SiliconANGLE News | Beyond the Buzz: A deep dive into the impact of AI
(upbeat music) >> Hello, everyone, welcome to theCUBE. I'm John Furrier, the host of theCUBE in Palo Alto, California. Also it's SiliconANGLE News. Got two great guests here to talk about AI, the impact of the future of the internet, the applications, the people. Amr Awadallah, the founder and CEO, Ed Alban is the CEO of Vectara, a new startup that emerged out of the original Cloudera, I would say, 'cause Amr's known, famous for the Cloudera founding, which was really the beginning of the big data movement. And now as AI goes mainstream, there's so much to talk about, so much to go on. And plus the new company is one of the, now what I call the wave, this next big wave, I call it the fifth wave in the industry. You know, you had PCs, you had the internet, you had mobile. This generative AI thing is real. And you're starting to see startups come out in droves. Amr obviously was founder of Cloudera, Big Data, and now Vectara. And Ed Albanese, you guys have a new company. Welcome to the show. >> Thank you. It's great to be here. >> So great to see you. Now the story is theCUBE started in the Cloudera office. Thanks to you, and your friendly entrepreneurship views that you have. We got to know each other over the years. But Cloudera had Hadoop, which was the beginning of what I call the big data wave, which then became what we now call data lakes, data oceans, and data infrastructure that's developed from that. It's almost interesting to look back 12 plus years, and see that what AI is doing now, right now, is opening up the eyes to the mainstream, and the application's almost mind blowing. You know, Sati Natel called it the Mosaic Moment, didn't say Netscape, he built Netscape (laughing) but called it the Mosaic Moment. You're seeing companies in startups, kind of the alpha geeks running here, because this is the new frontier, and there's real meat on the bone, in terms of like things to do. Why? Why is this happening now? What's is the confluence of the forces happening, that are making this happen? >> Yeah, I mean if you go back to the Cloudera days, with big data, and so on, that was more about data processing. Like how can we process data, so we can extract numbers from it, and do reporting, and maybe take some actions, like this is a fraud transaction, or this is not. And in the meanwhile, many of the researchers working in the neural network, and deep neural network space, were trying to focus on data understanding, like how can I understand the data, and learn from it, so I can take actual actions, based on the data directly, just like a human does. And we were only good at doing that at the level of somebody who was five years old, or seven years old, all the way until about 2013. And starting in 2013, which is only 10 years ago, a number of key innovations started taking place, and each one added on. It was no major innovation that just took place. It was a couple of really incremental ones, but they added on top of each other, in a very exponentially additive way, that led to, by the end of 2019, we now have models, deep neural network models, that can read and understand human text just like we do. Right? And they can reason about it, and argue with you, and explain it to you. And I think that's what is unlocking this whole new wave of innovation that we're seeing right now. So data understanding would be the essence of it. >> So it's not a Big Bang kind of theory, it's been evolving over time, and I think that the tipping point has been the advancements and other things. I mean look at cloud computing, and look how fast it just crept up on AWS. I mean AWS you back three, five years ago, I was talking to Swami yesterday, and their big news about AI, expanding the Hugging Face's relationship with AWS. And just three, five years ago, there wasn't a model training models out there. But as compute comes out, and you got more horsepower,, these large language models, these foundational models, they're flexible, they're not monolithic silos, they're interacting. There's a whole new, almost fusion of data happening. Do you see that? I mean is that part of this? >> Of course, of course. I mean this wave is building on all the previous waves. We wouldn't be at this point if we did not have hardware that can scale, in a very efficient way. We wouldn't be at this point, if we don't have data that we're collecting about everything we do, that we're able to process in this way. So this, this movement, this motion, this phase we're in, absolutely builds on the shoulders of all the previous phases. For some of the observers from the outside, when they see chatGPT for the first time, for them was like, "Oh my god, this just happened overnight." Like it didn't happen overnight. (laughing) GPT itself, like GPT3, which is what chatGPT is based on, was released a year ahead of chatGPT, and many of us were seeing the power it can provide, and what it can do. I don't know if Ed agrees with that. >> Yeah, Ed? >> I do. Although I would acknowledge that the possibilities now, because of what we've hit from a maturity standpoint, have just opened up in an incredible way, that just wasn't tenable even three years ago. And that's what makes it, it's true that it developed incrementally, in the same way that, you know, the possibilities of a mobile handheld device, you know, in 2006 were there, but when the iPhone came out, the possibilities just exploded. And that's the moment we're in. >> Well, I've had many conversations over the past couple months around this area with chatGPT. John Markoff told me the other day, that he calls it, "The five dollar toy," because it's not that big of a deal, in context to what AI's doing behind the scenes, and all the work that's done on ethics, that's happened over the years, but it has woken up the mainstream, so everyone immediately jumps to ethics. "Does it work? "It's not factual," And everyone who's inside the industry is like, "This is amazing." 'Cause you have two schools of thought there. One's like, people that think this is now the beginning of next gen, this is now we're here, this ain't your grandfather's chatbot, okay?" With NLP, it's got reasoning, it's got other things. >> I'm in that camp for sure. >> Yeah. Well I mean, everyone who knows what's going on is in that camp. And as the naysayers start to get through this, and they go, "Wow, it's not just plagiarizing homework, "it's helping me be better. "Like it could rewrite my memo, "bring the lead to the top." It's so the format of the user interface is interesting, but it's still a data-driven app. >> Absolutely. >> So where does it go from here? 'Cause I'm not even calling this the first ending. This is like pregame, in my opinion. What do you guys see this going, in terms of scratching the surface to what happens next? >> I mean, I'll start with, I just don't see how an application is going to look the same in the next three years. Who's going to want to input data manually, in a form field? Who is going to want, or expect, to have to put in some text in a search box, and then read through 15 different possibilities, and try to figure out which one of them actually most closely resembles the question they asked? You know, I don't see that happening. Who's going to start with an absolute blank sheet of paper, and expect no help? That is not how an application will work in the next three years, and it's going to fundamentally change how people interact and spend time with opening any element on their mobile phone, or on their computer, to get something done. >> Yes. I agree with that. Like every single application, over the next five years, will be rewritten, to fit within this model. So imagine an HR application, I don't want to name companies, but imagine an HR application, and you go into application and you clicking on buttons, because you want to take two weeks of vacation, and menus, and clicking here and there, reasons and managers, versus just telling the system, "I'm taking two weeks of vacation, going to Las Vegas," book it, done. >> Yeah. >> And the system just does it for you. If you weren't completing in your input, in your description, for what you want, then the system asks you back, "Did you mean this? "Did you mean that? "Were you trying to also do this as well?" >> Yeah. >> "What was the reason?" And that will fit it for you, and just do it for you. So I think the user interface that we have with apps, is going to change to be very similar to the user interface that we have with each other. And that's why all these apps will need to evolve. >> I know we don't have a lot of time, 'cause you guys are very busy, but I want to definitely have multiple segments with you guys, on this topic, because there's so much to talk about. There's a lot of parallels going on here. I was talking again with Swami who runs all the AI database at AWS, and I asked him, I go, "This feels a lot like the original AWS. "You don't have to provision a data center." A lot of this heavy lifting on the back end, is these large language models, with these foundational models. So the bottleneck in the past, was the energy, and cost to actually do it. Now you're seeing it being stood up faster. So there's definitely going to be a tsunami of apps. I would see that clearly. What is it? We don't know yet. But also people who are going to leverage the fact that I can get started building value. So I see a startup boom coming, and I see an application tsunami of refactoring things. >> Yes. >> So the replatforming is already kind of happening. >> Yes, >> OpenAI, chatGPT, whatever. So that's going to be a developer environment. I mean if Amazon turns this into an API, or a Microsoft, what you guys are doing. >> We're turning it into API as well. That's part of what we're doing as well, yes. >> This is why this is exciting. Amr, you've lived the big data dream, and and we used to talk, if you didn't have a big data problem, if you weren't full of data, you weren't really getting it. Now people have all the data, and they got to stand this up. >> Yeah. >> So the analogy is again, the mobile, I like the mobile movement, and using mobile as an analogy, most companies were not building for a mobile environment, right? They were just building for the web, and legacy way of doing apps. And as soon as the user expectations shifted, that my expectation now, I need to be able to do my job on this small screen, on the mobile device with a touchscreen. Everybody had to invest in re-architecting, and re-implementing every single app, to fit within that model, and that model of interaction. And we are seeing the exact same thing happen now. And one of the core things we're focused on at Vectara, is how to simplify that for organizations, because a lot of them are overwhelmed by large language models, and ML. >> They don't have the staff. >> Yeah, yeah, yeah. They're understaffed, they don't have the skills. >> But they got developers, they've got DevOps, right? >> Yes. >> So they have the DevSecOps going on. >> Exactly, yes. >> So our goal is to simplify it enough for them that they can start leveraging this technology effectively, within their applications. >> Ed, you're the COO of the company, obviously a startup. You guys are growing. You got great backup, and good team. You've also done a lot of business development, and technical business development in this area. If you look at the landscape right now, and I agree the apps are coming, every company I talk to, that has that jet chatGPT of, you know, epiphany, "Oh my God, look how cool this is. "Like magic." Like okay, it's code, settle down. >> Mm hmm. >> But everyone I talk to is using it in a very horizontal way. I talk to a very senior person, very tech alpha geek, very senior person in the industry, technically. they're using it for log data, they're using it for configuration of routers. And in other areas, they're using it for, every vertical has a use case. So this is horizontally scalable from a use case standpoint. When you hear horizontally scalable, first thing I chose in my mind is cloud, right? >> Mm hmm. >> So cloud, and scalability that way. And the data is very specialized. So now you have this vertical specialization, horizontally scalable, everyone will be refactoring. What do you see, and what are you seeing from customers, that you talk to, and prospects? >> Yeah, I mean put yourself in the shoes of an application developer, who is actually trying to make their application a bit more like magic. And to have that soon-to-be, honestly, expected experience. They've got to think about things like performance, and how efficiently that they can actually execute a query, or a question. They've got to think about cost. Generative isn't cheap, like the inference of it. And so you've got to be thoughtful about how and when you take advantage of it, you can't use it as a, you know, everything looks like a nail, and I've got a hammer, and I'm going to hit everything with it, because that will be wasteful. Developers also need to think about how they're going to take advantage of, but not lose their own data. So there has to be some controls around what they feed into the large language model, if anything. Like, should they fine tune a large language model with their own data? Can they keep it logically separated, but still take advantage of the powers of a large language model? And they've also got to take advantage, and be aware of the fact that when data is generated, that it is a different class of data. It might not fully be their own. >> Yeah. >> And it may not even be fully verified. And so when the logical cycle starts, of someone making a request, the relationship between that request, and the output, those things have to be stored safely, logically, and identified as such. >> Yeah. >> And taken advantage of in an ongoing fashion. So these are mega problems, each one of them independently, that, you know, you can think of it as middleware companies need to take advantage of, and think about, to help the next wave of application development be logical, sensible, and effective. It's not just calling some raw API on the cloud, like openAI, and then just, you know, you get your answer and you're done, because that is a very brute force approach. >> Well also I will point, first of all, I agree with your statement about the apps experience, that's going to be expected, form filling. Great point. The interesting about chatGPT. >> Sorry, it's not just form filling, it's any action you would like to take. >> Yeah. >> Instead of clicking, and dragging, and dropping, and doing it on a menu, or on a touch screen, you just say it, and it's and it happens perfectly. >> Yeah. It's a different interface. And that's why I love that UIUX experiences, that's the people falling out of their chair moment with chatGPT, right? But a lot of the things with chatGPT, if you feed it right, it works great. If you feed it wrong and it goes off the rails, it goes off the rails big. >> Yes, yes. >> So the the Bing catastrophes. >> Yeah. >> And that's an example of garbage in, garbage out, classic old school kind of comp-side phrase that we all use. >> Yep. >> Yes. >> This is about data in injection, right? It reminds me the old SQL days, if you had to, if you can sling some SQL, you were a magician, you know, to get the right answer, it's pretty much there. So you got to feed the AI. >> You do, Some people call this, the early word to describe this as prompt engineering. You know, old school, you know, search, or, you know, engagement with data would be, I'm going to, I have a question or I have a query. New school is, I have, I have to issue it a prompt, because I'm trying to get, you know, an action or a reaction, from the system. And the active engineering, there are a lot of different ways you could do it, all the way from, you know, raw, just I'm going to send you whatever I'm thinking. >> Yeah. >> And you get the unintended outcomes, to more constrained, where I'm going to just use my own data, and I'm going to constrain the initial inputs, the data I already know that's first party, and I trust, to, you know, hyper constrain, where the application is actually, it's looking for certain elements to respond to. >> It's interesting Amr, this is why I love this, because one we are in the media, we're recording this video now, we'll stream it. But we got all your linguistics, we're talking. >> Yes. >> This is data. >> Yep. >> So the data quality becomes now the new intellectual property, because, if you have that prompt source data, it makes data or content, in our case, the original content, intellectual property. >> Absolutely. >> Because that's the value. And that's where you see chatGPT fall down, is because they're trying to scroll the web, and people think it's search. It's not necessarily search, it's giving you something that you wanted. It is a lot of that, I remember in Cloudera, you said, "Ask the right questions." Remember that phrase you guys had, that slogan? >> Mm hmm. And that's prompt engineering. So that's exactly, that's the reinvention of "Ask the right question," is prompt engineering is, if you don't give these models the question in the right way, and very few people know how to frame it in the right way with the right context, then you will get garbage out. Right? That is the garbage in, garbage out. But if you specify the question correctly, and you provide with it the metadata that constrain what that question is going to be acted upon or answered upon, then you'll get much better answers. And that's exactly what we solved Vectara. >> Okay. So before we get into the last couple minutes we have left, I want to make sure we get a plug in for the opportunity, and the profile of Vectara, your new company. Can you guys both share with me what you think the current situation is? So for the folks who are now having those moments of, "Ah, AI's bullshit," or, "It's not real, it's a lot of stuff," from, "Oh my god, this is magic," to, "Okay, this is the future." >> Yes. >> What would you say to that person, if you're at a cocktail party, or in the elevator say, "Calm down, this is the first inning." How do you explain the dynamics going on right now, to someone who's either in the industry, but not in the ropes? How would you explain like, what this wave's about? How would you describe it, and how would you prepare them for how to change their life around this? >> Yeah, so I'll go first and then I'll let Ed go. Efficiency, efficiency is the description. So we figured that a way to be a lot more efficient, a way where you can write a lot more emails, create way more content, create way more presentations. Developers can develop 10 times faster than they normally would. And that is very similar to what happened during the Industrial Revolution. I always like to look at examples from the past, to read what will happen now, and what will happen in the future. So during the Industrial Revolution, it was about efficiency with our hands, right? So I had to make a piece of cloth, like this piece of cloth for this shirt I'm wearing. Our ancestors, they had to spend month taking the cotton, making it into threads, taking the threads, making them into pieces of cloth, and then cutting it. And now a machine makes it just like that, right? And the ancestors now turned from the people that do the thing, to manage the machines that do the thing. And I think the same thing is going to happen now, is our efficiency will be multiplied extremely, as human beings, and we'll be able to do a lot more. And many of us will be able to do things they couldn't do before. So another great example I always like to use is the example of Google Maps, and GPS. Very few of us knew how to drive a car from one location to another, and read a map, and get there correctly. But once that efficiency of an AI, by the way, behind these things is very, very complex AI, that figures out how to do that for us. All of us now became amazing navigators that can go from any point to any point. So that's kind of how I look at the future. >> And that's a great real example of impact. Ed, your take on how you would talk to a friend, or colleague, or anyone who asks like, "How do I make sense of the current situation? "Is it real? "What's in it for me, and what do I do?" I mean every company's rethinking their business right now, around this. What would you say to them? >> You know, I usually like to show, rather than describe. And so, you know, the other day I just got access, I've been using an application for a long time, called Notion, and it's super popular. There's like 30 or 40 million users. And the new version of Notion came out, which has AI embedded within it. And it's AI that allows you primarily to create. So if you could break down the world of AI into find and create, for a minute, just kind of logically separate those two things, find is certainly going to be massively impacted in our experiences as consumers on, you