Breaking Analysis: Databricks faces critical strategic decisions…here’s why
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Spark became a top level Apache project in 2014, and then shortly thereafter, burst onto the big data scene. Spark, along with the cloud, transformed and in many ways, disrupted the big data market. Databricks optimized its tech stack for Spark and took advantage of the cloud to really cleverly deliver a managed service that has become a leading AI and data platform among data scientists and data engineers. However, emerging customer data requirements are shifting into a direction that will cause modern data platform players generally and Databricks, specifically, we think, to make some key directional decisions and perhaps even reinvent themselves. Hello and welcome to this week's wikibon theCUBE Insights, powered by ETR. In this Breaking Analysis, we're going to do a deep dive into Databricks. We'll explore its current impressive market momentum. We're going to use some ETR survey data to show that, and then we'll lay out how customer data requirements are changing and what the ideal data platform will look like in the midterm future. We'll then evaluate core elements of the Databricks portfolio against that vision, and then we'll close with some strategic decisions that we think the company faces. And to do so, we welcome in our good friend, George Gilbert, former equities analyst, market analyst, and current Principal at TechAlpha Partners. George, good to see you. Thanks for coming on. >> Good to see you, Dave. >> All right, let me set this up. We're going to start by taking a look at where Databricks sits in the market in terms of how customers perceive the company and what it's momentum looks like. And this chart that we're showing here is data from ETS, the emerging technology survey of private companies. The N is 1,421. What we did is we cut the data on three sectors, analytics, database-data warehouse, and AI/ML. The vertical axis is a measure of customer sentiment, which evaluates an IT decision maker's awareness of the firm and the likelihood of engaging and/or purchase intent. The horizontal axis shows mindshare in the dataset, and we've highlighted Databricks, which has been a consistent high performer in this survey over the last several quarters. And as we, by the way, just as aside as we previously reported, OpenAI, which burst onto the scene this past quarter, leads all names, but Databricks is still prominent. You can see that the ETR shows some open source tools for reference, but as far as firms go, Databricks is very impressively positioned. Now, let's see how they stack up to some mainstream cohorts in the data space, against some bigger companies and sometimes public companies. This chart shows net score on the vertical axis, which is a measure of spending momentum and pervasiveness in the data set is on the horizontal axis. You can see that chart insert in the upper right, that informs how the dots are plotted, and net score against shared N. And that red dotted line at 40% indicates a highly elevated net score, anything above that we think is really, really impressive. And here we're just comparing Databricks with Snowflake, Cloudera, and Oracle. And that squiggly line leading to Databricks shows their path since 2021 by quarter. And you can see it's performing extremely well, maintaining an elevated net score and net range. Now it's comparable in the vertical axis to Snowflake, and it consistently is moving to the right and gaining share. Now, why did we choose to show Cloudera and Oracle? The reason is that Cloudera got the whole big data era started and was disrupted by Spark. And of course the cloud, Spark and Databricks and Oracle in many ways, was the target of early big data players like Cloudera. Take a listen to Cloudera CEO at the time, Mike Olson. This is back in 2010, first year of theCUBE, play the clip. >> Look, back in the day, if you had a data problem, if you needed to run business analytics, you wrote the biggest check you could to Sun Microsystems, and you bought a great big, single box, central server, and any money that was left over, you handed to Oracle for a database licenses and you installed that database on that box, and that was where you went for data. That was your temple of information. >> Okay? So Mike Olson implied that monolithic model was too expensive and inflexible, and Cloudera set out to fix that. But the best laid plans, as they say, George, what do you make of the data that we just shared? >> So where Databricks has really come up out of sort of Cloudera's tailpipe was they took big data processing, made it coherent, made it a managed service so it could run in the cloud. So it relieved customers of the operational burden. Where they're really strong and where their traditional meat and potatoes or bread and butter is the predictive and prescriptive analytics that building and training and serving machine learning models. They've tried to move into traditional business intelligence, the more traditional descriptive and diagnostic analytics, but they're less mature there. So what that means is, the reason you see Databricks and Snowflake kind of side by side is there are many, many accounts that have both Snowflake for business intelligence, Databricks for AI machine learning, where Snowflake, I'm sorry, where Databricks also did really well was in core data engineering, refining the data, the old ETL process, which kind of turned into ELT, where you loaded into the analytic repository in raw form and refine it. And so people have really used both, and each is trying to get into the other. >> Yeah, absolutely. We've reported on this quite a bit. Snowflake, kind of moving into the domain of Databricks and vice versa. And the last bit of ETR evidence that we want to share in terms of the company's momentum comes from ETR's Round Tables. They're run by Erik Bradley, and now former Gartner analyst and George, your colleague back at Gartner, Daren Brabham. And what we're going to show here is some direct quotes of IT pros in those Round Tables. There's a data science head and a CIO as well. Just make a few call outs here, we won't spend too much time on it, but starting at the top, like all of us, we can't talk about Databricks without mentioning Snowflake. Those two get us excited. Second comment zeros in on the flexibility and the robustness of Databricks from a data warehouse perspective. And then the last point is, despite competition from cloud players, Databricks has reinvented itself a couple of times over the year. And George, we're going to lay out today a scenario that perhaps calls for Databricks to do that once again. >> Their big opportunity and their big challenge for every tech company, it's managing a technology transition. The transition that we're talking about is something that's been bubbling up, but it's really epical. First time in 60 years, we're moving from an application-centric view of the world to a data-centric view, because decisions are becoming more important than automating processes. So let me let you sort of develop. >> Yeah, so let's talk about that here. We going to put up some bullets on precisely that point and the changing sort of customer environment. So you got IT stacks are shifting is George just said, from application centric silos to data centric stacks where the priority is shifting from automating processes to automating decision. You know how look at RPA and there's still a lot of automation going on, but from the focus of that application centricity and the data locked into those apps, that's changing. Data has historically been on the outskirts in silos, but organizations, you think of Amazon, think Uber, Airbnb, they're putting data at the core, and logic is increasingly being embedded in the data instead of the reverse. In other words, today, the data's locked inside the app, which is why you need to extract that data is sticking it to a data warehouse. The point, George, is we're putting forth this new vision for how data is going to be used. And you've used this Uber example to underscore the future state. Please explain? >> Okay, so this is hopefully an example everyone can relate to. The idea is first, you're automating things that are happening in the real world and decisions that make those things happen autonomously without humans in the loop all the time. So to use the Uber example on your phone, you call a car, you call a driver. Automatically, the Uber app then looks at what drivers are in the vicinity, what drivers are free, matches one, calculates an ETA to you, calculates a price, calculates an ETA to your destination, and then directs the driver once they're there. The point of this is that that cannot happen in an application-centric world very easily because all these little apps, the drivers, the riders, the routes, the fares, those call on data locked up in many different apps, but they have to sit on a layer that makes it all coherent. >> But George, so if Uber's doing this, doesn't this tech already exist? Isn't there a tech platform that does this already? >> Yes, and the mission of the entire tech industry is to build services that make it possible to compose and operate similar platforms and tools, but with the skills of mainstream developers in mainstream corporations, not the rocket scientists at Uber and Amazon. >> Okay, so we're talking about horizontally scaling across the industry, and actually giving a lot more organizations access to this technology. So by way of review, let's summarize the trend that's going on today in terms of the modern data stack that is propelling the likes of Databricks and Snowflake, which we just showed you in the ETR data and is really is a tailwind form. So the trend is toward this common repository for analytic data, that could be multiple virtual data warehouses inside of Snowflake, but you're in that Snowflake environment or Lakehouses from Databricks or multiple data lakes. And we've talked about what JP Morgan Chase is doing with the data mesh and gluing data lakes together, you've got various public clouds playing in this game, and then the data is annotated to have a common meaning. In other words, there's a semantic layer that enables applications to talk to the data elements and know that they have common and coherent meaning. So George, the good news is this approach is more effective than the legacy monolithic models that Mike Olson was talking about, so what's the problem with this in your view? >> So today's data platforms added immense value 'cause they connected the data that was previously locked up in these monolithic apps or on all these different microservices, and that supported traditional BI and AI/ML use cases. But now if we want to build apps like Uber or Amazon.com, where they've got essentially an autonomously running supply chain and e-commerce app where humans only care and feed it. But the thing is figuring out what to buy, when to buy, where to deploy it, when to ship it. We needed a semantic layer on top of the data. So that, as you were saying, the data that's coming from all those apps, the different apps that's integrated, not just connected, but it means the same. And the issue is whenever you add a new layer to a stack to support new applications, there are implications for the already existing layers, like can they support the new layer and its use cases? So for instance, if you add a semantic layer that embeds app logic with the data rather than vice versa, which we been talking about and that's been the case for 60 years, then the new data layer faces challenges that the way you manage that data, the way you analyze that data, is not supported by today's tools. >> Okay, so actually Alex, bring me up that last slide if you would, I mean, you're basically saying at the bottom here, today's repositories don't really do joins at scale. The future is you're talking about hundreds or thousands or millions of data connections, and today's systems, we're talking about, I don't know, 6, 8, 10 joins and that is the fundamental problem you're saying, is a new data error coming and existing systems won't be able to handle it? >> Yeah, one way of thinking about it is that even though we call them relational databases, when we actually want to do lots of joins or when we want to analyze data from lots of different tables, we created a whole new industry for analytic databases where you sort of mung the data together into fewer tables. So you didn't have to do as many joins because the joins are difficult and slow. And when you're going to arbitrarily join thousands, hundreds of thousands or across millions of elements, you need a new type of database. We have them, they're called graph databases, but to query them, you go back to the prerelational era in terms of their usability. >> Okay, so we're going to come back to that and talk about how you get around that problem. But let's first lay out what the ideal data platform of the future we think looks like. And again, we're going to come back to use this Uber example. In this graphic that George put together, awesome. We got three layers. The application layer is where the data products reside. The example here is drivers, rides, maps, routes, ETA, et cetera. The digital version of what we were talking about in the previous slide, people, places and things. The next layer is the data layer, that breaks down the silos and connects the data elements through semantics and everything is coherent. And then the bottom layers, the legacy operational systems feed that data layer. George, explain what's different here, the graph database element, you talk about the relational query capabilities, and why can't I just throw memory at solving this problem? >> Some of the graph databases do throw memory at the problem and maybe without naming names, some of them live entirely in memory. And what you're dealing with is a prerelational in-memory database system where you navigate between elements, and the issue with that is we've had SQL for 50 years, so we don't have to navigate, we can say what we want without how to get it. That's the core of the problem. >> Okay. So if I may, I just want to drill into this a little bit. So you're talking about the expressiveness of a graph. Alex, if you'd bring that back out, the fourth bullet, expressiveness of a graph database with the relational ease of query. Can you explain what you mean by that? >> Yeah, so graphs are great because when you can describe anything with a graph, that's why they're becoming so popular. Expressive means you can represent anything easily. They're conducive to, you might say, in a world where we now want like the metaverse, like with a 3D world, and I don't mean the Facebook metaverse, I mean like the business metaverse when we want to capture data about everything, but we want it in context, we want to build a set of digital twins that represent everything going on in the world. And Uber is a tiny example of that. Uber built a graph to represent all the drivers and riders and maps and routes. But what you need out of a database isn't just a way to store stuff and update stuff. You need to be able to ask questions of it, you need to be able to query it. And if you go back to prerelational days, you had to know how to find your way to the data. It's sort of like when you give directions to someone and they didn't have a GPS system and a mapping system, you had to give them turn by turn directions. Whereas when you have a GPS and a mapping system, which is like the relational thing, you just say where you want to go, and it spits out the turn by turn directions, which let's say, the car might follow or whoever you're directing would follow. But the point is, it's much easier in a relational database to say, "I just want to get these results. You figure out how to get it." The graph database, they have not taken over the world because in some ways, it's taking a 50 year leap backwards. >> Alright, got it. Okay. Let's take a look at how the current Databricks offerings map to that ideal state that we just laid out. So to do that, we put together this chart that looks at the key elements of the Databricks portfolio, the core capability, the weakness, and the threat that may loom. Start with the Delta Lake, that's the storage layer, which is great for files and tables. It's got true separation of compute and storage, I want you to double click on that George, as independent elements, but it's weaker for the type of low latency ingest that we see coming in the future. And some of the threats highlighted here. AWS could add transactional tables to S3, Iceberg adoption is picking up and could accelerate, that could disrupt Databricks. George, add some color here please? >> Okay, so this is the sort of a classic competitive forces where you want to look at, so what are customers demanding? What's competitive pressure? What are substitutes? Even what your suppliers might be pushing. Here, Delta Lake is at its core, a set of transactional tables that sit on an object store. So think of it in a database system, this is the storage engine. So since S3 has been getting stronger for 15 years, you could see a scenario where they add transactional tables. We have an open source alternative in Iceberg, which Snowflake and others support. But at the same time, Databricks has built an ecosystem out of tools, their own and others, that read and write to Delta tables, that's what makes the Delta Lake and ecosystem. So they have a catalog, the whole machine learning tool chain talks directly to the data here. That was their great advantage because in the past with Snowflake, you had to pull all the data out of the database before the machine learning tools could work with it, that was a major shortcoming. They fixed that. But the point here is that even before we get to the semantic layer, the core foundation is under threat. >> Yep. Got it. Okay. We got a lot of ground to cover. So we're going to take a look at the Spark Execution Engine next. Think of that as the refinery that runs really efficient batch processing. That's kind of what disrupted the DOOp in a large way, but it's not Python friendly and that's an issue because the data science and the data engineering crowd are moving in that direction, and/or they're using DBT. George, we had Tristan Handy on at Supercloud, really interesting discussion that you and I did. Explain why this is an issue for Databricks? >> So once the data lake was in place, what people did was they refined their data batch, and Spark has always had streaming support and it's gotten better. The underlying storage as we've talked about is an issue. But basically they took raw data, then they refined it into tables that were like customers and products and partners. And then they refined that again into what was like gold artifacts, which might be business intelligence metrics or dashboards, which were collections of metrics. But they were running it on the Spark Execution Engine, which it's a Java-based engine or it's running on a Java-based virtual machine, which means all the data scientists and the data engineers who want to work with Python are really working in sort of oil and water. Like if you get an error in Python, you can't tell whether the problems in Python or where it's in Spark. There's just an impedance mismatch between the two. And then at the same time, the whole world is now gravitating towards DBT because it's a very nice and simple way to compose these data processing pipelines, and people are using either SQL in DBT or Python in DBT, and that kind of is a substitute for doing it all in Spark. So it's under threat even before we get to that semantic layer, it so happens that DBT itself is becoming the authoring environment for the semantic layer with business intelligent metrics. But that's again, this is the second element that's under direct substitution and competitive threat. >> Okay, let's now move down to the third element, which is the Photon. Photon is Databricks' BI Lakehouse, which has integration with the Databricks tooling, which is very rich, it's newer. And it's also not well suited for high concurrency and low latency use cases, which we think are going to increasingly become the norm over time. George, the call out threat here is customers want to connect everything to a semantic layer. Explain your thinking here and why this is a potential threat to Databricks? >> Okay, so two issues here. What you were touching on, which is the high concurrency, low latency, when people are running like thousands of dashboards and data is streaming in, that's a problem because SQL data warehouse, the query engine, something like that matures over five to 10 years. It's one of these things, the joke that Andy Jassy makes just in general, he's really talking about Azure, but there's no compression algorithm for experience. The Snowflake guy started more than five years earlier, and for a bunch of reasons, that lead is not something that Databricks can shrink. They'll always be behind. So that's why Snowflake has transactional tables now and we can get into that in another show. But the key point is, so near term, it's struggling to keep up with the use cases that are core to business intelligence, which is highly concurrent, lots of users doing interactive query. But then when you get to a semantic layer, that's when you need to be able to query data that might have thousands or tens of thousands or hundreds of thousands of joins. And that's a SQL query engine, traditional SQL query engine is just not built for that. That's the core problem of traditional relational databases. >> Now this is a quick aside. We always talk about Snowflake and Databricks in sort of the same context. We're not necessarily saying that Snowflake is in a position to tackle all these problems. We'll deal with that separately. So we don't mean to imply that, but we're just sort of laying out some of the things that Snowflake or rather Databricks customers we think, need to be thinking about and having conversations with Databricks about and we hope to have them as well. We'll come back to that in terms of sort of strategic options. But finally, when come back to the table, we have Databricks' AI/ML Tool Chain, which has been an awesome capability for the data science crowd. It's comprehensive, it's a one-stop shop solution, but the kicker here is that it's optimized for supervised model building. And the concern is that foundational models like GPT could cannibalize the current Databricks tooling, but George, can't Databricks, like other software companies, integrate foundation model capabilities into its platform? >> Okay, so the sound bite answer to that is sure, IBM 3270 terminals could call out to a graphical user interface when they're running on the XT terminal, but they're not exactly good citizens in that world. The core issue is Databricks has this wonderful end-to-end tool chain for training, deploying, monitoring, running inference on supervised models. But the paradigm there is the customer builds and trains and deploys each model for each feature or application. In a world of foundation models which are pre-trained and unsupervised, the entire tool chain is different. So it's not like Databricks can junk everything they've done and start over with all their engineers. They have to keep maintaining what they've done in the old world, but they have to build something new that's optimized for the new world. It's a classic technology transition and their mentality appears to be, "Oh, we'll support the new stuff from our old stuff." Which is suboptimal, and as we'll talk about, their biggest patron and the company that put them on the map, Microsoft, really stopped working on their old stuff three years ago so that they could build a new tool chain optimized for this new world. >> Yeah, and so let's sort of close with what we think the options are and decisions that Databricks has for its future architecture. They're smart people. I mean we've had Ali Ghodsi on many times, super impressive. I think they've got to be keenly aware of the limitations, what's going on with foundation models. But at any rate, here in this chart, we lay out sort of three scenarios. One is re-architect the platform by incrementally adopting new technologies. And example might be to layer a graph query engine on top of its stack. They could license key technologies like graph database, they could get aggressive on M&A and buy-in, relational knowledge graphs, semantic technologies, vector database technologies. George, as David Floyer always says, "A lot of ways to skin a cat." We've seen companies like, even think about EMC maintained its relevance through M&A for many, many years. George, give us your thought on each of these strategic options? >> Okay, I find this question the most challenging 'cause remember, I used to be an equity research analyst. I worked for Frank Quattrone, we were one of the top tech shops in the banking industry, although this is 20 years ago. But the M&A team was the top team in the industry and everyone wanted them on their side. And I remember going to meetings with these CEOs, where Frank and the bankers would say, "You want us for your M&A work because we can do better." And they really could do better. But in software, it's not like with EMC in hardware because with hardware, it's easier to connect different boxes. With software, the whole point of a software company is to integrate and architect the components so they fit together and reinforce each other, and that makes M&A harder. You can do it, but it takes a long time to fit the pieces together. Let me give you examples. If they put a graph query engine, let's say something like TinkerPop, on top of, I don't even know if it's possible, but let's say they put it on top of Delta Lake, then you have this graph query engine talking to their storage layer, Delta Lake. But if you want to do analysis, you got to put the data in Photon, which is not really ideal for highly connected data. If you license a graph database, then most of your data is in the Delta Lake and how do you sync it with the graph database? If you do sync it, you've got data in two places, which kind of defeats the purpose of having a unified repository. I find this semantic layer option in number three actually more promising, because that's something that you can layer on top of the storage layer that you have already. You just have to figure out then how to have your query engines talk to that. What I'm trying to highlight is, it's easy as an analyst to say, "You can buy this company or license that technology." But the really hard work is making it all work together and that is where the challenge is. >> Yeah, and well look, I thank you for laying that out. We've seen it, certainly Microsoft and Oracle. I guess you might argue that well, Microsoft had a monopoly in its desktop software and was able to throw off cash for a decade plus while it's stock was going sideways. Oracle had won the database wars and had amazing margins and cash flow to be able to do that. Databricks isn't even gone public yet, but I want to close with some of the players to watch. Alex, if you'd bring that back up, number four here. AWS, we talked about some of their options with S3 and it's not just AWS, it's blob storage, object storage. Microsoft, as you sort of alluded to, was an early go-to market channel for Databricks. We didn't address that really. So maybe in the closing comments we can. Google obviously, Snowflake of course, we're going to dissect their options in future Breaking Analysis. Dbt labs, where do they fit? Bob Muglia's company, Relational.ai, why are these players to watch George, in your opinion? >> So everyone is trying to assemble and integrate the pieces that would make building data applications, data products easy. And the critical part isn't just assembling a bunch of pieces, which is traditionally what AWS did. It's a Unix ethos, which is we give you the tools, you put 'em together, 'cause you then have the maximum choice and maximum power. So what the hyperscalers are doing is they're taking their key value stores, in the case of ASW it's DynamoDB, in the case of Azure it's Cosmos DB, and each are putting a graph query engine on top of those. So they have a unified storage and graph database engine, like all the data would be collected in the key value store. Then you have a graph database, that's how they're going to be presenting a foundation for building these data apps. Dbt labs is putting a semantic layer on top of data lakes and data warehouses and as we'll talk about, I'm sure in the future, that makes it easier to swap out the underlying data platform or swap in new ones for specialized use cases. Snowflake, what they're doing, they're so strong in data management and with their transactional tables, what they're trying to do is take in the operational data that used to be in the province of many state stores like MongoDB and say, "If you manage that data with us, it'll be connected to your analytic data without having to send it through a pipeline." And that's hugely valuable. Relational.ai is the wildcard, 'cause what they're trying to do, it's almost like a holy grail where you're trying to take the expressiveness of connecting all your data in a graph but making it as easy to query as you've always had it in a SQL database or I should say, in a relational database. And if they do that, it's sort of like, it'll be as easy to program these data apps as a spreadsheet was compared to procedural languages, like BASIC or Pascal. That's the implications of Relational.ai. >> Yeah, and again, we talked before, why can't you just throw this all in memory? We're talking in that example of really getting down to differences in how you lay the data out on disk in really, new database architecture, correct? >> Yes. And that's why it's not clear that you could take a data lake or even a Snowflake and why you can't put a relational knowledge graph on those. You could potentially put a graph database, but it'll be compromised because to really do what Relational.ai has done, which is the ease of Relational on top of the power of graph, you actually need to change how you're storing your data on disk or even in memory. So you can't, in other words, it's not like, oh we can add graph support to Snowflake, 'cause if you did that, you'd have to change, or in your data lake, you'd have to change how the data is physically laid out. And then that would break all the tools that talk to that currently. >> What in your estimation, is the timeframe where this becomes critical for a Databricks and potentially Snowflake and others? I mentioned earlier midterm, are we talking three to five years here? Are we talking end of decade? What's your radar say? >> I think something surprising is going on that's going to sort of come up the tailpipe and take everyone by storm. All the hype around business intelligence metrics, which is what we used to put in our dashboards where bookings, billings, revenue, customer, those things, those were the key artifacts that used to live in definitions in your BI tools, and DBT has basically created a standard for defining those so they live in your data pipeline or they're defined in their data pipeline and executed in the data warehouse or data lake in a shared way, so that all tools can use them. This sounds like a digression, it's not. All this stuff about data mesh, data fabric, all that's going on is we need a semantic layer and the business intelligence metrics are defining common semantics for your data. And I think we're going to find by the end of this year, that metrics are how we annotate all our analytic data to start adding common semantics to it. And we're going to find this semantic layer, it's not three to five years off, it's going to be staring us in the face by the end of this year. >> Interesting. And of course SVB today was shut down. We're seeing serious tech headwinds, and oftentimes in these sort of downturns or flat turns, which feels like this could be going on for a while, we emerge with a lot of new players and a lot of new technology. George, we got to leave it there. Thank you to George Gilbert for excellent insights and input for today's episode. I want to thank Alex Myerson who's on production and manages the podcast, of course Ken Schiffman as well. Kristin Martin and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our EIC over at Siliconangle.com, he does some great editing. Remember all these episodes, they're available as podcasts. Wherever you listen, all you got to do is search Breaking Analysis Podcast, we publish each week on wikibon.com and siliconangle.com, or you can email me at David.Vellante@siliconangle.com, or DM me @DVellante. Comment on our LinkedIn post, and please do check out ETR.ai, great survey data, enterprise tech focus, phenomenal. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis.
SUMMARY :
bringing you data-driven core elements of the Databricks portfolio and pervasiveness in the data and that was where you went for data. and Cloudera set out to fix that. the reason you see and the robustness of Databricks and their big challenge and the data locked into in the real world and decisions Yes, and the mission of that is propelling the likes that the way you manage that data, is the fundamental problem because the joins are difficult and slow. and connects the data and the issue with that is the fourth bullet, expressiveness and it spits out the and the threat that may loom. because in the past with Snowflake, Think of that as the refinery So once the data lake was in place, George, the call out threat here But the key point is, in sort of the same context. and the company that put One is re-architect the platform and architect the components some of the players to watch. in the case of ASW it's DynamoDB, and why you can't put a relational and executed in the data and manages the podcast, of
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Mike Olson | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Erik Bradley | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
Sun Microsystems | ORGANIZATION | 0.99+ |
50 years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
60 years | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
2010 | DATE | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
15 years | QUANTITY | 0.99+ |
Databricks' | ORGANIZATION | 0.99+ |
two places | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
M&A | ORGANIZATION | 0.99+ |
Frank Quattrone | PERSON | 0.99+ |
second element | QUANTITY | 0.99+ |
Daren Brabham | PERSON | 0.99+ |
TechAlpha Partners | ORGANIZATION | 0.99+ |
third element | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
50 year | QUANTITY | 0.99+ |
40% | QUANTITY | 0.99+ |
Cloudera | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Steven Hillion & Jeff Fletcher, Astronomer | AWS Startup Showcase S3E1
(upbeat music) >> Welcome everyone to theCUBE's presentation of the AWS Startup Showcase AI/ML Top Startups Building Foundation Model Infrastructure. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem to talk about data and analytics. I'm your host, Lisa Martin and today we're excited to be joined by two guests from Astronomer. Steven Hillion joins us, it's Chief Data Officer and Jeff Fletcher, it's director of ML. They're here to talk about machine learning and data orchestration. Guys, thank you so much for joining us today. >> Thank you. >> It's great to be here. >> Before we get into machine learning let's give the audience an overview of Astronomer. Talk about what that is, Steven. Talk about what you mean by data orchestration. >> Yeah, let's start with Astronomer. We're the Airflow company basically. The commercial developer behind the open-source project, Apache Airflow. I don't know if you've heard of Airflow. It's sort of de-facto standard these days for orchestrating data pipelines, data engineering pipelines, and as we'll talk about later, machine learning pipelines. It's really is the de-facto standard. I think we're up to about 12 million downloads a month. That's actually as a open-source project. I think at this point it's more popular by some measures than Slack. Airflow was created by Airbnb some years ago to manage all of their data pipelines and manage all of their workflows and now it powers the data ecosystem for organizations as diverse as Electronic Arts, Conde Nast is one of our big customers, a big user of Airflow. And also not to mention the biggest banks on Wall Street use Airflow and Astronomer to power the flow of data throughout their organizations. >> Talk about that a little bit more, Steven, in terms of the business impact. You mentioned some great customer names there. What is the business impact or outcomes that a data orchestration strategy enables businesses to achieve? >> Yeah, I mean, at the heart of it is quite simply, scheduling and managing data pipelines. And so if you have some enormous retailer who's managing the flow of information throughout their organization they may literally have thousands or even tens of thousands of data pipelines that need to execute every day to do things as simple as delivering metrics for the executives to consume at the end of the day, to producing on a weekly basis new machine learning models that can be used to drive product recommendations. One of our customers, for example, is a British food delivery service. And you get those recommendations in your application that says, "Well, maybe you want to have samosas with your curry." That sort of thing is powered by machine learning models that they train on a regular basis to reflect changing conditions in the market. And those are produced through Airflow and through the Astronomer platform, which is essentially a managed platform for running airflow. So at its simplest it really is just scheduling and managing those workflows. But that's easier said than done of course. I mean if you have 10 thousands of those things then you need to make sure that they all run that they all have sufficient compute resources. If things fail, how do you track those down across those 10,000 workflows? How easy is it for an average data scientist or data engineer to contribute their code, their Python notebooks or their SQL code into a production environment? And then you've got reproducibility, governance, auditing, like managing data flows across an organization which we think of as orchestrating them is much more than just scheduling. It becomes really complicated pretty quickly. >> I imagine there's a fair amount of complexity there. Jeff, let's bring you into the conversation. Talk a little bit about Astronomer through your lens, data orchestration and how it applies to MLOps. >> So I come from a machine learning background and for me the interesting part is that machine learning requires the expansion into orchestration. A lot of the same things that you're using to go and develop and build pipelines in a standard data orchestration space applies equally well in a machine learning orchestration space. What you're doing is you're moving data between different locations, between different tools, and then tasking different types of tools to act on that data. So extending it made logical sense from a implementation perspective. And a lot of my focus at Astronomer is really to explain how Airflow can be used well in a machine learning context. It is being used well, it is being used a lot by the customers that we have and also by users of the open source version. But it's really being able to explain to people why it's a natural extension for it and how well it fits into that. And a lot of it is also extending some of the infrastructure capabilities that Astronomer provides to those customers for them to be able to run some of the more platform specific requirements that come with doing machine learning pipelines. >> Let's get into some of the things that make Astronomer unique. Jeff, sticking with you, when you're in customer conversations, what are some of the key differentiators that you articulate to customers? >> So a lot of it is that we are not specific to one cloud provider. So we have the ability to operate across all of the big cloud providers. I know, I'm certain we have the best developers that understand how best practices implementations for data orchestration works. So we spend a lot of time talking to not just the business outcomes and the business users of the product, but also also for the technical people, how to help them better implement things that they may have come across on a Stack Overflow article or not necessarily just grown with how the product has migrated. So it's the ability to run it wherever you need to run it and also our ability to help you, the customer, better implement and understand those workflows that I think are two of the primary differentiators that we have. >> Lisa: Got it. >> I'll add another one if you don't mind. >> You can go ahead, Steven. >> Is lineage and dependencies between workflows. One thing we've done is to augment core Airflow with Lineage services. So using the Open Lineage framework, another open source framework for tracking datasets as they move from one workflow to another one, team to another, one data source to another is a really key component of what we do and we bundle that within the service so that as a developer or as a production engineer, you really don't have to worry about lineage, it just happens. Jeff, may show us some of this later that you can actually see as data flows from source through to a data warehouse out through a Python notebook to produce a predictive model or a dashboard. Can you see how those data products relate to each other? And when something goes wrong, figure out what upstream maybe caused the problem, or if you're about to change something, figure out what the impact is going to be on the rest of the organization. So Lineage is a big deal for us. >> Got it. >> And just to add on to that, the other thing to think about is that traditional Airflow is actually a complicated implementation. It required quite a lot of time spent understanding or was almost a bespoke language that you needed to be able to develop in two write these DAGs, which is like fundamental pipelines. So part of what we are focusing on is tooling that makes it more accessible to say a data analyst or a data scientist who doesn't have or really needs to gain the necessary background in how the semantics of Airflow DAGs works to still be able to get the benefit of what Airflow can do. So there is new features and capabilities built into the astronomer cloud platform that effectively obfuscates and removes the need to understand some of the deep work that goes on. But you can still do it, you still have that capability, but we are expanding it to be able to have orchestrated and repeatable processes accessible to more teams within the business. >> In terms of accessibility to more teams in the business. You talked about data scientists, data analysts, developers. Steven, I want to talk to you, as the chief data officer, are you having more and more conversations with that role and how is it emerging and evolving within your customer base? >> Hmm. That's a good question, and it is evolving because I think if you look historically at the way that Airflow has been used it's often from the ground up. You have individual data engineers or maybe single data engineering teams who adopt Airflow 'cause it's very popular. Lots of people know how to use it and they bring it into an organization and say, "Hey, let's use this to run our data pipelines." But then increasingly as you turn from pure workflow management and job scheduling to the larger topic of orchestration you realize it gets pretty complicated, you want to have coordination across teams, and you want to have standardization for the way that you manage your data pipelines. And so having a managed service for Airflow that exists in the cloud is easy to spin up as you expand usage across the organization. And thinking long term about that in the context of orchestration that's where I think the chief data officer or the head of analytics tends to get involved because they really want to think of this as a strategic investment that they're making. Not just per team individual Airflow deployments, but a network of data orchestrators. >> That network is key. Every company these days has to be a data company. We talk about companies being data driven. It's a common word, but it's true. It's whether it is a grocer or a bank or a hospital, they've got to be data companies. So talk to me a little bit about Astronomer's business model. How is this available? How do customers get their hands on it? >> Jeff, go ahead. >> Yeah, yeah. So we have a managed cloud service and we have two modes of operation. One, you can bring your own cloud infrastructure. So you can say here is an account in say, AWS or Azure and we can go and deploy the necessary infrastructure into that, or alternatively we can host everything for you. So it becomes a full SaaS offering. But we then provide a platform that connects at the backend to your internal IDP process. So however you are authenticating users to make sure that the correct people are accessing the services that they need with role-based access control. From there we are deploying through Kubernetes, the different services and capabilities into either your cloud account or into an account that we host. And from there Airflow does what Airflow does, which is its ability to then reach to different data systems and data platforms and to then run the orchestration. We make sure we do it securely, we have all the necessary compliance certifications required for GDPR in Europe and HIPAA based out of the US, and a whole bunch host of others. So it is a secure platform that can run in a place that you need it to run, but it is a managed Airflow that includes a lot of the extra capabilities like the cloud developer environment and the open lineage services to enhance the overall airflow experience. >> Enhance the overall experience. So Steven, going back to you, if I'm a Conde Nast or another organization, what are some of the key business outcomes that I can expect? As one of the things I think we've learned during the pandemic is access to realtime data is no longer a nice to have for organizations. It's really an imperative. It's that demanding consumer that wants to have that personalized, customized, instant access to a product or a service. So if I'm a Conde Nast or I'm one of your customers, what can I expect my business to be able to achieve as a result of data orchestration? >> Yeah, I think in a nutshell it's about providing a reliable, scalable, and easy to use service for developing and running data workflows. And talking of demanding customers, I mean, I'm actually a customer myself, as you mentioned, I'm the head of data for Astronomer. You won't be surprised to hear that we actually use Astronomer and Airflow to run all of our data pipelines. And so I can actually talk about my experience. When I started I was of course familiar with Airflow, but it always seemed a little bit unapproachable to me if I was introducing that to a new team of data scientists. They don't necessarily want to have to think about learning something new. But I think because of the layers that Astronomer has provided with our Astro service around Airflow it was pretty easy for me to get up and running. Of course I've got an incentive for doing that. I work for the Airflow company, but we went from about, at the beginning of last year, about 500 data tasks that we were running on a daily basis to about 15,000 every day. We run something like a million data operations every month within my team. And so as one outcome, just the ability to spin up new production workflows essentially in a single day you go from an idea in the morning to a new dashboard or a new model in the afternoon, that's really the business outcome is just removing that friction to operationalizing your machine learning and data workflows. >> And I imagine too, oh, go ahead, Jeff. >> Yeah, I think to add to that, one of the things that becomes part of the business cycle is a repeatable capabilities for things like reporting, for things like new machine learning models. And the impediment that has existed is that it's difficult to take that from a team that's an analyst team who then provide that or a data science team that then provide that to the data engineering team who have to work the workflow all the way through. What we're trying to unlock is the ability for those teams to directly get access to scheduling and orchestrating capabilities so that a business analyst can have a new report for C-suite execs that needs to be done once a week, but the time to repeatability for that report is much shorter. So it is then immediately in the hands of the person that needs to see it. It doesn't have to go into a long list of to-dos for a data engineering team that's already overworked that they eventually get it to it in a month's time. So that is also a part of it is that the realizing, orchestration I think is fairly well and a lot of people get the benefit of being able to orchestrate things within a business, but it's having more people be able to do it and shorten the time that that repeatability is there is one of the main benefits from good managed orchestration. >> So a lot of workforce productivity improvements in what you're doing to simplify things, giving more people access to data to be able to make those faster decisions, which ultimately helps the end user on the other end to get that product or the service that they're expecting like that. Jeff, I understand you have a demo that you can share so we can kind of dig into this. >> Yeah, let me take you through a quick look of how the whole thing works. So our starting point is our cloud infrastructure. This is the login. You go to the portal. You can see there's a a bunch of workspaces that are available. Workspaces are like individual places for people to operate in. I'm not going to delve into all the deep technical details here, but starting point for a lot of our data science customers is we have what we call our Cloud IDE, which is a web-based development environment for writing and building out DAGs without actually having to know how the underpinnings of Airflow work. This is an internal one, something that we use. You have a notebook-like interface that lets you write python code and SQL code and a bunch of specific bespoke type of blocks if you want. They all get pulled together and create a workflow. So this is a workflow, which gets compiled to something that looks like a complicated set of Python code, which is the DAG. I then have a CICD process pipeline where I commit this through to my GitHub repo. So this comes to a repo here, which is where these DAGs that I created in the previous step exist. I can then go and say, all right, I want to see how those particular DAGs have been running. We then get to the actual Airflow part. So this is the managed Airflow component. So we add the ability for teams to fairly easily bring up an Airflow instance and write code inside our notebook-like environment to get it into that instance. So you can see it's been running. That same process that we built here that graph ends up here inside this, but you don't need to know how the fundamentals of Airflow work in order to get this going. Then we can run one of these, it runs in the background and we can manage how it goes. And from there, every time this runs, it's emitting to a process underneath, which is the open lineage service, which is the lineage integration that allows me to come in here and have a look and see this was that actual, that same graph that we built, but now it's the historic version. So I know where things started, where things are going, and how it ran. And then I can also do a comparison. So if I want to see how this particular run worked compared to one historically, I can grab one from a previous date and it will show me the comparison between the two. So that combination of managed Airflow, getting Airflow up and running very quickly, but the Cloud IDE that lets you write code and know how to get something into a repeatable format get that into Airflow and have that attached to the lineage process adds what is a complete end-to-end orchestration process for any business looking to get the benefit from orchestration. >> Outstanding. Thank you so much Jeff for digging into that. So one of my last questions, Steven is for you. This is exciting. There's a lot that you guys are enabling organizations to achieve here to really become data-driven companies. So where can folks go to get their hands on this? >> Yeah, just go to astronomer.io and we have plenty of resources. If you're new to Airflow, you can read our documentation, our guides to getting started. We have a CLI that you can download that is really I think the easiest way to get started with Airflow. But you can actually sign up for a trial. You can sign up for a guided trial where our teams, we have a team of experts, really the world experts on getting Airflow up and running. And they'll take you through that trial and allow you to actually kick the tires and see how this works with your data. And I think you'll see pretty quickly that it's very easy to get started with Airflow, whether you're doing that from the command line or doing that in our cloud service. And all of that is available on our website >> astronomer.io. Jeff, last question for you. What are you excited about? There's so much going on here. What are some of the things, maybe you can give us a sneak peek coming down the road here that prospects and existing customers should be excited about? >> I think a lot of the development around the data awareness components, so one of the things that's traditionally been complicated with orchestration is you leave your data in the place that you're operating on and we're starting to have more data processing capability being built into Airflow. And from a Astronomer perspective, we are adding more capabilities around working with larger datasets, doing bigger data manipulation with inside the Airflow process itself. And that lends itself to better machine learning implementation. So as we start to grow and as we start to get better in the machine learning context, well, in the data awareness context, it unlocks a lot more capability to do and implement proper machine learning pipelines. >> Awesome guys. Exciting stuff. Thank you so much for talking to me about Astronomer, machine learning, data orchestration, and really the value in it for your customers. Steve and Jeff, we appreciate your time. >> Thank you. >> My pleasure, thanks. >> And we thank you for watching. This is season three, episode one of our ongoing series covering exciting startups from the AWS ecosystem. I'm your host, Lisa Martin. You're watching theCUBE, the leader in live tech coverage. (upbeat music)
SUMMARY :
of the AWS Startup Showcase let's give the audience and now it powers the data ecosystem What is the business impact or outcomes for the executives to consume how it applies to MLOps. and for me the interesting that you articulate to customers? So it's the ability to run it if you don't mind. that you can actually see as data flows the other thing to think about to more teams in the business. about that in the context of orchestration So talk to me a little bit at the backend to your So Steven, going back to you, just the ability to spin up but the time to repeatability a demo that you can share that allows me to come There's a lot that you guys We have a CLI that you can download What are some of the things, in the place that you're operating on and really the value in And we thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jeff | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Jeff Fletcher | PERSON | 0.99+ |
Steven | PERSON | 0.99+ |
Steve | PERSON | 0.99+ |
Steven Hillion | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Conde Nast | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
thousands | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
HIPAA | TITLE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
two guests | QUANTITY | 0.99+ |
Airflow | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
10 thousands | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
Electronic Arts | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Python | TITLE | 0.99+ |
two modes | QUANTITY | 0.99+ |
Airflow | TITLE | 0.98+ |
10,000 workflows | QUANTITY | 0.98+ |
about 500 data tasks | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one outcome | QUANTITY | 0.98+ |
tens of thousands | QUANTITY | 0.98+ |
GDPR | TITLE | 0.97+ |
SQL | TITLE | 0.97+ |
GitHub | ORGANIZATION | 0.96+ |
astronomer.io | OTHER | 0.94+ |
Slack | ORGANIZATION | 0.94+ |
Astronomer | ORGANIZATION | 0.94+ |
some years ago | DATE | 0.92+ |
once a week | QUANTITY | 0.92+ |
Astronomer | TITLE | 0.92+ |
theCUBE | ORGANIZATION | 0.92+ |
last year | DATE | 0.91+ |
Kubernetes | TITLE | 0.88+ |
single day | QUANTITY | 0.87+ |
about 15,000 every day | QUANTITY | 0.87+ |
one cloud | QUANTITY | 0.86+ |
IDE | TITLE | 0.86+ |
Opening Panel | Generative AI: Hype or Reality | AWS Startup Showcase S3 E1
