They didn't want to get caught up in the buzzword vortex, but they're now really being forced to go there by CISOs, so, there are some good quotes here on cyber that we want to share that came out of the recent conversations that we cited up front. The first one, "Zero trust is the highest ROI, because it enables business transformation." In other words, if I can have good security, I can move fast, it's not a blocker anymore. Second quote here, "ZTA," zero trust architecture, "Is more than securing the perimeter. It encompasses strong authentication and multiple identity layers. It requires taking a software approach to security instead of a hardware focus." The next one, "I'd love to have a security data lake that I could apply to asset management, vulnerability management, incident management, incident response, and all aspects for my security team. I see huge promise in that space," and the last one, I see NLP, natural language processing, as the foundation for email security, so, instead of searching for IP addresses, you can now read emails at light speed and identify phishing threats, so, look at, this is a small snapshot of the mindset around security, but I'll add, when you talk to the likes of CrowdStrike, and Zscaler, and Okta, and Palo Alto Networks, and many other security firms, they're listening to these narratives around zero trust. I'm confident they're working hard on skating to this puck, if you will. A good example is this idea of a security data lake and using analytics to improve security. We're hearing a lot about that. We're hearing architectures, there's acquisitions in that regard, and so, that's becoming real, and there are many other examples, because data is at the heart of digital business. This is the next area that we want to talk about. It's obvious that data, as a topic, gets a lot of mind share amongst practitioners, but getting data right is still really hard. It's a challenge for most organizations to get ROI and expected return out of data. Most companies still put data at the periphery of their businesses. It's not at the core. Data lives within silos or different business units, different clouds, it's on-prem, and increasingly it's at the edge, and it seems like the problem is getting worse before it gets better, so, here are some instructive comments from our recent conversations. The first one, "We're publishing events onto Kafka, having those events be processed by Dataproc." Dataproc is a Google managed service to run Hadoop, and Spark, and Flank, and Presto, and a bunch of other open source tools. We're putting them into the appropriate storage models within Google, and then normalize the data into BigQuery, and only then can you take advantage of tools like ThoughtSpot, so, here's a company like ThoughtSpot, and they're all about simplifying data, democratizing data, but to get there, you have to go through some pretty complex processes, so, this is a good example. All right, another comment. "In order to use Google's AI tools, we have to put the data into BigQuery. They haven't integrated in the way AWS and Snowflake have with SageMaker. Moving the data is too expensive, time consuming, and risky," so, I'll just say this, sharing data is a killer super cloud use case, and firms like Snowflake are on top of it, but it's still not pretty across clouds, and Google's posture seems to be, "We're going to let our database product competitiveness drive the strategy first, and the ecosystem is going to take a backseat." Now, in a way, I get it, owning the database is critical, and Google doesn't want to capitulate on that front. Look, BigQuery is really good and competitive, but you can't help but roll your eyes when a CEO stands up, and look, I'm not calling out Thomas Kurian, every CEO does this, and talks about how important their customers are, and they'll do whatever is right by the customer, so, look, I'm telling you, I'm rolling my eyes on that. Now let me also comment, AWS has figured this out. They're killing it in database. If you take Redshift for example, it's still growing, as is Aurora, really fast growing services and other data stores, but AWS realizes it can make more money in the long-term partnering with the Snowflakes and Databricks of the world, and other ecosystem vendors versus sub optimizing their relationships with partners and customers in order to sell more of their own homegrown tools. I get it. It's hard not to feature your own product. IBM chose OS/2 over Windows, and tried for years to popularize it. It failed. Lotus, go back way back to Lotus 1, 2, and 3, they refused to run on Windows when it first came out. They were running on DEC VAX. Many of you young people in the United States have never even heard of DEC VAX. IBM wanted to run every everything only in its cloud, the same with Oracle, originally. VMware, as you might recall, tried to build its own cloud, but, eventually, when the market speaks and reveals what seems to be obvious to analysts, years before, the vendors come around, they face reality, and they stop wasting money, fighting a losing battle. "The trend is your friend," as the saying goes. All right, last pull quote on data, "The hardest part is transformations, moving traditional Informatica, Teradata, or Oracle infrastructure to something more modern and real time, and that's why people still run apps in COBOL. In IT, we rarely get rid of stuff, rather we add on another coat of paint until the wood rots out or the roof is going to cave in. All right, the last key finding we want to highlight is going to bring us back to the cloud repatriation myth. Followers of this program know it's a real sore spot with us. We've heard the stories about repatriation, we've read the thoughtful articles from VCs on the subject, we've been whispered to by vendors that you should investigate this trend. It's really happening, but the data simply doesn't support it. Here's the question that was posed to these practitioners. If you had unlimited budget and the economy miraculously flipped, what initiatives would you tackle first? Where would you really lean into? The first answer, "I'd rip out legacy on-prem infrastructure and move to the cloud even faster," so, the thing here is, look, maybe renting infrastructure is more expensive than owning, maybe, but if I can optimize my rental with better utilization, turn off compute, use things like serverless, get on a steeper and higher performance over time, and lower cost Silicon curve with things like Graviton, tap best of breed tools in AI, and other areas that make my business more competitive. Move faster, fail faster, experiment more quickly, and cheaply, what's that worth? Even the most hard-o CFOs understand the business benefits far outweigh the possible added cost per gigabyte, and, again, I stress "possible." Okay, other interesting comments from practitioners. "I'd hire 50 more data engineers and accelerate our real-time data capabilities to better target customers." Real-time is becoming a thing. AI is being injected into data and apps to make faster decisions, perhaps, with less or even no human involvement. That's on the rise. Next quote, "I'd like to focus on resolving the concerns around cloud data compliance," so, again, despite the risks of data being spread out in different clouds, organizations realize cloud is a given, and they want to find ways to make it work better, not move away from it. The same thing in the next one, "I would automate the data analytics pipeline and focus on a safer way to share data across the states without moving it," and, finally, "The way I'm addressing complexity is to standardize on a single cloud." MonoCloud is actually a thing. We're hearing this more and more. Yes, my company has multiple clouds, but in my group, we've standardized on a single cloud to simplify things, and this is a somewhat dangerous trend, because it's creating even more silos and it's an opportunity that needs to be addressed, and that's why we've been talking so much about supercloud is a cross-cloud, unifying, architectural framework, or, perhaps, it's a platform. In fact, that's a question that we will be exploring later this month at Supercloud2 live from our Palo Alto Studios. Is supercloud an architecture or is it a platform? And in this program, we're featuring technologists, analysts, practitioners to explore the intersection between data and cloud and the future of cloud computing, so, you don't want to miss this opportunity. Go to supercloud.world. You can register for free and participate in the event directly. All right, thanks for listening. That's a wrap. I'd like to thank Alex Myerson, who's on production and manages our podcast, Ken Schiffman as well, Kristen Martin and Cheryl Knight, they helped get the word out on social media, and in our newsletters, and Rob Hof is our editor-in-chief over at siliconangle.com. He does some great editing. Thank you, all. Remember, all these episodes are available as podcasts wherever you listen. All you've got to do is search "breaking analysis podcasts." I publish each week on wikibon.com and siliconangle.com where you can email me directly at david.vellante@siliconangle.com or DM me, @Dante, or comment on our LinkedIn posts. By all means, check out etr.ai. They get the best survey data in the enterprise tech business. We'll be doing our annual predictions post in a few weeks, once the data comes out from the January survey. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, everybody, and we'll see you next time on "Breaking Analysis." (upbeat music)
SUMMARY :
This is "Breaking Analysis" and the director of engineering
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jassy | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Thomas Kurian | PERSON | 0.99+ |
6% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
18,000 | QUANTITY | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
10,000 employees | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
2022 | DATE | 0.99+ |
January 17th | DATE | 0.99+ |
Boston | LOCATION | 0.99+ |
Lotus 1 | TITLE | 0.99+ |
2019 | DATE | 0.99+ |
June | DATE | 0.99+ |
8% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Snowflakes | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Lotus | TITLE | 0.99+ |
two factors | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dataproc | ORGANIZATION | 0.99+ |
three people | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
Teradata | ORGANIZATION | 0.99+ |
1% | QUANTITY | 0.99+ |
3 | TITLE | 0.99+ |
Windows | TITLE | 0.99+ |
5% | QUANTITY | 0.99+ |
3% | QUANTITY | 0.99+ |
BigQuery | TITLE | 0.99+ |
Second quote | QUANTITY | 0.99+ |
4% | QUANTITY | 0.99+ |
DEC VAX | TITLE | 0.99+ |
Thanksgiving | EVENT | 0.98+ |
OS/2 | TITLE | 0.98+ |
7% | QUANTITY | 0.98+ |
last year | DATE | 0.98+ |
two primary sources | QUANTITY | 0.98+ |
each week | QUANTITY | 0.98+ |
Informatica | ORGANIZATION | 0.98+ |
pandemic | EVENT | 0.98+ |
first one | QUANTITY | 0.98+ |
siliconangle.com | OTHER | 0.97+ |
first answer | QUANTITY | 0.97+ |
2% | QUANTITY | 0.97+ |
around 800,000 employees | QUANTITY | 0.97+ |
50 more data engineers | QUANTITY | 0.97+ |
zero trust | QUANTITY | 0.97+ |
Snowflake | ORGANIZATION | 0.96+ |
single cloud | QUANTITY | 0.96+ |
2 | TITLE | 0.96+ |
today | DATE | 0.95+ |
ETR | ORGANIZATION | 0.95+ |
single cloud | QUANTITY | 0.95+ |
ORGANIZATION | 0.94+ | |
later this month | DATE | 0.94+ |
Breaking Analysis: Grading our 2022 Enterprise Technology Predictions
>>From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from the cube and E T R. This is breaking analysis with Dave Valante. >>Making technology predictions in 2022 was tricky business, especially if you were projecting the performance of markets or identifying I P O prospects and making binary forecast on data AI and the macro spending climate and other related topics in enterprise tech 2022, of course was characterized by a seesaw economy where central banks were restructuring their balance sheets. The war on Ukraine fueled inflation supply chains were a mess. And the unintended consequences of of forced march to digital and the acceleration still being sorted out. Hello and welcome to this week's weekly on Cube Insights powered by E T R. In this breaking analysis, we continue our annual tradition of transparently grading last year's enterprise tech predictions. And you may or may not agree with our self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, tell us what you think. >>All right, let's get right to it. So our first prediction was tech spending increases by 8% in 2022. And as we exited 2021 CIOs, they were optimistic about their digital transformation plans. You know, they rushed to make changes to their business and were eager to sharpen their focus and continue to iterate on their digital business models and plug the holes that they, the, in the learnings that they had. And so we predicted that 8% rise in enterprise tech spending, which looked pretty good until Ukraine and the Fed decided that, you know, had to rush and make up for lost time. We kind of nailed the momentum in the energy sector, but we can't give ourselves too much credit for that layup. And as of October, Gartner had it spending growing at just over 5%. I think it was 5.1%. So we're gonna take a C plus on this one and, and move on. >>Our next prediction was basically kind of a slow ground ball. The second base, if I have to be honest, but we felt it was important to highlight that security would remain front and center as the number one priority for organizations in 2022. As is our tradition, you know, we try to up the degree of difficulty by specifically identifying companies that are gonna benefit from these trends. So we highlighted some possible I P O candidates, which of course didn't pan out. S NQ was on our radar. The company had just had to do another raise and they recently took a valuation hit and it was a down round. They raised 196 million. So good chunk of cash, but, but not the i p O that we had predicted Aqua Securities focus on containers and cloud native. That was a trendy call and we thought maybe an M SS P or multiple managed security service providers like Arctic Wolf would I p o, but no way that was happening in the crummy market. >>Nonetheless, we think these types of companies, they're still faring well as the talent shortage in security remains really acute, particularly in the sort of mid-size and small businesses that often don't have a sock Lacework laid off 20% of its workforce in 2022. And CO C e o Dave Hatfield left the company. So that I p o didn't, didn't happen. It was probably too early for Lacework. Anyway, meanwhile you got Netscope, which we've cited as strong in the E T R data as particularly in the emerging technology survey. And then, you know, I lumia holding its own, you know, we never liked that 7 billion price tag that Okta paid for auth zero, but we loved the TAM expansion strategy to target developers beyond sort of Okta's enterprise strength. But we gotta take some points off of the failure thus far of, of Okta to really nail the integration and the go to market model with azero and build, you know, bring that into the, the, the core Okta. >>So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge with others holding their own, not the least of which was Palo Alto Networks as it continued to expand beyond its core network security and firewall business, you know, through acquisition. So overall we're gonna give ourselves an A minus for this relatively easy call, but again, we had some specifics associated with it to make it a little tougher. And of course we're watching ve very closely this this coming year in 2023. The vendor consolidation trend. You know, according to a recent Palo Alto network survey with 1300 SecOps pros on average organizations have more than 30 tools to manage security tools. So this is a logical way to optimize cost consolidating vendors and consolidating redundant vendors. The E T R data shows that's clearly a trend that's on the upswing. >>Now moving on, a big theme of 2020 and 2021 of course was remote work and hybrid work and new ways to work and return to work. So we predicted in 2022 that hybrid work models would become the dominant protocol, which clearly is the case. We predicted that about 33% of the workforce would come back to the office in 2022 in September. The E T R data showed that figure was at 29%, but organizations expected that 32% would be in the office, you know, pretty much full-time by year end. That hasn't quite happened, but we were pretty close with the projection, so we're gonna take an A minus on this one. Now, supply chain disruption was another big theme that we felt would carry through 2022. And sure that sounds like another easy one, but as is our tradition, again we try to put some binary metrics around our predictions to put some meat in the bone, so to speak, and and allow us than you to say, okay, did it come true or not? >>So we had some data that we presented last year and supply chain issues impacting hardware spend. We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain above pre covid levels, which would reverse a decade of year on year declines, which I think started in around 2011, 2012. Now, while demand is down this year pretty substantially relative to 2021, I D C has worldwide unit shipments for PCs at just over 300 million for 22. If you go back to 2019 and you're looking at around let's say 260 million units shipped globally, you know, roughly, so, you know, pretty good call there. Definitely much higher than pre covid levels. But so what you might be asking why the B, well, we projected that 30% of customers would replace security appliances with cloud-based services and that more than a third would replace their internal data center server and storage hardware with cloud services like 30 and 40% respectively. >>And we don't have explicit survey data on exactly these metrics, but anecdotally we see this happening in earnest. And we do have some data that we're showing here on cloud adoption from ET R'S October survey where the midpoint of workloads running in the cloud is around 34% and forecast, as you can see, to grow steadily over the next three years. So this, well look, this is not, we understand it's not a one-to-one correlation with our prediction, but it's a pretty good bet that we were right, but we gotta take some points off, we think for the lack of unequivocal proof. Cause again, we always strive to make our predictions in ways that can be measured as accurate or not. Is it binary? Did it happen, did it not? Kind of like an O K R and you know, we strive to provide data as proof and in this case it's a bit fuzzy. >>We have to admit that although we're pretty comfortable that the prediction was accurate. And look, when you make an hard forecast, sometimes you gotta pay the price. All right, next, we said in 2022 that the big four cloud players would generate 167 billion in IS and PaaS revenue combining for 38% market growth. And our current forecasts are shown here with a comparison to our January, 2022 figures. So coming into this year now where we are today, so currently we expect 162 billion in total revenue and a 33% growth rate. Still very healthy, but not on our mark. So we think a w s is gonna miss our predictions by about a billion dollars, not, you know, not bad for an 80 billion company. So they're not gonna hit that expectation though of getting really close to a hundred billion run rate. We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're gonna get there. >>Look, we pretty much nailed Azure even though our prediction W was was correct about g Google Cloud platform surpassing Alibaba, Alibaba, we way overestimated the performance of both of those companies. So we're gonna give ourselves a C plus here and we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, but the misses on GCP and Alibaba we think warrant a a self penalty on this one. All right, let's move on to our prediction about Supercloud. We said it becomes a thing in 2022 and we think by many accounts it has, despite the naysayers, we're seeing clear evidence that the concept of a layer of value add that sits above and across clouds is taking shape. And on this slide we showed just some of the pickup in the industry. I mean one of the most interesting is CloudFlare, the biggest supercloud antagonist. >>Charles Fitzgerald even predicted that no vendor would ever use the term in their marketing. And that would be proof if that happened that Supercloud was a thing and he said it would never happen. Well CloudFlare has, and they launched their version of Supercloud at their developer week. Chris Miller of the register put out a Supercloud block diagram, something else that Charles Fitzgerald was, it was was pushing us for, which is rightly so, it was a good call on his part. And Chris Miller actually came up with one that's pretty good at David Linthicum also has produced a a a A block diagram, kind of similar, David uses the term metacloud and he uses the term supercloud kind of interchangeably to describe that trend. And so we we're aligned on that front. Brian Gracely has covered the concept on the popular cloud podcast. Berkeley launched the Sky computing initiative. >>You read through that white paper and many of the concepts highlighted in the Supercloud 3.0 community developed definition align with that. Walmart launched a platform with many of the supercloud salient attributes. So did Goldman Sachs, so did Capital One, so did nasdaq. So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud storm. We're gonna take an a plus on this one. Sorry, haters. Alright, let's talk about data mesh in our 21 predictions posts. We said that in the 2020s, 75% of large organizations are gonna re-architect their big data platforms. So kind of a decade long prediction. We don't like to do that always, but sometimes it's warranted. And because it was a longer term prediction, we, at the time in, in coming into 22 when we were evaluating our 21 predictions, we took a grade of incomplete because the sort of decade long or majority of the decade better part of the decade prediction. >>So last year, earlier this year, we said our number seven prediction was data mesh gains momentum in 22. But it's largely confined and narrow data problems with limited scope as you can see here with some of the key bullets. So there's a lot of discussion in the data community about data mesh and while there are an increasing number of examples, JP Morgan Chase, Intuit, H S P C, HelloFresh, and others that are completely rearchitecting parts of their data platform completely rearchitecting entire data platforms is non-trivial. There are organizational challenges, there're data, data ownership, debates, technical considerations, and in particular two of the four fundamental data mesh principles that the, the need for a self-service infrastructure and federated computational governance are challenging. Look, democratizing data and facilitating data sharing creates conflicts with regulatory requirements around data privacy. As such many organizations are being really selective with their data mesh implementations and hence our prediction of narrowing the scope of data mesh initiatives. >>I think that was right on J P M C is a good example of this, where you got a single group within a, within a division narrowly implementing the data mesh architecture. They're using a w s, they're using data lakes, they're using Amazon Glue, creating a catalog and a variety of other techniques to meet their objectives. They kind of automating data quality and it was pretty well thought out and interesting approach and I think it's gonna be made easier by some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to eliminate ET t l, better connections between Aurora and Redshift and, and, and better data sharing the data clean room. So a lot of that is gonna help. Of course, snowflake has been on this for a while now. Many other companies are facing, you know, limitations as we said here and this slide with their Hadoop data platforms. They need to do new, some new thinking around that to scale. HelloFresh is a really good example of this. Look, the bottom line is that organizations want to get more value from data and having a centralized, highly specialized teams that own the data problem, it's been a barrier and a blocker to success. The data mesh starts with organizational considerations as described in great detail by Ash Nair of Warner Brothers. So take a listen to this clip. >>Yeah, so when people think of Warner Brothers, you always think of like the movie studio, but we're more than that, right? I mean, you think of H B O, you think of t n t, you think of C N N. We have 30 plus brands in our portfolio and each have their own needs. So the, the idea of a data mesh really helps us because what we can do is we can federate access across the company so that, you know, CNN can work at their own pace. You know, when there's election season, they can ingest their own data and they don't have to, you know, bump up against, as an example, HBO if Game of Thrones is going on. >>So it's often the case that data mesh is in the eyes of the implementer. And while a company's implementation may not strictly adhere to Jamma Dani's vision of data mesh, and that's okay, the goal is to use data more effectively. And despite Gartner's attempts to deposition data mesh in favor of the somewhat confusing or frankly far more confusing data fabric concept that they stole from NetApp data mesh is taking hold in organizations globally today. So we're gonna take a B on this one. The prediction is shaping up the way we envision, but as we previously reported, it's gonna take some time. The better part of a decade in our view, new standards have to emerge to make this vision become reality and they'll come in the form of both open and de facto approaches. Okay, our eighth prediction last year focused on the face off between Snowflake and Databricks. >>And we realized this popular topic, and maybe one that's getting a little overplayed, but these are two companies that initially, you know, looked like they were shaping up as partners and they, by the way, they are still partnering in the field. But you go back a couple years ago, the idea of using an AW w s infrastructure, Databricks machine intelligence and applying that on top of Snowflake as a facile data warehouse, still very viable. But both of these companies, they have much larger ambitions. They got big total available markets to chase and large valuations that they have to justify. So what's happening is, as we've previously reported, each of these companies is moving toward the other firm's core domain and they're building out an ecosystem that'll be critical for their future. So as part of that effort, we said each is gonna become aggressive investors and maybe start doing some m and a and they have in various companies. >>And on this chart that we produced last year, we studied some of the companies that were targets and we've added some recent investments of both Snowflake and Databricks. As you can see, they've both, for example, invested in elation snowflake's, put money into Lacework, the Secur security firm, ThoughtSpot, which is trying to democratize data with ai. Collibra is a governance platform and you can see Databricks investments in data transformation with D B T labs, Matillion doing simplified business intelligence hunters. So that's, you know, they're security investment and so forth. So other than our thought that we'd see Databricks I p o last year, this prediction been pretty spot on. So we'll give ourselves an A on that one. Now observability has been a hot topic and we've been covering it for a while with our friends at E T R, particularly Eric Bradley. Our number nine prediction last year was basically that if you're not cloud native and observability, you are gonna be in big trouble. >>So everything guys gotta go cloud native. And that's clearly been the case. Splunk, the big player in the space has been transitioning to the cloud, hasn't always been pretty, as we reported, Datadog real momentum, the elk stack, that's open source model. You got new entrants that we've cited before, like observe, honeycomb, chaos search and others that we've, we've reported on, they're all born in the cloud. So we're gonna take another a on this one, admittedly, yeah, it's a re reasonably easy call, but you gotta have a few of those in the mix. Okay, our last prediction, our number 10 was around events. Something the cube knows a little bit about. We said that a new category of events would emerge as hybrid and that for the most part is happened. So that's gonna be the mainstay is what we said. That pure play virtual events are gonna give way to hi hybrid. >>And the narrative is that virtual only events are, you know, they're good for quick hits, but lousy replacements for in-person events. And you know that said, organizations of all shapes and sizes, they learn how to create better virtual content and support remote audiences during the pandemic. So when we set at pure play is gonna give way to hybrid, we said we, we i we implied or specific or specified that the physical event that v i p experience is going defined. That overall experience and those v i p events would create a little fomo, fear of, of missing out in a virtual component would overlay that serves an audience 10 x the size of the physical. We saw that really two really good examples. Red Hat Summit in Boston, small event, couple thousand people served tens of thousands, you know, online. Second was Google Cloud next v i p event in, in New York City. >>Everything else was, was, was, was virtual. You know, even examples of our prediction of metaverse like immersion have popped up and, and and, and you know, other companies are doing roadshow as we predicted like a lot of companies are doing it. You're seeing that as a major trend where organizations are going with their sales teams out into the regions and doing a little belly to belly action as opposed to the big giant event. That's a definitely a, a trend that we're seeing. So in reviewing this prediction, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, but the, but the organization still haven't figured it out. They have hybrid experiences but they generally do a really poor job of leveraging the afterglow and of event of an event. It still tends to be one and done, let's move on to the next event or the next city. >>Let the sales team pick up the pieces if they were paying attention. So because of that, we're only taking a B plus on this one. Okay, so that's the review of last year's predictions. You know, overall if you average out our grade on the 10 predictions that come out to a b plus, I dunno why we can't seem to get that elusive a, but we're gonna keep trying our friends at E T R and we are starting to look at the data for 2023 from the surveys and all the work that we've done on the cube and our, our analysis and we're gonna put together our predictions. We've had literally hundreds of inbounds from PR pros pitching us. We've got this huge thick folder that we've started to review with our yellow highlighter. And our plan is to review it this month, take a look at all the data, get some ideas from the inbounds and then the e t R of January surveys in the field. >>It's probably got a little over a thousand responses right now. You know, they'll get up to, you know, 1400 or so. And once we've digested all that, we're gonna go back and publish our predictions for 2023 sometime in January. So stay tuned for that. All right, we're gonna leave it there for today. You wanna thank Alex Myerson who's on production and he manages the podcast, Ken Schiffman as well out of our, our Boston studio. I gotta really heartfelt thank you to Kristen Martin and Cheryl Knight and their team. They helped get the word out on social and in our newsletters. Rob Ho is our editor in chief over at Silicon Angle who does some great editing for us. Thank you all. Remember all these podcasts are available or all these episodes are available is podcasts. Wherever you listen, just all you do Search Breaking analysis podcast, really getting some great traction there. Appreciate you guys subscribing. I published each week on wikibon.com, silicon angle.com or you can email me directly at david dot valante silicon angle.com or dm me Dante, or you can comment on my LinkedIn post. And please check out ETR AI for the very best survey data in the enterprise tech business. Some awesome stuff in there. This is Dante for the Cube Insights powered by etr. Thanks for watching and we'll see you next time on breaking analysis.
SUMMARY :
From the Cube Studios in Palo Alto in Boston, bringing you data-driven insights from self grading system, but look, we're gonna give you the data and you can draw your own conclusions and tell you what, We kind of nailed the momentum in the energy but not the i p O that we had predicted Aqua Securities focus on And then, you know, I lumia holding its own, you So the focus on endpoint security that was a winner in 2022 is CrowdStrike led that charge put some meat in the bone, so to speak, and and allow us than you to say, okay, We said at the time, you can see this on the left hand side of this chart, the PC laptop demand would remain Kind of like an O K R and you know, we strive to provide data We thought they'd exit the year, you know, closer to, you know, 25 billion a quarter and we don't think they're we think, yeah, you might think it's a little bit harsh, we could argue for a B minus to the professor, Chris Miller of the register put out a Supercloud block diagram, something else that So you know, sorry you can hate the term, but very clearly the evidence is gathering for the super cloud But it's largely confined and narrow data problems with limited scope as you can see here with some of the announcements that Amazon made at the recent, you know, reinvent, particularly trying to the company so that, you know, CNN can work at their own pace. So it's often the case that data mesh is in the eyes of the implementer. but these are two companies that initially, you know, looked like they were shaping up as partners and they, So that's, you know, they're security investment and so forth. So that's gonna be the mainstay is what we And the narrative is that virtual only events are, you know, they're good for quick hits, the grade we gave ourselves is, you know, maybe a bit unfair, it should be, you could argue for a higher grade, You know, overall if you average out our grade on the 10 predictions that come out to a b plus, You know, they'll get up to, you know,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Chris Miller | PERSON | 0.99+ |
CNN | ORGANIZATION | 0.99+ |
Rob Ho | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
5.1% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
Charles Fitzgerald | PERSON | 0.99+ |
Dave Hatfield | PERSON | 0.99+ |
Brian Gracely | PERSON | 0.99+ |
2019 | DATE | 0.99+ |
Lacework | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
GCP | ORGANIZATION | 0.99+ |
33% | QUANTITY | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
David | PERSON | 0.99+ |
2021 | DATE | 0.99+ |
20% | QUANTITY | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2020 | DATE | 0.99+ |
Ash Nair | PERSON | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
162 billion | QUANTITY | 0.99+ |
New York City | LOCATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
October | DATE | 0.99+ |
last year | DATE | 0.99+ |
Arctic Wolf | ORGANIZATION | 0.99+ |
two companies | QUANTITY | 0.99+ |
38% | QUANTITY | 0.99+ |
September | DATE | 0.99+ |
Fed | ORGANIZATION | 0.99+ |
JP Morgan Chase | ORGANIZATION | 0.99+ |
80 billion | QUANTITY | 0.99+ |
29% | QUANTITY | 0.99+ |
32% | QUANTITY | 0.99+ |
21 predictions | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
HBO | ORGANIZATION | 0.99+ |
75% | QUANTITY | 0.99+ |
Game of Thrones | TITLE | 0.99+ |
January | DATE | 0.99+ |
2023 | DATE | 0.99+ |
10 predictions | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
22 | QUANTITY | 0.99+ |
ThoughtSpot | ORGANIZATION | 0.99+ |
196 million | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
each | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
2020s | DATE | 0.99+ |
167 billion | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Second | QUANTITY | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Aqua Securities | ORGANIZATION | 0.99+ |
Dante | PERSON | 0.99+ |
8% | QUANTITY | 0.99+ |
Warner Brothers | ORGANIZATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Cube Studios | ORGANIZATION | 0.99+ |
each week | QUANTITY | 0.99+ |
7 billion | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Ankur Shah, Palo Alto Networks | AWS re:Invent 2022
>>Good afternoon from the Venetian Expo, center, hall, whatever you wanna call it, in Las Vegas. Lisa Martin here. It's day four. I'm not sure what this place is called. Wait, >>What? >>Lisa Martin here with Dave Ante. This is the cube. This is day four of a ton of coverage that we've been delivering to you, which, you know, cause you've been watching since Monday night, Dave, we are almost at the end, we're almost at the show wrap. Excited to bring back, we've been talking about security, a lot about security. Excited to bring back a, an alumni to talk about that. But what's your final thoughts? >>Well, so just in, in, in the context of security, we've had just three in a row talking about cyber, which is like the most important topic. And I, and I love that we're having Palo Alto Networks on Palo Alto Networks is the gold standard in security. Talk to CISOs, they wanna work with them. And, and it was, it's interesting because I've been following them for a little bit now, watch them move to the cloud and a couple of little stumbling points. But I said at the time, they're gonna figure it out and, and come rocking back. And they have, and the company's just performing unbelievably well despite, you know, all the macro headwinds that we love to >>Talk about. So. Right. And we're gonna be unpacking all of that with one of our alumni. As I mentioned, Anker Shaw is with us, the SVP and GM of Palo Alto Networks. Anker, welcome back to the Cub. It's great to see you. It's been a while. >>It's good to be here after a couple years. Yeah, >>Yeah. I think three. >>Yeah, yeah, for sure. Yeah. Yeah. It's a bit of a blur after Covid. >>Everyone's saying that. Yeah. Are you surprised that there are still this many people on the show floor? Cuz I am. >>I am. Yeah. Look, I am not, this is my fourth, last year was probably one third or one fourth of this size. Yeah. But pre covid, this is what dream went looked like. And it's energizing, it's exciting. It's just good to be doing the good old things. So many people and yeah. Amazing technology and innovation. It's been incredible. >>Let's talk about innovation. I know you guys, Palo Alto Networks recently acquired cyber security. Talk to us a little bit about that. How is it gonna compliment Prisma? Give us all the scoop on that. >>Yeah, for sure. Look, some of the recent, the cybersecurity attacks that we have seen are related to supply chain, the colonial pipeline, many, many supply chain. And the reason for that is the modern software supply chain, not the physical supply chain, the one that AWS announced, but this is the software supply chain is really incredibly complicated, complicated developers that are building and shipping code faster than ever before. And the, the site acquisition at the center, the heart of that was securing the entire supply chain. White House came with a new initiative on supply chain security and SBO software bill of material. And we needed a technology, a company, and a set of people who can really deliver to that. And that's why we acquired that for supply chain security, otherwise known as cicd, security, c >>IDC security. Yeah. So how will that complement PRIs McCloud? >>Yeah, so look, if you look at our history lease over the last four years, we have been wanting to, our mission mission has been to build a single code to cloud platform. As you may know, there are over 3000 security vendors in the industry. And we said enough is enough. We need a platform player who can really deliver a unified cohesive platform solution for our customers because they're sick and tired of buying PI point product. So our mission has been to deliver that code to cloud platform supply chain security was a missing piece and we acquired them, it fits right really nicely into our portfolio of products and solution that customers have. And they'll have a single pin of glass with this. >>Yeah. So there's a lot going on. You've got, you've got an adversary that is incredibly capable. Yeah. These days and highly motivated and extremely sophisticated mentioned supply chain. It's caused a shift in, in CSO strategies, talking about the pandemic, of course we know work from home that changed things. You've mentioned public policy. Yeah. And, and so, and as well you have the cloud, cloud, you know, relatively new. I mean, it's not that new, but still. Yeah. But you've got the shared responsibility model and not, not only do you have the shared responsibility model, you have the shared responsibility across clouds and OnPrem. So yes, the cloud helps with security, but that the CISO has to worry about all these other things. The, the app dev team is being asked to shift left, you know, secure and they're not security pros. Yeah. And you know, kind audit is like the last line of defense. So I love this event, I love the cloud, but customers need help in making their lives simpler. Yeah. And the cloud in and of itself, because, you know, shared responsibility doesn't do that. Yeah. That's what Palo Alto and firms like yours come in. >>Absolutely. So look, Jim, this is a unable situation for a lot of the Cisco, simply because there are over 26 million developers, less than 3 million security professional. If you just look at all the announcement the AWS made, I bet you there were like probably over 2000 features. Yeah. I mean, they're shipping faster than ever before. Developers are moving really, really fast and just not enough security people to keep up with the velocity and the innovation. So you are right, while AWS will guarantee securing the infrastructure layer, but everything that is built on top of it, the new machine learning stuff, the new application, the new supply chain applications that are developed, that's the responsibility of the ciso. They stay up at night, they don't know what's going on because developers are bringing new services and new technology. And that's why, you know, we've always taken a platform approach where customers and the systems don't have to worry about it. >>What AWS new service they have, it's covered, it's secured. And that's why the adopters, McCloud and Palo Alto Networks, because regardless what developers bring, security is always there by their side. And so security teams need just a simple one click solution. They don't have to worry about it. They can sleep at night, keep the bad actors away. And, and that's, that's where Palo Alto Networks has been innovating in this area. AWS is one of our biggest partners and you know, we've integrated with, with a lot of their services. We launch about three integrations with their services. And we've been doing this historically for more and >>More. Are you still having conversations with the security folks? Or because security is a board level conversation, are your conversations going up a stack because this is a C-suite problem, this is a board level initiative? >>Absolutely. Look, you know, there was a time about four years ago, like the best we could do is director of security. Now it's just so CEO level conversation, board level conversation to your point, simply because I mean, if, if all your financial stuff is going to public cloud, all your healthcare data, all your supply chain data is going to public cloud, the board is asking very simple question, what are you doing to secure that? And to be honest, the question is simple. The answer's not because all the stuff that we talked about, too many applications, lots and lots of different services, different threat vectors and the bad actors, the bad guys are always a step ahead of the curve. And that's why this has become a board level conversation. They wanna make sure that things are secure from the get go before, you know, the enterprises go too deep into public cloud adoption. >>I mean there, there was shift topics a little bit. There was hope or kinda early this year that that cyber was somewhat insulated from the sort of macro press pressures. Nobody's safe. Even the cloud is sort of, you know, facing those, those headwinds people optimizing costs. But one thing when you talk to customers is, I always like to talk about that, that optiv graph. We've all seen it, right? And it's just this eye test of tools and it's a beautiful taxonomy, but there's just too many tools. So we're seeing a shift from point tools to platforms because obviously a platform play, and that's a way. So what are you seeing in the, in the field with customers trying to optimize their infrastructure costs with regard to consolidating to >>Platforms? Yeah. Look, you rightly pointed out one thing, the cybersecurity industry in general and Palo Alto networks, knock on wood, the stocks doing well. The macro headwinds hasn't impacted the security spend so far, right? Like time will tell, we'll, we'll see how things go. And one of the primary reason is that when you know the economy starts to slow down, the customers again want to invest in platforms. It's simple to deploy, simple to operationalize. They want a security partner of choice that knows that they, it's gonna be by them through the entire journey from code to cloud. And so that's why platform, especially times like these are more important than they've ever been before. You know, customers are investing in the, the, the product I lead at Palo Alto network called Prisma Cloud. It's in the cloud network application protection platform seen app space where once again, customers that investing in platform from quote to cloud and avoiding all the point products for sure. >>Yeah. Yeah. And you've seen it in, in Palo Alto's performance. I mean, not every cyber firm has is, is, >>You know, I know. Ouch. CrowdStrike Yeah. >>Was not. Well you saw that. I mean, and it was, and and you know, the large customers were continuing to spend, it was the small and mid-size businesses Yeah. That were, were were a little bit soft. Yeah. You know, it's a really, it's really, I mean, you see Okta now, you know, after they had some troubles announcing that, you know, their, their, their visibility's a little bit better. So it's, it's very hard to predict right now. And of course if TOMA Brava is buying you, then your stock price has been up and steady. That's, >>Yeah. Look, I think the key is to have a diversified portfolio of products. Four years ago before our CEO cash took over the reins of the company, we were a single product X firewall company. Right. And over time we have added XDR with the first one to introduce that recently launched x Im, you know, to, to make sure we build an NextGen team, cloud security is a completely net new investment, zero trust with access as workers started working remotely and they needed to make sure enterprises needed to make sure that they're accessing the applications securely. So we've added a lot of portfolio products over time. So you have to remain incredibly diversified, stay strong, because there will be stuff like remote work that slowed down. But if you've got other portfolio product like cloud security, while those secular tailwinds continue to grow, I mean, look how fast AWS is growing. 35, 40%, like $80 billion run rate. Crazy at that, that scale. So luckily we've got the portfolio of products to ensure that regardless of what the customer's journey is, macro headwinds are, we've got portfolio of solutions to help our customers. >>Talk a little bit about the AWS partnership. You talked about the run rate and I was reading a few days ago. You're right. It's an 82 billion arr, massive run rate. It's crazy. Well, what are, what is a Palo Alto Networks doing with aws and what's the value in it to help your customers on a secure digital transformation journey? >>Well, absolutely. We have been doing business with aws. We've been one of their security partners of choice for many years now. We have a presence in the marketplace where customers can through one click deploy the, the several Palo Alto Networks security solutions. So that's available. Like I said, we had launch partner to many, many new products and innovation that AWS comes up with. But always the day one partner, Adam was talking about some of those announcements and his keynote security data lake was one of those. And they were like a bunch of others related to compute and others. So we have been a partner for a long time, and look, AWS is an incredibly customer obsessed company. They've got their own security products. But if the customer says like, Hey, like I'd like to pick this from yours, but there's three other things from Palo Alto Networks or S MacCloud or whatever else that may be, they're open to it. And that's the great thing about AWS where it doesn't have to be wall garden open ecosystem, let the customer pick the best. >>And, and that's, I mean, there's, there's examples where AWS is directly competitive. I mean, my favorite example is Redshift and Snowflake. I mean those are directly competitive products, but, but Snowflake is an unbelievably great relationship with aws. They do cyber's, I think different, I mean, yeah, you got guard duty and you got some other stuff there. But generally speaking, the, correct me if I'm wrong, the e the ecosystem has more room to play on AWS than it may on some other clouds. >>A hundred percent. Yeah. Once again, you know, guard duty for examples, we've got a lot of customers who use guard duty and Prisma Cloud and other Palo Alto Networks products. And we also ingest the data from guard duty. So if customers want a single pane of glass, they can use the best of AWS in terms of guard duty threat detection, but leverage other technology suite from, you know, a platform provider like Palo Alto Networks. So you know, that that, you know, look, world is a complicated place. Some like blue, some like red, whatever that may be. But we believe in giving customers that choice, just like AWS customers want that. Not a >>Problem. And at least today they're not like directly, you know, in your space. Yeah. You know, and even if they were, you've got such a much mature stack. Absolutely. And my, my frankly Microsoft's different, right? I mean, you see, I mean even the analysts were saying that some of the CrowdStrike's troubles for, cuz Microsoft's got the good enough, right? So >>Yeah. Endpoint security. Yeah. And >>Yeah, for sure. So >>Do you have a favorite example of a customer where Palo Alto Networks has really helped them come in and, and enable that secure business transformation? Anything come to mind that you think really shines a light on Palo Alto Networks and what it's able to do? >>Yeah, look, we have customers across, and I'm gonna speak to public cloud in general, right? Like Palo Alto has over 60,000 customers. So we've been helping with that business transformation for years now. But because it's reinvented aws, the Prisma cloud product has been helping customers across different industry verticals. Some of the largest credit card processing companies, they can process transactions because we are running security on top of the workloads, the biggest financial services, biggest healthcare customers. They're able to put the patient health records in public cloud because Palo Alto Networks is helping them get there. So we are helping accelerated that digital journey. We've been an enabler. Security is often perceived as a blocker, but we have always treated our role as enabler. How can we get developers and enterprises to move as fast as possible? And like, my favorite thing is that, you know, moving fast and going digital is not a monopoly of just a tech company. Every company is gonna be a tech company Oh absolutely. To public cloud. Yes. And we want to help them get there. Yeah. >>So the other thing too, I mean, I'll just give you some data. I love data. I have a, ETR is our survey partner and I'm looking at Data 395. They do a survey every quarter, 1,250 respondents on this survey. 395 were Palo Alto customers, fortune 500 s and P 500, you know, big global 2000 companies as well. Some small companies. Single digit churn. Yeah. Okay. Yeah. Very, very low replacement >>Rates. Absolutely. >>And still high single digit new adoption. Yeah. Right. So you've got that tailwind going for you. Yeah, >>Right. It's, it's sticky because especially our, our main business firewall, once you deploy the firewall, we are inspecting all the network traffic. It's just so hard to rip and replace. Customers are getting value every second, every minute because we are thwarting attacks from public cloud. And look, we, we, we provide solutions not just product, we just don't leave the product and ask the customers to deploy it. We help them with deployment consumption of the product. And we've been really fortunate with that kind of gross dollar and netten rate for our customers. >>Now, before we wrap, I gotta tease, the cube is gonna be at Palo Alto Ignite. Yeah. In two weeks back here. I think we're at D mgm, right? We >>Were at D MGM December 13th and >>14th. So give us a little, show us a little leg if you would. What could we expect? >>Hey, look, I mean, a lot of exciting new things coming. Obviously I can't talk about it right now. The PR Inc is still not dry yet. But lots of, lots of new innovation across our three main businesses. Network security, public cloud, security, as well as XDR X. Im so stay tuned. You know, you'll, you'll see a lot of new exciting things coming up. >>Looking forward to it. >>We are looking forward to it. Last question on curf. You, if you had a billboard to place in New York Times Square. Yeah. You're gonna take over the the the Times Square Nasdaq. What does the billboard say about why organizations should be working with Palo Alto Networks? Yeah. To really embed security into their dna. Yeah. >>You know when Jim said Palo Alto Networks is the gold standard for security, I thought it was gonna steal it. I think it's pretty good gold standard for security. But I'm gonna go with our mission cyber security partner's choice. We want to be known as that and that's who we are. >>Beautifully said. Walker, thank you so much for joining David in the program. We really appreciate your insights, your time. We look forward to seeing you in a couple weeks back here in Vegas. >>Absolutely. Can't have enough of Vegas. Thank you. Lisa. >>Can't have in Vegas, >>I dunno about that. By this time of the year, I think we can have had enough of Vegas, but we're gonna be able to see you on the cubes coverage, which you could catch up. Palo Alto Networks show Ignite December, I believe 13th and 14th on the cube.net. We want to thank Anker Shaw for joining us. For Dave Ante, this is Lisa Martin. You're watching the Cube, the leader in live enterprise and emerging tech coverage.