know, Google and Bing, and I can't believe I just said the word Bing in the same sentence as Google, but that's what's happening now (all laughing), because it's a good example of change. >> Yes. >> But also inside the business. But on the crate side, you know, Notion is a wiki product, where you try to, you know, note down things that you are thinking about, or you want to share and memorialize. But sometimes you do need help to get it down fast. And just in the first day of using this new product, like my experience has really fundamentally changed. And I think that anybody who would, you know, anybody say for example, that is using an existing app, I would show them, open up the app. Now imagine the possibility of getting a starting point right off the bat, in five seconds of, instead of having to whole cloth draft this thing, imagine getting a starting point then you can modify and edit, or just dispose of and retry again. And that's the potential for me. I can't imagine a scenario where, in a few years from now, I'm going to be satisfied if I don't have a little bit of help, in the same way that I don't manually spell check every email that I send. I automatically spell check it. I love when I'm getting type ahead support inside of Google, or anything. Doesn't mean I always take it, or when texting. >> That's efficiency too. I mean the cloud was about developers getting stuff up quick. >> Exactly. >> All that heavy lifting is there for you, so you don't have to do it. >> Right? >> And you get to the value faster. >> Exactly. I mean, if history taught us one thing, it's, you have to always embrace efficiency, and if you don't fast enough, you will fall behind. Again, looking at the industrial revolution, the companies that embraced the industrial revolution, they became the leaders in the world, and the ones who did not, they all like. >> Well the AI thing that we got to watch out for, is watching how it goes off the rails. If it doesn't have the right prompt engineering, or data architecture, infrastructure. >> Yes. >> It's a big part. So this comes back down to your startup, real quick, I know we got a couple minutes left. Talk about the company, the motivation, and we'll do a deeper dive on on the company. But what's the motivation? What are you targeting for the market, business model? The tech, let's go. >> Actually, I would like Ed to go first. Go ahead. >> Sure, I mean, we're a developer-first, API-first platform. So the product is oriented around allowing developers who may not be superstars, in being able to either leverage, or choose, or select their own large language models for appropriate use cases. But they that want to be able to instantly add the power of large language models into their application set. We started with search, because we think it's going to be one of the first places that people try to take advantage of large language models, to help find information within an application context. And we've built our own large language models, focused on making it very efficient, and elegant, to find information more quickly. So what a developer can do is, within minutes, go up, register for an account, and get access to a set of APIs, that allow them to send data, to be converted into a format that's easy to understand for large language models, vectors. And then secondarily, they can issue queries, ask questions. And they can ask them very, the questions that can be asked, are very natural language questions. So we're talking about long form sentences, you know, drill down types of questions, and they can get answers that either come back in depending upon the form factor of the user interface, in list form, or summarized form, where summarized equals the opportunity to kind of see a condensed, singular answer. >> All right. I have a. >> Oh okay, go ahead, you go. >> I was just going to say, I'm going to be a customer for you, because I want, my dream was to have a hologram of theCUBE host, me and Dave, and have questions be generated in the metaverse. So you know. (all laughing) >> There'll be no longer any guests here. They'll all be talking to you guys. >> Give a couple bullets, I'll spit out 10 good questions. Publish a story. This brings the automation, I'm sorry to interrupt you. >> No, no. No, no, I was just going to follow on on the same. So another way to look at exactly what Ed described is, we want to offer you chatGPT for your own data, right? So imagine taking all of the recordings of all of the interviews you have done, and having all of the content of that being ingested by a system, where you can now have a conversation with your own data and say, "Oh, last time when I met Amr, "which video games did we talk about? "Which movie or book did we use as an analogy "for how we should be embracing data science, "and big data, which is moneyball," I know you use moneyball all the time. And you start having that conversation. So, now the data doesn't become a passive asset that you just have in your organization. No. It's an active participant that's sitting with you, on the table, helping you make decisions. >> One of my favorite things to do with customers, is to go to their site or application, and show them me using it. So for example, one of the customers I talked to was one of the biggest property management companies in the world, that lets people go and rent homes, and houses, and things like that. And you know, I went and I showed them me searching through reviews, looking for information, and trying different words, and trying to find out like, you know, is this place quiet? Is it comfortable? And then I put all the same data into our platform, and I showed them the world of difference you can have when you start asking that question wholeheartedly, and getting real information that doesn't have anything to do with the words you asked, but is really focused on the meaning. You know, when I asked like, "Is it quiet?" You know, answers would come back like, "The wind whispered through the trees peacefully," and you know, it's like nothing to do with quiet in the literal word sense, but in the meaning sense, everything to do with it. And that that was magical even for them, to see that. >> Well you guys are the front end of this big wave. Congratulations on the startup, Amr. I know you guys got great pedigree in big data, and you've got a great team, and congratulations. Vectara is the name of the company, check 'em out. Again, the startup boom is coming. This will be one of the major waves, generative AI is here. I think we'll look back, and it will be pointed out as a major inflection point in the industry. >> Absolutely. >> There's not a lot of hype behind that. People are are seeing it, experts are. So it's going to be fun, thanks for watching. >> Thanks John. (soft music)
SUMMARY :
I call it the fifth wave in the industry. It's great to be here. and the application's almost mind blowing. And in the meanwhile, and you got more horsepower,, of all the previous phases. in the same way that, you know, and all the work that's done on ethics, "bring the lead to the top." in terms of scratching the surface and it's going to fundamentally change and you go into application And the system just does it for you. is going to change to be very So the bottleneck in the past, So the replatforming is So that's going to be a That's part of what and they got to stand this up. And one of the core things don't have the skills. So our goal is to simplify it and I agree the apps are coming, I talk to a very senior And the data is very specialized. and be aware of the fact that request, and the output, some raw API on the cloud, about the apps experience, it's any action you would like to take. you just say it, and it's But a lot of the things with chatGPT, comp-side phrase that we all use. It reminds me the old all the way from, you know, raw, and I'm going to constrain But we got all your So the data quality And that's where you That is the garbage in, garbage out. So for the folks who are and how would you prepare them that do the thing, to manage the current situation? And the new version of Notion came out, But on the crate side, you I mean the cloud was about developers so you don't have to do it. and the ones who did not, they all like. If it doesn't have the So this comes back down to Actually, I would like Ed to go first. factor of the user interface, I have a. generated in the metaverse. They'll all be talking to you guys. This brings the automation, of all of the interviews you have done, one of the customers I talked to Vectara is the name of the So it's going to be fun, Thanks John.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
John Markoff | PERSON | 0.99+ |
2013 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ed Alban | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
10 times | QUANTITY | 0.99+ |
2006 | DATE | 0.99+ |
John Furrier | PERSON | 0.99+ |
two weeks | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Dave | PERSON | 0.99+ |
Ed Albanese | PERSON | 0.99+ |
John | PERSON | 0.99+ |
five seconds | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
Ed | PERSON | 0.99+ |
iPhone | COMMERCIAL_ITEM | 0.99+ |
10 good questions | QUANTITY | 0.99+ |
Swami | PERSON | 0.99+ |
15 different possibilities | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
Vectara | ORGANIZATION | 0.99+ |
Amr Awadallah | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Cloudera | ORGANIZATION | 0.99+ |
first time | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
end of 2019 | DATE | 0.99+ |
yesterday | DATE | 0.98+ |
Big Data | ORGANIZATION | 0.98+ |
40 million users | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
two great guests | QUANTITY | 0.98+ |
12 plus years | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
five dollar | QUANTITY | 0.98+ |
Netscape | ORGANIZATION | 0.98+ |
five years ago | DATE | 0.98+ |
SQL | TITLE | 0.98+ |
first inning | QUANTITY | 0.98+ |
Amr | PERSON | 0.97+ |
two schools | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
10 years ago | DATE | 0.97+ |
One | QUANTITY | 0.96+ |
first day | QUANTITY | 0.96+ |
three | DATE | 0.96+ |
chatGPT | TITLE | 0.96+ |
first places | QUANTITY | 0.95+ |
Bing | ORGANIZATION | 0.95+ |
Notion | TITLE | 0.95+ |
first thing | QUANTITY | 0.94+ |
theCUBE | ORGANIZATION | 0.94+ |
Beyond the Buzz | TITLE | 0.94+ |
Sati Natel | PERSON | 0.94+ |
Industrial Revolution | EVENT | 0.93+ |
one location | QUANTITY | 0.93+ |
three years ago | DATE | 0.93+ |
single application | QUANTITY | 0.92+ |
one thing | QUANTITY | 0.91+ |
first platform | QUANTITY | 0.91+ |
five years old | QUANTITY | 0.91+ |
How to Make a Data Fabric Smart A Technical Demo With Jess Jowdy
(inspirational music) (music ends) >> Okay, so now that we've heard Scott talk about smart data fabrics, it's time to see this in action. Right now we're joined by Jess Jowdy, who's the manager of Healthcare Field Engineering at InterSystems. She's going to give a demo of how smart data fabrics actually work, and she's going to show how embedding a wide range of analytics capabilities, including data exploration business intelligence, natural language processing and machine learning directly within the fabric makes it faster and easier for organizations to gain new insights and power intelligence predictive and prescriptive services and applications. Now, according to InterSystems, smart data fabrics are applicable across many industries from financial services to supply chain to healthcare and more. Jess today is going to be speaking through the lens of a healthcare focused demo. Don't worry, Joe Lichtenberg will get into some of the other use cases that you're probably interested in hearing about. That will be in our third segment, but for now let's turn it over to Jess. Jess, good to see you. >> Hi, yeah, thank you so much for having me. And so for this demo, we're really going to be bucketing these features of a smart data fabric into four different segments. We're going to be dealing with connections, collections, refinements, and analysis. And so we'll see that throughout the demo as we go. So without further ado, let's just go ahead and jump into this demo, and you'll see my screen pop up here. I actually like to start at the end of the demo. So I like to begin by illustrating what an end user's going to see, and don't mind the screen 'cause I gave you a little sneak peek of what's about to happen. But essentially what I'm going to be doing is using Postman to simulate a call from an external application. So we talked about being in the healthcare industry. This could be, for instance, a mobile application that a patient is using to view an aggregated summary of information across that patient's continuity of care or some other kind of application. So we might be pulling information in this case from an electronic medical record. We might be grabbing clinical history from that. We might be grabbing clinical notes from a medical transcription software, or adverse reaction warnings from a clinical risk grouping application, and so much more. So I'm really going to be simulating a patient logging in on their phone and retrieving this information through this Postman call. So what I'm going to do is I'm just going to hit send, I've already preloaded everything here, and I'm going to be looking for information where the last name of this patient is Simmons, and their medical record number or their patient identifier in the system is 32345. And so as you can see, I have this single JSON payload that showed up here of, just, relevant clinical information for my patient whose last name is Simmons, all within a single response. So fantastic, right? Typically though, when we see responses that look like this there is an assumption that this service is interacting with a single backend system, and that single backend system is in charge of packaging that information up and returning it back to this caller. But in a smart data fabric architecture, we're able to expand the scope to handle information across different, in this case, clinical applications. So how did this actually happen? Let's peel back another layer and really take a look at what happened in the background. What you're looking at here is our mission control center for our smart data fabric. On the left we have our APIs that allow users to interact with particular services. On the right we have our connections to our different data silos. And in the middle here, we have our data fabric coordinator which is going to be in charge of this refinement and analysis, those key pieces of our smart data fabric. So let's look back and think about the example we just showed. I received an inbound request for information for a patient whose last name is Simmons. My end user is requesting to connect to that service, and that's happening here at my patient data retrieval API location. Users can define any number of different services and APIs depending on their use cases. And to that end, we do also support full life cycle API management within this platform. When you're dealing with APIs, I always like to make a little shout out on this, that you really want to make sure you have enough, like a granular enough security model to handle and limit which APIs and which services a consumer can interact with. In this IRIS platform, which we're talking about today we have a very granular role-based security model that allows you to handle that, but it's really important in a smart data fabric to consider who's accessing your data and in what context. >> Can I just interrupt you for a second, Jess? >> Yeah, please. >> So you were showing on the left hand side of the demo a couple of APIs. I presume that can be a very long list. I mean, what do you see as typical? >> I mean you could have hundreds of these APIs depending on what services an organization is serving up for their consumers. So yeah, we've seen hundreds of these services listed here. >> So my question is, obviously security is critical in the healthcare industry, and API securities are like, really hot topic these days. How do you deal with that? >> Yeah, and I think API security is interesting 'cause it can happen at so many layers. So, there's interactions with the API itself. So can I even see this API and leverage it? And then within an API call, you then have to deal with all right, which end points or what kind of interactions within that API am I allowed to do? What data am I getting back? And with healthcare data, the whole idea of consent to see certain pieces of data is critical. So, the way that we handle that is, like I said, same thing at different layers. There is access to a particular API, which can happen within the IRIS product, and also we see it happening with an API management layer, which has become a really hot topic with a lot of organizations. And then when it comes to data security, that really happens under the hood within your smart data fabric. So, that role-based access control becomes very important in assigning, you know, roles and permissions to certain pieces of information. Getting that granular becomes the cornerstone of the security. >> And that's been designed in, it's not a bolt on as they like to say. >> Absolutely. >> Okay, can we get into collect now? >> Of course, we're going to move on to the collection piece at this point in time, which involves pulling information from each of my different data silos to create an overall aggregated record. So commonly, each data source requires a different method for establishing connections and collecting this information. So for instance, interactions with an EMR may require leveraging a standard healthcare messaging format like Fire. Interactions with a homegrown enterprise data warehouse for instance, may use SQL. For a cloud-based solutions managed by a vendor, they may only allow you to use web service calls to pull data. So it's really important that your data fabric platform that you're using has the flexibility to connect to all of these different systems and applications. And I'm about to log out, so I'm going to (chuckles) keep my session going here. So therefore it's incredibly important that your data fabric has the flexibility to connect to all these different kinds of applications and data sources, and all these different kinds of formats and over all of these different kinds of protocols. So let's think back on our example here. I had four different applications that I was requesting information for to create that payload that we saw initially. Those are listed here under this operations section. So these are going out and connecting to downstream systems to pull information into my smart data fabric. What's great about the IRIS platform is, it has an embedded interoperability platform. So there's all of these native adapters that can support these common connections that we see for different kinds of applications. So using REST, or SOAP, or SQL, or FTP, regardless of that protocol, there's an adapter to help you work with that. And we also think of the types of formats that we typically see data coming in as in healthcare we have HL7, we have Fire, we have CCDs, across the industry, JSON is, you know, really hitting a market strong now, and XML payloads, flat files. We need to be able to handle all of these different kinds of formats over these different kinds of protocols. So to illustrate that, if I click through these when I select a particular connection on the right side panel, I'm going to see the different settings that are associated with that particular connection that allows me to collect information back into my smart data fabric. In this scenario, my connection to my chart script application in this example, communicates over a SOAP connection. When I'm grabbing information from my clinical risk grouping application I'm using a SQL based connection. When I'm connecting to my EMR, I'm leveraging a standard healthcare messaging format known as Fire, which is a REST based protocol. And then when I'm working with my health record management system, I'm leveraging a standard HTTP adapter. So you can see how we can be flexible when dealing with these different kinds of applications and systems. And then it becomes important to be able to validate that you've established those connections correctly, and be able to do it in a reliable and quick way. Because if you think about it, you could have hundreds of these different kinds of applications built out and you want to make sure that you're maintaining and understanding those connections. So I can actually go ahead and test one of these applications and put in, for instance my patient's last name and their MRN, and make sure that I'm actually getting data back from that system. So it's a nice little sanity check as we're building out that data fabric to ensure that we're able to establish these connections appropriately. So turnkey adapters are fantastic, as you can see we're leveraging them all here, but sometimes these connections are going to