(light airy music) >> Hello, everyone, welcome to theCUBE's presentation of the AWS Startup Showcase, AI and machine learning. "Top Startups Building Generative AI on AWS." This is season three, episode one of the ongoing series covering the exciting startups from the AWS ecosystem, talking about AI machine learning. We have three great guests Bratin Saha, VP, Vice President of Machine Learning and AI Services at Amazon Web Services. Tom Mason, the CTO of Stability AI, and Aidan Gomez, CEO and co-founder of Cohere. Two practitioners doing startups and AWS. Gentlemen, thank you for opening up this session, this episode. Thanks for coming on. >> Thank you. >> Thank you. >> Thank you. >> So the topic is hype versus reality. So I think we're all on the reality is great, hype is great, but the reality's here. I want to get into it. Generative AI's got all the momentum, it's going mainstream, it's kind of come out of the behind the ropes, it's now mainstream. We saw the success of ChatGPT, opens up everyone's eyes, but there's so much more going on. Let's jump in and get your early perspectives on what should people be talking about right now? What are you guys working on? We'll start with AWS. What's the big focus right now for you guys as you come into this market that's highly active, highly hyped up, but people see value right out of the gate? >> You know, we have been working on generative AI for some time. In fact, last year we released Code Whisperer, which is about using generative AI for software development and a number of customers are using it and getting real value out of it. So generative AI is now something that's mainstream that can be used by enterprise users. And we have also been partnering with a number of other companies. So, you know, stability.ai, we've been partnering with them a lot. We want to be partnering with other companies as well. In seeing how we do three things, you know, first is providing the most efficient infrastructure for generative AI. And that is where, you know, things like Trainium, things like Inferentia, things like SageMaker come in. And then next is the set of models and then the third is the kind of applications like Code Whisperer and so on. So, you know, it's early days yet, but clearly there's a lot of amazing capabilities that will come out and something that, you know, our customers are starting to pay a lot of attention to. >> Tom, talk about your company and what your focus is and why the Amazon Web Services relationship's important for you? >> So yeah, we're primarily committed to making incredible open source foundation models and obviously stable effusions been our kind of first big model there, which we trained all on AWS. We've been working with them over the last year and a half to develop, obviously a big cluster, and bring all that compute to training these models at scale, which has been a really successful partnership. And we're excited to take it further this year as we develop commercial strategy of the business and build out, you know, the ability for enterprise customers to come and get all the value from these models that we think they can get. So we're really excited about the future. We got hugely exciting pipeline for this year with new modalities and video models and wonderful things and trying to solve images for once and for all and get the kind of general value and value proposition correct for customers. So it's a really exciting time and very honored to be part of it. >> It's great to see some of your customers doing so well out there. Congratulations to your team. Appreciate that. Aidan, let's get into what you guys do. What does Cohere do? What are you excited about right now? >> Yeah, so Cohere builds large language models, which are the backbone of applications like ChatGPT and GPT-3. We're extremely focused on solving the issues with adoption for enterprise. So it's great that you can make a super flashy demo for consumers, but it takes a lot to actually get it into billion user products and large global enterprises. So about six months ago, we released our command models, which are some of the best that exist for large language models. And in December, we released our multilingual text understanding models and that's on over a hundred different languages and it's trained on, you know, authentic data directly from native speakers. And so we're super excited to continue pushing this into enterprise and solving those barriers for adoption, making this transformation a reality. >> Just real quick, while I got you there on the new products coming out. Where are we in the progress? People see some of the new stuff out there right now. There's so much more headroom. Can you just scope out in your mind what that looks like? Like from a headroom standpoint? Okay, we see ChatGPT. "Oh yeah, it writes my papers for me, does some homework for me." I mean okay, yawn, maybe people say that, (Aidan chuckles) people excited or people are blown away. I mean, it's helped theCUBE out, it helps me, you know, feed up a little bit from my write-ups but it's not always perfect. >> Yeah, at the moment it's like a writing assistant, right? And it's still super early in the technologies trajectory. I think it's fascinating and it's interesting but its impact is still really limited. I think in the next year, like within the next eight months, we're going to see some major changes. You've already seen the very first hints of that with stuff like Bing Chat, where you augment these dialogue models with an external knowledge base. So now the models can be kept up to date to the millisecond, right? Because they can search the web and they can see events that happened a millisecond ago. But that's still limited in the sense that when you ask the question, what can these models actually do? Well they can just write text back at you. That's the extent of what they can do. And so the real project, the real effort, that I think we're all working towards is actually taking action. So what happens when you give these models the ability to use tools, to use APIs? What can they do when they can actually affect change out in the real world, beyond just streaming text back at the user? I think that's the really exciting piece. >> Okay, so I wanted to tee that up early in the segment 'cause I want to get into the customer applications. We're seeing early adopters come in, using the technology because they have a lot of data, they have a lot of large language model opportunities and then there's a big fast follower wave coming behind it. I call that the people who are going to jump in the pool early and get into it. They might not be advanced. Can you guys share what customer applications are being used with large language and vision models today and how they're using it to transform on the early adopter side, and how is that a tell sign of what's to come? >> You know, one of the things we have been seeing both with the text models that Aidan talked about as well as the vision models that stability.ai does, Tom, is customers are really using it to change the way you interact with information. You know, one example of a customer that we have, is someone who's kind of using that to query customer conversations and ask questions like, you know, "What was the customer issue? How did we solve it?" And trying to get those kinds of insights that was previously much harder to do. And then of course software is a big area. You know, generating software, making that, you know, just deploying it in production. Those have been really big areas that we have seen customers start to do. You know, looking at documentation, like instead of you know, searching for stuff and so on, you know, you just have an interactive way, in which you can just look at the documentation for a product. You know, all of this goes to where we need to take the technology. One of which is, you know, the models have to be there but they have to work reliably in a production setting at scale, with privacy, with security, and you know, making sure all of this is happening, is going to be really key. That is what, you know, we at AWS are looking to do, which is work with partners like stability and others and in the open source and really take all of these and make them available at scale to customers, where they work reliably. >> Tom, Aidan, what's your thoughts on this? Where are customers landing on this first use cases or set of low-hanging fruit use cases or applications? >> Yeah, so I think like the first group of adopters that really found product market fit were the copywriting companies. So one great example of that is HyperWrite. Another one is Jasper. And so for Cohere, that's the tip of the iceberg, like there's a very long tail of usage from a bunch of different applications. HyperWrite is one of our customers, they help beat writer's block by drafting blog posts, emails, and marketing copy. We also have a global audio streaming platform, which is using us the power of search engine that can comb through podcast transcripts, in a bunch of different languages. Then a global apparel brand, which is using us to transform how they interact with their customers through a virtual assistant, two dozen global news outlets who are using us for news summarization. So really like, these large language models, they can be deployed all over the place into every single industry sector, language is everywhere. It's hard to think of any company on Earth that doesn't use language. So it's, very, very- >> We're doing it right now. We got the language coming in. >> Exactly. >> We'll transcribe this puppy. All right. Tom, on your side, what do you see the- >> Yeah, we're seeing some amazing applications of it and you know, I guess that's partly been, because of the growth in the open source community and some of these applications have come from there that are then triggering this secondary wave of innovation, which is coming a lot from, you know, controllability and explainability of the model. But we've got companies like, you know, Jasper, which Aidan mentioned, who are using stable diffusion for image generation in block creation, content creation. We've got Lensa, you know, which exploded, and is built on top of stable diffusion for fine tuning so people can bring themselves and their pets and you know, everything into the models. So we've now got fine tuned stable diffusion at scale, which is democratized, you know, that process, which is really fun to see your Lensa, you know, exploded. You know, I think it was the largest growing app in the App Store at one point. And lots of other examples like NightCafe and Lexica and Playground. So seeing lots of cool applications. >> So much applications, we'll probably be a customer for all you guys. We'll definitely talk after. But the challenges are there for people adopting, they want to get into what you guys see as the challenges that turn into opportunities. How do you see the customers adopting generative AI applications? For example, we have massive amounts of transcripts, timed up to all the videos. I don't even know what to do. Do I just, do I code my API there. So, everyone has this problem, every vertical has these use cases. What are the challenges for people getting into this and adopting these applications? Is it figuring out what to do first? Or is it a technical setup? Do they stand up stuff, they just go to Amazon? What do you guys see as the challenges? >> I think, you know, the first thing is coming up with where you think you're going to reimagine your customer experience by using generative AI. You know, we talked about Ada, and Tom talked about a number of these ones and you know, you pick up one or two of these, to get that robust. And then once you have them, you know, we have models and we'll have more models on AWS, these large language models that Aidan was talking about. Then you go in and start using these models and testing them out and seeing whether they fit in use case or not. In many situations, like you said, John, our customers want to say, "You know, I know you've trained these models on a lot of publicly available data, but I want to be able to customize it for my use cases. Because, you know, there's some knowledge that I have created and I want to be able to use that." And then in many cases, and I think Aidan mentioned this. You know, you need these models to be up to date. Like you can't have it staying. And in those cases, you augmented with a knowledge base, you know you have to make sure that these models are not hallucinating. And so you need to be able to do the right kind of responsible AI checks. So, you know, you start with a particular use case, and there are a lot of them. Then, you know, you can come to AWS, and then look at one of the many models we have and you know, we are going to have more models for other modalities as well. And then, you know, play around with the models. We have a playground kind of thing where you can test these models on some data and then you can probably, you will probably want to bring your own data, customize it to your own needs, do some of the testing to make sure that the model is giving the right output and then just deploy it. And you know, we have a lot of tools. >> Yeah. >> To make this easy for our customers. >> How should people think about large language models? Because do they think about it as something that they tap into with their IP or their data? Or is it a large language model that they apply into their system? Is the interface that way? What's the interaction look like? >> In many situations, you can use these models out of the box. But in typical, in most of the other situations, you will want to customize it with your own data or with your own expectations. So the typical use case would be, you know, these are models are exposed through APIs. So the typical use case would be, you know you're using these APIs a little bit for testing and getting familiar and then there will be an API that will allow you to train this model further on your data. So you use that AI, you know, make sure you augmented the knowledge base. So then you use those APIs to customize the model and then just deploy it in an application. You know, like Tom was mentioning, a number of companies that are using these models. So once you have it, then you know, you again, use an endpoint API and use it in an application. >> All right, I love the example. I want to ask Tom and Aidan, because like most my experience with Amazon Web Service in 2007, I would stand up in EC2, put my code on there, play around, if it didn't work out, I'd shut it down. Is that a similar dynamic we're going to see with the machine learning where developers just kind of log in and stand up infrastructure and play around and then have a cloud-like experience? >> So I can go first. So I mean, we obviously, with AWS working really closely with the SageMaker team, do fantastic platform there for ML training and inference. And you know, going back to your point earlier, you know, where the data is, is hugely important for companies. Many companies bringing their models to their data in AWS on-premise for them is hugely important. Having the models to be, you know, open sources, makes them explainable and transparent to the adopters of those models. So, you know, we are really excited to work with the SageMaker team over the coming year to bring companies to that platform and make the most of our models. >> Aidan, what's your take on developers? Do they just need to have a team in place, if we want to interface with you guys? Let's say, can they start learning? What do they got to do to set up? >> Yeah, so I think for Cohere, our product makes it much, much easier to people, for people to get started and start building, it solves a lot of the productionization problems. But of course with SageMaker, like Tom was saying, I think that lowers a barrier even further because it solves problems like data privacy. So I want to underline what Bratin was saying earlier around when you're fine tuning or when you're using these models, you don't want your data being incorporated into someone else's model. You don't want it being used for training elsewhere. And so the ability to solve for enterprises, that data privacy and that security guarantee has been hugely important for Cohere, and that's very easy to do through SageMaker. >> Yeah. >> But the barriers for using this technology are coming down super quickly. And so for developers, it's just becoming completely intuitive. I love this, there's this quote from Andrej Karpathy. He was saying like, "It really wasn't on my 2022 list of things to happen that English would become, you know, the most popular programming language." And so the barrier is coming down- >> Yeah. >> Super quickly and it's exciting to see. >> It's going to be awesome for all the companies here, and then we'll do more, we're probably going to see explosion of startups, already seeing that, the maps, ecosystem maps, the landscape maps are happening. So this is happening and I'm convinced it's not yesterday's chat bot, it's not yesterday's AI Ops. It's a whole another ballgame. So I have to ask you guys for the final question before we kick off the company's showcasing here. How do you guys gauge success of generative AI applications? Is there a lens to look through and say, okay, how do I see success? It could be just getting a win or is it a bigger picture? Bratin we'll start with you. How do you gauge success for generative AI? >> You know, ultimately it's about bringing business value to our customers. And making sure that those customers are able to reimagine their experiences by using generative AI. Now the way to get their ease, of course to deploy those models in a safe, effective manner, and ensuring that all of the robustness and the security guarantees and the privacy guarantees are all there. And we want to make sure that this transitions from something that's great demos to actual at scale products, which means making them work reliably all of the time not just some of the time. >> Tom, what's your gauge for success? >> Look, I think this, we're seeing a completely new form of ways to interact with data, to make data intelligent, and directly to bring in new revenue streams into business. So if businesses can use our models to leverage that and generate completely new revenue streams and ultimately bring incredible new value to their customers, then that's fantastic. And we hope we can power that revolution. >> Aidan, what's your take? >> Yeah, reiterating Bratin and Tom's point, I think that value in the enterprise and value in market is like a huge, you know, it's the goal that we're striving towards. I also think that, you know, the value to consumers and actual users and the transformation of the surface area of technology to create experiences like ChatGPT that are magical and it's the first time in human history we've been able to talk to something compelling that's not a human. I think that in itself is just extraordinary and so exciting to see. >> It really brings up a whole another category of markets. B2B, B2C, it's B2D, business to developer. Because I think this is kind of the big trend the consumers have to win. The developers coding the apps, it's a whole another sea change. Reminds me everyone use the "Moneyball" movie as example during the big data wave. Then you know, the value of data. There's a scene in "Moneyball" at the end, where Billy Beane's getting the offer from the Red Sox, then the owner says to the Red Sox, "If every team's not rebuilding their teams based upon your model, there'll be dinosaurs." I think that's the same with AI here. Every company will have to need to think about their business model and how they operate with AI. So it'll be a great run. >> Completely Agree >> It'll be a great run. >> Yeah. >> Aidan, Tom, thank you so much for sharing about your experiences at your companies and congratulations on your success and it's just the beginning. And Bratin, thanks for coming on representing AWS. And thank you, appreciate for what you do. Thank you. >> Thank you, John. Thank you, Aidan. >> Thank you John. >> Thanks so much. >> Okay, let's kick off season three, episode one. I'm John Furrier, your host. Thanks for watching. (light airy music)
SUMMARY :
of the AWS Startup Showcase, of the behind the ropes, and something that, you know, and build out, you know, Aidan, let's get into what you guys do. and it's trained on, you know, it helps me, you know, the ability to use tools, to use APIs? I call that the people and you know, making sure the first group of adopters We got the language coming in. Tom, on your side, what do you see the- and you know, everything into the models. they want to get into what you guys see and you know, you pick for our customers. then you know, you again, All right, I love the example. and make the most of our models. And so the ability to And so the barrier is coming down- and it's exciting to see. So I have to ask you guys and ensuring that all of the robustness and directly to bring in new and it's the first time in human history the consumers have to win. and it's just the beginning. I'm John Furrier, your host.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Tom | PERSON | 0.99+ |
Tom Mason | PERSON | 0.99+ |
Aidan | PERSON | 0.99+ |
Red Sox | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andrej Karpathy | PERSON | 0.99+ |
Bratin Saha | PERSON | 0.99+ |
December | DATE | 0.99+ |
2007 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
Aidan Gomez | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Billy Beane | PERSON | 0.99+ |
Bratin | PERSON | 0.99+ |
Moneyball | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
Ada | PERSON | 0.99+ |
last year | DATE | 0.99+ |
two | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
yesterday | DATE | 0.99+ |
Two practitioners | QUANTITY | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
ChatGPT | TITLE | 0.99+ |
next year | DATE | 0.99+ |
Code Whisperer | TITLE | 0.99+ |
third | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
App Store | TITLE | 0.99+ |
first time | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
Inferentia | TITLE | 0.98+ |
EC2 | TITLE | 0.98+ |
GPT-3 | TITLE | 0.98+ |
both | QUANTITY | 0.98+ |
Lensa | TITLE | 0.98+ |
SageMaker | ORGANIZATION | 0.98+ |
three things | QUANTITY | 0.97+ |
Cohere | ORGANIZATION | 0.96+ |
over a hundred different languages | QUANTITY | 0.96+ |
English | OTHER | 0.96+ |
one example | QUANTITY | 0.96+ |
about six months ago | DATE | 0.96+ |
One | QUANTITY | 0.96+ |
first use | QUANTITY | 0.96+ |
SageMaker | TITLE | 0.96+ |
Bing Chat | TITLE | 0.95+ |
one point | QUANTITY | 0.95+ |
Trainium | TITLE | 0.95+ |
Lexica | TITLE | 0.94+ |
Playground | TITLE | 0.94+ |
three great guests | QUANTITY | 0.93+ |
HyperWrite | TITLE | 0.92+ |
Irene Dankwa-Mullan, Marti Health | WiDS 2023
(light upbeat music) >> Hey, everyone. Welcome back to theCUBE's day long coverage of Women in Data Science 2023. Live from Stanford University, I'm Lisa Martin. We've had some amazing conversations today with my wonderful co-host, as you've seen. Tracy Zhang joins me next for a very interesting and inspiring conversation. I know we've been bringing them to you, we're bringing you another one here. Dr. Irene Dankwa-Mullan joins us, the Chief Medical Officer at Marti Health, and a speaker at WIDS. Welcome, Irene, it's great to have you. >> Thank you. I'm delighted to be here. Thank you so much for this opportunity. >> So you have an MD and a Master of Public Health. Covid must have been an interesting time for you, with an MPH? >> Very much so. >> Yeah, talk a little bit about you, your background, and Marti Health? This is interesting. This is a brand new startup. This is a digital health equity startup. >> Yes, yes. So, I'll start with my story a little bit about myself. So I was actually born in Ghana. I finished high school there and came here for college. What would I say? After I finished my undergraduate, I went to medical school at Dartmouth and I always knew I wanted to go into public health as well as medicine. So my medical education was actually five years. I did the MPH and my medical degree, at the same time, I got my MPH from Yale School of Public Health. And after I finished, I trained in internal medicine, Johns Hopkins, and after that I went into public health. I am currently living in Maryland, so I'm in Bethesda, Maryland, and that's where I've been. And really enjoyed public health, community health, combining that aspect of sort of prevention and wellness and also working in making sure that we have community health clinics and safety net clinics. So a great experience there. I also had the privilege, after eight years in public health, I went to the National Institute of Health. >> Oh, wow. >> Where I basically worked in clinical research, basically on minority health and health disparities. So, I was in various leadership roles and helped to advance the science of health equity, working in collaboration with a lot of scientists and researchers at the NIH, really to advance the science. >> Where did your interest in health equity come from? Was there a defining moment when you were younger and you thought "There's a lot of inequities here, we have to do something about this." Where did that interest start? >> That's a great question. I think this influence was basically maybe from my upbringing as well as my family and also what I saw around me in Ghana, a lot of preventable diseases. I always say that my grandfather on my father's side was a great influence, inspired me and influenced my career because he was the only sibling, really, that went to school. And as a result, he was able to earn enough money and built, you know, a hospital. >> Oh wow. >> In their hometown. >> Oh my gosh! >> It started as a 20 bed hospital and now it's a 350 bed hospital. >> Oh, wow, that's amazing! >> In our hometown. And he knew that education was important and vital as well for wellbeing. And so he really inspired, you know, his work inspired me. And I remember in residency I went with a group of residents to this hospital in Ghana just to help over a summer break. So during a summer where we went and helped take care of the sick patients and actually learned, right? What it is like to care for so many patients and- >> Yeah. >> It was really a humbling experience. But that really inspired me. I think also being in this country. And when I came to the U.S. and really saw firsthand how patients are treated differently, based on their background or socioeconomic status. I did see firsthand, you know, that kind of unconscious bias. And, you know, drew me to the field of health disparities research and wanted to learn more and do more and contribute. >> Yeah. >> Yeah. So, I was curious. Just when did the data science aspect tap in? Like when did you decide that, okay, data science is going to be a problem solving tool to like all the problems you just said? >> Yeah, that's a good question. So while I was at the NIH, I spent eight years there, and precision medicine was launched at that time and there was a lot of heightened interest in big data and how big data could help really revolutionize medicine and healthcare. And I got the opportunity to go, you know, there was an opportunity where they were looking for physicians or deputy chief health officer at IBM. And so I went to IBM, Watson Health was being formed as a new business unit, and I was one of the first deputy chief health officers really to lead the data and the science evidence. And that's where I realized, you know, we could really, you know, the technology in healthcare, there's been a lot of data that I think we are not really using or optimizing to make sure that we're taking care of our patients. >> Yeah. >> And so that's how I got into data science and making sure that we are building technologies using the right data to advance health equity. >> Right, so talk a little bit about health equity? We mentioned you're with Marti Health. You've been there for a short time, but Marti Health is also quite new, just a few months old. Digital health equity, talk about what Marti's vision is, what its mission is to really help start dialing down a lot of the disparities that you talked about that you see every day? >> Yeah, so, I've been so privileged. I recently joined Marti Health as their Chief Medical Officer, Chief Health Officer. It's a startup that is actually trying to promote a value-based care, also promote patient-centered care for patients that are experiencing a social disadvantage as a result of their race, ethnicity. And were starting to look at and focused on patients that have sickle cell disease. >> Okay. >> Because we realize that that's a population, you know, we know sickle cell disease is a genetic disorder. It impacts a lot of patients that are from areas that are endemic malaria. >> Yeah. >> Yeah. >> And most of our patients here are African American, and when, you know, they suffer so much stigma and discrimination in the healthcare system and complications from their sickle cell disease. And so what we want to do that we feel like sickle cell is a litmus test for disparities. And we want to make sure that they get in patient-centered care. We want to make sure that we are leveraging data and the research that we've done in sickle cell disease, especially on the continent of Africa. >> Okay. >> And provide, promote better quality care for the patients. >> That's so inspiring. You know, we've heard so many great stories today. Were you able to watch the keynote this morning? >> Yes. >> I loved how it always inspires me. This conference is always, we were talking about this all day, how you walk in the Arrillaga Alumni Center here where this event is held every year, the vibe is powerful, it's positive, it's encouraging. >> Inspiring, yeah. >> Absolutely. >> Inspiring. >> Yeah, yeah. >> It's a movement, WIDS is a movement. They've created this community where you feel, I don't know, kind of superhuman. "Why can't I do this? Why not me?" We heard some great stories this morning about data science in terms of applications. You have a great application in terms of health equity. We heard about it in police violence. >> Yes. >> Which is an epidemic in this country for sure, as we know. This happens too often. How can we use data and data science as a facilitator of learning more about that, so that that can stop? I think that's so important for more people to understand all of the broad applications of data science, whether it's police violence or climate change or drug discovery or health inequities. >> Irene: Yeah. >> The potential, I think we're scratching the surface. But the potential is massive. >> Tracy: It is. >> And this is an event that really helps women and underrepresented minorities think, "Why not me? Why can't I get involved in that?" >> Yeah, and I always say we use data to make an make a lot of decisions. And especially in healthcare, we want to be careful about how we are using data because this is impacting the health and outcomes of our patients. And so science evidence is really critical, you know? We want to make sure that data is inclusive and we have quality data. >> Yes. >> And it's transparent. Our clinical trials, I always say are not always diverse and inclusive. And if that's going to form the evidence base or data points then we're doing more harm than good for our patients. And so data science, it's huge. I mean, we need a robust, responsible, trustworthy data science agenda. >> "Trust" you just brought up "trust." >> Yeah. >> I did. >> When we talk about data, we can't not talk about security and privacy and ethics but trust is table stakes. We have to be able to evaluate the data and trust in it. >> Exactly. >> And what it says and the story that can be told from it. So that trust factor is, I think, foundational to data science. >> We all see what happened with Covid, right? I mean, when the pandemic came out- >> Absolutely. >> Everyone wanted information. We wanted data, we wanted data we could trust. There was a lot of hesitancy even with the vaccine. >> Yeah. >> Right? And so public health, I mean, like you said, we had to do a lot of work making sure that the right information from the right data was being translated or conveyed to the communities. And so you are totally right. I mean, data and good information, relevant data is always key. >> Well- >> Is there any- Oh, sorry. >> Go ahead. >> Is there anything Marti Health is doing in like ensuring that you guys get the right data that you can put trust in it? >> Yes, absolutely. And so this is where we are, you know, part of it would be getting data, real world evidence data for patients who are being seen in the healthcare system with sickle cell disease, so that we can personalize the data to those patients and provide them with the right treatment, the right intervention that they need. And so part of it would be doing predictive modeling on some of the data, risk, stratifying risk, who in the sickle cell patient population is at risk of progressing. Or getting, you know, they all often get crisis, vaso-occlusive crisis because the cells, you know, the blood cell sickles and you want to avoid those chest crisis. And so part of what we'll be doing is, you know, using predictive modeling to target those at risk of the disease progressing, so that we can put in preventive measures. It's all about prevention. It's all about making sure that they're not being, you know, going to the hospital or the emergency room where sometimes they end up, you know, in pain and wanting pain medicine. And so. >> Do you see AI as being a critical piece in the transformation of healthcare, especially where inequities are concerned? >> Absolutely, and and when you say AI, I think it's responsible AI. >> Yes. >> And making sure that it's- >> Tracy: That's such a good point. >> Yeah. >> Very. >> With the right data, with relevant data, it's definitely key. I think there is so much data points that healthcare has, you know, in the healthcare space there's fiscal data, biological data, there's environmental data and we are not using it to the full capacity and full potential. >> Tracy: Yeah. >> And I think AI can do that if we do it carefully, and like I said, responsibly. >> That's a key word. You talked about trust, responsibility. Where data science, AI is concerned- >> Yeah. >> It has to be not an afterthought, it has to be intentional. >> Tracy: Exactly. >> And there needs to be a lot of education around it. Most people think, "Oh, AI is just for the technology," you know? >> Yeah, right. >> Goop. >> Yes. >> But I think we're all part, I mean everyone needs to make sure that we are collecting the right amount of data. I mean, I think we all play a part, right? >> We do. >> We do. >> In making sure that we have responsible AI, we have, you know, good data, quality data. And the data sciences is a multi-disciplinary field, I think. >> It is, which is one of the things that's exciting about it is it is multi-disciplinary. >> Tracy: Exactly. >> And so many of the people that we've talked to in data science have these very non-linear paths to get there, and so I think they bring such diversity of thought and backgrounds and experiences and thoughts and voices. That helps train the AI models with data that's more inclusive. >> Irene: Yes. >> Dropping down the volume on the bias that we know is there. To be successful, it has to. >> Definitely, I totally agree. >> What are some of the things, as we wrap up here, that you're looking forward to accomplishing as part of Marti Health? Like, maybe what's on the roadmap that you can share with us for Marti as it approaches the the second half of its first year? >> Yes, it's all about promoting health equity. It's all about, I mean, there's so much, well, I would start with, you know, part of the healthcare transformation is making sure that we are promoting care that's based on value and not volume, care that's based on good health outcomes, quality health outcomes, and not just on, you know, the quantity. And so Marti Health is trying to promote that value-based care. We are envisioning a world in which everyone can live their full life potential. Have the best health outcomes, and provide that patient-centered precision care. >> And we all want that. We all want that. We expect that precision and that personalized experience in our consumer lives, why not in healthcare? Well, thank you, Irene, for joining us on the program today. >> Thank you. >> Talking about what you're doing to really help drive the volume up on health equity, and raise awareness for the fact that there's a lot of inequities in there we have to fix. We have a long way to go. >> We have, yes. >> Lisa: But people like you are making an impact and we appreciate you joining theCUBE today and sharing what you're doing, thank you. >> Thank you. >> Thank you- >> Thank you for having me here. >> Oh, our pleasure. For our guest and Tracy Zhang, this is Lisa Martin from WIDS 2023, the eighth Annual Women in Data Science Conference brought to you by theCUBE. Stick around, our show wrap will be in just a minute. Thanks for watching. (light upbeat music)
SUMMARY :
we're bringing you another one here. Thank you so much for this opportunity. So you have an MD and This is a brand new startup. I did the MPH and my medical and researchers at the NIH, and you thought "There's and built, you know, a hospital. and now it's a 350 bed hospital. And so he really inspired, you I did see firsthand, you know, to like all the problems you just said? And I got the opportunity to go, you know, that we are building that you see every day? It's a startup that is that that's a population, you know, and when, you know, they care for the patients. the keynote this morning? how you walk in the community where you feel, all of the broad But the potential is massive. Yeah, and I always say we use data And if that's going to form the We have to be able to evaluate and the story that can be told from it. We wanted data, we wanted And so you are totally right. Is there any- And so this is where we are, you know, Absolutely, and and when you say AI, that healthcare has, you know, And I think AI can do That's a key word. It has to be And there needs to be a I mean, I think we all play a part, right? we have, you know, good the things that's exciting And so many of the that we know is there. and not just on, you know, the quantity. and that personalized experience and raise awareness for the fact and we appreciate you brought to you by theCUBE.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Irene | PERSON | 0.99+ |
Maryland | LOCATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Ghana | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Irene Dankwa-Mullan | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
NIH | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
National Institute of Health | ORGANIZATION | 0.99+ |
eight years | QUANTITY | 0.99+ |
Yale School of Public Health | ORGANIZATION | 0.99+ |
20 bed | QUANTITY | 0.99+ |
Marti Health | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
Watson Health | ORGANIZATION | 0.99+ |
pandemic | EVENT | 0.99+ |
U.S. | LOCATION | 0.99+ |
first | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
Marti | ORGANIZATION | 0.98+ |
Marti | PERSON | 0.97+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
second half | QUANTITY | 0.96+ |
African American | OTHER | 0.94+ |
theCUBE | ORGANIZATION | 0.92+ |
Johns Hopkins | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Stanford University | ORGANIZATION | 0.91+ |
350 bed hospital | QUANTITY | 0.9+ |
WiDS 2023 | EVENT | 0.88+ |
malaria | OTHER | 0.84+ |
Africa | LOCATION | 0.83+ |
Dartmouth | ORGANIZATION | 0.82+ |
Women in Data Science 2023 | TITLE | 0.82+ |
Covid | PERSON | 0.8+ |
Arrillaga Alumni Center | LOCATION | 0.79+ |
every year | QUANTITY | 0.75+ |
WIDS | ORGANIZATION | 0.69+ |
Bethesda, Maryland | LOCATION | 0.69+ |
Dr. | PERSON | 0.63+ |
2023 | EVENT | 0.57+ |
TheCUBE Insights | WiDS 2023
(energetic music) >> Everyone, welcome back to theCUBE's coverage of WiDS 2023. This is the eighth annual Women in Data Science Conference. As you know, WiDS is not just a conference or an event, it's a movement. This is going to include over 100,000 people in the next year WiDS 2023 in 200-plus countries. It is such a powerful movement. If you've had a chance to be part of the Livestream or even be here in person with us at Stanford University, you know what I'm talking about. This is Lisa Martin. I have had the pleasure all day of working with two fantastic graduate students in Stanford's Data Journalism Master's Program. Hannah Freitag has been here. Tracy Zhang, ladies, it's been such a pleasure working with you today. >> Same wise. >> I want to ask you both what are, as we wrap the day, I'm so inspired, I feel like I could go build an airplane. >> Exactly. >> Probably can't. But WiDS is just the inspiration that comes from this event. When you walk in the front door, you can feel it. >> Mm-hmm. >> Tracy, talk a little bit about what some of the things are that you heard today that really inspired you. >> I think one of the keyword that's like in my mind right now is like finding a mentor. >> Yeah. >> And I think, like if I leave this conference if I leave the talks, the conversations with one thing is that I'm very positive that if I want to switch, say someday, from Journalism to being a Data Analyst, to being like in Data Science, I'm sure that there are great role models for me to look up to, and I'm sure there are like mentors who can guide me through the way. So, like that, I feel reassured for some reason. >> It's a good feeling, isn't it? What do you, Hannah, what about you? What's your takeaway so far of the day? >> Yeah, one of my key takeaways is that anything's possible. >> Mm-hmm. >> So, if you have your vision, you have the role model, someone you look up to, and even if you have like a different background, not in Data Science, Data Engineering, or Computer Science but you're like, "Wow, this is really inspiring. I would love to do that." As long as you love it, you're passionate about it, and you are willing to, you know, take this path even though it won't be easy. >> Yeah. >> Then you can achieve it, and as you said, Tracy, it's important to have mentors on the way there. >> Exactly. >> But as long as you speak up, you know, you raise your voice, you ask questions, and you're curious, you can make it. >> Yeah. >> And I think that's one of my key takeaways, and I was just so inspiring to hear like all these women speaking on stage, and also here in our conversations and learning about their, you know, career path and what they learned on their way. >> Yeah, you bring up curiosity, and I think that is such an important skill. >> Mm-hmm. >> You know, you could think of Data Science and think about all the hard skills that you need. >> Mm, like coding. >> But as some of our guests said today, you don't have to be a statistician or an engineer, or a developer to get into this. Data Science applies to every facet of every part of the world. >> Mm-hmm. >> Finances, marketing, retail, manufacturing, healthcare, you name it, Data Science has the power and the potential to unlock massive achievements. >> Exactly. >> It's like we're scratching the surface. >> Yeah. >> But that curiosity, I think, is a great skill to bring to anything that you do. >> Mm-hmm. >> And I think we... For the female leaders that we're on stage, and that we had a chance to talk to on theCUBE today, I think they all probably had that I think as a common denominator. >> Exactly. >> That curious mindset, and also something that I think as hard is the courage to raise your hand. I like this, I'm interested in this. I don't see anybody that looks like me. >> But that doesn't mean I shouldn't do it. >> Exactly. >> Exactly, in addition to the curiosity that all the women, you know, bring to the table is that, in addition to that, being optimistic, and even though we don't see gender equality or like general equality in companies yet, we make progress and we're optimistic about it, and we're not like negative and complaining the whole time. But you know, this positive attitude towards a trend that is going in the right direction, and even though there's still a lot to be done- >> Exactly. >> We're moving it that way. >> Right. >> Being optimistic about this. >> Yeah, exactly, like even if it means that it's hard. Even if it means you need to be your own role model it's still like worth a try. And I think they, like all of the great women speakers, all the female leaders, they all have that in them, like they have the courage to like raise their hand and be like, "I want to do this, and I'm going to make it." And they're role models right now, so- >> Absolutely, they have drive. >> They do. >> Right. They have that ambition to take something that's challenging and complicated, and help abstract end users from that. Like we were talking to Intuit. I use Intuit in my small business for financial management, and she was talking about how they can from a machine learning standpoint, pull all this data off of documents that you upload and make that, abstract that, all that complexity from the end user, make something that's painful taxes. >> Mm-hmm. >> Maybe slightly less painful. It's still painful when you have to go, "Do I have to write you a check again?" >> Yeah. (laughs) >> Okay. >> But talking about just all the different applications of Data Science in the world, I found that to be very inspiring and really eye-opening. >> Definitely. >> I hadn't thought about, you know, we talk about climate change all the time, especially here in California, but I never thought about Data Science as a facilitator of the experts being able to make sense of what's going on historically and in real-time, or the application of Data Science in police violence. We see far too many cases of police violence on the news. It's an epidemic that's a horrible problem. Data Science can be applied to that to help us learn from that, and hopefully, start moving the needle in the right direction. >> Absolutely. >> Exactly. >> And especially like one sentence from Guitry from the very beginnings I still have in my mind is then when she said that arguments, no, that data beats arguments. >> Yes. >> In a conversation that if you be like, okay, I have this data set and it can actually show you this or that, it's much more powerful than just like being, okay, this is my position or opinion on this. And I think in a world where increasing like misinformation, and sometimes, censorship as we heard in one of the talks, it's so important to have like data, reliable data, but also acknowledge, and we talked about it with one of our interviewees that there's spices in data and we also need to be aware of this, and how to, you know, move this forward and use Data Science for social good. >> Mm-hmm. >> Yeah, for social good. >> Yeah, definitely, I think they like data, and the question about, or like the problem-solving part about like the social issues, or like some just questions, they definitely go hand-in-hand. Like either of them standing alone won't be anything that's going to be having an impact, but combining them together, you have a data set that illustrate a point or like solves the problem. I think, yeah, that's definitely like where Data Set Science is headed to, and I'm glad to see all these great women like making their impact and combining those two aspects together. >> It was interesting in the keynote this morning. We were all there when Margot Gerritsen who's one of the founders of WiDS, and Margot's been on the program before and she's a huge supporter of what we do and vice versa. She asked the non-women in the room, "Those who don't identify as women, stand up," and there was a handful of men, and she said, "That's what it's like to be a female in technology." >> Oh, my God. >> And I thought that vision give me goosebumps. >> Powerful. (laughs) >> Very powerful. But she's right, and one of the things I think that thematically another common denominator that I think we heard, I want to get your opinions as well from our conversations today, is the importance of community. >> Mm-hmm. >> You know, I was mentioning this stuff from AnitaB.org that showed that in 2022, the percentage of females and technical roles is 27.6%. It's a little bit of an increase. It's been hovering around 25% for a while. But one of the things that's still a problem is attrition. It doubled last year. >> Right. >> And I was asking some of the guests, and we've all done that today, "How would you advise companies to start moving the needle down on attrition?" >> Mm-hmm. >> And I think the common theme was network, community. >> Exactly. >> It takes a village like this. >> Mm-hmm. >> So you can see what you can be to help start moving that needle and that's, I think, what underscores the value of what WiDS delivers, and what we're able to showcase on theCUBE. >> Yeah, absolutely. >> I think it's very important to like if you're like a woman in tech to be able to know that there's someone for you, that there's a whole community you can rely on, and that like you are, you have the same mindset, you're working towards the same goal. And it's just reassuring and like it feels very nice and warm to have all these women for you. >> Lisa: It's definitely a warm fuzzy, isn't it? >> Yeah, and both the community within the workplace but also outside, like a network of family and friends who support you to- >> Yes. >> To pursue your career goals. I think that was also a common theme we heard that it's, yeah, necessary to both have, you know your community within your company or organization you're working but also outside. >> Definitely, I think that's also like how, why, the reason why we feel like this in like at WiDS, like I think we all feel very positive right now. So, yeah, I think that's like the power of the connection and the community, yeah. >> And the nice thing is this is like I said, WiDS is a movement. >> Yes. >> This is global. >> Mm-hmm. >> We've had some WiDS ambassadors on the program who started WiDS and Tel Aviv, for example, in their small communities. Or in Singapore and Mumbai that are bringing it here and becoming more of a visible part of the community. >> Tracy: Right. >> I loved seeing all the young faces when we walked in the keynote this morning. You know, we come here from a journalistic perspective. You guys are Journalism students. But seeing all the potential in the faces in that room just seeing, and hearing stories, and starting to make tangible connections between Facebook and data, and the end user and the perspectives, and the privacy and the responsibility of AI is all... They're all positive messages that need to be reinforced, and we need to have more platforms like this to be able to not just raise awareness, but sustain it. >> Exactly. >> Right. It's about the long-term, it's about how do we dial down that attrition, what can we do? What can we do? How can we help? >> Mm-hmm. >> Both awareness, but also giving women like a place where they can connect, you know, also outside of conferences. Okay, how do we make this like a long-term thing? So, I think WiDS is a great way to, you know, encourage this connectivity and these women teaming up. >> Yeah, (chuckles) girls help girls. >> Yeah. (laughs) >> It's true. There's a lot of organizations out there, girls who Code, Girls Inc., et cetera, that are all aimed at helping women kind of find their, I think, find their voice. >> Exactly. >> And find that curiosity. >> Yeah. Unlock that somewhere back there. Get some courage- >> Mm-hmm. >> To raise your hand and say, "I think I want to do this," or "I have a question. You explained something and I didn't understand it." Like, that's the advice I would always give to my younger self is never be afraid to raise your hand in a meeting. >> Mm-hmm. >> I guarantee you half the people weren't listening or, and the other half may not have understood what was being talked about. >> Exactly. >> So, raise your hand, there goes Margot Gerritsen, the founder of WiDS, hey, Margot. >> Hi. >> Keep alumni as you know, raise your hand, ask the question, there's no question that's stupid. >> Mm-hmm. >> And I promise you, if you just take that chance once it will open up so many doors, you won't even know which door to go in because there's so many that are opening. >> And if you have a question, there's at least one more person in the room who has the exact same question. >> Exact same question. >> Yeah, we'll definitely keep that in mind as students- >> Well, I'm curious how Data Journalism, what you heard today, Tracy, we'll start with you, and then, Hannah, to you. >> Mm-hmm. How has it influenced how you approach data-driven, and storytelling? Has it inspired you? I imagine it has, or has it given you any new ideas for, as you round out your Master's Program in the next few months? >> I think like one keyword that I found really helpful from like all the conversations today, was problem-solving. >> Yeah. >> Because I think, like we talked a lot about in our program about how to put a face on data sets. How to put a face, put a name on a story that's like coming from like big data, a lot of numbers but you need to like narrow it down to like one person or one anecdote that represents a bigger problem. And I think essentially that's problem-solving. That's like there is a community, there is like say maybe even just one person who has, well, some problem about something, and then we're using data. We're, by giving them a voice, by portraying them in news and like representing them in the media, we're solving this problem somehow. We're at least trying to solve this problem, trying to make some impact. And I think that's like what Data Science is about, is problem-solving, and, yeah, I think I heard a lot from today's conversation, also today's speakers. So, yeah, I think that's like something we should also think about as Journalists when we do pitches or like what kind of problem are we solving? >> I love that. >> Or like kind of what community are we trying to make an impact in? >> Yes. >> Absolutely. Yeah, I think one of the main learnings for me that I want to apply like to my career in Data Journalism is that I don't shy away from complexity because like Data Science is oftentimes very complex. >> Complex. >> And also data, you're using for your stories is complex. >> Mm-hmm. >> So, how can we, on the one hand, reduce complexity in a way that we make it accessible for broader audience? 'Cause, we don't want to be this like tech bubble talking in data jargon, we want to, you know, make it accessible for a broader audience. >> Yeah. >> I think that's like my purpose as a Data Journalist. But at the same time, don't reduce complexity when it's needed, you know, and be open to dive into new topics, and data sets and circling back to this of like raising your hand and asking questions if you don't understand like a certain part. >> Yeah. >> So, that's definitely a main learning from this conference. >> Definitely. >> That like, people are willing to talk to you and explain complex topics, and this will definitely facilitate your work as a Data Journalist. >> Mm-hmm. >> So, that inspired me. >> Well, I can't wait to see where you guys go from here. I've loved co-hosting with you today, thank you. >> Thank you. >> For joining me at our conference. >> Wasn't it fun? >> Thank you. >> It's a great event. It's, we, I think we've all been very inspired and I'm going to leave here probably floating above the ground a few inches, high on the inspiration of what this community can deliver, isn't that great? >> It feels great, I don't know, I just feel great. >> Me too. (laughs) >> So much good energy, positive energy, we love it. >> Yeah, so we want to thank all the organizers of WiDS, Judy Logan, Margot Gerritsen in particular. We also want to thank John Furrier who is here. And if you know Johnny, know he gets FOMO when he is not hosting. But John and Dave Vellante are such great supporters of women in technology, women in technical roles. We wouldn't be here without them. So, shout out to my bosses. Thank you for giving me the keys to theCube at this event. I know it's painful sometimes, but we hope that we brought you great stories all day. We hope we inspired you with the females and the one male that we had on the program today in terms of raise your hand, ask a question, be curious, don't be afraid to pursue what you're interested in. That's my soapbox moment for now. So, for my co-host, I'm Lisa Martin, we want to thank you so much for watching our program today. You can watch all of this on-demand on thecube.net. You'll find write-ups on siliconeangle.com, and, of course, YouTube. Thanks, everyone, stay safe and we'll see you next time. (energetic music)
SUMMARY :
I have had the pleasure all day of working I want to ask you both But WiDS is just the inspiration that you heard today I think one of the keyword if I leave the talks, is that anything's possible. and even if you have like mentors on the way there. you know, you raise your And I think that's one Yeah, you bring up curiosity, the hard skills that you need. of the world. and the potential to unlock bring to anything that you do. and that we had a chance to I don't see anybody that looks like me. But that doesn't all the women, you know, of the great women speakers, documents that you upload "Do I have to write you a check again?" I found that to be very of the experts being able to make sense from the very beginnings and how to, you know, move this and the question about, or of the founders of WiDS, and And I thought (laughs) of the things I think But one of the things that's And I think the common like this. So you can see what you and that like you are, to both have, you know and the community, yeah. And the nice thing and becoming more of a and the privacy and the It's about the long-term, great way to, you know, et cetera, that are all aimed Unlock that somewhere back there. Like, that's the advice and the other half may not have understood the founder of WiDS, hey, Margot. ask the question, there's if you just take that And if you have a question, and then, Hannah, to you. as you round out your Master's Program from like all the conversations of numbers but you need that I want to apply like to And also data, you're using you know, make it accessible But at the same time, a main learning from this conference. people are willing to talk to you with you today, thank you. at our conference. and I'm going to leave know, I just feel great. (laughs) positive energy, we love it. that we brought you great stories all day.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John | PERSON | 0.99+ |
Johnny | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Margot | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
Singapore | LOCATION | 0.99+ |
California | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Judy Logan | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
Margot Gerritsen | PERSON | 0.99+ |
2022 | DATE | 0.99+ |
Code | ORGANIZATION | 0.99+ |
Mumbai | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
siliconeangle.com | OTHER | 0.99+ |
WiDS | ORGANIZATION | 0.99+ |
two aspects | QUANTITY | 0.99+ |
Guitry | PERSON | 0.98+ |
both | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
one | QUANTITY | 0.98+ |
thecube.net | OTHER | 0.98+ |
Both | QUANTITY | 0.98+ |
over 100,000 people | QUANTITY | 0.98+ |
WiDS 2023 | EVENT | 0.98+ |
one keyword | QUANTITY | 0.98+ |
next year | DATE | 0.98+ |
200-plus countries | QUANTITY | 0.98+ |
one sentence | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.97+ |
Girls Inc. | ORGANIZATION | 0.97+ |
YouTube | ORGANIZATION | 0.96+ |
one person | QUANTITY | 0.95+ |
two fantastic graduate students | QUANTITY | 0.95+ |
Stanford University | ORGANIZATION | 0.94+ |
Women in Data Science Conference | EVENT | 0.94+ |
around 25% | QUANTITY | 0.93+ |
Stanford | ORGANIZATION | 0.93+ |
this morning | DATE | 0.92+ |
theCUBE | ORGANIZATION | 0.88+ |
half the people | QUANTITY | 0.87+ |
Data Journalism Master's Program | TITLE | 0.86+ |
one thing | QUANTITY | 0.85+ |
eighth annual | QUANTITY | 0.83+ |
at least one more person | QUANTITY | 0.8+ |
next few months | DATE | 0.78+ |
half | QUANTITY | 0.74+ |
one anecdote | QUANTITY | 0.73+ |
AnitaB.org | OTHER | 0.71+ |
key takeaways | QUANTITY | 0.71+ |
TheCUBE | ORGANIZATION | 0.71+ |
Gabriela de Queiroz, Microsoft | WiDS 2023
(upbeat music) >> Welcome back to theCUBE's coverage of Women in Data Science 2023 live from Stanford University. This is Lisa Martin. My co-host is Tracy Yuan. We're excited to be having great conversations all day but you know, 'cause you've been watching. We've been interviewing some very inspiring women and some men as well, talking about all of the amazing applications of data science. You're not going to want to miss this next conversation. Our guest is Gabriela de Queiroz, Principal Cloud Advocate Manager of Microsoft. Welcome, Gabriela. We're excited to have you. >> Thank you very much. I'm so excited to be talking to you. >> Yeah, you're on theCUBE. >> Yeah, finally. (Lisa laughing) Like a dream come true. (laughs) >> I know and we love that. We're so thrilled to have you. So you have a ton of experience in the data space. I was doing some research on you. You've worked in software, financial advertisement, health. Talk to us a little bit about you. What's your background in? >> So I was trained in statistics. So I'm a statistician and then I worked in epidemiology. I worked with air pollution and public health. So I was a researcher before moving into the industry. So as I was talking today, the weekly paths, it's exactly who I am. I went back and forth and back and forth and stopped and tried something else until I figured out that I want to do data science and that I want to do different things because with data science we can... The beauty of data science is that you can move across domains. So I worked in healthcare, financial, and then different technology companies. >> Well the nice thing, one of the exciting things that data science, that I geek out about and Tracy knows 'cause we've been talking about this all day, it's just all the different, to your point, diverse, pun intended, applications of data science. You know, this morning we were talking about, we had the VP of data science from Meta as a keynote. She came to theCUBE talking and really kind of explaining from a content perspective, from a monetization perspective, and of course so many people in the world are users of Facebook. It makes it tangible. But we also heard today conversations about the applications of data science in police violence, in climate change. We're in California, we're expecting a massive rainstorm and we don't know what to do when it rains or snows. But climate change is real. Everyone's talking about it, and there's data science at its foundation. That's one of the things that I love. But you also have a lot of experience building diverse teams. Talk a little bit about that. You've created some very sophisticated data science solutions. Talk about your recommendation to others to build diverse teams. What's in it for them? And maybe share some data science project or two that you really found inspirational. >> Yeah, absolutely. So I do love building teams. Every time I'm given the task of building teams, I feel the luckiest person in the world because you have the option to pick like different backgrounds and all the diverse set of like people that you can find. I don't think it's easy, like people say, yeah, it's very hard. You have to be intentional. You have to go from the very first part when you are writing the job description through the interview process. So you have to be very intentional in every step. And you have to think through when you are doing that. And I love, like my last team, we had like 10 people and we were so diverse. Like just talking about languages. We had like 15 languages inside a team. So how beautiful it is. Like all different backgrounds, like myself as a statistician, but we had people from engineering background, biology, languages, and so on. So it's, yeah, like every time thinking about building a team, if you wanted your team to be diverse, you need to be intentional. >> I'm so glad you brought up that intention point because that is the fundamental requirement really is to build it with intention. >> Exactly, and I love to hear like how there's different languages. So like I'm assuming, or like different backgrounds, I'm assuming everybody just zig zags their way into the team and now you're all women in data science and I think that's so precious. >> Exactly. And not only woman, right. >> Tracy: Not only woman, you're right. >> The team was diverse not only in terms of like gender, but like background, ethnicity, and spoken languages, and language that they use to program and backgrounds. Like as I mentioned, not everybody did the statistics in school or computer science. And it was like one of my best teams was when we had this combination also like things that I'm good at the other person is not as good and we have this knowledge sharing all the time. Every day I would feel like I'm learning something. In a small talk or if I was reviewing something, there was always something new because of like the richness of the diverse set of people that were in your team. >> Well what you've done is so impressive, because not only have you been intentional with it, but you sound like the hallmark of a great leader of someone who hires and builds teams to fill gaps. They don't have to know less than I do for me to be the leader. They have to have different skills, different areas of expertise. That is really, honestly Gabriela, that's the hallmark of a great leader. And that's not easy to come by. So tell me, who were some of your mentors and sponsors along the way that maybe influenced you in that direction? Or is that just who you are? >> That's a great question. And I joke that I want to be the role model that I never had, right. So growing up, I didn't have anyone that I could see other than my mom probably or my sister. But there was no one that I could see, I want to become that person one day. And once I was tracing my path, I started to see people looking at me and like, you inspire me so much, and I'm like, oh wow, this is amazing and I want to do do this over and over and over again. So I want to be that person to inspire others. And no matter, like I'll be like a VP, CEO, whoever, you know, I want to be, I want to keep inspiring people because that's so valuable. >> Lisa: Oh, that's huge. >> And I feel like when we grow professionally and then go to the next level, we sometimes we lose that, you know, thing that's essential. And I think also like, it's part of who I am as I was building and all my experiences as I was going through, I became what I mentioned is unique person that I think we all are unique somehow. >> You're a rockstar. Isn't she a rockstar? >> You dropping quotes out. >> I'm loving this. I'm like, I've inspired Gabriela. (Gabriela laughing) >> Oh my God. But yeah, 'cause we were asking our other guests about the same question, like, who are your role models? And then we're talking about how like it's very important for women to see that there is a representation, that there is someone they look up to and they want to be. And so that like, it motivates them to stay in this field and to start in this field to begin with. So yeah, I think like you are definitely filling a void and for all these women who dream to be in data science. And I think that's just amazing. >> And you're a founder too. In 2012, you founded R Ladies. Talk a little bit about that. This is present in more than 200 cities in 55 plus countries. Talk about R Ladies and maybe the catalyst to launch it. >> Yes, so you always start, so I'm from Brazil, I always talk about this because it's such, again, I grew up over there. So I was there my whole life and then I moved to here, Silicon Valley. And when I moved to San Francisco, like the doors opened. So many things happening in the city. That was back in 2012. Data science was exploding. And I found out something about Meetup.com, it's a website that you can join and go in all these events. And I was going to this event and I joke that it was kind of like going to the Disneyland, where you don't know if I should go that direction or the other direction. >> Yeah, yeah. >> And I was like, should I go and learn about data visualization? Should I go and learn about SQL or should I go and learn about Hadoop, right? So I would go every day to those meetups. And I was a student back then, so you know, the budget was very restricted as a student. So we don't have much to spend. And then they would serve dinner and you would learn for free. And then I got to a point where I was like, hey, they are doing all of this as a volunteer. Like they are running this meetup and events for free. And I felt like it's a cycle. I need to do something, right. I'm taking all this in. I'm having this huge opportunity to be here. I want to give back. So that's what how everything started. I was like, no, I have to think about something. I need to think about something that I can give back. And I was using R back then and I'm like how about I do something with R. I love R, I'm so passionate about R, what about if I create a community around R but not a regular community, because by going to this events, I felt that as a Latina and as a woman, I was always in the corner and I was not being able to participate and to, you know, be myself and to network and ask questions. I would be in the corner. So I said to myself, what about if I do something where everybody feel included, where everybody can participate, can share, can ask questions without judgment? So that's how R ladies all came together. >> That's awesome. >> Talk about intentions, like you have to, you had that go in mind, but yeah, I wanted to dive a little bit into R. So could you please talk more about where did the passion for R come from, and like how did the special connection between you and R the language, like born, how did that come from? >> It was not a love at first sight. >> No. >> Not at all. Not at all. Because that was back in Brazil. So all the documentation were in English, all the tutorials, only two. We had like very few tutorials. It was not like nowadays that we have so many tutorials and courses. There were like two tutorials, other documentation in English. So it's was hard for me like as someone that didn't know much English to go through the language and then to learn to program was not easy task. But then as I was going through the language and learning and reading books and finding the people behind the language, I don't know how I felt in love. And then when I came to to San Francisco, I saw some of like the main contributors who are speaking in person and I'm like, wow, they are like humans. I don't know, it was like, I have no idea why I had this love. But I think the the people and then the community was the thing that kept me with the R language. >> Yeah, the community factors is so important. And it's so, at WIDS it's so palpable. I mean I literally walk in the door, every WIDS I've done, I think I've been doing them for theCUBE since 2017. theCUBE has been here since the beginning in 2015 with our co-founders. But you walk in, you get this sense of belonging. And this sense of I can do anything, why not? Why not me? Look at her up there, and now look at you speaking in the technical talk today on theCUBE. So inspiring. One of the things that I always think is you can't be what you can't see. We need to be able to see more people that look like you and sound like you and like me and like you as well. And WIDS gives us that opportunity, which is fantastic, but it's also helping to move the needle, really. And I was looking at some of the Anitab.org stats just yesterday about 2022. And they're showing, you know, the percentage of females in technical roles has been hovering around 25% for a while. It's a little higher now. I think it's 27.6 according to any to Anitab. We're seeing more women hired in roles. But what are the challenges, and I would love to get your advice on this, for those that might be in this situation is attrition, women who are leaving roles. What would your advice be to a woman who might be trying to navigate family and work and career ladder to stay in that role and keep pushing forward? >> I'll go back to the community. If you don't have a community around you, it's so hard to navigate. >> That's a great point. >> You are lonely. There is no one that you can bounce ideas off, that you can share what you are feeling or like that you can learn as well. So sometimes you feel like you are the only person that is going through that problem or like, you maybe have a family or you are planning to have a family and you have to make a decision. But you've never seen anyone going through this. So when you have a community, you see people like you, right. So that's where we were saying about having different people and people like you so they can share as well. And you feel like, oh yeah, so they went through this, they succeed. I can also go through this and succeed. So I think the attrition problem is still big problem. And I'm sure will be worse now with everything that is happening in Tech with layoffs. >> Yes and the great resignation. >> Yeah. >> We are going back, you know, a few steps, like a lot of like advancements that we did. I feel like we are going back unfortunately, but I always tell this, make sure that you have a community. Make sure that you have a mentor. Make sure that you have someone or some people, not only one mentor, different mentors, that can support you through this trajectory. Because it's not easy. But there are a lot of us out there. >> There really are. And that's a great point. I love everything about the community. It's all about that network effect and feeling like you belong- >> That's all WIDS is about. >> Yeah. >> Yes. Absolutely. >> Like coming over here, it's like seeing the old friends again. It's like I'm so glad that I'm coming because I'm all my old friends that I only see like maybe once a year. >> Tracy: Reunion. >> Yeah, exactly. And I feel like that our tank get, you know- >> Lisa: Replenished. >> Exactly. For the rest of the year. >> Yes. >> Oh, that's precious. >> I love that. >> I agree with that. I think one of the things that when I say, you know, you can't see, I think, well, how many females in technology would I be able to recognize? And of course you can be female technology working in the healthcare sector or working in finance or manufacturing, but, you know, we need to be able to have more that we can see and identify. And one of the things that I recently found out, I was telling Tracy this earlier that I geeked out about was finding out that the CTO of Open AI, ChatGPT, is a female. I'm like, (gasps) why aren't we talking about this more? She was profiled on Fast Company. I've seen a few pieces on her, Mira Murati. But we're hearing so much about ChatJTP being... ChatGPT, I always get that wrong, about being like, likening it to the launch of the iPhone, which revolutionized mobile and connectivity. And here we have a female in the technical role. Let's put her on a pedestal because that is hugely inspiring. >> Exactly, like let's bring everybody to the front. >> Yes. >> Right. >> And let's have them talk to us because like, you didn't know. I didn't know probably about this, right. You didn't know. Like, we don't know about this. It's kind of like we are hidden. We need to give them the spotlight. Every woman to give the spotlight, so they can keep aspiring the new generation. >> Or Susan Wojcicki who ran, how long does she run YouTube? All the YouTube influencers that probably have no idea who are influential for whatever they're doing on YouTube in different social platforms that don't realize, do you realize there was a female behind the helm that for a long time that turned it into what it is today? That's outstanding. Why aren't we talking about this more? >> How about Megan Smith, was the first CTO on the Obama administration. >> That's right. I knew it had to do with Obama. Couldn't remember. Yes. Let's let's find more pedestals. But organizations like WIDS, your involvement as a speaker, showing more people you can be this because you can see it, >> Yeah, exactly. is the right direction that will help hopefully bring us back to some of the pre-pandemic levels, and keep moving forward because there's so much potential with data science that can impact everyone's lives. I always think, you know, we have this expectation that we have our mobile phone and we can get whatever we want wherever we are in the world and whatever time of day it is. And that's all data driven. The regular average person that's not in tech thinks about data as a, well I'm paying for it. What's all these data charges? But it's powering the world. It's powering those experiences that we all want as consumers or in our business lives or we expect to be able to do a transaction, whether it's something in a CRM system or an Uber transaction like that, and have the app respond, maybe even know me a little bit better than I know myself. And that's all data. So I think we're just at the precipice of the massive impact that data science will make in our lives. And luckily we have leaders like you who can help navigate us along this path. >> Thank you. >> What advice for, last question for you is advice for those in the audience who might be nervous or maybe lack a little bit of confidence to go I really like data science, or I really like engineering, but I don't see a lot of me out there. What would you say to them? >> Especially for people who are from like a non-linear track where like going onto that track. >> Yeah, I would say keep going. Keep going. I don't think it's easy. It's not easy. But keep going because the more you go the more, again, you advance and there are opportunities out there. Sometimes it takes a little bit, but just keep going. Keep going and following your dreams, that you get there, right. So again, data science, such a broad field that doesn't require you to come from a specific background. And I think the beauty of data science exactly is this is like the combination, the most successful data science teams are the teams that have all these different backgrounds. So if you think that we as data scientists, we started programming when we were nine, that's not true, right. You can be 30, 40, shifting careers, starting to program right now. It doesn't matter. Like you get there no matter how old you are. And no matter what's your background. >> There's no limit. >> There was no limits. >> I love that, Gabriela, >> Thank so much. for inspiring. I know you inspired me. I'm pretty sure you probably inspired Tracy with your story. And sometimes like what you just said, you have to be your own mentor and that's okay. Because eventually you're going to turn into a mentor for many, many others and sounds like you're already paving that path and we so appreciate it. You are now officially a CUBE alumni. >> Yes. Thank you. >> Yay. We've loved having you. Thank you so much for your time. >> Thank you. Thank you. >> For our guest and for Tracy's Yuan, this is Lisa Martin. We are live at WIDS 23, the eighth annual Women in Data Science Conference at Stanford. Stick around. Our next guest joins us in just a few minutes. (upbeat music)