SUMMARY :
whatever you wanna call it, in Las Vegas. This is the cube. you know, all the macro headwinds that we love to And we're gonna be unpacking all of that with one of our alumni. It's good to be here after a couple years. It's a bit of a blur after Covid. Cuz I am. It's just good to be doing the good old things. I know you guys, Palo Alto Networks recently acquired cyber security. And the reason for that is the modern software supply chain, not the physical supply chain, IDC security. Yeah, so look, if you look at our history lease over the last four years, And the cloud in and of itself, because, you know, shared responsibility doesn't do that. And that's why, you know, we've always taken a platform approach of our biggest partners and you know, we've integrated with, with a lot of their services. this is a board level initiative? the board is asking very simple question, what are you doing to secure that? So what are you seeing in the, And one of the primary reason is that when you know the I mean, not every cyber firm has You know, I know. I mean, and it was, and and you know, the large customers were continuing to And over time we have added XDR with the first one to introduce You talked about the run rate and I was reading a And that's the great thing about AWS where it doesn't have to be wall garden open I think different, I mean, yeah, you got guard duty and you got some other stuff there. So you know, And at least today they're not like directly, you know, in your space. So my favorite thing is that, you know, moving fast and going digital is not a monopoly of just a tech So the other thing too, I mean, I'll just give you some data. Absolutely. So you've got that tailwind going for you. and ask the customers to deploy it. Yeah. So give us a little, show us a little leg if you would. Hey, look, I mean, a lot of exciting new things coming. You're gonna take over the the the Times Square Nasdaq. But I'm gonna go with our mission cyber We look forward to seeing you in a couple weeks back here in Vegas. Can't have enough of Vegas. but we're gonna be able to see you on the cubes coverage, which you could catch up.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
Jim | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
McCloud | ORGANIZATION | 0.99+ |
Vegas | LOCATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
Ankur Shah | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
$80 billion | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
White House | ORGANIZATION | 0.99+ |
Anker Shaw | PERSON | 0.99+ |
1,250 respondents | QUANTITY | 0.99+ |
Lisa | PERSON | 0.99+ |
Walker | PERSON | 0.99+ |
Dave Ante | PERSON | 0.99+ |
fourth | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
82 billion | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
less than 3 million | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Monday night | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
New York Times Square | LOCATION | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
over 60,000 customers | QUANTITY | 0.99+ |
Covid | PERSON | 0.99+ |
Prisma Cloud | ORGANIZATION | 0.99+ |
over 2000 features | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
40% | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.99+ |
three | QUANTITY | 0.99+ |
December | DATE | 0.98+ |
cube.net | OTHER | 0.98+ |
Prisma | ORGANIZATION | 0.98+ |
2000 companies | QUANTITY | 0.98+ |
first one | QUANTITY | 0.98+ |
single | QUANTITY | 0.98+ |
Venetian Expo | EVENT | 0.98+ |
three main businesses | QUANTITY | 0.98+ |
395 | QUANTITY | 0.98+ |
PR Inc | ORGANIZATION | 0.98+ |
over 26 million developers | QUANTITY | 0.97+ |
one click | QUANTITY | 0.97+ |
Four years ago | DATE | 0.97+ |
35 | QUANTITY | 0.96+ |
Palo Alto | LOCATION | 0.96+ |
December 13th | DATE | 0.95+ |
14th | DATE | 0.95+ |
Tomer Shiran, Dremio | AWS re:Invent 2022
>>Hey everyone. Welcome back to Las Vegas. It's the Cube live at AWS Reinvent 2022. This is our fourth day of coverage. Lisa Martin here with Paul Gillen. Paul, we started Monday night, we filmed and streamed for about three hours. We have had shammed pack days, Tuesday, Wednesday, Thursday. What's your takeaway? >>We're routed final turn as we, as we head into the home stretch. Yeah. This is as it has been since the beginning, this show with a lot of energy. I'm amazed for the fourth day of a conference, how many people are still here I am too. And how, and how active they are and how full the sessions are. Huge. Proud for the keynote this morning. You don't see that at most of the day four conferences. Everyone's on their way home. So, so people come here to learn and they're, and they're still >>Learning. They are still learning. And we're gonna help continue that learning path. We have an alumni back with us, Toron joins us, the CPO and co-founder of Dremeo. Tomer, it's great to have you back on the program. >>Yeah, thanks for, for having me here. And thanks for keeping the, the best session for the fourth day. >>Yeah, you're right. I like that. That's a good mojo to come into this interview with Tomer. So last year, last time I saw you was a year ago here in Vegas at Reinvent 21. We talked about the growth of data lakes and the data lake houses. We talked about the need for open data architectures as opposed to data warehouses. And the headline of the Silicon Angle's article on the interview we did with you was, Dremio Predicts 2022 will be the year open data architectures replace the data warehouse. We're almost done with 2022. Has that prediction come true? >>Yeah, I think, I think we're seeing almost every company out there, certainly in the enterprise, adopting data lake, data lakehouse technology, embracing open source kind of file and table formats. And, and so I think that's definitely happening. Of course, nothing goes away. So, you know, data warehouses don't go away in, in a year and actually don't go away ever. We still have mainframes around, but certainly the trends are, are all pointing in that direction. >>Describe the data lakehouse for anybody who may not be really familiar with that and, and what it's, what it really means for organizations. >>Yeah. I think you could think of the data lakehouse as the evolution of the data lake, right? And so, you know, for, for, you know, the last decade we've had kind of these two options, data lakes and data warehouses and, you know, warehouses, you know, having good SQL support, but, and good performance. But you had to spend a lot of time and effort getting data into the warehouse. You got locked into them, very, very expensive. That's a big problem now. And data lakes, you know, more open, more scalable, but had all sorts of kind of limitations. And what we've done now as an industry with the Lake House, and especially with, you know, technologies like Apache Iceberg, is we've unlocked all the capabilities of the warehouse directly on object storage like s3. So you can insert and update and delete individual records. You can do transactions, you can do all the things you could do with a, a database directly in kind of open formats without getting locked in at a much lower cost. >>But you're still dealing with semi-structured data as opposed to structured data. And there's, there's work that has to be done to get that into a usable form. That's where Drio excels. What, what has been happening in that area to, to make, I mean, is it formats like j s o that are, are enabling this to happen? How, how we advancing the cause of making semi-structured data usable? Yeah, >>Well, I think first of all, you know, I think that's all changed. I think that was maybe true for the original data lakes, but now with the Lake house, you know, our bread and butter is actually structured data. It's all, it's all tables with the schema. And, you know, you can, you know, create table insert records. You know, it's, it's, it's really everything you can do with a data warehouse you can now do in the lakehouse. Now, that's not to say that there aren't like very advanced capabilities when it comes to, you know, j s O and nested data and kind of sparse data. You know, we excel in that as well. But we're really seeing kind of the lakehouse take over the, the bread and butter data warehouse use cases. >>You mentioned open a minute ago. Talk about why it's, why open is important and the value that it can deliver for customers. >>Yeah, well, I think if you look back in time and you see all the challenges that companies have had with kind of traditional data architectures, right? The, the, the, a lot of that comes from the, the, the problems with data warehouses. The fact that they are, you know, they're very expensive. The data is, you have to ingest it into the data warehouse in order to query it. And then it's almost impossible to get off of these systems, right? It takes an enormous effort, tremendous cost to get off of them. And so you're kinda locked in and that's a big problem, right? You also, you're dependent on that one data warehouse vendor, right? You can only do things with that data that the warehouse vendor supports. And if you contrast that to data lakehouse and open architectures where the data is stored in entirely open formats. >>So things like par files and Apache iceberg tables, that means you can use any engine on that data. You can use s SQL Query Engine, you can use Spark, you can use flin. You know, there's a dozen different engines that you can use on that, both at the same time. But also in the future, if you ever wanted to try something new that comes out, some new open source innovation, some new startup, you just take it and point out the same data. So that data's now at the core, at the center of the architecture as opposed to some, you know, vendors logo. Yeah. >>Amazon seems to be bought into the Lakehouse concept. It has big announcements on day two about eliminating the ETL stage between RDS and Redshift. Do you see the cloud vendors as pushing this concept forward? >>Yeah, a hundred percent. I mean, I'm, I'm Amazon's a great, great partner of ours. We work with, you know, probably 10 different teams there. Everything from, you know, the S3 team, the, the glue team, the click site team, you know, everything in between. And, you know, their embracement of the, the, the lake house architecture, the fact that they adopted Iceberg as their primary table format. I think that's exciting as an industry. We're all coming together around standard, standard ways to represent data so that at the end of the day, companies have this benefit of being able to, you know, have their own data in their own S3 account in open formats and be able to use all these different engines without losing any of the functionality that they need, right? The ability to do all these interactions with data that maybe in the past you would have to move the data into a database or, or warehouse in order to do, you just don't have to do that anymore. Speaking >>Of functionality, talk about what's new this year with drio since we've seen you last. >>Yeah, there's a lot of, a lot of new things with, with Drio. So yeah, we now have full Apache iceberg support, you know, with DML commands, you can do inserts, updates, deletes, you know, copy into all, all that kind of stuff is now, you know, fully supported native part of the platform. We, we now offer kind of two flavors of dr. We have, you know, Dr. Cloud, which is our SaaS version fully hosted. You sign up with your Google or, you know, Azure account and, and, and you're up in, you're up and running in, in, in a minute. And then dral software, which you can self host usually in the cloud, but even, even even outside of the cloud. And then we're also very excited about this new idea of data as code. And so we've introduced a new product that's now in preview called Dr. >>Arctic. And the idea there is to bring the concepts of GI or GitHub to the world of data. So things like being able to create a branch and work in isolation. If you're a data scientist, you wanna experiment on your own without impacting other people, or you're a data engineer and you're ingesting data, you want to transform it and test it before you expose it to others. You can do that in a branch. So all these ideas that, you know, we take for granted now in the world of source code and software development, we're bringing to the world of data with Jamar. And when you think about data mesh, a lot of people talking about data mesh now and wanting to kind of take advantage of, of those concepts and ideas, you know, thinking of data as a product. Well, when you think about data as a product, we think you have to manage it like code, right? You have to, and that's why we call it data as code, right? The, all those reasons that we use things like GI have to build products, you know, if we wanna think of data as a product, we need all those capabilities also with data. You know, also the ability to go back in time. The ability to undo mistakes, to see who changed my data and when did they change that table. All of those are, are part of this, this new catalog that we've created. >>Are you talk about data as a product that's sort of intrinsic to the data mesh concept. Are you, what's your opinion of data mesh? Is the, is the world ready for that radically different approach to data ownership? >>You know, we are now in dozens of, dozens of our customers that are using drio for to implement enterprise-wide kind of data mesh solutions. And at the end of the day, I think it's just, you know, what most people would consider common sense, right? In a large organization, it is very hard for a centralized single team to understand every piece of data, to manage all the data themselves, to, you know, make sure the quality is correct to make it accessible. And so what data mesh is first and foremost about is being able to kind of federate the, or distribute the, the ownership of data, the governance of the data still has to happen, right? And so that is, I think at the heart of the data mesh, but thinking of data as kind of allowing different teams, different domains to own their own data to really manage it like a product with all the best practices that that we have with that super important. >>So we we're doing a lot with data mesh, you know, the way that cloud has multiple projects and the way that Jamar allows you to have multiple catalogs and different groups can kind of interact and share data among each other. You know, the fact that we can connect to all these different data sources, even outside your data lake, you know, with Redshift, Oracle SQL Server, you know, all the different databases that are out there and join across different databases in addition to your data lake, that that's all stuff that companies want with their data mesh. >>What are some of your favorite customer stories that where you've really helped them accelerate that data mesh and drive business value from it so that more people in the organization kind of access to data so they can really make those data driven decisions that everybody wants to make? >>I mean, there's, there's so many of them, but, you know, one of the largest tech companies in the world creating a, a data mesh where you have all the different departments in the company that, you know, they, they, they were a big data warehouse user and it kinda hit the wall, right? The costs were so high and the ability for people to kind of use it for just experimentation, to try new things out to collaborate, they couldn't do it because it was so prohibitively expensive and difficult to use. And so what they said, well, we need a platform that different people can, they can collaborate, they can ex, they can experiment with the data, they can share data with others. And so at a big organization like that, the, their ability to kind of have a centralized platform but allow different groups to manage their own data, you know, several of the largest banks in the world are, are also doing data meshes with Dr you know, one of them has over over a dozen different business units that are using, using Dremio and that ability to have thousands of people on a platform and to be able to collaborate and share among each other that, that's super important to these >>Guys. Can you contrast your approach to the market, the snowflakes? Cause they have some of those same concepts. >>Snowflake's >>A very closed system at the end of the day, right? Closed and very expensive. Right? I think they, if I remember seeing, you know, a quarter ago in, in, in one of their earnings reports that the average customer spends 70% more every year, right? Well that's not sustainable. If you think about that in a decade, that's your cost is gonna increase 200 x, most companies not gonna be able to swallow that, right? So companies need, first of all, they need more cost efficient solutions that are, you know, just more approachable, right? And the second thing is, you know, you know, we talked about the open data architecture. I think most companies now realize that the, if you want to build a platform for the future, you need to have the data and open formats and not be locked into one vendor, right? And so that's kind of another important aspect beyond that's ability to connect to all your data, even outside the lake to your different databases, no sequel databases, relational databases, and drs semantic layer where we can accelerate queries. And so typically what you have, what happens with data warehouses and other data lake query engines is that because you can't get the performance that you want, you end up creating lots and lots of copies of data. You, for every use case, you're creating a, you know, a pre-joy copy of that data, a pre aggregated version of that data. And you know, then you have to redirect all your data. >>You've got a >>Governance problem, individual things. It's expensive. It's expensive, it's hard to secure that cuz permissions don't travel with the data. So you have all sorts of problems with that, right? And so what we've done because of our semantic layer that makes it easy to kind of expose data in a logical way. And then our query acceleration technology, which we call reflections, which transparently accelerates queries and gives you subsecond response times without data copies and also without extracts into the BI tools. Cause if you start doing bi extracts or imports, again, you have lots of copies of data in the organization, all sorts of refresh problems, security problems, it's, it's a nightmare, right? And that just collapsing all those copies and having a, a simple solution where data's stored in open formats and we can give you fast access to any of that data that's very different from what you get with like a snowflake or, or any of these other >>Companies. Right. That, that's a great explanation. I wanna ask you, early this year you announced that your Dr. Cloud service would be a free forever, the basic DR. Cloud service. How has that offer gone over? What's been the uptake on that offer? >>Yeah, it, I mean it is, and thousands of people have signed up and, and it's, I think it's a great service. It's, you know, it's very, very simple. People can go on the website, try it out. We now have a test drive as well. If, if you want to get started with just some sample public sample data sets and like a tutorial, we've made that increasingly easy as well. But yeah, we continue to, you know, take that approach of, you know, making it, you know, making it easy, democratizing these kind of cloud data platforms and, and kinda lowering the barriers to >>Adoption. How, how effective has it been in driving sales of the enterprise version? >>Yeah, a lot of, a lot of, a lot of business with, you know, that, that we do like when it comes to, to selling is, you know, folks that, you know, have educated themselves, right? They've started off, they've followed some tutorials. I think generally developers, they prefer the first interaction to be with a product, not with a salesperson. And so that's, that's basically the reason we did that. >>Before we ask you the last question, I wanna just, can you give us a speak peek into the product roadmap as we enter 2023? What can you share with us that we should be paying attention to where Drum is concerned? >>Yeah. You know, actually a couple, couple days ago here at the conference, we, we had a press release with all sorts of new capabilities that we, we we just released. And there's a lot more for, for the coming year. You know, we will shortly be releasing a variety of different performance enhancements. So we'll be in the next quarter or two. We'll be, you know, probably twice as fast just in terms of rock qu speed, you know, that's in addition to our reflections and our career acceleration, you know, support for all the major clouds is coming. You know, just a lot of capabilities in Inre that make it easier and easier to use the platform. >>Awesome. Tomer, thank you so much for joining us. My last question to you is, if you had a billboard in your desired location and it was going to really just be like a mic drop about why customers should be looking at Drio, what would that billboard say? >>Well, DRIO is the easy and open data lake house and, you know, open architectures. It's just a lot, a lot better, a lot more f a lot more future proof, a lot easier and a lot just a much safer choice for the future for, for companies. And so hard to argue with those people to take a look. Exactly. That wasn't the best. That wasn't the best, you know, billboards. >>Okay. I think it's a great billboard. Awesome. And thank you so much for joining Poly Me on the program, sharing with us what's new, what some of the exciting things are that are coming down the pipe. Quite soon we're gonna be keeping our eye Ono. >>Awesome. Always happy to be here. >>Thank you. Right. For our guest and for Paul Gillin, I'm Lisa Martin. You're watching The Cube, the leader in live and emerging tech coverage.
SUMMARY :
It's the Cube live at AWS Reinvent This is as it has been since the beginning, this show with a lot of energy. it's great to have you back on the program. And thanks for keeping the, the best session for the fourth day. And the headline of the Silicon Angle's article on the interview we did with you was, So, you know, data warehouses don't go away in, in a year and actually don't go away ever. Describe the data lakehouse for anybody who may not be really familiar with that and, and what it's, And what we've done now as an industry with the Lake House, and especially with, you know, technologies like Apache are enabling this to happen? original data lakes, but now with the Lake house, you know, our bread and butter is actually structured data. You mentioned open a minute ago. The fact that they are, you know, they're very expensive. at the center of the architecture as opposed to some, you know, vendors logo. Do you see the at the end of the day, companies have this benefit of being able to, you know, have their own data in their own S3 account Apache iceberg support, you know, with DML commands, you can do inserts, updates, So all these ideas that, you know, we take for granted now in the world of Are you talk about data as a product that's sort of intrinsic to the data mesh concept. And at the end of the day, I think it's just, you know, what most people would consider common sense, So we we're doing a lot with data mesh, you know, the way that cloud has multiple several of the largest banks in the world are, are also doing data meshes with Dr you know, Cause they have some of those same concepts. And the second thing is, you know, you know, stored in open formats and we can give you fast access to any of that data that's very different from what you get What's been the uptake on that offer? But yeah, we continue to, you know, take that approach of, you know, How, how effective has it been in driving sales of the enterprise version? to selling is, you know, folks that, you know, have educated themselves, right? you know, probably twice as fast just in terms of rock qu speed, you know, that's in addition to our reflections My last question to you is, if you had a Well, DRIO is the easy and open data lake house and, you And thank you so much for joining Poly Me on the program, sharing with us what's new, Always happy to be here. the leader in live and emerging tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa Martin | PERSON | 0.99+ |
Paul Gillen | PERSON | 0.99+ |
Paul Gillin | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Tomer | PERSON | 0.99+ |
Tomer Shiran | PERSON | 0.99+ |
Toron | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
70% | QUANTITY | 0.99+ |
Monday night | DATE | 0.99+ |
Vegas | LOCATION | 0.99+ |
fourth day | QUANTITY | 0.99+ |
Paul | PERSON | 0.99+ |
last year | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
dozens | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
10 different teams | QUANTITY | 0.99+ |
Dremio | PERSON | 0.99+ |
early this year | DATE | 0.99+ |
SQL Query Engine | TITLE | 0.99+ |
The Cube | TITLE | 0.99+ |
Tuesday | DATE | 0.99+ |
2023 | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
a year ago | DATE | 0.98+ |
next quarter | DATE | 0.98+ |
S3 | TITLE | 0.98+ |
a quarter ago | DATE | 0.98+ |
twice | QUANTITY | 0.98+ |
Oracle | ORGANIZATION | 0.98+ |
second thing | QUANTITY | 0.98+ |
Drio | ORGANIZATION | 0.98+ |
couple days ago | DATE | 0.98+ |
both | QUANTITY | 0.97+ |
DRIO | ORGANIZATION | 0.97+ |
2022 | DATE | 0.97+ |
Lake House | ORGANIZATION | 0.96+ |
thousands of people | QUANTITY | 0.96+ |
Wednesday | DATE | 0.96+ |
Spark | TITLE | 0.96+ |
200 x | QUANTITY | 0.96+ |
first | QUANTITY | 0.96+ |
Drio | TITLE | 0.95+ |
Dremeo | ORGANIZATION | 0.95+ |
two options | QUANTITY | 0.94+ |
about three hours | QUANTITY | 0.94+ |
day two | QUANTITY | 0.94+ |
s3 | TITLE | 0.94+ |
Apache Iceberg | ORGANIZATION | 0.94+ |
a minute ago | DATE | 0.94+ |
Silicon Angle | ORGANIZATION | 0.94+ |
hundred percent | QUANTITY | 0.93+ |
Apache | ORGANIZATION | 0.93+ |
single team | QUANTITY | 0.93+ |
GitHub | ORGANIZATION | 0.91+ |
this morning | DATE | 0.9+ |
a dozen different engines | QUANTITY | 0.89+ |
Iceberg | TITLE | 0.87+ |
Redshift | TITLE | 0.87+ |
last | DATE | 0.87+ |
this year | DATE | 0.86+ |
first interaction | QUANTITY | 0.85+ |
two flavors | QUANTITY | 0.84+ |
Thursday | DATE | 0.84+ |
Azure | ORGANIZATION | 0.84+ |
DR. Cloud | ORGANIZATION | 0.84+ |
SQL Server | TITLE | 0.83+ |
four conferences | QUANTITY | 0.82+ |
coming year | DATE | 0.82+ |
over over a dozen different business | QUANTITY | 0.81+ |
one vendor | QUANTITY | 0.8+ |
Poly | ORGANIZATION | 0.79+ |
Jamar | PERSON | 0.77+ |
GI | ORGANIZATION | 0.77+ |
Inre | ORGANIZATION | 0.76+ |
Dr. | ORGANIZATION | 0.73+ |
Lake house | ORGANIZATION | 0.71+ |
Arctic | ORGANIZATION | 0.71+ |
a year | QUANTITY | 0.7+ |
a minute | QUANTITY | 0.7+ |
SQL | TITLE | 0.69+ |
AWS Reinvent 2022 | EVENT | 0.69+ |
subsecond | QUANTITY | 0.68+ |
DML | TITLE | 0.68+ |
Sam Pierson & Monte Denehie, Talend | AWS re:Invent 2022
(upbeat music) (air whooshing) >> Good afternoon, cloud nerds, and welcome back to beautiful Las Vegas, Nevada. We are at AWS re:invent day four. Afternoon of day four here on theCUBE. I'm Savannah Peterson, joined by my fabulous cohost, Paul Gillin. Paul, you look sharp today. How you doing? >> Oh, you're just as fabulous, Savannah. You always look sharp. >> I appreciate that. They pay you enough to keep me buttered up over here at- (Paul laughing) It's wonderful. >> You're holding up well. >> Yeah, thank you. I am excited about our next conversation. Two fabulous gentlemen. Please welcome Sam and Monty, welcome to the show. >> Thank you. >> And it was great. Of the PR 2%, the most interesting man alive. (Paul and Savannah laughing) >> In person. Yeah, yeah. >> In the flesh. Our favorite guests so far. So how's the show been for you guys? >> Sam: It's been phenomenal. >> Just spending a lot of time with customers and partners and AWS. It's been great. It's been great. >> It is great. It's really about the community. It feels good to be back. >> Monty: Eating good food, getting my steps in above goals. >> I feel like the balance is good. We walk enough of these convention centers that you can enjoy the libations and the delicious food that's in Las Vegas and still not go home feeling like a cow. It is awesome. It's a win-win. >> To Sam's point though, meeting with customers, meeting with other technology providers that we may be able to partner with. And most importantly, in my role especially, meeting with all of our AWS key stakeholders in the partnership. So yeah, it's been great. >> Everyone's here. It's just different having a conversation in person. Even like us right now. So just in case folks aren't familiar, tell me about Talend. >> Yeah. Well, Talend is a data integration company. We've been around for a while. We have tons of different ways to get data from point A to point B, lots of different sources, lots of different connectors, and it's all about creating accessibility to that data. And then on top of that, we also have a number of solutions around governance, data health, data quality, data observability, which I think is really taking off. And so that's kind of how we're changing the business here. >> Casual change, data and governance. I don't know if anyone's talking about that at all on the snow floor. >> Been on big topic here. We've had a lot of conversations with the customers about that. >> So governance, what new dynamics has the cloud introduced into data governance? >> Well, I think historically, customers have been able to have their data on-prem. They put it into things like data lakes. And now having the flexibility to be able to bring that data to the clouds, it opens up a lot of doors, but it also opens up a lot of risks. So if you think about the chief data officer role, where you have, okay, I want to be able to bring my data to the users. I want to be able to do that at scale, operationally. But at the same time you have a tension then between the governance and the rules that really restrict the way that you can do that. Very strong tension between those two things. >> It really is a delicate balance. And especially as people are trying to accelerate and streamline their cloud projects, a lot to consider. How do you all help them do that? Monty, let's go to you. >> Yeah, we keep saying data, data, what is it really? It's ones and zeros. In this day and age, everything we see, we touch, we do, we either use data, or we create data, and then that... >> Savannah: We are data quite literally. >> We literally are data. And so then what you end up with is all these disparate data silos and different applications with different data, and how do you bring all that together? And that's where customers really struggle. And what we do is we bring it all together, and we make it actionable for the customer. We make it very simple for them to take the data, use it for the outcomes that they're looking for in their business initiatives. >> Expand on that. What do you mean make it actionable? Do you tag it? Do you organize it in some way? What's different about your approach? >> I mean, it's a really flexible platform. And I think we're part of a broader ecosystem. Even internally, we are a data driven company. Coming into the company in April, I was able to come in and get this realtime view of like, "Hey, here's where our teams are." And it's all in front of me in a Tableau dashboard that's populated from Talend integration, bringing data out of our different systems, different systems like Workday where we're giving offers out to people. And so everything from managing headcount to where our AWS spend is, all of that stuff. >> Now, we've heard a lot of talk about data and in fact the keynote yesterday that was focused mainly on data and getting data out of silos. How do you play with AWS in that role? Because AWS has other data integration partners. >> Sam: For sure. >> What's different about your relationship? Yeah. >> Go ahead. >> Yeah, we've had a strong relationship with AWS for many years now. We've got more than 80 connectors into the different AWS services. So we're not new to the AWS game. We align with the sales teams, we align with the partner teams, and then of course, we align with all the different business units and verticals so that we can enact that co-sell motion together with AWS. >> Sam: Yeah. And I think from our product standpoint, again, just being a hyper flexible platform, being able to put, again, any different type of source of data, to any type of different destination, so things like Redshift, being able to bring data into those cloud data warehouses is really how we do that. And then I think we have between bringing data from A to B, we're also able to do that along a number of different dimensions. Whether that's just like, "Hey, we just need to do this once a day to batch, all the way down to event driven things, streaming and the like. >> That customization must be really valuable for your customers as well. So one of the big themes of the show has been cost reduction. Obviously with the economic times as we're potentially dipping our toes into as well, is just in general, always wanting to increase margins. How do you help customers cut cost? >> Well, it's cost cutting, but it's also speed to market. The faster you can get a product to market, the faster you can help your customers. Let's say healthcare life sciences, pharmaceutical companies, patient outcomes. >> Great and timely example there. >> Patient outcomes, how do they get drugs to market quicker? Well, AstraZeneca leveraged our platform along with AWS. And they even said >> Cool. >> for every dollar that they spend on data initiatives, they get $40 back. That's a billion dollars >> Wow. >> savings by getting a drug to market one month faster. >> Everybody wins. >> How do you accelerate that process? >> Well, by giving them the right data, taking all the massive data that I mentioned, siloed in everywhere, and making it so that the data scientists can take all of this data and make use of it, makes sense of it, and move their drug production along much quicker. >> Yeah. And I think there's other things too like being very flexible in the way that it's deployed. Again, I think like you have this historical story of like, it takes forever for data to get updated, to get put together. >> Savannah: I need it now. And in context. >> And I think where we're coming from is almost more of a developer focus where your jobs are able to be deployed in any way you want. If you want to containerize those, you want to scale them, you need to schedule them that way. We plug into a lot of different ecosystems. I think that's a differentiation as well. >> I want to hang out on this one just for a second 'cause it's such a great customer success story and so powerful. I mean, in VC land, if you can take a dollar and make two, they'll give you a 10x valuation, 40. That is so compelling. I mean, do you think other customers could expect that kind of savings? A billion dollars is nothing to laugh at especially when we're talking about developing a vaccine. Yeah, go for it, Sam. >> It really depends on the use case. I think what we're trying to do is being able to say, "Hey, it's not just about cost cutting, but it's about tailoring the offerings." We have other customers like major fast food vendors. They have mobile apps and when you pull up that mobile app and you're going to do a delivery, they want to be able to have a customized offering. And it's not like mass market, 20% off. It's like, they want to have a very tailored offer to that customer or to that person that's pulling open that app. And so we're able to help them architect and bring that data together so that it's immediately available and reliable to be able to give those promotions. >> We had ARP on the show yesterday. We're talking about 50 million subscribers and how they customize each one of their experiences. We all want it to be about us. We don't want that generic at... Yeah, go for it, Paul. >> Oh, okay. >> Yeah. >> Well, I don't want to break break the rhythm here, but one area where you have differentiated, about two years ago you introduced something called the trust score. >> Sam: Yeah. >> Can you explain what that is and how that has resonated with your customers? >> Yeah, let's talk about this. >> Yeah, the thing about the trust score is, how many times have you gotten a set of data? And you look at it and you say, "Where did you get this data? Something doesn't look right here." And with the trust score, what we're able to do is quantify and value the different attributes of the data. Whether it's how much this is being used. We can profile the data, and we have a trust score that runs over time where you can actually then look at each of these data sets. You can look at aggregates of data sets to then say... If you're the data engineer, you can say, "Oh my, something has gone wrong with this particular dataset." Go in, quickly pull up the data. You can see if some third party integration has polluted your data source. I mean, this happens all the time. And I think if you sort of compare this to the engineering world, you're always looking to solve those problems sooner, earlier in the chain. You don't want your consumer calling you saying, "Hey, I've got a problem with the data, or I've got a problem- >> You don't want them to know there was ever a problem in theory. >> Yeah, the trust score helps those data engineers and those people that are taking care of the data address those problems sooner. >> How much data does somebody need to be able to get to the point where they can have a trust score? If you know what I'm trying to say. How do we train that? >> I mean, it can be all the way from just like a single data source that's getting updated, all the way to very large complex ones. That's where we've introduced this hierarchy of data sets. So it's not just like, "Hey, you've got a billion data sources here and here are the trust scores." But it's like, you can actually architect this to say like, "Okay, well, I have these data sets that belong to finance." And then finance will actually get, "Here's the trust score for these data sets that they rely on." >> What causes datasets to become untrustworthy? >> Yeah. Yeah. I mean, it happens all the time. >> A of different things, right? >> In my history, in the different companies that I've been at, on the product side, we have seen different integrations that maybe somebody changes something. In upstream, some of those integrations can actually be quite brittle. And as a consumer of that data, it's not necessarily your fault, but that data ends up getting put into your production database. All of a sudden your data engineering team is spending two days unwinding those transactions, fixing the data that's in there. And all the while, that bad data that's in your production system, is causing a problem for somebody that is ultimately relying on that. >> Is that usually a governance problem? >> I think governance is probably a separate set of constraints. This is sort of the tension between wanting to get all of the data available to your consumers versus wanting to have the quality around it as well. >> It's tough balance. And I think that it's really interesting. Everybody wants great data, and you could be making decisions that affect people's wellness, quite frankly. >> For sure. >> Very dramatically if you're ill-informed. So that's very exciting. >> To your point, we are all data. So if the data is bad, we're not going to get the outcomes that we want ultimately, >> I know. We certainly want the best outcomes for ourselves. >> We track that data health for its entire life cycle throughout the process. >> That's cool. And that probably increases your confidence in the trust score as well 'cause you're looking at so much data all the time. You got a smart thing going on over here. I like it. I like it a lot. >> We believe in it and so does AWS because they are a strong partner of ours, and so do customers. I think we mentioned we've had some phenomenal customer conversations along with- >> What a success story and case study. I want to dust your shoulders off right now if I wasn't tethered in. That's super impressive. So what's next for you all? >> Yeah, so I think we're going to continue down this path of data health and data governance. Again, I kind of talked about the... you're talking about data health being this differentiator on top of just moving the data around and being really good at that. I think you're also going to have different things around country level or state level governance, literal laws that you need to comply with. And so like- >> Savannah: CCPA- >> I mean, a long list- >> Oodles. Yeah. Yeah, yeah, yeah. >> I think we're going to be doing some interesting things there. We are continuing to proliferate the sources of data that we connect to. We're always looking for the latest and greatest things to put the data into. I think you're going to see some interesting things come out of that too. >> And we continue to grow our relationship with AWS, our already strong relationship. So you can procure Talend products to the AWS marketplace. We just announced Redshift serverless support for Talend. >> All their age. >> Which sounds amazing, but because we've been doing this for so long with AWS, dirty little secret, that was easy for us to do because we're already doing all this stuff. So we made the announcement and everyone was like, "Congratulations." Like, "Thanks." >> Look at you all. Full of the humble brags. I love it. >> Talend has gone through some twists and turns over the last couple of years. Company went private, was purchased by Thoma Bravo about a year and a half ago. At that time, your CEO said that it was a chance to really refocus the company on some core strategic initiatives and move forward. Both of you joined obviously after that happened. But what did you see about sort of the new Talend that attracted you, made you want to come over here? >> For sure. Yeah. I think, when I got a chance to talk to the board and talk to Chris, our chair, we talked about there being the growth thesis behind it. So I think Thoma been a great partner to Talend. I think we're able to do some things internally that would be I think, fairly challenging for companies that are in the public markets right now. I think especially, just a lot of pressure on different prices and the cost capital and all of that. >> Right now. >> That was a really casual way of stating that. But yeah, just a little pressure. >> Little bit of pressure. And who knows? Who knows how long that's going to last, right? But I think we've got a great board in place. They've been very strong strategic partner for us talking about all the different ways that we can grow. I think it's been a good partner for us- >> One of the strengths of Thoma's strategy is synergy between the companies they've acquired. >> Oh, for sure. >> They've acquired about 40 software companies. Are you seeing synergy? You talk to those other companies a lot? >> Yeah, so I have an operating partner. I talk with him on a weekly, sometimes daily basis. If we have questions or like, "Hey, what are you seeing in this space?" We can get plugged in to advisors very quickly. I think it's been a very helpful thing where... otherwise, you're relying on your personal network or things like that. >> This is why Monty was saying it was easy for you guys to go serverless. >> And we keep talking about trust, but in this case, Thoma Bravo really trusts our senior leadership team to make the right decisions that Sam and I are here making as we move forward. It's a great relationship. >> Sam: A good team. >> It sounds like it. All the love. I can feel the love even from you guys talking about it, it's genuine. You're not just getting paid to show this. That's fantastic. >> Are we getting paid for this or... >> Yeah. (Savannah giggling) (Paul laughing) I mean, some folks in the audience are probably going to want your autograph after this, although you get that a lot- >> Pictures are available after- >> Yeah, selfies are 10 bucks. That's how I get my boos budget. So last question for you. We have a challenge here on the theCUBE re:invent. We're looking for your 32nd hot take. Think of it as your thought leadership sizzle reel. Biggest takeaway, key themes from the show or looking forward into 2023? Sam, you're ready to rock, go. >> Yeah, totally. >> I think you're going to continue to hear the tension between being able to bring the data to the masses versus the simplicity and being able to do that in a way that is compliant with all the different laws, and then clean data. It's like a lot of different challenges that arise when you do this at scale. And so I think if you look at the things that AWS is announcing, I think you look at any sort of vendor in the data space are announcing, you see them sort of coming around to that set of ideas. Gives me a lot of confidence in the direction that we're going that we're doing the right stuff and we're meeting customers and prospects and partners, and everybody is like... We kind of get into this conversation and I'll say, "Yeah, that's it. We want to get involved in that." >> You can really feel the momentum. Yeah, it's true. It's great. What about you, Monty? >> I mean, I don't need 30 seconds. I mentioned it. >> Great. >> Between Talend and AWS, we're aligned from the sales teams to the product teams, the partner teams and the alliances. We're just moving forward and growing this relationship. >> I love it. That was perfect. And on that note, Sam, Monty, thank you so much for joining us. >> Yeah, thanks for having us. >> I'm sure your careers are going to continue to be rad at Talend and I can't wait to continue the conversation. >> Sam: Yeah, it's a great team. >> Yeah, clearly. I mean, look at you two. If you're any representation of the culture over there, they're doing something great. (Monty laughing) I thank all of you for tuning in to our nearly... Well, shoot. I think now over 100 interviews at AWS Reinvent in Sin City. We are hanging out here. Paul and I've got a couple more for you. So we hope to see you tuning in with Paul Gillin. I'm Savannah Peterson. You're watching theCUBE, the leader in high tech coverage. (upbeat music)