require going one step further and building something really specific for an application. So why don't we go one step further here and talk about doing something custom or doing something innovative. And so it's important for users to have the ability to develop and go beyond what's an out-of-the box or black box approach to be able to develop things that are specific to their data fabric, or specific to their particular connection. In this scenario, the IRIS data platform gives users access to the entire underlying code base. So you not only get an opportunity to view how we're establishing these connections or how we're building out these processes, but you have the opportunity to inject your own kind of processing, your own kinds of pipelines into this. So as an example, you can leverage any number of different programming languages right within this pipeline. And so I went ahead and I injected Python. So Python is a very up and coming language, right? We see more and more developers turning towards Python to do their development. So it's important that your data fabric supports those kinds of developers and users that have standardized on these kinds of programming languages. This particular script here, as you can see actually calls out to our turnkey adapters. So we see a combination of out-of-the-box code that is provided in this data fabric platform from IRIS, combined with organization specific or user specific customizations that are included in this Python method. So it's a nice little combination of how do we bring the developer experience in and mix it with out-of-the-box capabilities that we can provide in a smart data fabric. >> Wow. >> Yeah, I'll pause. (laughs) >> It's a lot here. You know, actually- >> I can pause. >> If I could, if we just want to sort of play that back. So we went to the connect and the collect phase. >> Yes, we're going into refine. So it's a good place to stop. >> So before we get there, so we heard a lot about fine grain security, which is crucial. We heard a lot about different data types, multiple formats. You've got, you know, the ability to bring in different dev tools. We heard about Fire, which of course big in healthcare. And that's the standard, and then SQL for traditional kind of structured data, and then web services like HTTP you mentioned. And so you have a rich collection of capabilities within this single platform. >> Absolutely. And I think that's really important when you're dealing with a smart data fabric because what you're effectively doing is you're consolidating all of your processing, all of your collection, into a single platform. So that platform needs to be able to handle any number of different kinds of scenarios and technical challenges. So you've got to pack that platform with as many of these features as you can to consolidate that processing. >> All right, so now we're going into refinement. >> We're going into refinement. Exciting. (chuckles) So how do we actually do refinement? Where does refinement happen? And how does this whole thing end up being performant? Well the key to all of that is this SDF coordinator, or stands for Smart Data Fabric coordinator. And what this particular process is doing is essentially orchestrating all of these calls to all of these different downstream systems. It's aggregating, it's collecting that information, it's aggregating it, and it's refining it into that single payload that we saw get returned to the user. So really this coordinator is the main event when it comes to our data fabric. And in the IRIS platform we actually allow users to build these coordinators using web-based tool sets to make it intuitive. So we can take a sneak peek at what that looks like. And as you can see, it follows a flow chart like structure. So there's a start, there is an end, and then there are these different arrows that point to different activities throughout the business process. And so there's all these different actions that are being taken within our coordinator. You can see an action for each of the calls to each of our different data sources to go retrieve information. And then we also have the sync call at the end that is in charge of essentially making sure that all of those responses come back before we package them together and send them out. So this becomes really crucial when we're creating that data fabric. And you know, this is a very simple data fabric example where we're just grabbing data and we're consolidating it together. But you can have really complex orchestrators and coordinators that do any number of different things. So for instance, I could inject SQL logic into this or SQL code, I can have conditional logic, I can do looping, I can do error trapping and handling. So we're talking about a whole number of different features that can be included in this coordinator. So like I said, we have a really very simple process here that's just calling out, grabbing all those different data elements from all those different data sources and consolidating it. We'll look back at this coordinator in a second when we introduce, or we make this data fabric a bit smarter, and we start introducing that analytics piece to it. So this is in charge of the refinement. And so at this point in time we've looked at connections, collections, and refinements. And just to summarize what we've seen 'cause I always like to go back and take a look at everything that we've seen. We have our initial API connection, we have our connections to our individual data sources and we have our coordinators there in the middle that are in charge of collecting the data and refining it into a single payload. As you can imagine, there's a lot going on behind the scenes of a smart data fabric, right? There's all these different processes that are interacting. So it's really important that your smart data fabric platform has really good traceability, really good logging, 'cause you need to be able to know, you know, if there was an issue, where did that issue happen in which connected process, and how did it affect the other processes that are related to it? In IRIS, we have this concept called a visual trace. And what our clients use this for is basically to be able to step through the entire history of a request from when it initially came into the smart data fabric, to when data was sent back out from that smart data fabric. So I didn't record the time, but I bet if you recorded the time it was this time that we sent that request in and you can see my patient's name and their medical record number here, and you can see that that instigated four different calls to four different systems, and they're represented by these arrows going out. So we sent something to chart script, to our health record management system, to our clinical risk grouping application, into my EMR through their Fire server. So every request, every outbound application gets a request and we pull back all of those individual pieces of information from all of those different systems, and we bundle them together. And from my Fire lovers, here's our Fire bundle that we got back from our Fire server. So this is a really good way of being able to validate that I am appropriately grabbing the data from all these different applications and then ultimately consolidating it into one payload. Now we change this into a JSON format before we deliver it, but this is those data elements brought together. And this screen would also be used for being able to see things like error trapping, or errors that were thrown, alerts, warnings, developers might put log statements in just to validate that certain pieces of code are executing. So this really becomes the one stop shop for understanding what's happening behind the scenes with your data fabric. >> Sure, who did what when where, what did the machine do what went wrong, and where did that go wrong? Right at your fingertips. >> Right. And I'm a visual person so a bunch of log files to me is not the most helpful. While being able to see this happened at this time in this location, gives me that understanding I need to actually troubleshoot a problem. >> This business orchestration piece, can you say a little bit more about that? How people are using it? What's the business impact of the business orchestration? >> The business orchestration, especially in the smart data fabric, is really that crucial part of being able to create a smart data fabric. So think of your business orchestrator as doing the heavy lifting of any kind of processing that involves data, right? It's bringing data in, it's analyzing that information it's transforming that data, in a format that your consumer's not going to understand. It's doing any additional injection of custom logic. So really your coordinator or that orchestrator that sits in the middle is the brains behind your smart data fabric. >> And this is available today? It all works? >> It's all available today. Yeah, it all works. And we have a number of clients that are using this technology to support these kinds of use cases. >> Awesome demo. Anything else you want to show us? >> Well, we can keep going. I have a lot to say, but really this is our data fabric. The core competency of IRIS is making it smart, right? So I won't spend too much time on this, but essentially if we go back to our coordinator here, we can see here's that original, that pipeline that we saw where we're pulling data from all these different systems and we're collecting it and we're sending it out. But then we see two more at the end here, which involves getting a readmission prediction and then returning a prediction. So we can not only deliver data back as part of a smart data fabric, but we can also deliver insights back to users and consumers based on data that we've aggregated as part of a smart data fabric. So in this scenario, we're actually taking all that data that we just looked at, and we're running it through a machine learning model that exists within the smart data fabric pipeline, and producing a readmission score to determine if this particular patient is at risk for readmission within the next 30 days. Which is a typical problem that we see in the healthcare space. So what's really exciting about what we're doing in the IRIS world, is we're bringing analytics close to the data with integrated ML. So in this scenario we're actually creating the model, training the model, and then executing the model directly within the IRIS platform. So there's no shuffling of data, there's no external connections to make this happen. And it doesn't really require having a PhD in data science to understand how to do that. It leverages all really basic SQL-like syntax to be able to construct and execute these predictions. So, it's going one step further than the traditional data fabric example to introduce this ability to define actionable insights to our users based on the data that we've brought together. >> Well that readmission probability is huge, right? Because it directly affects the cost for the provider and the patient, you know. So if you can anticipate the probability of readmission and either do things at that moment, or, you know, as an outpatient perhaps, to minimize the probability then that's huge. That drops right to the bottom line. >> Absolutely. And that really brings us from that data fabric to that smart data fabric at the end of the day, which is what makes this so exciting. >> Awesome demo. >> Thank you! >> Jess, are you cool if people want to get in touch with you? Can they do that? >> Oh yes, absolutely. So you can find me on LinkedIn, Jessica Jowdy, and we'd love to hear from you. I always love talking about this topic so we'd be happy to engage on that. >> Great stuff. Thank you Jessica, appreciate it. >> Thank you so much. >> Okay, don't go away because in the next segment, we're going to dig into the use cases where data fabric is driving business value. Stay right there. (inspirational music) (music fades)
SUMMARY :
and she's going to show And to that end, we do also So you were showing hundreds of these APIs depending in the healthcare industry, So can I even see this as they like to say. that are specific to their data fabric, Yeah, I'll pause. It's a lot here. So we went to the connect So it's a good place to stop. So before we get So that platform needs to All right, so now we're that are related to it? Right at your fingertips. I need to actually troubleshoot a problem. of being able to create of clients that are using this technology Anything else you want to show us? So in this scenario, we're and the patient, you know. And that really brings So you can find me on Thank you Jessica, appreciate it. in the next segment,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Joe Lichtenberg | PERSON | 0.99+ |
Jessica Jowdy | PERSON | 0.99+ |
Jessica | PERSON | 0.99+ |
Jess Jowdy | PERSON | 0.99+ |
InterSystems | ORGANIZATION | 0.99+ |
Scott | PERSON | 0.99+ |
Python | TITLE | 0.99+ |
Simmons | PERSON | 0.99+ |
Jess | PERSON | 0.99+ |
32345 | OTHER | 0.99+ |
hundreds | QUANTITY | 0.99+ |
IRIS | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
third segment | QUANTITY | 0.98+ |
Fire | COMMERCIAL_ITEM | 0.98+ |
SQL | TITLE | 0.98+ |
single platform | QUANTITY | 0.97+ |
each data | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
single | QUANTITY | 0.95+ |
single response | QUANTITY | 0.94+ |
single backend system | QUANTITY | 0.92+ |
two more | QUANTITY | 0.92+ |
four different segments | QUANTITY | 0.89+ |
APIs | QUANTITY | 0.88+ |
one step | QUANTITY | 0.88+ |
four | QUANTITY | 0.85+ |
Healthcare Field Engineering | ORGANIZATION | 0.82+ |
JSON | TITLE | 0.8+ |
single payload | QUANTITY | 0.8+ |
second | QUANTITY | 0.79+ |
one payload | QUANTITY | 0.76+ |
next 30 days | DATE | 0.76+ |
IRIS | TITLE | 0.75+ |
Fire | TITLE | 0.72+ |
Postman | TITLE | 0.71+ |
every | QUANTITY | 0.68+ |
four different calls | QUANTITY | 0.66+ |
Jes | PERSON | 0.66+ |
a second | QUANTITY | 0.61+ |
services | QUANTITY | 0.6+ |
evelopers | PERSON | 0.58+ |
Postman | ORGANIZATION | 0.54+ |
HL7 | OTHER | 0.4+ |
Ed Walsh & Thomas Hazel | A New Database Architecture for Supercloud
(bright music) >> Hi, everybody, this is Dave Vellante, welcome back to Supercloud 2. Last August, at the first Supercloud event, we invited the broader community to help further define Supercloud, we assessed its viability, and identified the critical elements and deployment models of the concept. The objectives here at Supercloud too are, first of all, to continue to tighten and test the concept, the second is, we want to get real world input from practitioners on the problems that they're facing and the viability of Supercloud in terms of applying it to their business. So on the program, we got companies like Walmart, Sachs, Western Union, Ionis Pharmaceuticals, NASDAQ, and others. And the third thing that we want to do is we want to drill into the intersection of cloud and data to project what the future looks like in the context of Supercloud. So in this segment, we want to explore the concept of data architectures and what's going to be required for Supercloud. And I'm pleased to welcome one of our Supercloud sponsors, ChaosSearch, Ed Walsh is the CEO of the company, with Thomas Hazel, who's the Founder, CTO, and Chief Scientist. Guys, good to see you again, thanks for coming into our Marlborough studio. >> Always great. >> Great to be here. >> Okay, so there's a little debate, I'm going to put you right in the spot. (Ed chuckling) A little debate going on in the community started by Bob Muglia, a former CEO of Snowflake, and he was at Microsoft for a long time, and he looked at the Supercloud definition, said, "I think you need to tighten it up a little bit." So, here's what he came up with. He said, "A Supercloud is a platform that provides a programmatically consistent set of services hosted on heterogeneous cloud providers." So he's calling it a platform, not an architecture, which was kind of interesting. And so presumably the platform owner is going to be responsible for the architecture, but Dr. Nelu Mihai, who's a computer scientist behind the Cloud of Clouds Project, he chimed in and responded with the following. He said, "Cloud is a programming paradigm supporting the entire lifecycle of applications with data and logic natively distributed. Supercloud is an open architecture that integrates heterogeneous clouds in an agnostic manner." So, Ed, words matter. Is this an architecture or is it a platform? >> Put us on the spot. So, I'm sure you have concepts, I would say it's an architectural or design principle. Listen, I look at Supercloud as a mega trend, just like cloud, just like data analytics. And some companies are using the principle, design principles, to literally get dramatically ahead of everyone else. I mean, things you couldn't possibly do if you didn't use cloud principles, right? So I think it's a Supercloud effect, you're able to do things you're not able to. So I think it's more a design principle, but if you do it right, you get dramatic effect as far as customer value. >> So the conversation that we were having with Muglia, and Tristan Handy of dbt Labs, was, I'll set it up as the following, and, Thomas, would love to get your thoughts, if you have a CRM, think about applications today, it's all about forms and codifying business processes, you type a bunch of stuff into Salesforce, and all the salespeople do it, and this machine generates a forecast. What if you have this new type of data app that pulls data from the transaction system, the e-commerce, the supply chain, the partner ecosystem, et cetera, and then, without humans, actually comes up with a plan. That's their vision. And Muglia was saying, in order to do that, you need to rethink data architectures and database architectures specifically, you need to get down to the level of how the data is stored on the disc. What are your thoughts on that? Well, first of all, I'm going to cop out, I think it's actually both. I do think it's a design principle, I think it's not open technology, but open APIs, open access, and you can build a platform on that design principle architecture. Now, I'm a database person, I love solving the database problems. >> I'm waited for you to launch into this. >> Yeah, so I mean, you know, Snowflake is a database, right? It's a distributed database. And we wanted to crack those codes, because, multi-region, multi-cloud, customers wanted access to their data, and their data is in a variety of forms, all these services that you're talked about. And so what I saw as a core principle was cloud object storage, everyone streams their data to cloud object storage. From there we said, well, how about we rethink database architecture, rethink file format, so that we can take each one of these services and bring them together, whether distributively or centrally, such that customers can access and get answers, whether it's operational data, whether it's business data, AKA search, or SQL, complex distributed joins. But we had to rethink the architecture. I like to say we're not a first generation, or a second, we're a third generation distributed database on pure, pure cloud storage, no caching, no SSDs. Why? Because all that availability, the cost of time, is a struggle, and cloud object storage, we think, is the answer. >> So when you're saying no caching, so when I think about how companies are solving some, you know, pretty hairy problems, take MySQL Heatwave, everybody thought Oracle was going to just forget about MySQL, well, they come out with Heatwave. And the way they solve problems, and you see their benchmarks against Amazon, "Oh, we crush everybody," is they put it all in memory. So you said no caching? You're not getting performance through caching? How is that true, and how are you getting performance? >> Well, so five, six years ago, right? When you realize that cloud object storage is going to be everywhere, and it's going to be a core foundational, if you will, fabric, what would you do? Well, a lot of times the second generation say, "We'll take it out of cloud storage, put in SSDs or something, and put into cache." And that adds a lot of time, adds a lot of costs. But I said, what if, what if we could actually make the first read hot, the first read distributed joins and searching? And so what we went out to do was said, we can't cache, because that's adds time, that adds cost. We have to make cloud object storage high performance, like it feels like a caching SSD. That's where our patents are, that's where our technology is, and we've spent many years working towards this. So, to me, if you can crack that code, a lot of these issues we're talking about, multi-region, multicloud, different services, everybody wants to send their data to the data lake, but then they move it out, we said, "Keep it right there." >> You nailed it, the data gravity. So, Bob's right, the data's coming in, and you need to get the data from everywhere, but you need an environment that you can deal