SUMMARY :
but you know, 'cause you've been watching. I'm so excited to be talking to you. Like a dream come true. So you have a ton of is that you can move across domains. But you also have a lot of like people that you can find. because that is the Exactly, and I love to hear And not only woman, right. that I'm good at the other Or is that just who you are? And I joke that I want And I feel like when You're a rockstar. I'm loving this. So yeah, I think like you the catalyst to launch it. And I was going to this event And I was like, and like how did the special I saw some of like the main more people that look like you If you don't have a community around you, There is no one that you Make sure that you have a mentor. and feeling like you belong- it's like seeing the old friends again. And I feel like that For the rest of the year. And of course you can be everybody to the front. you didn't know. do you realize there was on the Obama administration. because you can see it, I always think, you know, What would you say to them? are from like a non-linear track that doesn't require you to I know you inspired me. you so much for your time. Thank you. the eighth annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy Yuan | PERSON | 0.99+ |
Megan Smith | PERSON | 0.99+ |
Gabriela de Queiroz | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Gabriela | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Brazil | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
2012 | DATE | 0.99+ |
San Francisco | LOCATION | 0.99+ |
San Francisco | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
Obama | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
California | LOCATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
27.6 | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
30 | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
15 languages | QUANTITY | 0.99+ |
R Ladies | ORGANIZATION | 0.99+ |
two tutorials | QUANTITY | 0.99+ |
Anitab | ORGANIZATION | 0.99+ |
10 people | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
55 plus countries | QUANTITY | 0.99+ |
first part | QUANTITY | 0.99+ |
more than 200 cities | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
nine | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
WIDS 23 | EVENT | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
2017 | DATE | 0.98+ |
CUBE | ORGANIZATION | 0.97+ |
Stanford | LOCATION | 0.97+ |
Women in Data Science | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Disneyland | LOCATION | 0.96+ |
English | OTHER | 0.96+ |
one mentor | QUANTITY | 0.96+ |
Women in Data Science Conference | EVENT | 0.96+ |
once a year | QUANTITY | 0.95+ |
WIDS | ORGANIZATION | 0.92+ |
this morning | DATE | 0.91+ |
Meetup.com | ORGANIZATION | 0.91+ |
ORGANIZATION | 0.9+ | |
Hadoop | TITLE | 0.89+ |
WiDS 2023 | EVENT | 0.88+ |
Anitab.org | ORGANIZATION | 0.87+ |
ChatJTP | TITLE | 0.86+ |
One | QUANTITY | 0.86+ |
one day | QUANTITY | 0.85+ |
ChatGPT | TITLE | 0.84+ |
pandemic | EVENT | 0.81+ |
Fast Company | ORGANIZATION | 0.78+ |
CTO | PERSON | 0.76+ |
Open | ORGANIZATION | 0.76+ |
Shir Meir Lador, Intuit | WiDS 2023
(gentle upbeat music) >> Hey, friends of theCUBE. It's Lisa Martin live at Stanford University covering the Eighth Annual Women In Data Science. But you've been a Cube fan for a long time. So you know that we've been here since the beginning of WiDS, which is 2015. We always loved to come and cover this event. We learned great things about data science, about women leaders, underrepresented minorities. And this year we have a special component. We've got two grad students from Stanford's Master's program and Data Journalism joining. One of my them is here with me, Hannah Freitag, my co-host. Great to have you. And we are pleased to welcome from Intuit for the first time, Shir Meir Lador Group Manager at Data Science. Shir, it's great to have you. Thank you for joining us. >> Thank you for having me. >> And I was just secrets girl talking with my boss of theCUBE who informed me that you're in great company. Intuit's Chief Technology Officer, Marianna Tessel is an alumni of theCUBE. She was on at our Supercloud event in January. So welcome back into it. >> Thank you very much. We're happy to be with you. >> Tell us a little bit about what you're doing. You're a data science group manager as I mentioned, but also you've had you've done some cool things I want to share with the audience. You're the co-founder of the PyData Tel Aviv Meetups the co-host of the unsupervised podcast about data science in Israel. You give talks, about machine learning, about data science. Tell us a little bit about your background. Were you always interested in STEM studies from the time you were small? >> So I was always interested in mathematics when I was small, I went to this special program for youth going to university. So I did my test in mathematics earlier and studied in university some courses. And that's when I understood I want to do something in that field. And then when I got to go to university, I went to electrical engineering when I found out about algorithms and how interested it is to be able to find solutions to problems, to difficult problems with math. And this is how I found my way into machine learning. >> Very cool. There's so much, we love talking about machine learning and AI on theCUBE. There's so much potential. Of course, we have to have data. One of the things that I love about WiDS and Hannah and I and our co-host Tracy, have been talking about this all day is the impact of data in everyone's life. If you break it down, I was at Mobile World Congress last week, all about connectivity telecom, and of course we have these expectation that we're going to be connected 24/7 from wherever we are in the world and we can do whatever we want. I can do an Uber transaction, I can watch Netflix, I can do a bank transaction. It all is powered by data. And data science is, some of the great applications of it is what it's being applied to. Things like climate change or police violence or health inequities. Talk about some of the data science projects that you're working on at Intuit. I'm an intuit user myself, but talk to me about some of those things. Give the audience really a feel for what you're doing. >> So if you are a Intuit product user, you probably use TurboTax. >> I do >> In the past. So for those who are not familiar, TurboTax help customers submit their taxes. Basically my group is in charge of getting all the information automatically from your documents, the documents that you upload to TurboTax. We extract that information to accelerate your tax submission to make it less work for our customers. So- >> Thank you. >> Yeah, and this is why I'm so proud to be working at this team because our focus is really to help our customers to simplify all the you know, financial heavy lifting with taxes and also with small businesses. We also do a lot of work in extracting information from small business documents like bill, receipts, different bank statements. Yeah, so this is really exciting for me, the opportunity to work to apply data science and machine learning to solution that actually help people. Yeah >> Yeah, in the past years there have been more and more digital products emerging that needs some sort of data security. And how did your team, or has your team developed in the past years with more and more products or companies offering digital services? >> Yeah, so can you clarify the question again? Sorry. >> Yeah, have you seen that you have more customers? Like has your team expanded in the past years with more digital companies starting that need kind of data security? >> Well, definitely. I think, you know, since I joined Intuit, I joined like five and a half years ago back when I was in Tel Aviv. I recently moved to the Bay Area. So when I joined, there were like a dozens of data scientists and machine learning engineers on Intuit. And now there are a few hundreds. So we've definitely grown with the year and there are so many new places we can apply machine learning to help our customers. So this is amazing, so much we can do with machine learning to get more money in the pocket of our customers and make them do less work. >> I like both of those. More money in my pocket and less work. That's awesome. >> Exactly. >> So keep going Intuit. But one of the things that is so cool is just the the abstraction of the complexity that Intuit's doing. I upload documents or it scans my receipts. I was just in Barcelona last week all these receipts and conversion euros to dollars and it takes that complexity away from the end user who doesn't know all that's going on in the background, but you're making people's lives simpler. Unfortunately, we all have to pay taxes, most of us should. And of course we're in tax season right now. And so it's really cool what you're doing with ML and data science to make fundamental processes to people's lives easier and just a little bit less complicated. >> Definitely. And I think that's what's also really amazing about Intuit it, is how it combines human in the loop as well as AI. Because in some of the tax situation it's very complicated maybe to do it yourself. And then there's an option to work with an expert online that goes on a video with you and helps you do your taxes. And the expert's work is also accelerated by AI because we build tools for those experts to do the work more efficiently. >> And that's what it's all about is you know, using data to be more efficient, to be faster, to be smarter, but also to make complicated processes in our daily lives, in our business lives just a little bit easier. One of the things I've been geeking out about recently is ChatGPT. I was using it yesterday. I was telling everyone I was asking it what's hot in data science and I didn't know would it know what hot is and it did, it gave me trends. But one of the things that I was so, and Hannah knows I've been telling this all day, I was so excited to learn over the weekend that the the CTO of OpenAI is a female. I didn't know that. And I thought why are we not putting her on a pedestal? Because people are likening ChatGPT to like the launch of the iPhone. I mean revolutionary. And here we have what I think is exciting for all of us females, whether you're in tech or not, is another role model. Because really ultimately what WiDS is great at doing is showcasing women in technical roles. Because I always say you can't be what you can't see. We need to be able to see more role models, female role role models, underrepresented minorities of course men, because a lot of my sponsors and mentors are men, but we need more women that we can look up to and see ah, she's doing this, why can't I? Talk to me about how you stay the course in data science. What excites you about the potential, the opportunities based on what you've already accomplished what inspires you to continue and be one of those females that we say oh my God, I could be like Shir. >> I think that what inspires me the most is the endless opportunities that we have. I think we haven't even started tapping into everything that we can do with generative AI, for example. There's so much that can be done to further help you know, people make more money and do less work because there's still so much work that we do that we don't need to. You know, this is with Intuit, but also there are so many other use cases like I heard today you know, with the talk about the police. So that was really exciting how you can apply machine learning and data to actually help people, to help people that been through wrongful things. So I was really moved by that. And I'm also really excited about all the medical applications that we can have with data. >> Yeah, yeah. It's true that data science is so diverse in terms of what fields it can cover but it's equally important to have diverse teams and have like equity and inclusion in your teams. Where is Intuit at promoting women, non-binary minorities in your teams to progress data science? >> Yeah, so I have so much to say on this. >> Good. >> But in my work in Tel Aviv, I had the opportunity to start with Intuit women in data science branch in Tel Aviv. So that's why I'm super excited to be here today for that because basically this is the original conference, but as you know, there are branches all over the world and I got the opportunity to lead the Tel Aviv branch with Israel since 2018. And we've been through already this year it's going to be it's next week, it's going to be the sixth conference. And every year our number of submission to make talk in the conference doubled itself. >> Nice. >> We started with 20 submission, then 50, then 100. This year we have over 200 submissions of females to give talk at the conference. >> Ah, that's fantastic. >> And beyond the fact that there's so much traction, I also feel the great impact it has on the community in Israel because one of the reason we started WiDS was that when I was going to conferences I was seeing so little women on stage in all the technical conferences. You know, kind of the reason why I guess you know, Margaret and team started the WiDS conference. So I saw the same thing in Israel and I was always frustrated. I was organizing PyData Meetups as you mentioned and I was always having such a hard time to get female speakers to talk. I was trying to role model, but that's not enough, you know. We need more. So once we started WiDS and people saw you know, so many examples on the stage and also you know females got opportunity to talk in a place for that. Then it also started spreading and you can see more and more female speakers across other conferences, which are not women in data science. So I think just the fact that Intuits started this conference back in Israel and also in Bangalore and also the support Intuit does for WiDS in Stanford here, it shows how much WiDS values are aligned with our values. Yeah, and I think that to chauffeur that I think we have over 35% females in the data science and machine learning engineering roles, which is pretty amazing I think compared to the industry. >> Way above average. Yeah, absolutely. I was just, we've been talking about some of the AnitaB.org stats from 2022 showing that 'cause usually if we look at the industry to you point, over the last, I don't know, probably five, 10 years we're seeing the number of female technologists around like a quarter, 25% or so. 2022 data from AnitaB.org showed that that number is now 27.6%. So it's very slowly- >> It's very slowly increasing. >> Going in the right direction. >> Too slow. >> And that representation of women technologists increase at every level, except intern, which I thought was really interesting. And I wonder is there a covid relation there? >> I don't know. >> What do we need to do to start opening up the the top of the pipeline, the funnel to go downstream to find kids like you when you were younger and always interested in engineering and things like that. But the good news is that the hiring we've seen improvements, but it sounds like Intuit is way ahead of the curve there with 35% women in data science or technical roles. And what's always nice and refreshing that we've talked, Hannah about this too is seeing companies actually put action into initiatives. It's one thing for a company to say we're going to have you know, 50% females in our organization by 2030. It's a whole other ball game to actually create a strategy, execute on it, and share progress. So kudos to Intuit for what it's doing because that is more companies need to adopt that same sort of philosophy. And that's really cultural. >> Yeah. >> At an organization and culture can be hard to change, but it sounds like you guys kind of have it dialed in. >> I think we definitely do. That's why I really like working and Intuit. And I think that a lot of it is with the role modeling, diversity and inclusion, and by having women leaders. When you see a woman in leadership position, as a woman it makes you want to come work at this place. And as an evidence, when I build the team I started in Israel at Intuit, I have over 50% women in my team. >> Nice. >> Yeah, because when you have a woman in the interviewers panel, it's much easier, it's more inclusive. That's why we always try to have at least you know, one woman and also other minorities represented in our interviews panel. Yeah, and I think that in general it's very important as a leader to kind of know your own biases and trying to have defined standard and rubrics in how you evaluate people to avoid for those biases. So all of that inclusiveness and leadership really helps to get more diversity in your teams. >> It's critical. That thought diversity is so critical, especially if we talk about AI and we're almost out of time, I just wanted to bring up, you brought up a great point about the diversity and equity. With respect to data science and AI, we know in AI there's biases in data. We need to have more inclusivity, more representation to help start shifting that so the biases start to be dialed down and I think a conference like WiDS and it sounds like someone like you and what you've already done so far in the work that you're doing having so many females raise their hands to want to do talks at events is a good situation. It's a good scenario and hopefully it will continue to move the needle on the percentage of females in technical roles. So we thank you Shir for your time sharing with us your story, what you're doing, how Intuit and WiDS are working together. It sounds like there's great alignment there and I think we're at the tip of the iceberg with what we can do with data science and inclusion and equity. So we appreciate all of your insights and your time. >> Thank you very much. >> All right. >> I enjoyed very, very much >> Good. We hope, we aim to please. Thank you for our guests and for Hannah Freitag. This is Lisa Martin coming to you live from Stanford University. This is our coverage of the eighth Annual Women in Data Science Conference. Stick around, next guest will be here in just a minute.
SUMMARY :
Shir, it's great to have you. And I was just secrets girl talking We're happy to be with you. from the time you were small? and how interested it is to be able and of course we have these expectation So if you are a Intuit product user, the documents that you upload to TurboTax. the opportunity to work Yeah, in the past years Yeah, so can you I recently moved to the Bay Area. I like both of those. and data science to make and helps you do your taxes. Talk to me about how you stay done to further help you know, to have diverse teams I had the opportunity to start of females to give talk at the conference. Yeah, and I think that to chauffeur that the industry to you point, And I wonder is there the funnel to go downstream but it sounds like you guys I build the team I started to have at least you know, so the biases start to be dialed down This is Lisa Martin coming to you live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Hannah Freitag | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Israel | LOCATION | 0.99+ |
Bangalore | LOCATION | 0.99+ |
27.6% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Margaret | PERSON | 0.99+ |
Shir Meir Lador | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Bay Area | LOCATION | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
Tel Aviv | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
January | DATE | 0.99+ |
Shir | PERSON | 0.99+ |
20 submission | QUANTITY | 0.99+ |
50 | QUANTITY | 0.99+ |
Tracy | PERSON | 0.99+ |
2030 | DATE | 0.99+ |
100 | QUANTITY | 0.99+ |
35% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
2015 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
this year | DATE | 0.99+ |
next week | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
sixth conference | QUANTITY | 0.99+ |
Intuits | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
OpenAI | ORGANIZATION | 0.99+ |
This year | DATE | 0.99+ |
Stanford | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
WiDS | EVENT | 0.98+ |
2018 | DATE | 0.98+ |
over 200 submissions | QUANTITY | 0.98+ |
Eighth Annual Women In Data Science | EVENT | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
TurboTax | TITLE | 0.98+ |
One | QUANTITY | 0.98+ |
over 50% | QUANTITY | 0.98+ |
over 35% | QUANTITY | 0.97+ |
five and a half years ago back | DATE | 0.97+ |
Stanford University | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
Netflix | ORGANIZATION | 0.96+ |
one woman | QUANTITY | 0.96+ |
Mobile World Congress | EVENT | 0.94+ |
one thing | QUANTITY | 0.94+ |
AnitaB.org | ORGANIZATION | 0.93+ |
25% | QUANTITY | 0.92+ |
PyData Meetups | EVENT | 0.9+ |
Rhonda Crate, Boeing | WiDS 2023
(gentle music) >> Hey! Welcome back to theCUBE's coverage of WiDS 2023, the eighth Annual Women In Data Science Conference. I'm your host, Lisa Martin. We are at Stanford University, as you know we are every year, having some wonderful conversations with some very inspiring women and men in data science and technical roles. I'm very pleased to introduce Tracy Zhang, my co-host, who is in the Data Journalism program at Stanford. And Tracy and I are pleased to welcome our next guest, Rhonda Crate, Principal Data Scientist at Boeing. Great to have you on the program, Rhonda. >> Tracy: Welcome. >> Hey, thanks for having me. >> Were you always interested in data science or STEM from the time you were young? >> No, actually. I was always interested in archeology and anthropology. >> That's right, we were talking about that, anthropology. Interesting. >> We saw the anthropology background, not even a bachelor's degree, but also a master's degree in anthropology. >> So you were committed for a while. >> I was, I was. I actually started college as a fine arts major, but I always wanted to be an archeologist. So at the last minute, 11 credits in, left to switch to anthropology. And then when I did my master's, I focused a little bit more on quantitative research methods and then I got my Stat Degree. >> Interesting. Talk about some of the data science projects that you're working on. When I think of Boeing, I always think of aircraft. But you are doing a lot of really cool things in IT, data analytics. Talk about some of those intriguing data science projects that you're working on. >> Yeah. So when I first started at Boeing, I worked in information technology and data analytics. And Boeing, at the time, had cored up data science in there. And so we worked as a function across the enterprise working on anything from shared services to user experience in IT products, to airplane programs. So, it has a wide range. I worked on environment health and safety projects for a long time as well. So looking at ergonomics and how people actually put parts onto airplanes, along with things like scheduling and production line, part failures, software testing. Yeah, there's a wide spectrum of things. >> But I think that's so fantastic. We've been talking, Tracy, today about just what we often see at WiDS, which is this breadth of diversity in people's background. You talked about anthropology, archeology, you're doing data science. But also all of the different opportunities that you've had at Boeing. To see so many facets of that organization. I always think that breadth of thought diversity can be hugely impactful. >> Yeah. So I will say my anthropology degree has actually worked to my benefit. I'm a huge proponent of integrating liberal arts and sciences together. And it actually helps me. I'm in the Technical Fellowship program at Boeing, so we have different career paths. So you can go into management, you can be a regular employee, or you can go into the Fellowship program. So right now I'm an Associate Technical Fellow. And part of how I got into the Fellowship program was that diversity in my background, what made me different, what made me stand out on projects. Even applying a human aspect to things like ergonomics, as silly as that sounds, but how does a person actually interact in the space along with, here are the actual measurements coming off of whatever system it is that you're working on. So, I think there's a lot of opportunities, especially in safety as well, which is a big initiative for Boeing right now, as you can imagine. >> Tracy: Yeah, definitely. >> I can't go into too specifics. >> No, 'cause we were like, I think a theme for today that kind of we brought up in in all of our talk is how data is about people, how data is about how people understand the world and how these data can make impact on people's lives. So yeah, I think it's great that you brought this up, and I'm very happy that your anthropology background can tap into that and help in your day-to-day data work too. >> Yeah. And currently, right now, I actually switched over to Strategic Workforce Planning. So it's more how we understand our workforce, how we work towards retaining the talent, how do we get the right talent in our space, and making sure overall that we offer a culture and work environment that is great for our employees to come to. >> That culture is so important. You know, I was looking at some anitab.org stats from 2022 and you know, we always talk about the number of women in technical roles. For a long time it's been hovering around that 25% range. The data from anitab.org showed from '22, it's now 27.6%. So, a little increase. But one of the biggest challenges still, and Tracy and I and our other co-host, Hannah, have been talking about this, is attrition. Attrition more than doubled last year. What are some of the things that Boeing is doing on the retention side, because that is so important especially as, you know, there's this pipeline leakage of women leaving technical roles. Tell us about what Boeing's, how they're invested. >> Yeah, sure. We actually have a publicly available Global Diversity Report that anybody can go and look at and see our statistics for our organization. Right now, off the top of my head, I think we're hovering at about 24% in the US for women in our company. It has been a male majority company for many years. We've invested heavily in increasing the number of women in roles. One interesting thing about this year that came out is that even though with the great resignation and those types of things, the attrition level between men and women were actually pretty close to being equal, which is like the first time in our history. Usually it tends on more women leaving. >> Lisa: That's a good sign. >> Right. >> Yes, that's a good sign. >> And we've actually focused on hiring and bringing in more women and diversity in our company. >> Yeah, some of the stats too from anitab.org talked about the increase, and I have to scroll back and find my notes, the increase in 51% more women being hired in 2022 than 2021 for technical roles. So the data, pun intended, is showing us. I mean, the data is there to show the impact that having females in executive leadership positions make from a revenue perspective. >> Tracy: Definitely. >> Companies are more profitable when there's women at the head, or at least in senior leadership roles. But we're seeing some positive trends, especially in terms of representation of women technologists. One of the things though that I found interesting, and I'm curious to get your thoughts on this, Rhonda, is that the representation of women technologists is growing in all areas, except interns. >> Rhonda: Hmm. >> So I think, we've got to go downstream. You teach, I have to go back to my notes on you, did my due diligence, R programming classes through Boeings Ed Wells program, this is for WSU College of Arts and Sciences, talk about what you teach and how do you think that intern kind of glut could be solved? >> Yeah. So, they're actually two separate programs. So I teach a data analytics course at Washington State University as an Adjunct Professor. And then the Ed Wells program is a SPEEA, which is an Aerospace Union, focused on bringing up more technology and skills to the actual workforce itself. So it's kind of a couple different audiences. One is more seasoned employees, right? The other one is our undergraduates. I teach a Capstone class, so it's a great way to introduce students to what it's actually like to work on an industry project. We partner with Google and Microsoft and Boeing on those. The idea is also that maybe those companies have openings for the students when they're done. Since it's Senior Capstone, there's not a lot of opportunities for internships. But the opportunities to actually get hired increase a little bit. In regards to Boeing, we've actually invested a lot in hiring more women interns. I think the number was 40%, but you'd have to double check. >> Lisa: That's great, that's fantastic. >> Tracy: That's way above average, I think. >> That's a good point. Yeah, it is above average. >> Double check on that. That's all from my memory. >> Is this your first WiDS, or have you been before? >> I did virtually last year. >> Okay. One of the things that I love, I love covering this event every year. theCUBE's been covering it since it's inception in 2015. But it's just the inspiration, the vibe here at Stanford is so positive. WiDS is a movement. It's not an initiative, an organization. There are going to be, I think annually this year, there will be 200 different events. Obviously today we're live on International Women's Day. 60 plus countries, 100,000 plus people involved. So, this is such a positive environment for women and men, because we need everybody, underrepresented minorities, to be able to understand the implication that data has across our lives. If we think about stripping away titles in industries, everybody is a consumer, not everybody, most of mobile devices. And we have this expectation, I was in Barcelona last week at a Mobile World Congress, we have this expectation that we're going to be connected 24/7. I can get whatever I want wherever I am in the world, and that's all data driven. And the average person that isn't involved in data science wouldn't understand that. At the same time, they have expectations that depend on organizations like Boeing being data driven so that they can get that experience that they expect in their consumer lives in any aspect of their lives. And that's one of the things I find so interesting and inspiring about data science. What are some of the things that keep you motivated to continue pursuing this? >> Yeah I will say along those lines, I think it's great to invest in K-12 programs for Data Literacy. I know one of my mentors and directors of the Data Analytics program, Dr. Nairanjana Dasgupta, we're really familiar with each other. So, she runs a WSU program for K-12 Data Literacy. It's also something that we strive for at Boeing, and we have an internal Data Literacy program because, believe it or not, most people are in business. And there's a lot of disconnect between interpreting and understanding data. For me, what kind of drives me to continue data science is that connection between people and data and how we use it to improve our world, which is partly why I work at Boeing too 'cause I feel that they produce products that people need like satellites and airplanes, >> Absolutely. >> and everything. >> Well, it's tangible, it's relatable. We can understand it. Can you do me a quick favor and define data literacy for anyone that might not understand what that means? >> Yeah, so it's just being able to understand elements of data, whether that's a bar chart or even in a sentence, like how to read a statistic and interpret a statistic in a sentence, for example. >> Very cool. >> Yeah. And sounds like Boeing's doing a great job in these programs, and also trying to hire more women. So yeah, I wanted to ask, do you think there's something that Boeing needs to work on? Or where do you see yourself working on say the next five years? >> Yeah, I think as a company, we always think that there's always room for improvement. >> It never, never stops. >> Tracy: Definitely. (laughs) >> I know workforce strategy is an area that they're currently really heavily investing in, along with safety. How do we build safer products for people? How do we help inform the public about things like Covid transmission in airports? For example, we had the Confident Traveler Initiative which was a big push that we had, and we had to be able to inform people about data models around Covid, right? So yeah, I would say our future is more about an investment in our people and in our culture from my perspective >> That's so important. One of the hardest things to change especially for a legacy organization like Boeing, is culture. You know, when I talk with CEO's or CIO's or COO's about what's your company's vision, what's your strategy? Especially those companies that are on that digital journey that have no choice these days. Everybody expects to have a digital experience, whether you're transacting an an Uber ride, you're buying groceries, or you're traveling by air. That culture sounds like Boeing is really focused on that. And that's impressive because that's one of the hardest things to morph and mold, but it's so essential. You know, as we look around the room here at WiDS it's obviously mostly females, but we're talking about women, underrepresented minorities. We're talking about men as well who are mentors and sponsors to us. I'd love to get your advice to your younger self. What would you tell yourself in terms of where you are now to become a leader in the technology field? >> Yeah, I mean, it's kind of an interesting question because I always try to think, live with no regrets to an extent. >> Lisa: I like that. >> But, there's lots of failures along the way. (Tracy laughing) I don't know if I would tell myself anything different because honestly, if I did, I wouldn't be where I am. >> Lisa: Good for you. >> I started out in fine arts, and I didn't end up there. >> That's good. >> Such a good point, yeah. >> We've been talking about that and I find that a lot at events like WiDS, is women have these zigzaggy patterns. I studied biology, I have a master's in molecular biology, I'm in media and marketing. We talked about transportable skills. There's a case I made many years ago when I got into tech about, well in science you learn the art of interpreting esoteric data and creating a story from it. And that's a transportable skill. But I always say, you mentioned failure, I always say failure is not a bad F word. It allows us to kind of zig and zag and learn along the way. And I think that really fosters thought diversity. And in data science, that is one of the things we absolutely need to have is that diversity and thought. You know, we talk about AI models being biased, we need the data and we need the diverse brains to help ensure that the biases are identified, extracted, and removed. Speaking of AI, I've been geeking out with ChatGPT. So, I'm on it yesterday and I ask it, "What's hot in data science?" And I was like, is it going to get that? What's hot? And it did it, it came back with trends. I think if I ask anything, "What's hot?", I should be to Paris Hilton, but I didn't. And so I was geeking out. One of the things I learned recently that I thought was so super cool is the CTO of OpenAI is a woman, Mira Murati, which I didn't know until over the weekend. Because I always think if I had to name top females in tech, who would they be? And I always default to Sheryl Sandberg, Carly Fiorina, Susan Wojcicki running YouTube. Who are some of the people in your history, in your current, that are really inspiring to you? Men, women, indifferent. >> Sure. I think Boeing is one of the companies where you actually do see a lot of women in leadership roles. I think we're one of the top companies with a number of women executives, actually. Susan Doniz, who's our Chief Information Officer, I believe she's actually slotted to speak at a WiDS event come fall. >> Lisa: Cool. >> So that will be exciting. Susan's actually relatively newer to Boeing in some ways. A Boeing time skill is like three years is still kind of new. (laughs) But she's been around for a while and she's done a lot of inspiring things, I think, for women in the organization. She does a lot with Latino communities and things like that as well. For me personally, you know, when I started at Boeing Ahmad Yaghoobi was one of my mentors and my Technical Lead. He came from Iran during a lot of hard times in the 1980s. His brother actually wrote a memoir, (laughs) which is just a fun, interesting fact. >> Tracy: Oh my God! >> Lisa: Wow! >> And so, I kind of gravitate to people that I can learn from that's not in my sphere, that might make me uncomfortable. >> And you probably don't even think about how many people you're influencing along the way. >> No. >> We just keep going and learning from our mentors and probably lose sight of, "I wonder how many people actually admire me?" And I'm sure there are many that admire you, Rhonda, for what you've done, going from anthropology to archeology. You mentioned before we went live you were really interested in photography. Keep going and really gathering all that breadth 'cause it's only making you more inspiring to people like us. >> Exactly. >> We thank you so much for joining us on the program and sharing a little bit about you and what brought you to WiDS. Thank you so much, Rhonda. >> Yeah, thank you. >> Tracy: Thank you so much for being here. >> Lisa: Yeah. >> Alright. >> For our guests, and for Tracy Zhang, this is Lisa Martin live at Stanford University covering the eighth Annual Women In Data Science Conference. Stick around. Next guest will be here in just a second. (gentle music)
SUMMARY :
Great to have you on the program, Rhonda. I was always interested in That's right, we were talking We saw the anthropology background, So at the last minute, 11 credits in, Talk about some of the And Boeing, at the time, had But also all of the I'm in the Technical that you brought this up, and making sure overall that we offer about the number of women at about 24% in the US more women and diversity in our company. I mean, the data is is that the representation and how do you think for the students when they're done. Lisa: That's great, Tracy: That's That's a good point. That's all from my memory. One of the things that I love, I think it's great to for anyone that might not being able to understand that Boeing needs to work on? we always think that there's Tracy: Definitely. the public about things One of the hardest things to change I always try to think, live along the way. I started out in fine arts, And I always default to Sheryl I believe she's actually slotted to speak So that will be exciting. to people that I can learn And you probably don't even think about from anthropology to archeology. and what brought you to WiDS. Tracy: Thank you so covering the eighth Annual Women
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tracy | PERSON | 0.99+ |
Nairanjana Dasgupta | PERSON | 0.99+ |
Boeing | ORGANIZATION | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Rhonda | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Mira Murati | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Susan Wojcicki | PERSON | 0.99+ |
Rhonda Crate | PERSON | 0.99+ |
Susan Doniz | PERSON | 0.99+ |
Susan | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
2015 | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
WSU College of Arts and Sciences | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Iran | LOCATION | 0.99+ |
last week | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
11 credits | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
last year | DATE | 0.99+ |
51% | QUANTITY | 0.99+ |
Washington State University | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Ahmad Yaghoobi | PERSON | 0.99+ |
200 different events | QUANTITY | 0.99+ |
Carly Fiorina | PERSON | 0.99+ |
60 plus countries | QUANTITY | 0.99+ |
1980s | DATE | 0.99+ |
US | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
100,000 plus people | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
'22 | DATE | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
One | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
two separate programs | QUANTITY | 0.98+ |
Stanford University | ORGANIZATION | 0.98+ |
eighth Annual Women In Data Science Conference | EVENT | 0.98+ |
Global Diversity Report | TITLE | 0.98+ |
this year | DATE | 0.98+ |
Gayatree Ganu, Meta | WiDS 2023
(upbeat music) >> Hey everyone. Welcome back to "The Cube"'s live coverage of "Women in Data Science 2023". As every year we are here live at Stanford University, profiling some amazing women and men in the fields of data science. I have my co-host for this segment is Hannah Freitag. Hannah is from Stanford's Data Journalism program, really interesting, check it out. We're very pleased to welcome our first guest of the day fresh from the keynote stage, Gayatree Ganu, the VP of Data Science at Meta. Gayatree, It's great to have you on the program. >> Likewise, Thank you for having me. >> So you have a PhD in Computer Science. You shared some really cool stuff. Everyone knows Facebook, everyone uses it. I think my mom might be one of the biggest users (Gayatree laughs) and she's probably watching right now. People don't realize there's so much data behind that and data that drives decisions that we engage with. But talk to me a little bit about you first, PhD in Computer Science, were you always, were you like a STEM kid? Little Gayatree, little STEM, >> Yeah, I was a STEM kid. I grew up in Mumbai, India. My parents are actually pharmacists, so they were not like math or stats or anything like that, but I was always a STEM kid. I don't know, I think it, I think I was in sixth grade when we got our first personal computer and I obviously used it as a Pacman playing machine. >> Oh, that's okay. (all laugh) >> But I was so good at, and I, I honestly believe I think being good at games kind of got me more familiar and comfortable with computers. Yeah. I think I always liked computers, I, yeah. >> And so now you lead, I'm looking at my notes here, the Engagement Ecosystem and Monetization Data Science teams at Facebook, Meta. Talk about those, what are the missions of those teams and how does it impact the everyday user? >> Yeah, so the engagement is basically users coming back to our platform more, there's, no better way for users to tell us that they are finding value on the things that we are doing on Facebook, Instagram, WhatsApp, all the other products than coming back to our platform more. So the Engagement Ecosystem team is looking at trends, looking at where there are needs, looking at how users are changing their behaviors, and you know, helping build strategy for the long term, using that data knowledge. Monetization is very different. You know, obviously the top, top apex goal is have a sustainable business so that we can continue building products for our users. And so, but you know, I said this in my keynote today, it's not about making money, our mission statement is not, you know, maximize as much money as you can make. It's about building a meaningful connection between businesses, customers, users, and, you know especially in these last two or three funky, post-pandemic years, it's been such a big, an important thing to do for small businesses all over all, all around the world for users to find like goods and services and products that they care about and that they can connect to. So, you know, there is truly an connection between my engagement world and the monetization world. And you know, it's not very clear always till you go in to, like, you peel the layers. Everything we do in the ads world is also always first with users as our, you know, guiding principle. >> Yeah, you mentioned how you supported especially small businesses also during the pandemic. You touched a bit upon it in the keynote speech. Can you tell our audience what were like special or certain specific programs you implemented to support especially small businesses during these times? >> Yeah, so there are 200 million businesses on our platform. A lot of them small businesses, 10 million of them run ads. So there is a large number of like businesses on our platform who, you know use the power of social media to connect to the customers that matter to them, to like you, you know use the free products that we built. In the post-pandemic years, we built a lot of stuff very quickly when Covid first hit for business to get the word out, right? Like, they had to announce when special shopping hours existed for at-risk populations, or when certain goods and services were available versus not. We had grants, there's $100 million grant that we gave out to small businesses. Users could show sort of, you know show their support with a bunch of campaigns that we ran, and of course we continue running ads. Our ads are very effective, I guess, and, you know getting a very reliable connection with from the customer to the business. And so, you know, we've run all these studies. We support, I talked about two examples today. One of them is the largest black-owned, woman black-owned wine company, and how they needed to move to an online program and, you know, we gave them a grant, and supported them through their ads campaign and, you know, they saw 60% lift in purchases, or something like that. So, a lot of good stories, small stories, you know, on a scale of 200 million, that really sort of made me feel proud about the work we do. And you know, now more than ever before, I think people can connect so directly with businesses. You can WhatsApp them, I come from India, every business is on WhatsApp. And you can, you know, WhatsApp them, you can send them Facebook messages, and you can build this like direct connection with things that matter to you. >> We have this expectation that we can be connected anywhere. I was just at Mobile World Congress for MWC last week, where, obviously talking about connectivity. We want to be able to do any transaction, whether it's post on Facebook or call an Uber, or watch on Netflix if you're on the road, we expect that we're going to be connected. >> Yeah. >> And what we, I think a lot of us don't realize I mean, those of us in tech do, but how much data science is a facilitator of all of those interactions. >> Yeah! >> As we, Gayatree, as we talk about, like, any business, whether it is the black women-owned wine business, >> Yeah. >> great business, or a a grocer or a car dealer, everybody has to become data-driven. >> Yes. >> Because the consumer has the expectation. >> Yes. >> Talk about data science as a facilitator of just pretty much everything we are doing and conducting in our daily lives. >> Yeah, I think that's a great question. I think data science as a field wasn't really defined like maybe 15 years ago, right? So this is all in our lifetimes that we are seeing this. Even in data science today, People come from so many different backgrounds and bring their own expertise here. And I think we, you know, this conference, all of us get to define what that means and how we can bring data to do good in the world. Everything you do, as you said, there is a lot of data. Facebook has a lot of data, Meta has a lot of data, and how do we responsibly use this data? How do we use this data to make sure that we're, you know representing all diversity? You know, minorities? Like machine learning algorithms don't do well with small data, they do well with big data, but the small data matters. And how do you like, you know, bring that into algorithms? Yeah, so everything we do at Meta is very, very data-driven. I feel proud about that, to be honest, because while data gets a bad rap sometimes, having no data and making decisions in the blind is just the absolute worst thing you can do. And so, you know, we, the job as a data scientist at Facebook is to make sure that we use this data, use this responsibly, make sure that we are representing every aspect of the, you know, 3 billion users who come to our platform. Yeah, data serves all the products that we build here. >> The responsibility factor is, is huge. You know, we can't talk about AI without talking about ethics. One of the things that I was talking with Hannah and our other co-host, Tracy, about during our opening is something I just learned over the weekend. And that is that the CTO of ChatGPT is a woman. (Gayatree laughs) I didn't know that. And I thought, why isn't she getting more awareness? There's a lot of conversations with their CEO. >> Yeah. >> Everyone's using it, playing around with it. I actually asked it yesterday, "What's hot in Data Science?" (all laugh) I was like, should I have asked that to let itself in, what's hot? (Gayatree laughs) But it, I thought that was phenomenal, and we need to be talking about this more. >> Yeah. >> This is something that they're likening to the launch of the iPhone, which has transformed our lives. >> I know, it is. >> ChatGPT, and its chief technologist is a female, how great is that? >> And I don't know whether you, I don't know the stats around this, but I think CTO is even less, it's even more rare to have a woman there, like you have women CEOs because I mean, we are building upon years and years of women not choosing technical fields and not choosing STEM, and it's going to take some time, but yeah, yeah, she's a woman. Isn't it amazing? It's wonderful. >> Yes, there was a great, there's a great "Fast Company" article on her that I was looking at yesterday and I just thought, we need to do what we can to help spread, Mira Murati is her name, because what she's doing is, one of the biggest technological breakthroughs we may ever see in our lifetime. It gives me goosebumps just thinking about it. (Gayatree laughs) I also wanted to share some stats, oh, sorry, go ahead, Hannah. >> Yeah, I was going to follow up on the thing that you mentioned that we had many years with like not enough women choosing a career path in STEM and that we have to overcome this trend. What are some, like what is some advice you have like as the Vice-President Data Science? Like what can we do to make this feel more, you know, approachable and >> Yeah. >> accessible for women? >> Yeah, I, there's so much that we have done already and you know, want to continue, keep doing. Of course conferences like these were, you know and I think there are high school students here there are students from my Alma Mater's undergrad year. It's amazing to like get all these women together to get them to see what success could look like. >> Yeah. >> What being a woman leader in this space could look like. So that's, you know, that's one, at Meta I lead recruiting at Meta and we've done a bunch to sort of open up the thinking around data science and technical jobs for women. Simple things like what you write in your job description. I don't know whether you know this, or this is a story you've heard before, when you see, when you have a job description and there are like 10 things that you need to, you know be good at to apply to this job, a woman sees those 10 and says, okay, I don't meet the qualifications of one of them and she doesn't apply. And a man sees one that he meets the qualifications to and he applies. And so, you know, there's small things you can do, and just how you write your job description, what goals you set for diversity and inclusion for your own organization. We have goals, Facebook's always been pretty up there in like, you know, speaking out for diversity and Sheryl Sandberg has been our Chief Business Officer for a very long time and she's been, like, amazing at like pushing from more women. So yeah, every step of the way, I think, we made a lot of progress, to be honest. I do think women choose STEM fields a lot more than they did. When I did my Computer Science I was often one of one or two women in the Computer Science class. It takes some time to, for it to percolate all the way to like having more CTOs and CEOs, >> Yeah. >> but it's going to happen in our lifetime, and you know, three of us know this, women are going to rule the world, and it (laughs) >> Drop the mic, girl! >> And it's going to happen in our lifetime, so I'm excited about it. >> And we have responsibility in helping make that happen. You know, I'm curious, you were in STEM, you talked about Computer Science, being one of the only females. One of the things that the nadb.org data from 2022 showed, some good numbers, the number of women in technical roles is now 27.6%, I believe, so up from 25, it's up in '22, which is good, more hiring of women. >> Yeah. >> One of the biggest challenges is attrition. What keeps you motivated? >> Yeah. >> To stay what, where you are doing what you're doing, managing a family and helping to drive these experiences at Facebook that we all expect are just going to happen? >> Yeah, two things come to mind. It does take a village. You do need people around you. You know, I'm grateful for my husband. You talked about managing a family, I did the very Indian thing and my parents live with us, and they help take care of the kids. >> Right! (laughs) >> (laughs) My kids are young, six and four, and I definitely needed help over the last few years. It takes mentors, it takes other people that you look up to, who've gone through all of those same challenges and can, you know, advise you to sort of continue working in the field. I remember when my kid was born when he was six months old, I was considering quitting. And my husband's like, to be a good role model for your children, you need to continue working. Like, just being a mother is not enough. And so, you know, so that's one. You know, the village that you build around you your supporters, your mentors who keep encouraging you. Sheryl Sandberg said this to me in my second month at Facebook. She said that women drop out of technical fields, they become managers, they become sort of administrative more, in their nature of their work, and her advice was, "Don't do that, Don't stop the technical". And I think that's the other thing I'd say to a lot of women. Technical stuff is hard, but you know, keeping up with that and keeping sort of on top of it actually does help you in the long run. And it's definitely helped me in my career at Facebook. >> I think one of the things, and Hannah and I and Tracy talked about this in the open, and I think you'll agree with us, is the whole saying of you can't be what you can't see, and I like to way, "Well, you can be what you can see". That visibility, the great thing that WiDS did, of having you on the stage as a speaker this morning so people can understand, everyone, like I said, everyone knows Meta, >> Yeah. >> everyone uses Facebook. And so it's important to bring that connection, >> Yeah. >> of how data is driving the experiences, the fact that it's User First, but we need to be able to see women in positions, >> Yes. >> like you, especially with Sheryl stepping down moving on to something else, or people that are like YouTube influencers, that have no idea that the head of YouTube for a very long time, Susan Wojcicki is a woman. >> (laughs) Yes. Who pioneered streaming, and I mean how often do you are you on YouTube every day? >> Yep, every day. >> But we have to be able to see and and raise the profile of these women and learn from them and be inspired, >> Absolutely. >> to keep going and going. I like what I do, I'm making a difference here. >> Yeah, yeah, absolutely. >> And I can be the, the sponsor or the mentor for somebody down the road. >> Absolutely. >> Yeah, and then referring back to what we talked in the beginning, show that data science is so diverse and it doesn't mean if you're like in IT, you're like sitting in your dark room, >> Right. (laughs) >> coding all day, but you know, >> (laughs) Right! >> to show the different facets of this job and >> Right! >> make this appealing to women, >> Yeah. for sure. >> And I said this in my keynote too, you know, one of the things that helped me most is complimenting the data and the techniques and the algorithms with how you work with people, and you know, empathy and alignment building and leadership, strategic thinking. And I think honestly, I think women do a lot of this stuff really well. We know how to work with people and so, you know, I've seen this at Meta for sure, like, you know, all of these skills soft skills, as we call them, go a long way, and like, you know, doing the right things and having a lasting impact. And like I said, women are going to rule the world, you know, in our lifetimes. (laughs) >> Oh, I can't, I can't wait to see that happen. There's some interesting female candidates that are already throwing their hats in the ring for the next presidential election. >> Yes. >> So we'll have to see where that goes. But some of the things that are so interesting to me, here we are in California and Palo Alto, technically Stanford is its own zip code, I believe. And we're in California, we're freaking out because we've gotten so much rain, it's absolutely unprecedented. We need it, we had a massive drought, an extreme drought, technically, for many years. I've got friends that live up in Tahoe, I've been getting pictures this morning of windows that are >> (laughs) that are covered? >> Yes, actually, yes. (Gayatree laughs) That, where windows like second-story windows are covered in snow. >> Yeah. >> Climate change. >> Climate change. >> There's so much that data science is doing to power and power our understanding of climate change whether it's that, or police violence. >> Yeah. (all talk together) >> We had talk today on that it was amazing. >> Yes. So I want more people to know what data science is really facilitating, that impacts all of us, whether you're in a technical role or not. >> And data wins arguments. >> Yes, I love that! >> I said this is my slide today, like, you know, there's always going to be doubters and naysayers and I mean, but there's hard evidence, there's hard data like, yeah. In all of these fields, I mean the data that climate change, the data science that we have done in the environmental and climate change areas and medical, and you know, medicine professions just so much, so much more opportunity, and like, how much we can learn more about the world. >> Yeah. >> Yeah, it's a pretty exciting time to be a data scientist. >> I feel like, we're just scratching the surface. >> Yeah. >> With the potential and the global impact that we can make with data science. Gayatree, it's been so great having you on theCUBE, thank you. >> Right, >> Thank you so much, Gayatree. >> So much, I love, >> Thank you. >> I'm going to take Data WiD's arguments into my personal life. (Gayatree laughs) I was actually just, just a quick anecdote, funny story. I was listening to the radio this morning and there was a commercial from an insurance company and I guess the joke is, it's an argument between two spouses, and the the voiceover comes in and says, "Let's watch a replay". I'm like, if only they, then they got the data that helped the woman win the argument. (laughs) >> (laughs) I will warn you it doesn't always help with arguments I have with my husband. (laughs) >> Okay, I'm going to keep it in the middle of my mind. >> Yes! >> Gayatree, thank you so much. >> Thank you so much, >> for sharing, >> Thank you both for the opportunity. >> And being a great female that we can look up to, we really appreciate your insights >> Oh, likewise. >> and your time. >> Thank you. >> All right, for our guest, for Hannah Freitag, I'm Lisa Martin, live at Stanford University covering "Women in Data Science '23". Stick around, our next guest joins us in just a minute. (upbeat music) I have been in the software and technology industry for over 12 years now, so I've had the opportunity as a marketer to really understand and interact with customers across the entire buyer's journey. Hi, I'm Lisa Martin and I'm a host of theCUBE. (upbeat music) Being a host on theCUBE has been a dream of mine for the last few years. I had the opportunity to meet Jeff and Dave and John at EMC World a few years ago and got the courage up to say, "Hey, I'm really interested in this. I love talking with customers, gimme a shot, let me come into the studio and do an interview and see if we can work together". I think where I really impact theCUBE is being a female in technology. We interview a lot of females in tech, we do a lot of women in technology events and one of the things I.