SUMMARY :
How you doing? you're just as fabulous, Savannah. They pay you enough to keep I am excited about our next conversation. Of the PR 2%, the most Yeah, yeah. So how's the show been for you guys? of time with customers really about the community. getting my steps in above goals. I feel like the balance is good. in the partnership. a conversation in person. changing the business here. on the snow floor. We've had a lot of conversations that really restrict the How do you all help them do that? and then that... and how do you bring all that together? What do you mean make it actionable? And I think we're part and in fact the keynote yesterday your relationship? so that we can enact that And then I think we have between So one of the big themes of the show the faster you can help your customers. get drugs to market quicker? for every dollar that they to market one month faster. and making it so that the data scientists Again, I think like you have And in context. And I think where we're coming from I mean, do you think other customers and when you pull up that mobile app We had ARP on the show yesterday. called the trust score. And I think if you sort of compare this You don't want them to Yeah, the trust score to be able to get to the point I mean, it can be all the way I mean, it happens all the time. on the product side, we have all of the data available And I think that it's really interesting. So that's very exciting. So if the data is bad, the best outcomes for ourselves. We track that data health in the trust score as well I think we mentioned I want to dust your literal laws that you need to comply with. I think we're going to be doing So you can procure Talend that was easy for us to do the humble brags. Both of you joined obviously and talk to Chris, our chair, That was a really But I think we've got One of the strengths You talk to those other companies a lot? I think it's been a very it was easy for you guys to go serverless. to make the right decisions I can feel the love even from I mean, some folks in the audience on the theCUBE re:invent. the data to the masses You can really feel the momentum. I mean, I don't need 30 seconds. from the sales teams to the product teams, And on that note, Sam, Monty, continue the conversation. I mean, look at you two.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
Sam | PERSON | 0.99+ |
Monty | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Paul Gillin | PERSON | 0.99+ |
Paul | PERSON | 0.99+ |
Savannah | PERSON | 0.99+ |
April | DATE | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
$40 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
two days | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
AstraZeneca | ORGANIZATION | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
Talend | ORGANIZATION | 0.99+ |
10 bucks | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
Sin City | LOCATION | 0.99+ |
2023 | DATE | 0.99+ |
Thoma | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Both | QUANTITY | 0.99+ |
one month | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
more than 80 connectors | QUANTITY | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.98+ |
Sam Pierson | PERSON | 0.98+ |
One | QUANTITY | 0.97+ |
each | QUANTITY | 0.97+ |
over 100 interviews | QUANTITY | 0.97+ |
about 50 million subscribers | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
a dollar | QUANTITY | 0.97+ |
about 40 software companies | QUANTITY | 0.96+ |
once a day | QUANTITY | 0.95+ |
32nd hot take | QUANTITY | 0.94+ |
one | QUANTITY | 0.94+ |
billion dollars | QUANTITY | 0.94+ |
about two years ago | DATE | 0.93+ |
one area | QUANTITY | 0.92+ |
Thoma Bravo | ORGANIZATION | 0.92+ |
Talend | TITLE | 0.92+ |
Talend | PERSON | 0.92+ |
about a year and a half ago | DATE | 0.91+ |
Monte Denehie | PERSON | 0.9+ |
Thoma Bravo | PERSON | 0.88+ |
Tableau | TITLE | 0.88+ |
Two fabulous gentlemen | QUANTITY | 0.86+ |
day four | QUANTITY | 0.85+ |
Muddu Sudhakar, Aisera | AWS re:Invent 2022
(upbeat music) >> Hey, welcome back everyone, live coverage here. Re:invent 2022. I'm John Furrier, host of theCUBE. Two sets here. We got amazing content flowing. A third set upstairs in the executive briefing area. It's kind of a final review, day three. We got a special guest for do a re:Invent review. Muddu Sudhakar CEO founder of Aisera. Former multi-exit entrepreneur. Kind of a CUBE analyst who's always watching the floor, comes in, reports on our behalf. Thank you, you're seasoned veteran. Good to see you. Thanks for coming. >> Thank you John >> We've only got five minutes. Let's get into it. What's your report? What are you seeing here at re:Invent? What's the most important story? What's happening? What should people pay attention to? >> No, a lot of things. First all, thank you for having me John. But, most important thing what Amazon has announced is AIML. How they're doubling down on AIML. Amazon Connect for Wise. Watch out all the contact center vendors. Third, is in the area of workflow, low-code, no-code, workflow automation. I see these three are three big pillars. And, the fourth is ETL and ELTs. They're offering ETL as included as a part of S3 Redshift. I see those four areas are the big buckets. >> Well, it's not no ETL to S3. It's ETL into S3 or migration. >> That's right. >> Then the other one was Zero ETL Promise. >> Muddu: That's right. >> Which there's a skeptical group out there that think that's not possible. I do. I think ultimately that'll happen, but what's your take? >> I think it's going to happen. So, it's going to happen both within that data store as well as outside the data store, data coming in. I think that area, Amazon is going to slowly encroach into the whole thing will be part offered as a part of Redshift and S3. >> Got it. What else are you seeing? Security. >> Amazon Connect Amazon Connect is a big thing. >> John: Why is that so important? It seems like they already have that. >> They have it, but what they're doing now is to automate AI bots. They want to use AI bot to automate both agent assist, AI assist, and also WiseBot automation. So, all the contact center Wise to text they're doubling down. I think it's a good competition to Microsoft with the Nuance acquisition and what Zoom is doing today. So, I think within Microsoft, Zoom, and Amazon, it's a nice competition there. >> Okay, so we had Adam's keynote, a lot of security and data, that was big. Today, we had Swami, all ML, 13 announcements. Adam did telegraph to me that he was going to to share the love. Jassy would've probably taken most of those announcements, we know that. Adam shared the love. So, Adam, props to you for sharing the love with Swami and some of those announcements. We had 13. So, good for him. >> Yes. >> And then, we had Aruba with the partners. What's your take on the partner network? A revamp? >> No, I think Aruba did a very good job in terms of partners. Look at these, one of the best stores that Amazon does. Even the companies like me, I'm a startup company. They know how to include the partners, drive more revenue with partners, sell through it, more expansion. So, Amazon is still one of the best for startup to mid-market companies to go into enterprise. So, I love their partnership angle. >> One of the things I like that she said that resonated with me 'cause, I've been working with those teams, is it's unified, clear roles, but together. But, scaling the support for partners and making money for partners. >> That's right. >> That is a huge deal. Big road ahead. She's focused on it. She says, no problem. We want to scale up the business model of the channel. >> Muddu: That's right. >> The resources, so that the ecosystem can make money and serve customers or serve customers and make money. >> Muddu: That's right. And, I think one thing that they're always good is Marketplace. Now, they're doing is outside of market with ISV, co-sell, selling through. I think Amazon really understood that adding the value so that we make money as a partners and they make money, incrementally. So, I think Aruba is doing a very good job. I really like it. >> Okay, final question. What's going on with Werner? What do you expect to hear tomorrow from a developer front? Not a lot of developer productivity conversations at this re:Invent. Not a lot of people talking about software supply chain although Snyk was on theCUBE earlier. Developer productivity. Werner's going to speak to that tomorrow we think. Or, I don't know. What do you think? >> I think he's going talk something called generative AI. Rumored the people are talking about the code will be returned by the algorithms now. I think if I'm Werner, I'm going to talk about where the technology is going, where the humans will not be writing code. So, I think AI is going to double down with Amazon more on the generative AI. He's going to try a lot about that. >> Generative AI is hot. We could have generative CUBE, no hosts. >> Muddu: Yes, that would be good. >> No code, no host >> Muddu: Have an answer, John Software. (both laugh) >> We're going to automate everything. Muddu, great to hear from you. Thanks for reporting. Anything else on the ecosystem? Any observations on the ecosystem and their opportunity? >> So, coming from my side, if I'd to provide an answer, today we have like close to thousand leads that are good. Most of them are financial, healthcare. Healthcare is still one of the largest ones I saw in this conference. Financials, and then, I'm started seeing a lot more on the manufacturing. So, I think supply chain, they were not so. I think Amazon is doing fantastic job with financial, healthcare, and supply chain. >> Where is their blind spot if you had to point that one? >> I think media and entertainment. Media and entertainment is not that big on Amazon. So, I think we should see a lot more of those. >> Yeah, I think they need to look at that. Any other observations? Hallway conversations that are notable that you would like to share with folks watching? >> I think what needs to happen is with VMware, and Citrix desktop, and Endpoint Management. That's their blind spot. So far, nobody's really talking about the Endpoints. Your workstation, laptop, desktop. Remember, that was big with VMware. Nope, that's not a thought of conversation in email right now. So, I think that area is left behind by Amazon. Somebody needs to go after that white space. >> John: And, the audience here is over 50,000. Big numbers. >> Huge. One of the best shows, right? I mean after Covid. It's by far the best show I've seen in this year. >> All right, if you'd do a sizzle reel, what would it be? >> Sizzle reel. I think it's going to be a lot more on, as I said, generative to AI is the key word to watch. And, more than that, low-code no-code workflow automation. How do you automate the workflows? Which is where ServiceNow is fairly strong. I think you'll see Amazon and ServiceNow playing in the workflow automation. >> Muddu, thank you so much for coming on theCube sharing. That's a wrap up for day three here in theCUBE. I'm John Furrier, Dave Vellante for Lisa Martin, Savannah Peterson, all working on Paul Gillan and John Walls and the whole team. Thanks for all your support. Wrapping it up to the end of the day. Pulling the plug. We'll see you tomorrow. (upbeat music)
SUMMARY :
Good to see you. What's the most important story? Third, is in the area Well, it's not no ETL to S3. Then the other one I think ultimately that'll I think it's going to happen. What else are you seeing? Amazon Connect is a big thing. John: Why is that so important? So, all the contact center Wise to text So, Adam, props to you Aruba with the partners. So, Amazon is still one of the best One of the things I like that she said business model of the channel. the ecosystem can make money that adding the value so that to that tomorrow we think. So, I think AI is going Generative AI is hot. Muddu: Have an answer, John Software. Anything else on the ecosystem? of the largest ones I saw So, I think we should that you would like to I think what needs to happen is John: And, the audience One of the best shows, right? I think it's going to be Walls and the whole team.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Adam | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
John Walls | PERSON | 0.99+ |
Muddu | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Jassy | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Werner | PERSON | 0.99+ |
Paul Gillan | PERSON | 0.99+ |
five minutes | QUANTITY | 0.99+ |
Zoom | ORGANIZATION | 0.99+ |
Swami | PERSON | 0.99+ |
Muddu Sudhakar | PERSON | 0.99+ |
tomorrow | DATE | 0.99+ |
Today | DATE | 0.99+ |
Aisera | ORGANIZATION | 0.99+ |
13 | QUANTITY | 0.99+ |
Third | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
fourth | QUANTITY | 0.99+ |
over 50,000 | QUANTITY | 0.99+ |
13 announcements | QUANTITY | 0.98+ |
AWS | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Aisera | PERSON | 0.98+ |
Two sets | QUANTITY | 0.98+ |
John Software | PERSON | 0.97+ |
Nuance | ORGANIZATION | 0.97+ |
this year | DATE | 0.96+ |
Aruba | ORGANIZATION | 0.96+ |
day three | QUANTITY | 0.96+ |
S3 | TITLE | 0.94+ |
four areas | QUANTITY | 0.92+ |
day three | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
AIML | TITLE | 0.9+ |
Wise | ORGANIZATION | 0.88+ |
VMware | ORGANIZATION | 0.88+ |
S3 Redshift | TITLE | 0.85+ |
third set | QUANTITY | 0.84+ |
three big pillars | QUANTITY | 0.82+ |
Redshift | TITLE | 0.8+ |
thousand leads | QUANTITY | 0.78+ |
ServiceNow | TITLE | 0.77+ |
theCUBE | ORGANIZATION | 0.76+ |
CUBE | ORGANIZATION | 0.76+ |
Citrix | ORGANIZATION | 0.75+ |
WiseBot | TITLE | 0.75+ |
Domenic Ravita, SingleStore | AWS re:Invent 2022
>>Hey guys and girls, welcome back to The Cube's Live coverage of AWS Reinvent 22 from Sin City. We've been here, this is our third day of coverage. We started Monday night first. Full day of the show was yesterday. Big news yesterday. Big news. Today we're hearing north of 50,000 people, and I'm hearing hundreds of thousands online. We've been having great conversations with AWS folks in the ecosystem, AWS customers, partners, ISVs, you name it. We're pleased to welcome back one of our alumni to the program, talking about partner ecosystem. Dominic Rav Vida joins us, the VP of Developer relations at single store. It's so great to have you on the program. Dominic. Thanks for coming. >>Thanks. Great. Great to see you >>Again. Great to see you too. We go way back. >>We do, yeah. >>So let's talk about reinvent 22. This is the 11th reinvent. Yeah. What are some of the things that you've heard this week that are exciting that are newsworthy from single stores perspective? >>I think in particular what we heard AWS announce on the zero ETL between Aurora and Redshift, I think it's, it's significant in that AWS has provided lots of services for building blocks for applications for a long time. And that's a great amount of flexibility for developers. But there are cases where, you know, it's a common thing to need to move data from transactional systems to analytics systems and making that easy with zero etl, I think it's a significant thing and in general we see in the market and especially in the data management market in the cloud, a unification of different types of workloads. So I think that's a step in the right direction for aws. And I think for the market as a whole, why it's significant for single store is, that's our specialty in particular, is to unify transactions and analytics for realtime applications and analytics. When you've got customer facing analytic applications and you need low latency data from realtime streaming data sources and you've gotta crunch and compute that. Those are diverse types of workloads over document transactional workloads as well as, you know, analytical workloads of various shapes and the data types could be diverse from geospatial time series. And then you've gotta serve that because we're all living in this digital service first world and you need that relevant, consistent, fresh data. And so that unification is what we think is like the big thing in data right >>Now. So validation for single store, >>It does feel like that. I mean, I'd say in the recent like six months, you've seen announcements from Google with Alloy db basically adding the complement to their workload types. You see it with Snowflake adding the complement to their traditional analytical workload site. You see it with Mongo and others. And yeah, we do feel it was validation cuz at single store we completed the functionality for what we call universal storage, which is, is the industry's first third type of storage after row store and column store, single store dbs, universal storage, unifies those. So on a single copy of data you can form these diverse workloads. And that was completed three years ago. So we sort of see like, you know, we're onto something >>Here. Welcome to the game guys. >>That's right. >>What's the value in that universal storage for customers, whether it's a healthcare organization, a financial institution, what's the value in it in those business outcomes that you guys are really helping to fuel? >>I think in short, if there were like a, a bumper sticker for that message, it's like, are you ready for the next interaction? The next interaction with your customer, the next interaction with your supply chain partner, the next interaction with your internal stakeholders, your operational managers being ready for that interaction means you've gotta have the historical data at the ready, accessible, efficiently accessible, and and, and queryable along with the most recent fresh data. And that's the context that's expected and be able to serve that instantaneously. So being ready for that next interaction is what single store helps companies do. >>Talk about single store helping customers. You know, every company these days has to be a data company. I always think, whether it's my grocery store that has all my information and helps keep me fed or a gas station or a car dealer or my bank. And we've also here, one of the things that John Furrier got to do, and he does this every year before aws, he gets to sit down with the CEO and gets really kind of a preview of what's gonna happen at at the show, right? And Adams Lisky said to him some interesting very poignant things. One is that that data, we talk about data democratization, but he says the role of the data analyst is gonna go away. Or that maybe that term in, in that every person within an organization, whether you're marketing, sales, ops, finance, is going to be analyzing data for their jobs to become data driven. Right? How does single store help customers really become data companies, especially powering data intensive apps like I know you do. >>Yeah, that's, there's a lot of talk about that and, and I think there's a lot of work that's been done with companies to make that easier to analyze data in all these different job functions. While we do that, it's not really our starting point because, and our starting point is like operationalizing that analytics as part of the business. So you can think of it in terms of database terms. Like is it batch analysis? Batch analytics after the fact, what happened last week? What happened last month? That's a lot of what those data teams are doing and those analysts are doing. What single store focuses more is in putting those insights into action for the business operations, which typically is more on the application side, it's the API side, you might call it a data product. If you're monetizing your data and you're transacting with that providing as an api, or you're delivering it as software as a service, and you're providing an end-to-end function for, you know, our marketing marketer, then we help power those kinds of real time data applications that have the interactivity and have that customer touchpoint or that partner touchpoint. So you can say we sort of, we put the data in action in that way. >>And that's the most, one of the most important things is putting data in action. If it's, it can be gold, it can be whatever you wanna call it, but if you can't actually put it into action, act on insights in real time, right? The value goes way down or there's liability, >>Right? And I think you have to do that with privacy in mind as well, right? And so you have to take control of that data and use it for your business strategy And the way that you can do that, there's technology like single store makes that possible in ways that weren't possible before. And I'll give you an example. So we have a, a customer named Fathom Analytics. They provide web analytics for marketers, right? So if you're in marketing, you understand this use case. Any demand gen marketer knows that they want to see what the traffic that hits their site is. What are the page views, what are the click streams, what are the sequences? Have these visitors to my website hit certain goals? So the big name in that for years of course has been Google Analytics and that's a free service. And you interact with that and you can see how your website's performing. >>So what Fathom does is a privacy first alternative to Google Analytics. And when you think about, well, how is that possible that they, and as a paid service, it's as software, as a service, how, first of all, how can you keep up with that real time deluge of clickstream data at the rate that Google Analytics can do it? That's the technical problem. But also at the data layer, how could you keep up with Google has, you know, in terms of databases And Fathom's answer to that is to use single store. Their, their prior architecture had four different types of database technologies under the hood. They were using Redis to have fast read time cash. They were using MySEQ database as the application database they were using. They were looking at last search to do full tech search. And they were using DynamoDB as part of a another kind of fast look up fast cash. They replaced all four of those with single store. And, and again, what they're doing is like sort of battling defacto giant in Google Analytics and having a great success at doing that for posting tens of thousands of websites. Some big names that you've heard of as well. >>I can imagine that's a big reduction from four to one, four x reduction in databases. The complexities that go away, the simplification that happens, I can imagine is quite huge for them. >>And we've done a study, an independent study with Giga Home Research. We published this back in June looking at total cost of ownership with benchmarks and the relevant benchmarks for transactions and analytics and databases are tpcc for transactions, TPC H for analytics, TPC DS for analytics. And we did a TCO study using those benchmark datas on a combination of transactional and analytical databases together and saw some pretty big improvements. 60% improvement over Myse Snowflake, for >>Instance. Awesome. Big business outcomes. We only have a few seconds left, so you've already given me a bumper sticker. Yeah. And I know I live in Silicon Valley, I've seen those billboards. I know single store has done some cheeky billboard marketing campaigns. But if you had a new billboard to create from your perspective about single store, what does it say? >>I, I think it's that, are you, are you ready for the next interaction? Because business is won and lost in every moment, in every location, in every digital moment passing by. And if you're not ready to, to interact and transact rather your systems on your behalf, then you're behind the curve. It's easy to be displaced people swipe left and pick your competitor. So I think that's the next bumper sticker. I may, I would say our, my favorite billboard so far of what we've run is cover your SaaS, which is what is how, what is the data layer to, to manage the next level of SaaS applications, the next generation. And we think single store is a big part >>Of that. Cover your SaaS. Love it. Dominic, thank you so much for joining me, giving us an update on single store from your perspective, what's going on there, kind of really where you are in the market. We appreciate that. We'll have to >>Have you back. Thank you. Glad to >>Be here. All right. For Dominic rta, I'm Lisa Martin. You're watching The Cube, the leader in live, emerging and enterprise tech coverage.
SUMMARY :
It's so great to have you on the program. Great to see you Great to see you too. What are some of the things that you've heard this week that are exciting that are newsworthy from And so that unification is what we think is like the So on a single copy of data you can form these diverse And that's the context that's expected and be able to serve that instantaneously. one of the things that John Furrier got to do, and he does this every year before aws, he gets to sit down with the CEO So you can think of it in terms of database terms. And that's the most, one of the most important things is putting data in action. And I think you have to do that with privacy in mind as well, right? But also at the data layer, how could you keep up with Google has, you know, The complexities that go away, the simplification that happens, I can imagine is quite huge for them. And we've done a study, an independent study with Giga Home Research. But if you had a new billboard to create from your perspective And if you're not ready to, to interact and transact rather your systems on Dominic, thank you so much for joining me, giving us an update on single store from your Have you back. the leader in live, emerging and enterprise tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dominic | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
60% | QUANTITY | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Sin City | LOCATION | 0.99+ |
June | DATE | 0.99+ |
Today | DATE | 0.99+ |
last week | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Monday night | DATE | 0.99+ |
last month | DATE | 0.99+ |
Giga Home Research | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
John Furrier | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
third day | QUANTITY | 0.99+ |
single store | QUANTITY | 0.99+ |
Domenic Ravita | PERSON | 0.99+ |
Dominic Rav Vida | PERSON | 0.99+ |
Google Analytics | TITLE | 0.99+ |
Adams Lisky | PERSON | 0.99+ |
Fathom | ORGANIZATION | 0.98+ |
three years ago | DATE | 0.98+ |
single | QUANTITY | 0.98+ |
Fathom Analytics | ORGANIZATION | 0.98+ |
single copy | QUANTITY | 0.98+ |
hundreds of thousands | QUANTITY | 0.98+ |
Mongo | ORGANIZATION | 0.97+ |
One | QUANTITY | 0.97+ |
SingleStore | ORGANIZATION | 0.97+ |
this week | DATE | 0.97+ |
The Cube | TITLE | 0.96+ |
first third type | QUANTITY | 0.94+ |
four | QUANTITY | 0.94+ |
tens of thousands of websites | QUANTITY | 0.92+ |
MySEQ | TITLE | 0.91+ |
six months | QUANTITY | 0.91+ |
Redis | TITLE | 0.9+ |
DynamoDB | TITLE | 0.9+ |
Dominic rta | PERSON | 0.89+ |
Reinvent 22 | TITLE | 0.89+ |
north of 50,000 people | QUANTITY | 0.86+ |
first alternative | QUANTITY | 0.81+ |
first | QUANTITY | 0.81+ |
single stores | QUANTITY | 0.78+ |
first world | QUANTITY | 0.73+ |
Alloy | TITLE | 0.69+ |
few seconds | QUANTITY | 0.67+ |
Redshift | ORGANIZATION | 0.67+ |
Snowflake | ORGANIZATION | 0.67+ |
aws | ORGANIZATION | 0.67+ |
TCO | ORGANIZATION | 0.66+ |
Invent | EVENT | 0.66+ |
reinvent 22 | EVENT | 0.65+ |
Snowflake | TITLE | 0.65+ |
2022 | DATE | 0.64+ |
Aurora | ORGANIZATION | 0.56+ |
11th reinvent | EVENT | 0.52+ |
Fathom | PERSON | 0.51+ |
Myse | ORGANIZATION | 0.49+ |
Cube | ORGANIZATION | 0.46+ |
zero | QUANTITY | 0.34+ |
Roland Lee & Hawn Nguyen Loughren | AWS re:Invent 2022 - Global Startup Program
>>Good afternoon everybody. I'm John Walls and welcome back to our coverage here on the cube of AWS Reinvent 22. We are bringing you another segment with the Global Startup Program, which is part of the AWS Start Showcase, and it's a pleasure to welcome two new guests here to the showcase. First, immediately to my right Han w lre. Good to see you Han. Good to see you. The leader of the Enterprise Solutions Architecture at aws. And on the far right, Rolin Lee, who is the co-founder and CEO of Heim Doll Data. Roland, good to see you. Great >>To be here. >>All right, good. Thanks for joining us. Well first off, for those at home, I may not be familiar with Heim Doll. What do you do? Why are you here? But I'll let you take it from there. >>Well, we're one of the sponsors here at AWS and great to be here. We offer a data access layer in the form of a proxy, and what it does is it provides complete visibility and the capability to enhance the interaction between the application and one's current database. And as a result, you'll, the customer will improve database scale, database security and availability. And all these features don't require any application changes. So that's sort of our marketing pitch, if you will, all these types of features to improve the experience of managing a database without any application >>Changes. And, and where's the cloud come into play then, for you then, where, where did it come into play for you? >>So we started out actually helping out customers on premise, and a lot of enterprise customers are moving over to the cloud, and it was just a natural progression to do that. And so aws, which is a key part of ours, partners with us to help solve customer problems, especially on the database side, as the application being application performance tends to have issues between the interaction between the application database and we're solving that issue. >>Right. Sohan, I mean, Roan just touched on it about OnPrem, right? There's still some kickers and screamers out there that, that don't, haven't bought in or, or they're about to, but you're about to get 'em. I, I'm sure. But talk about that, that conversion or that transition, if you would, from going OnPrem into a hybrid environment or to into the, the bigger cloud environment and and how difficult that is sometimes. Yes. Maybe to get people to, to make that kind of a leap. >>Well, I would say that a lot of customers are wanting to focus more on product innovation experimentation, and also in terms of having to manage servers and patching, you know, it's to take away from that initiative that they're trying to do. So with aws, we provide undifferentiated heavy lifting so that they can focus on product innovation. And one of the areas talking about Heim is that from the database side, we do provide Amazon rds, which is database and also Aurora, to give them that lift so they don't have to worry about patching servers and setting up provisioning servers as well. >>Right. So Roland, can you get the idea across to people very simply, let us take care of the, the hard stuff and, and that will free you up to do your product innovations, to do your experimentations to, to really free up your team, basically to do the fun stuff and, and let us sweat over the, the, the details basically. Right? >>Exactly. Our, our motto is not only why build when, when you can buy. So a lot of it has to do with offering the, the value in terms of price and the features such as it's gonna benefit a team. Large companies like amazon.com, Google, they have huge teams that can build data access layers and proxies. And what we're trying to do here is commercialize those cuz those are built in house and it's not readily available for customers to use. And you'd need some type of interface between the application and the database. And we provide that sort of why build when you can buy. >>Well, I was gonna say why h right? I mean what's your special sauce? Because everybody's got something, obviously a market differentiator that you're bringing into place here. So you started to touch on a little bit there for me, but, but dive a little deeper there. I mean, what, what is it that, that you're bringing to the table with AWS that you think puts you above the crowd? >>Well, lemme give you a use case here. In typical events like let's say Black Friday where there's a surge traffic that can overwhelm the database, the Heim doll data access layer database proxy provides an auto scaling distributed architecture such that it can absorb those surges and traffic and help scale the database while keeping the data fresh and up to date. And so basically traffic based on season time of day, we can, we can adjust automatically and all these types of features that we offer, most notably automated query caching, ReadWrite split for asset compliance don't require any code changes, which typically requires the application developer to make those changes. So we're saving months, maybe years of development and maintenance. >>Yeah, a lot of gray hairs too, right? Yeah, you're, you're solving a lot of problems there. What about database trends in just in general Hunt, if you will. I mean, this is your space, right? I mean, what we're hearing about from Heindel, you know, in terms of solutions they're providing, but what are you seeing just from the macro level in terms of what people are doing and thinking about the database and how it relates to the cloud? Right. >>And some of the things that we're seeing is that we're seeing an explosion of data, relevant data that customers need to be able to consume and also process as well. So with the explosion of data, there's also, we see customers trying to modernize their application as well through microservices, which does change the design patterns of like the applications we call the access data patterns as well. So again, going back to that, a differentiated heavy lifting, we do have something called purpose built databases, right? It's the right tool for the right purpose. And so it depends on what their like rpo, rto their access to data pattern. Is it a base, is it an acid? So we want to be able to provide them the options to build and also innovate. So with that, that's why we have the Amazon rds, the also the, we also have Redshift, we also have Aurora and et cetera. The Rediff is more of the BI side, but usually when you ingest the data, you have some level of processing to get more insight. So with that, that's why customers are moving more of towards the managed service so that they can give that lift and then focusing on that product and innovation. Yeah. >>Have we kind of caught up or are we catching up to this just the tsunami of data to begin with, right? Because I mean, that was it, you know, what, seven, eight years ago when, when that data became kind of, or becoming king and, and reams and reams and reams and all, you know, can't handle it, right? And, and are we now able to manage that process and manage that flow and get the right data into the right hands at the right time? We're doing better with that. >>I would say that it, it definitely has grown in size of the amount of data that we're ingesting. And so with the scalability and agility of the cloud, we're able to, I would say, adapt to the rapid changes and ingestions of the data. So, so that's why we have things like Aurora servers to have that or auto scale so they can do like MySQL or Postgres and then they can still, like what you know, I'm trying to do is basically don't have to co do like any code changes. It would be a data migration. They still use the same underlying database on also mechanisms, but here we're providing them at scale on the cloud. >>Yeah. Our proxies, they must have for all databases. I mean, is that, is that essential these days? >>Well, good question John. I would say yes. And this is often built in house, as I mentioned, for large companies, they do build some type of data access layer or proxy and, or some utilize some orm, some object relational map to do it. And what again, what we're trying to do is offer this, put this out into the market commercially speaking, such that it can be readily used for, for all the customers to use rather than building it from scratch all the time. >>You know what I didn't ask you was Roy, how does AWS come into play for you then? And, and as in the startup mode, the focus that they've had in startups in general, but in you in particular, I mean, talk about that partnership or that relationship and the value that you're extracting from that. >>The ad AWS partnership has been absolutely wonderful. The collaboration, they have one of the best managed service databases. The value that it that adds in terms of the durability, the manageability, what the Heim doll data does is it compliments Amazon rds, Amazon Redshift very well in the sense that we're not replacing the database. What we're doing is we are allowing the customer to get the most out of the managed service database, whether it be Redshift or Aurora Serverless, rds, all without code changes. And or the analogy that I would give John is a car, a race car may be very fast, but it takes a driver to get to those fast speeds. We're the driver, the Hyundai proxy provides that intelligence so that you can get the most out of that database engine. >>And, and Hfi would then touch on, first off AWS and the emphasis that you have put on startups and are obviously, you know, kind of putting your money where your mouth is, right? With, with the way you've encouraged and nurtured that environment. And they would be about Heim doll in general about where you see this going or what you would like to have, where you want to take this in the next say 12 months, 18 months. >>I think it's more of a better together story of how we can basically coil with our partners, right? And, and basically focusing on helping our customers drive that innovation and be collaboration. So as Heim, as a independent service vendor isv, most customers can leverage that through a marketplace where basically it integrates very nicely with aws. So that gives 'em that lift and it goes back to the undifferentiated heavy lifting on the Hein proxy side, if you will, because then you have this proxy in the middle where then it helps them with their SQL performance. And I've seen use cases where customers were, have some legacy system that they may not have time to modernize the application. So they use this as a lift to keep, keep going as they try to modernize. But also I've seen customers who use are trying to use it as a, a way to give that performance lift because they may have a third party software that they cannot change the code by putting this in there that helps optimize their lines of business or whatever that is, and maybe can be online store or whatever. So I would say it was a better together type of story. >>Yeah. Which is, there's gotta be a song in there somewhere. So peek around the corner and if you wanna be headlights here right now in terms of 12, 18 months, I mean, what, you know, what what next to solve, right? You've already taken, you've slayed a few dragons along the way, but there are others I'm sure is it always happens in innovation in this space. Just when you solve a problem you've just dealt or you have to deal with others that pop up as maybe unintended consequences or at least a new challenge. So what would that be in your world right now? What, what do you see, you know, occupying your sleepless nights here for the next year or so? >>Well, for, for HOMEDALE data, it's all about improving database performance and scale. And those workloads change. We have O ltp, we have OLA with artificial intelligence ml. There's different type of traffic profiles and we're focused on improving those data profiles. It could be unstructured structured. Right now we're focused on structured data, which is relational databases, but there's a lot of opportunity to improve the performance of data. >>Well, you're driving the car, you got a good navigator. I think the GPS is working. So keep up the good work and thank you for sharing the time today. Thank you. Thank you, joy. Do appreciate it. All right, you are watching the cube. We continue our coverage here from AWS Reinvent 22, the Cube, of course, the leader in high tech coverage.