with all that different schema, all the different type of technology, but also at scale. Bob's right, you cannot use memory or SSDs to cache that, that doesn't scale, it doesn't scale cost effectively. But if you could, and what you did, is you made object storage, S3 first, but object storage, the only persistence by doing that. And then we get performance, we should talk about it, it's literally, you know, hundreds of terabytes of queries, and it's done in seconds, it's done without memory caching. We have concepts of caching, but the only caching, the only persistence, is actually when we're doing caching, we're just keeping another side-eye track of things on the S3 itself. So we're using, actually, the object storage to be a database, which is kind of where Bob was saying, we agree, but that's what you started at, people thought you were crazy. >> And maybe make it live. Don't think of it as archival or temporary space, make it live, real time streaming, operational data. What we do is make it smart, we see the data coming in, we uniquely index it such that you can get your use cases, that are search, observability, security, or backend operational. But we don't have to have this, I dunno, static, fixed, siloed type of architecture technologies that were traditionally built prior to Supercloud thinking. >> And you don't have to move everything, essentially, you can do it wherever the data lands, whatever cloud across the globe, you're able to bring it together, you get the cost effectiveness, because the only persistence is the cheapest storage persistent layer you can buy. But the key thing is you cracked the code. >> We had to crack the code, right? That was the key thing. >> That's where the plans are. >> And then once you do that, then everything else gets easier to scale, your architecture, across regions, across cloud. >> Now, it's a general purpose database, as Bob was saying, but we use that database to solve a particular issue, which is around operational data, right? So, we agree with Bob's. >> Interesting. So this brings me to this concept of data, Jimata Gan is one of our speakers, you know, we talk about data fabric, which is a NetApp, originally NetApp concept, Gartner's kind of co-opted it. But so, the basic concept is, data lives everywhere, whether it's an S3 bucket, or a SQL database, or a data lake, it's just a node on the data mesh. So in your view, how does this fit in with Supercloud? Ed, you've said that you've built, essentially, an enabler for that, for the data mesh, I think you're an enabler for the Supercloud-like principles. This is a big, chewy opportunity, and it requires, you know, a team approach. There's got to be an ecosystem, there's not going to be one Supercloud to rule them all, so where does the ecosystem fit into the discussion, and where do you fit into the ecosystem? >> Right, so we agree completely, there's not one Supercloud in effect, but we use Supercloud principles to build our platform, and then, you know, the ecosystem's going to be built on leveraging what everyone else's secret powers are, right? So our power, our superpower, based upon what we built is, we deal with, if you're having any scale, or cost effective scale issues, with data, machine generated data, like business observability or security data, we are your force multiplier, we will take that in singularly, just let it, simply put it in your object storage wherever it sits, and we give you uniformity access to that using OpenAPI access, SQL, or you know, Elasticsearch API. So, that's what we do, that's our superpower. So I'll play it into data mesh, that's a perfect, we are a node on a data mesh, but I'll play it in the soup about how, the ecosystem, we see it kind of playing, and we talked about it in just in the last couple days, how we see this kind of possibly. Short term, our superpowers, we deal with this data that's coming at these environments, people, customers, building out observability or security environments, or vendors that are selling their own Supercloud, I do observability, the Datadogs of the world, dot dot dot, the Splunks of the world, dot dot dot, and security. So what we do is we fit in naturally. What we do is a cost effective scale, just land it anywhere in the world, we deal with ingest, and it's a cost effective, an order of magnitude, or two or three order magnitudes more cost effective. Allows them, their customers are asking them to do the impossible, "Give me fast monitoring alerting. I want it snappy, but I want it to keep two years of data, (laughs) and I want it cost effective." It doesn't work. They're good at the fast monitoring alerting, we're good at the long-term retention. And yet there's some gray area between those two, but one to one is actually cheaper, so we would partner. So the first ecosystem plays, who wants to have the ability to, really, all the data's in those same environments, the security observability players, they can literally, just through API, drag our data into their point to grab. We can make it seamless for customers. Right now, we make it helpful to customers. Your Datadog, we make a button, easy go from Datadog to us for logs, save you money. Same thing with Grafana. But you can also look at ecosystem, those same vendors, it used to be a year ago it was, you know, its all about how can you grow, like it's growth at all costs, now it's about cogs. So literally we can go an environment, you supply what your customer wants, but we can help with cogs. And one-on one in a partnership is better than you trying to build on your own. >> Thomas, you were saying you make the first read fast, so you think about Snowflake. Everybody wants to talk about Snowflake and Databricks. So, Snowflake, great, but you got to get the data in there. All right, so that's, can you help with that problem? >> I mean we want simple in, right? And if you have to have structure in, you're not simple. So the idea that you have a simple in, data lake, schema read type philosophy, but schema right type performance. And so what I wanted to do, what we have done, is have that simple lake, and stream that data real time, and those access points of Search or SQL, to go after whatever business case you need, security observability, warehouse integration. But the key thing is, how do I make that click, click, click answer, and do it quickly? And so what we want to do is, that first read has to be fast. Why? 'Cause then you're going to do all this siloing, layers, complexity. If your first read's not fast, you're at a disadvantage, particularly in cost. And nobody says I want less data, but everyone has to, whether they say we're going to shorten the window, we're going to use AI to choose, but in a security moment, when you don't have that answer, you're in trouble. And that's why we are this service, this Supercloud service, if you will, providing access, well-known search, well-known SQL type access, that if you just have one access point, you're at a disadvantage. >> We actually talked about Snowflake and BigQuery, and a different platform, Data Bricks. That's kind of where we see the phase two of ecosystem. One is easy, the low-hanging fruit is observability and security firms. But the next one is, what we do, our super power is dealing with this messy data that schema is changing like night and day. Pipelines are tough, and it's changing all the time, but you want these things fast, and it's big data around the world. That's the next point, just use us alongside, or inside, one of their platforms, and now we get the best of both worlds. Our superpower is keeping this messy data as a streaming, okay, not a batch thing, allow you to do that. So, that's the second one. And then to be honest, the third one, which plays you to Supercloud, it also plays perfectly in the data mesh, is if you really go to the ultimate thing, what we have done is made object storage, S3, GCS, and blob storage, we made it a database. Put, get, complex query with big joins. You know, so back to your original thing, and Muglia teed it up perfectly, we've done that. Now imagine if that's an ecosystem, who would want that? If it's, again, it's uniform available across all the regions, across all the clouds, and it's right next to where you are building a service, or a client's trying, that's where the ecosystem, I think people are going to use Superclouds for their superpowers. We're really good at this, allows that short term. I think the Snowflakes and the Data Bricks are the medium term, you know? And then I think eventually gets to, hey, listen if you can make object storage fast, you can just go after it with simple SQL queries, or elastic. Who would want that? I think that's where people are going to leverage it. It's not going to be one Supercloud, and we leverage the super clouds. >> Our viewpoint is smart object storage can be programmable, and so we agree with Bob, but we're not saying do it here, do it here. This core, fundamental layer across regions, across clouds, that everyone has? Simple in. Right now, it's hard to get data in for access for analysis. So we said, simply, we'll automate the entire process, give you API access across regions, across clouds. And again, how do you do a distributed join that's fast? How do you do a distributed join that doesn't cost you an arm or a leg? And how do you do it at scale? And that's where we've been focused. >> So prior, the cloud object store was a niche. >> Yeah. >> S3 obviously changed that. How standard is, essentially, object store across the different cloud platforms? Is that a problem for you? Is that an easy thing to solve? >> Well, let's talk about it. I mean we've fundamentally, yeah we've extracted it, but fundamentally, cloud object storage, put, get, and list. That's why it's so scalable, 'cause it doesn't have all these other components. That complexity is where we have moved up, and provide direct analytical API access. So because of its simplicity, and costs, and security, and reliability, it can scale naturally. I mean, really, distributed object storage is easy, it's put-get anywhere, now what we've done is we put a layer of intelligence, you know, call it smart object storage, where access is simple. So whether it's multi-region, do a query across, or multicloud, do a query across, or hunting, searching. >> We've had clients doing Amazon and Google, we have some Azure, but we see Amazon and Google more, and it's a consistent service across all of them. Just literally put your data in the bucket of choice, or folder of choice, click a couple buttons, literally click that to say "that's hot," and after that, it's hot, you can see it. But we're not moving data, the data gravity issue, that's the other. That it's already natively flowing to these pools of object storage across different regions and clouds. We don't move it, we index it right there, we're spinning up stateless compute, back to the Supercloud concept. But now that allows us to do all these other things, right? >> And it's no longer just cheap and deep object storage. Right? >> Yeah, we make it the same, like you have an analytic platform regardless of where you're at, you don't have to worry about that. Yeah, we deal with that, we deal with a stateless compute coming up -- >> And make it programmable. Be able to say, "I want this bucket to provide these answers." Right, that's really the hope, the vision. And the complexity to build the entire stack, and then connect them together, we said, the fabric is cloud storage, we just provide the intelligence on top. >> Let's bring it back to the customers, and one of the things we're exploring in Supercloud too is, you know, is Supercloud a solution looking for a problem? Is a multicloud really a problem? I mean, you hear, you know, a lot of the vendor marketing says, "Oh, it's a disaster, because it's all different across the clouds." And I talked to a lot of customers even as part of Supercloud too, they're like, "Well, I solved that problem by just going mono cloud." Well, but then you're not able to take advantage of a lot of the capabilities and the primitives that, you know, like Google's data, or you like Microsoft's simplicity, their RPA, whatever it is. So what are customers telling you, what are their near term problems that they're trying to solve today, and how are they thinking about the future? >> Listen, it's a real problem. I think it started, I think this is a a mega trend, just like cloud. Just, cloud data, and I always add, analytics, are the mega trends. If you're looking at those, if you're not considering using the Supercloud principles, in other words, leveraging what I have, abstracting it out, and getting the most out of that, and then build value on top, I think you're not going to be able to keep up, In fact, no way you're going to keep up with this data volume. It's a geometric challenge, and you're trying to do linear things. So clients aren't necessarily asking, hey, for Supercloud, but they're really saying, I need to have a better mechanism to simplify this and get value across it, and how do you abstract that out to do that? And that's where they're obviously, our conversations are more amazed what we're able to do, and what they're able to do with our platform, because if you think of what we've done, the S3, or GCS, or object storage, is they can't imagine the ingest, they can't imagine how easy, time to glass, one minute, no matter where it lands in the world, querying this in seconds for hundreds of terabytes squared. People are amazed, but that's kind of, so they're not asking for that, but they are amazed. And then when you start talking on it, if you're an enterprise person, you're building a big cloud data platform, or doing data or analytics, if you're not trying to leverage the public clouds, and somehow leverage all of them, and then build on top, then I think you're missing it. So they might not be asking for it, but they're doing it. >> And they're looking for a lens, you mentioned all these different services, how do I bring those together quickly? You know, our viewpoint, our service, is I have all these streams of data, create a lens where they want to go after it via search, go after via SQL, bring them together instantly, no e-tailing out, no define this table, put into this database. We said, let's have a service that creates a lens across all these streams, and then make those connections. I want to take my CRM with my Google AdWords, and maybe my Salesforce, how do I do analysis? Maybe I want to hunt first, maybe I want to join, maybe I want to add another stream to it. And so our viewpoint is, it's so natural to get into these lake platforms and then provide lenses to get that access. >> And they don't want it separate, they don't want something different here, and different there. They want it basically -- >> So this is our industry, right? If something new comes out, remember virtualization came out, "Oh my God, this is so great, it's going to solve all these problems." And all of a sudden it just got to be this big, more complex thing. Same thing with cloud, you know? It started out with S3, and then EC2, and now hundreds and hundreds of different services. So, it's a complex matter for a lot of people, and this creates problems for customers, especially when you got divisions that are using different clouds, and you're saying that the solution, or a solution for the part of the problem, is to really allow the data to stay in place on S3, use that standard, super simple, but then give it what, Ed, you've called superpower a couple of times, to make it fast, make it inexpensive, and allow you to do that across clouds. >> Yeah, yeah. >> I'll give you guys the last word on that. >> No, listen, I think, we think Supercloud allows you to do a lot more. And for us, data, everyone says more data, more problems, more budget issue, everyone knows more data is better, and we show you how to do it cost effectively at scale. And we couldn't have done it without the design principles of we're leveraging the Supercloud to get capabilities, and because we use super, just the object storage, we're able to get these capabilities of ingest, scale, cost effectiveness, and then we built on top of this. In the end, a database is a data platform that allows you to go after everything distributed, and to get one platform for analytics, no matter where it lands, that's where we think the Supercloud concepts are perfect, that's where our clients are seeing it, and we're kind of excited about it. >> Yeah a third generation database, Supercloud database, however we want to phrase it, and make it simple, but provide the value, and make it instant. >> Guys, thanks so much for coming into the studio today, I really thank you for your support of theCUBE, and theCUBE community, it allows us to provide events like this and free content. I really appreciate it. >> Oh, thank you. >> Thank you. >> All right, this is Dave Vellante for John Furrier in theCUBE community, thanks for being with us today. You're watching Supercloud 2, keep it right there for more thought provoking discussions around the future of cloud and data. (bright music)
SUMMARY :
And the third thing that we want to do I'm going to put you right but if you do it right, So the conversation that we were having I like to say we're not a and you see their So, to me, if you can crack that code, and you need to get the you can get your use cases, But the key thing is you cracked the code. We had to crack the code, right? And then once you do that, So, we agree with Bob's. and where do you fit into the ecosystem? and we give you uniformity access to that so you think about Snowflake. So the idea that you have are the medium term, you know? and so we agree with Bob, So prior, the cloud that an easy thing to solve? you know, call it smart object storage, and after that, it's hot, you can see it. And it's no longer just you don't have to worry about And the complexity to and one of the things we're and how do you abstract it's so natural to get and different there. and allow you to do that across clouds. I'll give you guys and we show you how to do it but provide the value, I really thank you for around the future of cloud and data.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Walmart | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Thomas | PERSON | 0.99+ |
Thomas Hazel | PERSON | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Western Union | ORGANIZATION | 0.99+ |
Ed Walsh | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
Sachs | ORGANIZATION | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two years | QUANTITY | 0.99+ |
Supercloud 2 | TITLE | 0.99+ |
first | QUANTITY | 0.99+ |
Last August | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
dbt Labs | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
Ed | PERSON | 0.99+ |
Gartner | ORGANIZATION | 0.99+ |
Jimata Gan | PERSON | 0.99+ |
third one | QUANTITY | 0.99+ |
one minute | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
third generation | QUANTITY | 0.99+ |
Grafana | ORGANIZATION | 0.99+ |
second generation | QUANTITY | 0.99+ |
second one | QUANTITY | 0.99+ |
hundreds of terabytes | QUANTITY | 0.98+ |
SQL | TITLE | 0.98+ |
five | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
a year ago | DATE | 0.98+ |
ChaosSearch | ORGANIZATION | 0.98+ |
Muglia | PERSON | 0.98+ |
MySQL | TITLE | 0.98+ |
both worlds | QUANTITY | 0.98+ |
third thing | QUANTITY | 0.97+ |
Marlborough | LOCATION | 0.97+ |
theCUBE | ORGANIZATION | 0.97+ |
today | DATE | 0.97+ |
Supercloud | ORGANIZATION | 0.97+ |
Elasticsearch | TITLE | 0.96+ |
NetApp | TITLE | 0.96+ |
Datadog | ORGANIZATION | 0.96+ |
One | QUANTITY | 0.96+ |
EC2 | TITLE | 0.96+ |
each one | QUANTITY | 0.96+ |
S3 | TITLE | 0.96+ |
one platform | QUANTITY | 0.95+ |
Supercloud 2 | EVENT | 0.95+ |
first read | QUANTITY | 0.95+ |
six years ago | DATE | 0.95+ |
Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great questions, Dave. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
today | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.97+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
Cube | ORGANIZATION | 0.9+ |
SuperCloud2 | ORGANIZATION | 0.89+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.88+ |
one more piece | QUANTITY | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Exploring a Supercloud Architecture | Supercloud2