SUMMARY :
in the fields of data science. and data that drives and I obviously used it as a (all laugh) and comfortable with computers. And so now you lead, I'm and you know, helping build Yeah, you mentioned how and you can build this I was just at Mobile World a lot of us don't realize has to become data-driven. has the expectation. and conducting in our daily lives. And I think we, you know, this conference, And that is that the CTO and we need to be talking about this more. to the launch of the iPhone, which has like you have women CEOs and I just thought, we on the thing that you mentioned and you know, want to and just how you write And it's going to One of the things that the One of the biggest I did the very Indian thing and can, you know, advise you to sort of and I like to way, "Well, And so it's important to bring that have no idea that the head of YouTube and I mean how often do you I like what I do, I'm Yeah, yeah, for somebody down the road. (laughs) Yeah. and like, you know, doing the right things that are already throwing But some of the things that are covered in snow. There's so much that Yeah. on that it was amazing. that impacts all of us, and you know, medicine professions to be a data scientist. I feel like, and the global impact and I guess the joke is, (laughs) I will warn you I'm going to keep it in the and one of the things I.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Susan Wojcicki | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Tracy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Hannah Freitag | PERSON | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
Gayatree | PERSON | 0.99+ |
$100 million | QUANTITY | 0.99+ |
Jeff | PERSON | 0.99+ |
27.6% | QUANTITY | 0.99+ |
60% | QUANTITY | 0.99+ |
Tahoe | LOCATION | 0.99+ |
three | QUANTITY | 0.99+ |
Sheryl | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
One | QUANTITY | 0.99+ |
India | LOCATION | 0.99+ |
200 million | QUANTITY | 0.99+ |
six months | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
10 things | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
two spouses | QUANTITY | 0.99+ |
Engagement Ecosystem | ORGANIZATION | 0.99+ |
10 million | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
today | DATE | 0.99+ |
last week | DATE | 0.99+ |
25 | QUANTITY | 0.99+ |
Mumbai, India | LOCATION | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
four | QUANTITY | 0.99+ |
two examples | QUANTITY | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
over 12 years | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
200 million businesses | QUANTITY | 0.98+ |
Stanford | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.98+ |
ORGANIZATION | 0.98+ | |
Women in Data Science 2023 | TITLE | 0.98+ |
ORGANIZATION | 0.98+ | |
Gayatree Ganu | PERSON | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
second month | QUANTITY | 0.97+ |
nadb.org | ORGANIZATION | 0.97+ |
sixth grade | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
'22 | DATE | 0.97+ |
Jacqueline Kuo, Dataiku | WiDS 2023
(upbeat music) >> Morning guys and girls, welcome back to theCUBE's live coverage of Women in Data Science WIDS 2023 live at Stanford University. Lisa Martin here with my co-host for this segment, Tracy Zhang. We're really excited to be talking with a great female rockstar. You're going to learn a lot from her next, Jacqueline Kuo, solutions engineer at Dataiku. Welcome, Jacqueline. Great to have you. >> Thank you so much. >> Thank for being here. >> I'm so excited to be here. >> So one of the things I have to start out with, 'cause my mom Kathy Dahlia is watching, she's a New Yorker. You are a born and raised New Yorker and I learned from my mom and others. If you're born in New York no matter how long you've moved away, you are a New Yorker. There's you guys have like a secret club. (group laughs) >> I am definitely very proud of being born and raised in New York. My family immigrated to New York, New Jersey from Taiwan. So very proud Taiwanese American as well. But I absolutely love New York and I can't imagine living anywhere else. >> Yeah, yeah. >> I love it. >> So you studied, I was doing some research on you you studied mechanical engineering at MIT. >> Yes. >> That's huge. And you discovered your passion for all things data-related. You worked at IBM as an analytics consultant. Talk to us a little bit about your career path. Were you always interested in engineering STEM-related subjects from the time you were a child? >> I feel like my interests were ranging in many different things and I ended up landing in engineering, 'cause I felt like I wanted to gain a toolkit like a toolset to make some sort of change with or use my career to make some sort of change in this world. And I landed on engineering and mechanical engineering specifically, because I felt like I got to, in my undergrad do a lot of hands-on projects, learn every part of the engineering and design process to build products which is super-transferable and transferable skills sort of is like the trend in my career so far. Where after undergrad I wanted to move back to New York and mechanical engineering jobs are kind of few and fall far in between in the city. And I ended up landing at IBM doing analytics consulting, because I wanted to understand how to use data. I knew that data was really powerful and I knew that working with it could allow me to tell better stories to influence people across different industries. And that's also how I kind of landed at Dataiku to my current role, because it really does allow me to work across different industries and work on different problems that are just interesting. >> Yeah, I like the way that, how you mentioned building a toolkit when doing your studies at school. Do you think a lot of skills are still very relevant to your job at Dataiku right now? >> I think that at the core of it is just problem solving and asking questions and continuing to be curious or trying to challenge what is is currently given to you. And I think in an engineering degree you get a lot of that. >> Yeah, I'm sure. >> But I think that we've actually seen that a lot in the panels today already, that you get that through all different types of work and research and that kind of thoughtfulness comes across in all different industries too. >> Talk a little bit about some of the challenges, that data science is solving, because every company these days, whether it's an enterprise in manufacturing or a small business in retail, everybody has to be data-driven, because the end user, the end customer, whoever that is whether it's a person, an individual, a company, a B2B, expects to have a personalized custom experience and that comes from data. But you have to be able to understand that data treated properly, responsibly. Talk about some of the interesting projects that you're doing at Dataiku or maybe some that you've done in the past that are really kind of transformative across things climate change or police violence, some of the things that data science really is impacting these days. >> Yeah, absolutely. I think that what I love about coming to these conferences is that you hear about those really impactful social impact projects that I think everybody who's in data science wants to be working on. And I think at Dataiku what's great is that we do have this program called Ikig.AI where we work with nonprofits and we support them in their data and analytics projects. And so, a project I worked on was with the Clean Water, oh my goodness, the Ocean Cleanup project, Ocean Cleanup organization, which was amazing, because it was sort of outside of my day-to-day and it allowed me to work with them and help them understand better where plastic is being aggregated across the world and where it appears, whether that's on beaches or in lakes and rivers. So using data to help them better understand that. I feel like from a day-to-day though, we, in terms of our customers, they're really looking at very basic problems with data. And I say basic, not to diminish it, but really just to kind of say that it's high impact, but basic problems around how do they forecast sales better? That's a really kind of, sort of basic problem, but it's actually super-complex and really impactful for people, for companies when it comes to forecasting how much headcount they need to have in the next year or how much inventory to have if they're retail. And all of those are going to, especially for smaller companies, make a huge impact on whether they make profit or not. And so, what's great about working at Dataiku is you get to work on these high-impact projects and oftentimes I think from my perspective, I work as a solutions engineer on the commercial team. So it's just, we work generally with smaller customers and sometimes talking to them, me talking to them is like their first introduction to what data science is and what they can do with that data. And sort of using our platform to show them what the possibilities are and help them build a strategy around how they can implement data in their day-to-day. >> What's the difference? You were a data scientist by title and function, now you're a solutions engineer. Talk about the ascendancy into that and also some of the things that you and Tracy will talk about as those transferable, those transportable skills that probably maybe you learned in engineering, you brought data science now you're bringing to solutions engineering. >> Yeah, absolutely. So data science, I love working with data. I love getting in the weeds of things and I love, oftentimes that means debugging things or looking line by line at your code and trying to make it better. I found that on in the data science role, while those things I really loved, sometimes it also meant that I didn't, couldn't see or didn't have visibility into the broader picture of well like, well why are we doing this project? And who is it impacting? And because oftentimes your day-to-day is very much in the weeds. And so, I moved into sales or solutions engineering at Dataiku to get that perspective, because what a sales engineer does is support the sale from a technical perspective. And so, you really truly understand well, what is the customer looking for and what is going to influence them to make a purchase? And how do you tell the story of the impact of data? Because oftentimes they need to quantify well, if I purchase a software like Dataiku then I'm able to build this project and make this X impact on the business. And that is really powerful. That's where the storytelling comes in and that I feel like a lot of what we've been hearing today about connecting data with people who can actually do something with that data. That's really the bridge that we as sales engineers are trying to connect in that sales process. >> It's all about connectivity, isn't it? >> Yeah, definitely. We were talking about this earlier that it's about making impact and it's about people who we are analyzing data is like influencing. And I saw that one of the keywords or one of the biggest thing at Dataiku is everyday AI, so I wanted to just ask, could you please talk more about how does that weave into the problem solving and then day-to-day making an impact process? >> Yes, so I started working on Dataiku around three years ago and I fell in love with the product itself. The product that we have is we allow for people with different backgrounds. If you're coming from a data analyst background, data science, data engineering, maybe you are more of like a business subject matter expert, to all work in one unified central platform, one user interface. And why that's powerful is that when you're working with data, it's not just that data scientist working on their own and their own computer coding. We've heard today that it's all about connecting the data scientists with those business people, with maybe the data engineers and IT people who are actually going to put that model into production or other folks. And so, they all use different languages. Data scientists might use Python and R, your business people are using PowerPoint and Excel, everyone's using different tools. How do we bring them all in one place so that you can have conversations faster? So the business people can understand exactly what you're building with the data and can get their hands on that data and that model prediction faster. So that's what Dataiku does. That's the product that we have. And I completely forgot your question, 'cause I got so invested in talking about this. Oh, everyday AI. Yeah, so the goal of of Dataiku is really to allow for those maybe less technical people with less traditional data science backgrounds. Maybe they're data experts and they understand the data really well and they've been working in SQL for all their career. Maybe they're just subject matter experts and want to get more into working with data. We allow those people to do that through our no and low-code tools within our platform. Platform is very visual as well. And so, I've seen a lot of people learn data science, learn machine learning by working in the tool itself. And that's sort of, that's where everyday AI comes in, 'cause we truly believe that there are a lot of, there's a lot of unutilized expertise out there that we can bring in. And if we did give them access to data, imagine what we could do in the kind of work that they can do and become empowered basically with that. >> Yeah, we're just scratching the surface. I find data science so fascinating, especially when you talk about some of the real world applications, police violence, health inequities, climate change. Here we are in California and I don't know if you know, we're experiencing an atmospheric river again tomorrow. Californians and the rain- >> Storm is coming. >> We are not good... And I'm a native Californian, but we all know about climate change. People probably don't associate all of the data that is helping us understand it, make decisions based on what's coming what's happened in the past. I just find that so fascinating. But I really think we're truly at the beginning of really understanding the impact that being data-driven can actually mean whether you are investigating climate change or police violence or health inequities or your a grocery store that needs to become data-driven, because your consumer is expecting a personalized relevant experience. I want you to offer me up things that I know I was doing online grocery shopping, yesterday, I just got back from Europe and I was so thankful that my grocer is data-driven, because they made the process so easy for me. And but we have that expectation as consumers that it's going to be that easy, it's going to be that personalized. And what a lot of folks don't understand is the data the democratization of data, the AI that's helping make that a possibility that makes our lives easier. >> Yeah, I love that point around data is everywhere and the more we have, the actually the more access we actually are providing. 'cause now compute is cheaper, data is literally everywhere, you can get access to it very easily. And so, I feel like more people are just getting themselves involved and that's, I mean this whole conference around just bringing more women into this industry and more people with different backgrounds from minority groups so that we get their thoughts, their opinions into the work is so important and it's becoming a lot easier with all of the technology and tools just being open source being easier to access, being cheaper. And that I feel really hopeful about in this field. >> That's good. Hope is good, isn't it? >> Yes, that's all we need. But yeah, I'm glad to see that we're working towards that direction. I'm excited to see what lies in the future. >> We've been talking about numbers of women, percentages of women in technical roles for years and we've seen it hover around 25%. I was looking at some, I need to AnitaB.org stats from 2022 was just looking at this yesterday and the numbers are going up. I think the number was 26, 27.6% of women in technical roles. So we're seeing a growth there especially over pre-pandemic levels. Definitely the biggest challenge that still seems to be one of the biggest that remains is attrition. I would love to get your advice on what would you tell your younger self or the previous prior generation in terms of having the confidence and the courage to pursue engineering, pursue data science, pursue a technical role, and also stay in that role so you can be one of those females on stage that we saw today? >> Yeah, that's the goal right there one day. I think it's really about finding other people to lift and mentor and support you. And I talked to a bunch of people today who just found this conference through Googling it, and the fact that organizations like this exist really do help, because those are the people who are going to understand the struggles you're going through as a woman in this industry, which can get tough, but it gets easier when you have a community to share that with and to support you. And I do want to definitely give a plug to the WIDS@Dataiku team. >> Talk to us about that. >> Yeah, I was so fortunate to be a WIDS ambassador last year and again this year with Dataiku and I was here last year as well with Dataiku, but we have grown the WIDS effort so much over the last few years. So the first year we had two events in New York and also in London. Our Dataiku's global. So this year we additionally have one in the west coast out here in SF and another one in Singapore which is incredible to involve that team. But what I love is that everyone is really passionate about just getting more women involved in this industry. But then also what I find fortunate too at Dataiku is that we have a strong female, just a lot of women. >> Good. >> Yeah. >> A lot of women working as data scientists, solutions engineer and sales and all across the company who even if they aren't doing data work in a day-to-day, they are super-involved and excited to get more women in the technical field. And so. that's like our Empower group internally that hosts events and I feel like it's a really nice safe space for all of us to speak about challenges that we encounter and feel like we're not alone in that we have a support system to make it better. So I think from a nutrition standpoint every organization should have a female ERG to just support one another. >> Absolutely. There's so much value in a network in the community. I was talking to somebody who I'm blanking on this may have been in Barcelona last week, talking about a stat that showed that a really high percentage, 78% of people couldn't identify a female role model in technology. Of course, Sheryl Sandberg's been one of our role models and I thought a lot of people know Sheryl who's leaving or has left. And then a whole, YouTube influencers that have no idea that the CEO of YouTube for years has been a woman, who has- >> And she came last year to speak at WIDS. >> Did she? >> Yeah. >> Oh, I missed that. It must have been, we were probably filming. But we need more, we need to be, and it sounds like Dataiku was doing a great job of this. Tracy, we've talked about this earlier today. We need to see what we can be. And it sounds like Dataiku was pioneering that with that ERG program that you talked about. And I completely agree with you. That should be a standard program everywhere and women should feel empowered to raise their hand ask a question, or really embrace, "I'm interested in engineering, I'm interested in data science." Then maybe there's not a lot of women in classes. That's okay. Be the pioneer, be that next Sheryl Sandberg or the CTO of ChatGPT, Mira Murati, who's a female. We need more people that we can see and lean into that and embrace it. I think you're going to be one of them. >> I think so too. Just so that young girls like me like other who's so in school, can see, can look up to you and be like, "She's my role model and I want to be like her. And I know that there's someone to listen to me and to support me if I have any questions in this field." So yeah. >> Yeah, I mean that's how I feel about literally everyone that I'm surrounded by here. I find that you find role models and people to look up to in every conversation whenever I'm speaking with another woman in tech, because there's a journey that has had happen for you to get to that place. So it's incredible, this community. >> It is incredible. WIDS is a movement we're so proud of at theCUBE to have been a part of it since the very beginning, since 2015, I've been covering it since 2017. It's always one of my favorite events. It's so inspiring and it just goes to show the power that data can have, the influence, but also just that we're at the beginning of uncovering so much. Jacqueline's been such a pleasure having you on theCUBE. Thank you. >> Thank you. >> For sharing your story, sharing with us what Dataiku was doing and keep going. More power to you girl. We're going to see you up on that stage one of these years. >> Thank you so much. Thank you guys. >> Our pleasure. >> Our pleasure. >> For our guests and Tracy Zhang, this is Lisa Martin, you're watching theCUBE live at WIDS '23. #EmbraceEquity is this year's International Women's Day theme. Stick around, our next guest joins us in just a minute. (upbeat music)
SUMMARY :
We're really excited to be talking I have to start out with, and I can't imagine living anywhere else. So you studied, I was the time you were a child? and I knew that working Yeah, I like the way and continuing to be curious that you get that through and that comes from data. And I say basic, not to diminish it, and also some of the I found that on in the data science role, And I saw that one of the keywords so that you can have conversations faster? Californians and the rain- that it's going to be that easy, and the more we have, Hope is good, isn't it? I'm excited to see what and also stay in that role And I talked to a bunch of people today is that we have a strong and all across the company that have no idea that the And she came last and lean into that and embrace it. And I know that there's I find that you find role models but also just that we're at the beginning We're going to see you up on Thank you so much. #EmbraceEquity is this year's
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Sheryl | PERSON | 0.99+ |
Mira Murati | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Jacqueline | PERSON | 0.99+ |
Kathy Dahlia | PERSON | 0.99+ |
Jacqueline Kuo | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Europe | LOCATION | 0.99+ |
Dataiku | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
Singapore | LOCATION | 0.99+ |
London | LOCATION | 0.99+ |
last year | DATE | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
YouTube | ORGANIZATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Barcelona | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Taiwan | LOCATION | 0.99+ |
2015 | DATE | 0.99+ |
last week | DATE | 0.99+ |
two events | QUANTITY | 0.99+ |
26, 27.6% | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
PowerPoint | TITLE | 0.99+ |
Excel | TITLE | 0.99+ |
this year | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
Python | TITLE | 0.99+ |
Dataiku | PERSON | 0.99+ |
New York, New Jersey | LOCATION | 0.99+ |
tomorrow | DATE | 0.99+ |
2017 | DATE | 0.99+ |
SF | LOCATION | 0.99+ |
MIT | ORGANIZATION | 0.99+ |
today | DATE | 0.98+ |
78% | QUANTITY | 0.98+ |
ChatGPT | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Ocean Cleanup | ORGANIZATION | 0.98+ |
SQL | TITLE | 0.98+ |
next year | DATE | 0.98+ |
International Women's Day | EVENT | 0.97+ |
R | TITLE | 0.97+ |
around 25% | QUANTITY | 0.96+ |
Californians | PERSON | 0.95+ |
Women in Data Science | TITLE | 0.94+ |
one day | QUANTITY | 0.92+ |
theCUBE | ORGANIZATION | 0.91+ |
WIDS | ORGANIZATION | 0.89+ |
first introduction | QUANTITY | 0.88+ |
Stanford University | LOCATION | 0.87+ |
one place | QUANTITY | 0.87+ |
Keynote Analysis | WiDS 2023
(ambient music) >> Good morning, everyone. Lisa Martin with theCUBE, live at the eighth Annual Women in Data Science Conference. This is one of my absolute favorite events of the year. We engage with tons of great inspirational speakers, men and women, and what's happening with WiDS is a global movement. I've got two fabulous co-hosts with me today that you're going to be hearing and meeting. Please welcome Tracy Zhang and Hannah Freitag, who are both from the sata journalism program, master's program, at Stanford. So great to have you guys. >> So excited to be here. >> So data journalism's so interesting. Tracy, tell us a little bit about you, what you're interested in, and then Hannah we'll have you do the same thing. >> Yeah >> Yeah, definitely. I definitely think data journalism is very interesting, and in fact, I think, what is data journalism? Is definitely one of the big questions that we ask during the span of one year, which is the length of our program. And yeah, like you said, I'm in this data journalism master program, and I think coming in I just wanted to pivot from my undergrad studies, which is more like a traditional journalism, into data. We're finding stories through data, so that's why I'm also very excited about meeting these speakers for today because they're all, they have different backgrounds, but they all ended up in data science. So I think they'll be very inspirational and I can't wait to talk to them. >> Data in stories, I love that. Hannah, tell us a little bit about you. >> Yeah, so before coming to Stanford, I was a research assistant at Humboldt University in Berlin, so I was in political science research. And I love to work with data sets and data, but I figured that, for me, I don't want this story to end up in a research paper, which is only very limited in terms of the audience. And I figured, okay, data journalism is the perfect way to tell stories and use data to illustrate anecdotes, but to make it comprehensive and accessible for a broader audience. So then I found this program at Stanford and I was like, okay, that's the perfect transition from political science to journalism, and to use data to tell data-driven stories. So I'm excited to be in this program, I'm excited for the conference today and to hear from these amazing women who work in data science. >> You both brought up great points, and we were chatting earlier that there's a lot of diversity in background. >> Tracy: Definitely. >> Not everyone was in STEM as a young kid or studied computer science. Maybe some are engineering, maybe some are are philosophy or economic, it's so interesting. And what I find year after year at WiDS is it brings in so much thought diversity. And that's what being data-driven really demands. It demands that unbiased approach, that diverse, a spectrum of diverse perspectives, and we definitely get that at WiDS. There's about 350 people in person here, but as I mentioned in the opening, hundreds of thousands will engage throughout the year, tens of thousands probably today at local events going on across the globe. And it just underscores the importance of every organization, whether it's a bank or a grocer, has to be data-driven. We have that expectation as consumers in our consumer lives, and even in our business lives, that I'm going to engage with a business, whatever it is, and they're going to know about me, they're going to deliver me a personalized experience that's relevant to me and my history. And all that is powered by data science, which is I think it's fascinating. >> Yeah, and the great way is if you combine data with people. Because after all, large data sets, they oftentimes consist of stories or data that affects people. And to find these stories or advanced research in whatever fields, maybe in the financial business, or in health, as you mentioned, the variety of fields, it's very powerful, powerful tool to use. >> It's a very power, oh, go ahead Tracy. >> No, definitely. I just wanted to build off of that. It's important to put a face on data. So a dataset without a name is just some numbers, but if there's a story, then I think it means something too. And I think Margot was talking about how data science is about knowing or understanding the past, I think that's very interesting. That's a method for us to know who we are. >> Definitely. There's so many opportunities. I wanted to share some of the statistics from AnitaB.org that I was just looking at from 2022. We always talk at events like WiDS, and some of the other women in tech things, theCUBE is very much pro-women in tech, and has been for a very long, since the beginning of theCUBE. But we've seen the numbers of women technologists historically well below 25%, and we see attrition rates are high. And so we often talk about, well, what can we do? And part of that is raising the awareness. And that's one of the great things about WiDS, especially WiDS happening on International Women's Day, today, March 8th, and around event- >> Tracy: A big holiday. >> Exactly. But one of the nice things I was looking at, the AnitaB.org research, is that representation of tech women is on the rise, still below pre-pandemic levels, but it's actually nearly 27% of women in technical roles. And that's an increase, slow increase, but the needle is moving. We're seeing much more gender diversity across a lot of career levels, which is exciting. But some of the challenges remain. I mean, the representation of women technologists is growing, except at the intern level. And I thought that was really poignant. We need to be opening up that pipeline and going younger. And you'll hear a lot of those conversations today about, what are we doing to reach girls in grade school, 10 year olds, 12 year olds, those in high school? How do we help foster them through their undergrad studies- >> And excite them about science and all these fields, for sure. >> What do you think, Hannah, on that note, and I'll ask you the same question, what do you think can be done? The theme of this year's International Women's Day is Embrace Equity. What do you think can be done on that intern problem to help really dial up the volume on getting those younger kids interested, one, earlier, and two, helping them stay interested? >> Yeah. Yeah, that's a great question. I think it's important to start early, as you said, in school. Back in the day when I went to high school, we had this one day per year where we could explore as girls, explore a STEM job and go into the job for one day and see how it's like to work in a, I dunno, in IT or in data science, so that's a great first step. But as you mentioned, it's important to keep girls and women excited about this field and make them actually pursue this path. So I think conferences or networking is very powerful. Also these days with social media and technology, we have more ability and greater ways to connect. And I think we should even empower ourselves even more to pursue this path if we're interested in data science, and not be like, okay, maybe it's not for me, or maybe as a woman I have less chances. So I think it's very important to connect with other women, and this is what WiDS is great about. >> WiDS is so fantastic for that network effect, as you talked about. It's always such, as I was telling you about before we went live, I've covered five or six WiDS for theCUBE, and it's always such a day of positivity, it's a day of of inclusivity, which is exactly what Embrace Equity is really kind of about. Tracy, talk a little bit about some of the things that you see that will help with that hashtag Embrace Equity kind of pulling it, not just to tech. Because we're talking and we saw Meta was a keynote who's going to come to talk with Hannah and me in a little bit, we see Total Energies on the program today, we see Microsoft, Intuit, Boeing Air Company. What are some of the things you think that can be done to help inspire, say, little Tracy back in the day to become interested in STEM or in technology or in data? What do you think companies can and should be doing to dial up the volume for those youngsters? >> Yeah, 'cause I think somebody was talking about, one of the keynote speakers was talking about how there is a notion that girls just can't be data scientists. girls just can't do science. And I think representation definitely matters. If three year old me see on TV that all the scientists are women, I think I would definitely have the notion that, oh, this might be a career choice for me and I can definitely also be a scientist if I want. So yeah, I think representation definitely matters and that's why conference like this will just show us how these women are great in their fields. They're great data scientists that are bringing great insight to the company and even to the social good as well. So yeah, I think that's very important just to make women feel seen in this data science field and to listen to the great woman who's doing amazing work. >> Absolutely. There's a saying, you can't be what you can't see. >> Exactly. >> And I like to say, I like to flip it on its head, 'cause we can talk about some of the negatives, but there's a lot of positives and I want to share some of those in a minute, is that we need to be, that visibility that you talked about, the awareness that you talked about, it needs to be there but it needs to be sustained and maintained. And an organization like WiDS and some of the other women in tech events that happen around the valley here and globally, are all aimed at raising the profile of these women so that the younger, really, all generations can see what they can be. We all, the funny thing is, we all have this expectation whether we're transacting on Uber ride or we are on Netflix or we're buying something on Amazon, we can get it like that. They're going to know who I am, they're going to know what I want, they're going to want to know what I just bought or what I just watched. Don't serve me up something that I've already done that. >> Hannah: Yeah. >> Tracy: Yeah. >> So that expectation that everyone has is all about data, though we don't necessarily think about it like that. >> Hannah: Exactly. >> Tracy: Exactly. >> But it's all about the data that, the past data, the data science, as well as the realtime data because we want to have these experiences that are fresh, in the moment, and super relevant. So whether women recognize it or not, they're data driven too. Whether or not you're in data science, we're all driven by data and we have these expectations that every business is going to meet it. >> Exactly. >> Yeah. And circling back to young women, I think it's crucial and important to have role models. As you said, if you see someone and you're younger and you're like, oh I want to be like her. I want to follow this path, and have inspiration and a role model, someone you look up to and be like, okay, this is possible if I study the math part or do the physics, and you kind of have a goal and a vision in mind, I think that's really important to drive you. >> Having those mentors and sponsors, something that's interesting is, I always, everyone knows what a mentor is, somebody that you look up to, that can guide you, that you admire. I didn't learn what a sponsor was until a Women in Tech event a few years ago that we did on theCUBE. And I was kind of, my eyes were open but I didn't understand the difference between a mentor and a sponsor. And then it got me thinking, who are my sponsors? And I started going through LinkedIn, oh, he's a sponsor, she's a sponsor, people that help really propel you forward, your recommenders, your champions, and it's so important at every level to build that network. And we have, to your point, Hannah, there's so much potential here for data drivenness across the globe, and there's so much potential for women. One of the things I also learned recently , and I wanted to share this with you 'cause I'm not sure if you know this, ChatGPT, exploding, I was on it yesterday looking at- >> Everyone talking about it. >> What's hot in data science? And it was kind of like, and I actually asked it, what was hot in data science in 2023? And it told me that it didn't know anything prior to 2021. >> Tracy: Yes. >> Hannah: Yeah. >> So I said, Oh, I'm so sorry. But everyone's talking about ChatGPT, it is the most advanced AI chatbot ever released to the masses, it's on fire. They're likening it to the launch of the iPhone, 100 million-plus users. But did you know that the CTO of ChatGPT is a woman? >> Tracy: I did not know, but I learned that. >> I learned that a couple days ago, Mira Murati, and of course- >> I love it. >> She's been, I saw this great profile piece on her on Fast Company, but of course everything that we're hearing about with respect to ChatGPT, a lot on the CEO. But I thought we need to help dial up the profile of the CTO because she's only 35, yet she is at the helm of one of the most groundbreaking things in our lifetime we'll probably ever see. Isn't that cool? >> That is, yeah, I completely had no idea. >> I didn't either. I saw it on LinkedIn over the weekend and I thought, I have to talk about that because it's so important when we talk about some of the trends, other trends from AnitaB.org, I talked about some of those positive trends. Overall hiring has rebounded in '22 compared to pre-pandemic levels. And we see also 51% more women being hired in '22 than '21. So the data, it's all about data, is showing us things are progressing quite slowly. But one of the biggest challenges that's still persistent is attrition. So we were talking about, Hannah, what would your advice be? How would you help a woman stay in tech? We saw that attrition last year in '22 according to AnitaB.org, more than doubled. So we're seeing women getting into the field and dropping out for various reasons. And so that's still an extent concern that we have. What do you think would motivate you to stick around if you were in a technical role? Same question for you in a minute. >> Right, you were talking about how we see an increase especially in the intern level for women. And I think if, I don't know, this is a great for a start point for pushing the momentum to start growth, pushing the needle rightwards. But I think if we can see more increase in the upper level, the women representation in the upper level too, maybe that's definitely a big goal and something we should work towards to. >> Lisa: Absolutely. >> But if there's more representation up in the CTO position, like in the managing level, I think that will definitely be a great factor to keep women in data science. >> I was looking at some trends, sorry, Hannah, forgetting what this source was, so forgive me, that was showing that there was a trend in the last few years, I think it was Fast Company, of more women in executive positions, specifically chief operating officer positions. What that hasn't translated to, what they thought it might translate to, is more women going from COO to CEO and we're not seeing that. We think of, if you ask, name a female executive that you'd recognize, everyone would probably say Sheryl Sandberg. But I was shocked to learn the other day at a Women in Tech event I was doing, that there was a survey done by this organization that showed that 78% of people couldn't identify. So to your point, we need more of them in that visible role, in the executive suite. >> Tracy: Exactly. >> And there's data that show that companies that have women, companies across industries that have women in leadership positions, executive positions I should say, are actually more profitable. So it's kind of like, duh, the data is there, it's telling you this. >> Hannah: Exactly. >> Right? >> And I think also a very important point is work culture and the work environment. And as a woman, maybe if you enter and you work two or three years, and then you have to oftentimes choose, okay, do I want family or do I want my job? And I think that's one of the major tasks that companies face to make it possible for women to combine being a mother and being a great data scientist or an executive or CEO. And I think there's still a lot to be done in this regard to make it possible for women to not have to choose for one thing or the other. And I think that's also a reason why we might see more women at the entry level, but not long-term. Because they are punished if they take a couple years off if they want to have kids. >> I think that's a question we need to ask to men too. >> Absolutely. >> How to balance work and life. 'Cause we never ask that. We just ask the woman. >> No, they just get it done, probably because there's a woman on the other end whose making it happen. >> Exactly. So yeah, another thing to think about, another thing to work towards too. >> Yeah, it's a good point you're raising that we have this conversation together and not exclusively only women, but we all have to come together and talk about how we can design companies in a way that it works for everyone. >> Yeah, and no slight to men at all. A lot of my mentors and sponsors are men. They're just people that I greatly admire who saw raw potential in me 15, 18 years ago, and just added a little water to this little weed and it started to grow. In fact, theCUBE- >> Tracy: And look at you now. >> Look at me now. And theCUBE, the guys Dave Vellante and John Furrier are two of those people that are sponsors of mine. But it needs to be diverse. It needs to be diverse and gender, it needs to include non-binary people, anybody, shouldn't matter. We should be able to collectively work together to solve big problems. Like the propaganda problem that was being discussed in the keynote this morning with respect to China, or climate change. Climate change is a huge challenge. Here, we are in California, we're getting an atmospheric river tomorrow. And Californians and rain, we're not so friendly. But we know that there's massive changes going on in the climate. Data science can help really unlock a lot of the challenges and solve some of the problems and help us understand better. So there's so much real-world implication potential that being data-driven can really lead to. And I love the fact that you guys are studying data journalism. You'll have to help me understand that even more. But we're going to going to have great conversations today, I'm so excited to be co-hosting with both of you. You're going to be inspired, you're going to learn, they're going to learn from us as well. So let's just kind of think of this as a community of men, women, everything in between to really help inspire the current generations, the future generations. And to your point, let's help women feel confident to be able to stay and raise their hand for fast-tracking their careers. >> Exactly. >> What are you guys, last minute, what are you looking forward to most for today? >> Just meeting these great women, I can't wait. >> Yeah, learning from each other. Having this conversation about how we can make data science even more equitable and hear from the great ideas that all these women have. >> Excellent, girls, we're going to have a great day. We're so glad that you're here with us on theCUBE, live at Stanford University, Women in Data Science, the eighth annual conference. I'm Lisa Martin, my two co-hosts for the day, Tracy Zhang, Hannah Freitag, you're going to be seeing a lot of us, we appreciate. Stick around, our first guest joins Hannah and me in just a minute. (ambient music)
SUMMARY :
So great to have you guys. and then Hannah we'll have Is definitely one of the Data in stories, I love that. And I love to work with and we were chatting earlier and they're going to know about me, Yeah, and the great way is And I think Margot was And part of that is raising the awareness. I mean, the representation and all these fields, for sure. and I'll ask you the same question, I think it's important to start early, What are some of the things and even to the social good as well. be what you can't see. and some of the other women in tech events So that expectation that everyone has that every business is going to meet it. And circling back to young women, and I wanted to share this with you know anything prior to 2021. it is the most advanced Tracy: I did not of one of the most groundbreaking That is, yeah, I and I thought, I have to talk about that for pushing the momentum to start growth, to keep women in data science. So to your point, we need more that have women in leadership positions, and the work environment. I think that's a question We just ask the woman. a woman on the other end another thing to work towards too. and talk about how we can design companies and it started to grow. And I love the fact that you guys great women, I can't wait. and hear from the great ideas Women in Data Science, the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Mira Murati | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
Tracy | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Hannah Freitag | PERSON | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
California | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Sheryl Sandberg | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Tracy Zhang | PERSON | 0.99+ |
Lisa | PERSON | 0.99+ |
Boeing Air Company | ORGANIZATION | 0.99+ |
Berlin | LOCATION | 0.99+ |
one year | QUANTITY | 0.99+ |
Intuit | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
78% | QUANTITY | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Margot | PERSON | 0.99+ |
tens of thousands | QUANTITY | 0.99+ |
one day | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
2022 | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
last year | DATE | 0.99+ |
tomorrow | DATE | 0.99+ |
three years | QUANTITY | 0.99+ |
10 year | QUANTITY | 0.99+ |
12 year | QUANTITY | 0.99+ |
three year | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
Humboldt University | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
International Women's Day | EVENT | 0.99+ |
hundreds of thousands | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
'22 | DATE | 0.98+ |
today | DATE | 0.98+ |
WiDS | EVENT | 0.98+ |
John Furrier | PERSON | 0.98+ |
Uber | ORGANIZATION | 0.98+ |
two co-hosts | QUANTITY | 0.98+ |
35 | QUANTITY | 0.98+ |
eighth Annual Women in Data Science Conference | EVENT | 0.97+ |
first step | QUANTITY | 0.97+ |
first guest | QUANTITY | 0.97+ |
one thing | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
six | QUANTITY | 0.97+ |
'21 | DATE | 0.97+ |
about 350 people | QUANTITY | 0.96+ |
100 million-plus users | QUANTITY | 0.95+ |
2021 | DATE | 0.95+ |
theCUBE | ORGANIZATION | 0.95+ |
AnitaB.org | ORGANIZATION | 0.95+ |
Stanford | ORGANIZATION | 0.95+ |
Madhura Maskasky, Platform9 | International Women's Day
(bright upbeat music) >> Hello and welcome to theCUBE's coverage of International Women's Day. I'm your host, John Furrier here in Palo Alto, California Studio and remoting is a great guest CUBE alumni, co-founder, technical co-founder and she's also the VP of Product at Platform9 Systems. It's a company pioneering Kubernetes infrastructure, been doing it for a long, long time. Madhura Maskasky, thanks for coming on theCUBE. Appreciate you. Thanks for coming on. >> Thank you for having me. Always exciting. >> So I always... I love interviewing you for many reasons. One, you're super smart, but also you're a co-founder, a technical co-founder, so entrepreneur, VP of product. It's hard to do startups. (John laughs) Okay, so everyone who started a company knows how hard it is. It really is and the rewarding too when you're successful. So I want to get your thoughts on what's it like being an entrepreneur, women in tech, some things you've done along the way. Let's get started. How did you get into your career in tech and what made you want to start a company? >> Yeah, so , you know, I got into tech long, long before I decided to start a company. And back when I got in tech it was very clear to me as a direction for my career that I'm never going to start a business. I was very explicit about that because my father was an entrepreneur and I'd seen how rough the journey can be. And then my brother was also and is an entrepreneur. And I think with both of them I'd seen the ups and downs and I had decided to myself and shared with my family that I really want a very well-structured sort of job at a large company type of path for my career. I think the tech path, tech was interesting to me, not because I was interested in programming, et cetera at that time, to be honest. When I picked computer science as a major for myself, it was because most of what you would consider, I guess most of the cool students were picking that as a major, let's just say that. And it sounded very interesting and cool. A lot of people were doing it and that was sort of the top, top choice for people and I decided to follow along. But I did discover after I picked computer science as my major, I remember when I started learning C++ the first time when I got exposure to it, it was just like a light bulb clicking in my head. I just absolutely loved the language, the lower level nature, the power of it, and what you can do with it, the algorithms. So I think it ended up being a really good fit for me. >> Yeah, so it clicked for you. You tried it, it was all the cool kids were doing it. I mean, I can relate, I did the same thing. Next big thing is computer science, you got to be in there, got to be smart. And then you get hooked on it. >> Yeah, exactly. >> What was the next level? Did you find any blockers in your way? Obviously male dominated, it must have been a lot of... How many females were in your class? What was the ratio at that time? >> Yeah, so the ratio was was pretty, pretty, I would say bleak when it comes to women to men. I think computer science at that time was still probably better compared to some of the other majors like mechanical engineering where I remember I had one friend, she was the single girl in an entire class of about at least 120, 130 students or so. So ratio was better for us. I think there were maybe 20, 25 girls in our class. It was a large class and maybe the number of men were maybe three X or four X number of women. So relatively better. Yeah. >> How about the job when you got into the structured big company? How did that go? >> Yeah, so, you know, I think that was a pretty smooth path I would say after, you know, you graduated from undergrad to grad school and then when I got into Oracle first and VMware, I think both companies had the ratios were still, you know, pretty off. And I think they still are to a very large extent in this industry, but I think this industry in my experience does a fantastic job of, you know, bringing everybody and kind of embracing them and treating them at the same level. That was definitely my experience. And so that makes it very easy for self-confidence, for setting up a path for yourself to thrive. So that was it. >> Okay, so you got an undergraduate degree, okay, in computer science and a master's from Stanford in databases and distributed systems. >> That's right. >> So two degrees. Was that part of your pathway or you just decided, "I want to go right into school?" Did it go right after each other? How did that work out? >> Yeah, so when I went into school, undergrad there was no special major and I didn't quite know if I liked a particular subject or set of subjects or not. Even through grad school, first year it wasn't clear to me, but I think in second year I did start realizing that in general I was a fan of backend systems. I was never a front-end person. The backend distributed systems really were of interest to me because there's a lot of complex problems to solve, and especially databases and large scale distributed systems design in the context of database systems, you know, really started becoming a topic of interest for me. And I think luckily enough at Stanford there were just fantastic professors like Mendel Rosenblum who offered operating system class there, then started VMware and later on I was able to join the company and I took his class while at school and it was one of the most fantastic classes I've ever taken. So they really had and probably I think still do a fantastic curriculum when it comes to distributor systems. And I think that probably helped stoke that interest. >> How do you talk to the younger girls out there in elementary school and through? What's the advice as they start to get into computer science, which is changing and still evolving? There's backend, there's front-end, there's AI, there's data science, there's no code, low code, there's cloud. What's your advice when they say what's the playbook? >> Yeah, so I think two things I always say, and I share this with anybody who's looking to get into computer science or engineering for that matter, right? I think one is that it's, you know, it's important to not worry about what that end specialization's going to be, whether it's AI or databases or backend or front-end. It does naturally evolve and you lend yourself to a path where you will understand, you know, which systems, which aspect you like better. But it's very critical to start with getting the fundamentals well, right? Meaning all of the key coursework around algorithm, systems design, architecture, networking, operating system. I think it is just so crucial to understand those well, even though at times you make question is this ever going to be relevant and useful to me later on in my career? It really does end up helping in ways beyond, you know, you can describe. It makes you a much better engineer. So I think that is the most important aspect of, you know, I would think any engineering stream, but definitely true for computer science. Because there's also been a trend more recently, I think, which I'm not a big fan of, of sort of limited scoped learning, which is you decide early on that you're going to be, let's say a front-end engineer, which is fine, you know. Understanding that is great, but if you... I don't think is ideal to let that limit the scope of your learning when you are an undergrad phrase or grad school. Because later on it comes back to sort of bite you in terms of you not being able to completely understand how the systems work. >> It's a systems kind of thinking. You got to have that mindset of, especially now with cloud, you got distributed systems paradigm going to the edge. You got 5G, Mobile World Congress recently happened, you got now all kinds of IOT devices out there, IP of devices at the edge. Distributed computing is only getting more distributed. >> That's right. Yeah, that's exactly right. But the other thing is also happens... That happens in computer science is that the abstraction layers keep raising things up and up and up. Where even if you're operating at a language like Java, which you know, during some of my times of programming there was a period when it was popular, it already abstracts you so far away from the underlying system. So it can become very easier if you're doing, you know, Java script or UI programming that you really have no understanding of what's happening behind the scenes. And I think that can be pretty difficult. >> Yeah. It's easy to lean in and rely too heavily on the abstractions. I want to get your thoughts on blockers. In your career, have you had situations where it's like, "Oh, you're a woman, okay seat at the table, sit on the side." Or maybe people misunderstood your role. How did you deal with that? Did you have any of that? >> Yeah. So, you know, I think... So there's something really kind of personal to me, which I like to share a few times, which I think I believe in pretty strongly. And which is for me, sort of my personal growth began at a very early phase because my dad and he passed away in 2012, but throughout the time when I was growing up, I was his special little girl. And every little thing that I did could be a simple test. You know, not very meaningful but the genuine pride and pleasure that he felt out of me getting great scores in those tests sort of et cetera, and that I could see that in him, and then I wanted to please him. And through him, I think I build that confidence in myself that I am good at things and I can do good. And I think that just set the building blocks for me for the rest of my life, right? So, I believe very strongly that, you know, yes, there are occasions of unfair treatment and et cetera, but for the most part, it comes from within. And if you are able to be a confident person who is kind of leveled and understands and believes in your capabilities, then for the most part, the right things happen around you. So, I believe very strongly in that kind of grounding and in finding a source to get that for yourself. And I think that many women suffer from the biggest challenge, which is not having enough self-confidence. And I've even, you know, with everything that I said, I've myself felt that, experienced that a few times. And then there's a methodical way to get around it. There's processes to, you know, explain to yourself that that's actually not true. That's a fake feeling. So, you know, I think that is the most important aspect for women. >> I love that. Get the confidence. Find the source for the confidence. We've also been hearing about curiosity and building, you mentioned engineering earlier, love that term. Engineering something, like building something. Curiosity, engineering, confidence. This brings me to my next question for you. What do you think the key skills and qualities are needed to succeed in a technical role? And how do you develop to maintain those skills over time? >> Yeah, so I think that it is so critical that you love that technology that you are part of. It is just so important. I mean, I remember as an example, at one point with one of my buddies before we started Platform9, one of my buddies, he's also a fantastic computer scientists from VMware and he loves video games. And so he said, "Hey, why don't we try to, you know, hack up a video game and see if we can take it somewhere?" And so, it sounded cool to me. And then so we started doing things, but you know, something I realized very quickly is that I as a person, I absolutely hate video games. I've never liked them. I don't think that's ever going to change. And so I was miserable. You know, I was trying to understand what's going on, how to build these systems, but I was not enjoying it. So, I'm glad that I decided to not pursue that. So it is just so important that you enjoy whatever aspect of technology that you decide to associate yourself with. I think that takes away 80, 90% of the work. And then I think it's important to inculcate a level of discipline that you are not going to get sort of... You're not going to get jaded or, you know, continue with happy path when doing the same things over and over again, but you're not necessarily challenging yourself, or pushing yourself, or putting yourself in uncomfortable situation. I think a combination of those typically I think works pretty well in any technical career. >> That's a great advice there. I think trying things when you're younger, or even just for play to understand whether you abandon that path is just as important as finding a good path because at least you know that skews the value in favor of the choices. Kind of like math probability. So, great call out there. So I have to ask you the next question, which is, how do you keep up to date given all the changes? You're in the middle of a world where you've seen personal change in the past 10 years from OpenStack to now. Remember those days when I first interviewed you at OpenStack, I think it was 2012 or something like that. Maybe 10 years ago. So much changed. How do you keep up with technologies in your field and resources that you rely on for personal development? >> Yeah, so I think when it comes to, you know, the field and what we are doing for example, I think one of the most important aspect and you know I am product manager and this is something I insist that all the other product managers in our team also do, is that you have to spend 50% of your time talking to prospects, customers, leads, and through those conversations they do a huge favor to you in that they make you aware of the other things that they're keeping an eye on as long as you're doing the right job of asking the right questions and not just, you know, listening in. So I think that to me ends up being one of the biggest sources where you get tidbits of information, new things, et cetera, and then you pursue. To me, that has worked to be a very effective source. And then the second is, you know, reading and keeping up with all of the publications. You guys, you know, create a lot of great material, you interview a lot of people, making sure you are watching those for us you know, and see there's a ton of activities, new projects keeps coming along every few months. So keeping up with that, listening to podcasts around those topics, all of that helps. But I think the first one I think goes in a big way in terms of being aware of what matters to your customers. >> Awesome. Let me ask you a question. What's the most rewarding aspect of your job right now? >> So, I think there are many. So I think I love... I've come to realize that I love, you know, the high that you get out of being an entrepreneur independent of, you know, there's... In terms of success and failure, there's always ups and downs as an entrepreneur, right? But there is this... There's something really alluring about being able to, you know, define, you know, path of your products and in a way that can potentially impact, you know, a number of companies that'll consume your products, employees that work with you. So that is, I think to me, always been the most satisfying path, is what kept me going. I think that is probably first and foremost. And then the projects. You know, there's always new exciting things that we are working on. Even just today, there are certain projects we are working on that I'm super excited about. So I think it's those two things. >> So now we didn't get into how you started. You said you didn't want to do a startup and you got the big company. Your dad, your brother were entrepreneurs. How did you get into it? >> Yeah, so, you know, it was kind of surprising to me as well, but I think I reached a point of VMware after spending about eight years or so where I definitely packed hold and I could have pushed myself by switching to a completely different company or a different organization within VMware. And I was trying all of those paths, interviewed at different companies, et cetera, but nothing felt different enough. And then I think I was very, very fortunate in that my co-founders, Sirish Raghuram, Roopak Parikh, you know, Bich, you've met them, they were kind of all at the same journey in their careers independently at the same time. And so we would all eat lunch together at VMware 'cause we were on the same team and then we just started brainstorming on different ideas during lunchtime. And that's kind of how... And we did that almost for a year. So by the time that the year long period went by, at the end it felt like the most logical, natural next step to leave our job and to, you know, to start off something together. But I think I wouldn't have done that had it not been for my co-founders. >> So you had comfort with the team as you knew each other at VMware, but you were kind of a little early, (laughing) you had a vision. It's kind of playing out now. How do you feel right now as the wave is hitting? Distributed computing, microservices, Kubernetes, I mean, stuff you guys did and were doing. I mean, it didn't play out exactly, but directionally you were right on the line there. How do you feel? >> Yeah. You know, I think that's kind of the challenge and the fun part with the startup journey, right? Which is you can never predict how things are going to go. When we kicked off we thought that OpenStack is going to really take over infrastructure management space and things kind of went differently, but things are going that way now with Kubernetes and distributed infrastructure. And so I think it's been interesting and in every path that you take that does end up not being successful teaches you so much more, right? So I think it's been a very interesting journey. >> Yeah, and I think the cloud, certainly AWS hit that growth right at 2013 through '17, kind of sucked all the oxygen out. But now as it reverts back to this abstraction layer essentially makes things look like private clouds, but they're just essentially DevOps. It's cloud operations, kind of the same thing. >> Yeah, absolutely. And then with the edge things are becoming way more distributed where having a single large cloud provider is becoming even less relevant in that space and having kind of the central SaaS based management model, which is what we pioneered, like you said, we were ahead of the game at that time, is becoming sort of the most obvious choice now. >> Now you look back at your role at Stanford, distributed systems, again, they have world class program there, neural networks, you name it. It's really, really awesome. As well as Cal Berkeley, there was in debates with each other, who's better? But that's a separate interview. Now you got the edge, what are some of the distributed computing challenges right now with now the distributed edge coming online, industrial 5G, data? What do you see as some of the key areas to solve from a problem statement standpoint with edge and as cloud goes on-premises to essentially data center at the edge, apps coming over the top AI enabled. What's your take on that? >> Yeah, so I think... And there's different flavors of edge and the one that we focus on is, you know, what we call thick edge, which is you have this problem of managing thousands of as we call it micro data centers, rather than managing maybe few tens or hundreds of large data centers where the problem just completely shifts on its head, right? And I think it is still an unsolved problem today where whether you are a retailer or a telecommunications vendor, et cetera, managing your footprints of tens of thousands of stores as a retailer is solved in a very archaic way today because the tool set, the traditional management tooling that's designed to manage, let's say your data centers is not quite, you know, it gets retrofitted to manage these environments and it's kind of (indistinct), you know, round hole kind of situation. So I think the top most challenges are being able to manage this large footprint of micro data centers in the most effective way, right? Where you have latency solved, you have the issue of a small footprint of resources at thousands of locations, and how do you fit in your containerized or virtualized or other workloads in the most effective way? To have that solved, you know, you need to have the security aspects around these environments. So there's a number of challenges that kind of go hand-in-hand, like what is the most effective storage which, you know, can still be deployed in that compact environment? And then cost becomes a related point. >> Costs are huge 'cause if you move data, you're going to have cost. If you move compute, it's not as much. If you have an operating system concept, is the data and state or stateless? These are huge problems. This is an operating system, don't you think? >> Yeah, yeah, absolutely. It's a distributed operating system where it's multiple layers, you know, of ways of solving that problem just in the context of data like you said having an intermediate caching layer so that you know, you still do just in time processing at those edge locations and then send some data back and that's where you can incorporate some AI or other technologies, et cetera. So, you know, just data itself is a multi-layer problem there. >> Well, it's great to have you on this program. Advice final question for you, for the folks watching technical degrees, most people are finding out in elementary school, in middle school, a lot more robotics programs, a lot more tech exposure, you know, not just in Silicon Valley, but all around, you're starting to see that. What's your advice for young girls and people who are getting either coming into the workforce re-skilled as they get enter, it's easy to enter now as they stay in and how do they stay in? What's your advice? >> Yeah, so, you know, I think it's the same goal. I have two little daughters and it's the same principle I try to follow with them, which is I want to give them as much exposure as possible without me having any predefined ideas about what you know, they should pursue. But it's I think that exposure that you need to find for yourself one way or the other, because you really never know. Like, you know, my husband landed into computer science through a very, very meandering path, and then he discovered later in his career that it's the absolute calling for him. It's something he's very good at, right? But so... You know, it's... You know, the reason why he thinks he didn't pick that path early is because he didn't quite have that exposure. So it's that exposure to various things, even things you think that you may not be interested in is the most important aspect. And then things just naturally lend themselves. >> Find your calling, superpower, strengths. Know what you don't want to do. (John chuckles) >> Yeah, exactly. >> Great advice. Thank you so much for coming on and contributing to our program for International Women's Day. Great to see you in this context. We'll see you on theCUBE. We'll talk more about Platform9 when we go KubeCon or some other time. But thank you for sharing your personal perspective and experiences for our audience. Thank you. >> Fantastic. Thanks for having me, John. Always great. >> This is theCUBE's coverage of International Women's Day, I'm John Furrier. We're talking to the leaders in the industry, from developers to the boardroom and everything in between and getting the stories out there making an impact. Thanks for watching. (bright upbeat music)
SUMMARY :
and she's also the VP of Thank you for having me. I love interviewing you for many reasons. Yeah, so , you know, And then you get hooked on it. Did you find any blockers in your way? I think there were maybe I would say after, you know, Okay, so you got an pathway or you just decided, systems, you know, How do you talk to the I think one is that it's, you know, you got now all kinds of that you really have no How did you deal with that? And I've even, you know, And how do you develop to a level of discipline that you So I have to ask you the And then the second is, you know, reading Let me ask you a question. that I love, you know, and you got the big company. Yeah, so, you know, I mean, stuff you guys did and were doing. Which is you can never predict kind of the same thing. which is what we pioneered, like you said, Now you look back at your and how do you fit in your Costs are huge 'cause if you move data, just in the context of data like you said a lot more tech exposure, you know, Yeah, so, you know, I Know what you don't want to do. Great to see you in this context. Thanks for having me, John. and getting the stories
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
2012 | DATE | 0.99+ |
20 | QUANTITY | 0.99+ |
2013 | DATE | 0.99+ |
Mendel Rosenblum | PERSON | 0.99+ |
Sirish Raghuram | PERSON | 0.99+ |
John | PERSON | 0.99+ |
50% | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
Roopak Parikh | PERSON | 0.99+ |
Platform9 Systems | ORGANIZATION | 0.99+ |
International Women's Day | EVENT | 0.99+ |
Java | TITLE | 0.99+ |
OpenStack | ORGANIZATION | 0.99+ |
Stanford | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
second year | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
thousands | QUANTITY | 0.99+ |
both companies | QUANTITY | 0.99+ |
C++ | TITLE | 0.99+ |
10 years ago | DATE | 0.99+ |
'17 | DATE | 0.99+ |
today | DATE | 0.98+ |
KubeCon | EVENT | 0.98+ |
two little daughters | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
three | QUANTITY | 0.98+ |
25 girls | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
first year | QUANTITY | 0.98+ |
Cal Berkeley | ORGANIZATION | 0.98+ |
Bich | PERSON | 0.98+ |
two things | QUANTITY | 0.98+ |
four | QUANTITY | 0.98+ |
two degrees | QUANTITY | 0.98+ |
single girl | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
second | QUANTITY | 0.98+ |
about eight years | QUANTITY | 0.98+ |
single | QUANTITY | 0.97+ |
Oracle | ORGANIZATION | 0.97+ |
first time | QUANTITY | 0.97+ |
one friend | QUANTITY | 0.96+ |
5G | ORGANIZATION | 0.96+ |
one point | QUANTITY | 0.94+ |
first one | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
tens | QUANTITY | 0.92+ |
a year | QUANTITY | 0.91+ |
tens of thousands of stores | QUANTITY | 0.89+ |
Palo Alto, California Studio | LOCATION | 0.88+ |
Platform9 | ORGANIZATION | 0.88+ |
Kubernetes | ORGANIZATION | 0.86+ |
about at least 120 | QUANTITY | 0.85+ |
Mobile World Congress | EVENT | 0.82+ |
130 students | QUANTITY | 0.82+ |
hundreds of large data centers | QUANTITY | 0.8+ |
80, 90% | QUANTITY | 0.79+ |
VMware | TITLE | 0.73+ |
past 10 years | DATE | 0.72+ |
Nancy Wang & Kate Watts | International Women's Day
>> Hello everyone. Welcome to theCUBE's coverage of International Women's Day. I'm John Furrier, host of theCUBE been profiling the leaders in the technology world, women in technology from developers to the boardroom, everything in between. We have two great guests promoting in from Malaysia. Nancy Wang is the general manager, also CUBE alumni from AWS Data Protection, and founder and board chair of Advancing Women in Tech, awit.org. And of course Kate Watts who's the executive director of Advancing Women in Tech.org. So it's awit.org. Nancy, Kate, thanks for coming all the way across remotely from Malaysia. >> Of course, we're coming to you as fast as our internet bandwidth will allow us. And you know, I'm just thrilled today that you get to see a whole nother aspect of my life, right? Because typically we talk about AWS, and here we're talking about a topic near and dear to my heart. >> Well, Nancy, I love the fact that you're spending a lot of time taking the empowerment to go out and help the industries and helping with the advancement of women in tech. Kate, the executive director it's a 501C3, it's nonprofit, dedicating to accelerating the careers of women in groups in tech. Can you talk about the organization? >> Yes, I can. So Advancing Women in Tech was founded in 2017 in order to fix some of the pathway problems that we're seeing on the rise to leadership in the industry. And so we specifically focus on supporting mid-level women in technical roles, get into higher positions. We do that in a few different ways through mentorship programs through building technical skills and by connecting people to a supportive community. So you have your peer network and then a vertical sort of relationships to help you navigate the next steps in your career. So to date we've served about 40,000 individuals globally and we're just looking to expand our reach and impact and be able to better support women in the industry. >> Nancy, talk about the creation, the origination story. How'd this all come together? Obviously the momentum, everyone in the industry's been focused on this for a long time. Where did AWIT come from? Advancing Women in Technology, that's the acronym. Advancing Women in Technology.org, where'd it come from? What's the origination story? >> Yeah, so AWIT really originated from this desire that I had, to Kate's point around, well if you look around right and you know, don't take my word for it, right? Look at stats, look at news reports, or just frankly go on your LinkedIn and see how many women in underrepresented groups are in senior technical leadership roles right out in the companies whose names we all know. And so that was my case back in 2016. And so when I first got the idea and back then I was actually at Google, just another large tech company in the valley, right? It was about how do we get more role models, how we get more, for example, women into leadership roles so they can bring up the next generation, right? And so this is actually part of a longer speech that I'm about to give on Wednesday and part of the US State Department speaker program. In fact, that's why Kate and I are here in Malaysia right now is working with over 200 women entrepreneurs from all over in Southeast Asia, including Malaysia Philippines, Vietnam, Borneo, you know, so many countries where having more women entrepreneurs can help raise the GDP right, and that fits within our overall mission of getting more women into top leadership roles in tech. >> You know, I was talking about Teresa Carlson she came on the program as well for this year this next season we're going to do. And she mentioned the decision between the US progress and international. And she's saying as much as it's still bad numbers, it's worse than outside the United States and needs to get better. Can you comment on the global aspect? You brought that up. I think it's super important to highlight that it's just not one area, it's a global evolution. >> Absolutely, so let me start, and I'd love to actually have Kate talk about our current programs and all of the international groups that we're working with. So as Teresa aptly mentioned there is so much work to be done not just outside the US and North Americas where typically tech nonprofits will focus, but rather if you think about the one to end model, right? For example when I was doing the product market fit workshop for the US State Department I had women dialing in from rice fields, right? So let me just pause there for a moment. They were holding their cell phones up near towers near trees just so that they can get a few minutes of time with me to do a workshop and how to accelerate their business. So if you don't call that the desire to propel oneself or accelerate oneself, not sure what is, right. And so it's really that passion that drove me to spend the next week and a half here working with local entrepreneurs working with policy makers so we can take advantage and really leverage that passion that people have, right? To accelerate more business globally. And so that's why, you know Kate will be leading our contingent with the United Nations Women Group, right? That is focused on women's economic empowerment because that's super important, right? One aspect can be sure, getting more directors, you know vice presidents into companies like Google and Amazon. But another is also how do you encourage more women around the world to start businesses, right? To reach economic and freedom independence, right? To overcome some of the maybe social barriers to becoming a leader in their own country. >> Yes, and if I think about our own programs and our model of being very intentional about supporting the learning development and skills of women and members of underrepresented groups we focused very much on providing global access to a number of our programs. For instance, our product management certification on Coursera or engineering management our upcoming women founders accelerator. We provide both access that you can get from anywhere. And then also very intentional programming that connects people into the networks to be able to further their networks and what they've learned through the skills online, so. >> Yeah, and something Kate just told me recently is these courses that Kate's mentioning, right? She was instrumental in working with the American Council on Education and so that our learners can actually get up to six college credits for taking these courses on product management engineering management, on cloud product management. And most recently we had our first organic one of our very first organic testimonials was from a woman's tech bootcamp in Nigeria, right? So if you think about the worldwide impact of these upskilling courses where frankly in the US we might take for granted right around the world as I mentioned, there are women dialing in from rice patties from other, you know, for example, outside the, you know corporate buildings in order to access this content. >> Can you think about the idea of, oh sorry, go ahead. >> Go ahead, no, go ahead Kate. >> I was going to say, if you can't see it, you can't become it. And so we are very intentional about ensuring that we have we're spotlighting the expertise of women and we are broadcasting that everywhere so that anybody coming up can gain the skills and the networks to be able to succeed in this industry. >> We'll make sure we get those links so we can promote them. Obviously we feel the same way getting the word out. I think a couple things I'd like to ask you guys cause I think you hit a great point. One is the economic advantage the numbers prove that diverse teams perform better number one, that's clear. So good point there. But I want to get your thoughts on the entrepreneurial equation. You mentioned founders and startups and there's also different makeups in different countries. It's not like the big corporations sometimes it's smaller business in certain areas the different cultures have different business sizes and business types. How do you guys see that factoring in outside the United States, say the big tech companies? Okay, yeah. The easy lower the access to get in education than stay with them, in other countries is it the same or is it more diverse in terms of business? >> So what really actually got us started with the US State Department was around our work with women founders. And I love for Kate to actually share her experience working with AWS startups in that capacity. But frankly, you know, we looked at the content and the mentor programs that were providing women who wanted to be executives, you know, quickly realize a lot of those same skills such as finding customers, right? Scaling your product and building channels can also apply to women founders, not just executives. And so early supporters of our efforts from firms such as Moderna up in Seattle, Emergence Ventures, Decibel Ventures in, you know, the Bay Area and a few others that we're working with right now. Right, they believed in the mission and really helped us scale out what is now our existing platform and offerings for women founders. >> Those are great firms by the way. And they also are very founder friendly and also understand the global workforce. I mean, that's a whole nother dimension. Okay, what's your reaction to all that? >> Yes, we have been very intentional about taking the product expertise and the learnings of women and in our network, we first worked with AWS startups to support the development of the curriculum for the recent accelerator for women founders that was held last spring. And so we're able to support 25 founders and also brought in the expertise of about 20 or 30 women from Advancing Women in Tech to be able to be the lead instructors and mentors for that. And so we have really realized that with this network and this individual sort of focus on product expertise building strong teams, we can take that information and bring it to folks everywhere. And so there is very much the intentionality of allowing founders allowing individuals to take the lessons and bring it to their individual circumstances and the cultures in which they are operating. But the product sense is a skill that we can support the development of and we're proud to do so. >> That's awesome. Nancy, I want to ask you some never really talk about data storage and AWS cloud greatness and goodness, here's different and you also work full-time at AWS and you're the founder or the chairman of this great organization. How do you balance both and do you get, they're getting behind you on this, Amazon is getting behind you on this. >> Well, as I say it's always easier to negotiate on the way in. But jokes aside, I have to say the leadership has been tremendously supportive. If you think about, for example, my leaders Wayne Duso who's also been on the show multiple times, Bill Vaas who's also been on the show multiple times, you know they're both founders and also operators entrepreneurs at heart. So they understand that it is important, right? For all of us, it's really incumbent on all of us who are in positions to do so, to create a pathway for more people to be in leadership roles for more people to be successful entrepreneurs. So, no, I mean if you just looked at LinkedIn they're always uploading my vote so they reach to more audiences. And frankly they're rooting for us back home in the US while we're in Malaysia this week. >> That's awesome. And I think that's a good culture to have that empowerment and I think that's very healthy. What's next for you guys? What's on the agenda? Take us through the activities. I know that you got a ton of things happening. You got your event out there, which is why you're out there. There's a bunch of other activities. I think you guys call it the Advancing Women in Tech week. >> Yes, this week we are having a week of programming that you can check out at Advancing Women in Tech.org. That is spotlighting the expertise of a number of women in our space. So it is three days of programming Tuesday, Wednesday and Thursday if you are in the US so the seventh through the ninth, but available globally. We are also going to be in New York next week for the event at the UN and are looking to continue to support our mentorship programs and also our work supporting women founders throughout the year. >> All right. I have to ask you guys if you don't mind get a little market data so you can share with us here at theCUBE. What are you hearing this year that's different in the conversation space around the topics, the interests? Obviously I've seen massive amounts of global acceleration around conversations, more video, things like this more stories are scaling, a lot more LinkedIn activity. It just seems like it's a lot different this year. Can you guys share any kind of current trends you're seeing relative to the conversations and topics being discussed across the the community? >> Well, I think from a needle moving perspective, right? I think due to the efforts of wonderful organizations including the Q for spotlighting all of these awesome women, right? Trailblazing women and the nonprofits the government entities that we work with there's definitely more emphasis on creating access and creating pathways. So that's probably one thing that you're seeing is more women, more investors posting about their activities. Number two, from a global trend perspective, right? The rise of women in security. I noticed that on your agenda today, you had Lena Smart who's a good friend of mine chief information security officer at MongoDB, right? She and I are actually quite involved in helping founders especially early stage founders in the security space. And so globally from a pure technical perspective, right? There's right more increasing regulations around data privacy, data sovereignty, right? For example, India's in a few weeks about to get their first data protection regulation there locally. So all of that is giving rise to yet another wave of opportunity and we want women founders uniquely positioned to take advantage of that opportunity. >> I love it. Kate, reaction to that? I mean founders, more pathways it sounds like a neural network, it sounds like AI enabled. >> Yes, and speaking of AI, with the rise of that we are also hearing from many community members the importance of continuing to build their skills upskill learn to be able to keep up with the latest trends. There's a lot of people wondering what does this mean for my own career? And so they're turning to organizations like Advancing Women in Tech to find communities to both learn the latest information, but also build their networks so that they are able to move forward regardless of what the industry does. >> I love the work you guys are doing. It's so impressive. I think the economic angle is new it's more amplified this year. It's always kind of been there and continues to be. What do you guys hope for by next year this time what do you hope to see different from a needle moving perspective, to use your word Nancy, for next year? What's the visual output in your mind? >> I want to see real effort made towards 50-50 representation in all tech leadership roles. And I'd like to see that happen by 2050. >> Kate, anything on your end? >> I love that. I'm going to go a little bit more touchy-feely. I want everybody in our space to understand that the skills that they build and that the networks they have carry with them regardless of wherever they go. And so to be able to really lean in and learn and continue to develop the career that you want to have. So whether that be at a large organization or within your own business, that you've got the potential to move forward on that within you. >> Nancy, Kate, thank you so much for your contribution. I'll give you the final word. Put a plug in for the organization. What are you guys looking for? Any kind of PSA you want to share with the folks watching? >> Absolutely, so if you're in a position to be a mentor, join as a mentor, right? Help elevate and accelerate the next generation of women leaders. If you're an investor help us invest in more women started companies, right? Women founded startups and lastly, if you are women looking to accelerate your career, come join our community. We have resources, we have mentors and who we have investors who are willing to come in on the ground floor and help you accelerate your business. >> Great work. Thank you so much for participating in our International Women's Day 23 program and we'd look to keep this going quarterly. We'll see you next year, next time. Thanks for coming on. Appreciate it. >> Thanks so much John. >> Thank you. >> Okay, women leaders here. >> Nancy: Thanks for having us >> All over the world, coming together for a great celebration but really highlighting the accomplishments, the pathways the investment, the mentoring, everything in between. It's theCUBE. Bring as much as we can. I'm John Furrier, your host. Thanks for watching.