SUMMARY :
Good to see you Han. Why are you here? a data access layer in the form of a proxy, and what it does is it And, and where's the cloud come into play then, for you then, where, where did it come into play for you? and a lot of enterprise customers are moving over to the cloud, and it was just a that conversion or that transition, if you would, from going OnPrem into a hybrid environment or and patching, you know, it's to take away from that initiative that they're trying to do. the hard stuff and, and that will free you up to do your product innovations, So a lot of it has to do with offering the, the value in terms So you started to touch on a little bit there for me, but, but dive a little deeper there. Well, lemme give you a use case here. but what are you seeing just from the macro level in terms of what people are doing and thinking about the database The Rediff is more of the BI side, but usually when you ingest the data, you have some level of processing Because I mean, that was it, you know, what, seven, eight years ago when, then they can still, like what you know, I'm trying to do is basically don't have to co do like any I mean, is that, is that essential to use rather than building it from scratch all the time. And, and as in the startup mode, the focus that they've so that you can get the most out of that database engine. you have put on startups and are obviously, you know, kind of putting your money where your mouth is, right? heavy lifting on the Hein proxy side, if you will, because then you have this proxy in the middle where I mean, what, you know, what what next to solve, right? to improve the performance of data. up the good work and thank you for sharing the time today.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Walls | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Hyundai | ORGANIZATION | 0.99+ |
Rolin Lee | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
12 | QUANTITY | 0.99+ |
Roland | PERSON | 0.99+ |
Heim Doll Data | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Heim Doll | ORGANIZATION | 0.99+ |
Sohan | PERSON | 0.99+ |
Roan | PERSON | 0.99+ |
First | QUANTITY | 0.99+ |
Roy | PERSON | 0.99+ |
Black Friday | EVENT | 0.99+ |
18 months | QUANTITY | 0.99+ |
MySQL | TITLE | 0.99+ |
Heim | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
amazon.com | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
next year | DATE | 0.97+ |
seven | DATE | 0.97+ |
Hawn Nguyen Loughren | PERSON | 0.97+ |
two new guests | QUANTITY | 0.97+ |
SQL | TITLE | 0.96+ |
Roland Lee | PERSON | 0.96+ |
12 months | QUANTITY | 0.96+ |
one | QUANTITY | 0.95+ |
Han | PERSON | 0.94+ |
aws | ORGANIZATION | 0.94+ |
Rediff | ORGANIZATION | 0.89+ |
OLA | ORGANIZATION | 0.89+ |
Hein | ORGANIZATION | 0.85+ |
OnPrem | ORGANIZATION | 0.83+ |
Hfi | ORGANIZATION | 0.82+ |
Reinvent 22 | COMMERCIAL_ITEM | 0.81+ |
eight years ago | DATE | 0.79+ |
Redshift | TITLE | 0.79+ |
Redshift | ORGANIZATION | 0.76+ |
Heim doll | ORGANIZATION | 0.73+ |
22 | TITLE | 0.72+ |
Aurora | ORGANIZATION | 0.71+ |
Postgres | TITLE | 0.66+ |
Global Startup Program | TITLE | 0.66+ |
Start Showcase | EVENT | 0.62+ |
Heindel | PERSON | 0.59+ |
Aurora Serverless | TITLE | 0.57+ |
Invent 2022 | TITLE | 0.49+ |
Global Startup Program | OTHER | 0.47+ |
Hunt | PERSON | 0.41+ |
ReadWrite | ORGANIZATION | 0.4+ |
Reinvent | COMMERCIAL_ITEM | 0.36+ |
Molly Burns Qlik & Samir Shah, AARP | AWS re:Invent 2022
(slow upbeat music) >> Good afternoon and welcome back to Sin City. We're here at AWS reInvent with wall-to-wall coverage on theCUBE. My name is Savannah Peterson, joined with Dave Vellante, and very excited to have two exciting guests from Qlik and AARP with us. Molly and Samir, thank you so much for being here. Welcome to the show. >> Thank you for having us. >> Thank you for having us. >> How's it been so far for you, Molly? >> It's been a great show so far. We've got a big booth presence out here. We've had a lot of people coming by, doing demo stations and just really, really coming to the voice of the customer, so we've really enjoyed the event. >> Ah, love a good VOC conversation myself. How about for you, Samir? >> Oh, it's been great meeting a lot of product folks, meeting a lot of other people, trying to do similar things that we're doing, getting confirmation we're doing the right thing, and learning new things. And obviously, you know, here with Molly, it's been a highlight of my experience. >> What's the best thing you learned from your peers, this week? >> You know, some of the things, that we're all talking about, is how do we get data in the right place at the right time? And, you know, that's something that people are now starting to think about. >> Very hot topic. >> You know, doing it, and then not only getting it to the right place, but taking insights and taking action on it as it's getting there. So those are the conversations that are getting around, in the circle I've been hanging around with. >> You hearing the same thing at the booth or? >> Yeah, absolutely. >> And how are you guys responding? >> Well, I think, as a company, and the shifts in the market, people are really trying to determine what workloads belong in which Cloud, what belongs on-prem? And so talking about those realtime transformations, the integration points, the core systems they're coming from, and really how to unlock that data, is just really powerful and meaningful. So that's been a pretty consistent theme throughout the conference, and a lot of conversations that we have on a regular basis. >> I believe that, Molly, let's stick with you for a second. Just in case the audience isn't familiar, tell us a little more about Qlik. >> Yeah, so Qlik is a robust, end-to-end data pipeline. Starting with really looking at all of your source systems whether it's mainframe, SAP, relational database, kind of name your flavor as it's related to sources. Getting those sources over into the target landing spot whether it be Amazon, or other cloud players, or even if you're, if you're managing hybrid workloads. So that's kind of one piece of the end-to-end platform. And then the second piece is really having all that data, analytics ready, coming right through that real-time data pipeline, and really being able to use the data, to monetize the data, to make sense of the data. And then Qlik really does all that data preparation work underneath the visualization layer, which is where all the work happens. And then you get to see the output of that through the visualization of Qlik, which is, you know, the dashboards, the things that our people, people are used to seeing. >> I love that! So at AARP, what are you using Qlik for? What sort of dashboards are you pulling together? >> So when we started our journey to AWS, we knew that, you know, we're going to have our applications, they're distributed in the Cloud, but again, how do we get the data there, in the right place at the right time? So, as members are, taking action, they're calling into the call center, using our website, using our mobile apps. We want to want it to be able to take that information stream it, so we use Qlik, to take those changes when they happen as they happen, be able to stream it to Kafka and then push that data out to the applications that need it in the time that they needed it. So, instead of waiting for a batch job to happen overnight, we're able to now push this data in real time. And by doing that, we're able to personalize the engagement for our members. So if you come in, we know what you're doing, we can personalize the value that we put in front of you, and just make that engagement a lot more engaging for you. >> Yeah. >> And in the channel that you choose to want to come in with, right? Rather than a channel that we are trying to push to you. >> Everyone wants that personalized experience as we discussed, I love AARP, I've done a lot of work with AARP, I look forward to being a member, but in case the audience isn't familiar, you have the largest membership database of any company on Earth that I'm aware of. How many members does AARP have? >> We have nearly 38 million members, and 66,000 volunteers, and 2300 employees across every state in the United States. >> It's a perfect use case for Qlik, right? 'Cause you've been around for a while. You've got data in the million different places. You're trying to get, you've got a mainframe, right? You know, I hear Amazon's trying to put all the mainframes in the Cloud, but I'm guessing the business case isn't there for you. But you want the data that's coming out of that mainframe to be part of that data pipeline, right? So can you paint a picture, of how, what Molly was describing about the data pipeline, how that fits with AARP? >> Yeah, it's actually, it was a perfect use case. And you know, when we engaged with Qlik, what we wanted to be able to do is take that data in the mainframe, and get it distributed into the Cloud, accurately, securely, and make sure that we can track the lineage, and be able to say, hey, application A only needs name and address, application B needs, name, address, and payment. So we were able to do all of that within a couple of weeks, right? And getting that data out there, knowing that it's going to the right place, knowing it's secure, and knowing it's accurate, regardless of the application it goes to, we don't have to worry about seeking data across different applications. Now we know that there's a source of truth, and everything is done through the pipeline, and it's controlled in a way that, we can measure everything that's going through, how it's going through, and how it's being used by the applications, that are consuming it? >> So you've got the providence and the lineage of that data and that's what Qlik ensures, is that right? Is that your role or is that a partner role, combined? >> No, yes, that's absolutely Qlik's role. So for our new offering, Qlik Cloud data integration, it's a comprehensive solution, delivered as a service, delivers real time, automates, transformations, catalog and lineage, all extremely important. And in the case of Samir and AARP, they're trying to unlock the most valuable assets of their data in SAP and mainframe. And surprisingly, sometimes most valuable data in an organization is the hardest to actually get access to. >> Sure. >> So be, you know, just statistically, 70% of Fortune 500 companies still rely on mainframe. So when you think about that, and even when Samir and I are talking about it. >> That's a lot. >> Yeah. >> And that's a lot of scale, that's a lot of data. >> It's a lot of data. >> Yeah. >> So, you know, mainframe isn't a thing of the past. Companies are still relying on it. People have been saying that for years but when we're talking about getting the complex data out of there to really make something meaningful for AARP, we're really proud of the results, and the opportunity that we've been able to provide to really improve the member experience. And how people are able to consume AARP, and all the different offerings that they have? Kind of like you mentioned Savannah, and the way that you go about it. >> Well, it's also the high risk data. High value data, high risk data. You don't want to mess with it. You want to make sure that you've got that catalog to be able to say, okay, this is what we did with that data, this is where it came from. And then you essentially publish to other tools, analytic tools in the Cloud. Can you paint a picture of how that extends to the Cloud? >> Sure, so there's a couple of different things that we do with it. So once we get the data, into our streaming apps, we can publish it over to like our website. We can publish it to the call center, to mobile apps, to our data warehouse, where we can run analytics and AI on it. And then obviously a lot of our journeys, we use a journey orchestration tool, and we've built a CDP, a customer data platform, to get those insights in there, to drive, you know, personalization and experience. >> I'm smiling as you're talking, Samir, because I'm thinking of all the personalized experiences that my mother has with AARP, and it is so fun to learn about the technology that's serving that to her. >> Exactly. >> This segment actually becoming a bit more personal for me than I expected for a couple of reasons. So this is great. Molly, Qlik has been a part of the AWS ecosystem since the get go. How have things changed over the years? >> Yeah, so Qlik still remains the enterprise integration tool of choice for AWS especially- >> Let's call that a casual and just brag. >> Yeah. >> Because that's awesome. That's great, congratulations on that. >> Thank you for SAP and mainframe. So the relationship continues to evolve but we've been part of the ecosystem from since inception. So we look at, how we continue to evolve the partnership? And honestly, a lot of our customers landing spot is AWS. So the partnership evolves really on two fronts. One with Amazon itself, in a partnership lane, and two, with our customers, and what we're doing with them, and how we're able to really optimize what that looks like? And then secondly, earlier this year we announced an offering Amazon and Qlik, called Qlik Ramp, where we can come in and do, a half day architecture deep dive, look at SAP mainframe, and how they get to the Amazon landing spots, whether it's S3, Redshift, or EMR? So we got a lot of different things kind of going on in the Amazon ecosystem, whether it's customer forward and first, and how can we maximize the relationship spend et cetera, with Amazon. And then also how can we deliver, you know, kind of a shorter time to value throughout that process with something like a Qlik ramp, because we want to qualify, and solve customers needs, as equally as we want to you know, say when we're not the right fit. >> So data is a complicated- >> Love that honesty and transparency. >> Data is a complicated situation for most companies, right? And there's a lack of resource, lack of talent. There's hyper specialization. And you were just talking about the evolution of the Cloud and the relationship. How does automation fit into the equation? Are you able to automate a lot of that data integration through the pipeline? >> Yeah. >> Is it was a, what's your journey look like there? Were you resistant to that at first? 'Cause you got to trust the data. Take us through that. >> Yeah, so the first thing, we wanted to make sure is security right? We've got a lot of data, we're going to make sure privacy- >> Very personal data too. >> Exactly. And privacy and security is number one. So we want to make sure anything that we're doing with the data is secure, and it's not given out anywhere. In terms of automation, so what we've been able to do is being able to take these changes, and you know, in technology, the one thing you can guarantee is it's going to break. Network's going to go down, or a server goes down, a database goes down, and that's the only guarantee we have. And by using the product that we have today, we're able to take those outages, and minimize them because there's retry processes, there's ways of going back and saying, hey, I've missed this much data. How do we bring it back in? You don't want data to get out of sync because that causes downstream problems. >> Yeah. >> So all of that is done through the product, right? We don't have to worry about it. You know, we get notifications, but it's not like, oh, I've got to pay someone at two o'clock in the morning because the network's gone down and how's the data sync going to come back up, when it comes back up? All of that's done for us. >> Yeah, and just to add to that, automation, is a key component. I mean, the data engineering teams definitely see the value of automation and how we're able to deliver that. So, improving the experience but also the overall landscape of the environment is critical. >> Yeah, we've seen the stats, data scientists, data pro spend, you know, 80% of their time wrangling data, 20% of their time. >> Data preparation. >> You know extracting value from it. So. >> Yeah, it's so sad. It's such a waste of human capital, and you're obviously relieving that, and letting folks do their job more efficiently. >> The thing is too, you know, as I'm somebody who's love data you dive into the data, you get really excited then after a while you're like, Ugh! >> I'm still here. >> I'm slogging through this data. Taking a bath in it. >> But I think. >> I want to get to the insights. >> I think that world's changing a little bit. >> Yes, definitely. >> So as we're starting to get data that's coming through it's got high fidelity, and richness, right? So in the old days we'd put in a database, normalize it, and then, you know we'd go and do our magic, and hopefully, you know something comes out, and the least of frustration, you just spoke about. Well now, because it's moving in real time, and we can send the data to areas in the way we want it, and add automation, and machine learning on top of that, so that, now it becomes a commodity to massage that data into the in the format that you want it. Then you can concentrate on the value work, right? Which is really where people should be spending the time, rather than, oh, I've got to manipulate the data, make sure it's done in a consistent way, and then make sure it's compliant and done, the same way every single time. >> It may be too early to, you know quantify the business impact, but have you seen, for example, you know, what I was describing creates data silos. 'Cause nobody's going to use the data if it's not trusted. So what happens is it goes to a silo, they put a brick wall around it, and then, you know, they do their thing with it. They trust it for that one use case and then they don't share it. Has that begun to change as you've seen more integration that's automated and augmented? >> Absolutely. I mean, you know, if you're bringing in data and you're showing that it's consistent, and this is where governance and compliance comes in, right? So as long as you have a data catalog, you can make sure that this data's coming through with the lineage that you said is going to, here's the source, here's the target, here's who gets what they only need rather than giving them everything. And by being able to document that, in a way, that's automated rather than somebody going in, and running a report, it's key. Because that's where the trust comes in, rather than, oh, Samir has to go in and manipulate this stream so that, you know, Molly can get the reports she wants. Instead, hey, it's all going in there, the reports are coming out, they're audited, and that's where the trust factor comes. >> And that enables scale. >> Yeah. >> Cloud confidence and scale. Big topics of the show this week. >> Yep. >> It's been the whole thing. Molly, what's next for Qlik? >> Yeah, Qliks on a big journey. So we've released a lot of things most recently, Qlik Cloud data integration as a service, but we're just continuing to grow from a customer base, from a capabilities perspective. We also recently just became HIPAA compliant and went through some other services. >> Congratulations, that is not an easy process. >> Thank you, thank you. >> Yeah. >> And so for us it's really just about expanding and having, that same level of fidelity of the data, and really just getting all of that pushed out to the market so everybody really sees the full value of Qlik, and that we can make your data Qlik. And just for a minute, back to your earlier point. >> Beautiful pun drop there, Molly. Just going to see that. >> Thank you Savannah. >> Yeah. >> But back to your earlier point, just about the time that people are spending, when you're able to automate, and you're getting data delivered in real time, and operational systems are able to see that. 'Cause you're trying to create the least amount of disruption you can, right? 'Cause that's a critical part of the business. When you start to automate and relieve that burden then people have time to spend time on the real things. >> Right. >> Future forward, prescriptive analytics, machine learning, not data preparation, solving problems, fixing soft gaps. >> Staring a spreadsheet, yeah. >> Right? It's actually the full end-to-end pipeline. And so that's really where I feel like the power is unleashed. And as more sources and targets come to light, right? They're all over the showroom floor, so we don't have to mention any of 'em by name, but it's just continuing, to move into that world to have more SaaS integrations. And to be able to serve the customer, and meet them exactly where they're at, at the place that they want to be. And for Samir, and what we did in the transformation there, unlocking that data for mainframe and SAP, getting it into Qlik Cloud, has been a huge business driver for them. And so, because of partners like AWS and Samir and AARP, we're constantly evolving. And really trying to listen to the voice of the customer, to become better for all of you. >> Excellent. >> Love that community first attitude. Very clear that you both have it, both AARP and Qlik with that attitude. We have a new challenge this year to reInvent on theCUBE, little prompt here. >> Okay. >> We're going to put 30 seconds on the clock, although I'm not super crazy about watching the clock. So, feel comfortable with whatever however much time you need. >> Whatever works. >> Yeah, yeah, yeah, yeah, whatever works. But we're looking for equivocally, your Instagram reel, your hot take, your thought leadership, sizzle, with the key theme from this year's show. Molly, your smile is platinum and perfect. So I'm going to start with you. I feel like you've got this. >> Okay, great. >> Yeah. >> Just the closing statement is what you're looking for. >> Sure, yeah, sexy little sound bite. What do you, what's going to be your big takeaway from your experience here in Vegas this week? >> Yeah, so the experience at Vegas this week has been great but I think it's more than just the experience at Vegas, it's really the experience of the year, where we're at with the technology shift. And we're continuing to see, the need for Cloud, the move to Cloud, mixed workloads, hybrid workloads, unlocking core data, making sure that we're getting insights analytics, and value out of that. And really just working through that, kind of consistent evolution, which is exactly what it is. It's never, you never get to a point where, that's it, there's a bow on it, and it's perfect. It's continuously involving, evolving. >> Yeah. >> And I think that's the most important part that you have to take away. Samir's got his environment in a great place today but in six months, there may be some new things or transformations that he wants to look at, and we want to be there at the ready to work with him, roll up our sleeves, and kind of get into that. So the shift of the Cloud is here to stay. Qlik is a hundred percent here to stay. Here ready to serve our customers in any capacity that we can. And I think that's really my big takeaway from this week. And I've loved it, like this has been a great, this has been great with both of you. You both are super high energy. >> Aw, thank you. >> And Samir and I have had a great time over the event as well. >> Well, nailed it. You absolutely nailed it. All right, Samir, shoot your shot. >> So. >> Savannah. >> What I would say, I'm pretty, so. (laughing) >> I like to keep the smiles organic on stage, my perverse sense of humor, everyone just tolerates. >> Yeah, the one thing I think, I'm hearing a lot is, we have to look at data in motion. Streaming data is the way it's going to go. Whether it's customer data, operational data, it doesn't matter, right? We can't have these silos that you spoke about. Those days are gone, right? And if we really want to make a difference, and utilize all of the technology that's being built out there, all of the new features that were, you know, just in the keynotes. We can't have these separate silos, and the data has to go across, trusted data, it has to go across. The second thing I think we're all talking about is, we have to look at things differently. Unlearning the old is harder than learning the new. So we were just talking about event driven architecture. >> Understatement of the century. Sidebar, that was, yeah. >> So, you know, a lot of us techies are used to calling APIs. Well, now we have to push the data out, instead of pulling it. That just means retraining our brains, retraining our architects, retraining our developers, to think in a different way. And then the last thing I think I've learned is, us technology folks have put the customer first right? >> Yes, absolutely. >> What does a customer want? How do they want to feel when they engage with you? Because if we don't do that, none of this technology matters. And you know, we have to get away from the day where the IT guys go in the back black room, (laughing) coat up and then, you know, push something out, and don't think about what am I doing, and how am I impacting your mother? >> Yes, the end customer. It's no longer the person at the end of a terminal. Look at the green screen. >> And just one last thing. I think also it's fit for purpose transformations. And that's how we have to start thinking about how we're doing business. 'Cause there's a paradigm shift, right? From ETL to ELT, right? Extract, Load, Transform your data. And so as we're seeing that, I think it's really just about that fit for purpose, and looking at the transformations, the right transformations. And what's going to move the needle for the business. >> What a great closing note! Molly, Samir, thank you both for being here. >> Both: Thank you! >> This was a really fantastic chat, love where we took it. And thank all of you for tuning in to our live coverage from AWS reInvent here in fabulous Las Vegas, Nevada. I just want to give my mom a quick shout out, since she got a holler throughout this segment, as well as Stacy and all of my friends at AARP, I missed you all. My name's Savannah Peterson, joined with Dave Vellante. You're watching theCUBE. We are the technology leader in coverage for events like this. (slow upbeat music)
SUMMARY :
Molly and Samir, thank you really coming to the How about for you, Samir? And obviously, you know, in the right place at the right time? in the circle I've been and the shifts in the market, Just in case the audience isn't familiar, and really being able to use the data, that need it in the time And in the channel that you choose but in case the audience isn't familiar, state in the United States. of that mainframe to be part and get it distributed into the Cloud, is the hardest to actually get access to. So be, you know, just statistically, And that's a lot of and the way that you go about it. how that extends to the Cloud? to drive, you know, and it is so fun to learn part of the AWS ecosystem Because that's awesome. So the relationship continues to evolve and the relationship. 'Cause you got to trust the data. and that's the only guarantee we have. and how's the data sync Yeah, and just to you know, 80% of their You know extracting value from it. and you're obviously relieving that, Taking a bath in it. I think that world's into the in the format that you want it. and then, you know, they And by being able to Big topics of the show this week. It's been the whole thing. and went through some other services. Congratulations, that and that we can make your data Qlik. Just going to see that. just about the time that not data preparation, at the place that they want to be. Very clear that you both have it, 30 seconds on the clock, So I'm going to start with you. Just the closing statement to be your big takeaway the need for Cloud, the move to Cloud, So the shift of the Cloud is here to stay. And Samir and I have had a great time All right, Samir, shoot your shot. What I would say, I like to keep the and the data has to go across, Understatement of the century. put the customer first And you know, we have at the end of a terminal. and looking at the transformations, Molly, Samir, thank you And thank all of you for tuning in
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Samir | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Molly | PERSON | 0.99+ |
Stacy | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
20% | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
AARP | ORGANIZATION | 0.99+ |
Sin City | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
80% | QUANTITY | 0.99+ |
Savannah | PERSON | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
2300 employees | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
second piece | QUANTITY | 0.99+ |
Both | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
66,000 volunteers | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.99+ |
One | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
Qlik | ORGANIZATION | 0.99+ |
AAR | ORGANIZATION | 0.99+ |
Samir Shah | PERSON | 0.99+ |
this week | DATE | 0.99+ |
today | DATE | 0.99+ |
two fronts | QUANTITY | 0.98+ |
Qlik | PERSON | 0.98+ |
first thing | QUANTITY | 0.98+ |
six months | QUANTITY | 0.98+ |
HIPAA | TITLE | 0.98+ |
second thing | QUANTITY | 0.97+ |
Qliks | ORGANIZATION | 0.97+ |
two exciting guests | QUANTITY | 0.97+ |
one piece | QUANTITY | 0.97+ |
earlier this year | DATE | 0.96+ |
nearly 38 million members | QUANTITY | 0.96+ |
Qlik | TITLE | 0.95+ |
hundred percent | QUANTITY | 0.95+ |
first | QUANTITY | 0.95+ |
Kevin Farley, MariaDB | AWS re:Invent 2022 - Global Startup Program
>>Well, hello everybody at John Wallace here on the Cube, and glad to have you along here for day two of our coverage here at AWS Reinvent 22. We're up in the global startup program, which is part of AWS's Startup Showcase, and I've got Kevin Farley with me. He is the director of Strategic Alliances with Maria Day db. And Kevin, good to see you this morning. Good to see you, John. Thanks for joining us. Thank >>You. >>Appreciate it. Yeah. First off, tell us about Maria db. Sure. Obviously data's your thing. Yep. But to share that with some folks at home who might not be familiar with your offering. >>Yeah. So Maria DB's been around as a corporate entity for 10 plus years, and we have a massive customer base. You know, there's a billion downloads from Docker Hub, 75% of the Fortune 500. We have an enormous sea of really happy users. But what we realize is that all of these users are really thinking about what do we, what does it mean to transform it? What does cloud modernization mean? And how do we build a strategy on something we really love to drive it into the cloud and take it to the future. So what we launched about two years ago, two and a half years ago, is Skye. It's our database as a service. It leverages all the best elements, what we provide on the enterprise platform. It marries to the AWS cloud, and it really provides the best of both worlds for our >>Customers. So in your thought then, what, what problem is that solving? >>I think what you see in the overall database market is that many people have been using what we would call legacy technology. There's been lots of sort of stratification and mixes of different database solutions. All of them come with some promise, and all of 'em come with a lot of compromise. So I think what the market is really looking for is something that can take what they know and love, can bring it to the cloud and can survive the port drive the performance and scale. That completely changes the landscape, especially as you think about what modern data needs look like, right? What people did 10 years ago with the exponential scale of data no longer works. And what they need is something that not only can really deliver against their core business values and their core business deliverables, but gets 'em to the future. How do we drive something new? How do we innovate? How do we change the game? And I think what we built with AWS really delivers what we call cloud scale. It's taking something that is the best technology, and I as a V can build, marrying it to, you know, Kubernetes layer, marrying it to global availability, thinking about having true global high availability across all of your environments and really delivering that to customers through an integrated partnership. >>Could we see this coming? I mean, because you know data, right? I mean, yeah, we, we, everybody talked about the tsunami of growth, you know, >>Back 10 >>Sure. 11 years ago. But, but maybe the headlights didn't go far enough or, or, but, but you could see that there was going to be crunch time. >>There's no doubt. And I think that this has been a, there's, there's been these sort of pocket solutions, right? So if you think at the entire no sequel world, right? People said, oh, I need scale, I can get it, but what do I have to give up asset compliance? So I have to change the way I think about what data is and how I, I can govern it. So there's been these things that deliver on half the promise, but there's never been something that comes together and really drives what we deliver through CIQ is something called expand. So distributed SQL really tied to the SQL Query language, having that asset data. So having everything you need without the compromise built on the cloud allows you to scale out and allows you to think about, I can actually do exponential layers of, of data, data modeling, data querying, complete read, write, driving that forward. And I think it gives us a whole nother dynamic that we can deliver on in a way that hasn't been before. And I think that's kind of the holy grail of what people are looking for is how am I building modern applications and how do I have a database in the cloud that's really gonna support >>It? You know, you talk about distributed, you know, sequel and, and I mean, there's a little mystery behind it, isn't there? Or at least maybe not mystery. There's a little, I guess, confusion or, or just misunderstanding. I mean, I, how, nail that down a little bit. I >>Would say the best way to say it, honestly, this is the great thing, is it people believe it's too good to be true. And I think what we see over and over >>Again, you know, what they say about that. >>But this is the great part is, you know, you know, we've just had two taste studies recently with aws, with HIT labs and Certified power, both on expand, both proof in the pudding. They did the POCs, they're like, oh my God, this works. If you watch the keynote yesterday, you know, Adam had a slide that was, you know, as big as the entire room and it highlighted Samsung and they said, you know, we're doing 80,000 requests per second. So the, you know, the story there is that AWS is able as, as an entity with their scale and their breadth to handle that kind of workload. But guess what that is? That's MariaDB expand underneath there driving all of that utilization. So it's already there, it's already married, it's already in the cloud, and now we're taking it to a completely different level with a fully managed database solution. Right? >>How impressive is that? Right? I mean, you would think that somebody out there who, I mean that that volume, that kind of capacity is, is mind blowing. >>I mean, to your kind of previous point, it's like one of those things, do I see what's coming and it's here, right? You know, it's, is it actually ever gonna be possible? And now we're showing that it really is on a daily basis for some of the biggest brands in the world. We're also seeing companies moving off not only transitioning from, you know, MariaDB or myse, but all of the big licensed, you know, conversions as well. So you think about Oracle DBS Bank is one of our biggest customers, one of the largest Oracle conversions in the world onto MariaDB. And now thinking about what is the promise of connecting that to the cloud? How do you take things that you're currently doing, OnPrem delivering a hybrid model that also then starts to say, Hey, here's my path to cloud modernization. Skye gives me that bridge. And then you take it one layer farther and you think about multi-cloud, right? That's one of the things that's critical that ISVs can really only deliver in a meaningful way, is how can we have a solution for a customer that we can take to any availability zone. We can have performance, proximity, cost, proximity. We're always able to have that total data dexterity across any environment we need and we can build on that for the future. >>So if, if we're talking about cloud database and there's so many good things going forward here. You're talking about easy use and scalability and all that. But as with ever have you talked about this, there's some push and there's some pull. Yeah. So, so what's the, what's the other side that's still, you know, you that you think has to be >>Addressed? And I think that's a great question. So there's, we see that there's poll, right? We've seen these deals, this pipeline growth, this, there's great adoption. But what I think we're still not at the point of massive hockey stick adoption is that customers still don't fully understand the capabilities distributed SQL and the power they can actually deliver. So the more we drive case studies, the more we drive POCs, the more we prove the model, I think you're gonna see just a massive adoption scale. And I also think customers are tired of doing lots of different things in lots of different pockets. So neither one of the key elements of Sky SQL is we can do both transactional and analytical data out of the same database driven by the same proxy. So what, instead of having DBAs and developers try to figure out, okay, I'm gonna pull from this database here. >>Yeah. That there, it's, it's this big spaghetti wire concept that is super expensive and super time intensive. So the ability to write modern applications and pull data from both pockets and really be able to have that as a seamless entity and deliver that to customers is massive. I mean, another part of the keynote yesterday was a new deliverable, like kind of no etl. Adam talked about Aurora and Redshift and the massive complexity of what used to exist for getting data back and forth. You also have to pay for two different databases. It's super expensive. So I think the idea that you can take the real focus of AWS and US is customer value. How do you deliver that next thing that changes the game? Always utilizes AWS delivers on that promise, but then takes a net new technology that really starts to think about how do we bring things together? How do we make it more simple? How do we make it more powerful? And how do we deliver more customer value as we go forward? >>But you know, if, if I'm, I'm still an on-prim guy, just pretend I'm not saying I am. Just pretend I just for the sake of the discussion here, it's like I just can't let it go. Yeah. Right. I, I still, you know, there's control, there's the known versus the unknown. The uncertain. Yeah. So twist my arm just a little bit more and get me over the hum. >>Well, first of all, you don't have to, right? And there's gonna be some industries and some verticals that will always have elements of their business that will be OnPrem. Guess what? We make the best based in the world. It can be MariaDB, but there's those that then say, these, these elements of our business are gonna be far more effective moving to the cloud. So we give you Skye, there's a natural symbiotic bridge between everything we do and how we deliver it. Where you can be hybrid and it's great. You can adopt the cloud as your business needs grow. And you can have multi-cloud. This is that, that idea that you can, can have your cake and eat it too, right? You can literally have all these elements of your business met without these big pressure to say, you gotta throw that away. You gotta move to this. It's really, how do you kind of gracefully adopt the cloud in a way that makes sense for your business? Where are you trying to drive your business? Is it time to value, right? Is it governance? Is it is there's different elements of what matters the most to individual businesses. You know, we wanna address those and we can address >>Those. So you're saying you don't have to dive >>In, you don't have to dive >>In. You, you can, you can go ankle deep, knee deep, whatever you wanna >>Do. Absolutely. And you know, some of the largest MariaDB users still have massive, massive on-prem implementations. And that's okay. But there's elements that are starting to fall behind. There's cost savings, there's things that they need to do in the cloud that they can't do. OnPrem. And that's where expand Skye really says, okay, here is your platform. Grow as you want to, migrate as you want to. And we're there every step along the way. We, we also provide a whole Sky DBA team. Some guys just say, I wanna get outta the database world at all. This is, this is expensive, it's costly and it's difficult to be an expert. So you can bring in our DBA team and they'll man and run, they'll, they'll run your entire environment. They'll optimize it, you know, they'll troubleshoot it, they'll bug fix, they'll do everything for you. So you can just say, I just wanna focus on building phenomenal applications for my customers. And the database game as we knew it is not something that I know I want to invest in anymore. Right. I wanna make that transition >>That makes that really, yeah. You know, I mean really attractive to a lot of people because you are, you talk about a lot of headache there. Yeah. So let's talk about AWS before Sure. I let you go just about that relationship. Okay. You've talked about the platform that it provides you and, and obviously the benefits, but just talk about how you've worked with AWS over the years Yep. And, and how you see that relationship allowing you to expand your services, no pun intended. >>For sure. So, I mean, I would start with the way we even contemplated architecture. You know, we worked with the satisfactory team. We made sure that the things that we built were optimized in their environment. You know, I think it was a lot of collaboration on how does this combined entity really make the most value for our customers? How does it make the most sense for our developers as we build it out? Then we work in the, in the global startup team. So the strategic element of who we are, not all startups are created equal, right? We have, right, we have 75% of the Fortune 100, we've got over a billion downloads. So, you know, we come in with promise. And the reason this partnership is so valuable and the reason there's so much investment going forward is cuz what really, what do the cloud guys care about? >>The very, very most, they want all of these mission critical, big workloads that are on prem to land in their cloud. What do we have a massive, massive TAM sitting out there, these customers that could go to aws. So we both see, like if we can deliver incredible value to that customer base, these big workloads will end up in aws. They'll use other AWS services. And as we scale and grow, you know, we have that platform that's already built for it. So I think that when you go back to like the tenants, the core principles of aws, the one that always stands out, the one that we always kind of lean back on is, are we delivering customer value? Is this the best thing for the customer? Because we do have some competition just like many other, other partners do, right? So there is Aurora and there is rds and there is times when that's a great service for a customer. But when people are really thinking about where do I need my database to go? Where do I really need to be set for the future growth? Where am I gonna get the kind of ROI I need going forward? That's where you can go, Hey, sky sql, expand distributed sql. This is the best game in town. It's built on aws and collectively, you know, we're gonna present that to a customer. I'm >>Sold. Done. >>I love it. Right? >>Maria db, check 'em out, they're on the show floor. Great traffic. I know at at the, at the booth. They're here at AWS Reinvent. So check 'em out. Maria db. Thanks >>Kevin. Hey, thanks John. Appreciate your >>Time. Appreciate Great. That was great. Right back with more, you're watching the cube, the leader in high tech coverage.