(upbeat music) >> Welcome back everyone to Supercloud 2, live here in Palo Alto, our studio, where we're doing a live stage performance and virtually syndicating out around the world. I'm John Furrier with Dave Vellante, my co-host with the The Cube here. We've got Kit Colbert, the CTO of VM. We're doing a keynote on Cloud Chaos, the evolution of SuperCloud Architecture Kit. Great to see you, thanks for coming on. >> Yeah, thanks for having me back. It's great to be here for Supercloud 2. >> And so we're going to dig into it. We're going to do a Q&A. We're going to let you present. You got some slides. I really want to get this out there, it's really compelling story. Do the presentation and then we'll come back and discuss. Take it away. >> Yeah, well thank you. So, we had a great time at the original Supercloud event, since then, been talking to a lot of customers, and started to better formulate some of the thinking that we talked about last time So, let's jump into it. Just a few quick slides to sort of set the tone here. So, if we go to the the next slide, what that shows is the journey that we see customers on today, going from what we call Cloud First into this phase that many customers are stuck in, called Cloud Chaos, and where they want to get to, and this is the term customers actually use, we didn't make this up, we heard it from customers. This notion of Cloud Smart, right? How do they use cloud more effectively, more intelligently? Now, if you walk through this journey, customers start with Cloud First. They usually select a single cloud that they're going to standardize on, and when they do that, they have to build out a whole bunch of functionality around that cloud. Things you can see there on the screen, disaster recovery, security, how do they monitor it or govern it? Like, these are things that are non-negotiable, you've got to figure it out, and typically what they do is, they leverage solutions that are specific for that cloud, and that's fine when you have just one cloud. But if we build out here, what we see is that most customers are using more than just one, they're actually using multiple, not necessarily 10 or however many on the screen, but this is just as an example. And so what happens is, they have to essentially duplicate or replicate that stack they've built for each different cloud, and they do so in a kind of a siloed manner. This results in the Cloud Chaos term that that we talked about before. And this is where most businesses out there are, they're using two, maybe three public clouds. They've got some stuff on-prem and they've also got some stuff out at the edge. This is apps, data, et cetera. So, this is the situation, this is sort of that Cloud Chaos. So, the question is, how do we move from this phase to Cloud Smart? And this is where the architecture comes in. This is why architecture, I think, is so important. It's really about moving away from these single cloud services that just solve a problem for one cloud, to something we call a Cross-Cloud service. Something that can support a set of functionality across all clouds, and that means not just public clouds, but also private clouds, edge, et cetera, and when you evolve that across the board, what you get is this sort of Supercloud. This notion that we're talking about here, where you combine these cross-cloud services in many different categories. You can see some examples there on the screen. This is not meant to be a complete set of things, but just examples of what can be done. So, this is sort of the transition and transformation that we're talking about here, and I think the architecture piece comes in both for the individual cloud services as well as that Supercloud concept of how all those services come together. >> Great presentation., thanks for sharing. If you could pop back to that slide, on the Cloud Chaos one. I just want to get your thoughts on something there. This is like the layout of the stack. So, this slide here that I'm showing on the screen, that you presented, okay, take us through that complexity. This is the one where I wanted though, that looks like a spaghetti code mix. >> Yes. >> So, do you turn this into a Supercloud stack, right? Is that? >> well, I think it's, it's an evolving state that like, let's take one of these examples, like security. So, instead of implementing security individually in different ways, using different technologies, different tooling for each cloud, what you would do is say, "Hey, I want a single security solution that works across all clouds", right? A concrete example of this would be secure software supply chain. This is probably one of the top ones that I hear when I talk to customers. How do I know that the software I'm building is truly what I expect it to be, and not something that some hacker has gotten into, and polluted with malicious code? And what they do is that, typically today, their teams have gone off and created individual secure software supply chain solutions for each cloud. So, now they could say, "Hey, I can take a single implementation and just have different endpoints." It could go to Google, or AWS, or on-prem, or wherever have you, right? So, that's the sort of architectural evolution that we're talking about. >> You know, one of the things we hear, Dave, you've been on theCUBE all the time, and we, when we talk privately with customers who are asking us like, what's, what's going on? They have the same complaint, "I don't want to build a team, a dev team, for that stack." So, if you go back to that slide again, you'll see that, that illustrates the tech stack for the clouds and the clouds at the bottom. So, the number one complaint we hear, and I want to get your reaction to that, "I don't want to have a team to have to work on that. So, I'm going to pick one and then have a hedge secondary one, as a backup." Here, that's one, that's four, five, eight, ten, ten environments. >> Yeah, I got a lot. >> That's going to be the reality, so, what's the technical answer to that? >> Yeah, well first of all, let me just say, this picture is again not totally representative of reality oftentimes, because while that picture shows a solution for every cloud, oftentimes that's not the case. Oftentimes it's a line of business going off, starting to use a new cloud. They might solve one or two things, but usually not security, usually not some of these other things, right? So, I think from a technical standpoint, where you want to get to is, yes, that sort of common service, with a common operational team behind it, that is trained on that, that can work across clouds. And that's really I think the important evolution here, is that you don't need to replicate these operational teams, one for each cloud. You can actually have them more focused across all those clouds. >> Yeah, in fact, we were commenting on the opening today. Dave and I were talking about the benefits of the cloud. It's heterogeneous, which is a good thing, but it's complex. There's skill gaps and skill required, but at the end of the day, self-service of the cloud, and the elastic nature of it makes it the benefit. So, if you try to create too many common services, you lose the value of the cloud. So, what's the trade off, in your mind right now as customers start to look at okay, identity, maybe I'll have one single sign on, that's an obvious one. Other ones? What are the areas people are looking at from a combination, common set of services? Where do they start? What's the choices? What are some of the trade offs? 'Cause you can't do it everything. >> No, it's a great question. So, that's actually a really good point and as I answer your question, before I answer your question, the important point about that, as you saw here, you know, across cloud services or these set of Cross-Cloud services, the things that comprise the Supercloud, at least in my view, the point is not necessarily to completely abstract the underlying cloud. The point is to give a business optionality and choice, in terms of what it wants to abstract, and I think that gets to your question, is how much do you actually want to abstract from the underlying cloud? Now, what I find, is that typically speaking, cloud choice is driven at least from a developer or app team perspective, by the best of breed services. What higher level application type services do you need? A database or AI, you know, ML systems, for your application, and that's going to drive your choice of the cloud. So oftentimes, businesses I talk to, want to allow those services to shine through, but for other things that are not necessarily highly differentiated and yet are absolutely critical to creating a successful application, those are things that you want to standardize. Again, like things like security, the supply chain piece, cost management, like these things you need to, and you know, things like cogs become really, really important when you start operating at scale. So, those are the things in it that I see people wanting to focus on. >> So, there's a majority model. >> Yes. >> All right, and we heard of earlier from Walmart, who's fairly, you know, advanced, but at the same time their supercloud is pretty immature. So, what are you seeing in terms of supercloud momentum, crosscloud momentum? What's the starting point for customers? >> Yeah, so it's interesting, right, on that that three-tiered journey that I talked about, this Cloud Smart notion is, that is adoption of what you might call a supercloud or architecture, and most folks aren't there yet. Even the really advanced ones, even the really large ones, and I think it's because of the fact that, we as an industry are still figuring this out. We as an industry did not realize this sort of Cloud Chaos state could happen, right? We didn't, I think most folks thought they could standardize on one cloud and that'd be it, but as time has shown, that's simply not the case. As much as one might try to do that, that's not where you end up. So, I think there's two, there's two things here. Number one, for folks that are early in to the cloud, and are in this Cloud Chaos phase, we see the path out through standardization of these cross-cloud services through adoption of this sort of supercloud architecture, but the other thing I think is particularly exciting, 'cause I talked to a number of of businesses who are not yet in the Cloud Chaos phase. They're earlier on in the cloud journey, and I think the opportunity there is that they don't have to go through Cloud Chaos. They can actually skip that whole phase if they adopt this supercloud architecture from the beginning, and I think being thoughtful around that is really the key here. >> It's interesting, 'cause we're going to hear from Ionis Pharmaceuticals later, and they, yes there are multiple clouds, but the multiple clouds are largely separate, and so it's a business unit using that. So, they're not in Cloud Chaos, but they're not tapping the advantages that you could get for best of breed across those business units. So, to your point, they have an opportunity to actually build that architecture or take advantage of those cross-cloud services, prior to reaching cloud chaos. >> Well, I, actually, you know, I'd love to hear from them if, 'cause you say they're not in Cloud Chaos, but are they, I mean oftentimes I find that each BU, each line of business may feel like they're fine, in of themselves. >> Yes, exactly right, yes. >> But when you look at it from an overall company perspective, they're like, okay, things are pretty chaotic here. We don't have standardization, I don't, you know, like, again, security compliance, these things, especially in many regulated industries, become huge problems when you're trying to run applications across multiple clouds, but you don't have any of those company-wide standardizations. >> Well, this is a point. So, they have a big deal with AstraZeneca, who's got this huge ecosystem, they want to start sharing data across those ecosystem, and that's when they will, you know, that Cloud Chaos will, you know, come, come to fore, you would think. I want to get your take on something that Bob Muglia said earlier, which is, he kind of said, "Hey Dave, you guys got to tighten up your definition a little bit." So, he said a supercloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. So, you know, thank you, that was nice and simple. However others in the community, we're going to hear from Dr. Nelu Mihai later, says, no, no, wait a minute, it's got to be an architecture, not a platform. Where do you land on this architecture v. platform thing? >> I look at it as, I dunno if it's, you call it maturity or just kind of a time horizon thing, but for me when I hear the word platform, I typically think of a single vendor. A single vendor provides this platform. That's kind of the beauty of a platform, is that there is a simplicity usually consistency to it. >> They did the architecture. (laughing) >> Yeah, exactly but I mean, well, there's obviously architecture behind it, has to be, but you as a customer don't necessarily need to deal with that. Now, I think one of the opportunities with Supercloud is that it's not going to be, or there is no single vendor that can solve all these problems. It's got to be the industry coming together as a community, inter-operating, working together, and so, that's why, for me, I think about it as an architecture, that there's got to be these sort of, well-defined categories of functionality. There's got to be well-defined interfaces between those categories of functionality to enable modularity, to enable businesses to be able to pick and choose the right sorts of services, and then weave those together into an overall supercloud. >> Okay, so you're not pitching, necessarily the platform, you're saying, hey, we have an architecture that's open. I go back to something that Vittorio said on August 9th, with the first Supercloud, because as well, remember we talked about abstracting, but at the same time giving developers access to those primitives. So he said, and this, I think your answer sort of confirms this. "I want to have my cake eat it too and not gain weight." >> (laughing) Right. Well and I think that's where the platform aspect can eventually come, after we've gotten aligned architecture, you're going to start to naturally see some vendors step up to take on some of the remaining complexity there. So, I do see platforms eventually emerging here, but I think where we have to start as an industry is around aligning, okay, what does this definition mean? What does that architecture look like? How do we enable interoperability? And then we can take the next step. >> Because it depends too, 'cause I would say Snowflake has a platform, and they've just defined the architecture, but we're not talking about infrastructure here, obviously, we're talking about something else. >> Well, I think that the Snowflake talks about, what he talks about, security and data, you're going to start to see the early movement around areas that are very spanning oriented, and I think that's the beginning of the trend and I think there's going to be a lot more, I think on the infrastructure side. And to your point about the platform architecture, that's actually a really good thought exercise because it actually makes you think about what you're designing in the first place, and that's why I want to get your reaction. >> Quote from- >> Well I just have to interrupt since, later on, you're going to hear from near Nir Zuk of Palo Alto Network. He says architecture and security historically, they don't go hand in hand, 'cause it's a big mess. >> It depends if you're whacking the mole or you actually proactively building something. Well Kit, I want to get your reaction from a quote from someone in our community who said about Supercloud, you know, "The Supercloud's great, there are issues around computer science rigors, and customer requirements." So, there's some issues around the science itself as well as not just listen to the customer, 'cause if that's the case, we'd have a better database, a better Oracle, right, so, but there's other, this tech involved, new tech. We need an open architecture with universal data modeling interconnecting among them, connectivity is a part of security, and then, once we get through that gate, figuring out the technical, the data, and the customer requirements, they say "Supercloud should be a loosely coupled platform with open architecture, plug and play, specialized services, ready for optimization, automation that can stand the test of time." What's your reaction to that sentiment? You like it, is that, does that sound good? >> Yeah, no, broadly aligns with my thinking, I think, and what I see from talking with customers as well. I mean, I like the, again, the, you know, listening to customer needs, prioritizing those things, focusing on some of the connective tissue networking, and data and some of these aspects talking about the open architecture, the interoperability, those are all things I think are absolutely critical. And then, yeah, like I think at the end. >> On the computer science side, do you see some science and engineering things that need to be engineered differently? We heard databases are radically going to change and that are inadequate for the new architecture. What are some of the things like that, from a science standpoint? >> Yeah, yeah, yeah. Some of the more academic research type things. >> More tech, or more better tech or is it? >> Yeah, look, absolutely. I mean I think that there's a bunch around, certainly around the data piece, around, you know, there's issues of data gravity, data mobility. How do you want to do that in a way that's performant? There's definitely issues around security as well. Like how do you enable like trust in these environments, there's got to be some sort of hardware rooted trusts, and you know, a whole bunch of various types of aspects there. >> So, a lot of work still be done. >> Yes, I think so. And that's why I look at this as, this is not a one year thing, or you know, it's going to be multi-years, and I think again, it's about all of us in the industry working together to come to an aligned picture of what that looks like. >> So, as the world's moved from private cloud to public cloud and now Cross-cloud services, supercloud, metacloud, whatever you want to call it, how have you sort of changed the way engineering's organized, developers sort of approached the problem? Has it changed and how? >> Yeah, absolutely. So, you know, it's funny, we at VMware, going through the same challenges as our customers and you know, any business, right? We use multiple clouds, we got a big, of course, on-prem footprint. You know, what we're doing is similar to what I see in many other customers, which, you see the evolution of a platform team, and so the platform team is really in charge of trying to develop a lot of these underlying services to allow our lines of business, our product teams, to be able to move as quickly as possible, to focus on the building, while we help with a lot of the operational overheads, right? We maintain security, compliance, all these other things. We also deal with, yeah, just making the developer's life as simple as possible. So, they do need to know some stuff about, you know, each public cloud they're using, those public cloud services, but at the same, time we can abstract a lot of the details they don't need to be in. So, I think this sort of delineation or separation, I should say, between the underlying platform team and the product teams is a very, very common pattern. >> You know, I noticed the four layers you talked about were observability, infrastructure, security and developers, on that slide, the last slide you had at the top, that was kind of the abstraction key areas that you guys at VMware are working? >> Those were just some groupings that we've come up with, but we like to debate them. >> I noticed data's in every one of them. >> Yeah, yep, data is key. >> It's not like, so, back to the data questions that security is called out as a pillar. Observability is just kind of watching everything, but it's all pretty much data driven. Of the four layers that you see, I take that as areas that you can. >> Standardize. >> Consistently rely on to have standard services. >> Yes. >> Which one do you start with? What's the, is there order of operations? >> Well, that's, I mean. >> 'Cause I think infrastructure's number one, but you had observability, you need to know what's going on. >> Yeah, well it really, it's highly dependent. Again, it depends on the business that we talk to and what, I mean, it really goes back to, what are your business priorities, right? And we have some customers who may want to get out of a data center, they want to evacuate the data center, and so what they want is then, consistent infrastructure, so they can just move those applications up to the cloud. They don't want to have to refactor them and we'll do it later, but there's an immediate and sort of urgent problem that they have. Other customers I talk to, you know, security becomes top of mind, or maybe compliance, because they're in a regulated industry. So, those are the sort of services they want to prioritize. So, I would say there is no single right answer, no one size fits all. The point about this architecture is really around the optionality of it, as it allows you as a business to decide what's most important and where you want to prioritize. >> How about the deployment models kit? Do, does a customer have that flexibility from a deployment model