SUMMARY :
in the technology world, that you get to see a whole nother aspect of time taking the empowerment to go on the rise to leadership in the industry. in the industry's been focused of the US State Department And she mentioned the decision and all of the international into the networks to be able to further in the US we might take for Can you think about the and the networks to be able The easy lower the access to get and the mentor programs Those are great firms by the way. and also brought in the or the chairman of this in the US while we're I know that you got a of programming that you can check I have to ask you guys if you don't mind founders in the security space. Kate, reaction to that? of continuing to build their skills I love the work you guys are doing. And I'd like to see that happen by 2050. and that the networks Any kind of PSA you want to and accelerate the next Thank you so much for participating All over the world,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Kate | PERSON | 0.99+ |
Nancy | PERSON | 0.99+ |
Teresa | PERSON | 0.99+ |
Bill Vaas | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Teresa Carlson | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Malaysia | LOCATION | 0.99+ |
Kate Watts | PERSON | 0.99+ |
Nigeria | LOCATION | 0.99+ |
Nancy Wang | PERSON | 0.99+ |
Wayne Duso | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Moderna | ORGANIZATION | 0.99+ |
Wednesday | DATE | 0.99+ |
American Council on Education | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Lena Smart | PERSON | 0.99+ |
2017 | DATE | 0.99+ |
Vietnam | LOCATION | 0.99+ |
Borneo | LOCATION | 0.99+ |
Emergence Ventures | ORGANIZATION | 0.99+ |
New York | LOCATION | 0.99+ |
2016 | DATE | 0.99+ |
United Nations Women Group | ORGANIZATION | 0.99+ |
Decibel Ventures | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
United States | LOCATION | 0.99+ |
Southeast Asia | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
2050 | DATE | 0.99+ |
MongoDB | ORGANIZATION | 0.99+ |
US State Department | ORGANIZATION | 0.99+ |
next year | DATE | 0.99+ |
International Women's Day | EVENT | 0.99+ |
25 founders | QUANTITY | 0.99+ |
Seattle | LOCATION | 0.99+ |
North Americas | LOCATION | 0.99+ |
AWS Data Protection | ORGANIZATION | 0.99+ |
CUBE | ORGANIZATION | 0.99+ |
three days | QUANTITY | 0.99+ |
seventh | QUANTITY | 0.99+ |
Bay Area | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
next week | DATE | 0.99+ |
30 women | QUANTITY | 0.98+ |
One aspect | QUANTITY | 0.98+ |
Thursday | DATE | 0.98+ |
this year | DATE | 0.98+ |
about 40,000 individuals | QUANTITY | 0.98+ |
this year | DATE | 0.98+ |
last spring | DATE | 0.98+ |
this week | DATE | 0.98+ |
Tuesday | DATE | 0.98+ |
Phil Kippen, Snowflake, Dave Whittington, AT&T & Roddy Tranum, AT&T | | MWC Barcelona 2023
(gentle music) >> Narrator: "TheCUBE's" live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (upbeat music) >> Hello everybody, welcome back to day four of "theCUBE's" coverage of MWC '23. We're here live at the Fira in Barcelona. Wall-to-wall coverage, John Furrier is in our Palo Alto studio, banging out all the news. Really, the whole week we've been talking about the disaggregation of the telco network, the new opportunities in telco. We're really excited to have AT&T and Snowflake here. Dave Whittington is the AVP, at the Chief Data Office at AT&T. Roddy Tranum is the Assistant Vice President, for Channel Performance Data and Tools at AT&T. And Phil Kippen, the Global Head Of Industry-Telecom at Snowflake, Snowflake's new telecom business. Snowflake just announced earnings last night. Typical Scarpelli, they beat earnings, very conservative guidance, stocks down today, but we like Snowflake long term, they're on that path to 10 billion. Guys, welcome to "theCUBE." Thanks so much >> Phil: Thank you. >> for coming on. >> Dave and Roddy: Thanks Dave. >> Dave, let's start with you. The data culture inside of telco, We've had this, we've been talking all week about this monolithic system. Super reliable. You guys did a great job during the pandemic. Everything shifting to landlines. We didn't even notice, you guys didn't miss a beat. Saved us. But the data culture's changing inside telco. Explain that. >> Well, absolutely. So, first of all IoT and edge processing is bringing forth new and exciting opportunities all the time. So, we're bridging the world between a lot of the OSS stuff that we can do with edge processing. But bringing that back, and now we're talking about working, and I would say traditionally, we talk data warehouse. Data warehouse and big data are now becoming a single mesh, all right? And the use cases and the way you can use those, especially I'm taking that edge data and bringing it back over, now I'm running AI and ML models on it, and I'm pushing back to the edge, and I'm combining that with my relational data. So that mesh there is making all the difference. We're getting new use cases that we can do with that. And it's just, and the volume of data is immense. >> Now, I love ChatGPT, but I'm hoping your data models are more accurate than ChatGPT. I never know. Sometimes it's really good, sometimes it's really bad. But enterprise, you got to be clean with your AI, don't you? >> Not only you have to be clean, you have to monitor it for bias and be ethical about it. We're really good about that. First of all with AT&T, our brand is Platinum. We take care of that. So, we may not be as cutting-edge risk takers as others, but when we go to market with an AI or an ML or a product, it's solid. >> Well hey, as telcos go, you guys are leaning into the Cloud. So I mean, that's a good starting point. Roddy, explain your role. You got an interesting title, Channel Performance Data and Tools, what's that all about? >> So literally anything with our consumer, retail, concenters' channels, all of our channels, from a data perspective and metrics perspective, what it takes to run reps, agents, all the way to leadership levels, scorecards, how you rank in the business, how you're driving the business, from sales, service, customer experience, all that data infrastructure with our great partners on the CDO side, as well as Snowflake, that comes from my team. >> And that's traditionally been done in a, I don't mean the pejorative, but we're talking about legacy, monolithic, sort of data warehouse technologies. >> Absolutely. >> We have a love-hate relationship with them. It's what we had. It's what we used, right? And now that's evolving. And you guys are leaning into the Cloud. >> Dramatic evolution. And what Snowflake's enabled for us is impeccable. We've talked about having, people have dreamed of one data warehouse for the longest time and everything in one system. Really, this is the only way that becomes a reality. The more you get in Snowflake, we can have golden source data, and instead of duplicating that 50 times across AT&T, it's in one place, we just share it, everybody leverages it, and now it's not duplicated, and the process efficiency is just incredible. >> But it really hinges on that separation of storage and compute. And we talk about the monolithic warehouse, and one of the nightmares I've lived with, is having a monolithic warehouse. And let's just go with some of my primary, traditional customers, sales, marketing and finance. They are leveraging BSS OSS data all the time. For me to coordinate a deployment, I have to make sure that each one of these units can take an outage, if it's going to be a long deployment. With the separation of storage, compute, they own their own compute cluster. So I can move faster for these people. 'Cause if finance, I can implement his code without impacting finance or marketing. This brings in CI/CD to more reality. It brings us faster to market with more features. So if he wants to implement a new comp plan for the field reps, or we're reacting to the marketplace, where one of our competitors has done something, we can do that in days, versus waiting weeks or months. >> And we've reported on this a lot. This is the brilliance of Snowflake's founders, that whole separation >> Yep. >> from compute and data. I like Dave, that you're starting with sort of the business flexibility, 'cause there's a cost element of this too. You can dial down, you can turn off compute, and then of course the whole world said, "Hey, that's a good idea." And a VC started throwing money at Amazon, but Redshift said, "Oh, we can do that too, sort of, can't turn off the compute." But I want to ask you Phil, so, >> Sure. >> it looks from my vantage point, like you're taking your Data Cloud message which was originally separate compute from storage simplification, now data sharing, automated governance, security, ultimately the marketplace. >> Phil: Right. >> Taking that same model, break down the silos into telecom, right? It's that same, >> Mm-hmm. >> sorry to use the term playbook, Frank Slootman tells me he doesn't use playbooks, but he's not a pattern matcher, but he's a situational CEO, he says. But the situation in telco calls for that type of strategy. So explain what you guys are doing in telco. >> I think there's, so, what we're launching, we launched last week, and it really was three components, right? So we had our platform as you mentioned, >> Dave: Mm-hmm. >> and that platform is being utilized by a number of different companies today. We also are adding, for telecom very specifically, we're adding capabilities in marketplace, so that service providers can not only use some of the data and apps that are in marketplace, but as well service providers can go and sell applications or sell data that they had built. And then as well, we're adding our ecosystem, it's telecom-specific. So, we're bringing partners in, technology partners, and consulting and services partners, that are very much focused on telecoms and what they do internally, but also helping them monetize new services. >> Okay, so it's not just sort of generic Snowflake into telco? You have specific value there. >> We're purposing the platform specifically for- >> Are you a telco guy? >> I am. You are, okay. >> Total telco guy absolutely. >> So there you go. You see that Snowflake is actually an interesting organizational structure, 'cause you're going after verticals, which is kind of rare for a company of your sort of inventory, I'll say, >> Absolutely. >> I don't mean that as a negative. (Dave laughs) So Dave, take us through the data journey at AT&T. It's a long history. You don't have to go back to the 1800s, but- (Dave laughs) >> Thank you for pointing out, we're a 149-year-old company. So, Jesse James was one of the original customers, (Dave laughs) and we have no longer got his data. So, I'll go back. I've been 17 years singular AT&T, and I've watched it through the whole journey of, where the monolithics were growing, when the consolidation of small, wireless carriers, and we went through that boom. And then we've gone through mergers and acquisitions. But, Hadoop came out, and it was going to solve all world hunger. And we had all the aspects of, we're going to monetize and do AI and ML, and some of the things we learned with Hadoop was, we had this monolithic warehouse, we had this file-based-structured Hadoop, but we really didn't know how to bring this all together. And we were bringing items over to the relational, and we were taking the relational and bringing it over to the warehouse, and trying to, and it was a struggle. Let's just go there. And I don't think we were the only company to struggle with that, but we learned a lot. And so now as tech is finally emerging, with the cloud, companies like Snowflake, and others that can handle that, where we can create, we were discussing earlier, but it becomes more of a conducive mesh that's interoperable. So now we're able to simplify that environment. And the cloud is a big thing on that. 'Cause you could not do this on-prem with on-prem technologies. It would be just too cost prohibitive, and too heavy of lifting, going back and forth, and managing the data. The simplicity the cloud brings with a smaller set of tools, and I'll say in the data space specifically, really allows us, maybe not a single instance of data for all use cases, but a greatly reduced ecosystem. And when you simplify your ecosystem, you simplify speed to market and data management. >> So I'm going to ask you, I know it's kind of internal organizational plumbing, but it'll inform my next question. So, Dave, you're with the Chief Data Office, and Roddy, you're kind of, you all serve in the business, but you're really serving the, you're closer to those guys, they're banging on your door for- >> Absolutely. I try to keep the 130,000 users who may or may not have issues sometimes with our data and metrics, away from Dave. And he just gets a call from me. >> And he only calls when he has a problem. He's never wished me happy birthday. (Dave and Phil laugh) >> So the reason I asked that is because, you describe Dave, some of the Hadoop days, and again love-hate with that, but we had hyper-specialized roles. We still do. You've got data engineers, data scientists, data analysts, and you've got this sort of this pipeline, and it had to be this sequential pipeline. I know Snowflake and others have come to simplify that. My question to you is, how is that those roles, how are those roles changing? How is data getting closer to the business? Everybody talks about democratizing business. Are you doing that? What's a real use example? >> From our perspective, those roles, a lot of those roles on my team for years, because we're all about efficiency, >> Dave: Mm-hmm. >> we cut across those areas, and always have cut across those areas. So now we're into a space where things have been simplified, data processes and copying, we've gone from 40 data processes down to five steps now. We've gone from five steps to one step. We've gone from days, now take hours, hours to minutes, minutes to seconds. Literally we're seeing that time in and time out with Snowflake. So these resources that have spent all their time on data engineering and moving data around, are now freed up more on what they have skills for and always have, the data analytics area of the business, and driving the business forward, and new metrics and new analysis. That's some of the great operational value that we've seen here. As this simplification happens, it frees up brain power. >> So, you're pumping data from the OSS, the BSS, the OKRs everywhere >> Everywhere. >> into Snowflake? >> Scheduling systems, you name it. If you can think of what drives our retail and centers and online, all that data, scheduling system, chat data, call center data, call detail data, all of that enters into this common infrastructure to manage the business on a day in and day out basis. >> How are the roles and the skill sets changing? 'Cause you're doing a lot less ETL, you're doing a lot less moving of data around. There were guys that were probably really good at that. I used to joke in the, when I was in the storage world, like if your job is bandaging lungs, you need to look for a new job, right? So, and they did and people move on. So, are you able to sort of redeploy those assets, and those people, those human resources? >> These folks are highly skilled. And we were talking about earlier, SQL hasn't gone away. Relational databases are not going away. And that's one thing that's made this migration excellent, they're just transitioning their skills. Experts in legacy systems are now rapidly becoming experts on the Snowflake side. And it has not been that hard a transition. There are certainly nuances, things that don't operate as well in the cloud environment that we have to learn and optimize. But we're making that transition. >> Dave: So just, >> Please. >> within the Chief Data Office we have a couple of missions, and Roddy is a great partner and an example of how it works. We try to bring the data for democratization, so that we have one interface, now hopefully know we just have a logical connection back to these Snowflake instances that we connect. But we're providing that governance and cleansing, and if there's a business rule at the enterprise level, we provide it. But the goal at CDO is to make sure that business units like Roddy or marketing or finance, that they can come to a platform that's reliable, robust, and self-service. I don't want to be in his way. So I feel like I'm providing a sub-level of platform, that he can come to and anybody can come to, and utilize, that they're not having to go back and undo what's in Salesforce, or ServiceNow, or in our billers. So, I'm sort of that layer. And then making sure that that ecosystem is robust enough for him to use. >> And that self-service infrastructure is predominantly through the Azure Cloud, correct? >> Dave: Absolutely. >> And you work on other clouds, but it's predominantly through Azure? >> We're predominantly in Azure, yeah. >> Dave: That's the first-party citizen? >> Yeah. >> Okay, I like to think in terms sometimes of data products, and I know you've mentioned upfront, you're Gold standard or Platinum standard, you're very careful about personal information. >> Dave: Yeah. >> So you're not trying to sell, I'm an AT&T customer, you're not trying to sell my data, and make money off of my data. So the value prop and the business case for Snowflake is it's simpler. You do things faster, you're in the cloud, lower cost, et cetera. But I presume you're also in the business, AT&T, of making offers and creating packages for customers. I look at those as data products, 'cause it's not a, I mean, yeah, there's a physical phone, but there's data products behind it. So- >> It ultimately is, but not everybody always sees it that way. Data reporting often can be an afterthought. And we're making it more on the forefront now. >> Yeah, so I like to think in terms of data products, I mean even if the financial services business, it's a data business. So, if we can think about that sort of metaphor, do you see yourselves as data product builders? Do you have that, do you think about building products in that regard? >> Within the Chief Data Office, we have a data product team, >> Mm-hmm. >> and by the way, I wouldn't be disingenuous if I said, oh, we're very mature in this, but no, it's where we're going, and it's somewhat of a journey, but I've got a peer, and their whole job is to go from, especially as we migrate from cloud, if Roddy or some other group was using tables three, four and five and joining them together, it's like, "Well look, this is an offer for data product, so let's combine these and put it up in the cloud, and here's the offer data set product, or here's the opportunity data product," and it's a journey. We're on the way, but we have dedicated staff and time to do this. >> I think one of the hardest parts about that is the organizational aspects of it. Like who owns the data now, right? It used to be owned by the techies, and increasingly the business lines want to have access, you're providing self-service. So there's a discussion about, "Okay, what is a data product? Who's responsible for that data product? Is it in my P&L or your P&L? Somebody's got to sign up for that number." So, it sounds like those discussions are taking place. >> They are. And, we feel like we're more the, and CDO at least, we feel more, we're like the guardians, and the shepherds, but not the owners. I mean, we have a role in it all, but he owns his metrics. >> Yeah, and even from our perspective, we see ourselves as an enabler of making whatever AT&T wants to make happen in terms of the key products and officers' trade-in offers, trade-in programs, all that requires this data infrastructure, and managing reps and agents, and what they do from a channel performance perspective. We still ourselves see ourselves as key enablers of that. And we've got to be flexible, and respond quickly to the business. >> I always had empathy for the data engineer, and he or she had to service all these different lines of business with no business context. >> Yeah. >> Like the business knows good data from bad data, and then they just pound that poor individual, and they're like, "Okay, I'm doing my best. It's just ones and zeros to me." So, it sounds like that's, you're on that path. >> Yeah absolutely, and I think, we do have refined, getting more and more refined owners of, since Snowflake enables these golden source data, everybody sees me and my organization, channel performance data, go to Roddy's team, we have a great team, and we go to Dave in terms of making it all happen from a data infrastructure perspective. So we, do have a lot more refined, "This is where you go for the golden source, this is where it is, this is who owns it. If you want to launch this product and services, and you want to manage reps with it, that's the place you-" >> It's a strong story. So Chief Data Office doesn't own the data per se, but it's your responsibility to provide the self-service infrastructure, and make sure it's governed properly, and in as automated way as possible. >> Well, yeah, absolutely. And let me tell you more, everybody talks about single version of the truth, one instance of the data, but there's context to that, that we are taking, trying to take advantage of that as we do data products is, what's the use case here? So we may have an entity of Roddy as a prospective customer, and we may have a entity of Roddy as a customer, high-value customer over here, which may have a different set of mix of data and all, but as a data product, we can then create those for those specific use cases. Still point to the same data, but build it in different constructs. One for marketing, one for sales, one for finance. By the way, that's where your data engineers are struggling. >> Yeah, yeah, of course. So how do I serve all these folks, and really have the context-common story in telco, >> Absolutely. >> or are these guys ahead of the curve a little bit? Or where would you put them? >> I think they're definitely moving a lot faster than the industry is generally. I think the enabling technologies, like for instance, having that single copy of data that everybody sees, a single pane of glass, right, that's definitely something that everybody wants to get to. Not many people are there. I think, what AT&T's doing, is most definitely a little bit further ahead than the industry generally. And I think the successes that are coming out of that, and the learning experiences are starting to generate momentum within AT&T. So I think, it's not just about the product, and having a product now that gives you a single copy of data. It's about the experiences, right? And now, how the teams are getting trained, domains like network engineering for instance. They typically haven't been a part of data discussions, because they've got a lot of data, but they're focused on the infrastructure. >> Mm. >> So, by going ahead and deploying this platform, for platform's purpose, right, and the business value, that's one thing, but also to start bringing, getting that experience, and bringing new experience in to help other groups that traditionally hadn't been data-centric, that's also a huge step ahead, right? So you need to enable those groups. >> A big complaint of course we hear at MWC from carriers is, "The over-the-top guys are killing us. They're riding on our networks, et cetera, et cetera. They have all the data, they have all the client relationships." Do you see your client relationships changing as a result of sort of your data culture evolving? >> Yes, I'm not sure I can- >> It's a loaded question, I know. >> Yeah, and then I, so, we want to start embedding as much into our network on the proprietary value that we have, so we can start getting into that OTT play, us as any other carrier, we have distinct advantages of what we can do at the edge, and we just need to start exploiting those. But you know, 'cause whether it's location or whatnot, so we got to eat into that. Historically, the network is where we make our money in, and we stack the services on top of it. It used to be *69. >> Dave: Yeah. >> If anybody remembers that. >> Dave: Yeah, of course. (Dave laughs) >> But you know, it was stacked on top of our network. Then we stack another product on top of it. It'll be in the edge where we start providing distinct values to other partners as we- >> I mean, it's a great business that you're in. I mean, if they're really good at connectivity. >> Dave: Yeah. >> And so, it sounds like it's still to be determined >> Dave: Yeah. >> where you can go with this. You have to be super careful with private and for personal information. >> Dave: Yep. >> Yeah, but the opportunities are enormous. >> There's a lot. >> Yeah, particularly at the edge, looking at, private networks are just an amazing opportunity. Factories and name it, hospital, remote hospitals, remote locations. I mean- >> Dave: Connected cars. >> Connected cars are really interesting, right? I mean, if you start communicating car to car, and actually drive that, (Dave laughs) I mean that's, now we're getting to visit Xen Fault Tolerance people. This is it. >> Dave: That's not, let's hold the traffic. >> Doesn't scare me as much as we actually learn. (all laugh) >> So how's the show been for you guys? >> Dave: Awesome. >> What're your big takeaways from- >> Tremendous experience. I mean, someone who doesn't go outside the United States much, I'm a homebody. The whole experience, the whole trip, city, Mobile World Congress, the technologies that are out here, it's been a blast. >> Anything, top two things you learned, advice you'd give to others, your colleagues out in general? >> In general, we talked a lot about technologies today, and we talked a lot about data, but I'm going to tell you what, the accelerator that you cannot change, is the relationship that we have. So when the tech and the business can work together toward a common goal, and it's a partnership, you get things done. So, I don't know how many CDOs or CIOs or CEOs are out there, but this connection is what accelerates and makes it work. >> And that is our audience Dave. I mean, it's all about that alignment. So guys, I really appreciate you coming in and sharing your story in "theCUBE." Great stuff. >> Thank you. >> Thanks a lot. >> All right, thanks everybody. Thank you for watching. I'll be right back with Dave Nicholson. Day four SiliconANGLE's coverage of MWC '23. You're watching "theCUBE." (gentle music)
SUMMARY :
that drive human progress. And Phil Kippen, the Global But the data culture's of the OSS stuff that we But enterprise, you got to be So, we may not be as cutting-edge Channel Performance Data and all the way to leadership I don't mean the pejorative, And you guys are leaning into the Cloud. and the process efficiency and one of the nightmares I've lived with, This is the brilliance of the business flexibility, like you're taking your Data Cloud message But the situation in telco and that platform is being utilized You have specific value there. I am. So there you go. I don't mean that as a negative. and some of the things we and Roddy, you're kind of, And he just gets a call from me. (Dave and Phil laugh) and it had to be this sequential pipeline. and always have, the data all of that enters into How are the roles and in the cloud environment that But the goal at CDO is to and I know you've mentioned upfront, So the value prop and the on the forefront now. I mean even if the and by the way, I wouldn't and increasingly the business and the shepherds, but not the owners. and respond quickly to the business. and he or she had to service Like the business knows and we go to Dave in terms doesn't own the data per se, and we may have a entity and really have the and having a product now that gives you and the business value, that's one thing, They have all the data, on the proprietary value that we have, Dave: Yeah, of course. It'll be in the edge business that you're in. You have to be super careful Yeah, but the particularly at the edge, and actually drive that, let's hold the traffic. much as we actually learn. the whole trip, city, is the relationship that we have. and sharing your story in "theCUBE." Thank you for watching.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Whittington | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Roddy | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Phil | PERSON | 0.99+ |
Phil Kippen | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Jesse James | PERSON | 0.99+ |
AT&T. | ORGANIZATION | 0.99+ |
five steps | QUANTITY | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
50 times | QUANTITY | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Roddy Tranum | PERSON | 0.99+ |
10 billion | QUANTITY | 0.99+ |
one step | QUANTITY | 0.99+ |
17 years | QUANTITY | 0.99+ |
130,000 users | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
1800s | DATE | 0.99+ |
last week | DATE | 0.99+ |
Barcelona | LOCATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
last night | DATE | 0.99+ |
MWC '23 | EVENT | 0.98+ |
telco | ORGANIZATION | 0.98+ |
one system | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
40 data processes | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
one place | QUANTITY | 0.97+ |
P&L | ORGANIZATION | 0.97+ |
telcos | ORGANIZATION | 0.97+ |
CDO | ORGANIZATION | 0.97+ |
149-year-old | QUANTITY | 0.97+ |
five | QUANTITY | 0.97+ |
single | QUANTITY | 0.96+ |
three components | QUANTITY | 0.96+ |
One | QUANTITY | 0.96+ |
Chris Falloon, Dell Technologies | MWC Barcelona 2023
(bright gentle music) >> Announcer: TheCUBE's live coverage is made possible by funding from Dell Technologies, creating technologies that drive human progress. (bright gentle music) >> Hey, everyone. Good to see you. Lisa Martin here with Dave Vellante. This is theCUBE's coverage, day one of MWC 23 from Barcelona, and we're having a great day so far. The theme of this conference, Dave, is velocity. I feel like we've been shot out of a cannon of CUBE content already on day one. We've been talking with... Today's ecosystem day. We've been talking about the ecosystem, the importance of open ecosystem, and why. And we're going to be unpacking that a little bit more next. >> You know, Lisa, what used to be Mobile World Congress and is now MWC, it was never really intended to be sort of a consumer show, but with the ascendancy of smartphones. It kind of... They sucked all the air out of the room. >> Lisa: Yeah. >> But really, we're seeing the enterprise come really into focus now as the telco stack disaggregates, and enterprise is complicated. >> Enterprise is complicated, telecom is complicated. We have a guest here to unpack that with us. Chris Falloon joins us the Senior Managing Director of telecom practice at Dell. Chris, welcome to theCUBE. >> Thanks very much for having me. >> So you've been in the telecom industry for a long time. Talk about some of the things that you've witnessed over the last couple of decades and really help us understand the complexity that is telecom. >> Yeah. Well, nothing, nothing more complex. Look, I got... I was privileged to start my career in telco 20 years ago in Canada working with other telecoms globally. And so I got a good picture of how they operate, what's important to them. But I was... It's come full circle for me. I got into IT and come all the way back now to helping telcos figure out how to operate. And so it's been a great journey. >> What are some of the- >> Dave: You kno- >> Oh sorry, Dave. >> Dave: Please, go ahead. >> I was just going to say unpack some of the complexity that we see now. Obviously, we think telecom, we... And you talked about the consumerization... We have this expectation that we can get anything on our mobile devices 24/7 from any part of the world, but there's a lot of complexity in the industry as it's evolving. What are some of the complexities and how is Dell helping address that? >> Look, I think the transformation from traditional monolithic architectures to cloud-based architectures is maybe the most... The single largest complex transformation any industry's done in the last 20 years. And it's not just a technology transformation, it's critically an operational transformation. And so I think that's really at the heart of it is we've seen a real shift this year. From conversations last year were around how this stuff gets turned on, "Can it work?", "Does it work?", to a conversation around "How does it work?", "How do I operationalize it?", "What are the implications to my teams?". And so we've got teams struggling with knowledge and competency gaps. We've got people figuring out how to get this stuff working at scale. >> Yeah, so I mean, you think about Telcos, you know, a lot of engineers, but a lot of the stuff is done kind of, I call it, in the basement. >> Yeah. >> Kind of hidden, right? And they make it work, right? And that transformation that you're talking about toward this more agile, open ecosystem, moving fast, cloud-native, new services coming in, new monetization models. That does require a different operating model. How similar, given your background in both, you know, IT and Telco, how similar is it to the transformation that occurred in IT in terms of the operation- Operating model, which some companies are still going through? >> Look, I think we're privileged actually to be able to do this 10 years after IT went through it. And there's a lot of patterns that are definitely the same. There's no question there's differences. The applications are far different, the timing and and issues in the RAN are far different, and the distributed size of these deployments is different. But the learnings around how to deploy cloud-native technology, how to organize around these platforms, and back to the operationalization, how to deploy them and operate them at scale, it took IT a decade to figure that out. And hopefully, with the learnings that we've got from that we can rush through it here in a few years or less. >> One of the other big differences, of course, is public policy and regulation, right? You don't really have that so much in the IT world. >> Chris: Right. >> Sometimes you have no regulation. >> Lisa: Yeah. >> You know, Google, Facebook, do whatever you want and we'll figure it out 20 years later. How much of a factor is that in terms of the complexity and are the new Greenfield players... Are they bound by similar sort of restrictions or can they move faster? What's the dynamic there? >> Look, there's no question that Greenfield is faster than Brownfield. Doesn't matter whether that's telco or IT. >> Dave: Yeah, yeah, sure. >> I think the... I think we're at a place in history where we're watching some of the early movers testing some of these theories. But I would tell you just... Again, just in the last few days leading up to this event talking with our customers and our partners, it's clear that even the first movers are struggling with the operational complexity of these platforms. And as a... You know, I think Dell's position in IT for the last decade as a platform systems integrator is very much going to continue to play out in the... In... We're being asked to play that role here as we try to bring some of the cloud-native operating competencies to the to the table. >> Hmm. >> And where are you having customer conversations these days? Is it at... Is it at the IT level? Is it higher sense tel... Networking is essential for any business in any organization to be able to deliver what the end user is demanding. >> Of course. Look, I... We've seen a real shift as I mentioned from the technology proof points to the operational proof points. How do we... How do we make sure that not only the business case is valid, but that we can maintain these new changes in these new operating models at scale at the right operating cost? And those are very healthy conversations because the success of this transformation to cloud architecture and edge computing and everything else is predicated on the idea that we can get cloud running at scale in the network. But I think the... It's very much use case driven and we're going to see... We're finally seeing some edge use cases that are driving consumption of those edge use cases, for sure. >> You know, I said earlier, I was in the keynotes and it took 45 minutes to get to the topic of security. >> Hmm. >> It was I think the third or fourth, or even fifth speaker. Finally, 45 minutes in, mention security. And I think that's because security's kind of a given in this world. It's a hardened environment. >> Chris: Yep. >> But that security model changes as well. The cloud brings a shared responsibility model. If it's multicloud, which it is, then it's shared responsibility across multiple clouds. >> Chris: Yeah. >> You know, you've got now developers who are being asked to be responsible for security. So that's another part of the complexity. We're kind of unpacking complexity here, aren't we? >> Chris: That's right. >> Just throwing more things in the cake. >> Look, I... Security is... It's an indication of this shift from what to how, very much includes security. And I think we're seeing security come to the forefront. Dell has a... We, you know, our philosophy is intrinsic security at all levels of the deployment. Everything from the infrastructure all the way through to the delivery and the management. >> Chris: And through the supply chain. >> And through supply chain. All the way through to the delivery of our technology integrated with other people's technology to ensure that the security's intrinsic in those deployments. And those integrations, as we're getting more and more involved in zero-touch deployments and helping carriers stand up these cloud platforms at scale, one of the ways to make sure that it's done repeatably and securely is to integrate those things at the factory or have your, you know, have your infrastructure partner take accountability for doing some of that pre-Day Zero. >> Well, the lab announcement that you guys have is... I've wrote about this. That pretty key, I think, because if you can certify in the lab... That's only other big differences. We talk a lot about the similarities between, you know, enterprise tech of the nineties and the disaggregation of the enterprise stack. But you didn't have so-called converged infrastructure back then. And even when you had converged infrastructure, it was like a skew that was bolted on. Now, you've got engineered systems. You're starting with engineered systems, but you've got to have a lab, so that the ecosystem and you've got self-certification. Those, I think, are key investments that... If you're thinking why Dell... A comp... You need a company like Dell who's got the resources to make those investments and actually kind of force that through. >> Chris: Yeah. >> Dave: Yeah. >> That's right. I think we're... You know, the value of the la... Again, the learnings from these last 10 years of integration is just... That understanding what the major blockers are should provide us with an accelerated roadmap for solving some of these problems as we encounter them over the next year or two in telecoms, no question. >> There's always regional differences in telecom, right? In the United States, you know, years ago, decades ago, sort of, you know, blew apart the telco industry. I would argue, many would I think as well, that that actually made the US less competitive. You got... Certainly have, you know, national interests around the world, across the European continent, certainly in APAC as well. How do you see that of, of... What are you hearing from those different regions? How do you see that affecting the adoption of some of the new technologies that you guys are promoting? >> Yeah, look, there's leaders... There's leaders and laggards in every market, I would say. I think we've been at this now, trying to stand up some of these cloud infrastructures and cloud RAN projects and virtual RAN projects. We've been at that now long enough to know that there's not so much regional patterns as there are patterns of companies that believe deeply that these architectures are going to lead to the right type of innovation and allow them to, you know, to build new markets and new sources of revenue. And those that are deeply committed to that structure are the ones willing to lean in and sort of blaze a path, right? So I would say that pattern is definitely emerged. I don't... We don't see... The larger the organization, certainly the larger the carrier, the deeper their resources on engineering and their ability to pivot and train those resources to become cloud-capable. That's a factor. We see a lot of conversations. Dell's got a very large Day 2 managed services business on the IT side. And, and as we pivot those Day 2 managed services, practices into managing cloud platforms and edge cloud platforms, I think it's the companies that don't have the depth or the skill or the experience are the ones that are that are asking us for the help there, for sure. >> How much has Dell been able to leverage? I mean, in the telecom systems business, I see, you know, a lot of new faces at Dell, a lot of folks like yourself that have telco experience. How about the services business? Were you able to sort of realign your existing folks or is it similar, you had to bring in people from the industry? >> It's both actually. So the... In services, it's critical because they... The org... The industry desperately needs systems integration across the board. And I think if we can convince the industry to treat telco clouds as a horizontal platform, then the idea of a platform integrator is a, you know, is definitely... It's valued. And in fact, it's required, I think, for the success of these projects. The services team at Dell is comprised of the folks who obviously run the pieces of the services business that are really no different in their construct. Building telco clouds is not that different from building IT clouds, so the elements are the same. Those teams are... Those teams persist. But definitely, the apps are different, and the support is different, and the requirements for uptime and availability are different. And so we've brought in services specialists to sort of... Just to create the glue between the customers and our existing sales depth. >> Do you have a favorite customer story that really articulates the value of what Dell is able to deliver in telecom with the inherent complexities that we talked about? >> Yeah. Look, it's not that well-known, but you know, the Day Zero Zero-Touch deployment factory integration capabilities that Dell has, we've been deploying that in IT for years. And, you know, we're... We've got a couple of projects globally now where we're not only designing and testing the stack in our labs and with our partners, but we're loading that stack in a known good architecture into third party and Dell hardware in a factory integration setting and shipping it to site with really nothing left to do but connect power and connectivity. And so from an engineering standpoint, the complexity of deploying cloud into thousands of data centers, we have examples of that that are being shipped continent by continent and and being deployed in a... In days and weeks as opposed to months. And so I think the... Taking some of the pain out of deployment and taking some of the... Building some repeatability into those deployments is a very big deal. Those are... Those are great, great projects. The next stage of that, of course, is helping them get to a place where the operations of those platforms is just as easy as the deployment. >> What's going to be different? Go to head... Look ahead to 2030. Let's go backwards from there. What's the world going to be like? What do people need to know in terms of what's coming? >> That's a great question. If... I think if I... If I could see that far ahead, I wouldn't probably be sitting here. (Chris and Lisa laughs) >> Dave: Yeah, but you have wisdom. >> Yeah. >> You know, the experience. >> If we play back... If we play back what's happened in the data centers, you know, in the IT data centers and you mentioned the, you know, the disaggregated systems shift that happened a decade ago. You know, those... Once the applications rearchitected to cloud-native architectures and could take advantage of the platform changes... Once the resiliency is built into the application instead of into the platforms, these things become more and more touchless. And I think the real double digit payback on this shift to cloud-native, we haven't begun to talk about it yet because we haven't... We're not anywhere close to the level of automation that can be achieved once we get to true cloud-native and microservices-based application architecture. That's a big shift and it's going to take a while. It took companies like SAP and others almost a decade to get that done. I think it'll happen faster here, but it's going to take us some time. >> Some of the things that you've heard... This is only day one of the conference, but anything that you've heard today or that you're looking forward to hearing in terms of how telecom is evolving and kind of playing catch-up? >> Yeah, look, I... We really believe this is the year that the edge use cases come alive. I think we're... We're... We've been... Almost every conversation I've been in, we've been asked, you know, sort of where's the... "Where are these use cases that are driving actual deployments and revenue?" and that sort of... And I think carriers are very much interested in trying to figure out customer edge, very much trying to figure out their own edge. Dell, of course, has both of those edges in mind. We've got a very large enterprise edge business unit, as well as our telco BU. And so, that's... I think this is the year we really start to figure out where those... We're seeing good deployments now in production at scale, and I think this is the year that starts to really take shape. >> Well, and it seems like... Just in hearing some of the carriers talk, they want to avoid what happened with the over-the-top vendors, okay. And they want to monetize the data that they have about the network. Looks like they want to charge for API access. >> Chris: Yep. >> 'Kay, developers are going to love that, right? Especially at the volumes that we're seeing here. But I feel like there's a, you know, potential blind spot of disruption coming, you know, like the over-the-top vendors, you know, that created all this innovation. I could see developers... Whether it's at the edge or new services, that customers really want to buy, they really value. Different than, "Hey, I own this data and you need it. I'm going to charge ya for it." versus "Hey, I'm going to create something that's really compelling." You know, an analog would be Netflix or other services that you get with maybe it's private wireless that can do some things. And, you know, that to me is the interesting opportunity here that I feel like is a blind spot for traditional telcos. 'Cause they've kind of got that mindset of, "Okay, you know, we're going to monetize. Let's do it." But they don't have that creativity mindset yet, you know? >> This industry has been given an opportunity to monetize almost every major transformation in technology, and many of them have slipped through our fingers, right? And this one is different because it's inextricably tied to the network. And I think the, you know... If... You mentioned mobile phones earlier I mean, I think what we saw in innovation in mobile was that we had no idea what was going to happen at the edge of that edge until someone created it. And so you have to have those in operating environments have to show up before the developers will spend the time to test them out and figure out what works. And so I... We haven't begun to believe, even understand I don't think, what's coming once we figure out a way to get ultra low latency, reliable connectivity at the edge. >> And I think developers have that open canvas and they're going to paint- >> That's right. >> What that edge looks like. And that's what... I mean, I kind of get concerned about... You know, to me the way to deal with developers, you give 'em a platform. Say, "Go create." >> Chris: That's right. >> As opposed to "Okay, pay to get access.", which you're going to have to, but I mean, there's other third parties that are going to fund that. I get it. >> Chris: Yeah. >> But there's a big open field that is going to get plowed here. >> Yes. >> And it's going to throw off some, you know, serious benefits to consumers. >> Yeah, and that's what we all want. We have that expectation that- >> Chris: Absolutely. >> It's going to... There's going to be a... With them... It's going to be, "What's in it for me?", right? >> "What's in it for me?" Yeah, that's right. >> Absolutely. >> Chris: That's right. >> Chris, I was going to say thank you so much. You want to add one more thing? >> Chris: No, I'm good. Thank you. >> I was just going to thank you so much for stopping by and talking to us about Dell's presence in telecom, how you're helping customers manage the complexity and the opportunities that really are there. We appreciate your insights and your time. >> Thanks so much, I really appreciate it. >> Dave: Thank you. >> Lisa: All right, our pleasure. >> Thanks, guys. >> For our guest and Dave Vellante, I'm Lisa Martin. You're watching "theCUBE" live in Barcelona at MWC 23. Dave and I will be right back with our next guest. (bright gentle music)
SUMMARY :
that drive human progress. We've been talking about the ecosystem, They sucked all the air out of the room. as the telco stack disaggregates, the Senior Managing Director Talk about some of the all the way back now What are some of the complexities "What are the implications to my teams?". but a lot of the stuff is done kind of, is it to the transformation But the learnings around how to deploy One of the other big and are the new Greenfield players... question that Greenfield it's clear that even the first movers Is it at the IT level? that not only the business case is valid, get to the topic of security. And I think that's because But that security So that's another part of the complexity. at all levels of the deployment. All the way through to the delivery so that the ecosystem and You know, the value of the la... of some of the new technologies that don't have the depth I mean, in the telecom systems business, the industry to treat telco and testing the stack What's the world going to be like? If I could see that far ahead, of the platform changes... Some of the things that you've heard... that the edge use cases come alive. Just in hearing some of the carriers talk, like the over-the-top vendors, you know, And I think the, you know... You know, to me the way that are going to fund that. that is going to get plowed here. And it's going to We have that expectation that- There's going to be a... "What's in it for me?" Chris, I was going to Chris: No, I'm good. and the opportunities our pleasure. Dave and I will be right
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
Telco | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Chris Falloon | PERSON | 0.99+ |
Telcos | ORGANIZATION | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Greenfield | ORGANIZATION | 0.99+ |
Dell | ORGANIZATION | 0.99+ |
Canada | LOCATION | 0.99+ |
Brownfield | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Lisa | PERSON | 0.99+ |
Barcelona | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
third | QUANTITY | 0.99+ |
45 minutes | QUANTITY | 0.99+ |
last year | DATE | 0.99+ |
Kay | PERSON | 0.99+ |
fourth | QUANTITY | 0.99+ |
Netflix | ORGANIZATION | 0.99+ |
Dell Technologies | ORGANIZATION | 0.99+ |
theCUBE | TITLE | 0.99+ |
2030 | DATE | 0.99+ |
today | DATE | 0.99+ |
thousands | QUANTITY | 0.99+ |
MWC 23 | EVENT | 0.99+ |
Mobile World Congress | EVENT | 0.99+ |
both | QUANTITY | 0.99+ |
United States | LOCATION | 0.98+ |
MWC | EVENT | 0.98+ |
20 years later | DATE | 0.98+ |
telco | ORGANIZATION | 0.98+ |
decades ago | DATE | 0.98+ |
theCUBE | ORGANIZATION | 0.98+ |
European | LOCATION | 0.98+ |
Today | DATE | 0.97+ |
a decade ago | DATE | 0.97+ |
SAP | ORGANIZATION | 0.95+ |
MWC 23 | LOCATION | 0.95+ |
day one | QUANTITY | 0.94+ |
last decade | DATE | 0.94+ |
nineties | DATE | 0.94+ |
fifth speaker | QUANTITY | 0.93+ |
this year | DATE | 0.93+ |
single | QUANTITY | 0.92+ |
One | QUANTITY | 0.92+ |
20 years ago | DATE | 0.91+ |
one | QUANTITY | 0.91+ |
SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI
(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)
SUMMARY :
I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ed Alban | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Ed Albanese | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five seconds | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Ed | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
10 good questions | QUANTITY | 0.99+ |
Swami | PERSON | 0.99+ |
15 different possibilities | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Vectara | ORGANIZATION | 0.99+ |
Amr Awadallah | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Cloudera | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
end of 2019 | DATE | 0.99+ |
yesterday | DATE | 0.98+ |
Big Data | ORGANIZATION | 0.98+ |
40 million users | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
two great guests | QUANTITY | 0.98+ |
12 plus years | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
five dollar | QUANTITY | 0.98+ |
Netscape | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first inning | QUANTITY | 0.98+ |
Amr | PERSON | 0.97+ |
two schools | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
10 years ago | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
first day | QUANTITY | 0.96+ |
three | DATE | 0.96+ |
chatGPT | TITLE | 0.96+ |
first places | QUANTITY | 0.95+ |
Bing | ORGANIZATION | 0.95+ |
Notion | TITLE | 0.95+ |
first thing | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
Beyond the Buzz | TITLE | 0.94+ |
Sati Natel | PERSON | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
one location | QUANTITY | 0.93+ |
three years ago | DATE | 0.93+ |
single application | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
first platform | QUANTITY | 0.91+ |
five years old | QUANTITY | 0.91+ |
How to Make a Data Fabric Smart A Technical Demo With Jess Jowdy