SUMMARY :
Well, hello everybody at John Wallace here on the Cube, and glad to have you along here for day two of But to share that with some folks at home who might not be familiar with your offering. drive it into the cloud and take it to the future. So in your thought then, what, what problem is that solving? I think what you see in the overall database market is that many people have or, but, but you could see that there was going to be crunch time. the compromise built on the cloud allows you to scale out and allows you to think about, You know, you talk about distributed, you know, sequel and, and I And I think what we see over and over But this is the great part is, you know, you know, we've just had two taste studies recently with aws, I mean, you would think that somebody out there who, And then you take it one layer farther and you think about multi-cloud, But as with ever have you talked about this, there's some push and there's some So neither one of the key elements of Sky SQL is we can do both transactional and analytical So I think the idea that you can take the real focus of AWS and But you know, if, if I'm, I'm still an on-prim guy, just pretend I'm not saying I am. So we give you Skye, there's a natural symbiotic bridge between everything So you're saying you don't have to dive And the database game as we knew it is not something that I know I want to invest in anymore. You know, I mean really attractive to a lot of people because you are, you talk about a lot of headache We made sure that the things that we built were optimized And as we scale and grow, you know, we have that platform that's already built for it. I love it. at the booth. Right back with more, you're watching the cube, the leader in
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
AWS | ORGANIZATION | 0.99+ |
Kevin Farley | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Kevin | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
75% | QUANTITY | 0.99+ |
Samsung | ORGANIZATION | 0.99+ |
10 plus years | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
MariaDB | TITLE | 0.99+ |
11 years ago | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
one layer | QUANTITY | 0.98+ |
both pockets | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
Maria DB | TITLE | 0.98+ |
two and a half years ago | DATE | 0.98+ |
10 years ago | DATE | 0.97+ |
SQL | TITLE | 0.97+ |
both worlds | QUANTITY | 0.97+ |
day two | QUANTITY | 0.96+ |
First | QUANTITY | 0.96+ |
Oracle DBS Bank | ORGANIZATION | 0.94+ |
US | LOCATION | 0.94+ |
Aurora | TITLE | 0.93+ |
CIQ | TITLE | 0.92+ |
two different databases | QUANTITY | 0.91+ |
two taste studies | QUANTITY | 0.91+ |
TAM | ORGANIZATION | 0.91+ |
Docker Hub | ORGANIZATION | 0.91+ |
John Wallace | PERSON | 0.91+ |
over a billion downloads | QUANTITY | 0.9+ |
billion downloads | QUANTITY | 0.9+ |
Sky SQL | TITLE | 0.88+ |
half | QUANTITY | 0.85+ |
two years ago | DATE | 0.85+ |
Redshift | TITLE | 0.83+ |
DBA | ORGANIZATION | 0.83+ |
80,000 requests per second | QUANTITY | 0.82+ |
aws | ORGANIZATION | 0.82+ |
HIT | ORGANIZATION | 0.81+ |
Maria db | PERSON | 0.8+ |
Invent 2022 - Global Startup Program | TITLE | 0.78+ |
Maria Day db | PERSON | 0.77+ |
10 | QUANTITY | 0.75+ |
this morning | DATE | 0.72+ |
OnPrem | ORGANIZATION | 0.71+ |
Maria db | TITLE | 0.7+ |
Skye | PERSON | 0.69+ |
Skye | TITLE | 0.69+ |
first | QUANTITY | 0.66+ |
Skye | ORGANIZATION | 0.65+ |
Startup Showcase | EVENT | 0.63+ |
Sky DBA | ORGANIZATION | 0.63+ |
Aurora | ORGANIZATION | 0.63+ |
promise | QUANTITY | 0.59+ |
Kubernetes | ORGANIZATION | 0.58+ |
Fortune 500 | ORGANIZATION | 0.51+ |
Fortune | ORGANIZATION | 0.5+ |
myse | TITLE | 0.45+ |
Reinvent 22 | TITLE | 0.35+ |
100 | TITLE | 0.28+ |
Reinvent | TITLE | 0.27+ |
ML & AI Keynote Analysis | AWS re:Invent 2022
>>Hey, welcome back everyone. Day three of eight of us Reinvent 2022. I'm John Farmer with Dave Volante, co-host the q Dave. 10 years for us, the leader in high tech coverage is our slogan. Now 10 years of reinvent day. We've been to every single one except with the original, which we would've come to if Amazon actually marketed the event, but they didn't. It's more of a customer event. This is day three. Is the machine learning ai keynote sws up there. A lot of announcements. We're gonna break this down. We got, we got Andy Thra here, vice President, prince Constellation Research. Andy, great to see you've been on the cube before one of our analysts bringing the, bringing the, the analysis, commentary to the keynote. This is your wheelhouse. Ai. What do you think about Swami up there? I mean, he's awesome. We love him. Big fan Oh yeah. Of of the Cuban we're fans of him, but he got 13 announcements. >>A lot. A lot, >>A lot. >>So, well some of them are, first of all, thanks for having me here and I'm glad to have both of you on the same show attacking me. I'm just kidding. But some of the announcement really sort of like a game changer announcements and some of them are like, meh, you know, just to plug in the holes what they have and a lot of golf claps. Yeah. Meeting today. And you could have also noticed that by, when he was making the announcements, you know, the, the, the clapping volume difference, you could say, which is better, right? But some of the announcements are, are really, really good. You know, particularly we talked about, one of that was Microsoft took that out of, you know, having the open AI in there, doing the large language models. And then they were going after that, you know, having the transformer available to them. And Amazon was a little bit weak in the area, so they couldn't, they don't have a large language model. So, you know, they, they are taking a different route saying that, you know what, I'll help you train the large language model by yourself, customized models. So I can provide the necessary instance. I can provide the instant volume, memory, the whole thing. Yeah. So you can train the model by yourself without depending on them kind >>Of thing. So Dave and Andy, I wanna get your thoughts cuz first of all, we've been following Amazon's deep bench on the, on the infrastructure pass. They've been doing a lot of machine learning and ai, a lot of data. It just seems that the sentiment is that there's other competitors doing a good job too. Like Google, Dave. And I've heard folks in the hallway, even here, ex Amazonians saying, Hey, they're train their models on Google than they bring up the SageMaker cuz it's better interface. So you got, Google's making a play for being that data cloud. Microsoft's obviously putting in a, a great kind of package to kind of make it turnkey. How do they really stand versus the competition guys? >>Good question. So they, you know, each have their own uniqueness and the we variation that take it to the field, right? So for example, if you were to look at it, Microsoft is known for as industry or later things that they are been going after, you know, industry verticals and whatnot. So that's one of the things I looked here, you know, they, they had this omic announcement, particularly towards that healthcare genomics space. That's a huge space for hpz related AIML applications. And they have put a lot of things in together in here in the SageMaker and in the, in their models saying that, you know, how do you, how do you use this transmit to do things like that? Like for example, drug discovery, for genomics analysis, for cancer treatment, the whole, right? That's a few volumes of data do. So they're going in that healthcare area. Google has taken a different route. I mean they want to make everything simple. All I have to do is I gotta call an api, give what I need and then get it done. But Amazon wants to go at a much deeper level saying that, you know what? I wanna provide everything you need. You can customize the whole thing for what you need. >>So to me, the big picture here is, and and Swami references, Hey, we are a data company. We started, he talked about books and how that informed them as to, you know, what books to place front and center. Here's the, here's the big picture. In my view, companies need to put data at the core of their business and they haven't, they've generally put humans at the core of their business and data. And now machine learning are at the, at the outside and the periphery. Amazon, Google, Microsoft, Facebook have put data at their core. So the question is how do incumbent companies, and you mentioned some Toyota Capital One, Bristol Myers Squibb, I don't know, are those data companies, you know, we'll see, but the challenge is most companies don't have the resources as you well know, Andy, to actually implement what Google and Facebook and others have. >>So how are they gonna do that? Well, they're gonna buy it, right? So are they gonna build it with tools that's kind of like you said the Amazon approach or are they gonna buy it from Microsoft and Google, I pulled some ETR data to say, okay, who are the top companies that are showing up in terms of spending? Who's spending with whom? AWS number one, Microsoft number two, Google number three, data bricks. Number four, just in terms of, you know, presence. And then it falls down DataRobot, Anaconda data icu, Oracle popped up actually cuz they're embedding a lot of AI into their products and, and of course IBM and then a lot of smaller companies. But do companies generally customers have the resources to do what it takes to implement AI into applications and into workflows? >>So a couple of things on that. One is when it comes to, I mean it's, it's no surprise that the, the top three or the hyperscalers, because they all want to bring their business to them to run the specific workloads on the next biggest workload. As you was saying, his keynote are two things. One is the A AIML workloads and the other one is the, the heavy unstructured workloads that he was talking about. 80%, 90% of the data that's coming off is unstructured. So how do you analyze that? Such as the geospatial data. He was talking about the volumes of data you need to analyze the, the neural deep neural net drug you ought to use, only hyperscale can do it, right? So that's no wonder all of them on top for the data, one of the things they announced, which not many people paid attention, there was a zero eight L that that they talked about. >>What that does is a little bit of a game changing moment in a sense that you don't have to, for example, if you were to train the data, data, if the data is distributed everywhere, if you have to bring them all together to integrate it, to do that, it's a lot of work to doing the dl. So by taking Amazon, Aurora, and then Rich combine them as zero or no ETL and then have Apaches Apaches Spark applications run on top of analytical applications, ML workloads. That's huge. So you don't have to move around the data, use the data where it is, >>I, I think you said it, they're basically filling holes, right? Yeah. They created this, you know, suite of tools, let's call it. You might say it's a mess. It's not a mess because it's, they're really powerful but they're not well integrated and now they're starting to take the seams as I say. >>Well yeah, it's a great point. And I would double down and say, look it, I think that boring is good. You know, we had that phase in Kubernetes hype cycle where it got boring and that was kind of like, boring is good. Boring means we're getting better, we're invisible. That's infrastructure that's in the weeds, that's in between the toes details. It's the stuff that, you know, people we have to get done. So, you know, you look at their 40 new data sources with data Wrangler 50, new app flow connectors, Redshift Auto Cog, this is boring. Good important shit Dave. The governance, you gotta get it and the governance is gonna be key. So, so to me, this may not jump off the page. Adam's keynote also felt a little bit of, we gotta get these gaps done in a good way. So I think that's a very positive sign. >>Now going back to the bigger picture, I think the real question is can there be another independent cloud data cloud? And that's the, to me, what I try to get at my story and you're breaking analysis kind of hit a home run on this, is there's interesting opportunity for an independent data cloud. Meaning something that isn't aws, that isn't, Google isn't one of the big three that could sit in. And so let me give you an example. I had a conversation last night with a bunch of ex Amazonian engineering teams that left the conversation was interesting, Dave. They were like talking, well data bricks and Snowflake are basically batch, okay, not transactional. And you look at Aerospike, I can see their booth here. Transactional data bases are hot right now. Streaming data is different. Confluence different than data bricks. Is data bricks good at hosting? >>No, Amazon's better. So you start to see these kinds of questions come up where, you know, data bricks is great, but maybe not good for this, that and the other thing. So you start to see the formation of swim lanes or visibility into where people might sit in the ecosystem, but what came out was transactional. Yep. And batch the relationship there and streaming real time and versus you know, the transactional data. So you're starting to see these new things emerge. Andy, what do you, what's your take on this? You're following this closely. This seems to be the alpha nerd conversation and it all points to who's gonna have the best data cloud, say data, super clouds, I call it. What's your take? >>Yes, data cloud is important as well. But also the computational that goes on top of it too, right? Because when, when the data is like unstructured data, it's that much of a huge data, it's going to be hard to do that with a low model, you know, compute power. But going back to your data point, the training of the AIML models required the batch data, right? That's when you need all the, the historical data to train your models. And then after that, when you do inference of it, that's where you need the streaming real time data that's available to you too. You can make an inference. One of the things, what, what they also announced, which is somewhat interesting, is you saw that they have like 700 different instances geared towards every single workload. And there are some of them very specifically run on the Amazon's new chip. The, the inference in two and theran tr one chips that basically not only has a specific instances but also is run on a high powered chip. And then if you have that data to support that, both the training as well as towards the inference, the efficiency, again, those numbers have to be proven. They claim that it could be anywhere between 40 to 60% faster. >>Well, so a couple things. You're definitely right. I mean Snowflake started out as a data warehouse that was simpler and it's not architected, you know, in and it's first wave to do real time inference, which is not now how, how could they, the other second point is snowflake's two or three years ahead when it comes to governance, data sharing. I mean, Amazon's doing what always does. It's copying, you know, it's customer driven. Cuz they probably walk into an account and they say, Hey look, what's Snowflake's doing for us? This stuff's kicking ass. And they go, oh, that's a good idea, let's do that too. You saw that with separating compute from storage, which is their tiering. You saw it today with extending data, sharing Redshift, data sharing. So how does Snowflake and data bricks approach this? They deal with ecosystem. They bring in ecosystem partners, they bring in open source tooling and that's how they compete. I think there's unquestionably an opportunity for a data cloud. >>Yeah, I think, I think the super cloud conversation and then, you know, sky Cloud with Berkeley Paper and other folks talking about this kind of pre, multi-cloud era. I mean that's what I would call us right now. We are, we're kind of in the pre era of multi-cloud, which by the way is not even yet defined. I think people use that term, Dave, to say, you know, some sort of magical thing that's happening. Yeah. People have multiple clouds. They got, they, they end up by default, not by design as Dell likes to say. Right? And they gotta deal with it. So it's more of they're inheriting multiple cloud environments. It's not necessarily what they want in the situation. So to me that is a big, big issue. >>Yeah, I mean, again, going back to your snowflake and data breaks announcements, they're a data company. So they, that's how they made their mark in the market saying that, you know, I do all those things, therefore you have, I had to have your data because it's a seamless data. And, and Amazon is catching up with that with a lot of that announcements they made, how far it's gonna get traction, you know, to change when I to say, >>Yeah, I mean to me, to me there's no doubt about Dave. I think, I think what Swamee is doing, if Amazon can get corner the market on out of the box ML and AI capabilities so that people can make it easier, that's gonna be the end of the day tell sign can they fill in the gaps. Again, boring is good competition. I don't know mean, mean I'm not following the competition. Andy, this is a real question mark for me. I don't know where they stand. Are they more comprehensive? Are they more deeper? Are they have deeper services? I mean, obviously shows to all the, the different, you know, capabilities. Where, where, where does Amazon stand? What's the process? >>So what, particularly when it comes to the models. So they're going at, at a different angle that, you know, I will help you create the models we talked about the zero and the whole data. We'll get the data sources in, we'll create the model. We'll move the, the whole model. We are talking about the ML ops teams here, right? And they have the whole functionality that, that they built ind over the year. So essentially they want to become the platform that I, when you come in, I'm the only platform you would use from the model training to deployment to inference, to model versioning to management, the old s and that's angle they're trying to take. So it's, it's a one source platform. >>What about this idea of technical debt? Adrian Carro was on yesterday. John, I know you talked to him as well. He said, look, Amazon's Legos, you wanna buy a toy for Christmas, you can go out and buy a toy or do you wanna build a, to, if you buy a toy in a couple years, you could break and what are you gonna do? You're gonna throw it out. But if you, if you, if part of your Lego needs to be extended, you extend it. So, you know, George Gilbert was saying, well, there's a lot of technical debt. Adrian was countering that. Does Amazon have technical debt or is that Lego blocks analogy the right one? >>Well, I talked to him about the debt and one of the things we talked about was what do you optimize for E two APIs or Kubernetes APIs? It depends on what team you're on. If you're on the runtime gene, you're gonna optimize for Kubernetes, but E two is the resources you want to use. So I think the idea of the 15 years of technical debt, I, I don't believe that. I think the APIs are still hardened. The issue that he brings up that I think is relevant is it's an end situation, not an or. You can have the bag of Legos, which is the primitives and build a durable application platform, monitor it, customize it, work with it, build it. It's harder, but the outcome is durability and sustainability. Building a toy, having a toy with those Legos glued together for you, you can get the play with, but it'll break over time. Then you gotta replace it. So there's gonna be a toy business and there's gonna be a Legos business. Make your own. >>So who, who are the toys in ai? >>Well, out of >>The box and who's outta Legos? >>The, so you asking about what what toys Amazon building >>Or, yeah, I mean Amazon clearly is Lego blocks. >>If people gonna have out the box, >>What about Google? What about Microsoft? Are they basically more, more building toys, more solutions? >>So Google is more of, you know, building solutions angle like, you know, I give you an API kind of thing. But, but if it comes to vertical industry solutions, Microsoft is, is is ahead, right? Because they have, they have had years of indu industry experience. I mean there are other smaller cloud are trying to do that too. IBM being an example, but you know, the, now they are starting to go after the specific industry use cases. They think that through, for example, you know the medical one we talked about, right? So they want to build the, the health lake, security health lake that they're trying to build, which will HIPPA and it'll provide all the, the European regulations, the whole line yard, and it'll help you, you know, personalize things as you need as well. For example, you know, if you go for a certain treatment, it could analyze you based on your genome profile saying that, you know, the treatment for this particular person has to be individualized this way, but doing that requires a anomalous power, right? So if you do applications like that, you could bring in a lot of the, whether healthcare, finance or what have you, and then easy for them to use. >>What's the biggest mistake customers make when it comes to machine intelligence, ai, machine learning, >>So many things, right? I could start out with even the, the model. Basically when you build a model, you, you should be able to figure out how long that model is effective. Because as good as creating a model and, and going to the business and doing things the right way, there are people that they leave the model much longer than it's needed. It's hurting your business more than it is, you know, it could be things like that. Or you are, you are not building a responsibly or later things. You are, you are having a bias and you model and are so many issues. I, I don't know if I can pinpoint one, but there are many, many issues. Responsible ai, ethical ai. All >>Right, well, we'll leave it there. You're watching the cube, the leader in high tech coverage here at J three at reinvent. I'm Jeff, Dave Ante. Andy joining us here for the critical analysis and breaking down the commentary. We'll be right back with more coverage after this short break.
SUMMARY :
Ai. What do you think about Swami up there? A lot. of, you know, having the open AI in there, doing the large language models. So you got, Google's making a play for being that data cloud. So they, you know, each have their own uniqueness and the we variation that take it to have the resources as you well know, Andy, to actually implement what Google and they gonna build it with tools that's kind of like you said the Amazon approach or are they gonna buy it from Microsoft the neural deep neural net drug you ought to use, only hyperscale can do it, right? So you don't have to move around the data, use the data where it is, They created this, you know, It's the stuff that, you know, people we have to get done. And so let me give you an example. So you start to see these kinds of questions come up where, you know, it's going to be hard to do that with a low model, you know, compute power. was simpler and it's not architected, you know, in and it's first wave to do real time inference, I think people use that term, Dave, to say, you know, some sort of magical thing that's happening. you know, I do all those things, therefore you have, I had to have your data because it's a seamless data. the different, you know, capabilities. at a different angle that, you know, I will help you create the models we talked about the zero and you know, George Gilbert was saying, well, there's a lot of technical debt. Well, I talked to him about the debt and one of the things we talked about was what do you optimize for E two APIs or Kubernetes So Google is more of, you know, building solutions angle like, you know, I give you an API kind of thing. you know, it could be things like that. We'll be right back with more coverage after this short break.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Adrian | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Andy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
IBM | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Adrian Carro | PERSON | 0.99+ |
Dave Volante | PERSON | 0.99+ |
Andy Thra | PERSON | 0.99+ |
90% | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
13 announcements | QUANTITY | 0.99+ |
Lego | ORGANIZATION | 0.99+ |
John Farmer | PERSON | 0.99+ |
Dave Ante | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Legos | ORGANIZATION | 0.99+ |
Bristol Myers Squibb | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Constellation Research | ORGANIZATION | 0.99+ |
One | QUANTITY | 0.99+ |
Christmas | EVENT | 0.99+ |
second point | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
Anaconda | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Berkeley Paper | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
eight | QUANTITY | 0.98+ |
700 different instances | QUANTITY | 0.98+ |
three years | QUANTITY | 0.98+ |
Swami | PERSON | 0.98+ |
Aerospike | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
Snowflake | ORGANIZATION | 0.98+ |
two things | QUANTITY | 0.98+ |
60% | QUANTITY | 0.98+ |
SiliconANGLE Report: Reporters Notebook with Adrian Cockcroft | AWS re:Invent 2022
(soft techno upbeat music) >> Hi there. Welcome back to Las Vegas. This is Dave Villante with Paul Gillon. Reinvent day one and a half. We started last night, Monday, theCUBE after dark. Now we're going wall to wall. Today. Today was of course the big keynote, Adam Selipsky, kind of the baton now handing, you know, last year when he did his keynote, he was very new. He was sort of still getting his feet wet and finding his guru swing. Settling in a little bit more this year, learning a lot more, getting deeper into the tech, but of course, sharing the love with other leaders like Peter DeSantis. Tomorrow's going to be Swamy in the keynote. Adrian Cockcroft is here. Former AWS, former network Netflix CTO, currently an analyst. You got your own firm now. You're out there. Great to see you again. Thanks for coming on theCUBE. >> Yeah, thanks. >> We heard you on at Super Cloud, you gave some really good insights there back in August. So now as an outsider, you come in obviously, you got to be impressed with the size and the ecosystem and the energy. Of course. What were your thoughts on, you know what you've seen so far, today's keynotes, last night Peter DeSantis, what stood out to you? >> Yeah, I think it's great to be back at Reinvent again. We're kind of pretty much back to where we were before the pandemic sort of shut it down. This is a little, it's almost as big as the, the largest one that we had before. And everyone's turned up. It just feels like we're back. So that's really good to see. And it's a slightly different style. I think there were was more sort of video production things happening. I think in this keynote, more storytelling. I'm not sure it really all stitched together very well. Right. Some of the stories like, how does that follow that? So there were a few things there and some of there were spelling mistakes on the slides, you know that ELT instead of ETL and they spelled ZFS wrong and something. So it just seemed like there was, I'm not quite sure just maybe a few things were sort of rushed at the last minute. >> Not really AWS like, was it? It's kind of remind the Patriots Paul, you know Bill Belichick's teams are fumbling all over the place. >> That's right. That's right. >> Part of it may be, I mean the sort of the market. They have a leader in marketing right now but they're going to have a CMO. So that's sort of maybe as lack of a single threaded leader for this thing. Everything's being shared around a bit more. So maybe, I mean, it's all fixable and it's mine. This is minor stuff. I'm just sort of looking at it and going there's a few things that looked like they were not quite as good as they could have been in the way it was put together. Right? >> But I mean, you're taking a, you know a year of not doing Reinvent. Yeah. Being isolated. You know, we've certainly seen it with theCUBE. It's like, okay, it's not like riding a bike. You know, things that, you know you got to kind of relearn the muscle memories. It's more like golf than is bicycle riding. >> Well I've done AWS keynotes myself. And they are pretty much scrambled. It looks nice, but there's a lot of scrambling leading up to when it actually goes. Right? And sometimes you can, you sometimes see a little kind of the edges of that, and sometimes it's much more polished. But you know, overall it's pretty good. I think Peter DeSantis keynote yesterday was a lot of really good meat there. There was some nice presentations, and some great announcements there. And today I was, I thought I was a little disappointed with some of the, I thought they could have been more. I think the way Andy Jesse did it, he crammed more announcements into his keynote, and Adam seems to be taking sort of a bit more of a measured approach. There were a few things he picked up on and then I'm expecting more to be spread throughout the rest of the day. >> This was more poetic. Right? He took the universe as the analogy for data, the ocean for security. Right? The Antarctic was sort of. >> Yeah. It looked pretty, >> yeah. >> But I'm not sure that was like, we're not here really to watch nature videos >> As analysts and journalists, You're like, come on. >> Yeah, >> Give it the meat >> That was kind the thing, yeah, >> It has always been the AWS has always been Reinvent has always been a shock at our approach. 100, 150 announcements. And they're really, that kind of pressure seems to be off them now. Their position at the top of the market seems to be unshakeable. There's no clear competition that's creeping up behind them. So how does that affect the messaging you think that AWS brings to market when it doesn't really have to prove that it's a leader anymore? It can go after maybe more of the niche markets or fix the stuff that's a little broken more fine tuning than grandiose statements. >> I think so AWS for a long time was so far out that they basically said, "We don't think about the competition, we are listen to the customers." And that was always the statement that works as long as you're always in the lead, right? Because you are introducing the new idea to the customer. Nobody else got there first. So that was the case. But in a few areas they aren't leading. Right? You could argue in machine learning, not necessarily leading in sustainability. They're not leading and they don't want to talk about some of these areas and-- >> Database. I mean arguably, >> They're pretty strong there, but the areas when you are behind, it's like they kind of know how to play offense. But when you're playing defense, it's a different set of game. You're playing a different game and it's hard to be good at both. I think and I'm not sure that they're really used to following somebody into a market and making a success of that. So there's something, it's a little harder. Do you see what I mean? >> I get opinion on this. So when I say database, David Foyer was two years ago, predicted AWS is going to have to converge somehow. They have no choice. And they sort of touched on that today, right? Eliminating ETL, that's one thing. But Aurora to Redshift. >> Yeah. >> You know, end to end. I'm not sure it's totally, they're fully end to end >> That's a really good, that is an excellent piece of work, because there's a lot of work that it eliminates. There's are clear pain points, but then you've got sort of the competing thing, is like the MongoDB and it's like, it's just a way with one database keeps it simple. >> Snowflake, >> Or you've got on Snowflake maybe you've got all these 20 different things you're trying to integrate at AWS, but it's kind of like you have a bag of Lego bricks. It's my favorite analogy, right? You want a toy for Christmas, you want a toy formula one racing car since that seems to be the theme, right? >> Okay. Do you want the fully built model that you can play with right now? Or do you want the Lego version that you have to spend three days building. Right? And AWS is the Lego technique thing. You have to spend some time building it, but once you've built it, you can evolve it, and you'll still be playing those are still good bricks years later. Whereas that prebuilt to probably broken gathering dust, right? So there's something about having an vulnerable architecture which is harder to get into, but more durable in the long term. And so AWS tends to play the long game in many ways. And that's one of the elements that they do that and that's good, but it makes it hard to consume for enterprise buyers that are used to getting it with a bow on top. And here's the solution. You know? >> And Paul, that was always Andy Chassy's answer to when we would ask him, you know, all these primitives you're going to make it simpler. You see the primitives give us the advantage to turn on a dime in the marketplace. And that's true. >> Yeah. So you're saying, you know, you take all these things together and you wrap it up, and you put a snowflake on top, and now you've got a simple thing or a Mongo or Mongo atlas or whatever. So you've got these layered platforms now which are making it simpler to consume, but now you're kind of, you know, you're all stuck in that ecosystem, you know, so it's like what layer of abstractions do you want to tie yourself to, right? >> The data bricks coming at it from more of an open source approach. But it's similar. >> We're seeing Amazon direct more into vertical markets. They spotlighted what Goldman Sachs is doing on their platform. They've got a variety of platforms that are supposedly targeted custom built for vertical markets. How do successful do you see that play being? Is this something that the customers you think are looking for, a fully integrated Amazon solution? >> I think so. There's usually if you look at, you know the MongoDB or data stacks, or the other sort of or elastic, you know, they've got the specific solution with the people that really are developing the core technology, there's open source equivalent version. The AWS is running, and it's usually maybe they've got a price advantage or it's, you know there's some data integration in there or it's somehow easier to integrate but it's not stopping those companies from growing. And what it's doing is it's endorsing that platform. So if you look at the collection of databases that have been around over the last few years, now you've got basically Elastic Mongo and Cassandra, you know the data stacks as being endorsed by the cloud vendors. These are winners. They're going to be around for a very long time. You can build yourself on that architecture. But what happened to Couch base and you know, a few of the other ones, you know, they don't really fit. Like how you going to bait? If you are now becoming an also ran, because you didn't get cloned by the cloud vendor. So the customers are going is that a safe place to be, right? >> But isn't it, don't they want to encourage those partners though in the name of building the marketplace ecosystem? >> Yeah. >> This is huge. >> But certainly the platform, yeah, the platform encourages people to do more. And there's always room around the edge. But the mainstream customers like that really like spending the good money, are looking for something that's got a long term life to it. Right? They're looking for a long commitment to that technology and that it's going to be invested in and grow. And the fact that the cloud providers are adopting and particularly AWS is adopting some of these technologies means that is a very long term commitment. You can base, you know, you can bet your future architecture on that for a decade probably. >> So they have to pick winners. >> Yeah. So it's sort of picking winners. And then if you're the open source company that's now got AWS turning up, you have to then leverage it and use that as a way to grow the market. And I think Mongo have done an excellent job of that. I mean, they're top level sponsors of Reinvent, and they're out there messaging that and doing a good job of showing people how to layer on top of AWS and make it a win-win both sides. >> So ever since we've been in the business, you hear the narrative hardware's going to die. It's just, you know, it's commodity and there's some truth to that. But hardware's actually driving good gross margins for the Cisco's of the world. Storage companies have always made good margins. Servers maybe not so much, 'cause Intel sucked all the margin out of it. But let's face it, AWS makes most of its money. We know on compute, it's got 25 plus percent operating margins depending on the seasonality there. What do you think happens long term to the infrastructure layer discussion? Okay, commodity cloud, you know, we talk about super cloud. Do you think that AWS, and the other cloud vendors that infrastructure, IS gets commoditized and they have to go up market or you see that continuing I mean history would say that still good margins in hardware. What are your thoughts on that? >> It's not commoditizing, it's becoming more specific. We've got all these accelerators and custom chips now, and this is something, this almost goes back. I mean, I was with some micro systems 20,30 years ago and we developed our own chips and HP developed their own chips and SGI mips, right? We were like, the architectures were all squabbling of who had the best processor chips and it took years to get chips that worked. Now if you make a chip and it doesn't work immediately, you screwed up somewhere right? It's become the technology of building these immensely complicated powerful chips that has become commoditized. So the cost of building a custom chip, is now getting to the point where Apple and Amazon, your Apple laptop has got full custom chips your phone, your iPhone, whatever and you're getting Google making custom chips and we've got Nvidia now getting into CPUs as well as GPUs. So we're seeing that the ability to build a custom chip, is becoming something that everyone is leveraging. And the cost of doing that is coming down to startups are doing it. So we're going to see many, many more, much more innovation I think, and this is like Intel and AMD are, you know they've got the compatibility legacy, but of the most powerful, most interesting new things I think are going to be custom. And we're seeing that with Graviton three particular in the three E that was announced last night with like 30, 40% whatever it was, more performance for HPC workloads. And that's, you know, the HPC market is going to have to deal with cloud. I mean they are starting to, and I was at Supercomputing a few weeks ago and they are tiptoeing around the edge of cloud, but those supercomputers are water cold. They are monsters. I mean you go around supercomputing, there are plumbing vendors on the booth. >> Of course. Yeah. >> Right? And they're highly concentrated systems, and that's really the only difference, is like, is it water cooler or echo? The rest of the technology stack is pretty much off the shelf stuff with a few tweets software. >> You point about, you know, the chips and what AWS is doing. The Annapurna acquisition. >> Yeah. >> They're on a dramatically different curve now. I think it comes down to, again, David Floyd's premise, really comes down to volume. The arm wafer volumes are 10 x those of X 86, volume always wins. And the economics of semis. >> That kind of got us there. But now there's also a risk five coming along if you, in terms of licensing is becoming one of the bottlenecks. Like if the cost of building a chip is really low, then it comes down to licensing costs and do you want to pay the arm license And the risk five is an open source chip set which some people are starting to use for things. So your dis controller may have a risk five in it, for example, nowadays, those kinds of things. So I think that's kind of the the dynamic that's playing out. There's a lot of innovation in hardware to come in the next few years. There's a thing called CXL compute express link which is going to be really interesting. I think that's probably two years out, before we start seeing it for real. But it lets you put glue together entire rack in a very flexible way. So just, and that's the entire industry coming together around a single standard, the whole industry except for Amazon, in fact just about. >> Well, but maybe I think eventually they'll get there. Don't use system on a chip CXL. >> I have no idea whether I have no knowledge about whether going to do anything CXL. >> Presuming I'm not trying to tap anything confidential. It just makes sense that they would do a system on chip. It makes sense that they would do something like CXL. Why not adopt the standard, if it's going to be as the cost. >> Yeah. And so that was one of the things out of zip computing. The other thing is the low latency networking with the elastic fabric adapter EFA and the extensions to that that were announced last night. They doubled the throughput. So you get twice the capacity on the nitro chip. And then the other thing was this, this is a bit technical, but this scalable datagram protocol that they've got which basically says, if I want to send a message, a packet from one machine to another machine, instead of sending it over one wire, I consider it over 16 wires in parallel. And I will just flood the network with all the packets and they can arrive in any order. This is why it isn't done normally. TCP is in order, the packets come in order they're supposed to, but this is fully flooding them around with its own fast retry and then they get reassembled at the other end. So they're not just using this now for HPC workloads. They've turned it on for TCP for just without any change to your application. If you are trying to move a large piece of data between two machines, and you're just pushing it down a network, a single connection, it takes it from five gigabits per second to 25 gigabits per second. A five x speed up, with a protocol tweak that's run by the Nitro, this is super interesting. >> Probably want to get all that AIML that stuff is going on. >> Well, the AIML stuff is leveraging it underneath, but this is for everybody. Like you're just copying data around, right? And you're limited, "Hey this is going to get there five times faster, pushing a big enough chunk of data around." So this is turning on gradually as the nitro five comes out, and you have to enable it at the instance level. But it's a super interesting announcement from last night. >> So the bottom line bumper sticker on commoditization is what? >> I don't think so. I mean what's the APIs? Your arm compatible, your Intel X 86 compatible or your maybe risk five one day compatible in the cloud. And those are the APIs, right? That's the commodity level. And the software is now, the software ecosystem is super portable across those as we're seeing with Apple moving from Intel to it's really not an issue, right? The software and the tooling is all there to do that. But underneath that, we're going to see an arms race between the top providers as they all try and develop faster chips for doing more specific things. We've got cranium for training, that instance has they announced it last year with 800 gigabits going out of a single instance, 800 gigabits or no, but this year they doubled it. Yeah. So 1.6 terabytes out of a single machine, right? That's insane, right? But what you're doing is you're putting together hundreds or thousands of those to solve the big machine learning training problems. These super, these enormous clusters that they're being formed for doing these massive problems. And there is a market now, for these incredibly large supercomputer clusters built for doing AI. That's all bandwidth limited. >> And you think about the timeframe from design to tape out. >> Yeah. >> Is just getting compressed It's relative. >> It is. >> Six is going the other way >> The tooling is all there. Yeah. >> Fantastic. Adrian, always a pleasure to have you on. Thanks so much. >> Yeah. >> Really appreciate it. >> Yeah, thank you. >> Thank you Paul. >> Cheers. All right. Keep it right there everybody. Don't forget, go to thecube.net, you'll see all these videos. Go to siliconangle.com, We've got features with Adam Selipsky, we got my breaking analysis, we have another feature with MongoDB's, Dev Ittycheria, Ali Ghodsi, as well Frank Sluman tomorrow. So check that out. Keep it right there. You're watching theCUBE, the leader in enterprise and emerging tech, right back. (soft techno upbeat music)
SUMMARY :
Great to see you again. and the ecosystem and the energy. Some of the stories like, It's kind of remind the That's right. I mean the sort of the market. the muscle memories. kind of the edges of that, the analogy for data, As analysts and journalists, So how does that affect the messaging always in the lead, right? I mean arguably, and it's hard to be good at both. But Aurora to Redshift. You know, end to end. of the competing thing, but it's kind of like you And AWS is the Lego technique thing. to when we would ask him, you know, and you put a snowflake on top, from more of an open source approach. the customers you think a few of the other ones, you know, and that it's going to and doing a good job of showing people and the other cloud vendors the HPC market is going to Yeah. and that's really the only difference, the chips and what AWS is doing. And the economics of semis. So just, and that's the entire industry Well, but maybe I think I have no idea whether if it's going to be as the cost. and the extensions to that AIML that stuff is going on. and you have to enable And the software is now, And you think about the timeframe Is just getting compressed Yeah. Adrian, always a pleasure to have you on. the leader in enterprise
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Adam Selipsky | PERSON | 0.99+ |
David Floyd | PERSON | 0.99+ |
Peter DeSantis | PERSON | 0.99+ |
Paul | PERSON | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Frank Sluman | PERSON | 0.99+ |
Paul Gillon | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Apple | ORGANIZATION | 0.99+ |
Andy Chassy | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Adam | PERSON | 0.99+ |
Dev Ittycheria | PERSON | 0.99+ |
Andy Jesse | PERSON | 0.99+ |
Dave Villante | PERSON | 0.99+ |
August | DATE | 0.99+ |
two machines | QUANTITY | 0.99+ |
Bill Belichick | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
last year | DATE | 0.99+ |
1.6 terabytes | QUANTITY | 0.99+ |
AMD | ORGANIZATION | 0.99+ |
Goldman Sachs | ORGANIZATION | 0.99+ |
hundreds | QUANTITY | 0.99+ |
one machine | QUANTITY | 0.99+ |
three days | QUANTITY | 0.99+ |
Adrian | PERSON | 0.99+ |
800 gigabits | QUANTITY | 0.99+ |
Today | DATE | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
David Foyer | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
yesterday | DATE | 0.99+ |
this year | DATE | 0.99+ |
Snowflake | TITLE | 0.99+ |
Nvidia | ORGANIZATION | 0.99+ |
five times | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
thecube.net | OTHER | 0.99+ |
Intel | ORGANIZATION | 0.99+ |
five | QUANTITY | 0.99+ |
both sides | QUANTITY | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Christmas | EVENT | 0.99+ |
last night | DATE | 0.99+ |
HP | ORGANIZATION | 0.98+ |
25 plus percent | QUANTITY | 0.98+ |
thousands | QUANTITY | 0.98+ |
20,30 years ago | DATE | 0.98+ |
pandemic | EVENT | 0.98+ |
both | QUANTITY | 0.98+ |
two years ago | DATE | 0.98+ |
twice | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
X 86 | COMMERCIAL_ITEM | 0.98+ |
Antarctic | LOCATION | 0.98+ |
Patriots | ORGANIZATION | 0.98+ |
siliconangle.com | OTHER | 0.97+ |
Shinji Kim, Select Star | AWS re:Invent 2022