standpoint or do I have to, you know, approach it a specific way? Can you address that? >> Yeah, I mean deployment models, you're talking about how they how they consume? >> So, for instance, yeah, running a control plane in the cloud. >> Got it, got it. >> And communicating elsewhere or having a single global instance or instantiating that instance, and? >> So, that's a good point actually, and you know, the white paper that we released back in August, around this sort of concept, the Cross-cloud service. This is some of the stuff we need to figure out as an industry. So, you know when we talk about a Cross-cloud service, we can mean actually any of the things you just talked about. It could be a single instance that runs, let's say in one public cloud, but it supports all of 'em. Or it could be one that's multi-instance and that runs in each of the clouds, and that customers can take dependencies on whichever one, depending on what their use cases are or the, even going further than that, there's a type of Cross-cloud service that could actually be instantiated even in an air gapped or offline environment, and we have many, many businesses, especially heavily regulated ones that have that requirement, so I think, you know. >> Global don't forget global, regions, locales. >> Yeah, there's all sorts of performance latency issues that can be concerned about. So, most services today are the former, there are single sort of instance or set of instances within a single cloud that support multiple clouds, but I think what we're doing and where we're going with, you know, things like what we see with Kubernetes and service meshes and all these things, will better enable folks to hit these different types of cross-cloud service architectures. So, today, you as a customer probably wouldn't have too much choice, but where we're going, you'll see a lot more choice in the future. >> If you had to summarize for folks watching the importance of Supercloud movement, multi-cloud, cross-cloud services, as an industry in flexible, 'cause I'm always riffing on the whole old school network protocol stacks that got disrupted by TCP/IP, that's a little bit dated, we got people on the chat that are like, you know, 20 years old that weren't even born then. So, but this is a, one of those inflection points that's once in a generation inflection point, I'm sure you agree. What scoped the order of magnitude of the change and the opportunity around the marketplace, the business models, the technology, and ultimately benefits the society. >> Yeah. Wow. Getting bigger. >> You have 10 seconds, go. >> I know. Yeah. (laughing) No, look, so I think it is what we're seeing is really the next phase of what you might call cloud, right? This notion of delivering services, the way they've been packaged together, traditionally by the hyperscalers is now being challenged. and what we're seeing is really opening that up to new levels of innovation, and I think that will be huge for businesses because it'll help meet them where they are. Instead of needing to contort the businesses to, you know, make it work with the technology, the technology will support the business and where it's going. Give people more optionality, more flexibility in order to get there, and I think in the end, for us as individuals, it will just make for better experiences, right? You can get better performance, better interactivity, given that devices are so much of what we do, and so much of what we interact with all the time. This sort of flexibility and optionality will fundamentally better for us as individuals in our experiences. >> And we're seeing that with ChatGPT, everyone's talking about, just early days. There'll be more and more of things like that, that are next gen, like obviously like, wow, that's a fall out of your chair moment. >> It'll be the next wave of innovation that's unleashed. >> All right, Kit Colbert, thanks for coming on and sharing and exploring the Supercloud architecture, Cloud Chaos, the Cloud Smart, there's a transition progression happening and it's happening fast. This is the supercloud wave. If you're not on this wave, you'll be driftwood. That's a Pat Gelsinger quote on theCUBE. This is theCUBE Be right back with more Supercloud coverage, here in Palo Alto after this break. (upbeat music) (upbeat music continues)
SUMMARY :
We've got Kit Colbert, the CTO of VM. It's great to be here for Supercloud 2. We're going to let you present. and when you evolve that across the board, This is like the layout of the stack. How do I know that the So, the number one complaint we hear, is that you don't need to replicate and the elastic nature of and I think that gets to your question, So, what are you seeing in terms but the other thing I think that you could get for best of breed Well, I, actually, you know, I don't, you know, like, and that's when they will, you know, That's kind of the beauty of a platform, They did the architecture. is that it's not going to be, but at the same time Well and I think that's and they've just defined the architecture, beginning of the trend Well I just have to and the customer requirements, focusing on some of the that need to be engineered differently? Some of the more academic and you know, a whole bunch or you know, it's going to be multi-years, of the details they don't need to be in. that we've come up with, Of the four layers that you see, to have standard services. but you had observability, you is really around the optionality of it, running a control plane in the cloud. and that runs in each of the clouds, Global don't forget and where we're going with, you know, and the opportunity of what you might call cloud, right? that are next gen, like obviously like, It'll be the next wave of and exploring the Supercloud architecture,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
August 9th | DATE | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Pat Gelsinger | PERSON | 0.99+ |
10 seconds | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Ionis Pharmaceuticals | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
AstraZeneca | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
August | DATE | 0.99+ |
two things | QUANTITY | 0.99+ |
one | QUANTITY | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Vittorio | PERSON | 0.99+ |
20 years | QUANTITY | 0.99+ |
10 | QUANTITY | 0.99+ |
one year | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
each | QUANTITY | 0.99+ |
Kit | PERSON | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
each cloud | QUANTITY | 0.98+ |
one cloud | QUANTITY | 0.97+ |
each cloud | QUANTITY | 0.97+ |
ten | QUANTITY | 0.97+ |
VMware | ORGANIZATION | 0.96+ |
five | QUANTITY | 0.96+ |
single cloud | QUANTITY | 0.96+ |
single | QUANTITY | 0.96+ |
each line | QUANTITY | 0.96+ |
supercloud wave | EVENT | 0.96+ |
single instance | QUANTITY | 0.95+ |
Palo Alto Network | ORGANIZATION | 0.95+ |
four | QUANTITY | 0.94+ |
eight | QUANTITY | 0.94+ |
single vendor | QUANTITY | 0.94+ |
Cloud Chaos | TITLE | 0.94+ |
Nir Zuk | PERSON | 0.94+ |
three-tiered | QUANTITY | 0.93+ |
Cloud First | TITLE | 0.91+ |
four layers | QUANTITY | 0.91+ |
Cloud Smart | TITLE | 0.91+ |
Supercloud | TITLE | 0.89+ |
single implementation | QUANTITY | 0.88+ |
Supercloud 2 | EVENT | 0.87+ |
first place | QUANTITY | 0.84+ |
single right answer | QUANTITY | 0.84+ |
once | QUANTITY | 0.83+ |
single sort | QUANTITY | 0.82+ |
Chat w/ Arctic Wolf exec re: budget restraints could lead to lax cloud security
>> Now we're recording. >> All right. >> Appreciate that, Hannah. >> Yeah, so I mean, I think in general we continue to do very, very well as a company. I think like everybody, there's economic headwinds today that are unavoidable, but I think we have a couple things going for us. One, we're in the cyberspace, which I think is, for the most part, recession proof as an industry. I think the impact of a recession will impact some vendors and some categories, but in general, I think the industry is pretty resilient. It's like the power industry, no? Recession or not, you still need electricity to your house. Cybersecurity is almost becoming a utility like that as far as the needs of companies go. I think for us, we also have the ability to do the security, the security operations, for a lot of companies, and if you look at the value proposition, the ROI for the cost of less than one to maybe two or three, depending on how big you are as a customer, what you'd have to pay for half to three security operations people, we can give you a full security operations. And so the ROI is is almost kind of brain dead simple, and so that keeps us going pretty well. And I think the other areas, we remove all that complexity for people. So in a world where you got other problems to worry about, handling all the security complexity is something that adds to that ROI. So for us, I think what we're seeing is mostly is some of the larger deals are taking a little bit longer than they have, some of the large enterprise deals, 'cause I think they are being a little more cautious about how they spend it, but in general, business is still kind of cranking along. >> Anything you can share with me that you guys have talked about publicly in terms of any metrics, or what can you tell me other than cranking? >> Yeah, I mean, I would just say we're still very, very high growth, so I think our financial profile would kind of still put us clearly in the cyber unicorn position, but I think other than that, we don't really share business metrics as a private- >> Okay, so how about headcount? >> Still growing. So we're not growing as fast as we've been growing, but I don't think we were anyway. I think we kind of, we're getting to the point of critical mass. We'll start to grow in a more kind of normal course and speed. I don't think we overhired like a lot of companies did in the past, even though we added, almost doubled the size of the company in the last 18 months. So we're still hiring, but very kind of targeted to certain roles going forward 'cause I do think we're kind of at critical mass in some of the other functions. >> You disclose headcount or no? >> We do not. >> You don't, okay. And never have? >> Not that I'm aware of, no. >> Okay, on the macro, I don't know if security's recession proof, but it's less susceptible, let's say. I've had Nikesh Arora on recently, we're at Palo Alto's Ignite, and he was saying, "Look," it's just like you were saying, "Larger deal's a little harder." A lot of times customers, he was saying customers are breaking larger deals into smaller deals, more POCs, more approvals, more people to get through the approval, not whole, blah, blah, blah. Now they're a different animal, I understand, but are you seeing similar trends, and how are you dealing with that? >> Yeah, I think the exact same trends, and I think it's just in a world where spending a dollar matters, I think a lot more oversight comes into play, a lot more reviewers, and can you shave it down here? Can you reduce the scope of the project to save money there? And I think it just caused a lot of those things. I think, in the large enterprise, I think most of those deals for companies like us and Palo and CrowdStrike and kind of the upper tier companies, they'll still go through. I think they'll just going to take a lot longer, and, yeah, maybe they're 80% of what they would've been otherwise, but there's still a lot of business to be had out there. >> So how are you dealing with that? I mean, you're talking about you double the size of the company. Is it kind of more focused on go-to-market, more sort of, maybe not overlay, but sort of SE types that are going to be doing more handholding. How have you dealt with that? Or have you just sort of said, "Hey, it is what it is, and we're not going to, we're not going to tactically respond to. We got long-term direction"? >> Yeah, I think it's more the latter. I think for us, it's we've gone through all these things before. It just takes longer now. So a lot of the steps we're taking are the same steps. We're still involved in a lot of POCs, we're involved in a lot of demos, and I don't think that changed. It's just the time between your POC and when someone sends you the PO, there's five more people now got to review things and go through a budget committee and all sorts of stuff like that. I think where we're probably focused more now is adding more and more capabilities just so we continue to be on the front foot of innovation and being relevant to the market, and trying to create more differentiators for us and the competitors. That's something that's just built into our culture, and we don't want to slow that down. And so even though the business is still doing extremely, extremely well, we want to keep investing in kind of technology. >> So the deal size, is it fair to say the initial deal size for new accounts, while it may be smaller, you're adding more capabilities, and so over time, your average contract values will go up? Are you seeing that trend? Or am I- >> Well, I would say I don't even necessarily see our average deal size has gotten smaller. I think in total, it's probably gotten a little bigger. I think what happens is when something like this happens, the old cream rises to the top thing, I think, comes into play, and you'll see some organizations instead of doing a deal with three or four vendors, they may want to pick one or two and really kind of put a lot of energy behind that. For them, they're maybe spending a little less money, but for those vendors who are amongst those getting chosen, I think they're doing pretty good. So our average deal size is pretty stable. For us, it's just a temporal thing. It's just the larger deals take a little bit longer. I don't think we're seeing much of a deal velocity difference in our mid-market commercial spaces, but in the large enterprise it's a little bit slower. But for us, we have ambitious plans in our strategy or on how we want to execute and what we want to build, and so I think we want to just continue to make sure we go down that path technically. >> So I have some questions on sort of the target markets and the cohorts you're going after, and I have some product questions. I know we're somewhat limited on time, but the historical focus has been on SMB, and I know you guys have gone in into enterprise. I'm curious as to how that's going. Any guidance you can give me on mix? Or when I talk to the big guys, right, you know who they are, the big managed service providers, MSSPs, and they're like, "Poo poo on Arctic Wolf," like, "Oh, they're (groans)." I said, "Yeah, that's what they used to say about the PC. It's just a toy. Or Microsoft SQL Server." But so I kind of love that narrative for you guys, but I'm curious from your words as to, what is that enterprise? How's the historical business doing, and how's the entrance into the enterprise going? What kind of hurdles are you having, blockers are you having to remove? Any color you can give me there would be super helpful. >> Yeah, so I think our commercial S&B business continues to do really good. Our mid-market is a very strong market for us. And I think while a lot of companies like to focus purely on large enterprise, there's a lot more mid-market companies, and a much larger piece of the IT puzzle collectively is in mid-market than it is large enterprise. That being said, we started to get pulled into the large enterprise not because we're a toy but because we're quite a comprehensive service. And so I think what we're trying to do from a roadmap perspective is catch up with some of the kind of capabilities that a large enterprise would want from us that a potential mid-market customer wouldn't. In some case, it's not doing more. It's just doing it different. Like, so we have a very kind of hands-on engagement with some of our smaller customers, something we call our concierge. Some of the large enterprises want more of a hybrid where they do some stuff and you do some stuff. And so kind of building that capability into the platform is something that's really important for us. Just how we engage with them as far as giving 'em access to their data, the certain APIs they want, things of that nature, what we're building out for large enterprise, but the demand by large enterprise on our business is enormous. And so it's really just us kind of catching up with some of the kind of the features that they want that we lack today, but many of 'em are still signing up with us, obviously, and in lieu of that, knowing that it's coming soon. And so I think if you look at the growth of our large enterprise, it's one of our fastest growing segments, and I think it shows anything but we're a toy. I would be shocked, frankly, if there's an MSSP, and, of course, we don't see ourself as an MSSP, but I'd be shocked if any of them operate a platform at the scale that ours operates. >> Okay, so wow. A lot I want to unpack there. So just to follow up on that last question, you don't see yourself as an MSSP because why, you see yourselves as a technology platform? >> Yes, I mean, the vast, vast, vast majority of what we deliver is our own technology. So we integrate with third-party solutions mostly to bring in that telemetry. So we've built our own platform from the ground up. We have our own threat intelligence, our own detection logic. We do have our own agents and network sensors. MSSP is typically cobbling together other tools, third party off-the-shelf tools to run their SOC. Ours is all homegrown technology. So I have a whole group called Arctic Wolf Labs, is building, just cranking out ML-based detections, building out infrastructure to take feeds in from a variety of different sources. We have a full integration kind of effort where we integrate into other third parties. So when we go into a customer, we can leverage whatever they have, but at the same time, we produce some tech that if they're lacking in a certain area, we can provide that tech, particularly around things like endpoint agents and network sensors and the like. >> What about like identity, doing your own identity? >> So we don't do our own identity, but we take feeds in from things like Okta and Active Directory and the like, and we have detection logic built on top of that. So part of our value add is we were XDR before XDR was the cool thing to talk about, meaning we can look across multiple attack surfaces and come to a security conclusion where most EDR vendors started with looking just at the endpoint, right? And then they called themselves XDR because now they took in a network feed, but they still looked at it as a separate network detection. We actually look at the things across multiple attack surfaces and stitch 'em together to look at that from a security perspective. In some cases we have automatic detections that will fire. In other cases, we can surface some to a security professional who can go start pulling on that thread. >> So you don't need to purchase CrowdStrike software and integrate it. You have your own equivalent essentially. >> Well, we'll take a feed from the CrowdStrike endpoint into our platform. We don't have to rely on their detections and their alerts, and things of that nature. Now obviously anything they discover we pull in as well, it's just additional context, but we have all our own tech behind it. So we operate kind of at an MSSP scale. We have a similar value proposition in the sense that we'll use whatever the customer has, but once that data kind of comes into our pipeline, it's all our own homegrown tech from there. >> But I mean, what I like about the MSSP piece of your business is it's very high touch. It's very intimate. What I like about what you're saying is that it's software-like economics, so software, software-like part of it. >> That's what makes us the unicorn, right? Is we do have, our concierges is very hands-on. We continue to drive automation that makes our concierge security professionals more efficient, but we always want that customer to have that concierge person as, is almost an extension to their security team, or in some cases, for companies that don't even have a security team, as their security team. As we go down the path, as I mentioned, one of the things we want to be able to do is start to have a more flexible model where we can have that high touch if you want it. We can have the high touch on certain occasions, and you can do stuff. We can have low touch, like we can span the spectrum, but we never want to lose our kind of unique value proposition around the concierge, but we also want to make sure that we're providing an interface that any customer would want to use. >> So given that sort of software-like economics, I mean, services companies need this too, but especially in software, things like net revenue retention and churn are super important. How are those metrics looking? What can you share with me there? >> Yeah, I mean, again, we don't share those metrics publicly, but all's I can continue to repeat is, if