(inspirational music) (music ends) >> Okay, so now that we've heard Scott talk about smart data fabrics, it's time to see this in action. Right now we're joined by Jess Jowdy, who's the manager of Healthcare Field Engineering at InterSystems. She's going to give a demo of how smart data fabrics actually work, and she's going to show how embedding a wide range of analytics capabilities, including data exploration business intelligence, natural language processing and machine learning directly within the fabric makes it faster and easier for organizations to gain new insights and power intelligence predictive and prescriptive services and applications. Now, according to InterSystems, smart data fabrics are applicable across many industries from financial services to supply chain to healthcare and more. Jess today is going to be speaking through the lens of a healthcare focused demo. Don't worry, Joe Lichtenberg will get into some of the other use cases that you're probably interested in hearing about. That will be in our third segment, but for now let's turn it over to Jess. Jess, good to see you. >> Hi, yeah, thank you so much for having me. And so for this demo, we're really going to be bucketing these features of a smart data fabric into four different segments. We're going to be dealing with connections, collections, refinements, and analysis. And so we'll see that throughout the demo as we go. So without further ado, let's just go ahead and jump into this demo, and you'll see my screen pop up here. I actually like to start at the end of the demo. So I like to begin by illustrating what an end user's going to see, and don't mind the screen 'cause I gave you a little sneak peek of what's about to happen. But essentially what I'm going to be doing is using Postman to simulate a call from an external application. So we talked about being in the healthcare industry. This could be, for instance, a mobile application that a patient is using to view an aggregated summary of information across that patient's continuity of care or some other kind of application. So we might be pulling information in this case from an electronic medical record. We might be grabbing clinical history from that. We might be grabbing clinical notes from a medical transcription software, or adverse reaction warnings from a clinical risk grouping application, and so much more. So I'm really going to be simulating a patient logging in on their phone and retrieving this information through this Postman call. So what I'm going to do is I'm just going to hit send, I've already preloaded everything here, and I'm going to be looking for information where the last name of this patient is Simmons, and their medical record number or their patient identifier in the system is 32345. And so as you can see, I have this single JSON payload that showed up here of, just, relevant clinical information for my patient whose last name is Simmons, all within a single response. So fantastic, right? Typically though, when we see responses that look like this there is an assumption that this service is interacting with a single backend system, and that single backend system is in charge of packaging that information up and returning it back to this caller. But in a smart data fabric architecture, we're able to expand the scope to handle information across different, in this case, clinical applications. So how did this actually happen? Let's peel back another layer and really take a look at what happened in the background. What you're looking at here is our mission control center for our smart data fabric. On the left we have our APIs that allow users to interact with particular services. On the right we have our connections to our different data silos. And in the middle here, we have our data fabric coordinator which is going to be in charge of this refinement and analysis, those key pieces of our smart data fabric. So let's look back and think about the example we just showed. I received an inbound request for information for a patient whose last name is Simmons. My end user is requesting to connect to that service, and that's happening here at my patient data retrieval API location. Users can define any number of different services and APIs depending on their use cases. And to that end, we do also support full life cycle API management within this platform. When you're dealing with APIs, I always like to make a little shout out on this, that you really want to make sure you have enough, like a granular enough security model to handle and limit which APIs and which services a consumer can interact with. In this IRIS platform, which we're talking about today we have a very granular role-based security model that allows you to handle that, but it's really important in a smart data fabric to consider who's accessing your data and in what context. >> Can I just interrupt you for a second, Jess? >> Yeah, please. >> So you were showing on the left hand side of the demo a couple of APIs. I presume that can be a very long list. I mean, what do you see as typical? >> I mean you could have hundreds of these APIs depending on what services an organization is serving up for their consumers. So yeah, we've seen hundreds of these services listed here. >> So my question is, obviously security is critical in the healthcare industry, and API securities are like, really hot topic these days. How do you deal with that? >> Yeah, and I think API security is interesting 'cause it can happen at so many layers. So, there's interactions with the API itself. So can I even see this API and leverage it? And then within an API call, you then have to deal with all right, which end points or what kind of interactions within that API am I allowed to do? What data am I getting back? And with healthcare data, the whole idea of consent to see certain pieces of data is critical. So, the way that we handle that is, like I said, same thing at different layers. There is access to a particular API, which can happen within the IRIS product, and also we see it happening with an API management layer, which has become a really hot topic with a lot of organizations. And then when it comes to data security, that really happens under the hood within your smart data fabric. So, that role-based access control becomes very important in assigning, you know, roles and permissions to certain pieces of information. Getting that granular becomes the cornerstone of the security. >> And that's been designed in, it's not a bolt on as they like to say. >> Absolutely. >> Okay, can we get into collect now? >> Of course, we're going to move on to the collection piece at this point in time, which involves pulling information from each of my different data silos to create an overall aggregated record. So commonly, each data source requires a different method for establishing connections and collecting this information. So for instance, interactions with an EMR may require leveraging a standard healthcare messaging format like Fire. Interactions with a homegrown enterprise data warehouse for instance, may use SQL. For a cloud-based solutions managed by a vendor, they may only allow you to use web service calls to pull data. So it's really important that your data fabric platform that you're using has the flexibility to connect to all of these different systems and applications. And I'm about to log out, so I'm going to (chuckles) keep my session going here. So therefore it's incredibly important that your data fabric has the flexibility to connect to all these different kinds of applications and data sources, and all these different kinds of formats and over all of these different kinds of protocols. So let's think back on our example here. I had four different applications that I was requesting information for to create that payload that we saw initially. Those are listed here under this operations section. So these are going out and connecting to downstream systems to pull information into my smart data fabric. What's great about the IRIS platform is, it has an embedded interoperability platform. So there's all of these native adapters that can support these common connections that we see for different kinds of applications. So using REST, or SOAP, or SQL, or FTP, regardless of that protocol, there's an adapter to help you work with that. And we also think of the types of formats that we typically see data coming in as in healthcare we have HL7, we have Fire, we have CCDs, across the industry, JSON is, you know, really hitting a market strong now, and XML payloads, flat files. We need to be able to handle all of these different kinds of formats over these different kinds of protocols. So to illustrate that, if I click through these when I select a particular connection on the right side panel, I'm going to see the different settings that are associated with that particular connection that allows me to collect information back into my smart data fabric. In this scenario, my connection to my chart script application in this example, communicates over a SOAP connection. When I'm grabbing information from my clinical risk grouping application I'm using a SQL based connection. When I'm connecting to my EMR, I'm leveraging a standard healthcare messaging format known as Fire, which is a REST based protocol. And then when I'm working with my health record management system, I'm leveraging a standard HTTP adapter. So you can see how we can be flexible when dealing with these different kinds of applications and systems. And then it becomes important to be able to validate that you've established those connections correctly, and be able to do it in a reliable and quick way. Because if you think about it, you could have hundreds of these different kinds of applications built out and you want to make sure that you're maintaining and understanding those connections. So I can actually go ahead and test one of these applications and put in, for instance my patient's last name and their MRN, and make sure that I'm actually getting data back from that system. So it's a nice little sanity check as we're building out that data fabric to ensure that we're able to establish these connections appropriately. So turnkey adapters are fantastic, as you can see we're leveraging them all here, but sometimes these connections are going to require going one step further and building something really specific for an application. So why don't we go one step further here and talk about doing something custom or doing something innovative. And so it's important for users to have the ability to develop and go beyond what's an out-of-the box or black box approach to be able to develop things that are specific to their data fabric, or specific to their particular connection. In this scenario, the IRIS data platform gives users access to the entire underlying code base. So you not only get an opportunity to view how we're establishing these connections or how we're building out these processes, but you have the opportunity to inject your own kind of processing, your own kinds of pipelines into this. So as an example, you can leverage any number of different programming languages right within this pipeline. And so I went ahead and I injected Python. So Python is a very up and coming language, right? We see more and more developers turning towards Python to do their development. So it's important that your data fabric supports those kinds of developers and users that have standardized on these kinds of programming languages. This particular script here, as you can see actually calls out to our turnkey adapters. So we see a combination of out-of-the-box code that is provided in this data fabric platform from IRIS, combined with organization specific or user specific customizations that are included in this Python method. So it's a nice little combination of how do we bring the developer experience in and mix it with out-of-the-box capabilities that we can provide in a smart data fabric. >> Wow. >> Yeah, I'll pause. (laughs) >> It's a lot here. You know, actually- >> I can pause. >> If I could, if we just want to sort of play that back. So we went to the connect and the collect phase. >> Yes, we're going into refine. So it's a good place to stop. >> So before we get there, so we heard a lot about fine grain security, which is crucial. We heard a lot about different data types, multiple formats. You've got, you know, the ability to bring in different dev tools. We heard about Fire, which of course big in healthcare. And that's the standard, and then SQL for traditional kind of structured data, and then web services like HTTP you mentioned. And so you have a rich collection of capabilities within this single platform. >> Absolutely. And I think that's really important when you're dealing with a smart data fabric because what you're effectively doing is you're consolidating all of your processing, all of your collection, into a single platform. So that platform needs to be able to handle any number of different kinds of scenarios and technical challenges. So you've got to pack that platform with as many of these features as you can to consolidate that processing. >> All right, so now we're going into refinement. >> We're going into refinement. Exciting. (chuckles) So how do we actually do refinement? Where does refinement happen? And how does this whole thing end up being performant? Well the key to all of that is this SDF coordinator, or stands for Smart Data Fabric coordinator. And what this particular process is doing is essentially orchestrating all of these calls to all of these different downstream systems. It's aggregating, it's collecting that information, it's aggregating it, and it's refining it into that single payload that we saw get returned to the user. So really this coordinator is the main event when it comes to our data fabric. And in the IRIS platform we actually allow users to build these coordinators using web-based tool sets to make it intuitive. So we can take a sneak peek at what that looks like. And as you can see, it follows a flow chart like structure. So there's a start, there is an end, and then there are these different arrows that point to different activities throughout the business process. And so there's all these different actions that are being taken within our coordinator. You can see an action for each of the calls to each of our different data sources to go retrieve information. And then we also have the sync call at the end that is in charge of essentially making sure that all of those responses come back before we package them together and send them out. So this becomes really crucial when we're creating that data fabric. And you know, this is a very simple data fabric example where we're just grabbing data and we're consolidating it together. But you can have really complex orchestrators and coordinators that do any number of different things. So for instance, I could inject SQL logic into this or SQL code, I can have conditional logic, I can do looping, I can do error trapping and handling. So we're talking about a whole number of different features that can be included in this coordinator. So like I said, we have a really very simple process here that's just calling out, grabbing all those different data elements from all those different data sources and consolidating it. We'll look back at this coordinator in a second when we introduce, or we make this data fabric a bit smarter, and we start introducing that analytics piece to it. So this is in charge of the refinement. And so at this point in time we've looked at connections, collections, and refinements. And just to summarize what we've seen 'cause I always like to go back and take a look at everything that we've seen. We have our initial API connection, we have our connections to our individual data sources and we have our coordinators there in the middle that are in charge of collecting the data and refining it into a single payload. As you can imagine, there's a lot going on behind the scenes of a smart data fabric, right? There's all these different processes that are interacting. So it's really important that your smart data fabric platform has really good traceability, really good logging, 'cause you need to be able to know, you know, if there was an issue, where did that issue happen in which connected process, and how did it affect the other processes that are related to it? In IRIS, we have this concept called a visual trace. And what our clients use this for is basically to be able to step through the entire history of a request from when it initially came into the smart data fabric, to when data was sent back out from that smart data fabric. So I didn't record the time, but I bet if you recorded the time it was this time that we sent that request in and you can see my patient's name and their medical record number here, and you can see that that instigated four different calls to four different systems, and they're represented by these arrows going out. So we sent something to chart script, to our health record management system, to our clinical risk grouping application, into my EMR through their Fire server. So every request, every outbound application gets a request and we pull back all of those individual pieces of information from all of those different systems, and we bundle them together. And from my Fire lovers, here's our Fire bundle that we got back from our Fire server. So this is a really good way of being able to validate that I am appropriately grabbing the data from all these different applications and then ultimately consolidating it into one payload. Now we change this into a JSON format before we deliver it, but this is those data elements brought together. And this screen would also be used for being able to see things like error trapping, or errors that were thrown, alerts, warnings, developers might put log statements in just to validate that certain pieces of code are executing. So this really becomes the one stop shop for understanding what's happening behind the scenes with your data fabric. >> Sure, who did what when where, what did the machine do what went wrong, and where did that go wrong? Right at your fingertips. >> Right. And I'm a visual person so a bunch of log files to me is not the most helpful. While being able to see this happened at this time in this location, gives me that understanding I need to actually troubleshoot a problem. >> This business orchestration piece, can you say a little bit more about that? How people are using it? What's the business impact of the business orchestration? >> The business orchestration, especially in the smart data fabric, is really that crucial part of being able to create a smart data fabric. So think of your business orchestrator as doing the heavy lifting of any kind of processing that involves data, right? It's bringing data in, it's analyzing that information it's transforming that data, in a format that your consumer's not going to understand. It's doing any additional injection of custom logic. So really your coordinator or that orchestrator that sits in the middle is the brains behind your smart data fabric. >> And this is available today? It all works? >> It's all available today. Yeah, it all works. And we have a number of clients that are using this technology to support these kinds of use cases. >> Awesome demo. Anything else you want to show us? >> Well, we can keep going. I have a lot to say, but really this is our data fabric. The core competency of IRIS is making it smart, right? So I won't spend too much time on this, but essentially if we go back to our coordinator here, we can see here's that original, that pipeline that we saw where we're pulling data from all these different systems and we're collecting it and we're sending it out. But then we see two more at the end here, which involves getting a readmission prediction and then returning a prediction. So we can not only deliver data back as part of a smart data fabric, but we can also deliver insights back to users and consumers based on data that we've aggregated as part of a smart data fabric. So in this scenario, we're actually taking all that data that we just looked at, and we're running it through a machine learning model that exists within the smart data fabric pipeline, and producing a readmission score to determine if this particular patient is at risk for readmission within the next 30 days. Which is a typical problem that we see in the healthcare space. So what's really exciting about what we're doing in the IRIS world, is we're bringing analytics close to the data with integrated ML. So in this scenario we're actually creating the model, training the model, and then executing the model directly within the IRIS platform. So there's no shuffling of data, there's no external connections to make this happen. And it doesn't really require having a PhD in data science to understand how to do that. It leverages all really basic SQL-like syntax to be able to construct and execute these predictions. So, it's going one step further than the traditional data fabric example to introduce this ability to define actionable insights to our users based on the data that we've brought together. >> Well that readmission probability is huge, right? Because it directly affects the cost for the provider and the patient, you know. So if you can anticipate the probability of readmission and either do things at that moment, or, you know, as an outpatient perhaps, to minimize the probability then that's huge. That drops right to the bottom line. >> Absolutely. And that really brings us from that data fabric to that smart data fabric at the end of the day, which is what makes this so exciting. >> Awesome demo. >> Thank you! >> Jess, are you cool if people want to get in touch with you? Can they do that? >> Oh yes, absolutely. So you can find me on LinkedIn, Jessica Jowdy, and we'd love to hear from you. I always love talking about this topic so we'd be happy to engage on that. >> Great stuff. Thank you Jessica, appreciate it. >> Thank you so much. >> Okay, don't go away because in the next segment, we're going to dig into the use cases where data fabric is driving business value. Stay right there. (inspirational music) (music fades)
SUMMARY :
and she's going to show And to that end, we do also So you were showing hundreds of these APIs depending in the healthcare industry, So can I even see this as they like to say. that are specific to their data fabric, Yeah, I'll pause. It's a lot here. So we went to the connect So it's a good place to stop. So before we get So that platform needs to All right, so now we're that are related to it? Right at your fingertips. I need to actually troubleshoot a problem. of being able to create of clients that are using this technology Anything else you want to show us? So in this scenario, we're and the patient, you know. And that really brings So you can find me on Thank you Jessica, appreciate it. in the next segment,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Joe Lichtenberg | PERSON | 0.99+ |
Jessica Jowdy | PERSON | 0.99+ |
Jessica | PERSON | 0.99+ |
Jess Jowdy | PERSON | 0.99+ |
InterSystems | ORGANIZATION | 0.99+ |
Scott | PERSON | 0.99+ |
Python | TITLE | 0.99+ |
Simmons | PERSON | 0.99+ |
Jess | PERSON | 0.99+ |
32345 | OTHER | 0.99+ |
hundreds | QUANTITY | 0.99+ |
IRIS | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
third segment | QUANTITY | 0.98+ |
Fire | COMMERCIAL_ITEM | 0.98+ |
SQL | TITLE | 0.98+ |
single platform | QUANTITY | 0.97+ |
each data | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
single | QUANTITY | 0.95+ |
single response | QUANTITY | 0.94+ |
single backend system | QUANTITY | 0.92+ |
two more | QUANTITY | 0.92+ |
four different segments | QUANTITY | 0.89+ |
APIs | QUANTITY | 0.88+ |
one step | QUANTITY | 0.88+ |
four | QUANTITY | 0.85+ |
Healthcare Field Engineering | ORGANIZATION | 0.82+ |
JSON | TITLE | 0.8+ |
single payload | QUANTITY | 0.8+ |
second | QUANTITY | 0.79+ |
one payload | QUANTITY | 0.76+ |
next 30 days | DATE | 0.76+ |
IRIS | TITLE | 0.75+ |
Fire | TITLE | 0.72+ |
Postman | TITLE | 0.71+ |
every | QUANTITY | 0.68+ |
four different calls | QUANTITY | 0.66+ |
Jes | PERSON | 0.66+ |
a second | QUANTITY | 0.61+ |
services | QUANTITY | 0.6+ |
evelopers | PERSON | 0.58+ |
Postman | ORGANIZATION | 0.54+ |
HL7 | OTHER | 0.4+ |
Paola Peraza Calderon & Viraj Parekh, Astronomer | Cube Conversation
(soft electronic music) >> Hey everyone, welcome to this CUBE conversation as part of the AWS Startup Showcase, season three, episode one, featuring Astronomer. I'm your host, Lisa Martin. I'm in the CUBE's Palo Alto Studios, and today excited to be joined by a couple of guests, a couple of co-founders from Astronomer. Viraj Parekh is with us, as is Paola Peraza-Calderon. Thanks guys so much for joining us. Excited to dig into Astronomer. >> Thank you so much for having us. >> Yeah, thanks for having us. >> Yeah, and we're going to be talking about the role of data orchestration. Paola, let's go ahead and start with you. Give the audience that understanding, that context about Astronomer and what it is that you guys do. >> Mm-hmm. Yeah, absolutely. So, Astronomer is a, you know, we're a technology and software company for modern data orchestration, as you said, and we're the driving force behind Apache Airflow. The Open Source Workflow Management tool that's since been adopted by thousands and thousands of users, and we'll dig into this a little bit more. But, by data orchestration, we mean data pipeline, so generally speaking, getting data from one place to another, transforming it, running it on a schedule, and overall just building a central system that tangibly connects your entire ecosystem of data services, right. So what, that's Redshift, Snowflake, DVT, et cetera. And so tangibly, we build, we at Astronomer here build products powered by Apache Airflow for data teams and for data practitioners, so that they don't have to. So, we sell to data engineers, data scientists, data admins, and we really spend our time doing three things. So, the first is that we build Astro, our flagship cloud service that we'll talk more on. But here, we're really building experiences that make it easier for data practitioners to author, run, and scale their data pipeline footprint on the cloud. And then, we also contribute to Apache Airflow as an open source project and community. So, we cultivate the community of humans, and we also put out open source developer tools that actually make it easier for individual data practitioners to be productive in their day-to-day jobs, whether or not they actually use our product and and pay us money or not. And then of course, we also have professional services and education and all of these things around our commercial products that enable folks to use our products and use Airflow as effectively as possible. So yeah, super, super happy with everything we've done and hopefully that gives you an idea of where we're starting. >> Awesome, so when you're talking with those, Paola, those data engineers, those data scientists, how do you define data orchestration and what does it mean to them? >> Yeah, yeah, it's a good question. So, you know, if you Google data orchestration you're going to get something about an automated process for organizing silo data and making it accessible for processing and analysis. But, to your question, what does that actually mean, you know? So, if you look at it from a customer's perspective, we can share a little bit about how we at Astronomer actually do data orchestration ourselves and the problems that it solves for us. So, as many other companies out in the world do, we at Astronomer need to monitor how our own customers use our products, right? And so, we have a weekly meeting, for example, that goes through a dashboard and a dashboarding tool called Sigma where we see the number of monthly customers and how they're engaging with our product. But, to actually do that, you know, we have to use data from our application database, for example, that has behavioral data on what they're actually doing in our product. We also have data from third party API tools, like Salesforce and HubSpot, and other ways in which our customer, we actually engage with our customers and their behavior. And so, our data team internally at Astronomer uses a bunch of tools to transform and use that data, right? So, we use FiveTran, for example, to ingest. We use Snowflake as our data warehouse. We use other tools for data transformations. And even, if we at Astronomer don't do this, you can imagine a data team also using tools like, Monte Carlo for data quality, or Hightouch for Reverse ETL, or things like that. And, I think the point here is that data teams, you know, that are building data-driven organizations have a plethora of tooling to both ingest the right data and come up with the right interfaces to transform and actually, interact with that data. And so, that movement and sort of synchronization of data across your ecosystem is exactly what data orchestration is responsible for. Historically, I think, and Raj will talk more about this, historically, schedulers like KRON and Oozie or Control-M have taken a role here, but we think that Apache Airflow has sort of risen over the past few years as the defacto industry standard for writing data pipelines that do tasks, that do data jobs that interact with that ecosystem of tools in your organization. And so, beyond that sort of data pipeline unit, I think where we see it is that data acquisition is not only writing those data pipelines that move your data, but it's also all the things around it, right, so, CI/CD tool and Secrets Management, et cetera. So, a long-winded answer here, but I think that's how we talk about it here at Astronomer and how we're building our products. >> Excellent. Great context, Paola. Thank you. Viraj, let's bring you into the conversation. Every company these days has to be a data company, right? They've got to be a software company- >> Mm-hmm. >> whether it's my bank or my grocery store. So, how are companies actually doing data orchestration today, Viraj? >> Yeah, it's a great question. So, I think one thing to think about is like, on one hand, you know, data orchestration is kind of a new category that we're helping define, but on the other hand, it's something that companies have been doing forever, right? You need to get data moving to use it, you know. You've got it all in place, aggregate it, cleaning it, et cetera. So, when you look at what companies out there are doing, right. Sometimes, if you're a more kind of born in the cloud company, as we say, you'll adopt all these cloud native tooling things your cloud provider gives you. If you're a bank or another sort of institution like that, you know, you're probably juggling an even wider variety of tools. You're thinking about a cloud migration. You might have things like Kron running in one place, Uzi running somewhere else, Informatics running somewhere else, while you're also trying to move all your workloads to the cloud. So, there's quite a large spectrum of what the current state is for companies. And then, kind of like Paola was saying, Apache Airflow started in 2014, and it was actually started by Airbnb, and they put out this blog post that was like, "Hey here's how we use Apache Airflow to orchestrate our data across all their sources." And really since then, right, it's almost been a decade since then, Airflow emerged as the open source standard, and there's companies of all sorts using it. And, it's really used to tie all these tools together, especially as that number of tools increases, companies move to hybrid cloud, hybrid multi-cloud strategies, and so on and so forth. But you know, what we found is that if you go to any company, especially a larger one and you say like, "Hey, how are you doing data orchestration?" They'll probably say something like, "Well, I have five data teams, so I have eight different ways I do data orchestration." Right. This idea of data orchestration's been there but the right way to do it, kind of all the abstractions you need, the way your teams need to work together, and so on and so forth, hasn't really emerged just yet, right? It's such a quick moving space that companies have to combine what they were doing before with what their new business initiatives are today. So, you know, what we really believe here at Astronomer is Airflow is the core of how you solve data orchestration for any sort of use case, but it's not everything. You know, it needs a little more. And, that's really where our commercial product, Astro comes in, where we've built, not only the most tried and tested airflow experience out there. We do employ a majority of the Airflow Core Committers, right? So, we're kind of really deep in the project. We've also built the right things around developer tooling, observability, and reliability for customers to really rely on Astro as the heart of the way they do data orchestration, and kind of think of it as the foundational layer that helps tie together all the different tools, practices and teams large companies have to do today. >> That foundational layer is absolutely critical. You've both mentioned open source software. Paola, I want to go back to you, and just give the audience an understanding of how open source really plays into Astronomer's mission as a company, and into the technologies like Astro. >> Mm-hmm. Yeah, absolutely. I mean, we, so we at Astronomers started using Airflow and actually building our products because Airflow is open source and we were our own customers at the beginning of our company journey. And, I think the open source community is at the core of everything we do. You know, without that open source community and culture, I think, you know, we have less of a business, and so, we're super invested in continuing to cultivate and grow that. And, I think there's a couple sort of concrete ways in which we do this that personally make me really excited to do my own job. You know, for one, we do things like we organize meetups and we sponsor the Airflow Summit and there's these sort of baseline community efforts that I think are really important and that reminds you, hey, there just humans trying to do their jobs and learn and use both our technology and things that are out there and contribute to it. So, making it easier to contribute to Airflow, for example, is another one of our efforts. As Viraj mentioned, we also employ, you know, engineers internally who are on our team whose full-time job is to make the open source project better. Again, regardless of whether or not you're a customer of ours or not, we want to make sure that we continue to cultivate the Airflow project in and of itself. And, we're also building developer tooling that might not be a part of the Apache Open Source project, but is still open source. So, we have repositories in our own sort of GitHub organization, for example, with tools that individual data practitioners, again customers are not, can use to make them be more productive in their day-to-day jobs with Airflow writing Dags for the most common use cases out there. The last thing I'll say is how important I think we've found it to build sort of educational resources and documentation and best practices. Airflow can be complex. It's been around for a long time. There's a lot of really, really rich feature sets. And so, how do we enable folks to actually use those? And that comes in, you know, things like webinars, and best practices, and courses and curriculum that are free and accessible and open to the community are just some of the ways in which I think we're continuing to invest in that open source community over the next year and beyond. >> That's awesome. It sounds like open source is really core, not only to the mission, but really to the heart of the organization. Viraj, I want to go back to you and really try to understand how does Astronomer fit into the wider modern data stack and ecosystem? Like what does that look like for customers? >> Yeah, yeah. So, both in the open source and with our commercial customers, right? Folks everywhere are trying to tie together a huge variety of tools in order to start making sense of their data. And you know, I kind of think of it almost like as like a pyramid, right? At the base level, you need things like data reliability, data, sorry, data freshness, data availability, and so on and so forth, right? You just need your data to be there. (coughs) I'm sorry. You just need your data to be there, and you need to make it predictable when it's going to be there. You need to make sure it's kind of correct at the highest level, some quality checks, and so on and so forth. And oftentimes, that kind of takes the case of ELT or ETL use cases, right? Taking data from somewhere and moving it somewhere else, usually into some sort of analytics destination. And, that's really what businesses can do to just power the core parts of getting insights into how their business is going, right? How much revenue did I had? What's in my pipeline, salesforce, and so on and so forth. Once that kind of base foundation is there and people can get the data they need, how they need it, it really opens up a lot for what customers can do. You know, I think one of the trendier things out there right now is MLOps, and how do companies actually put machine learning into production? Well, when you think about it you kind of have to squint at it, right? Like, machine learning pipelines are really just any other data pipeline. They just have a certain set of needs that might not not be applicable to ELT pipelines. And, when you kind of have a common layer to tie together all the ways data can move through your organization, that's really what we're trying to make it so companies can do. And, that happens in financial services where, you know, we have some customers who take app data coming from their mobile apps, and actually run it through their fraud detection services to make sure that all the activity is not fraudulent. We have customers that will run sports betting models on our platform where they'll take data from a bunch of public APIs around different sporting events that are happening, transform all of that in a way their data scientist can build models with it, and then actually bet on sports based on that output. You know, one of my favorite use cases I like to talk about that we saw in the open source is we had there was one company whose their business was to deliver blood transfusions via drone into remote parts of the world. And, it was really cool because they took all this data from all sorts of places, right? Kind of orchestrated all the aggregation and cleaning and analysis that happened had to happen via airflow and the end product would be a drone being shot out into a real remote part of the world to actually give somebody blood who needed it there. Because it turns out for certain parts of the world, the easiest way to deliver blood to them is via drone and not via some other, some other thing. So, these kind of, all the things people do with the modern data stack is absolutely incredible, right? Like you were saying, every company's trying to be a data-driven company. What really energizes me is knowing that like, for all those best, super great tools out there that power a business, we get to be the connective tissue, or the, almost like the electricity that kind of ropes them all together and makes so people can actually do what they need to do. >> Right. Phenomenal use cases that you just described, Raj. I mean, just the variety alone of what you guys are able to do and impact is so cool. So Paola, when you're with those data engineers, those data scientists, and customer conversations, what's your pitch? Why use Astro? >> Mm-hmm. Yeah, yeah, it's a good question. And honestly, to piggyback off of Viraj, there's so many. I think what keeps me so energized is how mission critical both our product and data orchestration is, and those use cases really are incredible and we work with customers of all shapes and sizes. But, to answer your question, right, so why use Astra? Why use our commercial products? There's so many people using open source, why pay for something more than that? So, you know, the baseline for our business really is that Airflow has grown exponentially over the last five years, and like we said has become an industry standard that we're confident there's a huge opportunity for us as a company and as a team. But, we also strongly believe that being great at running Airflow, you know, doesn't make you a successful company at what you do. What makes you a successful company at what you do is building great products and solving problems and solving pin points of your own customers, right? And, that differentiating value isn't being amazing at running Airflow. That should be our job. And so, we want to abstract those customers from meaning to do things like manage Kubernetes infrastructure that you need to run Airflow, and then hiring someone full-time to go do that. Which can be hard, but again doesn't add differentiating value to your team, or to your product, or to your customers. So, folks to get away from managing that infrastructure sort of a base, a base layer. Folks who are looking for differentiating features that make their team more productive and allows them to spend less time tweaking Airflow configurations and more time working with the data that they're getting from their business. For help, getting, staying up with Airflow releases. There's a ton of, we've actually been pretty quick to come out with new Airflow features and releases, and actually just keeping up with that feature set and working strategically with a partner to help you make the most out of those feature sets is a key part of it. And, really it's, especially if you're an organization who currently is committed to using Airflow, you likely have a lot of Airflow environments across your organization. And, being able to see those Airflow environments in a single place and being able to enable your data practitioners to create Airflow environments with a click of a button, and then use, for example, our command line to develop your Airflow Dags locally and push them up to our product, and use all of the sort of testing and monitoring and observability that we have on top of our product is such a key. It sounds so simple, especially if you use Airflow, but really those things are, you know, baseline value props that we have for the customers that continue to be excited to work with us. And of course, I think we can go beyond that and there's, we have ambitions to add whole, a whole bunch of features and expand into different types of personas. >> Right? >> But really our main value prop is for companies who are committed to Airflow and want to abstract themselves and make use of some of the differentiating features that we now have at Astronomer. >> Got it. Awesome. >> Thank you. One thing, one thing I'll add to that, Paola, and I think you did a good job of saying is because every company's trying to be a data company, companies are at different parts of their journey along that, right? And we want to meet customers where they are, and take them through it to where they want to go. So, on one end you have folks who are like, "Hey, we're just building a data team here. We have a new initiative. We heard about Airflow. How do you help us out?" On the farther end, you know, we have some customers that have been using Airflow for five plus years and they're like, "Hey, this is awesome. We have 10 more teams we want to bring on. How can you help with this? How can we do more stuff in the open source with you? How can we tell our story together?" And, it's all about kind of taking this vast community of data users everywhere, seeing where they're at, and saying like, "Hey, Astro and Airflow can take you to the next place that you want to go." >> Which is incredibly- >> Mm-hmm. >> and you bring up a great point, Viraj, that every company is somewhere in a different place on that journey. And it's, and it's complex. But it sounds to me like a lot of what you're doing is really stripping away a lot of the complexity, really enabling folks to use their data as quickly as possible, so that it's relevant and they can serve up, you know, the right products and services to whoever wants what. Really incredibly important. We're almost out of time, but I'd love to get both of your perspectives on what's next for Astronomer. You give us a a great overview of what the company's doing, the value in it for customers. Paola, from your lens as one of the co-founders, what's next? >> Yeah, I mean, I think we'll continue to, I think cultivate in that open source community. I think we'll continue to build products that are open sourced as part of our ecosystem. I also think that we'll continue to build products that actually make Airflow, and getting started with Airflow, more accessible. So, sort of lowering that barrier to entry to our products, whether that's price wise or infrastructure requirement wise. I think making it easier for folks to get started and get their hands on our product is super important for us this year. And really it's about, I think, you know, for us, it's really about focused execution this year and all of the sort of core principles that we've been talking about. And continuing to invest in all of the things around our product that again, enable teams to use Airflow more effectively and efficiently. >> And that efficiency piece is, everybody needs that. Last question, Viraj, for you. What do you see in terms of the next year for Astronomer and for your role? >> Yeah, you know, I think Paola did a really good job of laying it out. So it's, it's really hard to disagree with her on anything, right? I think executing is definitely the most important thing. My own personal bias on that is I think more than ever it's important to really galvanize the community around airflow. So, we're going to be focusing on that a lot. We want to make it easier for our users to get get our product into their hands, be that open source users or commercial users. And last, but certainly not least, is we're also really excited about Data Lineage and this other open source project in our umbrella called Open Lineage to make it so that there's a standard way for users to get lineage out of different systems that they use. When we think about what's in store for data lineage and needing to audit the way automated decisions are being made. You know, I think that's just such an important thing that companies are really just starting with, and I don't think there's a solution that's emerged that kind of ties it all together. So, we think that as we kind of grow the role of Airflow, right, we can also make it so that we're helping solve, we're helping customers solve their lineage problems all in Astro, which is our kind of the best of both worlds for us. >> Awesome. I can definitely feel and hear the enthusiasm and the passion that you both bring to Astronomer, to your customers, to your team. I love it. We could keep talking more and more, so you're going to have to come back. (laughing) Viraj, Paola, thank you so much for joining me today on this showcase conversation. We really appreciate your insights and all the context that you provided about Astronomer. >> Thank you so much for having us. >> My pleasure. For my guests, I'm Lisa Martin. You're watching this Cube conversation. (soft electronic music)
SUMMARY :
to this CUBE conversation Thank you so much and what it is that you guys do. and hopefully that gives you an idea and the problems that it solves for us. to be a data company, right? So, how are companies actually kind of all the abstractions you need, and just give the And that comes in, you of the organization. and analysis that happened that you just described, Raj. that you need to run Airflow, that we now have at Astronomer. Awesome. and I think you did a good job of saying and you bring up a great point, Viraj, and all of the sort of core principles and for your role? and needing to audit the and all the context that you (soft electronic music)
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Viraj Parekh | PERSON | 0.99+ |
Lisa Martin | PERSON | 0.99+ |
Paola | PERSON | 0.99+ |
Viraj | PERSON | 0.99+ |
2014 | DATE | 0.99+ |
Astronomer | ORGANIZATION | 0.99+ |
Paola Peraza-Calderon | PERSON | 0.99+ |
Paola Peraza Calderon | PERSON | 0.99+ |
Airflow | ORGANIZATION | 0.99+ |
Airbnb | ORGANIZATION | 0.99+ |
five plus years | QUANTITY | 0.99+ |
Astro | ORGANIZATION | 0.99+ |
Raj | PERSON | 0.99+ |
Uzi | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
first | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
Kron | ORGANIZATION | 0.99+ |
10 more teams | QUANTITY | 0.98+ |
Astronomers | ORGANIZATION | 0.98+ |
Astra | ORGANIZATION | 0.98+ |
one | QUANTITY | 0.98+ |
Airflow | TITLE | 0.98+ |
Informatics | ORGANIZATION | 0.98+ |
Monte Carlo | TITLE | 0.98+ |
this year | DATE | 0.98+ |
HubSpot | ORGANIZATION | 0.98+ |
one company | QUANTITY | 0.97+ |
Astronomer | TITLE | 0.97+ |
next year | DATE | 0.97+ |
Apache | ORGANIZATION | 0.97+ |
Airflow Summit | EVENT | 0.97+ |
AWS | ORGANIZATION | 0.95+ |
both worlds | QUANTITY | 0.93+ |
KRON | ORGANIZATION | 0.93+ |
CUBE | ORGANIZATION | 0.92+ |
M | ORGANIZATION | 0.92+ |
Redshift | TITLE | 0.91+ |
Snowflake | TITLE | 0.91+ |
five data teams | QUANTITY | 0.91+ |
GitHub | ORGANIZATION | 0.91+ |
Oozie | ORGANIZATION | 0.9+ |
Data Lineage | ORGANIZATION | 0.9+ |
Chris Jones, Platform9 | Finding your "Just Right” path to Cloud Native
(upbeat music) >> Hi everyone. Welcome back to this Cube conversation here in Palo Alto, California. I'm John Furrier, host of "theCUBE." Got a great conversation around Cloud Native, Cloud Native Journey, how enterprises are looking at Cloud Native and putting it all together. And it comes down to operations, developer productivity, and security. It's the hottest topic in technology. We got Chris Jones here in the studio, director of Product Management for Platform9. Chris, thanks for coming in. >> Hey, thanks. >> So when we always chat about, when we're at KubeCon. KubeConEU is coming up and in a few, in a few months, the number one conversation is developer productivity. And the developers are driving all the standards. It's interesting to see how they just throw everything out there and whatever gets adopted ends up becoming the standard, not the old school way of kind of getting stuff done. So that's cool. Security Kubernetes and Containers are all kind of now that next level. So you're starting to see the early adopters moving to the mainstream. Enterprises, a variety of different approaches. You guys are at the center of this. We've had a couple conversations with your CEO and your tech team over there. What are you seeing? You're building the products. What's the core product focus right now for Platform9? What are you guys aiming for? >> The core is that blend of enabling your infrastructure and PlatformOps or DevOps teams to be able to go fast and run in a stable environment, but at the same time enable developers. We don't want people going back to what I've been calling Shadow IT 2.0. It's, hey, I've been told to do something. I kicked off this Container initiative. I need to run my software somewhere. I'm just going to go figure it out. We want to keep those people productive. At the same time we want to enable velocity for our operations teams, be it PlatformOps or DevOps. >> Take us through in your mind and how you see the industry rolling out this Cloud Native journey. Where do you see customers out there? Because DevOps have been around, DevSecOps is rocking, you're seeing AI, hot trend now. Developers are still in charge. Is there a change to the infrastructure of how developers get their coding done and the infrastructure, setting up the DevOps is key, but when you add the Cloud Native journey for an enterprise, what changes? What is the, what is the, I guess what is the Cloud Native journey for an enterprise these days? >> The Cloud Native journey or the change? When- >> Let's start with the, let's start with what they want to do. What's the goal and then how does that happen? >> I think the goal is that promise land. Increased resiliency, better scalability, and overall reduced costs. I've gone from physical to virtual that gave me a higher level of density, packing of resources. I'm moving to Containers. I'm removing that OS layer again. I'm getting a better density again, but all of a sudden I'm running Kubernetes. What does that, what does that fundamentally do to my operations? Does it magically give me scalability and resiliency? Or do I need to change what I'm running and how it's running so it fits that infrastructure? And that's the reality, is you can't just take a Container and drop it into Kubernetes and say, hey, I'm now Cloud Native. I've got reduced cost, or I've got better resiliency. There's things that your engineering teams need to do to make sure that application is a Cloud Native. And then there's what I think is one of the largest shifts of virtual machines to containers. When I was in the world of application performance monitoring, we would see customers saying, well, my engineering team have this Java app, and they said it needs a VM with 12 gig of RAM and eight cores, and that's what we gave it. But it's running slow. I'm working with the application team and you can see it's running slow. And they're like, well, it's got all of its resources. One of those nice features of virtualization is over provisioning. So the infrastructure team would say, well, we gave it, we gave it all a RAM it needed. And what's wrong with that being over provisioned? It's like, well, Java expects that RAM to be there. Now all of a sudden, when you move to the world of containers, what we've got is that's not a set resource limit, really is like it used to be in a VM, right? When you set it for a container, your application teams really need to be paying attention to your resource limits and constraints within the world of Kubernetes. So instead of just being able to say, hey, I'm throwing over the fence and now it's just going to run on a VM, and that VMs got everything it needs. It's now really running on more, much more of a shared infrastructure where limits and constraints are going to impact the neighbors. They are going to impact who's making that decision around resourcing. Because that Kubernetes concept of over provisioning and the virtualization concept of over provisioning are not the same. So when I look at this problem, it's like, well, what changed? Well, I'll do my scale tests as an application developer and tester, and I'd see what resources it needs. I asked for that in the VM, that sets the high watermark, job's done. Well, Kubernetes, it's no longer a VM, it's a Kubernetes manifest. And well, who owns that? Who's writing it? Who's setting those limits? To me, that should be the application team. But then when it goes into operations world, they're like, well, that's now us. Can we change those? So it's that amalgamation of the two that is saying, I'm a developer. I used to pay attention, but now I need to pay attention. And an infrastructure person saying, I used to just give 'em what they wanted, but now I really need to know what they've wanted, because it's going to potentially have a catastrophic impact on what I'm running. >> So what's the impact for the developer? Because, infrastructure's code is what everybody wants. The developer just wants to get the code going and they got to pay attention to all these things, or don't they? Is that where you guys come in? How do you guys see the problem? Actually scope the problem that you guys solve? 'Cause I think you're getting at I think the core issue here, which is, I've got Kubernetes, I've got containers, I've got developer productivity that I want to focus on. What's the problem that you guys solve? >> Platform operation teams that are adopting Cloud Native in their environment, they've got that steep learning curve of Kubernetes plus this fundamental change of how an app runs. What we're doing is taking away the burden of needing to operate and run Kubernetes and giving them the choice of the flexibility of infrastructure and location. Be that an air gap environment like a, let's say a telco provider that needs to run a containerized network function and containerized workloads for 5G. That's one thing that we can deploy and achieve in a completely inaccessible environment all the way through to Platform9 running traditionally as SaaS, as we were born, that's remotely managing and controlling your Kubernetes environments on-premise AWS. That hybrid cloud experience that could be also Bare Metal, but it's our platform running your environments with our support there, 24 by seven, that's proactively reaching out. So it's removing a lot of that burden and the complications that come along with operating the environment and standing it up, which means all of a sudden your DevOps and platform operations teams can go and work with your engineers and application developers and say, hey, let's get, let's focus on the stuff that, that we need to be focused on, which is running our business and providing a service to our customers. Not figuring out how to upgrade a Kubernetes cluster, add new nodes, and configure all of the low level. >> I mean there are, that's operations that just needs to work. And sounds like as they get into the Cloud Native kind of ops, there's a lot of stuff that kind of goes wrong. Or you go, oops, what do we buy into? Because the CIOs, let's go, let's go Cloud Native. We want to, we got to get set up for the future. We're going to be Cloud Native, not just lift and shift and we're going to actually build it out right. Okay, that sounds good. And when we have to actually get done. >> Chris: Yeah. >> You got to spin things up and stand up the infrastructure. What specifically use case do you guys see that emerges for Platform9 when people call you up and you go talk to customers and prospects? What's the one thing or use case or cases that you guys see that you guys solve the best? >> So I think one of the, one of the, I guess new use cases that are coming up now, everyone's talking about economic pressures. I think the, the tap blows open, just get it done. CIO is saying let's modernize, let's use the cloud. Now all of a sudden they're recognizing, well wait, we're spending a lot of money now. We've opened that tap all the way, what do we do? So now they're looking at ways to control that spend. So we're seeing that as a big emerging trend. What we're also sort of seeing is people looking at their data centers and saying, well, I've got this huge legacy environment that's running a hypervisor. It's running VMs. Can we still actually do what we need to do? Can we modernize? Can we start this Cloud Native journey without leaving our data centers, our co-locations? Or if I do want to reduce costs, is that that thing that says maybe I'm repatriating or doing a reverse migration? Do I have to go back to my data center or are there other alternatives? And we're seeing that trend a lot. And our roadmap and what we have in the product today was specifically built to handle those, those occurrences. So we brought in KubeVirt in terms of virtualization. We have a long legacy doing OpenStack and private clouds. And we've worked with a lot of those users and customers that we have and asked the questions, what's important? And today, when we look at the world of Cloud Native, you can run virtualization within Kubernetes. So you can, instead of running two separate platforms, you can have one. So all of a sudden, if you're looking to modernize, you can start on that new infrastructure stack that can run anywhere, Kubernetes, and you can start bringing VMs over there as you are containerizing at the same time. So now you can keep your application operations in one environment. And this also helps if you're trying to reduce costs. If you really are saying, we put that Dev environment in AWS, we've got a huge amount of velocity out of it now, can we do that elsewhere? Is there a co-location we can go to? Is there a provider that we can go to where we can run that infrastructure or run the Kubernetes, but not have to run the infrastructure? >> It's going to be interesting too, when you see the Edge come online, you start, we've got Mobile World Congress coming up, KubeCon events we're going to be at, the conversation is not just about public cloud. And you guys obviously solve a lot of do-it-yourself implementation hassles that emerge when people try to kind of stand up their own environment. And we hear from developers consistency between code, managing new updates, making sure everything is all solid so they can go fast. That's the goal. And that, and then people can get standardized on that. But as you get public cloud and do it yourself, kind of brings up like, okay, there's some gaps there as the architecture changes to be more distributed computing, Edge, on-premises cloud, it's cloud operations. So that's cool for DevOps and Cloud Native. How do you guys differentiate from say, some the public cloud opportunities and the folks who are doing it themselves? How do you guys fit in that world and what's the pitch or what's the story? >> The fit that we look at is that third alternative. Let's get your team focused on what's high value to your business and let us deliver that public cloud experience on your infrastructure or in the public cloud, which gives you that ability to still be flexible if you want to make choices to run consistently for your developers in two different locations. So as I touched on earlier, instead of saying go figure out Kubernetes, how do you upgrade a hundred worker nodes in place upgrade. We've solved that problem. That's what we do every single day of the week. Don't go and try to figure out how to upgrade a cluster and then upgrade all of the, what I call Kubernetes friends, your core DNSs, your metrics server, your Kubernetes dashboard. These are all things that we package, we test, we version. So when you click upgrade, we've already handled that entire process. So it's saying don't have your team focused on that lower level piece of work. Get them focused on what is important, which is your business services. >> Yeah, the infrastructure and getting that stood up. I mean, I think the thing that's interesting, if you look at the market right now, you mentioned cost savings and recovery, obviously kind of a recession. I mean, people are tightening their belts for sure. I don't think the digital transformation and Cloud Native spend is going to plummet. It's going to probably be on hold and be squeezed a little bit. But to your point, people are refactoring looking at how to get the best out of what they got. It's not just open the tap of spend the cash like it used to be. Yeah, a couple months, even a couple years ago. So okay, I get that. But then you look at the what's coming, AI. You're seeing all the new data infrastructure that's coming. The containers, Kubernetes stuff, got to get stood up pretty quickly and it's got to be reliable. So to your point, the teams need to get done with this and move on to the next thing. >> Chris: Yeah, yeah, yeah. >> 'Cause there's more coming. I mean, there's a lot coming for the apps that are building in Data Native, AI-Native, Cloud Native. So it seems that this Kubernetes thing needs to get solved. Is that kind of what you guys are focused on right now? >> So, I mean to use a customer, we have a customer that's in AI/ML and they run their platform at customer sites and that's hardware bound. You can't run AI machine learning on anything anywhere. Well, with Platform9 they can. So we're enabling them to deliver services into their customers that's running their AI/ML platform in their customer's data centers anywhere in the world on hardware that is purpose-built for running that workload. They're not Kubernetes experts. That's what we are. We're bringing them that ability to focus on what's important and just delivering their business services whilst they're enabling our team. And our 24 by seven proactive management are always on assurance to keep that up and running for them. So when something goes bump at the night at 2:00am, our guys get woken up. They're the ones that are reaching out to the customer saying, your environments have a problem, we're taking these actions to fix it. Obviously sometimes, especially if it is running on Bare Metal, there's things you can't do remotely. So you might need someone to go and do that. But even when that happens, you're not by yourself. You're not sitting there like I did when I worked for a bank in one of my first jobs, three o'clock in the morning saying, wow, our end of day processing is stuck. Who else am I waking up? Right? >> Exactly, yeah. Got to get that cash going. But this is a great use case. I want to get to the customer. What do some of the successful customers say to you for the folks watching that aren't yet a customer of Platform9, what are some of the accolades and comments or anecdotes that you guys hear from customers that you have? >> It just works, which I think is probably one of the best ones you can get. Customers coming back and being able to show to their business that they've delivered growth, like business growth and productivity growth and keeping their organization size the same. So we started on our containerization journey. We went to Kubernetes. We've deployed all these new workloads and our operations team is still six people. We're doing way more with growth less, and I think that's also talking to the strength that we're bringing, 'cause we're, we're augmenting that team. They're spending less time on the really low level stuff and automating a lot of the growth activity that's involved. So when it comes to being able to grow their business, they can just focus on that, not- >> Well you guys do the heavy lifting, keep on top of the Kubernetes, make sure that all the versions are all done. Everything's stable and consistent so they can go on and do the build out and provide their services. That seems to be what you guys are best at. >> Correct, correct. >> And so what's on the roadmap? You have the product, direct product management, you get the keys to the kingdom. What is, what is the focus? What's your focus right now? Obviously Kubernetes is growing up, Containers. We've been hearing a lot at the last KubeCon about the security containers is getting better. You've seen verification, a lot more standards around some things. What are you focused on right now for at a product over there? >> Edge is a really big focus for us. And I think in Edge you can look at it in two ways. The mantra that I drive is Edge must be remote. If you can't do something remotely at the Edge, you are using a human being, that's not Edge. Our Edge management capabilities and being in the market for over two years are a hundred percent remote. You want to stand up a store, you just ship the server in there, it gets racked, the rest of it's remote. Imagine a store manager in, I don't know, KFC, just plugging in the server, putting in the ethernet cable, pressing the power button. The rest of all that provisioning for that Cloud Native stack, Kubernetes, KubeVirt for virtualization is done remotely. So we're continuing to focus on that. The next piece that is related to that is allowing people to run Platform9 SaaS in their data centers. So we do ag app today and we've had a really strong focus on telecommunications and the containerized network functions that come along with that. So this next piece is saying, we're bringing what we run as SaaS into your data center, so then you can run it. 