(upbeat music) >> It's theCUBE live in Las Vegas, covering AWS re:Invent 2022. This is the first full day of coverage. We will be here tomorrow and Thursday but we started last night. So hopefully you've caught some of those interviews. Lisa Martin here in Vegas with Paul Gillin. Paul, it's great to be back. We just saw a tweet from a very reliable source saying that there are upwards of 70,000 people here at rei:Invent '22 >> I think there's 70,000 people just in that aisle right there. >> I think so. It's been great so far we've gotten, what are some of the things that you have been excited about today? >> Data, I just see data everywhere, which very much relates to our next guest. Companies realizing the value of data and the strategic value of data, beginning to treat it as an asset rather than just exhaust. I see a lot of focus on app development here and building scalable applications now. Developers have to get over that, have to sort of reorient themselves toward building around the set of cloud native primitives which I think we'll see some amazing applications come out of that. >> Absolutely, we will. We're pleased to welcome back one of our alumni to the program. Shinji Kim joins us, the CEO and founder of Select Star. Welcome back Shinji. It's great to have you. >> Thanks Lisa, great to be back. >> So for the audience who may not know much about Select Star before we start digging into all of the good stuff give us a little overview about what the company does and what differentiates you. >> Sure, so Select Star is an automated data discovery platform. We act like it's Google for data scientists, data analysts and data engineers to help find and understand their data better. Lot of companies today, like what you mentioned, Paul, have 100s and 1000s of database tables now swimming through large volumes of data and variety of data today and it's getting harder and harder for people that wants to utilize data make decisions around data and analyze data to truly have the full context of where this data came from, who do you think that's inside the company or what other analysis might have been done? So Select Star's role in this case is we connect different data warehouses BI tools, wherever the data is actually being used inside the company, bringing out all the usage analytics and the pipeline and the models in one place so anyone can search through what's available and how the data has been created, used and being analyzed within the company. So that's why we call it it's kind of like your Google for data. >> What are some of the biggest challenges to doing that? I mean you've got data squirreled away in lots of corners of the organization, Excel spreadsheets, thumb drives, cloud storage accounts. How granular do you get and what's the difficulty of finding all this data? >> So today we focus primarily on lot of cloud data warehouses and data lakes. So this includes data warehouses like Redshift, Snowflake (indistinct), Databricks, S3 buckets, where a lot of the data from different sources are arriving. Because this is a one area where a lot of analysis are now being done. This is a place where you can join other data sets within the same infrastructural umbrella. And so that is one portion that we always integrate with. The other part that we also integrate a lot with are the BI tools. So whether that's (indistinct) where you are running analysis, building reports, and dashboards. We will pull out how those are, which analysis has been done and which business stakeholders are consuming that data through those tools. So you also mentioned about the differentiation. I would say one of the biggest differentiation that we have in the market today is that we are more in the cloud. So it's very cloud native, fully managed SaaS service and it's really focused on user experience of how easily anyone can really search and understand data through Select Star. In the past, data catalogs as a sector has been primarily focused on inventorizing all your enterprise data which are in many disciplinary forces. So it was more focused on technical aspect of the metadata. At the same time now this enterprise data catalog is important and is needed for even smaller companies because they are dealing with ton of data. Another part that we also see is more of democratization of data. Many different types of users are utilizing data whether they are fully technical or not. So we had basically emphasis around how to make our user interface as intuitive as possible for business users or non-technical users but also bring out as much context as possible from the metadata and the laws that we have access to, to bring out these insights for our customers. >> Got it. What was the impetus or the catalyst to launch the business just a couple of years ago? >> Yeah, so prior to this I had another data startup called Concord Systems. We focused on distributed stream processing framework. I sold the company to Akamai which is now called ... and the product is now called IoT Edge Connect. Through Akamai I started working with a lot of enterprises in automotive and consumer electronics and this is where I saw lot of the issues starting to happen when enterprises are starting to try to use the data. Collection of data, storage of data, processing of data with the help of lot of cloud providers, scaling that is not going to be a challenge as much anymore. At the same time now lot of enterprises, what I realized is a lot of enterprises were sitting on top of ton of data that they may not know how to utilize it or know even how to give the access to because they are not 100% sure what's really inside. And more and more companies, as they are building up their cloud data warehouse infrastructure they're starting to run into the same issue. So this is a part that I felt like was missing gap in the market that I wanted to fulfill and that's why I started the company. >> I'm fascinated with some of the mechanics of doing that. In March of 2020 when lockdowns were happening worldwide you're starting new a company, you have to get funding, you have to hire people, you don't have a team in place presumably. So you have to build that as free to core. How did you do all that? (Shinji laughs) >> Yeah, that was definitely a lot of work just starting from scratch. But I've been brewing this idea, I would say three four months prior. I had a few other ideas. Basically after Akamai I took some time off and then when I decided I wanted to start another company there were a number of ideas that I was toying around with. And so late 2019 I was talking to a lot of different potential customers and users to learn a little bit more about whether my hypothesis around data discovery was true or not. And that kind of led into starting to build prototypes and designs and showing them around to see if there is an interest. So it's only after all those validations and conversations in place that I truly decided that I was going to start another company and it just happened to be at the timing of end of February, early March. So that's kind of how it happened. At the same time, I'm very lucky that I was able to have had number of investors that I kept in touch with and I kept them posted on how this process was going and that's why I think during the pandemic it was definitely not an easy thing to raise our initial seed round but we were able to close it and then move on to really start building the product in 2020. >> Now you were also entering a market that's there's quite a few competitors already in that market. What has been your strategy for getting a foot in the door, getting some name recognition for your company other than being on the queue? >> Yes, this is certainly part of it. So I think there are a few things. One is when I was doing my market research and even today there are a lot of customers out there looking for an easier, faster, time to value solution. >> Yes. >> In the market. Today, existing players and legacy players have a whole suite of platform. However, the implementation time for those platforms take six months or longer and they don't necessarily are built for lot of users to use. They are built for database administrators or more technical people to use so that they end up finding their data governance project not necessarily succeeding or getting as much value out of it as they were hoping for. So this is an area that we really try to fill the gaps in because for us from day one you will be able to see all the usage analysis, how your data models look like, and the analysis right up front. And this is one part that a lot of our customers really like and also some of those customers have moved from the legacy players to Select Star's floor. >> Interesting, so you're actually taking business from some of the legacy guys and girls that may not be able to move as fast and quickly as you can. But I'd love to hear, every company these days has to be a data company, whether it's a grocery store or obviously a bank or a car dealership, there's no choice anymore. As consumers, we have this expectation that we're going to be able to get what we want, self-service. So these companies have to figure out where all the data is, what's the insides, what does it say, how can they act on that quickly? And that's a big challenge to enable organizations to be able to see what it is that they have, where's the value, where's the liability as well. Give me a favorite customer story example that you think really highlights the value of what Select Star is delivering. >> Sure, so one customer that we helped and have been working with closely is Pitney Bowes. It's one of the oldest companies, 100 year old company in logistics and manufacturing. They have ton of IoT data they collect from parcels and all the tracking and all the manufacturing that they run. They have recently, I would say a couple years ago moved to a cloud data warehouse. And this is where their challenge around managing data have really started because they have many different teams accessing the data warehouses but maybe different teams creating different things that might have been created before and it's not clear to the other teams and there is no single source of truth that they could manage. So for them, as they were starting to look into implementing data mesh architecture they adopted Select Star. And they have a, as being a very large and also mature company they have considered a lot of other legacy solutions in the market as well. But they decided to give it a try with select Star mainly because all of the automated version of data modeling and the documentation that we were able to provide upfront. And with all that, with the implementation of Select Star now they claim that they save more than 30 hours a month of every person that they have in the data management team. And we have a case study about that. So this is like one place where we see it save a lot of time for the data team as well as all the consumers that data teams serve. >> I have to ask you this as a successful woman in technology, a field that has not been very inviting to women over the years, what do you think this industry has to do better in terms of bringing along girls and young women, particularly in secondary school to encourage them to pursue careers in science and technology? >> Like what could they do better? >> What could this industry do? What is this industry, these 70,000 people here need to do better? Of which maybe 15% are female. >> Yeah, so actually I do see a lot more women and minority in data analytics field which is always great to see, also like bridging the gap between technology and the business point of view. If anything as a takeaway I feel like just making more opportunities for everyone to participate is always great. I feel like there has been, or you know just like being in the industry, a lot of people tends to congregate with people that they know or more closed groups but having more inclusive open groups that is inviting regardless of the level or gender I think is definitely something that needs to be encouraged more just overall in the industry. >> I agree. I think the inclusivity is so important but it also needs to be intentional. We've done a lot of chatting with women in tech lately and we've been talking about this very topic and that they all talk about the inclusivity, diversity, equity but it needs to be intentional by companies to be able to do that. >> Right, and I think in a way if you were to put it as like women in tech then I feel like that's also making it more explosive. I think it's better when it's focused on the industry problem or like the subject matter, but then intentionally inviting more women and minority to participate so that there's more exchange with more diverse attendees in the AWS. >> That's a great point and I hope to your 0.1 day that we're able to get there, but we don't have to call out women in tech but it is just so much more even playing field. And I hope like you that we're on our way to doing that but it's amazing that Paul brought up that you started the company during the pandemic. Also as a female founder getting funding is incredibly difficult. So kudos to you. >> Thank you. >> For all the successes that you've had. Tell us what's next for Select Star before we get to that last question. >> Yeah, we have a lot of exciting features that have been recently released and also coming up. First and foremost we have an auto documentation feature that we recently released. We have a fairly sophisticated data lineage function that parses through activity log and sequel queries to give you what the data pipeline models look like. This allows you to tell what is the dependency of different tables and dashboards so you can plan what your migration or any changes that might happen in the data warehouse so that nothing breaks whenever these changes happen. We went one step further to that to understand how the data replication actually happens and based on that we are now able to detect which are the duplicated data sets and how each different field might have changed their data values. And if the data actually stays the same then we can also propagate the same documentation as well as tagging. So this is particularly useful if you are doing like a PII tagging, you just mark one thing once and based on the data model we will also have the rest of the PII that it's associated with. So that's one part. The second part is more on the security and data governance front. So we are really seeing policy based access control where you can define who can see what data in the catalog based on their team tags and how you want to define the model. So this allows more enterprises to be able to have different teams to work together. And last one at least we have more integrations that we are releasing. We have an upgraded integration now with Redshift so that there's an easy cloud formation template to get it set up, but we now have not added Databricks, and power BI as well. So there are lots of stuff coming up. >> Man, you have accomplished a lot in two and a half years Shinji, my goodness! Last question for you, describing Select Star in a bumper sticker, what would that bumper sticker say? >> So this is on our website, but yes, automated data catalog in 15 minutes would be what I would call. >> 15 minutes. That's awesome. Thank you so much for joining us back on the program reintroducing our audience to Select Star. And again, congratulations on the successes that you've had. You have to come back because what you're creating is a flywheel and I can't wait to see where it goes. >> Awesome, thanks so much for having me here. >> Oh, our pleasure. Shinji Kim and Paul Gillin, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)
SUMMARY :
This is the first full day of coverage. just in that aisle right there. of the things that you have and the strategic value of data, and founder of Select Star. So for the audience who may not know and how the data has been created, used of the organization, Excel in the market today is that or the catalyst to launch the business I sold the company to Akamai the mechanics of doing that. and it just happened to be for getting a foot in the door, time to value solution. and the analysis right up front. and girls that may not and the documentation that we here need to do better? and the business point of view. and that they all talk and minority to participate and I hope to your 0.1 day For all the successes that you've had. and based on that we are now able to So this is on our website, the successes that you've had. much for having me here. the leader in live enterprise
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Lisa | PERSON | 0.99+ |
Paul Gillin | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Paul | PERSON | 0.99+ |
March of 2020 | DATE | 0.99+ |
Vegas | LOCATION | 0.99+ |
2020 | DATE | 0.99+ |
six months | QUANTITY | 0.99+ |
Concord Systems | ORGANIZATION | 0.99+ |
late 2019 | DATE | 0.99+ |
100s | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
15% | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Select Star | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
70,000 people | QUANTITY | 0.99+ |
15 minutes | QUANTITY | 0.99+ |
Shinji Kim | PERSON | 0.99+ |
second part | QUANTITY | 0.99+ |
Akamai | ORGANIZATION | 0.99+ |
end of February | DATE | 0.99+ |
Thursday | DATE | 0.99+ |
100% | QUANTITY | 0.99+ |
last night | DATE | 0.99+ |
Excel | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
early March | DATE | 0.99+ |
two and a half years | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
one customer | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
one part | QUANTITY | 0.98+ |
0.1 day | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
one place | QUANTITY | 0.98+ |
one area | QUANTITY | 0.98+ |
Select Star | ORGANIZATION | 0.98+ |
Today | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
Pitney Bowes | ORGANIZATION | 0.96+ |
Redshift | ORGANIZATION | 0.96+ |
more than 30 hours a month | QUANTITY | 0.96+ |
Shinji | PERSON | 0.95+ |
pandemic | EVENT | 0.95+ |
one portion | QUANTITY | 0.94+ |
single source | QUANTITY | 0.93+ |
one step | QUANTITY | 0.93+ |
Databricks | ORGANIZATION | 0.93+ |
rei:Invent '22 | EVENT | 0.89+ |
couple of years ago | DATE | 0.88+ |
Snowflake | ORGANIZATION | 0.88+ |
one thing | QUANTITY | 0.86+ |
100 year old | QUANTITY | 0.82+ |
couple years ago | DATE | 0.82+ |
once | QUANTITY | 0.82+ |
three four months prior | DATE | 0.78+ |
ton of data | QUANTITY | 0.78+ |
each different field | QUANTITY | 0.76+ |
Select Star | TITLE | 0.75+ |
1000s of database tables | QUANTITY | 0.75+ |
re:Invent 2022 | EVENT | 0.72+ |
select Star | ORGANIZATION | 0.71+ |
ton of IoT data | QUANTITY | 0.7+ |
Select | ORGANIZATION | 0.7+ |
day one | QUANTITY | 0.68+ |
Redshift | TITLE | 0.67+ |
Star | ORGANIZATION | 0.64+ |
Invent 2022 | EVENT | 0.64+ |
Hoshang Chenoy, Meraki & Matthew Scullion, Matillion | AWS re:Invent 2022
(upbeat music) >> Welcome back to Vegas. It's theCUBE live at AWS re:Invent 2022. We're hearing up to 50,000 people here. It feels like if the energy at this show is palpable. I love that. Lisa Martin here with Dave Vellante. Dave, we had the keynote this morning that Adam Selipsky delivered lots of momentum in his first year. One of the things that you said that you were looking in your breaking analysis that was released a few days ago, four trends and one of them, he said under Selipsky's rule in the 2020s, there's going to be a rush of data that will dwarf anything we have ever seen. >> Yeah, it was at least a quarter, maybe a third of his keynote this morning was all about data and the theme is simplifying data and doing better data integration, integrating across different data platforms. And we're excited to talk about that. Always want to simplify data. It's like the rush of data is so fast. It's hard for us to keep up. >> It is hard to keep that up. We're going to be talking with an alumni next about how his company is helping organizations like Cisco Meraki keep up with that data explosion. Please welcome back to the program, Matthew Scullion, the CEO of Matillion and how Hoshang Chenoy joins us, data scientist at Cisco Meraki. Guys, great to have you on the program. >> Thank you. >> Thank you for having us. >> So Matthew, we last saw you just a few months ago in Vegas at Snowflake Summits. >> Matthew: We only meet in Vegas. >> I guess we do, that's okay. Talk to us about some of the things, I know that Matillion is a data transformation solution that was originally introduced for AWS for Redshift. But talk to us about Matillion. What's gone on since we've seen you last? >> Well, I mean it's not that long ago but actually quite a lot. And it's all to do with exactly what you guys were just talking about there. This almost hard to comprehend way the world is changing with the amounts of data that we now can and need to put to work. And our worldview is there's no shortage of data but the choke points certainly one of the choke points. Maybe the choke point is our ability to make that data useful, to make it business ready. And we always talk about the end use cases. We talk about the dashboard or the AI model or the data science algorithm. But until before we can do any of that fun stuff, we have to refine raw data into business ready, usable data. And that's what Matillion is all about. And so since we last met, we've made a couple of really important announcements and possibly at the top of the list is what we call the data productivity cloud. And it's really squarely addressed this problem. It's the results of many years of work, really the apex of many years of the outsize engineering investment, Matillion loves to make. And the Data Productivity Cloud is all about helping organizations like Cisco Meraki and hundreds of others enterprise organizations around the world, get their data business ready, faster. >> Hoshang talk to us a little bit about what's going on at Cisco Meraki, how you're leveraging Matillion from a productivity standpoint. >> I've really been a Matillion fan for a while, actually even before Cisco Meraki at my previous company, LiveRamp. And you know, we brought Matillion to LiveRamp because you know, to Matthew's point, there is a stage in every data growth as I want to call it, where you have different companies at different stages. But to get data, data ready, you really need a platform like Matillion because it makes it really easy. So you have to understand Matillion, I think it's designed for someone that uses a lot of code but also someone that uses no code because the UI is so good. Someone like a marketer who doesn't really understand what's going on with that data but wants to be a data driven marketer when they look at the UI they immediately get it. They're just like, oh, I get what's happening with my data. And so that's the brilliance of Matillion and to get data to that data ready part, Matillion does a really, really good job because what we've been able to do is blend so many different data sources. So there is an abundance of data. Data is siloed though. And the connectivity between different data is getting harder and harder. And so here comes the Matillion with it's really simple solution, easy to use platform, powerful and we get to use all of that. So to really change the way we've thought about our analytics, the way we've progressed our division, yeah. >> You're always asking about superpowers and that is a superpower of Matillion 'cause you know, low-code, no-code sounds great but it only gets you a quarter of the way there, maybe 50% of the way there. You're kind of an "and" not an "or." >> That's a hundred percent right. And so I mentioned the Data Productivity Cloud earlier which is the name of this platform of technology we provide. That's all to do with making data business ready. And so I think one of the things we've seen in this industry over the past few years is a kind of extreme decomposition in terms of vendors of making data business ready. You've got vendors that just do loading, you've got vendors that just do a bit of data transformation, you've got vendors that do data ops and orchestration, you've got vendors that do reverse ETL. And so with the data productivity platform, you've got all of that. And particularly in this kind of, macroeconomic heavy weather that we're now starting to face, I think companies are looking for that. It's like, I don't want to buy five things, five sets of skills, five expensive licenses. I want one platform that can do it. But to your point David, it's the and not the or. We talk about the Data Productivity Cloud, the DPC, as being everyone ready. And what we mean by that is if you are the tech savvy marketer who wants to get a particular insight and you understand what a Rowan economy is, but you're not necessarily a hardcore super geeky data engineer then you can visual low-code, no-code, your data to a point where it's business ready. You can do that really quick. It's easy to understand, it's faster to ramp people onto those projects cause it like explains itself, faster to hand it over cause it's self-documenting. But, they'll always be individuals, teams, "and", "or" use cases that want to high-code as well. Maybe you want to code in SQL or Python, increasingly of course in DBT and you can do that on top of the Data Productivity Cloud as well. So you're not having to make a choice, but is that right? >> So one of the things that Matillion really delivers is speed to insight. I've always said that, you know, when you want to be business ready you want to make fast decisions, you want to act on data quickly, Matillion allows you to, this feed to insight is just unbelievably fast because you blend all of these different data sources, you can find the deficiencies in your process, you fix that and you can quickly turn things around and I don't think there's any other platform that I've ever used that has that ability. So the speed to insight is so tremendous with Matillion. >> The thing I always assume going on in our customers teams, like you run Hoshang is that the visual metaphor, be it around the orchestration and data ops jobs, be it around the transformation. I hope it makes it easier for teams not only to build it in the first place, but to live with it, right? To hand it over to other people and all that good stuff. Is that true? >> Let me highlight that a little bit more and better for you. So, say for example, if you don't have a platform like Matillion, you don't really have a central repository. >> Yeah. >> Where all of your codes meet, you could have a get repository, you could do all of those things. But, for example, for definitions, business definitions, any of those kind of things, you don't want it to live in just a spreadsheet. You want it to have a central platform where everybody can go in, there's detailed notes, copious notes that you can make on Matillion and people know exactly which flow to go to and be part of, and so I kind of think that that's really, really important because that's really helped us in a big, big way. 'Cause when I first got there, you know, you were pulling code from different scripts and things and you were trying to piece everything together. But when you have a platform like Matillion and you actually see it seamlessly across, it's just so phenomenal. >> So, I want to pick up on something Matthew said about, consolidating platforms and vendors because we have some data from PTR, one of our survey partners and they went out, every quarter they do surveys and they asked the customers that were going to decrease their spending in the quarter, "How are you going to do it?" And number one, by far, like, over a third said, "We're going to consolidate redundant vendors." Way ahead of cloud, we going to optimize cloud resource that was next at like 15%. So, confirms what you were saying and you're hearing that a lot. Will you wait? And I think we never get rid of stuff, we talk about it all the time. We call it GRS, get rid of stuff. Were you able to consolidate or at least minimize your expense around? >> Hoshang: Yeah, absolutely. >> What we were able to do is identify different parts of our tech stack that were just either deficient or duplicate, you know, so they're just like, we don't want any duplicate efforts, we just want to be able to have like, a single platform that does things, does things well and Matillion helped us identify all of those different and how do we choose the right tech stack. It's also about like Matillion is so easy to integrate with any tech stack, you know, it's just they have a generic API tool that you can log into anything besides all of the components that are already there. So it's a great platform to help you do that. >> And the three things we always say about the Data Productivity Cloud, everyone ready, we spoke about this is whether low-code, no-code, quasi-technical, quasi-business person using it, through to a high-end data engineer. You're going to feel at home on the DPC. The second one, which Hoshang was just alluding to there is stack ready, right? So it is built for AWS, built for Snowflake, built for Redshift, pure tight integration, push down ELT better than you could write yourself by hand. And then the final one is future ready, which is this idea that you can start now super easy. And we buy software quickly nowadays, right? We spin it up, we try it out and before we know it, the whole organization is using it. And so the future ready talks about that continuum of being able to launch in five minutes, learn it in five hours, deliver your first project in five days and yet still be happy that it's an enterprise scalable platform, five years down track including integrating with all the different things. So Matillion's job holding up the end of the bargain that Hoshang was just talking about there is to ensure we keep putting the features integrations and support into the Data Productivity Cloud to make sure that Hoshang's team can continue to live inside it and do all the things they need to do. >> Hoshang, you talked about the speed to insight being tremendously fast, but if I'm looking at Cisco Meraki from a high level business outcome perspective, what are some of those outcomes that a Matillion is helping Cisco Meraki to achieve. >> So I can just talk in general, not giving you like any specific numbers or anything, but for example, we were trying to understand how well our small and medium business campaigns were doing and we had to actually pull in data from multiple different sources. So not just, our instances of Marketo and Salesforce, we had to look at our internal databases. So Matillion helped us blend all of that together. Once I had all of that data blended, it was then ready to be analyzed. And once we had that analysis done, we were able to confirm that our SMB campaigns were doing well but these the things that we need to do to improve them. When we did that and all of that happened so quickly because they were like, well you need to get data from here, you need to get data from there. And we're like, great, we'll just plug, plug, plug. We put it all together, build transformations and you know we produced this insight and then we were able to reform, refine, and keep getting better and better at it. And you know, we had a 40X return on SMB campaigns. It's unbelievable. >> And there's the revenue tie in right there. >> Hoshang: Yeah. >> Matthew, I know you've been super busy, tons of meetings, you didn't get to see the whole keynote, but one of the themes of Adam Selipsky's keynote was, you know, the three letter word of ETL, they laid out a vision of zero ETL and then they announced zero ETL for Aurora and Redshift. And you think about ETL, I remember the days they said, "Okay, we're going to do ELT." Which is like, raising the debt ceiling, we're just going to kick the can down the road. So, what do you think about that vision? You know, how does it relate to what you guys are doing? >> So there was a, I don't know if this only works in the UK or it works globally. It was a good line many years ago. Rumors of my death are premature or so I think it was an obituary had gone out in the times by accident and that's how the guy responded to it. Something like that. It's a little bit like that. The announcement earlier within the AWS space of zero ETL between platforms like Aurora and Redshift and perhaps more over time is really about data movement, right? So it's about do I need to do a load of high cost in terms of coding and compute, movement of data between one platform, another. At Matillion, we've always seen data movement as an enabling technology, which gets you to the value add of transformation. My favorite metaphor to bring this to life is one of iron. So the world's made of iron, right? The world is literally made of iron ore but iron ore isn't useful until you turn it to steel. Loading data is digging out iron ore from the ground and moving it to the refinery. Transformation of data is turning iron ore into steel and what the announcements you saw earlier from AWS are more about the quarry to the factory bit than they are about the iron ore to the steel bit. And so, I think it's great that platforms are making it easier to move data between them, but it doesn't change the need for Hoshang's business professionals to refine that data into something useful to drive their marketing campaigns. >> Exactly, it's quarry to the factory and a very Snowflake like in a way, right? You make it easy to get in. >> It's like, don't get me wrong, I'm great to see investment going into the Redshift business and the AWS data analytics stack. We do a lot of business there. But yes, this stuff is also there on Snowflake, already. >> I mean come on, we've seen this for years. You know, I know there's a big love fest between Snowflake and AWS 'cause they're selling so much business in the field. But look that we saw it separating computing from storage, then AWS does it and now, you know, why not? It's good sense. That's what customers want. The customer obsessed data sharing is another thing. >> And if you take data sharing as an example from our friends at Snowflake, when that was announced a few people possibly, yourselves, said, "Oh, Matthew what do you think about this? You're in the data movement business." And I was like, "Ah, I'm not really actually, some of my competitors are in the data movement business. I have data movement as part of my platform. We don't charge directly for it. It's just part of the platform." And really what it's to do is to get the data into a place where you can do the fun stuff with it of refining into steel. And so if Snowflake or now AWS and the Redshift group are making that easier that's just faster to fun for me really. >> Yeah, sure. >> Last question, a question for both of you. If you had, you have a brand new shiny car, you got a bumper sticker that you want to put on that car to tell everyone about Matillion, everyone about Cisco Meraki, what does that bumper sticker say? >> So for Matillion, it says Matillion is the Data Productivity Cloud. We help you make your data business ready, faster. And then for a joke I'd write, "Which you are going to need in the face of this tsunami of data." So that's what mine would say. >> Love it. Hoshang, what would you say? >> I would say that Cisco makes some of the best products for IT professionals. And I don't think you can, really do the things you do in IT without any Cisco product. Really phenomenal products. And, we've gone so much beyond just the IT realm. So you know, it's been phenomenal. >> Awesome. Guys, it's been a pleasure having you back on the program. Congrats to you now Hoshang, an alumni of theCUBE. >> Thank you. >> But thank you for talking to us, Matthew, about what's going on with Matillion so much since we've seen you last. I can imagine how much worse going to go on until we see you again. But we appreciate, especially having the Cisco Meraki customer example that really articulates the value of data for everyone. We appreciate your insights and we appreciate your time. >> Thank you. >> Privilege to be here. Thanks for having us. >> Thank you. >> Pleasure. For our guests and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage.
SUMMARY :
One of the things that you and the theme is simplifying data Guys, great to have you on the program. you just a few months ago What's gone on since we've seen you last? And the Data Productivity Cloud Hoshang talk to us a little And so that's the brilliance of Matillion but it only gets you a And so I mentioned the Data So the speed to insight is is that the visual metaphor, if you don't have a and things and you were trying So, confirms what you were saying to help you do that. and do all the things they need to do. Hoshang, you talked about the speed And you know, we had a 40X And there's the revenue to what you guys are doing? the guy responded to it. Exactly, it's quarry to the factory and the AWS data analytics stack. now, you know, why not? And if you take data you want to put on that car We help you make your data Hoshang, what would you say? really do the things you do in Congrats to you now Hoshang, until we see you again. Privilege to be here. the leader in live enterprise
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Matthew | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Matthew Scullion | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
Vegas | LOCATION | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Hoshang | PERSON | 0.99+ |
50% | QUANTITY | 0.99+ |
five days | QUANTITY | 0.99+ |
UK | LOCATION | 0.99+ |
five hours | QUANTITY | 0.99+ |
five minutes | QUANTITY | 0.99+ |
Selipsky | PERSON | 0.99+ |
Matillion | ORGANIZATION | 0.99+ |
2020s | DATE | 0.99+ |
Hoshang Chenoy | PERSON | 0.99+ |
40X | QUANTITY | 0.99+ |
15% | QUANTITY | 0.99+ |
first project | QUANTITY | 0.99+ |
Cisco Meraki | ORGANIZATION | 0.99+ |
Aurora | ORGANIZATION | 0.99+ |
five sets | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
Meraki | PERSON | 0.99+ |
one platform | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
SQL | TITLE | 0.99+ |
second one | QUANTITY | 0.98+ |
five years | QUANTITY | 0.98+ |
five expensive licenses | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
PTR | ORGANIZATION | 0.98+ |
LiveRamp | ORGANIZATION | 0.97+ |
Snowflake | TITLE | 0.97+ |
three things | QUANTITY | 0.97+ |
hundred percent | QUANTITY | 0.96+ |
Matillion | PERSON | 0.96+ |
zero | QUANTITY | 0.95+ |
Redshift | TITLE | 0.95+ |
over a third | QUANTITY | 0.94+ |
Scott Castle, Sisense | AWS re:Invent 2022
>>Good morning fellow nerds and welcome back to AWS Reinvent. We are live from the show floor here in Las Vegas, Nevada. My name is Savannah Peterson, joined with my fabulous co-host John Furrier. Day two keynotes are rolling. >>Yeah. What do you thinking this? This is the day where everything comes, so the core gets popped off the bottle, all the announcements start flowing out tomorrow. You hear machine learning from swee lot more in depth around AI probably. And then developers with Verner Vos, the CTO who wrote the seminal paper in in early two thousands around web service that becames. So again, just another great year of next level cloud. Big discussion of data in the keynote bulk of the time was talking about data and business intelligence, business transformation easier. Is that what people want? They want the easy button and we're gonna talk a lot about that in this segment. I'm really looking forward to this interview. >>Easy button. We all want the >>Easy, we want the easy button. >>I love that you brought up champagne. It really feels like a champagne moment for the AWS community as a whole. Being here on the floor feels a bit like the before times. I don't want to jinx it. Our next guest, Scott Castle, from Si Sense. Thank you so much for joining us. How are you feeling? How's the show for you going so far? Oh, >>This is exciting. It's really great to see the changes that are coming in aws. It's great to see the, the excitement and the activity around how we can do so much more with data, with compute, with visualization, with reporting. It's fun. >>It is very fun. I just got a note. I think you have the coolest last name of anyone we've had on the show so far, castle. Oh, thank you. I'm here for it. I'm sure no one's ever said that before, but I'm so just in case our audience isn't familiar, tell us about >>Soy Sense is an embedded analytics platform. So we're used to take the queries and the analysis that you can power off of Aurora and Redshift and everything else and bring it to the end user in the applications they already know how to use. So it's all about embedding insights into tools. >>Embedded has been a, a real theme. Nobody wants to, it's I, I keep using the analogy of multiple tabs. Nobody wants to have to leave where they are. They want it all to come in there. Yep. Now this space is older than I think everyone at this table bis been around since 1958. Yep. How do you see Siente playing a role in the evolution there of we're in a different generation of analytics? >>Yeah, I mean, BI started, as you said, 58 with Peter Lu's paper that he wrote for IBM kind of get became popular in the late eighties and early nineties. And that was Gen one bi, that was Cognos and Business Objects and Lotus 1 23 think like green and black screen days. And the way things worked back then is if you ran a business and you wanted to get insights about that business, you went to it with a big check in your hand and said, Hey, can I have a report? And they'd come back and here's a report. And it wasn't quite right. You'd go back and cycle, cycle, cycle and eventually you'd get something. And it wasn't great. It wasn't all that accurate, but it's what we had. And then that whole thing changed in about two, 2004 when self-service BI became a thing. And the whole idea was instead of going to it with a big check in your hand, how about you make your own charts? >>And that was totally transformative. Everybody started doing this and it was great. And it was all built on semantic modeling and having very fast databases and data warehouses. Here's the problem, the tools to get to those insights needed to serve both business users like you and me and also power users who could do a lot more complex analysis and transformation. And as the tools got more complicated, the barrier to entry for everyday users got higher and higher and higher to the point where now you look, look at Gartner and Forester and IDC this year. They're all reporting in the same statistic. Between 10 and 20% of knowledge workers have learned business intelligence and everybody else is just waiting in line for a data analyst or a BI analyst to get a report for them. And that's why the focus on embedded is suddenly showing up so strong because little startups have been putting analytics into their products. People are seeing, oh my, this doesn't have to be hard. It can be easy, it can be intuitive, it can be native. Well why don't I have that for my whole business? So suddenly there's a lot of focus on how do we embed analytics seamlessly? How do we embed the investments people make in machine learning in data science? How do we bring those back to the users who can actually operationalize that? Yeah. And that's what Tysons does. Yeah. >>Yeah. It's interesting. Savannah, you know, data processing used to be what the IT department used to be called back in the day data processing. Now data processing is what everyone wants to do. There's a ton of data we got, we saw the keynote this morning at Adam Lesky. There was almost a standing of vision, big applause for his announcement around ML powered forecasting with Quick Site Cube. My point is people want automation. They want to have this embedded semantic layer in where they are not having all the process of ETL or all the muck that goes on with aligning the data. All this like a lot of stuff that goes on. How do you make it easier? >>Well, to be honest, I, I would argue that they don't want that. I think they, they think they want that, cuz that feels easier. But what users actually want is they want the insight, right? When they are about to make a decision. If you have a, you have an ML powered forecast, Andy Sense has had that built in for years, now you have an ML powered forecast. You don't need it two weeks before or a week after in a report somewhere. You need it when you're about to decide do I hire more salespeople or do I put a hundred grand into a marketing program? It's putting that insight at the point of decision that's important. And you don't wanna be waiting to dig through a lot of infrastructure to find it. You just want it when you need it. What's >>The alternative from a time standpoint? So real time insight, which is what you're saying. Yep. What's the alternative? If they don't have that, what's >>The alternative? Is what we are currently seeing in the market. You hire a bunch of BI analysts and data analysts to do the work for you and you hire enough that your business users can ask questions and get answers in a timely fashion. And by the way, if you're paying attention, there's not enough data analysts in the whole world to do that. Good luck. I am >>Time to get it. I really empathize with when I, I used to work for a 3D printing startup and I can, I have just, I mean, I would call it PTSD flashbacks of standing behind our BI guy with my list of queries and things that I wanted to learn more about our e-commerce platform in our, in our marketplace and community. And it would take weeks and I mean this was only in 2012. We're not talking 1958 here. We're talking, we're talking, well, a decade in, in startup years is, is a hundred years in the rest of the world life. But I think it's really interesting. So talk to us a little bit about infused and composable analytics. Sure. And how does this relate to embedded? Yeah. >>So embedded analytics for a long time was I want to take a dashboard I built in a BI environment. I wanna lift it and shift it into some other application so it's close to the user and that is the right direction to go. But going back to that statistic about how, hey, 10 to 20% of users know how to do something with that dashboard. Well how do you reach the rest of users? Yeah. When you think about breaking that up and making it more personalized so that instead of getting a dashboard embedded in a tool, you get individual insights, you get data visualizations, you get controls, maybe it's not even actually a visualization at all. Maybe it's just a query result that influences the ordering of a list. So like if you're a csm, you have a list of accounts in your book of business, you wanna rank those by who's priorities the most likely to churn. >>Yeah. You get that. How do you get that most likely to churn? You get it from your BI system. So how, but then the question is, how do I insert that back into the application that CSM is using? So that's what we talk about when we talk about Infusion. And SI started the infusion term about two years ago and now it's being used everywhere. We see it in marketing from Click and Tableau and from Looker just recently did a whole launch on infusion. The idea is you break this up into very small digestible pieces. You put those pieces into user experiences where they're relevant and when you need them. And to do that, you need a set of APIs, SDKs, to program it. But you also need a lot of very solid building blocks so that you're not building this from scratch, you're, you're assembling it from big pieces. >>And so what we do aty sense is we've got machine learning built in. We have an LQ built in. We have a whole bunch of AI powered features, including a knowledge graph that helps users find what else they need to know. And we, we provide those to our customers as building blocks so that they can put those into their own products, make them look and feel native and get that experience. In fact, one of the things that was most interesting this last couple of couple of quarters is that we built a technology demo. We integrated SI sensee with Office 365 with Google apps for business with Slack and MS teams. We literally just threw an Nlq box into Excel and now users can go in and say, Hey, which of my sales people in the northwest region are on track to meet their quota? And they just get the table back in Excel. They can build charts of it and PowerPoint. And then when they go to their q do their QBR next week or week after that, they just hit refresh to get live data. It makes it so much more digestible. And that's the whole point of infusion. It's bigger than just, yeah. The iframe based embedding or the JavaScript embedding we used to talk about four or five years >>Ago. APIs are very key. You brought that up. That's gonna be more of the integration piece. How does embedable and composable work as more people start getting on board? It's kind of like a Yeah. A flywheel. Yes. What, how do you guys see that progression? Cause everyone's copying you. We see that, but this is a, this means it's standard. People want this. Yeah. What's next? What's the, what's that next flywheel benefit that you guys coming out with >>Composability, fundamentally, if you read the Gartner analysis, right, they, when they talk about composable, they're talking about building pre-built analytics pieces in different business units for, for different purposes. And being able to plug those together. Think of like containers and services that can, that can talk to each other. You have a composition platform that can pull it into a presentation layer. Well, the presentation layer is where I focus. And so the, so for us, composable means I'm gonna have formulas and queries and widgets and charts and everything else that my, that my end users are gonna wanna say almost minority report style. If I'm not dating myself with that, I can put this card here, I can put that chart here. I can set these filters here and I get my own personalized view. But based on all the investments my organization's made in data and governance and quality so that all that infrastructure is supporting me without me worrying much about it. >>Well that's productivity on the user side. Talk about the software angle development. Yeah. Is your low code, no code? Is there coding involved? APIs are certainly the connective tissue. What's the impact to Yeah, the >>Developer. Oh. So if you were working on a traditional legacy BI platform, it's virtually impossible because this is an architectural thing that you have to be able to do. Every single tool that can make a chart has an API to embed that chart somewhere. But that's not the point. You need the life cycle automation to create models, to modify models, to create new dashboards and charts and queries on the fly. And be able to manage the whole life cycle of that. So that in your composable application, when you say, well I want chart and I want it to go here and I want it to do this and I want it to be filtered this way you can interact with the underlying platform. And most importantly, when you want to use big pieces like, Hey, I wanna forecast revenue for the next six months. You don't want it popping down into Python and writing that yourself. >>You wanna be able to say, okay, here's my forecasting algorithm. Here are the inputs, here's the dimensions, and then go and just put it somewhere for me. And so that's what you get withy sense. And there aren't any other analytics platforms that were built to do that. We were built that way because of our architecture. We're an API first product. But more importantly, most of the legacy BI tools are legacy. They're coming from that desktop single user, self-service, BI environment. And it's a small use case for them to go embedding. And so composable is kind of out of reach without a complete rebuild. Right? But with SI senses, because our bread and butter has always been embedding, it's all architected to be API first. It's integrated for software developers with gi, but it also has all those low code and no code capabilities for business users to do the minority report style thing. And it's assemble endless components into a workable digital workspace application. >>Talk about the strategy with aws. You're here at the ecosystem, you're in the ecosystem, you're leading product and they have a strategy. We know their strategy, they have some stuff, but then the ecosystem goes faster and ends up making a better product in most of the cases. If you compare, I know they'll take me to school on that, but I, that's pretty much what we report on. Mongo's doing a great job. They have databases. So you kind of see this balance. How are you guys playing in the ecosystem? What's the, what's the feedback? What's it like? What's going on? >>AWS is actually really our best partner. And the reason why is because AWS has been clear for many, many years. They build componentry, they build services, they build infrastructure, they build Redshift, they build all these different things, but they need, they need vendors to pull it all together into something usable. And fundamentally, that's what Cient does. I mean, we didn't invent sequel, right? We didn't invent jackal or dle. These are not, these are underlying analytics technologies, but we're taking the bricks out of the briefcase. We're assembling it into something that users can actually deploy for their use cases. And so for us, AWS is perfect because they focus on the hard bits. The the underlying technologies we assemble those make them usable for customers. And we get the distribution. And of course AWS loves that. Cause it drives more compute and it drives more, more consumption. >>How much do they pay you to say that >>Keynote, >>That was a wonderful pitch. That's >>Absolutely, we always say, hey, they got a lot of, they got a lot of great goodness in the cloud, but they're not always the best at the solutions and that they're trying to bring out, and you guys are making these solutions for customers. Yeah. That resonates with what they got with Amazon. For >>Example, we, last year we did a, a technology demo with Comprehend where we put comprehend inside of a semantic model and we would compile it and then send it back to Redshift. And it takes comprehend, which is a very cool service, but you kind of gotta be a coder to use it. >>I've been hear a lot of hype about the semantic layer. What is, what is going on with that >>Semantec layer is what connects the actual data, the tables in your database with how they're connected and what they mean so that a user like you or me who's saying I wanna bar chart with revenue over time can just work with revenue and time. And the semantic layer translates between what we did and what the database knows >>About. So it speaks English and then they converts it to data language. It's >>Exactly >>Right. >>Yeah. It's facilitating the exchange of information. And, and I love this. So I like that you actually talked about it in the beginning, the knowledge map and helping people figure out what they might not know. Yeah. I, I am not a bi analyst by trade and I, I don't always know what's possible to know. Yeah. And I think it's really great that you're doing that education piece. I'm sure, especially working with AWS companies, depending on their scale, that's gotta be a big part of it. How much is the community play a role in your product development? >>It's huge because I'll tell you, one of the challenges in embedding is someone who sees an amazing experience in outreach or in seismic. And to say, I want that. And I want it to be exactly the way my product is built, but I don't wanna learn a lot. And so you, what you want do is you want to have a community of people who have already built things who can help lead the way. And our community, we launched a new version of the SES community in early 2022 and we've seen a 450% growth in the c in that community. And we've gone from an average of one response, >>450%. I just wanna put a little exclamation point on that. Yeah, yeah. That's awesome. We, >>We've tripled our organic activity. So now if you post this Tysons community, it used to be, you'd get one response maybe from us, maybe from from a customer. Now it's up to three. And it's continuing to trend up. So we're, it's >>Amazing how much people are willing to help each other. If you just get in the platform, >>Do it. It's great. I mean, business is so >>Competitive. I think it's time for the, it's time. I think it's time. Instagram challenge. The reels on John. So we have a new thing. We're gonna run by you. Okay. We just call it the bumper sticker for reinvent. Instead of calling it the Instagram reels. If we're gonna do an Instagram reel for 30 seconds, what would be your take on what's going on this year at Reinvent? What you guys are doing? What's the most important story that you would share with folks on Instagram? >>You know, I think it's really what, what's been interesting to me is the, the story with Redshift composable, sorry. No, composable, Redshift Serverless. Yeah. One of the things I've been >>Seeing, we know you're thinking about composable a lot. Yes. Right? It's, it's just, it's in there, it's in your mouth. Yeah. >>So the fact that Redshift Serverless is now kind becoming the defacto standard, it changes something for, for my customers. Cuz one of the challenges with Redshift that I've seen in, in production is if as people use it more, you gotta get more boxes. You have to manage that. The fact that serverless is now available, it's, it's the default means it now people are just seeing Redshift as a very fast, very responsive repository. And that plays right into the story I'm telling cuz I'm telling them it's not that hard to put some analysis on top of things. So for me it's, it's a, maybe it's a narrow Instagram reel, but it's an >>Important one. Yeah. And that makes it better for you because you get to embed that. Yeah. And you get access to better data. Faster data. Yeah. Higher quality, relevant, updated. >>Yep. Awesome. As it goes into that 80% of knowledge workers, they have a consumer great expectation of experience. They're expecting that five ms response time. They're not waiting 2, 3, 4, 5, 10 seconds. They're not trained on theola expectations. And so it's, it matters a lot. >>Final question for you. Five years out from now, if things progress the way they're going with more innovation around data, this front end being very usable, semantic layer kicks in, you got the Lambda and you got serverless kind of coming in, helping out along the way. What's the experience gonna look like for a user? What's it in your mind's eye? What's that user look like? What's their experience? >>I, I think it shifts almost every role in a business towards being a quantitative one. Talking about, Hey, this is what I saw. This is my hypothesis and this is what came out of it. So here's what we should do next. I, I'm really excited to see that sort of scientific method move into more functions in the business. Cuz for decades it's been the domain of a few people like me doing strategy, but now I'm seeing it in CSMs, in support people and sales engineers and line engineers. That's gonna be a big shift. Awesome. >>Thank >>You Scott. Thank you so much. This has been a fantastic session. We wish you the best at si sense. John, always pleasure to share the, the stage with you. Thank you to everybody who's attuning in, tell us your thoughts. We're always eager to hear what, what features have got you most excited. And as you know, we will be live here from Las Vegas at reinvent from the show floor 10 to six all week except for Friday. We'll give you Friday off with John Furrier. My name's Savannah Peterson. We're the cube, the the, the leader in high tech coverage.