you looked at all of our financial metrics, I think you would clearly put us in the unicorn category. I think very few companies are going to have the level of growth that we have on the amount of ARR that we have with the net revenue retention and the churn and upsell. All those aspects continue to be very, very strong for us. >> I want to go back to the sort of enterprise conversation. So large enterprises would engage with you as a complement to their existing SOC, correct? Is that a fair statement or not necessarily? >> It's in some cases. In some cases, they're looking to not have a SOC. So we run into a lot of cases where they want to replace their SIEM, and they want a solution like Arctic Wolf to do that. And so there's a poll, I can't remember, I think it was Forrester, IDC, one of them did it a couple years ago, and they found out that 70% of large enterprises do not want to build the SOC, and it's not 'cause they don't need one, it's 'cause they can't afford it, they can't staff it, they don't have the expertise. And you think about if you're a tech company or a bank, or something like that, of course you can do it, but if you're an international plumbing distributor, you're not going to (chuckles), someone's not going to graduate from Stanford with a cybersecurity degree and go, "Cool, I want to go work for a plumbing distributor in their SOC," right? So they're going to have trouble kind of bringing in the right talent, and as a result, it's difficult to go make a multimillion-dollar investment into a SOC if you're not going to get the quality people to operate it, so they turn to companies like us. >> Got it, so, okay, so you're talking earlier about capabilities that large enterprises require that there might be some gaps, you might lack some features. A couple questions there. One is, when you do some of those, I inferred some of that is integrations. Are those integrations sort of one-off snowflakes or are you finding that you're able to scale those across the large enterprises? That's my first question. >> Yeah, so most of the integrations are pretty straightforward. I think where we run into things that are kind of enterprise-centric, they definitely want open APIs, they want access to our platform, which we don't do today, which we are going to be doing, but we don't do that yet today. They want to do more of a SIEM replacement. So we're really kind of what we call an open XDR platform, so there's things that we would need to build to kind of do raw log ingestion. I mean, we do this today. We have raw log ingestion, we have log storage, we have log searching, but there's like some of the compliance scenarios that they need out of their SIEM. We don't do those today. And so that's kind of holding them back from getting off their SIEM and going fully onto a solution like ours. Then the other one is kind of the level of customization, so the ability to create a whole bunch of custom rules, and that ties back to, "I want to get off my SIEM. I've built all these custom rules in my SIEM, and it's great that you guys do all this automatic AI stuff in the background, but I need these very specific things to be executed on." And so trying to build an interface for them to be able to do that and then also simulate it, again, because, no matter how big they are running their SIEM and their SOC... Like, we talked to one of the largest financial institutions in the world. As far as we were told, they have the largest individual company SOC in the world, and we operate almost 15 times their size. So we always have to be careful because this is a cloud-based native platform, but someone creates some rule that then just craters the performance of the whole platform, so we have to build kind of those guardrails around it. So those are the things primarily that the large enterprises are asking for. Most of those issues are not holding them back from coming. They want to know they're coming, and we're working on all of those. >> Cool, and see, just aside, I was talking to CISO the other day, said, "If it weren't for my compliance and audit group, I would chuck my SIEM." I mean, everybody wants to get rid of their SIEM. >> I've never met anyone who likes their SIEM. >> Do you feel like you've achieved product market fit in the larger enterprise or is that still something that you're sorting out? >> So I think we know, like, we're on a path to do that. We're on a provable path to do that, so I don't think there's any surprises left. I think everything that we know we need to do for that is someone's writing code for it today. It's just a matter of getting it through the system and getting into production. So I feel pretty good about it. I think that's why we are seeing such a high growth rate in our large enterprise business, 'cause we share that feedback with some of those key customers. We have a Customer Advisory Board that we share a lot of this information with. So yeah, I mean, I feel pretty good about what we need to do. We're certainly operate at large enterprise scales, so taking in the amount of the volume of data they're going to have and the types of integrations they need. We're comfortable with that. It's just more or less the interfaces that a large enterprise would want that some of the smaller companies don't ask for. >> Do you have enough tenure in the market to get a sense as to stickiness or even indicators that will lead toward retention? Have you been at it long enough in the enterprise or you still, again, figuring that out? >> Yeah, no, I think we've been at it long enough, and our retention rates are extremely high. If anything, kind of our net retention rates, well over 100% 'cause we have opportunities to upsell into new modules and expanding the coverage of what they have today. I think the areas that if you cornered enterprise that use us and things they would complain about are things I just told you about, right? There's still some things I want to do in my Splunk, and I need an API to pull my data out and put it in my Splunk and stuff like that, and those are the things we want to enable. >> Yeah, so I can't wait till you guys go public because you got Snowflake up here, and you got Veritas down here, and I'm very curious as to where you guys go. When's the IPO? You want to tell me that? (chuckling) >> Unfortunately, it's not up to us right now. You got to get the markets- >> Yeah, I hear you. Right, if the market were better. Well, if the market were better, you think you'd be out? >> Yeah, I mean, we'd certainly be a viable candidate to go. >> Yeah, there you go. I have a question for you because I don't have a SOC. I run a small business with my co-CEO. We're like 30, 40 people W-2s, we got another 50 or so contractors, and I'm always like have one eye, sleep with one eye open 'cause of security. What is your ideal SMB customer? Think S. >> Yeah. >> Would I fit? >> Yeah, I mean you're you're right in the sweet spot. I think where the company started and where we still have a lot of value proposition, which is companies like, like you said it, you sleep with one eye open, but you don't have necessarily the technical acumen to be able to do that security for yourself, and that's where we fit in. We bring kind of this whole security, we call it Security Operations Cloud, to bear, and we have some of the best professionals in the world who can basically be your SOC for less than it would cost you to hire somebody right out of college to do IT stuff. And so the value proposition's there. You're going to get the best of the best, providing you a kind of a security service that you couldn't possibly build on your own, and that way you can go to bed at night and close both eyes. >> So (chuckling) I'm sure something else would keep me up. But so in thinking about that, our Amazon bill keeps growing and growing and growing. What would it, and I presume I can engage with you on a monthly basis, right? As a consumption model, or how's the pricing work? >> Yeah, so there's two models that we have. So typically the kind of the monthly billing type of models would be through one of our MSP partners, where they have monthly billing capabilities. Usually direct with us is more of a longer term deal, could be one, two, or three, or it's up to the customer. And so we have both of those engagement models. Were doing more and more and more through MSPs today because of that model you just described, and they do kind of target the very S in the SMB as well. >> I mean, rough numbers, even ranges. If I wanted to go with the MSP monthly, I mean, what would a small company like mine be looking at a month? >> Honestly, I do not even know the answer to that. >> We're not talking hundreds of thousands of dollars a month? >> No. God, no. God, no. No, no, no. >> I mean, order of magnitude, we're talking thousands, tens of thousands? >> Thousands, on a monthly basis. Yeah. >> Yeah, yeah. Thousands per month. So if I were to budget between 20 and $50,000 a year, I'm definitely within the envelope. Is that fair? I mean, I'm giving a wide range >> That's fair. just to try to make- >> No, that's fair. >> And if I wanted to go direct with you, I would be signing up for a longer term agreement, correct, like I do with Salesforce? >> Yeah, yeah, a year. A year would, I think, be the minimum for that, and, yeah, I think the budget you set aside is kind of right in the sweet spot there. >> Yeah, I'm interested, I'm going to... Have a sales guy call me (chuckles) somehow. >> All right, will do. >> No, I'm serious. I want to start >> I will. >> investigating these things because we sell to very large organizations. I mean, name a tech company. That's our client base, except for Arctic Wolf. We should talk about that. And increasingly they're paranoid about data protection agreements, how you're protecting your data, our data. We write a lot of software and deliver it as part of our services, so it's something that's increasingly important. It's certainly a board level discussion and beyond, and most large organizations and small companies oftentimes don't think about it or try not to. They just put their head in the sand and, "We don't want to be doing that," so. >> Yeah, I will definitely have someone get in touch with you. >> Cool. Let's see. Anything else you can tell me on the product side? Are there things that you're doing that we talked about, the gaps at the high end that you're, some of the features that you're building in, which was super helpful. Anything in the SMB space that you want to share? >> Yeah, I think the biggest thing that we're doing technically now is really trying to drive more and more automation and efficiency through our operations, and that comes through really kind of a generous use of AI. So building models around more efficient detections based upon signal, but also automating the actions of our operators so we can start to learn through the interface. When they do A and B, they always do C. Well, let's just do C for them, stuff like that. Then also building more automation as far as the response back to third-party solutions as well so we can remediate more directly on third-party products without having to get into the consoles or having our customers do it. So that's really just trying to drive efficiency in the system, and that helps provide better security outcomes but also has a big impact on our margins as well. >> I know you got to go, but I want to show you something real quick. I have data. I do a weekly program called "Breaking Analysis," and I have a partner called ETR, Enterprise Technology Research, and they have a platform. I don't know if you can see this. They have a survey platform, and each quarter, they do a survey of about 1,500 IT decision makers. They also have a survey on, they call ETS, Emerging Technology Survey. So it's private companies. And I don't want to go into it too much, but this is a sentiment graph. This is net sentiment. >> Just so you know, all I see is a white- >> Yeah, just a white bar. >> Oh, that's weird. Oh, whiteboard. Oh, here we go. How about that? >> There you go. >> Yeah, so this is a sentiment graph. So this is net sentiment and this is mindshare. And if I go to Arctic Wolf... So it's typical security, right? The 8,000 companies. And when I go here, what impresses me about this is you got a decent mindshare, that's this axis, but you've also got an N in the survey. It's about 1,500 in the survey, It's 479 Arctic Wolf customers responded to this. 57% don't know you. Oh, sorry, they're aware of you, but no plan to evaluate; 19% plan to evaluate, 7% are evaluating; 11%, no plan to utilize even though they've evaluated you; and 1% say they've evaluated you and plan to utilize. It's a small percentage, but actually it's not bad in the random sample of the world about that. And so obviously you want to get that number up, but this is a really impressive position right here that I wanted to just share with you. I do a lot of analysis weekly, and this is a really, it's completely independent survey, and you're sort of separating from the pack, as you can see. So kind of- >> Well, it's good to see that. And I think that just is a further indicator of what I was telling you. We continue to have a strong financial performance. >> Yeah, in a good market. Okay, well, thanks you guys. And hey, if I can get this recording, Hannah, I may even figure out how to write it up. (chuckles) That would be super helpful. >> Yes. We'll get that up. >> And David or Hannah, if you can send me David's contact info so I can get a salesperson in touch with him. (Hannah chuckling) >> Yeah, great. >> Yeah, we'll work on that as well. Thanks so much for both your time. >> Thanks a lot. It was great talking with you. >> Thanks, you guys. Great to meet you. >> Thank you. >> Bye. >> Bye.
SUMMARY :
I think for us, we also have the ability I don't think we overhired And never have? and how are you dealing with that? I think they'll just going to that are going to be So a lot of the steps we're and so I think we want to just continue and the cohorts you're going after, And so I think if you look at the growth So just to follow up but at the same time, we produce some tech and Active Directory and the like, So you don't need to but we have all our own tech behind it. like about the MSSP piece one of the things we want So given that sort of of growth that we have on the So large enterprises would engage with you kind of bringing in the right I inferred some of that is integrations. and it's great that you guys do to get rid of their SIEM. I've never met anyone I think everything that we and expanding the coverage to where you guys go. You got to get the markets- Well, if the market were Yeah, I mean, we'd certainly I have a question for you and that way you can go to bed I can engage with you because of that model you just described, the MSP monthly, I mean, know the answer to that. No. God, no. Thousands, on a monthly basis. I mean, I'm giving just to try to make- is kind of right in the sweet spot there. Yeah, I'm interested, I'm going to... I want to start because we sell to very get in touch with you. doing that we talked about, of our operators so we can start to learn I don't know if you can see this. Oh, here we go. from the pack, as you can see. And I think that just I may even figure out how to write it up. if you can send me David's contact info Thanks so much for both your time. great talking with you. Great to meet you.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Hannah | PERSON | 0.99+ |
two models | QUANTITY | 0.99+ |
three | QUANTITY | 0.99+ |
Arctic Wolf Labs | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
70% | QUANTITY | 0.99+ |
Arctic Wolf | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
30 | QUANTITY | 0.99+ |
Palo | ORGANIZATION | 0.99+ |
479 | QUANTITY | 0.99+ |
half | QUANTITY | 0.99+ |
19% | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
Forrester | ORGANIZATION | 0.99+ |
50 | QUANTITY | 0.99+ |
8,000 companies | QUANTITY | 0.99+ |
Thousands | QUANTITY | 0.99+ |
1% | QUANTITY | 0.99+ |
7% | QUANTITY | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
57% | QUANTITY | 0.99+ |
IDC | ORGANIZATION | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
A year | QUANTITY | 0.99+ |
one eye | QUANTITY | 0.99+ |
both | QUANTITY | 0.99+ |
both eyes | QUANTITY | 0.99+ |
each quarter | QUANTITY | 0.99+ |
less than one | QUANTITY | 0.98+ |
11% | QUANTITY | 0.98+ |
One | QUANTITY | 0.98+ |
five more people | QUANTITY | 0.98+ |
axis | ORGANIZATION | 0.98+ |
thousands | QUANTITY | 0.98+ |
tens of thousands | QUANTITY | 0.97+ |
Veritas | ORGANIZATION | 0.97+ |
about 1,500 IT decision makers | QUANTITY | 0.97+ |
20 | QUANTITY | 0.97+ |
a year | QUANTITY | 0.96+ |
Salesforce | ORGANIZATION | 0.96+ |
ETS | ORGANIZATION | 0.96+ |
Stanford | ORGANIZATION | 0.96+ |
40 people | QUANTITY | 0.95+ |
over 100% | QUANTITY | 0.95+ |
couple years ago | DATE | 0.95+ |
CISO | ORGANIZATION | 0.94+ |
four vendors | QUANTITY | 0.94+ |
$50,000 a year | QUANTITY | 0.93+ |
about 1,500 | QUANTITY | 0.92+ |
Enterprise Technology Research | ORGANIZATION | 0.92+ |
almost 15 times | QUANTITY | 0.91+ |
couple questions | QUANTITY | 0.91+ |
CrowdStrike | TITLE | 0.9+ |
hundreds of thousands of dollars a month | QUANTITY | 0.9+ |
ETR | ORGANIZATION | 0.88+ |
last 18 months | DATE | 0.87+ |
SQL Server | TITLE | 0.84+ |
three security | QUANTITY | 0.84+ |
Breaking Analysis | TITLE | 0.82+ |
Thousands per month | QUANTITY | 0.8+ |
XDR | TITLE | 0.79+ |
a month | QUANTITY | 0.74+ |
SIEM | TITLE | 0.74+ |
Arctic | ORGANIZATION | 0.74+ |
How to Make a Data Fabric "Smart": A Technical Demo With Jess Jowdy
>> Okay, so now that we've heard Scott talk about smart data fabrics, it's time to see this in action. Right now we're joined by Jess Jowdy, who's the manager of Healthcare Field Engineering at InterSystems. She's going to give a demo of how smart data fabrics actually work, and she's going to show how embedding a wide range of analytics capabilities including data exploration, business intelligence natural language processing, and machine learning directly within the fabric, makes it faster and easier for organizations to gain new insights and power intelligence, predictive and prescriptive services and applications. Now, according to InterSystems, smart data fabrics are applicable across many industries from financial services to supply chain to healthcare and more. Jess today is going to be speaking through the lens of a healthcare focused demo. Don't worry, Joe Lichtenberg will get into some of the other use cases that you're probably interested in hearing about. That will be in our third segment, but for now let's turn it over to Jess. Jess, good to see you. >> Hi. Yeah, thank you so much for having me. And so for this demo we're really going to be bucketing these features of a smart data fabric into four different segments. We're going to be dealing with connections, collections, refinements and analysis. And so we'll see that throughout the demo as we go. So without further ado, let's just go ahead and jump into this demo and you'll see my screen pop up here. I actually like to start at the end of the demo. So I like to begin by illustrating what an end user's going to see and don't mind the screen 'cause I gave you a little sneak peek of what's about to happen. But essentially what I'm going to be doing is using Postman to simulate a call from an external application. So we talked about being in the healthcare industry. This could be for instance, a mobile application that a patient is using to view an aggregated summary of information across that patient's continuity of care or some other kind of application. So we might be pulling information in this case from an electronic medical record. We might be grabbing clinical history from that. We might be grabbing clinical notes from a medical transcription software or adverse reaction warnings from a clinical risk grouping application and so much more. So I'm really going to be assimilating a patient logging on in on their phone and retrieving this information through this Postman call. So what I'm going to do is I'm just going to hit send, I've already preloaded everything here and I'm going to be looking for information where the last name of this patient is Simmons and their medical record number their patient identifier in the system is 32345. And so as you can see I have this single JSON payload that showed up here of just relevant clinical information for my patient whose last name is Simmons all within a single response. So fantastic, right? Typically though when we see responses that look like this there is an assumption that this service is interacting with a single backend system and that single backend system is in charge of packaging that information up and returning it back to this caller. But in a smart data fabric architecture we're able to expand the scope to handle information across different, in this case, clinical applications. So how did this actually