'Cause there are many people out there that are saying, we want these capabilities and we want everything that the Platform9 control plane brings and simplifies. But unfortunately, regulatory compliance reasons means that we can't leverage SaaS. So they might be using a cloud, but they're saying that's still our infrastructure. We're still closed that network down, or they're still on-prem. So they're two big priorities for us this year. And that on-premise experiences is paramount, even to the point that we will be delivering a way that when you run an on-premise, you can still say, wait a second, well I can send outbound alerts to Platform9. So their support team can still be proactively helping me as much as they could, even though I'm running Platform9s control plane. So it's sort of giving that blend of two experiences. They're big, they're big priorities. And the third pillar is all around virtualization. It's saying if you have economic pressures, then I think it's important to look at what you're spending today and realistically say, can that be reduced? And I think hypervisors and virtualization is something that should be looked at, because if you can actually reduce that spend, you can bring in some modernization at the same time. Let's take some of those nos that exist that are two years into their five year hardware life cycle. Let's turn that into a Cloud Native environment, which is enabling your modernization in place. It's giving your engineers and application developers the new toys, the new experiences, and then you can start running some of those virtualized workloads with KubeVirt, there. So you're reducing cost and you're modernizing at the same time with your existing infrastructure. >> You know Chris, the topic of this content series that we're doing with you guys is finding the right path, trusting the right path to Cloud Native. What does that mean? I mean, if you had to kind of summarize that phrase, trusting the right path to Cloud Native, what does that mean? It mean in terms of architecture, is it deployment? Is it operations? What's the underlying main theme of that quote? What's the, what's? How would you talk to a customer and say, what does that mean if someone said, "Hey, what does that right path mean?" >> I think the right path means focusing on what you should be focusing on. I know I've said it a hundred times, but if your entire operations team is trying to figure out the nuts and bolts of Kubernetes and getting three months into a journey and discovering, ah, I need Metrics Server to make something function. I want to use Horizontal Pod Autoscaler or Vertical Pod Autoscaler and I need this other thing, now I need to manage that. That's not the right path. That's literally learning what other people have been learning for the last five, seven years that have been focused on Kubernetes solely. So the why- >> There's been a lot of grind. People have been grinding it out. I mean, that's what you're talking about here. They've been standing up the, when Kubernetes started, it was all the promise. >> Chris: Yep. >> And essentially manually kind of getting in in the weeds and configuring it. Now it's matured up. They want stability. >> Chris: Yeah. >> Not everyone can get down and dirty with Kubernetes. It's not something that people want to generally do unless you're totally into it, right? Like I mean, I mean ops teams, I mean, yeah. You know what I mean? It's not like it's heavy lifting. Yeah, it's important. Just got to get it going. >> Yeah, I mean if you're deploying with Platform9, your Ops teams can tinker to their hearts content. We're completely compliant upstream Kubernetes. You can go and change an API server flag, let's go and mess with the scheduler, because we want to. You can still do that, but don't, don't have your team investing in all this time to figure it out. It's been figured out. >> John: Got it. >> Get them focused on enabling velocity for your business. >> So it's not build, but run. >> Chris: Correct? >> Or run Kubernetes, not necessarily figure out how to kind of get it all, consume it out. >> You know we've talked to a lot of customers out there that are saying, "I want to be able to deliver a service to my users." Our response is, "Cool, let us run it. You consume it, therefore deliver it." And we're solving that in one hit versus figuring out how to first run it, then operate it, then turn that into a consumable service. >> So the alternative Platform9 is what? They got to do it themselves or use the Cloud or what's the, what's the alternative for the customer for not using Platform9? Hiring more people to kind of work on it? What's the? >> People, building that kind of PaaS experience? Something that I've been very passionate about for the past year is looking at that world of sort of GitOps and what that means. And if you go out there and you sort of start asking the question what's happening? Just generally with Kubernetes as well and GitOps in that scope, then you'll hear some people saying, well, I'm making it PaaS, because Kubernetes is too complicated for my developers and we need to give them something. There's some great material out there from the likes of Intuit and Adobe where for two big contributors to Argo and the Argo projects, they almost have, well they do have, different experiences. One is saying, we went down the PaaS route and it failed. The other one is saying, well we've built a really stable PaaS and it's working. What are they trying to do? They're trying to deliver an outcome to make it easy to use and consume Kubernetes. So you could go out there and say, hey, I'm going to build a Kubernetes cluster. Sounds like Argo CD is a great way to expose that to my developers so they can use Kubernetes without having to use Kubernetes and start automating things. That is an approach, but you're going to be going completely open source and you're going to have to bring in all the individual components, or you could just lay that, lay it down, and consume it as a service and not have to- >> And mentioned to it. They were the ones who kind of brought that into the open. >> They did. Inuit is the primary contributor to the Argo set of products. >> How has that been received in the market? I mean, they had the event at the Computer History Museum last fall. What's the momentum there? What's the big takeaway from that project? >> Growth. To me, growth. I mean go and track the stars on that one. It's just, it's growth. It's unlocking machine learning. Argo workflows can do more than just make things happen. Argo CD I think the approach they're taking is, hey let's make this simple to use, which I think can be lost. And I think credit where credit's due, they're really pushing to bring in a lot of capabilities to make it easier to work with applications and microservices on Kubernetes. It's not just that, hey, here's a GitOps tool. It can take something from a Git repo and deploy it and maybe prioritize it and help you scale your operations from that perspective. It's taking a step back and saying, well how did we get to production in the first place? And what can be done down there to help as well? I think it's growth expansion of features. They had a huge release just come out in, I think it was 2.6, that brought in things that as a product manager that I don't often look at like really deep technical things and say wow, that's powerful. But they have, they've got some great features in that release that really do solve real problems. >> And as the product, as the product person, who's the target buyer for you? Who's the customer? Who's making that? And you got decision maker, influencer, and recommender. Take us through the customer persona for you guys. >> So that Platform Ops, DevOps space, right, the people that need to be delivering Containers as a service out to their organization. But then it's also important to say, well who else are our primary users? And that's developers, engineers, right? They shouldn't have to say, oh well I have access to a Kubernetes cluster. Do I have to use kubectl or do I need to go find some other tool? No, they can just log to Platform9. It's integrated with your enterprise id. >> They're the end customer at the end of the day, they're the user. >> Yeah, yeah. They can log in. And they can see the clusters you've given them access to as a Platform Ops Administrator. >> So job well done for you guys. And your mind is the developers are moving 'em fast, coding and happy. >> Chris: Yeah, yeah. >> And and from a customer standpoint, you reduce the maintenance cost, because you keep the Ops smoother, so you got efficiency and maintenance costs kind of reduced or is that kind of the benefits? >> Yeah, yep, yeah. And at two o'clock in the morning when things go inevitably wrong, they're not there by themselves, and we're proactively working with them. >> And that's the uptime issue. >> That is the uptime issue. And Cloud doesn't solve that, right? Everyone experienced that Clouds can go down, entire regions can go offline. That's happened to all Cloud providers. And what do you do then? Kubernetes isn't your recovery plan. It's part of it, right, but it's that piece. >> You know Chris, to wrap up this interview, I will say that "theCUBE" is 12 years old now. We've been to OpenStack early days. We had you guys on when we were covering OpenStack and now Cloud has just been booming. You got AI around the corner, AI Ops, now you got all this new data infrastructure, it's just amazing Cloud growth, Cloud Native, Security Native, Cloud Native, Data Native, AI Native. It's going to be all, this is the new app environment, but there's also existing infrastructure. So going back to OpenStack, rolling our own cloud, building your own cloud, building infrastructure cloud, in a cloud way, is what the pioneers have done. I mean this is what we're at. Now we're at this scale next level, abstracted away and make it operational. It seems to be the key focus. We look at CNCF at KubeCon and what they're doing with the cloud SecurityCon, it's all about operations. >> Chris: Yep, right. >> Ops and you know, that's going to sound counterintuitive 'cause it's a developer open source environment, but you're starting to see that Ops focus in a good way. >> Chris: Yeah, yeah, yeah. >> Infrastructure as code way. >> Chris: Yep. >> What's your reaction to that? How would you summarize where we are in the industry relative to, am I getting, am I getting it right there? Is that the right view? What am I missing? What's the current state of the next level, NextGen infrastructure? >> It's a good question. When I think back to sort of late 2019, I sort of had this aha moment as I saw what really truly is delivering infrastructure as code happening at Platform9. There's an open source project Ironic, which is now also available within Kubernetes that is Metal Kubed that automates Bare Metal as code, which means you can go from an empty server, lay down your operating system, lay down Kubernetes, and you've just done everything delivered to your customer as code with a Cloud Native platform. That to me was sort of the biggest realization that I had as I was moving into this industry was, wait, it's there. This can be done. And the evolution of tooling and operations is getting to the point where that can be achieved and it's focused on by a number of different open source projects. Not just Ironic and and Metal Kubed, but that's a huge win. That is truly getting your infrastructure. >> John: That's an inflection point, really. >> Yeah. >> If you think about it, 'cause that's one of the problems. We had with the Bare Metal piece was the automation and also making it Cloud Ops, cloud operations. >> Right, yeah. I mean, one of the things that I think Ironic did really well was saying let's just treat that piece of Bare Metal like a Cloud VM or an instance. If you got a problem with it, just give the person using it or whatever's using it, a new one and reimage it. Just tell it to reimage itself and it'll just (snaps fingers) go. You can do self-service with it. In Platform9, if you log in to our SaaS Ironic, you can go and say, I want that physical server to myself, because I've got a giant workload, or let's turn it into a Kubernetes cluster. That whole thing is automated. To me that's infrastructure as code. I think one of the other important things that's happening at the same time is we're seeing GitOps, we're seeing things like Terraform. I think it's important for organizations to look at what they have and ask, am I using tools that are fit for tomorrow or am I using tools that are yesterday's tools to solve tomorrow's problems? And when especially it comes to modernizing infrastructure as code, I think that's a big piece to look at. >> Do you see Terraform as old or new? >> I see Terraform as old. It's a fantastic tool, capable of many great things and it can work with basically every single provider out there on the planet. It is able to do things. Is it best fit to run in a GitOps methodology? I don't think it is quite at that point. In fact, if you went and looked at Flux, Flux has ways that make Terraform GitOps compliant, which is absolutely fantastic. It's using two tools, the best of breeds, which is solving that tomorrow problem with tomorrow solutions. >> Is the new solutions old versus new. I like this old way, new way. I mean, Terraform is not that old and it's been around for about eight years or so, whatever. But HashiCorp is doing a great job with that. I mean, so okay with Terraform, what's the new address? Is it more complex environments? Because Terraform made sense when you had basic DevOps, but now it sounds like there's a whole another level of complexity. >> I got to say. >> New tools. >> That kind of amalgamation of that application into infrastructure. Now my app team is paying way more attention to that manifest file, which is what GitOps is trying to solve. Let's templatize things. Let's version control our manifest, be it helm, customize, or just a straight up Kubernetes manifest file, plain and boring. Let's get that version controlled. Let's make sure that we know what is there, why it was changed. Let's get some auditability and things like that. And then let's get that deployment all automated. So that's predicated on the cluster existing. Well why can't we do the same thing with the cluster, the inception problem. So even if you're in public cloud, the question is like, well what's calling that API to call that thing to happen? Where is that file living? How well can I manage that in a large team? Oh my God, something just changed. Who changed it? Where is that file? And I think that's one of big, the big pieces to be sold. >> Yeah, and you talk about Edge too and on-premises. I think one of the things I'm observing and certainly when DevOps was rocking and rolling and infrastructures code was like the real push, it was pretty much the public cloud, right? >> Chris: Yep. >> And you did Cloud Native and you had stuff on-premises. Yeah you did some lifting and shifting in the cloud, but the cool stuff was going in the public cloud and you ran DevOps. Okay, now you got on-premise cloud operation and Edge. Is that the new DevOps? I mean 'cause what you're kind of getting at with old new, old new Terraform example is an interesting point, because you're pointing out potentially that that was good DevOps back in the day or it still is. >> Chris: It is, I was going to say. >> But depending on how you define what DevOps is. So if you say, I got the new DevOps with public on-premise and Edge, that's just not all public cloud, that's essentially distributed Cloud Native. >> Correct. Is that the new DevOps in your mind or is that? How would you, or is that oversimplifying it? >> Or is that that term where everyone's saying Platform Ops, right? Has it shifted? >> Well you bring up a good point about Terraform. I mean Terraform is well proven. People love it. It's got great use cases and now there seems to be new things happening. We call things like super cloud emerging, which is multicloud and abstraction layers. So you're starting to see stuff being abstracted away for the benefits of moving to the next level, so teams don't get stuck doing the same old thing. They can move on. Like what you guys are doing with Platform9 is providing a service so that teams don't have to do it. >> Correct, yeah. >> That makes a lot of sense, So you just, now it's running and then they move on to the next thing. >> Chris: Yeah, right. >> So what is that next thing? >> I think Edge is a big part of that next thing. The propensity for someone to put up with a delay, I think it's gone. For some reason, we've all become fairly short-tempered, Short fused. You know, I click the button, it should happen now, type people. And for better or worse, hopefully it gets better and we all become a bit more patient. But how do I get more effective and efficient at delivering that to that really demanding- >> I think you bring up a great point. I mean, it's not just people are getting short-tempered. I think it's more of applications are being deployed faster, security is more exposed if they don't see things quicker. You got data now infrastructure scaling up massively. So, there's a double-edged swords to scale. >> Chris: Yeah, yeah. I mean, maintenance, downtime, uptime, security. So yeah, I think there's a tension around, and one hand enthusiasm around pushing a lot of code and new apps. But is the confidence truly there? It's interesting one little, (snaps finger) supply chain software, look at Container Security for instance. >> Yeah, yeah. It's big. I mean it was codified. >> Do you agree that people, that's kind of an issue right now. >> Yeah, and it was, I mean even the supply chain has been codified by the US federal government saying there's things we need to improve. We don't want to see software being a point of vulnerability, and software includes that whole process of getting it to a running point. >> It's funny you mentioned remote and one of the thing things that you're passionate about, certainly Edge has to be remote. You don't want to roll a truck or labor at the Edge. But I was doing a conversation with, at Rebars last year about space. It's hard to do brake fix on space. It's hard to do a, to roll a someone to configure satellite, right? Right? >> Chris: Yeah. >> So Kubernetes is in space. We're seeing a lot of Cloud Native stuff in apps, in space, so just an example. This highlights the fact that it's got to be automated. Is there a machine learning AI angle with all this ChatGPT talk going on? You see all the AI going the next level. Some pretty cool stuff and it's only, I know it's the beginning, but I've heard people using some of the new machine learning, large language models, large foundational models in areas I've never heard of. Machine learning and data centers, machine learning and configuration management, a lot of different ways. How do you see as the product person, you incorporating the AI piece into the products for Platform9? >> I think that's a lot about looking at the telemetry and the information that we get back and to use one of those like old idle terms, that continuous improvement loop to feed it back in. And I think that's really where machine learning to start with comes into effect. As we run across all these customers, our system that helps at two o'clock in the morning has that telemetry, it's got that data. We can see what's changing and what's happening. So it's writing the right algorithms, creating the right machine learning to- >> So training will work for you guys. You have enough data and the telemetry to do get that training data. >> Yeah, obviously there's a lot of investment required to get there, but that is something that ultimately that could be achieved with what we see in operating people's environments. >> Great. Chris, great to have you here in the studio. Going wide ranging conversation on Kubernetes and Platform9. I guess my final question would be how do you look at the next five years out there? Because you got to run the product management, you got to have that 20 mile steer, you got to look at the customers, you got to look at what's going on in the engineering and you got to kind of have that arc. This is the right path kind of view. What's the five year arc look like for you guys? How do you see this playing out? 'Cause KubeCon is coming up and we're you seeing Kubernetes kind of break away with security? They had, they didn't call it KubeCon Security, they call it CloudNativeSecurityCon, they just had in Seattle inaugural events seemed to go well. So security is kind of breaking out and you got Kubernetes. It's getting bigger. Certainly not going away, but what's your five year arc of of how Platform9 and Kubernetes and Ops evolve? >> It's to stay on that theme, it's focusing on what is most important to our users and getting them to a point where they can just consume it, so they're not having to operate it. So it's finding those big items and bringing that into our platform. It's something that's consumable, that's just taken care of, that's tested with each release. So it's simplifying operations more and more. We've always said freedom in cloud computing. Well we started on, we started on OpenStack and made that simple. Stable, easy, you just have it, it works. We're doing that with Kubernetes. We're expanding out that user, right, we're saying bring your developers in, they can download their Kube conflict. They can see those Containers that are running there. They can access the events, the log files. They can log in and build a VM using KubeVirt. They're self servicing. So it's alleviating pressures off of the Ops team, removing the help desk systems that people still seem to rely on. So it's like what comes into that field that is the next biggest issue? Is it things like CI/CD? Is it simplifying GitOps? Is it bringing in security capabilities to talk to that? Or is that a piece that is a best of breed? Is there a reason that it's been spun out to its own conference? Is this something that deserves a focus that should be a specialized capability instead of tooling and vendors that we work with, that we partner with, that could be brought in as a service. I think it's looking at those trends and making sure that what we bring in has the biggest impact to our users. >> That's awesome. Thanks for coming in. I'll give you the last word. Put a plug in for Platform9 for the people who are watching. What should they know about Platform9 that they might not know about it or what should? When should they call you guys and when should they engage? Take a take a minute to give the plug. >> The plug. I think it's, if your operations team is focused on building Kubernetes, stop. That shouldn't be the cloud. That shouldn't be in the Edge, that shouldn't be at the data center. They should be consuming it. If your engineering teams are all trying different ways and doing different things to use and consume Cloud Native services and Kubernetes, they shouldn't be. You want consistency. That's how you get economies of scale. Provide them with a simple platform that's integrated with all of your enterprise identity where they can just start consuming instead of having to solve these problems themselves. It's those, it's those two personas, right? Where the problems manifest. What are my operations teams doing, and are they delivering to my company or are they building infrastructure again? And are my engineers sprinting or crawling? 'Cause if they're not sprinting, you should be asked the question, do I have the right Cloud Native tooling in my environment and how can I get them back? >> I think it's developer productivity, uptime, security are the tell signs. You get that done. That's the goal of what you guys are doing, your mission. >> Chris: Yep. >> Great to have you on, Chris. Thanks for coming on. Appreciate it. >> Chris: Thanks very much. 0 Okay, this is "theCUBE" here, finding the right path to Cloud Native. I'm John Furrier, host of "theCUBE." Thanks for watching. (upbeat music)
SUMMARY :
And it comes down to operations, And the developers are I need to run my software somewhere. and the infrastructure, What's the goal and then I asked for that in the VM, What's the problem that you guys solve? and configure all of the low level. We're going to be Cloud Native, case or cases that you guys see We've opened that tap all the way, It's going to be interesting too, to your business and let us deliver the teams need to get Is that kind of what you guys are always on assurance to keep that up customers say to you of the best ones you can get. make sure that all the You have the product, and being in the market with you guys is finding the right path, So the why- I mean, that's what kind of getting in in the weeds Just got to get it going. to figure it out. velocity for your business. how to kind of get it all, a service to my users." and GitOps in that scope, of brought that into the open. Inuit is the primary contributor What's the big takeaway from that project? hey let's make this simple to use, And as the product, the people that need to at the end of the day, And they can see the clusters So job well done for you guys. the morning when things And what do you do then? So going back to OpenStack, Ops and you know, is getting to the point John: That's an 'cause that's one of the problems. that physical server to myself, It is able to do things. Terraform is not that the big pieces to be sold. Yeah, and you talk about Is that the new DevOps? I got the new DevOps with Is that the new DevOps Like what you guys are move on to the next thing. at delivering that to I think you bring up a great point. But is the confidence truly there? I mean it was codified. Do you agree that people, I mean even the supply and one of the thing things I know it's the beginning, and the information that we get back the telemetry to do get that could be achieved with what we see and you got to kind of have that arc. that is the next biggest issue? Take a take a minute to give the plug. and are they delivering to my company That's the goal of what Great to have you on, Chris. finding the right path to Cloud Native.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Chris | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Chris Jones | PERSON | 0.99+ |
12 gig | QUANTITY | 0.99+ |
five year | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
two years | QUANTITY | 0.99+ |
six people | QUANTITY | 0.99+ |
two personas | QUANTITY | 0.99+ |
Adobe | ORGANIZATION | 0.99+ |
Java | TITLE | 0.99+ |
three months | QUANTITY | 0.99+ |
20 mile | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Seattle | LOCATION | 0.99+ |
two tools | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
eight cores | QUANTITY | 0.99+ |
KubeCon | EVENT | 0.99+ |
last year | DATE | 0.99+ |
GitOps | TITLE | 0.99+ |
one | QUANTITY | 0.99+ |
tomorrow | DATE | 0.99+ |
over two years | QUANTITY | 0.99+ |
HashiCorp | ORGANIZATION | 0.99+ |
Terraform | ORGANIZATION | 0.99+ |
two separate platforms | QUANTITY | 0.99+ |
24 | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
two ways | QUANTITY | 0.98+ |
third alternative | QUANTITY | 0.98+ |
each release | QUANTITY | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
third pillar | QUANTITY | 0.98+ |
2:00am | DATE | 0.98+ |
first jobs | QUANTITY | 0.98+ |
Mobile World Congress | EVENT | 0.98+ |
Cloud Native | TITLE | 0.98+ |
this year | DATE | 0.98+ |
late 2019 | DATE | 0.98+ |
Platform9 | TITLE | 0.98+ |
one environment | QUANTITY | 0.98+ |
last fall | DATE | 0.97+ |
Kubernetes | TITLE | 0.97+ |
yesterday | DATE | 0.97+ |
two experiences | QUANTITY | 0.97+ |
about eight years | QUANTITY | 0.97+ |
DevSecOps | TITLE | 0.97+ |
Git | TITLE | 0.97+ |
Flux | ORGANIZATION | 0.96+ |
CNCF | ORGANIZATION | 0.96+ |
two big contributors | QUANTITY | 0.96+ |
Cloud Native | TITLE | 0.96+ |
DevOps | TITLE | 0.96+ |
Rebars | ORGANIZATION | 0.95+ |
Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud
(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)
SUMMARY :
And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Walmart | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Thomas | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Ed Walsh | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Sachs | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two years | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
Last August | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
dbt Labs | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ed | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Jimata Gan | PERSON | 0.99+ |
third one | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
third generation | QUANTITY | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
second generation | QUANTITY | 0.99+ |
second one | QUANTITY | 0.99+ |
hundreds of terabytes | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
five | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
a year ago | DATE | 0.98+ |
ChaosSearch | ORGANIZATION | 0.98+ |
Muglia | PERSON | 0.98+ |
MySQL | TITLE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
third thing | QUANTITY | 0.97+ |
Marlborough | LOCATION | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
today | DATE | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
Elasticsearch | TITLE | 0.96+ |
NetApp | TITLE | 0.96+ |
Datadog | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
EC2 | TITLE | 0.96+ |
each one | QUANTITY | 0.96+ |
S3 | TITLE | 0.96+ |
one platform | QUANTITY | 0.95+ |
Supercloud 2 | EVENT | 0.95+ |
first read | QUANTITY | 0.95+ |
six years ago | DATE | 0.95+ |
Ramesh Prabagaran, Prosimo.io | Defining the Network Supercloud
(upbeat music) >> Hello, and welcome to Supercloud2. I'm John Furrier, host of theCUBE here. We're exploring all the new Supercloud trends around multiple clouds, hyper scale gaps in their systems, new innovations, new applications, new companies, new products, new brands emerging from this big inflection point. Got a great guest who's going to unpack it with me today, Ramesh Prabagaran, who's the co-founder and CEO of Prosimo, CUBE alumni. Ramesh, legend in the industry, you've been around. You've seen many cycles. Welcome to Supercloud2. >> Thank you. You're being too kind. >> Well, you know, you guys have been a technical, great technical founding team, multiple ventures, multiple times around the track as they say, but now we're seeing something completely different. This is our second event, kind of we're doing to start the the ball rolling around unpacking this idea of Supercloud which evolved from a riff with me and Dave to now a working group paper, multiple definitions. People are saying they're Supercloud. CloudFlare says this is their version. Someone says there over there. Fitzi over there in the blog is always, you know, challenging us on our definitions, but it's, the consensus is though something's happening. >> Ramesh: Absolutely. >> And what's your take on this kind of big inflection point? >> Absolutely, so if you just look at kind of this in layers right, so you have hyper scalers that are innovating really quickly on underlying capabilities, and then you have enterprises adopting these technologies, right, there is a layer in the middle that I would say is largely missing, right? And one that addresses the gaps introduced by these new capabilities, by the hyper scalers. At the same time, one that actually spans, let's say multiple regions, multiple clouds and so forth. So that to me is kind of the Supercloud layer of sorts. One that helps enterprises adopt the underlying hyper scaler capabilities a lot faster, and at the same time brings a certain level of consistency and homogeneity also. >> What do you think the big driver of Supercloud is? Is it the industry growing up or is it the demand for new kinds of capabilities or both? Or just evolution? What's your take? >> I would say largely it depends on kind of who the entity is that you're talking about, right? And so I would say both. So if you look at one cohort here, it's adoption, right? If I have a externally facing digital presence, for example, then I'm going to scale that up and get to as many subscribers and users no matter what, right? And at that time it's a different set of problems. If you're looking at kind of traditional enterprise inward that are bringing apps into the cloud and so forth, it's a different set of care abouts, right? So both are, I would say, equally important problems to solve for. >> Well, one reality that we're definitely tracking, and it's not really a debate anymore, is hybrid. >> Ramesh: Yep >> Hybrid happened. It happened faster than most people thought. But, you know, we were talking about this in 2015 when it first got kicked around, but now you see hybrid in the cloud, on premises and the edge. This kind of forms that distributed computing paradigm that we've always been predicting. And so if that continues to play out the way it is, you're now going to have a completely distributed, connected internet and sets of systems, intra and external within companies. So again, the world is connected 100%. Everything's changing, right? >> And that introduces. >> It wasn't your grandfather's networking anymore or storage. The game is still the same, but the play, the components are acting differently. What's your take on this? >> Absolutely. No, absolutely. That's a very key important point, and it's one that we always ask our customers right at the front end, right? Because your starting assumptions matter. If you have workloads of workloads in the cloud and data center is something that you want to connect into, then you'll make decisions kind of keeping cloud in the center and then kind of bolt on technologies for what that means to extend it to the data center. If your center of gravity is in the data center, and then cloud is let's say 10% right now, but you see that growing, then what choices do you have? Right, do you want to bring your data center technologies into the cloud because you want that consistency in operations? Or do you want to start off fresh, right? So this is a really key, important question, and one that many of our customers are actually are grappling with, right? They have this notion that going cloud native is the right approach, but at the same time that means I have a bifurcation in kind of how do I operate my data center versus my cloud, right? Two different operating models, and slowly it'll shift over to one. But you're going to have to deal with dual reality for a while. >> I was talking to an old friend of mine, CIO, very experienced CIO. Big time company, large deployment, a lot of IT. I said, so what's the big trend everyone's telling me about IT's going. He goes no, not really. IT's not going away for me. It's going everywhere in the company. >> Ramesh: Exactly. >> So I need to scale my IT-like capabilities everywhere and then make it invisible. >> Ramesh: Correct. >> Which is essentially code words for saying it's going to be completely cloud native everywhere. This is what is happening. Do you agree? >> Absolutely right, and so if you look at what do enterprises care about it? The reason to go to the cloud is to get speed of operations, and it's apps, apps, apps, right? Do you ever have a conversation on networking and infrastructure first? No, that kind of gets brought into the conversation because you want to deal with users, applications and services, right? And so the end goal is essentially how do users communicate with apps and get the right experience, security and whatnot, and how do apps talk to each other and make sure that you get all of the connectivity and security requirements? Underneath the covers, what does this mean for infrastructure, networking, security and whatnot? It's actually going to be someone else's job, right? And you shouldn't have to think too much about it. So this whole notion of kind of making that transparent is real actually, right? But at the same time, us and all the guys that we talk to on the customer side, that's their job, right? Like we have to work towards making that transparent. Some are going to be in the form of capability, some are going to be driven by data, but that's really where the two worlds are going to come together. >> Lots of debates going on. We just heard from Bob Muglia here on Supercloud2. He said Supercloud's a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. So the question that's being debated is is Supercloud a platform or an architecture in your view? >> Okay, that's a tough one actually. I'm going to side on the side on kind of the platform side right, and the reason for that is architectural choices are things that you make ahead of time. And you, once you're in, there really isn't a fork in the road, right? Platforms continue to evolve. You can iterate, innovate and so on and so forth. And so I'm thinking Supercloud is more of a platform because you do have a choice. Hey, am I going AWS, Azure, GCP. You make that choice. What is my center of gravity? You make that choice. That's kind of an architectural decision, right? Once you make that, then how do I make things work consistently across like two or three clouds? That's a platform choice. >> So who's responsible for the architecture as the platform, the vendor serving the platform or is the platform vendor agnostic? >> You know, this is where you have to kind of peel the onion in layers, right? If you talk about applications, you can't go to a developer team or an app team and say I want you to operate on Google or AWS. They're like I'll pick the cloud that I want, right? Now who are we talking to? The infrastructure guys and the networking guys, right? They want to make sure that it's not bifurcated. It's like, hey, I want to make sure whatever I build for AWS I can equally use that on Azure. I can equally use that on GCP. So if you're talking to more of the application centric teams who really want infrastructure to be transparent, they'll say, okay, I want to make this choice of whether this is AWS, Azure, GCP, and stick to that. And if you come kind of down the layers of the stack into infrastructure, they are thinking a little more holistically, a little more Supercloud, a little more multicloud, and that. >> That's a good point. So that brings up the deployment question. >> Ramesh: Exactly! >> I want to ask you the next question, okay, what is the preferred deployment in your opinion for a Supercloud narrative? Is it single instance, spread it around everywhere? What's the, do you have a single global instance or do you have everything synchronized? >> So I would say first layer of that Supercloud really kind of fix the holes that have been introduced as a result of kind of adopting the hyper scaler technologies, right? So each, the hyper scalers have been really good at innovating and providing really massive scale elastic capabilities, right? But once you start to build capabilities on top of that to help serve the application, there's a few holes start to show up. So first job of Supercloud really is to plug those holes, right? Second is can I get to an operating model, so that I can replicate this not just in a single region, but across multiple regions, same cloud, and then across multiple clouds, right? And so both of those need to be solved for in order to be (cross talking). >> So is that multiple instantiations of the stack or? >> Yeah, so this again depends on kind of the capability, right? So if you take a more solution view, and so I can speak for kind of networking security combined right? There you always take a solution view. You don't ever look at, you know, what does this mean for a single instance in a single region. You take a macro view, and then you then break it down into what does this mean for region, what does it mean for instance, what does this mean for AZs? And so on and so forth. So you kind of have to go top to bottom. >> Okay, welcome you down into the trap now. Okay, synchronizing the data, latency, these are all questions. So what does the network Supercloud look like to you? Because networking is big here. >> Ramesh: Yes, absolutely. >> This is what you guys do. >> Exactly, yeah. So the different set of problems as you go up the stack, right? So if you have hundreds of workloads in a single region, the set of problems you're dealing with there are kind of app native connectivity, how do I go from kind of east/west, all of those fun things, right? Which are usually bound in terms of latency. You don't have those challenges as much, but can you build your entire enterprise application architecture in one region? No, you're going to have to create multiple instances, right? So my data lake is invariably going to be in one place. My business logic is going to be spread across a few places. What does that bring in? I need to go across regions. Am I going to put those two regions right next to each other? No, I'm not going to, right? I'm going to have places in Europe. I'm going to have APAC, and I'm going to have a North American presence, and I need to bring all these things together. So this is where, back to your point, latency really matters, right? Because I need to be able to find out not just best path but also how do I reduce the millisecond, microseconds that my application cares about, which brings in a layer of optimization and then so on and so on and so forth. So this is what we call kind of to borrow the Prosimo language full stack networking, right? Because I'm not just dealing with how do I go from one region to another because that's laws of physics. I can only control so much. But there are a few elements up the application stack in software that you can tweak to actually bring these things closer and closer. >> And on that point, you're seeing security being talked a lot more at the network layer. So how do you secure the Supercloud at the network layer? What's that look like? >> Yeah, we've been grappling with essentially is security kind of foundational, and then is the network on top. And then we had an alternative viewpoint which is kind of network and then security on top. And the answer is actually it's neither, right? It's almost like a meshed up sandwich of sorts. So you need to have networking security work really well together, right? Case in point, I mean we were talking to a customer yesterday. He said, hey, I have my data lake in one region that needs to talk to an analytics service in a completely different region of a different cloud. These two things just need to be able to talk to each other, which means I need to bring elements of networking. I need to bring elements of security, secure access, app segmentation, all of those things. Very simple, I have an analytics service that needs to contact a data lake. That's what he starts with, but then before you know it, it actually brings up a whole stack underneath, so that's. >> VMware calls that cloud chaos. >> Ramesh: Yes, exactly. >> And then that's the halfway point between cloud smart. Cloud first, cloud chaos, cloud smart, and the next thing, you can skip that whole step. But again, again, it's pick your strategy right? Again, this comes back down to your earlier point. I want to ask you from a customer standpoint, you got the hyper scalers doing very, very well. >> Ramesh: Yep, absolutely. >> And I love what their Amazon's doing. I think Microsoft again though they had a little bit of downgrade are catching up fast, and they have their installed base. So you got the land of the installed bases. >> Correct. >> First and greater, better cloud. Install base getting better, almost as good, almost as good is a gift, but close. Now you have them specializing. Silicon, special silicon. So there's gaps for other services. >> Ramesh: Correct. >> And Amazon Web Services, Adam Selipsky's a open book saying, hey, we want our ecosystem to pick up these gaps and build on them. Go ahead, go to town. >> So this is where I think choices are tough, right? Because if you had one choice, you would work with it, and you would work around it, right? Now I have five different choices. Now what do I do? Our viewpoint is there are a bunch of things that say AWS does really, really well. Use that as a foundational layer, right? Like don't reinvent the wheel on those things. Transit gateways, global accelerators and whatnot, they exist for a reason. Billions of dollars have gone into building those things. Use that foundational layer, right? But what you want to build on top of that is actually driven by the application. The requirements of a lambda application that's serverless, it's very different than a packaged application that's responding for transactions, right? Like it's just completely very, very different. And so bring in the right set of capabilities required for those set of applications, and then you go based on that. This is also where I think whether something is a regional construct versus an overall global construct really, really matters, right? Because if you start with the assumption that everything is going to be built regionally, then it's someone else's job to make sure that all of these things are connected. But if you start with kind of the global purview, then the rest of them start to (cross talking). >> What are some of the things that the enterprises might want that are gaps that are going to be filled by the, by startups like you guys and the ecosystem because we're seeing the ecosystem form into two big camps. >> Ramesh: Yep. >> ISVs, which is an old school definition of independent software vendor, aka someone who writes software. >> Ramesh: Exactly. >> SaaS app. >> Ramesh: Correct. >> And then ecosystem software players that were once ISVs now have people building on top of them. >> Ramesh: Correct. >> They're building on top of the cloud. So you have that new hyper scale effect going on. >> Ramesh: Exactly. >> You got ISVs, which is software developers, software vendors. >> Ramesh: Correct. >> And ecosystems. >> Yep. >> What's that impact of that? Cause it's a new dynamic. >> Exactly, so if you take kind of enterprises, want to make sure that that their apps and the data center migrate to the cloud, new apps are developed the right way in the cloud, right? So that's kind of table stakes. So now what choices do they have? They listen to AWS and say, okay, I have all these cloud native services. I want to be able to instantiate all that. Now comes the interesting choice that they have to make. Do I go hire a whole bunch of people and do it myself or do I go there on the platform route, right? Because I made an architectural choice. Now I have to decide whether I want to do this myself or the platform choice. DIY works great for some, but you don't know what you're getting into, and it's people involved, right? People, process, all those fun things involved, right? So we show up there and say, you don't know what you don't know, right? Like because that's the nature of it. Why don't you invest in a platform like what what we provide, and then you actually build on top of it. We will, it's our job to make sure that we keep up with the innovation happening underneath the covers. And at the same time, this is not a closed ended system. You can actually build on top of our platform, right? And so that actually gives you a good mix. Now the care abouts are interesting. Some apps care about experience. Some apps care about latency. Some apps are extremely charty and extremely data intensive, but nobody wants to pay for it, right? And so it's a interesting Jenga that you have to play between experience versus security versus cost, right? And that makes kind of head of infrastructure and cloud platform teams' life really, really, really interesting. >> And this is why I love your background, and Stu Miniman, when he was with theCUBE, and now he's at Red Hat, we used to riff about the network and how network folks are now, those concepts are now up the top of the stack because the cloud is one big network effect. >> Ramesh: Exactly, correct. >> It's a computer. >> Yep, absolutely. No, and case in point, right, like say we're in let's say in San Jose here or or Palo Alto here, and let's say my application is sitting in London, right? The cloud gives you different express lanes. I can go down to my closest pop location provided by AWS and then I can go ride that all the way up to up to London. It's going to give me better performance, low latency, but I'm going to have to incur some costs associated with it. Or I can go all the wild internet all the way from Palo Alta up to kind of the ingress point into London and then go access, but I'm spending time on the wild internet, which means all kinds of fun things happen, right? But I'm not paying much, but my experience is not going to be so great. So, and there are various degrees of shade in them, of gray in the middle, right? So how do you pick what? It all kind of is driven by the applications. >> Well, we certainly want you back for Supercloud3, our next version of this virtual/live event here in our Palo Alto studios. Really appreciate you coming on. >> Absolutely. >> While you're here, give a quick plug for the company. Next minute, we can take a minute to talk about the success of the company. >> Ramesh: Absolutely. >> I know you got a fresh financing this past year. Plenty of money in the bank, going to ride this new wave, Supercloud wave. Give us a quick plug. >> Absolutely, yeah. So three years going on to four this calendar year. So it's an interesting time for the company. We have proven that our technology, product and our initial customers are quite happy with it. Now comes essentially more of those and scale and so forth. That's kind of the interesting phase that we are in. Also heartened to see quite a few of kind of really large and dominant players in the market, partners, channels and so forth, invest in us to take this to the next set of customers. I would say there's been a dramatic shift in the conversation with our customers. The first couple of years or so of the company, we are about three years old right now, was really about us educating them. This is what you need. This is what you need. Now actually it's a lot of just pull, right? We've seen a good indication, as much as a hate RFIs, a good indication is the number of RFIs that show up at our door saying we want you to participate in this because we want to understand more, right? And so as a, I think we are at an interesting point of the, of that shift. >> RFIs always like do all this work and hope for the best. Pray for a deal. You know, you guys on the right side of history. If a customer asks with respect to Supercloud, multicloud, is that your focus? Is that the direction you guys are going into? >> Yeah, so I would say we are kind of both, right? Supercloud and multicloud because we, our customers are hybrid, multiple clouds, all of the above, right? Our main pitch and kind of value back to the customers is go embrace cloud native because that's the right approach, right? It doesn't make sense to go reinvent the wheel on that one, but then make a really good choice about whether you want to do this yourself or invest in a platform to make your life easy. Because we have seen this story play out with many many enterprises, right? They pick the right technologies. They do a simple POC overnight, and they say, yeah, I can make this work for two apps, right? And then they say, yes, I can make this work for 100. You go down a certain path. You hit a wall. You hit a wall, and it's a hard wall. It's like, no, there isn't a thing that you can go around it. >> A lot of dead bodies laying around. >> Ramesh: Exactly. >> Dead wall. >> And then they have to unravel around that, and then they come talk to us, and they say, okay, now what? Like help me, help me through this journey. So I would say to the extent that you can do this diligence ahead of time, do that, and then, and then pick the right platform. >> You've got to have the talent. And you got to be geared up. You got to know what you're getting into. >> Ramesh: Exactly. >> You got to have the staff to do this. >> And cloud talent and skillset in particular, I mean there's lots available but it's in pockets right? And if you look at kind of web three companies, they've gone and kind of amassed all those guys, right? So enterprises are not left with the cream of the crop. >> John: They might be coming back. >> Exactly, exactly, so. >> With this downturn. Ramesh, great to see you and thanks for contributing to Supercloud2, and again, love your team. Very technical team, and you're in the right side of history in this one. Congratulations. >> Ramesh: No, and thank you, thank you very much. >> Okay, this is Supercloud2. I'm John Furrier with Dave Vellante. We'll be back right after this short break. (upbeat music)
SUMMARY :
Ramesh, legend in the You're being too kind. blog is always, you know, And one that addresses the gaps and get to as many subscribers and users and it's not really a This kind of forms that The game is still the same, but the play, and it's one that we It's going everywhere in the company. So I need to scale my it's going to be completely and make sure that you get So the question that's being debated is on kind of the platform side kind of peel the onion in layers, right? So that brings up the deployment question. And so both of those need to be solved for So you kind of have to go top to bottom. down into the trap now. in software that you can tweak So how do you secure the that needs to talk to an analytics service and the next thing, you So you got the land of Now you have them specializing. ecosystem to pick up these gaps and then you go based on that. and the ecosystem of independent software vendor, that were once ISVs now have So you have that new hyper is software developers, What's that impact of that? and the data center migrate to the cloud, because the cloud is of gray in the middle, right? you back for Supercloud3, quick plug for the company. Plenty of money in the bank, That's kind of the interesting Is that the direction all of the above, right? and then they come talk to us, And you got to be geared up. And if you look at kind Ramesh, great to see you Ramesh: No, and thank Okay, this is Supercloud2.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ramesh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ramesh Prabagaran | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2015 | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
Microsoft | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
San Jose | LOCATION | 0.99+ |
John | PERSON | 0.99+ |
10% | QUANTITY | 0.99+ |
Dave | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Adam Selipsky | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Stu Miniman | PERSON | 0.99+ |
100% | QUANTITY | 0.99+ |
100 | QUANTITY | 0.99+ |
two apps | QUANTITY | 0.99+ |
yesterday | DATE | 0.99+ |
both | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Amazon Web Services | ORGANIZATION | 0.99+ |
Palo Alta | LOCATION | 0.99+ |
Second | QUANTITY | 0.99+ |
two regions | QUANTITY | 0.99+ |
APAC | ORGANIZATION | 0.99+ |
First | QUANTITY | 0.99+ |
one choice | QUANTITY | 0.99+ |
second event | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
Prosimo | ORGANIZATION | 0.99+ |
Billions of dollars | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
one region | QUANTITY | 0.98+ |
multicloud | ORGANIZATION | 0.98+ |
five different choices | QUANTITY | 0.98+ |
hundreds | QUANTITY | 0.98+ |
each | QUANTITY | 0.98+ |
first layer | QUANTITY | 0.98+ |
first | QUANTITY | 0.97+ |
two worlds | QUANTITY | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
one | QUANTITY | 0.97+ |
single instance | QUANTITY | 0.97+ |
Supercloud2 | ORGANIZATION | 0.97+ |
two big camps | QUANTITY | 0.97+ |
one reality | QUANTITY | 0.96+ |
three companies | QUANTITY | 0.96+ |
today | DATE | 0.96+ |
SaaS | TITLE | 0.95+ |
CloudFlare | ORGANIZATION | 0.95+ |
first couple of years | QUANTITY | 0.95+ |
CUBE | ORGANIZATION | 0.94+ |
first job | QUANTITY | 0.94+ |
Supercloud wave | EVENT | 0.94+ |
Azure | ORGANIZATION | 0.94+ |
three clouds | QUANTITY | 0.93+ |
Welcome to Supercloud2