SUMMARY :
We are live from the show floor here in Las Vegas, Nevada. Big discussion of data in the keynote bulk of the time was We all want the How's the show for you going so far? the excitement and the activity around how we can do so much more with data, I think you have the coolest last name of anyone we've had on the show so far, queries and the analysis that you can power off of Aurora and Redshift and everything else and How do you see Siente playing a role in the evolution there of we're in a different generation And the way things worked back then is if you ran a business and you wanted to get insights about that business, the tools to get to those insights needed to serve both business users like you and me the muck that goes on with aligning the data. And you don't wanna be waiting to dig through a lot of infrastructure to find it. What's the alternative? and data analysts to do the work for you and you hire enough that your business users can ask questions And how does this relate to embedded? Maybe it's just a query result that influences the ordering of a list. And SI started the infusion term And that's the whole point of infusion. That's gonna be more of the integration piece. And being able to plug those together. What's the impact to Yeah, the And most importantly, when you want to use big pieces like, Hey, I wanna forecast revenue for And so that's what you get withy sense. How are you guys playing in the ecosystem? And the reason why is because AWS has been clear for That was a wonderful pitch. the solutions and that they're trying to bring out, and you guys are making these solutions for customers. which is a very cool service, but you kind of gotta be a coder to use it. I've been hear a lot of hype about the semantic layer. And the semantic layer translates between It's So I like that you actually talked about it in And I want it to be exactly the way my product is built, but I don't wanna I just wanna put a little exclamation point on that. And it's continuing to trend up. If you just get in the platform, I mean, business is so What's the most important story that you would share with One of the things I've been Seeing, we know you're thinking about composable a lot. right into the story I'm telling cuz I'm telling them it's not that hard to put some analysis on top And you get access to better data. And so it's, it matters a lot. What's the experience gonna look like for a user? see that sort of scientific method move into more functions in the business. And as you know, we will be live here from Las Vegas at reinvent from the show floor
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Scott | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
2012 | DATE | 0.99+ |
Peter Lu | PERSON | 0.99+ |
Friday | DATE | 0.99+ |
80% | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 seconds | QUANTITY | 0.99+ |
John | PERSON | 0.99+ |
450% | QUANTITY | 0.99+ |
Excel | TITLE | 0.99+ |
10 | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Office 365 | TITLE | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
1958 | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
20% | QUANTITY | 0.99+ |
Forester | ORGANIZATION | 0.99+ |
Python | TITLE | 0.99+ |
Verner Vos | PERSON | 0.99+ |
early 2022 | DATE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
five ms | QUANTITY | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.99+ |
this year | DATE | 0.99+ |
first product | QUANTITY | 0.99+ |
aws | ORGANIZATION | 0.98+ |
one response | QUANTITY | 0.98+ |
late eighties | DATE | 0.98+ |
Five years | QUANTITY | 0.98+ |
2 | QUANTITY | 0.98+ |
tomorrow | DATE | 0.98+ |
Savannah | PERSON | 0.98+ |
Scott Castle | PERSON | 0.98+ |
one | QUANTITY | 0.98+ |
Sisense | PERSON | 0.97+ |
5 | QUANTITY | 0.97+ |
English | OTHER | 0.96+ |
Click and Tableau | ORGANIZATION | 0.96+ |
Andy Sense | PERSON | 0.96+ |
Looker | ORGANIZATION | 0.96+ |
two weeks | DATE | 0.96+ |
next week | DATE | 0.96+ |
early nineties | DATE | 0.95+ |
ORGANIZATION | 0.95+ | |
serverless | TITLE | 0.94+ |
AWS Reinvent | ORGANIZATION | 0.94+ |
Mongo | ORGANIZATION | 0.93+ |
single | QUANTITY | 0.93+ |
Aurora | TITLE | 0.92+ |
Lotus 1 23 | TITLE | 0.92+ |
One | QUANTITY | 0.92+ |
JavaScript | TITLE | 0.92+ |
SES | ORGANIZATION | 0.92+ |
next six months | DATE | 0.91+ |
MS | ORGANIZATION | 0.91+ |
five years | QUANTITY | 0.89+ |
six | QUANTITY | 0.89+ |
a week | DATE | 0.89+ |
Soy Sense | TITLE | 0.89+ |
hundred grand | QUANTITY | 0.88+ |
Redshift | TITLE | 0.88+ |
Adam Lesky | PERSON | 0.88+ |
Day two keynotes | QUANTITY | 0.87+ |
floor 10 | QUANTITY | 0.86+ |
two thousands | QUANTITY | 0.85+ |
Redshift Serverless | TITLE | 0.85+ |
both business | QUANTITY | 0.84+ |
3 | QUANTITY | 0.84+ |
Eleanor Dorfman, Retool | AWS re:Invent 2022
(gentle music) >> Good morning from Las Vegas. It's theCUBE live at AWS Reinvent 2022 with tons of thousands of people today. Really kicks off the event. Big keynote that I think is probably just wrapping up. Lisa Martin here with Dave Vellante. Dave, this is going to be an action packed week on theCUBE no doubt. We talked with so many different companies. Every company's a software company these days but we're also seeing a lot of companies leaving software that can help them operate more efficiently in the background. >> Yeah, well some things haven't changed at Reinvent. A lot of people here, you know, back to 2019 highs and I think we exceeded those two hour keynotes. Peter DeSantis last night talking about new Graviton instances and then Adam Selipsky doing the typical two hour keynote. But what was different he was a lot more poetic than we used to hear from Andy Jassy, right? He was talking about the universe as an analogy for data. >> I loved that. >> Talked about ocean exploration as for the security piece and then exploring into the Antarctic for, you know, better chips, you know? So yeah, I think he did a good job there. I think a lot of people might not love it but I thought it was very well done. >> I thought so too. We're having kicking off a great day of live content for you all day today. We've got Eleanor Dorfman joining us, the sales leader at Retool. Eleanor, welcome to theCUBE. It's great to have you. >> Thank you so much for having me. >> So let's talk a little bit about Retool. I was looking on your LinkedIn page. I love the tagline, build custom internal tools best. >> Eleanor: Yep. >> Talk to us a little bit about the company you recently raised, series C two. Give us the backstory. >> Yeah, so the company was founded in 2017 by two co-founders who are best friends from college. They actually set out to build a FinTech company, a payments company. And as they were building that, they needed to build a ton of custom operations software that goes with that. If you're going to be managing people's money, you need to be able to do refunds. You need to be able to look up accounts, you need to be able to detect fraud, you need to do know your customer operations. And as they were building the sort of operations software that supports the business, they realized that there were patterns to all of it and that the same components were used at and again. And had the insight that that was actually probably a better direction to go in than recreating Venmo, which was I think the original idea. And that actually this is a problem every company has because every company needs operations engineering and operations software to run their business. And so they pivoted and started building Retool which is a platform for building custom operations software or internal tools. >> Dave: Good pivot. >> In hindsight, actually probably in the moment as well, was a good pivot. >> But you know, when you talk about some of those things, refunds, fraud, you know, KYC, you know, you think of operations software, you think of it as just internal, but all those things are customer facing. >> Eleanor: Yep. >> Right so, are we seeing as sort of this new era? Is that a trend that you guys, your founders saw that hey, these internal operations can be pointed at customers to support what, a better customer service, maybe even generate revenue, subscriptions? >> I think it's a direction we're actually heading now but we're just starting to scratch the surface of that. The focus for the last five years has very much been on this operations software and sort of changing the economics of developing it and making it easy and fast to productize workflows that were previously being done in spreadsheets or hacky workarounds and make it easier for companies to prioritize those so they can run their business more efficiently. >> And where are you having your customer conversations these days? Thinking of operations software in the background, but to Dave's point, it ends up being part of the customer experience. So where are you having your customer conversations, target audience, who's that persona? >> Mainly developers. So we're working almost exclusively with developer teams who have backlogs and backlogs of internal tools requests to build that sales teams are building manual forecasts. Support teams are in 19 different tools. Their supply chain teams are using seven different spreadsheets to do demand forecasting or freight forwarding or things like that. But they've never been able to be prioritized to the top of the list because customer facing software, revenue generating software, always takes prioritization. And in this economic environment, which is challenging for many companies right now, it's important to be able to do more with less and maximize the productivity especially of high value employees like engineers and developers. >> So what would you say the biggest business outcomes are? If the developer is really the focus, productivity is the- >> Productivity. It's for both, I would say. Developer productivity and being able to maximize your sort of R and D and maximize the productivity of your engineers and take away some of the very boring parts of the job. But, so I would say developer productivity, but then also the tools and the software that they're building are very powerful for end users. So I would say efficiency and productivity across your business. >> Across the business. >> I mean historically, you know, operations is where we focused IT and code. How much of the code out there is dedicated to sort of operations versus that customer facing? >> So I think it would actually be, it's kind of surprising. We have run a few surveys on this sort of, we call them the state of engineering time, and focusing on what developers are spending their time on. And a third of all code that is being written today is actually for this internal operations software. >> Interesting. And do you guys have news at the show? Are you announcing anything interesting or? >> Yeah, so our focus historically, you sort of gave away with one of your early questions, but our focus has always been on this operations, this building web applications on building UIs on top of databases and APIs and doing that incredibly fast and being able to do it all in one place and integrate with as any data source that you need. We abstract away access authentication deployment and you build applications for your internal teams. But recently, we've launched two new products. We're actually supporting more external use cases and more customer facing use cases as well as automating CRON jobs, ETL jobs alerting with the new retail workflows product. So we're expanding the scope of operations software from web applications to also internal operations like CRON jobs and ETL jobs. >> Explain that. Explain the scourge of CRON jobs to the audience. >> Yeah, so operations software businesses run on operations software. It's interesting, zooming out, it's actually something you said earlier as well. Every company has become a software company. So when you think about software, you tend to think about here. Very cool software that people are selling. And software that you use as a consumer. But Coca-Cola for example, has hundreds of software engineers that are building tools to make the business run for forecasting, for demand gen, for their warehouse distribution and monitoring inventory. And there's two types of that. There's the applications that they build and then the operations that have to run behind that. Maybe a workflow that is detecting how many bottles of Coca-Cola are in every warehouse and sending a notification to the right person when they're out or when they, a refill is very strong, but you know when you need a refill. So it does that, it takes those tasks, those jobs that run in the background and enables you to customize them and build them very rapidly in a code first way. >> So some of the notes that you guys provided say that there's over 500 million software apps that are going to be built in the next few years alone. That's tremendous. How much of that is operation software? >> I mean I think at least a third of that, if not more. To the point where every company is being forced to maximize their resources today and operational efficiency is the way to do that. And so it can become a competitive advantage when you can take the things that humans are doing in spreadsheets with 19 open tabs and automate that. That saves hours a day. That's a significant, significant driver of efficiency and productivity for a business >> It does, and there's direct correlation to the customer experience. The use experience. >> Almost certainly. When you think about building support tooling, I was web chat, chatting on the with Gogo wifi support on my flight over here and they asked for my order number and I sent it and they looked up my account and that's a custom piece of software they were using to look up the account, create a new account for me, and restore my second wifi purchase. And so when you think about it, you're actually, even just as a consumer, interacting with this custom software on the day time. And that's because that's what companies use to have a good customer experience and have an efficient business. >> And what's the relationship with AWS? You guys started, I think you said 2017, so you obviously started in the cloud, but I'm particularly interested in from a seller perspective, what that's like. Working with Amazon, how's that affected your business? >> Yeah, I mean so we're built on AWS, so we're customers and big fans. And obviously like from a selling perspective, we have a ton of integrations with AWS so we're able to integrate directly into all the different AWS products that people are using for databases, for data warehouses, for deployment configurations, for monitoring, for security, for observability, we can basically fit into your existing AWS stack in order to make it as seamless integration with your software so that building in Retool is just as seamless as building it on your own, just much, much faster. >> So in your world, I know you wanted to but, in your world is it more analytics? is it more transactional, sort of? Is it both? >> It's all of the above. And I think what's, over Thanksgiving, I was asked a lot to explain what Retool did with people who were like, we just got our first iPhone. And so I tried to explain with an example because I have yet to stumble on the perfect metaphor. But the example I typically use is DoorDash is a customer of ours. And for about three years, and three years ago, they had a problem. They had no way of turning off delivery in certain zip codes during storms. Which as someone who has had orders canceled during a storm, it's an incredibly frustrating experience. And the way it worked is that they had operation team members manually submitting requests to engineers to say there's a storm in this zip code and an engineer would run a manual task. This didn't scale with Doordash as they were opening in new countries all over the world that have very different weather patterns. And so they looked, they had one, they were sort of confronted with a choice. They could buy a piece of software out of the box. There is not a startup that does this yet. They could build it by hand, which would mean scoping the requirements designing a UI, building authentication, building access controls, putting it into a, putting it into a sprint, assigning an engineer. This would've taken months and months. And then it would take just as long to iterate on it or they could use Retool. So they used Retool, they built this app, it saved, I think they were saying up to two years of engineering time for this one application because of how quickly it was. And since then they've built, I think 50 or 60 more automating away other tasks like that that were one out of spreadsheets or in Jira or in Slack notifications or an email saying, "Hey, could you please do this thing? There's a storm." And so now they use us for dozens and dozens of operations like that. >> A lot of automation and of course a lot of customer delight on the other end of the spectrum as you were talking about. It is frustrating when you don't get that order but it's also the company needs to be able to have the the tools in place to automate to be able to react quickly. >> Eleanor: Exactly. >> Because the consumers are, as we know, quite demanding. I wanted to ask you, I mentioned the tagline in the beginning, build custom internal tools fast. You just gave us a great example of DoorDash. Huge business outcomes they're achieving but how fast are we talking? How fast can the average developer build these internal tools? >> Well, we've been doing a fun thing at our booth where we ask people what a problem is and build a tool for them while we're there. So for something lightweight, you can build it in 10 minutes. For something a little more complex, it can take up to a few weeks depending on what the requirements are. But we all have people who will be on a call with us introducing them to our software for the first time and they'll start telling us about their problems and in the background we'll be building it and then at the end we're like, is this what you meant? And they're like, we'd like to add that to our cart. And obviously, it's a platform so you can't do that. But we've been able to build applications on a call before while people are telling us what they need. >> So fast is fast. >> I would say very fast, yeah. >> Now how do you price? >> Right now, we have a couple different plans. We actually have a motion where you can sign up on our website and get started. So we have a free plan, we've got plans for startups, and then we've got plans all the way up to the enterprise. >> Right. And that's a subscription pricing kind of thing? >> Subscription model, yes. >> So I get a subscription to the platform and then what? Is there also a consumption component? >> Exactly. So there's a consumption component as well. So there's access to the platform and then you can build as many applications as you need. Or build as many workflows. >> When you're having customer conversations with prospects, what do you define as Retool's superpowers? You're the sales leader. What are some of those key superpowers that you think really differentiate Retool? >> I do think, well, the sales team first and foremost, but that's not a fair answer. I would say that people are a bit differentiator though. We have a lot of very talented people who are have a ton of domain expertise and care a ton about the customer outcomes, which I do actually think is a little more rare than it should be. But we're one of the only products out there that's built with a developer first mindset, a varied code first mindset, built to integrate with your software development life cycle but also built with the security and robustness that enterprise companies require. So it's able to take an enterprise grade software with a developer first approach while still having a ton of agility and nimbleness which is what people are really craving as the earth keeps moving around them. So I would say that's something that really sets us apart from the field. >> And then talk about some of the what developers are saying, some of the feedback, some of the responses, and maybe even, I know we're just on day one of the show, but any feedback from the booth so far? >> We've had a few people swing by our booth and show us their Retool apps, which is incredibly cool. That's my absolute favorite thing is encountering a Retool application in the wild which happens a lot more than I would've thought, which I shouldn't say, but is incredibly rewarding. But people love it. It's the reason I joined is I'd never heard someone have a product that customers talked about the way they talk about Retool because Retool enables them to do things. For some folks who use it, it enables them to do something they previously couldn't do. So it gives them super powers in their job and to triple their impact. And then for others, it just makes things so fast. And it's a very delightful experience. It's very much built by developers, for developers. And so it's built with a developer's first mindset. And so I think it's quite fun to build in Retool. Even I can build and Retool, though not well. And then it's extremely impactful and people are able to really impact their business and delight their coworkers which I think can be really meaningful. >> Absolutely. Delighting the coworkers directly relates to delighting the customers. >> Eleanor: Exactly. >> Those customer experience, employee experience, they're like this. >> Eleanor: Exactly. >> They go hand in hand and the employee experience has to be outstanding to be able to delight those customers, to reduce churn, to increase revenue- >> Eleanor: Exactly. >> And for brand reputation. >> And it also, I think there is something as someone who is customer facing, when my coworkers and developers I work with build tools that enable me to do my job better and feel better about my own performance and my ability to impact the customer experience, it's just this incredibly virtuous cycle. >> So Retool.com is where folks can go to learn more and also try that subscription that you said was free for up to five users. >> Yes, exactly. >> All right. I guess my last question, well couple questions for you. What are some of the things that excited you that you heard from Adam Selipsky this morning? Anything from the keynote that stood out in terms of- >> Dave: Did you listen to the keynote? >> I did not. I had customer calls this morning. >> Okay, so they're bringing- >> East coast time, east coast time. >> One of the things that will excite you I think is they're connecting, making it easier to connect their databases. >> Eleanor: That would very much exciting. >> Aurora and Redshift, right? Okay. And they're making it easier to share data. I dunno if it goes across regions, but they're doing better integration. >> Amazing. >> Right? And you guys are integrating with those tools, right? Those data platforms. So that to me was a big thing for you guys. >> It is also and what a big thing Retool does is you can build a UI layer for your application on top of every single data source. And you hear, it's funny, you hear people talk about the 360 degree review of the customer so much. This is another, it's not our primary value proposition, but it is certainly another way to get there is if you have data from their desk tickets from in Redshift, you have data from Stripe, from their payments, you have data from Twilio from their text messages, you have data from DataDog where they're having your observability where you can notice analytics issues. You can actually just use Retool to build an app that sits on top of that so that you can give your support team, your sales team, your account management team, customer service team, all of the data that they need on their customers. And then you can build workflows so that you can do automated customer engagement reports. I did a Slack every week that shows what our top customers are doing with the product and that's built using all of our automation software as well. >> The integration is so important, as you just articulated, because every, you know, we say every company's a software company these days. Every company's a data company. But also, the data democratization that needs to happen to be able for lines of business so that data moves out of certain locked in functions and enables lines of business to use it. To get that visibility that you were just talking about is really going to be a competitive advantage for those that survive and thrive and grow in this market. >> It's able to, I think it's first it's visibility, but then it's action. And I think that's what Retool does very uniquely as well is it can take and unite the data from all the places, takes it out of the black box, puts it in front of the teams, and then enables them to act on it safely and securely. So not only can you see who might be fraudulent, you can flag them as fraud. Not only can you see who's actually in danger, you can click a button and send them an email and set up a meeting. You can set up an approval workflow to bring in an exec for engagement. You can update a password for someone in one place where you can see that they're having issues and not have to go somewhere else to update the password. So I think that's the key is that Retool can unlock the data visibility and then the action that you need to serve your customers. >> That's a great point. It's all about the actions, the insights that those actions can be acted upon. Last question for you. If you had a billboard that you could put any message that you want on Retool, what would it say? What's the big aha? This is why Retool is so great. >> I mean, I think the big thing about Retool is it's changing the economics of software development. It takes something that previously would've been below the line and that wouldn't get prioritized because it wasn't customer facing and makes it possible. And so I would say one of two billboards if I could be a little bit greedy, one would be Retool changed the economics of software development and one would be build operations software at the speed of thought. >> I love that. You're granted two billboards. >> Eleanor: Thank you. >> Those are both outstanding. Eleanor, it's been such a pleasure having you on the program. Thank you for talking to us about Retool. >> Eleanor: Thank you. >> Operations software and the massive impact that automating it can make for developers, businesses alike, all the way to the top line. We appreciate your insights. >> Thank you so much. >> For our guests and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live, emerging, and enterprise tech coverage. (gentle music)
SUMMARY :
Dave, this is going to be an A lot of people here, you exploration as for the security piece day of live content for you I love the tagline, build about the company you and that the same components probably in the moment as well, But you know, when you talk and sort of changing the And where are you having your customer and maximize the productivity and maximize the productivity How much of the code out there and focusing on what developers And do you guys have news at the show? and you build applications Explain the scourge of And software that you use as a consumer. that you guys provided is the way to do that. to the customer experience. And so when you think about it, so you obviously started in the cloud, into all the different AWS products And the way it worked is that but it's also the company I mentioned the tagline in the beginning, and in the background we'll be building it where you can sign up on And that's a platform and then you can build that you think really built to integrate with your and to triple their impact. Delighting the coworkers they're like this. and my ability to impact that you said was free that excited you that you heard I had customer calls this morning. One of the things that easier to share data. So that to me was a so that you can give your and enables lines of business to use it. and then the action that you any message that you want on is it's changing the economics I love that. Thank you for talking to us about Retool. and the massive impact that automating it and enterprise tech coverage.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Eleanor | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Peter DeSantis | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Eleanor Dorfman | PERSON | 0.99+ |
dozens | QUANTITY | 0.99+ |
Coca-Cola | ORGANIZATION | 0.99+ |
two types | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
19 different tools | QUANTITY | 0.99+ |
Antarctic | LOCATION | 0.99+ |
360 degree | QUANTITY | 0.99+ |
two hour | QUANTITY | 0.99+ |
10 minutes | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Retool | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Twilio | ORGANIZATION | 0.99+ |
19 open tabs | QUANTITY | 0.99+ |
DataDog | ORGANIZATION | 0.98+ |
Retool | ORGANIZATION | 0.98+ |
first time | QUANTITY | 0.98+ |
Thanksgiving | EVENT | 0.98+ |
Redshift | TITLE | 0.98+ |
two co-founders | QUANTITY | 0.98+ |
seven different spreadsheets | QUANTITY | 0.98+ |
Stripe | ORGANIZATION | 0.98+ |
Jira | TITLE | 0.98+ |
last night | DATE | 0.97+ |
ORGANIZATION | 0.97+ | |
CRON | TITLE | 0.97+ |
over 500 million software apps | QUANTITY | 0.97+ |
2019 | DATE | 0.97+ |
Doordash | ORGANIZATION | 0.97+ |
first approach | QUANTITY | 0.96+ |
this morning | DATE | 0.96+ |
one application | QUANTITY | 0.96+ |
two billboards | QUANTITY | 0.96+ |
tons of thousands of people | QUANTITY | 0.95+ |
two new products | QUANTITY | 0.95+ |
first way | QUANTITY | 0.95+ |
DoorDash | ORGANIZATION | 0.94+ |
Gogo | ORGANIZATION | 0.94+ |
Reinvent | EVENT | 0.94+ |
Slack | TITLE | 0.93+ |
one place | QUANTITY | 0.93+ |
Keynote Analysis with theCUBE | AWS re:Invent 2022
(bright music) >> Hello, everyone. Welcome back to live coverage day two or day one, day two for theCUBE, day one for the event. I'm John Furrier, host of theCUBE. It's the keynote analysis segment. Adam just finished coming off stage. I'm here with Dave Vellante and Zeus Kerravala, with principal analyst at ZK Research, Zeus, it's great to see you. Dave. Guys, the analysis is clear. AWS is going NextGen. You guys had a multi-day analyst sessions in on the pre-briefs. We heard the keynote, it's out there. Adam's getting his sea legs, so to speak, a lot of metaphors around ocean. >> Yeah. >> Space. He's got these thematic exploration as he chunked his keynote out into sections. Zeus, a lot of networking in there in terms of some of the price performance, specialized instances around compute, this end-to-end data services. Dave, you were all over this data aspect going into the keynote and obviously, we had visibility into this business transformation theme. What's your analysis? Zeus, we'll start with you. What's your take on what Amazon web service is doing this year and the keynote? What's your analysis? >> Well, I think, there was a few key themes here. The first one is I do think we're seeing better integration across the AWS portfolio. Historically, AWS makes a lot of stuff and it's not always been easy to use say, Aurora and Redshift together, although most customers buy them together. So, they announce the integration of that. It's a lot tighter now. It's almost like it could be one product, but I know they like to keep the product development separately. Also, I think, we're seeing a real legitimization of AWS in a bunch of areas where people said it wasn't possible before. Last year, Nasdaq said they're running in the cloud. The Options Exchange today announced that they're going to be moving to the cloud. Contact centers running the cloud for a lot of real time voice. And so, things that we looked at before and said those will never move to the cloud have now moved to the cloud. And I think, my third takeaway is just AWS is changing and they're now getting into areas to allow customers to do things they couldn't do before. So, if you look at what they're doing in the area of AI, a lot of their AI and ML services before were prediction. And I'm not saying you need an AI, ML to do prediction, was certainly a lot more accurate, but now they're getting into generative data. So, being able to create data where data didn't exist before and that's a whole new use case for 'em. So, AWS, I think, is actually for all the might and power they've had, it's actually stepping up and becoming a much different company now. >> Yeah, I had wrote that post. I had a one-on-one day, got used of the transcript with Adam Selipsky. He went down that route of hey, we going to change NextGen. Oh, that's my word. AWS Classic my word. The AWS Classic, the old school cloud, which a bunch of Lego blocks, and you got this new NextGen cloud with the ecosystems emerging. So, clearly, it's Amazon shifting. >> Yeah. >> But Dave, your breaking analysis teed out the keynote. You went into the whole cost recovery. We heard Adam talk about macro at the beginning of his keynote. He talked about economic impact, sustainability, big macro issues. >> Yeah. >> And then, he went into data and spent most of the time on the keynote on data. Tools, integration, governance, insights. You're all over that. You had that, almost your breaking analysis almost matched the keynote, >> Yeah. >> thematically, macro, cost savings right-sizing with the cloud. And last night, I was talking to some of the marketplace people, we think that the marketplace might be the center where people start managing their cost better. This could have an impact on the ecosystem if they're not in in the marketplace. So, again, so much is going on. >> What's your analogy? >> Yeah, there's so much to unpack, a couple things. One is we get so much insight from theCUBE community plus your sit down 101 with Adam Selipsky allowed us to gather some nuggets, and really, I think, predict pretty accurately. But the number one question I get, if I could hit the escape key a bit, is what's going to be different in the Adam Selipsky era that was different from the Jassy era. Jassy was all about the primitives. The best cloud. And Selipsky's got to double down on that. So, he's got to keep that going. Plus, he's got to do that end-to-end integration and he's got to do the deeper business integration, up the stack, if you will. And so, when you're thinking about the keynote and the spirit of keynote analysis, we definitely heard, hey, more primitives, more database features, more Graviton, the network stuff, the HPC, Graviton for HPC. So, okay, check on that. We heard some better end-to-end integration between the elimination of ETL between Aurora and Redshift. Zeus and I were sitting next to each other. Okay, it's about time. >> Yeah. >> Okay, finally we got that. So, that's good. Check. And then, they called it this thing, the Amazon data zones, which was basically extending Redshift data sharing within your organization. So, you can now do that. Now, I don't know if it works across regions. >> Well, they mentioned APIs and they have the data zone. >> Yep. And so, I don't know if it works across regions, but the interesting thing there is he specifically mentioned integration with Snowflake and Tableau. And so, that gets me to your point, at the end of the day, in order for Amazon, and this is why they win, to succeed, they've got to have this ecosystem really cranking. And that's something that is just the secret sauce of the business model. >> Yeah. And it's their integration into that ecosystem. I think, it's an interesting trend that I've seen for customers where everybody wanted best of breed, everybody wanted disaggregated, and their customers are having trouble now putting those building blocks together. And then, nobody created more building blocks than AWS. And so, I think, under Adam, what we're seeing is much more concerted effort to make it easier for customers to consume those building blocks in an easy way. And the AWS execs >> Yeah. >> I talked to yesterday all committed to that. It's easy, easy, easy. And I think that's why. (Dave laughing) Yeah, there's no question they've had a lead in cloud for a long time. But if they're going to keep that, that needs to be upfront. >> Well, you're close to this, how easy is it? >> Yeah. >> But we're going to have Adrian Cockcroft (Dave laughing) on at the end of the day today, go into one analysis. Now, that- >> Well, less difficult. >> How's that? (indistinct) (group laughing) >> There you go. >> Adrian retired from Amazon. He's a CUBE analyst retiree, but he had a good point. You can buy the bag of Lego blocks if you want primitives >> Yeah. >> or you can buy the toy that's glued together. And it works, but it breaks. And you can't really manage it, and you buy a new one. So, his metaphor was, okay, if the primitives allow you to construct a durable solutions, a lot harder relative to rolling your own, not like that, but also the simplest out-of-the box capability is what people want. They want solutions. We call Adam the solutions CEO. So, I think, you're going to start to see this purpose built specialized services allow the ecosystem to build those toys, so that the customers can have an out-of-the box experience while having the option for the AWS Classic, which is if you want durability, you want to tune it, you want to manage it, that's the way to go for the hardcore. Now, can be foundational, but I just see the solutions things being very much like an out-of-the-box. Okay, throw away, >> Yeah. >> buy a new toy. >> More and more, I'm saying less customers want to be that hardcore assembler of building blocks. And obviously, the really big companies do, but that line is moving >> Yeah. >> and more companies, I think, just want to run their business and they want those prebuilt solutions. >> We had to cut out of the keynote early. But I didn't hear a lot about... The example that they often use is Amazon Connect, the call center solution. >> Yeah. >> I didn't hear a lot to that in the keynote. Maybe it's happening right now, but look, at the end of the day, suites always win. The best of breed does well, (John laughing) takes off, generate a couple billion, Snowflake will grow, they'll get to 10 billion. But you look at Oracle, suites work. (laughs) >> Yeah. >> What I found interesting about the keynote is that he had this thematic exploration themes. First one was space that was like connect the dot, the nebula, different (mumbles) lens, >> Ocean. >> ask the right questions. (Dave laughing) >> Ocean was security which bears more, >> Yeah. >> a lot more needed to manage that oxygen going deep. Are you snorkeling? Are you scuba diving? Barely interesting amount of work. >> In Antarctica. >> Antarctica was the performance around how you handle tough conditions and you've got to get that performance. >> Dave: We're laughing, but it was good. >> But the day, the Ocean Day- >> Those are very poetic. >> I tweeted you, Dave, (Dave laughing) because I sit on theCUBE in 2011. I hate hail. (Dave laughing) It's the worst term ever. It's the day the ocean's more dynamic. It's a lot more flowing. Maybe 10 years too soon, Dave. But he announces the ocean theme and then says we have a Security Lake. So, like lake, ocean, little fun on words- >> I actually think the Security Lake is pretty meaningful, because we were listening to talk, coming over here talking about it, where I think, if you look at a lot of the existing solutions, security solutions there, I describe 'em as a collection of data ponds that you can view through one map, but they're not really connected. And the amount of data that AWS holds now, arguably more than any other company, if they're not going to provide the Security Lake, who is? >> Well, but staying >> Yeah. >> on security for a second. To me, the big difference between Azure and Amazon is the ecosystem. So, CrowdStrike, Okta, Zscaler, name it, CyberArk, Rapid7, they're all part of this ecosystem. Whereas Microsoft competes with all of those guys. >> Yes. Yeah. >> So it's a lot more white space than the Amazon ecosystem. >> Well, I want to get you guys to take on, so in your reaction, because I think, my vision of what what's happening here is that I think that whole data portion's going to be data as code. And I think, the ecosystem harvests the data play. If you look at AWS' key announcements here, Security Lake, price performance, they're going to optimize for those kinds of services. Look at security, okay, Security Lake, GuardDuty, EKS, that's a Docker. Docker has security problems. They're going inside the container and looking at threat detection inside containers with Kubernetes as the runtime. That's a little nuance point, but that's pretty significant, Dave. And they're now getting into, we're talking in the weeds on the security piece, adding that to their large scale security footprint. Security is going to be one of those things where if you're not on the inside of their security play, you're probably going to be on the outside. And of course, the price performance is going to be the killer. The networking piece surprise me. Their continuing to innovate on the network. What does that mean for Cisco? So many questions. >> We had Ajay Patel on yesterday for VMware. He's an awesome middleware guy. And I was asking about serverless and architectures. And he said, "Look, basically, serverless' great for stateless, but if you want to run state, you got to have control over the run time." But the point he made was that people used to think of running containers with straight VMs versus Fargate or Knative, if you choose, or serverless. They used to think of those as different architectures. And his point was they're all coming together. And it's now you're architecting and calling, which service you need. And that's how people are thinking about future architectures, which I think, makes a lot of sense. >> If you are running managed Kubernetes, which everyone's doing, 'cause no one's really building it in-house themselves. >> No. >> They're running it as managed service, skills gaps and a variety of other reasons. This EKS protection is very interesting. They're managing inside and outside the container, which means that gives 'em visibility on both sides, under the hood and inside the application layer. So, very nuanced point, Zeus. What's your reaction to this? And obviously, the networking piece, I'd love to get your thought. >> Well, security, obviously, it's becoming a... It's less about signatures and more of an analytics. And so, things happen inside the container and outside the container. And so, their ability to look on both sides of that allows you to happen threats in time, but then also predict threats that could happen when you spin the container up. And the difficulty with the containers is they are ephemeral. It's not like a VM where it's a persistent workload that you can do analysis on. You need to know what's going on with the container almost before it spins up. >> Yeah. >> And that's a much different task. So, I do think the amount of work they're doing with the containers gives them that entry into that and I think, it's a good offering for them. On the network side, they provide a lot of basic connectivity. I do think there's a role still for the Ciscos and the Aristas and companies like that to provide a layer of enhanced network services that connects multicloud. 'Cause AWS is never going to do that. But they've certainly, they're as legitimate network vendor as there is today. >> We had NetApp on yesterday. They were talking about latency in their- >> I'll tell you this, the analyst session, Steven Armstrong said, "You are going to hear us talk about multicloud." Yes. We're not going to necessarily lead with it. >> Without a mention. >> Yeah. >> But you said it before, never say never with Amazon. >> Yeah. >> We talk about supercloud and you're like, Dave, ultimately, the cloud guys are going to get into supercloud. They have to. >> Look, they will do multicloud. I predict that they will do multicloud. I'll tell you why. Just like in networking- >> Well, customers are asking for it. >> Well, one, they have the, not by design, but by defaulter and multiple clouds are in their environment. They got to deal with that. I think, the supercloud and sky cloud visions, there will be common services. Remember networking back in the old days when Cisco broke in as a startup. There was no real shortest path, first thinking. Policy came in after you connected all the routers together. So, right now, it's going to be best of breed, low latency, high performance. But I think, there's going to be a need in the future saying, hey, I want to run my compute on the slower lower cost compute. They already got segmentation by their announcements today. So, I think, you're going to see policy-based AI coming in where developers can look at common services across clouds and saying, I want to lock in an SLA on latency and compute services. It won't be super fast compared to say, on AWS, with the next Graviton 10 or whatever comes out. >> Yeah. >> So, I think, you're going to start to see that come in. >> Actually, I'm glad you brought Graviton up too, because the work they're doing in Silicon, actually I think, is... 'Cause I think, the one thing AWS now understands is some things are best optimized in Silicon, some at software layers, some in cloud. And they're doing work on all those layers. And Graviton to me is- >> John: Is a home run. >> Yeah. >> Well- >> Dave, they've got more instances, it's going to be... They already have Gravitons that's slower than the other versions. So, what they going to do, sunset them? >> They don't deprecate anything ever. So, (John laughing) Amazon paid $350 million. People believe that it's a number for Annapurna, which is like one of the best acquisitions in history. (group laughing) And it's given them, it's put them on an arm curve for Silicon that is blowing away Intel. Intel's finally going to get Sapphire Rapids out in January. Meanwhile, Amazon just keeps spinning out new Gravitons and Trainiums. >> Yeah. >> And so, they are on a price performance curve. And like you say, no developer ever wants to run on slower hardware, ever. >> Today, if there's a common need for multicloud, they might say, hey, I got the trade off latency and performance on common services if that's what gets me there. >> Sure. >> If there's maybe a business case to do that. >> Well, that's what they're- >> Which by the way, I want to.... Selipsky had strong quote I thought was, "If you're looking to tighten your belt, the cloud is the place >> Yeah. >> to do it." I thought >> I tweeted that. >> that was very strong. >> Yeah. >> Yeah. >> And I think, he's right. And then, the other point I want to make on that is, I think, I don't have any data on this, but I believe believe just based on some of the discussions I've had that most of Amazon's revenue is on demand. Paid by the drink. Those on demand customers are at risk, 'cause they can go somewhere else. So, they're trying to get you into optimized pricing, whether it's reserved instances or one year or three-year subscriptions. And so, they're working really hard at doing that. >> My prediction on that is that's a great point you brought up. My prediction is that the cost belt tightening is going to come in the marketplace, is going to be a major factor as companies want to get their belts tighten. How they going to do that, Dave? They're going to go in the marketplace saying, hey, I already overpaid a three-year commitment. Can I get some cohesively in there? Can I get some of this or that and the other thing? >> Yep. >> You're going to start to see the vendors and the ecosystem. If they're not in the marketplace, that's where I think, the customers will go. There are other choices to either cut their supplier base or renegotiate. I think, it's going to happen in the marketplace. Let's watch. I think, we're going to watch that grow. >> I actually think the optimization services that AWS has to help customers lower spend is a secret sauce for them that they... Customers tell me all the time, AWS comes in, they'll bring their costs down and they wind up spending more with them. >> Dave: Yeah. >> And the other cloud providers don't do that. And that has been almost a silver bullet for them to get customers to stay with them. >> Okay. And this is always the way. You drop the price of storage, you drop the price of memory, you drop the price of compute, people buy more. And in the question, long term is okay. And does AWS get commoditized? Is that where they're going? Or do they continue to thrive up the stack? John, you're always asking people about the bumper sticker. >> Hold on. (John drowns out Dave) Before we get the bumper sticker, I want to get into what we missed, what they missed on the keynote. >> Yeah, there are some blind spots. >> I think- >> That's good call. >> Let's go around the horn and think what did they miss? I'll start, I think, they missed the developer productivity angle. Supply chain software was not talked about at all. We see that at all the other conferences. I thought that could have been weaved in. >> Dave: You mean security in the supply chain? >> Just overall developer productivity has been one of the most constant themes I've seen at events. Who are building the apps? Who are the builders? What are they actually doing? Maybe Werner will bring that up on his last day, but I didn't hear Adam talk about it all, developer productivity. What's your take in this? >> Yeah, I think, on the security side, they announced security data lake. I think, the other cloud providers do a better job of providing insights on how they do security. With AWS, it's almost a black hole. And I know there's a careful line they walk between what they do, what their partners do. But I do think they could be a little clearer on how they operate, much like Azure and GCP. They announce a lot of stuff on how their operations works and things like that. >> I think, platform across cloud is definitely a blind spot for these guys. >> Yeah. >> I think, look at- >> But none of the cloud providers have embraced that, right? >> It's true. >> Yeah. >> Maybe Google a little bit >> Yeah. >> and Microsoft a little bit. Certainly, AWS hasn't at this point in time, but I think, they perceive the likes of Mongo and Snowflake and Databricks, and others as ISVs and they're not. They're platform players that are building across clouds. They're leveraging, they're building superclouds. So, I think that's an opportunity for the ecosystem. And very curious to see how Amazon plays there down the stream. So, John, what do you think is the bumper sticker? We're only in day one and a half here. What do you think so far the bumper sticker is for re:Invent 2022? >> Well, to me, the day one is about infrastructure performance with the whole what's in the data center? What's at the chip level? Today was about data, specialized services, and security. I think that was the key theme here. And then, that's going to sequence into how they're going to reorganize their ecosystem. They have a new leader, Ruba Borno, who's going to be leading the charge. They've integrated all their bespoke fragmented partner network pieces into one leadership. That's going to be really important to hear that. And then, finally, Werner for developers and event-based services, micro services. What that world's going on, because that's where the developers are. And ultimately, they build the app. So, you got infrastructure, data, specialized services, and security. Machine learning with Swami is going to be huge. And again, how do developers code it all up is going to be key. And is it the bag of Legos or the glued toy? (Dave chuckles) So, what do you want? Out-of-the-box or you want to build your own? >> And that's the bottom line is connecting those dots. All they got to be is good enough. I think, Zeus, to your point, >> Yep. >> if they're just good enough, less complicated, the will keep people on the base. >> Yeah. I think, the bumper stickers, the more you buy, the more you're saving. (John laughing) Because from an operational perspective, they are trying to bring down the complexity level. And with their optimization services and the way their credit model works, I do think they're trending down that path. >> And my bumper sticker's ecosystem, ecosystem, ecosystem. This company has 100,000 partners and that is a business model secret weapon. >> All right, there it is. The keynote announced. More analysis coming up. We're going to have the leader of (indistinct) coming up next, here on to break down their perspective, you got theCUBE's analyst perspective here. Thanks for watching. Day two, more live coverage for the next two more days, so stay with us. I'm John Furrier with Dave Vellante and Zeus Kerravala here on theCUBE. Be right back. (bright music)
SUMMARY :
in on the pre-briefs. going into the keynote is actually for all the The AWS Classic, the old school cloud, at the beginning of his keynote. and spent most of the time This could have an impact on the ecosystem and the spirit of keynote analysis, And then, they called it this and they have the data zone. And so, that gets me to your And the AWS execs But if they're going to keep on at the end of the day You can buy the bag of Lego blocks allow the ecosystem to build those toys, And obviously, the and more companies, I think, the call center solution. but look, at the end of about the keynote ask the right questions. a lot more needed to around how you handle tough conditions But he announces the ocean theme And the amount of data that AWS holds now, and Amazon is the ecosystem. space than the Amazon ecosystem. And of course, the price performance But the point he made If you are running managed Kubernetes, And obviously, the networking piece, And the difficulty and the Aristas and companies like that We had NetApp on yesterday. the analyst session, But you said it before, the cloud guys are going I predict that they will do on the slower lower cost compute. to start to see that come in. And Graviton to me is- that's slower than the other versions. Intel's finally going to get And like you say, got the trade off latency business case to do that. the cloud is the place to do it." on some of the discussions I've had and the other thing? I think, it's going to happen Customers tell me all the time, And the other cloud And in the question, long term is okay. I want to get into what we missed, We see that at all the other conferences. Who are building the apps? on the security side, I think, platform across is the bumper sticker? And is it the bag of Legos And that's the bottom line on the base. stickers, the more you buy, and that is a business for the next two more
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Adrian Cockcroft | PERSON | 0.99+ |
Steven Armstrong | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Adrian | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Ruba Borno | PERSON | 0.99+ |
2011 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
one year | QUANTITY | 0.99+ |
AWS' | ORGANIZATION | 0.99+ |
ZK Research | ORGANIZATION | 0.99+ |
three-year | QUANTITY | 0.99+ |
Antarctica | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Last year | DATE | 0.99+ |
10 billion | QUANTITY | 0.99+ |
Zeus Kerravala | PERSON | 0.99+ |
January | DATE | 0.99+ |
Ajay Patel | PERSON | 0.99+ |
Nasdaq | ORGANIZATION | 0.99+ |
$350 million | QUANTITY | 0.99+ |
Ciscos | ORGANIZATION | 0.99+ |
100,000 partners | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Selipsky | PERSON | 0.99+ |
Zeus Kerravala | PERSON | 0.99+ |
Options Exchange | ORGANIZATION | 0.99+ |
Aristas | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Today | DATE | 0.99+ |
today | DATE | 0.99+ |
Chris Casey, AWS | AWS re:Invent 2022
>> Hello, wonderful humans and welcome back to theCUBE. We are live from Las Vegas, Nevada, this week at AWS Reinvent. I am joined by analyst and 10 year reinvent veteran John Furrier. John, pleasure to join you today. >> Great to see you, great event. This is 10 years. We've got great guests coming on the Q3 days of after this wall to wall, we'll lose our voice every year, Thursday >> Host: I can feel the energy. Can you feel the volume already? >> Yes. Everyone's getting bigger, stronger, in the marketplace seeing a lot more activity new players coming into the cloud. Ones that have been around for 10 years or growing up and turning into platforms and just the growth of software in the industry is phenomenal. Our next guest is going to be great to chat about. >> I know it's funny you mentioned marketplace. We're going to be talking marketplace, in our next segment. We're bringing back a Cube alumni Chris Casey welcome back to the show. How, how you Feeling today? >> Thank you for having me. Yeah, I mean this week is the most exciting week of the year for us at AWS and you know, it's just a fantastic energy. You mentioned it before, to be here in Las Vegas at Reinvent and thank you very much for having me back. It's great to talk to John last year and lovely to meet you and talk to you this year. >> It is, it is our pleasure. It is definitely the biggest event of the year. It's wild that Amazon would do this on the biggest online shopping day of the year as well. It goes to show about the boldness and the bravery of the team, which is very impressive. So you cover a few different things at AWS So you cover a few different things at AWS you're talking about and across industries as well. Can you talk to me a little bit about why the software alliances and the data exchange are so important to the partner organization at AWS? >> Yeah, it really comes back to the importance to, to the AWS customer. As we've been working with customers over the, you know the past few years especially, and they've been embarking on their enterprise transformation and their digital transformation moving workloads to to the cloud, they've really been asking us for more and more support from the AWS ecosystem, and that includes native AWS services as well as partners to really help them start to solve some of the industry specific use cases and challenges that they're facing and really incorporate those as part of the enterprise transformation journey that they're embarking on with AWS. What, how that translates back to the AWS marketplace and the partner organization is customers have told us they're really looking for us to have the breadth and depth of the ecosystem of partners available to them that have the intellectual property that solves very niche use cases and workloads that they're looking to migrate to the cloud. A lot of the time that furnishes itself as an independent software vendor and they have software that the customer is trying to use to solve, you know an insurance workflow or an analytics workflow for your utility company as well as third party data that they need to feed into that software. And so my team's responsibility is helping work backwards from the customer need there and making sure that we have the partners available to them. Ideally in the AWS marketplace so they can go and procure those products and make them part of solutions that they're trying to build or migrate to AWS. >> A lot of success in marketplace over the past couple years especially during the pandemic people were buying and procuring through the marketplace. You guys have changed some of the operational things, data exchange enterprise sellers or your sales reps can sell in there. The partners have been glowingly saying great things about how it's just raining money for them if they do it right. And some are like, well, I don't get the marketplace. So there's a, there's kind of a new game in town and the marketplace with some of the successes. What, what is this new momentum that's happening? Is it just people are getting more comfortable they're doing it right? How does the marketplace work effectively? >> Yeah, I mean, marketplace has been around for for 10 years as well as the AWS partner organization. >> Host: It's like our coverage. >> Yes, just like. >> Host: What a nice coincidence. Decades all around happy anniversary everyone. >> Yeah, everyone's selling, celebrating the 10 year birthday, but I think to your point, John, you know, we we've continued iterate on features and functionality that have made the partner experience a much more welcoming digital experience for them to go to market with AWS. So that certainly helped and we've seen more and more customers start to adopt marketplace especially for, for some of their larger applications that they're trying to transform on the cloud. And that extends into industry verticals as well as horizontal sort of business applications whether they be ERP systems like Infor the customers are trying to procure through the marketplace. And I think even for our partners, it's customer driven. You know, we, we've, we've heard from our customers that the, the streamlining the payments and procurement process is a really key benefit for them procuring by the marketplace and also the extra governance and control and visibility they get on their third party licensing contracts is a really material benefit for them which is helping our partners lean in to marketplace as a as a digital channel for them to go to market with us. >> And also you guys have this program it's what's it called enterprise buying or something where clients can just take their spend and move it over into other products like MongoDB more Mongo gimme some more Splunk, gimme some more influence. I mean all these things are possible now, right. For some of the partners. Isn't that, that's like that's like found money for the, for the partners. >> Yeah, going back to what I said before about the AWS ecosystem, we're really looking to help customers holistically with regard to that, and certainly when customers are looking to make commitments to AWS and and move a a large swath of workloads to AWS we want to make sure they can benefit from that commitment not only from native AWS services but also third party data and software applications that they might be procuring through the marketplace. So certainly for the procurement teams not only is there technical benefits for them on the marketplace and you know foresters total economic impact study really helped quantify that for us more recently. You know, 66% of time saving for procurement professionals. >> Host: Wow. >> Which is when you calculate that in hours in person weeks or a year, that's a lot of time on undifferentiated heavy lifting that they can now be doing on value added activities. >> Host: That's a massive shift for >> Yeah, massive shift. So that in addition, you know, to, you know, some of the more contractual and commercial benefits is really helping customers look holistically at how AWS is helping them transform with third party applications and data. >> I want to stick on customers for a second 'cause in my show notes are some pretty well known customers and you mentioned in for a moment ago can you tell us a little bit about what's going on with Ferrari? >> Chris: Sure. So in four is one of our horizontal business application partners and sellers in the AWS marketplace and they sell ERP systems so helping enterprises with resource planning and Ferrari is obviously a very well known brand and you know, the oldest and most successful >> May have heard of them. >> Chris: Yes. Right. The most successful formula one racing team and Ferrari, you know a really meaningful customer for AWS from multiple angles whether they're using AWS to enhance their car design, as well as their fan engagement, as well as their actual end car consumer experience. But as it specifically relates to marketplace as part of Ferrari's technical transformation they were looking to upgrade their ERP system. And so they went through a whole swath of vendors that they wanted to assess and they actually chose Infor as their ERP system. And one of the reasons was >> Nice. >> Chris: because Infor actually have an automotive specific instance of their SaaS application. So when we're talking about really solving for some of those niche challenges for customers who operate in an industry, that was one of the key benefits. And then as an added bonus for Ferrari being able to procure that software through the AWS marketplace gave them all the procurement benefits that we just talked about. So it's super exciting that we're able to play a, you know a part in accelerating that digital transformation with Ferrari and also help Infor in terms of getting a really meaningful customer using their software services on AWS. >> Yeah. Putting a new meaning to turn key your push start. (laughing) >> You mentioned horizontal services earlier. What is it all about there? What's new there? We're hearing, I'm expecting to see that in the keynote tomorrow. Horizontal and vertical solutions and let's get the CEOs. What, what's the focus there? What's this horizontal focus for you? >> Yeah, I, I think the, the big thing is is really helping line of business users. So people in operations or marketing functions, that our customers, see the the partners and the solutions that they use on a daily basis today and how they can actually help accelerate their overall enterprise transformation. With those partners, now on AWS. Historically, you know, those line of business users might not have cared where an application historically ran whether it was on-prem or on AWS but now just the depth of those transformation journeys their enterprises are on that's really the next frontier of applications and use cases that many of our customers are saying they want to move to AWS. >> John: And what are some of those horizontal examples that you see emerging? >> So Salesforce is, is probably one, one of the best ones to call out there. And really the two meaningful things Salesforce have done there is a deep integration with our ML and AI services like SageMaker so people can actually perform some of those activities without leaving the Salesforce application. And then AWS and Salesforce have worked on a unified developer experience, which really helps remove friction in terms of data flows for anyone that's trying to build on both of those services. So the partnership with horizontal business applications like Salesforce is much deeper than just to go to market. It's also on the build side to help make it much more seamless for customers as they're trying to migrate to Salesforce on AWS as an example there. >> It's like having too many tabs open at once, everybody wants it all in one place all at one time. >> Chris: Yeah. >> And it makes sense that you're doing so much in, in the partner marketplace. Let's talk a little bit more about the data exchange. How, how is this intertwined with your vertical and horizontal efforts that the team's striving as well as with another big name example that folks know probably only because of the last few, few years, excuse me, with Moderna? Can you tell us a little more about that? >> Sure. I think when we're, when we're talking to customers about their needs when they're operating in a specific industry, but it probably goes for all customers and enterprise customers especially when they're thinking about software. Almost always that software also needs data to actually be analyzed or processed through it for really the end business outcome to be achieved. And so we're really making a conscious effort to really help our partners integrate with solutions that the AWS field teams and business development teams are talking to customers about and help tie those solutions to customer use cases, rather than it being an engagement with a specific customer on a product by product basis. And certainly software and and data going together is a really nice combination that many customers are looking for us to solve for and for looking for us to create pairings based on other customer needs or use cases that we've historically solved for in the past. >> I mean, with over a million customers, it's hard to imagine anyone could have more use cases to pull from when we're talking about these different instances >> Right. The challenge actually is identifying which are the key ones for each of the industries and which are the ones that are going to help move the needle the most for customers in there, it's, it's not an absence of selection in that case. >> Host: Right. (laughter) I can imagine. I can imagine that's actually the challenge. >> Chris: Yeah. >> Yeah. >> But it's really important. And then more specifically on the data exchange, you know I think it goes back to one of the leadership principles that we launched last year. The two new leadership principles, success and scale bring broad responsibility. You know, we take that very seriously at AWS and we think about that in our actions with our native services, but also in terms of, you know, the availability of partner solutions and then ultimately the end customer outcomes that we can help achieve. And I think Moderna's a great example of that. Moderna have been using the mRNA technology and they're using it to develop a a new vaccine for the RSV virus. And they're actually using the data exchange to procure and then analyze real world evidence data. And what that, what that helps them do is identify and and analyze in almost real time using data on Redshift who are the best vaccine candidates for the trials based on geography and demographics. So it's really helping them save costs, but not only cost really help optimize and be much more efficient in terms of how they're going about their trials from time to market.. >> Host: Time to market. >> vaccine perspective. Yeah. And more importantly, getting the analysis and the results back from those trials as fast as they possibly can. >> Yeah. >> And data exchange, great with the trend that we're going to hear and the keynote tomorrow. More data exchanging more data being more fluid addressable shows those advantages. That's a great example. Great call out there. Chris, I got to get your thoughts on the ecosystem. You know, Ruba Borno is the new head of partners, APN, Amazon Partner Network and marketplace comes together. How you guys serve your partners is also growing and evolving. What's the biggest thing going on in the ecosystem that you see from your perspective? You can put your Amazon hat on or take your your Amazon hat off a personal hat on what's going on. There's a real growth, I mean seeing people getting bigger and stronger as partners. There's more learning, there's more platforms developing. It's, it's kind of the next gen wave coming. What's going on there? What's the, what's the keynote going to be like, what's the what's this reinvent going to be for partners? Give us a share your, share your thoughts. >> Yeah, certainly. I, I think, you know, we are really trying to make sure that we're simplifying the partner experience as much as we possibly can to really help our partners become you know, more profitable or the most profitable they can be with AWS. And so, you know, certainly in Ruba's keynote on Wednesday you're going to hear a little bit about what we've done there from a programs perspective, what we're doing there from feature and capability perspectives to help, you know really push the digital custom, the digital partner experience, sorry, I should say as much as possible. And really looking holistically at that partner experience and listening to our partners as much as we possibly can to adapt partner pathways to ultimately simplify how they're going to market with AWS. Not only on the co-sell side of things and how we interact with our field teams and actually interact with the end customer, but also on how we, we build and help coil with them on AWS to make their solutions whether that be software, whether that be machine learning models, whether that be data sets most optimized to operate in the AWS ecosystem. So you're going to hear a lot of that in Ruba's keynote on Wednesday. There's certainly some really fantastic partner stories and partner launches that'll be featured. Also some customer outcomes that have been realized as a result of partners. So make sure you don't miss it >> John: More action than ever before, right now. >> It's jam-packed, certainly and throughout the week you're going to see multiple launches and releases related to what we're doing with partners on marketplace, but also more generally to help achieve those customer outcomes. >> Well said Brian. So your heart take, what is the future of partnerships the future of the cloud, if you want throw it in, what what are you going to be saying to us? Hopefully the next time you get to sit down with John and I here on theCUBE at reinvent next year. >> Chris: Yeah, I think Adam, Adam was quoted today, as you know, saying that the, the partner ecosystem is going to be around and a foundation for decades. I think is a hundred percent right for me in terms of the industry verticals, the partner ecosystem we have and the availability of these niche solutions that really are solving very specific but mission critical use cases for our customers in each of the industries is super important and it's going to be a a foundation for AWS's growth strategy across all the industry segments for many years to come. So we're super excited about the opportunity ahead of us and we're ready to get after it. >> John: If you, if you could do an Instagram reel right now, what would you say is the most important >> The Insta challenge by go >> The Insta challenge, real >> Host: Chris's Insta challenge >> Insta challenge here, what would be the the real you'd say to the audience about why this year's reinvent is so important? >> I think this year's reinvent is going to give you a clear sense of the breadth and depth of partners that are available to you across the AWS ecosystem. And there's really no industry or use case that we can't solve with partners that we have available within the partner organization. >> Anything is possible. What a note to close on. Chris Casey, thank you so much for joining us for the second time here on theCUBE. John >> He nailed Instagram challenge. >> Yeah, he did. Did he pass the John test? >> I'd say, I'd say so. >> I'd say so. And and and he certainly teased us all with the content to come this week. I want to see all the keynotes here about some of those partners. You tease them in the gaming space with us earlier. It's going to be a very exciting week. Thank you John, for your commentary. Thank you Chris, one more time. >> Thanks for having me. >> And thank you all for tuning in here at theCUBE where we are the leader in high tech coverage. My name is Savannah Peterson, joined by John Furrier with Cube Team live from Las Vegas, Nevada. AWS Reinvent will be here all week and we hope you stay tuned.
SUMMARY :
John, pleasure to join you today. on the Q3 days of after this wall to wall, Host: I can feel the energy. of software in the industry is phenomenal. We're going to be talking marketplace, and thank you very much and the bravery of the team, and depth of the ecosystem of the operational things, data exchange for 10 years as well as the Host: What a nice coincidence. for them to go to market with AWS. For some of the partners. So certainly for the procurement teams Which is when you calculate that of the more contractual in the AWS marketplace And one of the reasons was one of the key benefits. your push start. that in the keynote tomorrow. AWS but now just the depth of the best ones to call out there. It's like having too because of the last few, few for really the end business for each of the industries actually the challenge. the data exchange to procure getting the analysis and the results back the ecosystem that you perspectives to help, you know John: More action than and releases related to what we're doing Hopefully the next time you get to sit and the availability of that are available to you What a note to close on. Did he pass the John test? It's going to be a very exciting week. and we hope you stay tuned.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Chris Casey | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Adam | PERSON | 0.99+ |
Brian | PERSON | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Ferrari | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Wednesday | DATE | 0.99+ |
66% | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
second time | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
two | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
Thursday | DATE | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.99+ |
today | DATE | 0.99+ |
next year | DATE | 0.99+ |
Ruba | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
APN | ORGANIZATION | 0.99+ |
Ruba Borno | PERSON | 0.99+ |
this week | DATE | 0.98+ |
Noor Faraby & Brian Brunner, Stripe Data Pipeline | AWS re:Invent 2022
>>Hello, fabulous cloud community and welcome to Las Vegas. We are the Cube and we will be broadcasting live from the AWS Reinvent Show floor for the next four days. This is our first opening segment. I am joined by the infamous John Furrier. John, it is your 10th year being here at Reinvent. How does >>It feel? It's been a great to see you. It feels great. I mean, just getting ready for the next four days. It's, this is the marathon of all tech shows. It's, it's busy, it's crowd, it's loud and the content and the people here are really kind of changing the game and the stories are always plentiful and deep and just it's, it really is one of those shows you kind of get intoxicated on the show floor and in the event and after hours people are partying. I mean it is like the big show and 10 years been amazing run People getting bigger. You're seeing the changing ecosystem Next Gen Cloud and you got the Classics Classic still kind of doing its thing. So getting a lot data, a lot of data stories. And our guests here are gonna talk more about that. This is the year the cloud kind of goes next gen and you start to see the success Gen One cloud players go on the next level. It's gonna be really fun. Fun week. >>Yes, I'm absolutely thrilled and you can certainly feel the excitement. The show floor doors just opened, people pouring in the drinks are getting stacked behind us. As you mentioned, it is gonna be a marathon and very exciting. On that note, fantastic interview to kick us off here. We're starting the day with Stripe. Please welcome nor and Brian, how are you both doing today? Excited to be here. >>Really happy to be here. Nice to meet you guys. Yeah, >>Definitely excited to be here. Nice to meet you. >>Yeah, you know, you were mentioning you could feel the temperature and the energy in here. It is hot, it's a hot show. We're a hot crew. Let's just be honest about that. No shame in that. No shame in that game. But I wanna, I wanna open us up. You know, Stripe serving 2 million customers according to the internet. AWS with 1 million customers of their own, both leading companies in your industries. What, just in case there's someone in the audience who hasn't heard of Stripe, what is Stripe and how can companies use it along with AWS nor, why don't you start us off? >>Yeah, so Stripe started back in 2010 originally as a payments company that helped businesses accept and process their payments online. So that was something that traditionally had been really tedious, kind of difficult for web developers to set up. And what Stripe did was actually introduce a couple of lines of code that developers could really easily integrate into their websites and start accepting those payments online. So payments is super core to who Stripe is as a company. It's something that we still focus on a lot today, but we actually like to think of ourselves now as more than just a payments company but rather financial infrastructure for the internet. And that's just because we have expanded into so many different tools and technologies that are beyond payments and actually help businesses with just about anything that they might need to do when it comes to the finances of running an online company. So what I mean by that, couple examples being setting up online marketplaces to accept multi-party payments, running subscriptions and recurring payments, collecting sales tax accurately and compliantly revenue recognition and data and analytics. Importantly on all of those things, which is what Brian and I focus on at Stripe. So yeah, since since 2010 Stripes really grown to serve millions of customers, as you said, from your small startups to your large multinational companies, be able to not only run their payments but also run complex financial operations online. >>Interesting. Even the Cube, the customer of Stripe, it's so easy to integrate. You guys got your roots there, but now as you guys got bigger, I mean you guys have massive traction and people are doing more, you guys are gonna talk here on the data pipeline in front you, the engineering manager. What has it grown to, I mean, what are some of the challenges and opportunities your customers are facing as they look at that data pipeline that you guys are talking about here at Reinvent? >>Yeah, so Stripe Data Pipeline really helps our customers get their data out of Stripe and into, you know, their data warehouse into Amazon Redshift. And that has been something that for our customers it's super important. They have a lot of other data sets that they want to join our Stripe data with to kind of get to more complex, more enriched insights. And Stripe data pipeline is just a really seamless way to do that. It lets you, without any engineering, without any coding, with pretty minimal setup, just connect your Stripe account to your Amazon Redshift data warehouse, really secure. It's encrypted, you know, it's scalable, it's gonna meet all of the needs of kind of a big enterprise and it gets you all of your Stripe data. So anything in our api, a lot of our reports are just like there for you to take and this just overcomes a big hurdle. I mean this is something that would take, you know, multiple engineers months to build if you wanted to do this in house. Yeah, we give it to you, you know, with a couple clicks. So it's kind of a, a step change for getting data out of Stripe into your data work. >>Yeah, the topic of this chat is getting more data outta your data from Stripe with the pipelining, this is kind of an interesting point, I want to get your thoughts. You guys are in the, in the front lines with customers, you know, stripes started out with their roots line of code, get up and running, payment gateway, whatever you wanna call it. Developers just want to get cash on the door. Thank you very much. Now you're kind of turning in growing up and continue to grow. Are you guys like a financial cloud? I mean, would you categorize yourself as a, cuz you're on top of aws? >>Yeah, financial infrastructure of the internet was a, was a claim I definitely wanna touch on from your, earlier today it was >>Powerful. You guys are super financial cloud basically. >>Yeah, super cloud basically the way that AWS kind of is the superstar in cloud computing. That's how we feel at Stripe that we want to put forth as financial infrastructure for the internet. So yeah, a lot of similarities. Actually it's funny, we're, we're really glad to be at aws. I think this is the first time that we've participated in a conference like this. But just to be able to participate and you know, be around AWS where we have a lot of synergies both as companies. Stripe is a customer of AWS and you know, for AWS users they can easily process payments through Stripe. So a lot of synergies there. And yeah, at a company level as well, we find ourselves really aligned with AWS in terms of the goals that we have for our users, helping them scale, expand globally, all of those good things. >>Let's dig in there a little bit more. Sounds like a wonderful collaboration. We love to hear of technology partnerships like that. Brian, talk to us a little bit about the challenges that the data pipeline solves from Stripe for Redshift users. >>Yeah, for sure. So Stripe Data Pipeline uses Amazon RedShift's built in data sharing capabilities, which gives you kind of an instant view into your Stripe data. If you weren't using Stripe data pipeline, you would have to, you know, ingest the state out of our api, kind of pull yourself manually. And yeah, I think that's just like a big part of it really is just the simplicity with what you can pull the data. >>Yeah, absolutely. And I mean the, the complexity of data and the volume of it is only gonna get bigger. So tools like that that can make things a lot easier are what we're all looking for. >>What's the machine learning angle? Cause I know there's lots of big topic here this year. More machine learning, more ai, a lot more solutions on top of the basic building blocks and the primitives at adds, you guys fit right into that. Cause developers doing more, they're either building their own or rolling out solutions. How do you guys see you guys connecting into that with the pipeline? Because, you know, data pipelining people like, they like that's, it feels like a heavy lift. What's the challenge there? Because when people roll their own or try to get in, it's, it's, it could be a lot of muck as they say. Yeah. What's the, what's the real pain point that you guys solve? >>So in terms of, you know, AI and machine learning, what Stripe Data Pipeline is gonna give you is it gives you a lot of signals around your payments that you can incorporate into your models. We actually have a number of customers that use Stripe radar data, so our fraud product and they integrate it with their in-house data that they get from other sources, have a really good understanding of fraud within their whole business. So it's kind of a way to get that data without having to like go through the process of ingesting it. So like, yeah, your, your team doesn't have to think about the ingestion piece. They can just think about, you know, building models, enriching the data, getting insights on top >>And Adam, so let's, we call it etl, the nasty three letter word in my interview with them. And that's what we're getting to where data is actually connecting via APIs and pipelines. Yes. Seamlessly into other data. So the data mashup, it feels like we're back into in the old mashup days now you've got data mashing up together. This integration's now a big practice, it's a becoming an industry standard. What are some of the patterns and matches that you see around how people are integrating their data? Because we all know machine learning works better when there's more data available and people want to connect their data and integrate it without the hassle. What's the, what's some of the use cases that >>Yeah, totally. So as Brian mentioned, there's a ton of use case for engineering teams and being able to get that data reported over efficiently and correctly and that's, you know, something exactly like you touched on that we're seeing nowadays is like simply having access to the data isn't enough. It's all about consolidating it correctly and accurately and effectively so that you can draw the best insights from that. So yeah, we're seeing a lot of use cases for teams across companies, including, a big example is finance teams. We had one of our largest users actually report that they were able to close their books faster than ever from integrating all of their Stripe revenue data for their business with their, the rest of their data in their data warehouse, which was traditionally something that would've taken them days, weeks, you know, having to do the manual aspect. But they were able to, to >>Simplify that, Savannah, you know, we were talking at the last event we were at Supercomputing where it's more speeds and feeds as people get more compute power, right? They can do more at the application level with developers. And one of the things we've been noticing I'd love to get your reaction to is as you guys have customers, millions of customers, are you seeing customers doing more with Stripe that's not just customers where they're more of an ecosystem partner of Stripe as people see that Stripe is not just a, a >>More comprehensive solution. >>Yeah. What's going on with the customer base? I can see the developers embedding it in, but once you get Stripe, you're like a, you're the plumbing, you're the financial bloodline if you will for the all the applications. Are your customers turning into partners, ecosystem partners? How do you see that? >>Yeah, so we definitely, that's what we're hoping to do. We're really hoping to be everything that a user needs when they wanna run an online business, be able to come in and maybe initially they're just using payments or they're just using billing to set up subscriptions but down the line, like as they grow, as they might go public, we wanna be able to scale with them and be able to offer them all of the products that they need to do. So Data Pipeline being a really important one for, you know, if you're a smaller company you might not be needing to leverage all of this big data and making important product decisions that you know, might come down to the very details, but as you scale, it's really something that we've seen a lot of our larger users benefit from. >>Oh and people don't wanna have to factor in too many different variables. There's enough complexity scaling a business, especially if you're headed towards IPO or something like that. Anyway, I love that the Stripe data pipeline is a no code solution as well. So people can do more faster. I wanna talk about it cuz it struck me right away on our lineup that we have engineering and product marketing on the stage with us. Now for those who haven't worked in a very high growth, massive company before, these teams can have a tiny bit of tension only because both teams want a lot of great things for the end user and their community. Tell me a little bit about the culture at Stripe and what it's like collaborating on the data pipeline. >>Yeah, I mean I, I can kick it off, you know, from, from the standpoint like we're on the same team, like we want to grow Stripe data pipeline, that is the goal. So whatever it takes to kind of get that job done is what we're gonna do. And I think that is something that is just really core to all of Stripe is like high collaboration, high trust, you know, this is something where we can all win if we work together. You don't need to, you know, compete with like products for like resourcing or to get your stuff done. It's like no, what's the, what's the, the team goal here, right? Like we're looking for team wins, not, you know, individual wins. >>Awesome. Yeah. And at the end of the day we have the same goal of connecting the product and the user in a way that makes sense and delivering the best product to that target user. So it's, it's really, it's a great collaboration and as Brian mentioned, the culture at Stripe really aligns with that as >>Well. So you got the engineering teams that get value outta that you guys are dealing with, that's your customer. But the security angle really becomes a big, I think catalyst cuz not just engineering, they gotta build stuff in so they're always building, but the security angle's interesting cuz now you got that data feeding security teams, this is becoming very secure security ops oriented. >>Yeah, you know, we are really, really tight partners with our internal security folks. They review everything that we do. We have a really robust security team. But I think, you know, kind of tying back to the Amazon side, like Amazon, Redshift is a very secure product and the way that we share data is really secure. You know, the, the sharing mechanism only works between encrypted clusters. So your data is encrypted at rest, encrypted and transit and excuse me, >>You're allowed to breathe. You also swallow the audience as well as your team at Stripe and all of us here at the Cube would like your survival. First and foremost, the knowledge we'll get to the people. >>Yeah, for sure. Where else was I gonna go? Yeah, so the other thing like you kind of mentioned, you know, there are these ETLs out there, but they, you know that that requires you to trust your data to a third party. So that's another thing here where like your data is only going from stripe to your cluster. There's no one in the middle, no one else has seen what you're doing, there's no other security risks. So security's a big focus and it kind of runs through the whole process both on our side and Amazon side. >>What's the most important story for Stripe at this event? You guys hear? How would you say, how would you say, and if you're on the elevator, what's going on with Stripe? Why now? What's so important at Reinvent for Stripe? >>Yeah, I mean I'm gonna use this as an opportunity to plug data pipelines. That's what we focus on. We're here representing the product, which is the easiest way for any user of aws, a user of Amazon, Redshift and a user of Stripe be able to connect the dots and get their data in the best way possible so that they can draw important business insights from that. >>Right? >>Yeah, I think, you know, I would double what North said, really grow Stripe data pipeline, get it to more customers, get more value for our customers by connecting them with their data and with reporting. I think that's, you know, my goal here is to talk to folks, kind of understand what they want to see out of their data and get them onto Stripe data pipeline. >>And you know, former Mike Mikela, former eight executive now over there at Stripe leading the charge, he knows a lot about Amazon here at aws. The theme tomorrow, Adams Leslie keynote, it's gonna be a lot about data, data integration, data end to end Lifeing, you see more, we call it data as code where engineering infrastructure as code was cloud was starting to see a big trend towards data as code where it's more of an engineering opportunity and solution insights. This data as code is kinda like the next evolution. What do you guys think about that? >>Yeah, definitely there is a ton that you can get out of your data if it's in the right place and you can analyze it in the correct ways. You know, you look at Redshift and you can pull data from Redshift into a ton of other products to like, you know, visualize it to get machine learning insights and you need the data there to be able to do this. So again, Stripe Data Pipeline is a great way to take your data and integrate it into the larger data picture that you're building within your company. >>I love that you are supporting businesses of all sizes and millions of them. No. And Brian, thank you so much for being here and telling us more about the financial infrastructure of the internet. That is Stripe, John Furrier. Thanks as always for your questions and your commentary. And thank you to all of you for tuning in to the Cubes coverage of AWS Reinvent Live here from Las Vegas, Nevada. I'm Savannah Peterson and we look forward to seeing you all week.
SUMMARY :
I am joined by the infamous John Furrier. kind of goes next gen and you start to see the success Gen One cloud players go Yes, I'm absolutely thrilled and you can certainly feel the excitement. Nice to meet you guys. Definitely excited to be here. Yeah, you know, you were mentioning you could feel the temperature and the energy in here. as you said, from your small startups to your large multinational companies, I mean you guys have massive traction and people are doing more, you guys are gonna talk here and it gets you all of your Stripe data. you know, stripes started out with their roots line of code, get up and running, payment gateway, whatever you wanna call it. You guys are super financial cloud basically. But just to be able to participate and you know, be around AWS We love to hear of technology of it really is just the simplicity with what you can pull the data. And I mean the, the complexity of data and the volume of it is only gonna get bigger. blocks and the primitives at adds, you guys fit right into that. So in terms of, you know, AI and machine learning, what Stripe Data Pipeline is gonna give you is matches that you see around how people are integrating their data? that would've taken them days, weeks, you know, having to do the manual aspect. Simplify that, Savannah, you know, we were talking at the last event we were at Supercomputing where it's more speeds and feeds as people I can see the developers embedding it in, but once you get Stripe, decisions that you know, might come down to the very details, but as you scale, Anyway, I love that the Stripe data pipeline is Yeah, I mean I, I can kick it off, you know, from, So it's, it's really, it's a great collaboration and as Brian mentioned, the culture at Stripe really aligns they gotta build stuff in so they're always building, but the security angle's interesting cuz now you Yeah, you know, we are really, really tight partners with our internal security folks. You also swallow the audience as well as your team at Stripe Yeah, so the other thing like you kind of mentioned, We're here representing the product, which is the easiest way for any user I think that's, you know, my goal here is to talk to folks, kind of understand what they want And you know, former Mike Mikela, former eight executive now over there at Stripe leading the charge, Yeah, definitely there is a ton that you can get out of your data if it's in the right place and you can analyze I love that you are supporting businesses of all sizes and millions of them.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Brian | PERSON | 0.99+ |
Mike Mikela | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Brian Brunner | PERSON | 0.99+ |
Stripe | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Savannah Peterson | PERSON | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Adam | PERSON | 0.99+ |
John | PERSON | 0.99+ |
10th year | QUANTITY | 0.99+ |
Stripes | ORGANIZATION | 0.99+ |
Savannah | PERSON | 0.99+ |
Noor Faraby | PERSON | 0.99+ |
1 million customers | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
Redshift | ORGANIZATION | 0.99+ |
stripes | ORGANIZATION | 0.99+ |
2 million customers | QUANTITY | 0.99+ |
Las Vegas, Nevada | LOCATION | 0.99+ |
both teams | QUANTITY | 0.98+ |
first time | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
First | QUANTITY | 0.98+ |
aws | ORGANIZATION | 0.98+ |
millions | QUANTITY | 0.98+ |
Stripe Data Pipeline | ORGANIZATION | 0.97+ |
this year | DATE | 0.97+ |
one | QUANTITY | 0.97+ |
eight executive | QUANTITY | 0.96+ |
tomorrow | DATE | 0.96+ |
first opening segment | QUANTITY | 0.96+ |
millions of customers | QUANTITY | 0.96+ |
stripe | ORGANIZATION | 0.91+ |
Adams Leslie | PERSON | 0.9+ |