(bright upbeat melody) >> Hello everyone, welcome back to Supercloud2. I'm John Furrier, my co-host Dave Vellante, here at theCUBE in Palo Alto, California, for our live stage performance all day for Supercloud2. Unpacking this next generation movement in cloud computing. Dave, Supercloud1 was in August. We had great response and acceleration of that momentum. We had some haters too. We had some folks out there throwing shade on this. But at the same time, a lot of leaders came out of the woodwork, a lot of practitioners. And this Supercloud2 event I think will expose and illustrate some of the examples of what's happening in the industry and more importantly, kind of where it's going. >> Well it's great to be back in our studios in Palo Alto, John. Seems like just yesterday was August 9th, where the community was really refining the definition of Super Cloud. We were identifying the essential characteristics, with some of the leading technologists in Silicon Valley. We were digging into the deployment models. Whereas this Supercloud, Supercloud2 is really taking a practitioner view. We're going to hear from Walmart today. They've built a Supercloud. They called it the Walmart Cloud native platform. We're going to hear from other data practitioners, like Saks. We're going to hear from Western Union. They've got 200 locations around the world, how they're dealing with data sovereignty. And of course we've got some local technologists and practitioners coming in, analysts, consultants, theCUBE community. I'm really excited to be here. >> And we've got some great keynotes from executives at VMware. We're going to expose some of the things that they're working on around cross cloud services, which leads into multicloud. I think the practitioner angle highlights my favorite part of this program, 'cause you're starting to see the builders, a term coined by Andy Jassy, early days of AWS. That builder movement has been continuing to go. And you're seeing the enterprise, global enterprises adopt this builder mentality with Cloud Native. This is going to power the next generation global economy. And I think the role of the cloud computing vendors like AWS, Azure, Google, Alibaba are going to be the source engine of innovation. And what gets built on top of and with the clouds will be a big significant market value for all businesses and their business models. So I think the market wants the supercloud, the business models are pointing to Supercloud. The technology needs supercloud. And society, from an economic standpoint and from a use case standpoint, needs supercloud. You're seeing it today. Everyone's talking about chat GPT. This is an example of what will come out of this next generation and it's just getting started. So to me, you're either on the supercloud side of the camp or you're on the old school, hugging onto the old school mentality of wait a minute, that's cloud computing. So I think if you're not on the super cloud wave, you're going to be driftwood. And that's a term coined by Pat Gelsinger. And this is really the reality. Are you on the super cloud side? Or are you on the old huggin' the old model? And that's going to be a determinant. And you're going to see who's going to be the players on that, Dave. This is going to be a real big year. >> Everybody's heard the phrase follow the money. Well, my philosophy is follow the data. And that's a big part of what Supercloud2 is, because the data is where the money is across the clouds. And people want more simplicity, or greater simplicity across the clouds. So it's really, there's two forces here. You've got the ecosystem that's saying, hey the hyperscalers, they've done a great job but there's problems that they're not solving. So we're going to lean in and solve those problems. At the same time, you have the practitioners saying we have multicloud, we have to deal with this, help us. It's got to be simpler. Because we want to share data across clouds. We want to build data products, we want to monetize and drive revenue and cut costs. >> This is the key thing. The builder movement is hitting a wall, and that wall will be broken down because the business models of the companies themselves are demanding that the value from the data with security has to be embedded. So I think you're going to see a big year this next year or so where the builders will accelerate through this next generation, supercloud wave, will be a builder's wave for business. And I think that's going to be the nuance here. And all the people that are on the side of Supercloud are all pro-business, pro-technology. The ones that aren't are like, wait a minute I used to do things differently. They're stuck. And so I think this is going to be a question of are we stuck? Are builders accelerating? Will the business models develop around it? That's digital transformation. At the end of the day, the market's speaking, Dave. The market wants more. Chat GPT, you're seeing AI starting to flourish, powered by data. It's unstoppable, supercloud's unstoppable. >> One of our headliners today is Zhamak Dehghani, the creator of Data Mesh. We've got some news around her. She's going to be live in studio. Super excited about that. Kit Colbert in Supercloud, the first Supercloud in last August, laid out an initial architecture for Supercloud. He's going to advance that today, tell us what's changed, and really dig into and really talk about the meat on the bone, if you will. And we've got some other technologists that are coming in saying, Hey, is it a platform? Is it an architecture? What's the right model here? So we're going to debate that a little bit today. >> And before we close, I'll just say look at the guests, look at the talk tracks. You're seeing a diversity of startups doing cloud networking, you're seeing big practitioners building their own thing, being builders for business value and business model advantages. And you got companies like VMware, who have been on the wave of virtualization. So the, everyone who's involved in super cloud, they're seeing it, they're on the front lines. They're seeing the trend. They are riding that wave. And they have, they're bringing data to the table. So to me, you look at who's involved and you judge it that way. To me, that's the way I look at this. And because we're making it open, Supercloud is going to continue to be debated. But more importantly, the results are going to come in. The market supports it, the business needs it, tech's there, and will it happen? So I think the builders movement, Dave, is going to be big to watch. And then ultimately how that business transformation kicks in, and I think those are the two variables that I would watch on Supercloud. >> Our mission has always been around free content, giving back to the community. So I really want to thank our sponsors today. We've had a great partnership with VMware, who's not only contributed some financial support, but also great content. Alkira, ChaosSearch, prosimo, all phenomenal, allowing us to achieve our mission of serving our audiences and really trying to give more than we take from. >> Free content, that's our mission. Dave, great to kick it off. Kickin' off Supercloud2 all day, we've got some great programs here. We've got VMware coming up next. We have Victoria Viering, who's been on before. He's got a great vision for cross cloud service. We're getting also a keynote with Kit Colbert, who's going to lay out the fragmentation and the benefits that that solves, from solvent fragmentation and silos, breaking down the silos and bringing multicloud future to the table via Super Cloud. So stay with us. We'll be right back after this short break. (bright upbeat music) (music fades)
SUMMARY :
and illustrate some of the examples We're going to hear from Walmart today. And that's going to be a determinant. At the same time, you And so I think this is going to the meat on the bone, if you will. Dave, is going to be big to watch. giving back to the community. and the benefits that that solves,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Pat Gelsinger | PERSON | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Andy Jassy | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Silicon Valley | LOCATION | 0.99+ |
August | DATE | 0.99+ |
Victoria Viering | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
200 locations | QUANTITY | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
two forces | QUANTITY | 0.99+ |
last August | DATE | 0.99+ |
yesterday | DATE | 0.99+ |
first | QUANTITY | 0.99+ |
two variables | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
supercloud | ORGANIZATION | 0.98+ |
Azure | ORGANIZATION | 0.97+ |
ChaosSearch | ORGANIZATION | 0.95+ |
super cloud wave | EVENT | 0.94+ |
Supercloud1 | EVENT | 0.94+ |
Super Cloud | TITLE | 0.93+ |
Alkira | PERSON | 0.83+ |
Palo Alto, John | LOCATION | 0.83+ |
this next year | DATE | 0.81+ |
Data Mesh | ORGANIZATION | 0.8+ |
supercloud wave | EVENT | 0.79+ |
wave of | EVENT | 0.79+ |
Western Union | LOCATION | 0.78+ |
Saks | ORGANIZATION | 0.76+ |
GPT | ORGANIZATION | 0.73+ |
Supercloud2 | ORGANIZATION | 0.72+ |
Cloud Native | TITLE | 0.69+ |
Supercloud | TITLE | 0.67+ |
Supercloud2 | COMMERCIAL_ITEM | 0.66+ |
multicloud | ORGANIZATION | 0.57+ |
Supercloud | COMMERCIAL_ITEM | 0.53+ |
Supercloud2 | TITLE | 0.53+ |
theCUBE | ORGANIZATION | 0.51+ |
super cloud | TITLE | 0.51+ |
Cloud | TITLE | 0.41+ |
Is Data Mesh the Killer App for Supercloud | Supercloud2
(gentle bright music) >> Okay, welcome back to our "Supercloud 2" event live coverage here at stage performance in Palo Alto syndicating around the world. I'm John Furrier with Dave Vellante. We've got exclusive news and a scoop here for SiliconANGLE and theCUBE. Zhamak Dehghani, creator of data mesh has formed a new company called NextData.com NextData, she's a cube alumni and contributor to our Supercloud initiative, as well as our coverage and breaking analysis with Dave Vellante on data, the killer app for Supercloud. Zhamak, great to see you. Thank you for coming into the studio and congratulations on your newly formed venture and continued success on the data mesh. >> Thank you so much. It's great to be here. Great to see you in person. >> Dave: Yeah, finally. >> John: Wonderful. Your contributions to the data conversation has been well-documented certainly by us and others in the industry. Data mesh taking the world by storm. Some people are debating it, throwing, you know, cold water on it. Some are, I think, it's the next big thing. Tell us about the data mesh super data apps that are emerging out of cloud. >> I mean, data mesh, as you said, it's, you know, the pain point that it surfaced were universal. Everybody said, "Oh, why didn't I think of that?" You know, it was just an obvious next step and people are approaching it, implementing it. I guess the last few years, I've been involved in many of those implementations, and I guess Supercloud is somewhat a prerequisite for it because it's data mesh and building applications using data mesh is about sharing data responsibly across boundaries. And those boundaries include boundaries, organizational boundaries cloud technology boundaries and trust boundaries. >> I want to bring that up because your venture, NextData which is new, just formed. Tell us about that. What wave is that riding? What specifically are you targeting? What's the pain point? >> Zhamak: Absolutely, yes. So next data is the result of, I suppose, the pains that I suffered from implementing a database for many of the organizations. Basically, a lot of organizations that I've worked with, they want decentralized data. So they really embrace this idea of decentralized ownership of the data, but yet they want interconnectivity through standard APIs, yet they want discoverability and governance. So they want to have policies implemented, they want to govern that data, they want to be able to discover that data and yet they want to decentralize it. And we do that with a developer experience that is easy and native to a generalist developer. So we try to find, I guess, the common denominator that solves those problems and enables that developer experience for data sharing. >> John: Since you just announced the news, what's been the reaction? >> Zhamak: I just announced the news right now, so what's the reaction? >> John: But people in the industry that know you, you did a lot of work in the area. What have been some of the feedback on the new venture in terms of the approach, the customers, problem? >> Yeah, so we've been in stealth modes, so we haven't publicly talked about it, but folks that have been close to us in fact have reached out. We already have implementations of our pilot platform with early customers, which is super exciting. And we're going to have multiple of those. Of course, we're a tiny, tiny company. We can have many of those where we are going to have multiple pilots, implementations of our platform in real world. We're real global large scale organizations that have real world problems. So we're not going to build our platform in vacuum. And that's what's happening right now. >> Zhamak: When I think about your role at ThoughtWorks, you had a very wide observation space with a number of clients helping them implement data mesh and other things as well prior to your data mesh initiative. But when I look at data mesh, at least the ones that I've seen, they're very narrow. I think of JPMC, I think of HelloFresh. They're generally obviously not surprising. They don't include the big vision of inclusivity across clouds across different data stores. But it seems like people are having to go through some gymnastics to get to, you know, the organizational reality of decentralizing data, and at least pushing data ownership to the line of business. How are you approaching or are you approaching, solving that problem? Are you taking a narrow slice? What can you tell us about Next Data? >> Zhamak: Sure, yeah, absolutely. Gymnastics, the cute word to describe what the organizations have to go through. And one of those problems is that, you know, the data, as you know, resides on different platforms. It's owned by different people, it's processed by pipelines that who owns them. So there's this very disparate and disconnected set of technologies that were very useful for when we thought about data and processing as a centralized problem. But when you think about data as a decentralized problem, the cost of integration of these technologies in a cohesive developer experience is what's missing. And we want to focus on that cohesive end-to-end developer experience to share data responsibly in this autonomous units, we call them data products, I guess in data mesh, right? That constitutes computation, that governs that data policies, discoverability. So I guess, I heard this expression in the last talks that you can have your cake and eat it too. So we want people have their cakes, which is, you know, data in different places, decentralization and eat it too, which is interconnected access to it. So we start with standardizing and codifying this idea of a data product container that encapsulates data computation, APIs to get to it in a technology agnostic way, in an open way. And then, sit on top and use existing existing tech, you know, Snowflake, Databricks, whatever exists, you know, the millions of dollars of investments that companies have made, sit on top of those but create this cohesive, integrated experience where data product is a first class primitive. And that's really key here, that the language, and the modeling that we use is really native to data mesh is that I will make a data product, I'm sharing a data product, and that encapsulates on providing metadata about this. I'm providing computation that's constantly changing the data. I'm providing the API for that. So we're trying to kind of codify and create a new developer experience based on that. And developer, both from provider side and user side connected to peer-to-peer data sharing with data product as a primitive first class concept. >> Okay, so the idea would be developers would build applications leveraging those data products which are discoverable and governed. Now, today you see some companies, you know, take a snowflake for example. >> Zhamak: Yeah. >> Attempting to do that within their own little walled garden. They even, at one point, used the term, "Mesh." I dunno if they pull back on that. And then they sort of became aware of some of your work. But a lot of the things that they're doing within their little insulated environment, you know, support that, that, you know, governance, they're building out an ecosystem. What's different in your vision? >> Exactly. So we realize that, you know, and this is a reality, like you go to organizations, they have a snowflake and half of the organization happily operates on Snowflake. And on the other half, oh, we are on, you know, bare infrastructure on AWS, or we are on Databricks. This is the realities, you know, this Supercloud that's written up here. It's about working across boundaries of technology. So we try to embrace that. And even for our own technology with the way we're building it, we say, "Okay, nobody's going to use next data mesh operating system. People will have different platforms." So you have to build with openness in mind, and in case of Snowflake, I think, you know, they have I'm sure very happy customers as long as customers can be on Snowflake. But once you cross that boundary of platforms then that becomes a problem. And we try to keep that in mind in our solution. >> So, it's worth reviewing that basically, the concept of data mesh is that, whether you're a data lake or a data warehouse, an S3 bucket, an Oracle database as well, they should be inclusive inside of the data. >> We did a session with AWS on the startup showcase, data as code. And remember, I wrote a blog post in 2007 called, "Data's the new developer kit." Back then, they used to call 'em developer kits, if you remember. And that we said at that time, whoever can code data >> Zhamak: Yes. >> Will have a competitive advantage. >> Aren't there machines going to be doing that? Didn't we just hear that? >> Well we have, and you know, Hey Siri, hey Cube. Find me that best video for data mesh. There it is. I mean, this is the point, like what's happening is that, now, data has to be addressable >> Zhamak: Yes. >> For machines and for coding. >> Zhamak: Yes. >> Because as you need to call the data. So the question is, how do you manage the complexity of big things as promiscuous as possible, making it available as well as then governing it because it's a trade off. The more you make open >> Zhamak: Definitely. >> The better the machine learning. >> Zhamak: Yes. >> But yet, the governance issue, so this is the, you need an OS to handle this maybe. >> Yes, well, we call our mental model for our platform is an OS operating system. Operating systems, you know, have shown us how you can kind of abstract what's complex and take care of, you know, a lot of complexities, but yet provide an open and, you know, dynamic enough interface. So we think about it that way. We try to solve the problem of policies live with the data. An enforcement of the policies happens at the most granular level which is, in this concept, the data product. And that would happen whether you read, write, or access a data product. But we can never imagine what are these policies could be. So our thinking is, okay, we should have a open policy framework that can allow organizations write their own policy drivers, and policy definitions, and encode it and encapsulated in this data product container. But I'm not going to fool myself to say that, you know, that's going to solve the problem that you just described. I think we are in this, I don't know, if I look into my crystal ball, what I think might happen is that right now, the primitives that we work with to train machine-learning model are still bits and bites in data. They're fields, rows, columns, right? And that creates quite a large surface area, an attack area for, you know, for privacy of the data. So perhaps, one of the trends that we might see is this evolution of data APIs to become more and more computational aware to bring the compute to the data to reduce that surface area so you can really leave the control of the data to the sovereign owners of that data, right? So that data product. So I think the evolution of our data APIs perhaps will become more and more computational. So you describe what you want, and the data owner decides, you know, how to manage the- >> John: That's interesting, Dave, 'cause it's almost like we just talked about ChatGPT in the last segment with you, who's a machine learning, could really been around the industry. It's almost as if you're starting to see reason come into the data, reasoning. It's like you starting to see not just metadata, using the data to reason so that you don't have to expose the raw data. It's almost like a, I won't say curation layer, but an intelligence layer. >> Zhamak: Exactly. >> Can you share your vision on that 'cause that seems to be where the dots are connecting. >> Zhamak: Yes, this is perhaps further into the future because just from where we stand, we have to create still that bridge of familiarity between that future and present. So we are still in that bridge-making mode, however, by just the basic notion of saying, "I'm going to put an API in front of my data, and that API today might be as primitive as a level of indirection as in you tell me what you want, tell me who you are, let me go process that, all the policies and lineage, and insert all of this intelligence that need to happen. And then I will, today, I will still give you a file. But by just defining that API and standardizing it, now we have this amazing extension point that we can say, "Well, the next revision of this API, you not just tell me who you are, but you actually tell me what intelligence you're after. What's a logic that I need to go and now compute on your API?" And you can kind of evolve that, right? Now you have a point of evolution to this very futuristic, I guess, future where you just describe the question that you're asking from the chat. >> Well, this is the Supercloud, Dave. >> I have a question from a fan, I got to get it in. It's George Gilbert. And so, his question is, you're blowing away the way we synchronize data from operational systems to the data stack to applications. So the concern that he has, and he wants your feedback on this, "Is the data product app devs get exposed to more complexity with respect to moving data between data products or maybe it's attributes between data products, how do you respond to that? How do you see, is that a problem or is that something that is overstated, or do you have an answer for that?" >> Zhamak: Absolutely. So I think there's a sweet spot in getting data developers, data product developers closer to the app, but yet not burdening them with the complexity of the application and application logic, and yet reducing their cognitive load by localizing what they need to know about which is that domain where they're operating within. Because what's happening right now? what's happening right now is that data engineers, a ton of empathy for them for their high threshold of pain that they can, you know, deal with, they have been centralized, they've put into the data team, and they have been given this unbelievable task of make meaning out of data, put semantic over it, curates it, cleans it, and so on. So what we are saying is that get those folks embedded into the domain closer to the application developers, these are still separately moving units. Your app and your data products are independent but yet tightly closed with each other, tightly coupled with each other based on the context of the domain, so reduce cognitive load by localizing what they need to know about to the domain, get them closer to the application but yet have them them separate from app because app provides a very different service. Transactional data for my e-commerce transaction, data product provides a very different service, longitudinal data for the, you know, variety of this intelligent analysis that I can do on the data. But yet, it's all within the domain of e-commerce or sales or whatnot. >> So a lot of decoupling and coupling create that cohesiveness. >> Zhamak: Absolutely. >> Architecture. So I have to ask you, this is an interesting question 'cause it came up on theCUBE all last year. Back on the old server, data center days and cloud, SRE, Google coined the term, "Site Reliability Engineer" for someone to look over the hundreds of thousands of servers. We asked a question to data engineering community who have been suffering, by the way, agree. Is there an SRE-like role for data? Because in a way, data engineering, that platform engineer, they are like the SRE for data. In other words, managing the large scale to enable automation and cell service. What's your thoughts and reaction to that? >> Zhamak: Yes, exactly. So, maybe we go through that history of how SRE came to be. So we had the first DevOps movement which was, remove the wall between dev and ops and bring them together. So you have one cross-functional units of the organization that's responsible for, you build it you run it, right? So then there is no, I'm going to just shoot my application over the wall for somebody else to manage it. So we did that, and then we said, "Okay, as we decentralized and had this many microservices running around, we had to create a layer that abstracted a lot of the complexity around running now a lot or monitoring, observing and running a lot while giving autonomy to this cross-functional team." And that's where the SRE, a new generation of engineers came to exist. So I think if I just look- >> Hence Borg, hence Kubernetes. >> Hence, hence, exactly. Hence chaos engineering, hence embracing the complexity and messiness, right? And putting engineering discipline to embrace that and yet give a cohesive and high integrity experience of those systems. So I think, if we look at that evolution, perhaps something like that is happening by bringing data and apps closer and make them these domain-oriented data product teams or domain oriented cross-functional teams, full stop, and still have a very advanced maybe at the platform infrastructure level kind of operational team that they're not busy doing two jobs which is taking care of domains and the infrastructure, but they're building infrastructure that is embracing that complexity, interconnectivity of this data process. >> John: So you see similarities. >> Absolutely, but I feel like we're probably in a more early days of that movement. >> So it's a data DevOps kind of thing happening where scales happening. It's good things are happening yet. Eh, a little bit fast and loose with some complexities to clean up. >> Yes, yes. This is a different restructure. As you said we, you know, the job of this industry as a whole on architects is decompose, recompose, decompose, recomposing a new way, and now we're like decomposing centralized team, recomposing them as domains and- >> John: So is data mesh the killer app for Supercloud? >> You had to do this for me. >> Dave: Sorry, I couldn't- (John and Dave laughing) >> Zhamak: What do you want me to say, Dave? >> John: Yes. >> Zhamak: Yes of course. >> I mean Supercloud, I think it's, really the terminology's Supercloud, Opencloud. But I think, in spirits of it, this embracing of diversity and giving autonomy for people to make decisions for what's right for them and not yet lock them in. I think just embracing that is baked into how data mesh assume the world would work. >> John: Well thank you so much for coming on Supercloud too, really appreciate it. Data has driven this conversation. Your success of data mesh has really opened up the conversation and exposed the slow moving data industry. >> Dave: Been a great catalyst. (John laughs) >> John: That's now going well. We can move faster, so thanks for coming on. >> Thank you for hosting me. It was wonderful. >> Okay, Supercloud 2 live here in Palo Alto. Our stage performance, I'm John Furrier with Dave Vellante. We're back with more after this short break, Stay with us all day for Supercloud 2. (gentle bright music)
SUMMARY :
and continued success on the data mesh. Great to see you in person. and others in the industry. I guess the last few years, What's the pain point? a database for many of the organizations. in terms of the approach, but folks that have been close to us to get to, you know, the data, as you know, resides Okay, so the idea would be developers But a lot of the things that they're doing This is the realities, you know, inside of the data. And that we said at that Well we have, and you know, So the question is, how do so this is the, you need and the data owner decides, you know, so that you don't have 'cause that seems to be where of this API, you not So the concern that he has, into the domain closer to So a lot of decoupling So I have to ask you, this a lot of the complexity of domains and the infrastructure, in a more early days of that movement. to clean up. the job of this industry the world would work. John: Well thank you so much for coming Dave: Been a great catalyst. We can move faster, so Thank you for hosting me. after this short break,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
John | PERSON | 0.99+ |
Zhamak | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
2007 | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
JPMC | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Dav | PERSON | 0.99+ |
two jobs | QUANTITY | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
NextData | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Opencloud | ORGANIZATION | 0.99+ |
last year | DATE | 0.99+ |
Siri | TITLE | 0.99+ |
ThoughtWorks | ORGANIZATION | 0.98+ |
NextData.com | ORGANIZATION | 0.98+ |
Supercloud 2 | EVENT | 0.98+ |
both | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
HelloFresh | ORGANIZATION | 0.98+ |
first | QUANTITY | 0.98+ |
millions of dollars | QUANTITY | 0.96+ |
Snowflake | EVENT | 0.96+ |
Oracle | ORGANIZATION | 0.96+ |
SRE | TITLE | 0.94+ |
Snowflake | ORGANIZATION | 0.94+ |
Cube | PERSON | 0.93+ |
Zhama | PERSON | 0.92+ |
Data Mesh the Killer App | TITLE | 0.92+ |
SiliconANGLE | ORGANIZATION | 0.91+ |
Databricks | ORGANIZATION | 0.9+ |
first class | QUANTITY | 0.89+ |
Supercloud 2 | ORGANIZATION | 0.88+ |
theCUBE | ORGANIZATION | 0.88+ |
hundreds of thousands | QUANTITY | 0.85+ |
one point | QUANTITY | 0.84+ |
Zham | PERSON | 0.83+ |
Supercloud | EVENT | 0.83+ |
ChatGPT | ORGANIZATION | 0.72+ |
SRE | ORGANIZATION | 0.72+ |
Borg | PERSON | 0.7+ |
Snowflake | TITLE | 0.66+ |
Supercloud | TITLE | 0.65+ |
half | QUANTITY | 0.64+ |
Discussion about Walmart's Approach | Supercloud2
(upbeat electronic music) >> Okay, welcome back to Supercloud 2, live here in Palo Alto. I'm John Furrier, with Dave Vellante. Again, all day wall-to-wall coverage, just had a great interview with Walmart, we've got a Next interview coming up, you're going to hear from Bob Muglia and Tristan Handy, two experts, both experienced entrepreneurs, executives in technology. We're here to break down what just happened with Walmart, and what's coming up with George Gilbert, former colleague, Wikibon analyst, Gartner Analyst, and now independent investor and expert. George, great to see you, I know you're following this space. Like you read about it, remember the first days when Dataverse came out, we were talking about them coming out of Berkeley? >> Dave: Snowflake. >> John: Snowflake. >> Dave: Snowflake In the early days. >> We, collectively, have been chronicling the data movement since 2010, you were part of our team, now you've got your nose to the grindstone, you're seeing the next wave. What's this all about? Walmart building their own super cloud, we got Bob Muglia talking about how these next wave of apps are coming. What are the super apps? What's the super cloud to you? >> Well, this key's off Dave's really interesting questions to Walmart, which was like, how are they building their supercloud? 'Cause it makes a concrete example. But what was most interesting about his description of the Walmart WCMP, I forgot what it stood for. >> Dave: Walmart Cloud Native Platform. >> Walmart, okay. He was describing where the logic could run in these stateless containers, and maybe eventually serverless functions. But that's just it, and that's the paradigm of microservices, where the logic is in this stateless thing, where you can shoot it, or it fails, and you can spin up another one, and you've lost nothing. >> That was their triplet model. >> Yeah, in fact, and that was what they were trying to move to, where these things move fluidly between data centers. >> But there's a but, right? Which is they're all stateless apps in the cloud. >> George: Yeah. >> And all their stateful apps are on-prem and VMs. >> Or the stateful part of the apps are in VMs. >> Okay. >> And so if they really want to lift their super cloud layer off of this different provider's infrastructure, they're going to need a much more advanced software platform that manages data. And that goes to the -- >> Muglia and Handy, that you and I did, that's coming up next. So the big takeaway there, George, was, I'll set it up and you can chime in, a new breed of data apps is emerging, and this highly decentralized infrastructure. And Tristan Handy of DBT Labs has a sort of a solution to begin the journey today, Muglia is working on something that's way out there, describe what you learned from it. >> Okay. So to talk about what the new data apps are, and then the platform to run them, I go back to the using what will probably be seen as one of the first data app examples, was Uber, where you're describing entities in the real world, riders, drivers, routes, city, like a city plan, these are all defined by data. And the data is described in a structure called a knowledge graph, for lack of a, no one's come up with a better term. But that means the tough, the stuff that Jack built, which was all stateless and sits above cloud vendors' infrastructure, it needs an entirely different type of software that's much, much harder to build. And the way Bob described it is, you're going to need an entirely new data management infrastructure to handle this. But where, you know, we had this really colorful interview where it was like Rock 'Em Sock 'Em, but they weren't really that much in opposition to each other, because Tristan is going to define this layer, starting with like business intelligence metrics, where you're defining things like bookings, billings, and revenue, in business terms, not in SQL terms -- >> Well, business terms, if I can interrupt, he said the one thing we haven't figured out how to APIify is KPIs that sit inside of a data warehouse, and that's essentially what he's doing. >> George: That's what he's doing, yes. >> Right. And so then you can now expose those APIs, those KPIs, that sit inside of a data warehouse, or a data lake, a data store, whatever, through APIs. >> George: And the difference -- >> So what does that do for you? >> Okay, so all of a sudden, instead of working at technical data terms, where you're dealing with tables and columns and rows, you're dealing instead with business entities, using the Uber example of drivers, riders, routes, you know, ETA prices. But you can define, DBT will be able to define those progressively in richer terms, today they're just doing things like bookings, billings, and revenue. But Bob's point was, today, the data warehouse that actually runs that stuff, whereas DBT defines it, the data warehouse that runs it, you can't do it with relational technology >> Dave: Relational totality, cashing architecture. >> SQL, you can't -- >> SQL caching architectures in memory, you can't do it, you've got to rethink down to the way the data lake is laid out on the disk or cache. Which by the way, Thomas Hazel, who's speaking later, he's the chief scientist and founder at Chaos Search, he says, "I've actually done this," basically leave it in an S3 bucket, and I'm going to query it, you know, with no caching. >> All right, so what I hear you saying then, tell me if I got this right, there are some some things that are inadequate in today's world, that's not compatible with the Supercloud wave. >> Yeah. >> Specifically how you're using storage, and data, and stateful. >> Yes. >> And then the software that makes it run, is that what you're saying? >> George: Yeah. >> There's one other thing you mentioned to me, it's like, when you're using a CRM system, a human is inputting data. >> George: Nothing happens till the human does something. >> Right, nothing happens until that data entry occurs. What you're talking about is a world that self forms, polling data from the transaction system, or the ERP system, and then builds a plan without human intervention. >> Yeah. Something in the real world happens, where the user says, "I want a ride." And then the software goes out and says, "Okay, we got to match a driver to the rider, we got to calculate how long it takes to get there, how long to deliver 'em." That's not driven by a form, other than the first person hitting a button and saying, "I want a ride." All the other stuff happens autonomously, driven by data and analytics. >> But my question was different, Dave, so I want to get specific, because this is where the startups are going to come in, this is the disruption. Snowflake is a data warehouse that's in the cloud, they call it a data cloud, they refactored it, they did it differently, the success, we all know it looks like. These areas where it's inadequate for the future are areas that'll probably be either disrupted, or refactored. What is that? >> That's what Muglia's contention is, that the DBT can start adding that layer where you define these business entities, they're like mini digital twins, you can define them, but the data warehouse isn't strong enough to actually manage and run them. And Muglia is behind a company that is rethinking the database, really in a fundamental way that hasn't been done in 40 or 50 years. It's the first, in his contention, the first real rethink of database technology in a fundamental way since the rise of the relational database 50 years ago. >> And I think you admit it's a real Hail Mary, I mean it's quite a long shot right? >> George: Yes. >> Huge potential. >> But they're pretty far along. >> Well, we've been talking on theCUBE for 12 years, and what, 10 years going to AWS Reinvent, Dave, that no one database will rule the world, Amazon kind of showed that with them. What's different, is it databases are changing, or you can have multiple databases, or? >> It's a good question. And the reason we've had multiple different types of databases, each one specialized for a different type of workload, but actually what Muglia is behind is a new engine that would essentially, you'll never get rid of the data warehouse, or the equivalent engine in like a Databricks datalake house, but it's a new engine that manages the thing that describes all the data and holds it together, and that's the new application platform. >> George, we have one minute left, I want to get real quick thought, you're an investor, and we know your history, and the folks watching, George's got a deep pedigree in investment data, and we can testify against that. If you're going to invest in a company right now, if you're a customer, I got to make a bet, what does success look like for me, what do I want walking through my door, and what do I want to send out? What companies do I want to look at? What's the kind of of vendor do I want to evaluate? Which ones do I want to send home? >> Well, the first thing a customer really has to do when they're thinking about next gen applications, all the people have told you guys, "we got to get our data in order," getting that data in order means building an integrated view of all your data landscape, which is data coming out of all your applications. It starts with the data model, so, today, you basically extract data from all your operational systems, put it in this one giant, central place, like a warehouse or lake house, but eventually you want this, whether you call it a fabric or a mesh, it's all the data that describes how everything hangs together as in one big knowledge graph. There's different ways to implement that. And that's the most critical thing, 'cause that describes your Uber landscape, your Uber platform. >> That's going to power the digital transformation, which will power the business transformation, which powers the business model, which allows the builders to build -- >> Yes. >> Coders to code. That's Supercloud application. >> Yeah. >> George, great stuff. Next interview you're going to see right here is Bob Muglia and Tristan Handy, they're going to unpack this new wave. Great segment, really worth unpacking and reading between the lines with George, and Dave Vellante, and those two great guests. And then we'll come back here for the studio for more of the live coverage of Supercloud 2. Thanks for watching. (upbeat electronic music)
SUMMARY :
remember the first days What's the super cloud to you? of the Walmart WCMP, I and that's the paradigm of microservices, and that was what they stateless apps in the cloud. And all their stateful of the apps are in VMs. And that goes to the -- Muglia and Handy, that you and I did, But that means the tough, he said the one thing we haven't And so then you can now the data warehouse that runs it, Dave: Relational totality, Which by the way, Thomas I hear you saying then, and data, and stateful. thing you mentioned to me, George: Nothing happens polling data from the transaction Something in the real world happens, that's in the cloud, that the DBT can start adding that layer Amazon kind of showed that with them. and that's the new application platform. and the folks watching, all the people have told you guys, Coders to code. for more of the live
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Chaos Search | ORGANIZATION | 0.99+ |
Jack | PERSON | 0.99+ |
Tristan | PERSON | 0.99+ |
12 years | QUANTITY | 0.99+ |
Berkeley | LOCATION | 0.99+ |
Uber | ORGANIZATION | 0.99+ |
first | QUANTITY | 0.99+ |
DBT Labs | ORGANIZATION | 0.99+ |
10 years | QUANTITY | 0.99+ |
two experts | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
Muglia | ORGANIZATION | 0.99+ |
one minute | QUANTITY | 0.99+ |
40 | QUANTITY | 0.99+ |
two great guests | QUANTITY | 0.98+ |
Wikibon | ORGANIZATION | 0.98+ |
50 years | QUANTITY | 0.98+ |
John | PERSON | 0.98+ |
Rock 'Em Sock 'Em | TITLE | 0.98+ |
today | DATE | 0.98+ |
first person | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
S3 | COMMERCIAL_ITEM | 0.97+ |
50 years ago | DATE | 0.97+ |
2010 | DATE | 0.97+ |
Mary | PERSON | 0.96+ |
first days | QUANTITY | 0.96+ |
SQL | TITLE | 0.96+ |
one | QUANTITY | 0.95+ |
Supercloud wave | EVENT | 0.95+ |
each one | QUANTITY | 0.93+ |
DBT | ORGANIZATION | 0.91+ |
Supercloud | TITLE | 0.91+ |
Supercloud2 | TITLE | 0.91+ |
Supercloud 2 | ORGANIZATION | 0.89+ |
Snowflake | TITLE | 0.86+ |
Dataverse | ORGANIZATION | 0.83+ |
triplet | QUANTITY | 0.78+ |
Applying Smart Data Fabrics Across Industries
(upbeat music) >> Today more than ever before, organizations are striving to gain a competitive advantage, deliver more value to customers, reduce risk, and respond more quickly to the needs of businesses. Now, to achieve these goals, organizations need easy access to a single view of accurate, consistent and very importantly, trusted data. If it's not trusted, nobody's going to use it and all in near real time. However, the growing volumes and complexities of data make this difficult to achieve in practice. Not to mention the organizational challenges that have evolved as data becomes increasingly important to winning in the marketplace. Specifically as data grows, so does the prevalence of data silos, making, integrating and leveraging data from internal and external sources a real challenge. Now, in this final segment, we'll hear from Joe Lichtenberg who's the global head of product and industry marketing, and he's going to discuss how smart data fabrics can be applied to different industries. And by way of these use cases, we'll probe Joe's vast knowledge base and ask him to highlight how InterSystems, which touts a next gen approach to Customer 360, how the company leverages a smart data fabric to provide organizations of varying sizes and sectors in financial services, supply chain, logistics and healthcare with a better, faster and easier way to deliver value to the business. Joe welcome, great to have you here. >> Thank you, it's great to be here. That was some intro. I could not have said it better myself, so thank you for that. >> Thank you. Well, we're happy to have you on this show now. I understand- >> It's great to be here. >> You you've made a career helping large businesses with technology solutions, small businesses, and then scale those solutions to meet whatever needs they had. And of course, you're a vocal advocate as is your company of data fabrics. We talked to Scott earlier about data fabrics, how it relates to data mesh big discussions in the industry. So tell us more about your perspective. >> Sure, so first I would say that I have been in this industry for a very long time so I've been like you, I'm sure, for decades working with customers and with technology, really to solve these same kinds of challenges. So for decades, companies have been working with lots and lots of data and trying to get business value to solve all sorts of different challenges. And I will tell you that I've seen many different approaches and different technologies over the years. So, early on, point to point connections with custom coding, and I've worked with integration platforms 20 years ago with the advent of web services and service-oriented architectures and exposing endpoints with wisdom and getting access to disparate data from across the organization. And more recently, obviously with data warehouses and data lakes and now moving workloads to the cloud with cloud-based data marts and data warehouses. Lots of approaches that I've seen over the years but yet still challenges remain in terms of getting access to a single trusted real-time view of data. And so, recently, we ran a survey of more than 500 different business users across different industries and 86% told us that they still lack confidence in using their data to make decisions. That's a huge number, right? And if you think about all of the work and all of the technology and approaches over the years, that is a surprising number and drilling into why that is, there were three main reasons. One is latency. So the amount of time that it takes to access the data and process the data and make it fit for purpose by the time the business has access to the data and the information that they need, the opportunity has passed. >> Elapsed time, not speed a light, right? But that too maybe. >> But it takes a long time if you think about these processes and you have to take the data and copy it and run ETL processes and prepare it. So that's one, one is just the amount of data that's disparate in data silos. So still struggling with data that is dispersed across different systems in different formats. And the third, is data democratization. So the business really wants to have access to the data so that they can drill into the data and ask ad hoc questions and the next question and drill into the information and see where it leads them rather than having sort of pre-structured data and pre-structured queries and having to go back to IT and put the request back on the queue again and waiting. >> So it takes too long, the data's too hard to get to 'cause it's in silos and the data lacks context because it's technical people that are serving up the data to the business people. >> Exactly. >> And there's a mismatch. >> Exactly right. So they call that data democratization or giving the business access to the data and the tools that they need to get the answers that they need in the moment. >> So the skeptic in me, 'cause you're right I have seen this story before and the problems seem like they keep coming up, year after year, decade after decade. But I'm an optimist and so. >> As am I. >> And so I sometimes say, okay, same wine new bottle, but it feels like it's different this time around with data fabrics. You guys talk about smart data fabrics from your perspective, what's different? >> Yeah, it's very exciting and it's a fundamentally different approach. So if you think about all of these prior approaches, and by the way, all of these prior approaches have added value, right? It's not like they were bad, but there's still limitations and the business still isn't getting access to all the data that they need in the moment, right? So data warehouses are terrific if you know the questions that you want answered and you take the data and you structure the data in advance. And so now you're serving the business with sort of pre-planned answers to pre-planned queries, right? The data fabric, what we call a smart data fabric is fundamentally different. It's a fundamentally different approach in that rather than sort of in batch mode, taking the data and making it fit for purpose with all the complexity and delays associated with it, with a data fabric where accessing the data on demand as it's needed, as it's requested, either by the business or by applications or by the data scientists directly from the source systems. >> So you're not copying it necessarily to that to make that you're not FTPing it, for instance. I've got it, you take it, you're basically using the same source. >> You're pulling the data on demand as it's being requested by the consumers. And then all of the data management processes that need to be applied for integration and transformation to get the data into a consistent format and business rules and analytic queries. And with Jess showed with machine learning, predictive prescriptive analytics all sorts of powerful capabilities are built into the fabric so that as you're pulling the data on demand, right, all of these processes are being applied and the net result is you're addressing these limitations around latency and silos that we've seen in the past. >> Okay, so you've talked about you have a lot of customers, InterSystems does in different industries supply chain, financial services, manufacturing. We heard from just healthcare. What are you seeing in terms of applications of smart data fabrics in the real world? >> Yeah, so we see it in every industry. So InterSystems, as you know, has been around now for 43 years, and we have tens of thousands of customers in every industry. And this architectural pattern now is providing value for really critical use cases in every industry. So I'm happy to talk to you about some that we're seeing. I could actually spend like three hours here and there but I'm very passionate about working with customers and there's all sorts of exciting. >> What are some of your favorites? >> So, obviously supply chain right now is going through a very challenging time. So the combination of what's happening with the pandemic and disruptions and now I understand eggs are difficult to come by I just heard on NPR. >> Yeah and it's in part a data problem and a big part of data problem, is that fair? >> Yeah and so, in supply chain, first there's supply chain visibility. So organizations want a real time or near real time expansive view of what's happening across the entire supply chain from a supply all the way through distribution, right? So that's only part of the issue but that's a huge sort of real-time data silos problem. So if you think about your extended supply chain, it's complicated enough with all the systems and silos inside your firewall, before all of your suppliers even just thinking about your tier one suppliers let alone tier two and tier three. And then building on top of real-time visibility is what the industry calls a control tower, what we call the ultimate control tower. And so it's built in analytics to be able to sense disruptions and exceptions as they occur and predict the likelihood of these disruptions occurring. And then having data driven and analytics driven guidance in terms of the best way to deal with these disruptions. So for example, an order is missing line items or a cargo ship is stuck off port somewhere. What do you do about it? Do you reroute a different cargo ship, right? Do you take an order that's en route to a different client and reroute that? What's the cost associated? What's the impact associated with it? So that's a huge issue right now around control towers for supply chain. So that's one. >> Can I ask you a question about that? Because you and I have both seen a lot but we've never seen, at least I haven't the economy completely shut down like it was in March of 2020, and now we're seeing this sort of slingshot effect almost like you're driving on the highway sometimes you don't know why, but all of a sudden you slow down and then you speed up, you think it's okay then you slow down again. Do you feel like you guys can help get a handle on that product because it goes on both sides. Sometimes you can't get the product, sometimes there's too much of a product as well and that's not good for business. >> Yeah, absolutely. You want to smooth out the peaks and valleys. >> Yeah. >> And that's a big business goal, business challenge for supply chain executives, right? So you want to make sure that you can respond to demand but you don't want to overstock because there's cost associated with that as well. So how do you optimize the supply chains and it's very much a data silo and a real time challenge. So it's a perfect fit for this new architectural pattern. >> All right, what else? >> So if we look at financial services, we have many, many customers in financial services and that's another industry where they have many different sources of data that all have information that organizations can use to really move the needle if they could just get to that single source of truth in real time. So we sort of bucket many different implementations and use cases that we do around what we call Business 360 and Customer 360. So Business 360, there's all sorts of ways to add business value in terms of having a real-time operational view across all of the different GOs and parts of the business, especially in these very large global financial services institutions like capital markets and investment firms and so forth. So around Business 360, having a realtime view of risk, operational performance regulatory compliance, things like that. Customer 360, there's a whole set of use cases around Customer 360 around hyper-personalization of customers and in realtime next best action looking to see how you can sell more increase share of wallet, cross-sell, upsell to customers. We also do a lot in terms of predicting customer churn. So if you have all the historical data and what's the likelihood of customers churning to be able to proactively intercede, right? It's much more cost effective to keep assets under management and keep clients rather than going and getting new clients to come to the firm. A very interesting use case from one of our customers in Latin America, so Banco do Brasil largest bank in all of Latin America and they have a very innovative CTO who's always looking for new ways to move the needle for the bank. And so one of their ideas and we're working with them to do this is how can they generate net new revenue streams by bringing in new business to the bank? And so they identified a large percentage of the population in Latin America that does no banking. So they have no banking history not only with Banco do Brasil, but with any bank. So there's a fair amount of risk associated with offering services to this segment of the population that's not associated with any banks or financial institutions. >> There is no historical data on them, there's no. >> So it's a data challenge. And so, they're bringing in data from a variety of different sources, social media, open source data that they find online and so forth. And with us running risk models to identify which are the citizens that there's acceptable risk to offer their services. >> It's going to be huge market of unbanked people in vision Latin America. >> Wow, that's interesting. >> Yeah, yeah, totally vision. >> And if you can lower the risk and you could tap that market and be first >> And they are, yeah. >> Yeah. >> So very exciting. Manufacturing, we know industry 4.0 which is about taking the OT data, so the data from the MES systems and the streaming data, real-time streaming data from the machine controllers and integrating it with the IT data, so your data warehouses and your ERP systems and so forth to have not only a real-time view of manufacturing from supply and source all the way through demand but also predictive maintenance and things like that. So that's very big right now in manufacturing. >> Kind of cool to hear these use cases beyond your healthcare, which is obviously, your wheelhouse, Scott defined this term of smart data fabrics, different than data fabrics, I guess. So when we think about these use cases what's the value add of so-called smart data fabrics? >> Yeah, it's a great question. So we did not define the term data fabric or enterprise data fabric. The analysts now are all over it. They're all saying it's the future of data management. It's a fundamentally different approach this architectural approach to be able to access the data on demand. The canonical definition of a data fabric is to access the data where it lies and apply a set of data management processes, but it does not include analytics, interestingly. And so we firmly believe that most of these use cases gain value from having analytics built directly into the fabric. So whether that's business rules or predictive analytics to predict the likelihood of a customer churn or a machine on the shop floor failing or prescriptive analytics. So if there's a problem in the supply chain, what's the guidance for the supply chain managers to take the best action, right? Prescriptive analytics based on data. So rather than taking the data and the data fabric and moving it to another environment to run those analytics where you have complexity and latency, having tall of those analytics capabilities built directly into the fabric, which is why we call it a smart data fabric, brings a lot of value to our customers. >> So simplifies the whole data lifecycle, data pipelining, the hyper-specialized roles that you have to have, you can really just focus on one platform, is that? >> Exactly, basically, yeah. And it's a simplicity of architecture and faster speed to production. So a big differentiator for our technology, for InterSystems, Iris, is most if not all of the capabilities that are needed are built into one engine, right? So you don't need to stitch together 10 or 15 or 20 different data management services for relational database in a non-relational database and a caching layer and a data warehouse and security and so forth. And so you can do that. There's many ways to build this data fabric architecture, right? InterSystems is not the only way. >> Right? >> But if you can speed and simplify the implementation of the fabric by having most of what you need in one engine, one product that gets you to where you need to go much, much faster. >> Joe, how can people learn more about smart data Fabric some of the use cases that you've presented here? >> Yeah, come to our website, intersystems.com. If you go to intersystems.com/smartdatafabric that'll take you there. >> I know that you have like probably dozens more examples but it would be cool- >> I do. >> If people reach out to you, how can they get in touch? >> Oh, I would love that. So feel free to reach out to me on LinkedIn. It's Joe Lichtenberg I think it's linkedin.com/joeLichtenberg and I'd love to connect. >> Awesome. Joe, thanks so much for your time. Really appreciate it. >> It was great to be here. Thank you, Dave. >> All right, I hope you've enjoyed our program today. You know, we heard Scott now he helped us understand this notion of data fabrics and smart data fabrics and how they can address the data challenges faced by the vast majority of organizations today. Jess Jody's demo was awesome. It was really a highlight of the program where she showed the smart data fabrics inaction and Joe Lichtenberg, we just heard from him dug in to some of the prominent use cases and proof points. We hope this content was educational and inspires you to action. Now, don't forget all these videos are available on Demand to watch, rewatch and share. Go to theCUBE.net, check out siliconangle.com for all the news and analysis and we'll summarize the highlights of this program and go to intersystems.com because there are a ton of resources there. In particular, there's a knowledge hub where you'll find some excellent educational content and online learning courses. There's a resource library with analyst reports, technical documentation videos, some great freebies. So check it out. This is Dave Vellante. On behalf of theCUBE and our supporter, InterSystems, thanks for watching and we'll see you next time. (upbeat music)
SUMMARY :
and ask him to highlight how InterSystems, so thank you for that. you on this show now. big discussions in the industry. and all of the technology and But that too maybe. and drill into the information and the data lacks context or giving the business access to the data and the problems seem And so I sometimes say, okay, and by the way, to that to make that you're and the net result is you're fabrics in the real world? So I'm happy to talk to you So the combination and predict the likelihood of but all of a sudden you slow the peaks and valleys. So how do you optimize the supply chains of the different GOs and parts data on them, there's no. risk models to identify It's going to be huge market and integrating it with the IT Kind of cool to hear these use cases and moving it to another if not all of the capabilities and simplify the Yeah, come to our and I'd love to connect. Joe, thanks so much for your time. It was great to be here. and go to intersystems.com
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Joe | PERSON | 0.99+ |
Joe Lichtenberg | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Banco do Brasil | ORGANIZATION | 0.99+ |
Scott | PERSON | 0.99+ |
March of 2020 | DATE | 0.99+ |
Jess Jody | PERSON | 0.99+ |
Latin America | LOCATION | 0.99+ |
InterSystems | ORGANIZATION | 0.99+ |
Latin America | LOCATION | 0.99+ |
Banco do Brasil | ORGANIZATION | 0.99+ |
10 | QUANTITY | 0.99+ |
43 years | QUANTITY | 0.99+ |
three hours | QUANTITY | 0.99+ |
15 | QUANTITY | 0.99+ |
86% | QUANTITY | 0.99+ |
Jess | PERSON | 0.99+ |
one product | QUANTITY | 0.99+ |
linkedin.com/joeLichtenberg | OTHER | 0.99+ |
theCUBE.net | OTHER | 0.99+ |
ORGANIZATION | 0.99+ | |
both sides | QUANTITY | 0.99+ |
intersystems.com/smartdatafabric | OTHER | 0.99+ |
One | QUANTITY | 0.99+ |
one engine | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
third | QUANTITY | 0.98+ |
Today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
intersystems.com | OTHER | 0.98+ |
more than 500 different business users | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
one platform | QUANTITY | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
single | QUANTITY | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
tens of thousands of customers | QUANTITY | 0.95+ |
three main reasons | QUANTITY | 0.94+ |
20 years ago | DATE | 0.92+ |
dozens more examples | QUANTITY | 0.9+ |
today | DATE | 0.9+ |
NPR | ORGANIZATION | 0.9+ |
tier one | QUANTITY | 0.9+ |
single view | QUANTITY | 0.89+ |
single source | QUANTITY | 0.88+ |
Business 360 | TITLE | 0.82+ |
pandemic | EVENT | 0.81+ |
one of | QUANTITY | 0.77+ |
20 different data management services | QUANTITY | 0.76+ |
tier | QUANTITY | 0.74+ |
resources | QUANTITY | 0.73+ |
Customer 360 | ORGANIZATION | 0.72+ |
tier three | OTHER | 0.72+ |
Business 360 | ORGANIZATION | 0.72+ |
decade | QUANTITY | 0.68+ |
Business | ORGANIZATION | 0.68+ |
decades | QUANTITY | 0.68+ |
Iris | ORGANIZATION | 0.63+ |
360 | TITLE | 0.63+ |
two | OTHER | 0.61+ |
Customer 360 | TITLE | 0.47+ |
ton | QUANTITY | 0.43+ |
360 | OTHER | 0.24+ |