happen? Let's peel back another layer and really take a look at what happened in the background. What you're looking at here is our mission control center for our smart data fabric. On the left we have our APIs that allow users to interact with particular services. On the right we have our connections to our different data silos. And in the middle here we have our data fabric coordinator which is going to be in charge of this refinement and analysis those key pieces of our smart data fabric. So let's look back and think about the example we just showed. I received an inbound request for information for a patient whose last name is Simmons. My end user is requesting to connect to that service and that's happening here at my patient data retrieval API location. Users can define any number of different services and APIs depending on their use cases. And to that end we do also support full lifecycle API management within this platform. When you're dealing with APIs I always like to make a little shout out on this that you really want to make sure you have enough like a granular enough security model to handle and limit which APIs and which services a consumer can interact with. In this IRIS platform, which we're talking about today we have a very granular role-based security model that allows you to handle that, but it's really important in a smart data fabric to consider who's accessing your data and in what contact. >> Can I just interrupt you for a second? >> Yeah, please. >> So you were showing on the left hand side of the demo a couple of APIs. I presume that can be a very long list. I mean, what do you see as typical? >> I mean you can have hundreds of these APIs depending on what services an organization is serving up for their consumers. So yeah, we've seen hundreds of these services listed here. >> So my question is, obviously security is critical in the healthcare industry and API securities are really hot topic these days. How do you deal with that? >> Yeah, and I think API security is interesting 'cause it can happen at so many layers. So there's interactions with the API itself. So can I even see this API and leverage it? And then within an API call, you then have to deal with all right, which end points or what kind of interactions within that API am I allowed to do? What data am I getting back? And with healthcare data, the whole idea of consent to see certain pieces of data is critical. So the way that we handle that is, like I said, same thing at different layers. There is access to a particular API, which can happen within the IRIS product and also we see it happening with an API management layer, which has become a really hot topic with a lot of organizations. And then when it comes to data security, that really happens under the hood within your smart data fabric. So that role-based access control becomes very important in assigning, you know, roles and permissions to certain pieces of information. Getting that granular becomes the cornerstone of security. >> And that's been designed in, >> Absolutely, yes. it's not a bolt-on as they like to say. Okay, can we get into collect now? >> Of course, we're going to move on to the collection piece at this point in time, which involves pulling information from each of my different data silos to create an overall aggregated record. So commonly each data source requires a different method for establishing connections and collecting this information. So for instance, interactions with an EMR may require leveraging a standard healthcare messaging format like FIRE, interactions with a homegrown enterprise data warehouse for instance may use SQL for a cloud-based solutions managed by a vendor. They may only allow you to use web service calls to pull data. So it's really important that your data fabric platform that you're using has the flexibility to connect to all of these different systems and and applications. And I'm about to log out so I'm going to keep my session going here. So therefore it's incredibly important that your data fabric has the flexibility to connect to all these different kinds of applications and data sources and all these different kinds of formats and over all of these different kinds of protocols. So let's think back on our example here. I had four different applications that I was requesting information for to create that payload that we saw initially. Those are listed here under this operations section. So these are going out and connecting to downstream systems to pull information into my smart data fabric. What's great about the IRIS platform is it has an embedded interoperability platform. So there's all of these native adapters that can support these common connections that we see for different kinds of applications. So using REST or SOAP or SQL or FTP regardless of that protocol there's an adapter to help you work with that. And we also think of the types of formats that we typically see data coming in as, in healthcare we have H7, we have FIRE we have CCDs across the industry. JSON is, you know, really hitting a market strong now and XML, payloads, flat files. We need to be able to handle all of these different kinds of formats over these different kinds of protocols. So to illustrate that, if I click through these when I select a particular connection on the right side panel I'm going to see the different settings that are associated with that particular connection that allows me to collect information back into my smart data fabric. In this scenario, my connection to my chart script application in this example communicates over a SOAP connection. When I'm grabbing information from my clinical risk grouping application I'm using a SQL based connection. When I'm connecting to my EMR I'm leveraging a standard healthcare messaging format known as FIRE, which is a rest based protocol. And then when I'm working with my health record management system I'm leveraging a standard HTTP adapter. So you can see how we can be flexible when dealing with these different kinds of applications and systems. And then it becomes important to be able to validate that you've established those connections correctly and be able to do it in a reliable and quick way. Because if you think about it, you could have hundreds of these different kinds of applications built out and you want to make sure that you're maintaining and understanding those connections. So I can actually go ahead and test one of these applications and put in, for instance my patient's last name and their MRN and make sure that I'm actually getting data back from that system. So it's a nice little sanity check as we're building out that data fabric to ensure that we're able to establish these connections appropriately. So turnkey adapters are fantastic, as you can see we're leveraging them all here, but sometimes these connections are going to require going one step further and building something really specific for an application. So let's, why don't we go one step further here and talk about doing something custom or doing something innovative. And so it's important for users to have the ability to develop and go beyond what's an out of the box or black box approach to be able to develop things that are specific to their data fabric or specific to their particular connection. In this scenario, the IRIS data platform gives users access to the entire underlying code base. So you cannot, you not only get an opportunity to view how we're establishing these connections or how we're building out these processes but you have the opportunity to inject your own kind of processing your own kinds of pipelines into this. So as an example, you can leverage any number of different programming languages right within this pipeline. And so I went ahead and I injected Python. So Python is a very up and coming language, right? We see more and more developers turning towards Python to do their development. So it's important that your data fabric supports those kinds of developers and users that have standardized on these kinds of programming languages. This particular script here, as you can see actually calls out to our turnkey adapters. So we see a combination of out of the box code that is provided in this data fabric platform from IRIS combined with organization specific or user specific customizations that are included in this Python method. So it's a nice little combination of how do we bring the developer experience in and mix it with out of the box capabilities that we can provide in a smart data fabric. >> Wow. >> Yeah, I'll pause. >> It's a lot here. You know, actually, if I could >> I can pause. >> If I just want to sort of play that back. So we went through the connect and the collect phase. >> And the collect, yes, we're going into refine. So it's a good place to stop. >> Yeah, so before we get there, so we heard a lot about fine grain security, which is crucial. We heard a lot about different data types, multiple formats. You've got, you know the ability to bring in different dev tools. We heard about FIRE, which of course big in healthcare. >> Absolutely. >> And that's the standard and then SQL for traditional kind of structured data and then web services like HTTP you mentioned. And so you have a rich collection of capabilities within this single platform. >> Absolutely, and I think that's really important when you're dealing with a smart data fabric because what you're effectively doing is you're consolidating all of your processing, all of your collection into a single platform. So that platform needs to be able to handle any number of different kinds of scenarios and technical challenges. So you've got to pack that platform with as many of these features as you can to consolidate that processing. >> All right, so now we're going into refine. >> We're going into refinement, exciting. So how do we actually do refinement? Where does refinement happen and how does this whole thing end up being performant? Well the key to all of that is this SDF coordinator or stands for smart data fabric coordinator. And what this particular process is doing is essentially orchestrating all of these calls to all of these different downstream systems. It's aggregating, it's collecting that information it's aggregating it and it's refining it into that single payload that we saw get returned to the user. So really this coordinator is the main event when it comes to our data fabric. And in the IRIS platform we actually allow users to build these coordinators using web-based tool sets to make it intuitive. So we can take a sneak peek at what that looks like and as you can see it follows a flow chart like structure. So there's a start, there is an end and then there are these different arrows that point to different activities throughout the business process. And so there's all these different actions that are being taken within our coordinator. You can see an action for each of the calls to each of our different data sources to go retrieve information. And then we also have the sync call at the end that is in charge of essentially making sure that all of those responses come back before we package them together and send them out. So this becomes really crucial when we're creating that data fabric. And you know, this is a very simple data fabric example where we're just grabbing data and we're consolidating it together. But you can have really complex orchestrators and coordinators that do any number of different things. So for instance, I could inject SQL Logic into this or SQL code, I can have conditional logic, I can do looping, I can do error trapping and handling. So we're talking about a whole number of different features that can be included in this coordinator. So like I said, we have a really very simple process here that's just calling out, grabbing all those different data elements from all those different data sources and consolidating it. We'll look back at this coordinator in a second when we introduce or we make this data fabric a bit smarter and we start introducing that analytics piece to it. So this is in charge of the refinement. And so at this point in time we've looked at connections, collections, and refinements. And just to summarize what we've seen 'cause I always like to go back and take a look at everything that we've seen. We have our initial API connection we have our connections to our individual data sources and we have our coordinators there in the middle that are in charge of collecting the data and refining it into a single payload. As you can imagine, there's a lot going on behind the scenes of a smart data fabric, right? There's all these different processes that are interacting. So it's really important that your smart data fabric platform has really good traceability, really good logging 'cause you need to be able to know, you know, if there was an issue, where did that issue happen, in which connected process and how did it affect the other processes that are related to it. In IRIS, we have this concept called a visual trace. And what our clients use this for is basically to be able to step through the entire history of a request from when it initially came into the smart data fabric to when data was sent back out from that smart data fabric. So I didn't record the time but I bet if you recorded the time it was this time that we sent that request in. And you can see my patient's name and their medical record number here and you can see that that instigated four different calls to four different systems and they're represented by these arrows going out. So we sent something to chart script to our health record management system, to our clinical risk grouping application into my EMR through their FIRE server. So every request, every outbound application gets a request and we pull back all of those individual pieces of information from all of those different systems and we bundle them together. And for my FIRE lovers, here's our FIRE bundle that we got back from our FIRE server. So this is a really good way of being able to validate that I am appropriately grabbing the data from all these different applications and then ultimately consolidating it into one payload. Now we change this into a JSON format before we deliver it, but this is those data elements brought together. And this screen would also be used for being able to see things like error trapping or errors that were thrown alerts, warnings, developers might put log statements in just to validate that certain pieces of code are executing. So this really becomes the one stop shop for understanding what's happening behind the scenes with your data fabric. >> Etcher, who did what, when, where what did the machine do? What went wrong and where did that go wrong? >> Exactly. >> Right in your fingertips. >> Right, and I'm a visual person so a bunch of log files to me is not the most helpful. Well, being able to see this happened at this time in this location gives me that understanding I need to actually troubleshoot a problem. >> This business orchestration piece, can you say a little bit more about that? How people are using it? What's the business impact of the business orchestration? >> The business orchestration, especially in the smart data fabric is really that crucial part of being able to create a smart data fabric. So think of your business orchestrator as doing the heavy lifting of any kind of processing that involves data, right? It's bringing data in, it's analyzing that information, it's transforming that data, in a format that your consumer's not going to understand it's doing any additional injection of custom logic. So really your coordinator or that orchestrator that sits in the middle is the brains behind your smart data fabric. >> And this is available today? This all works? >> It's all available today. Yeah, it all works. And we have a number of clients that are using this technology to support these kinds of use cases. >> Awesome demo. Anything else you want to show us? >> Well we can keep going. 'Cause right now, I mean we can, oh, we're at 18 minutes. God help us. You can cut some of this. (laughs) I have a lot to say, but really this is our data fabric. The core competency of IRIS is making it smart, right? So I won't spend too much time on this but essentially if we go back to our coordinator here we can see here's that original that pipeline that we saw where we're pulling data from all these different systems and we're collecting it and we're sending it out. But then we see two more at the end here which involves getting a readmission prediction and then returning a prediction. So we can not only deliver data back as part of a smart data fabric but we can also deliver insights back to users and consumers based on data that we've aggregated as part of a smart data fabric. So in this scenario, we're actually taking all that data that we just looked at and we're running it through a machine learning model that exists within the smart data fabric pipeline and producing a readmission score to determine if this particular patient is at risk for readmission within the next 30 days. Which is a typical problem that we see in the healthcare space. So what's really exciting about what we're doing in the IRIS world is we're bringing analytics close to the data with integrated ML. So in this scenario we're actually creating the model, training the model, and then executing the model directly within the IRIS platform. So there's no shuffling of data, there's no external connections to make this happen. And it doesn't really require having a PhD in data science to understand how to do that. It leverages all really basic SQL like syntax to be able to construct and execute these predictions. So it's going one step further than the traditional data fabric example to introduce this ability to define actionable insights to our users based on the data that we've brought together. >> Well that readmission probability is huge. >> Yes. >> Right, because it directly affects the cost of for the provider and the patient, you know. So if you can anticipate the probability of readmission and either do things at that moment or you know, as an outpatient perhaps to minimize the probability then that's huge. That drops right to the bottom line. >> Absolutely, absolutely. And that really brings us from that data fabric to that smart data fabric at the end of the day which is what makes this so exciting. >> Awesome demo. >> Thank you. >> Fantastic people, are you cool? If people want to get in touch with you? >> Oh yes, absolutely. So you can find me on LinkedIn, Jessica Jowdy and we'd love to hear from you. I always love talking about this topic, so would be happy to engage on that. >> Great stuff, thank you Jess, appreciate it. >> Thank you so much. >> Okay, don't go away because in the next segment we're going to dig into the use cases where data fabric is driving business value. Stay right there.
SUMMARY :
for organizations to gain new insights And to that end we do also So you were showing hundreds of these APIs in the healthcare industry So the way that we handle that it's not a bolt-on as they like to say. that data fabric to ensure that we're able It's a lot here. So we went through the So it's a good place to stop. the ability to bring And so you have a rich collection So that platform needs to we're going into refine. that are related to it. so a bunch of log files to of being able to create this technology to support Anything else you want to show us? So in this scenario, we're Well that readmission and the patient, you know. to that smart data fabric So you can find me on you Jess, appreciate it. because in the next segment
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Jessica Jowdy | PERSON | 0.99+ |
Joe Lichtenberg | PERSON | 0.99+ |
InterSystems | ORGANIZATION | 0.99+ |
Jess Jowdy | PERSON | 0.99+ |
Scott | PERSON | 0.99+ |
Jess | PERSON | 0.99+ |
18 minutes | QUANTITY | 0.99+ |
hundreds | QUANTITY | 0.99+ |
32345 | OTHER | 0.99+ |
Python | TITLE | 0.99+ |
Simmons | PERSON | 0.99+ |
each | QUANTITY | 0.99+ |
IRIS | ORGANIZATION | 0.99+ |
third segment | QUANTITY | 0.99+ |
Etcher | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
ORGANIZATION | 0.98+ | |
SQL | TITLE | 0.98+ |
single platform | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
JSON | TITLE | 0.96+ |
each data source | QUANTITY | 0.96+ |
single | QUANTITY | 0.95+ |
one step | QUANTITY | 0.94+ |
one step | QUANTITY | 0.94+ |
single backend | QUANTITY | 0.92+ |
single response | QUANTITY | 0.9+ |
two more | QUANTITY | 0.85+ |
single payload | QUANTITY | 0.84+ |
SQL Logic | TITLE | 0.84+ |
a second | QUANTITY | 0.83+ |
IRIS | TITLE | 0.83+ |
four different segments | QUANTITY | 0.82+ |
Postman | PERSON | 0.78+ |
FIRE | TITLE | 0.77+ |
SOAP | TITLE | 0.76+ |
four different applications | QUANTITY | 0.74+ |
one stop | QUANTITY | 0.74+ |
Postman | TITLE | 0.73+ |
one payload | QUANTITY | 0.72+ |
each of | QUANTITY | 0.71+ |
REST | TITLE | 0.7+ |
Healthcare Field Engineering | ORGANIZATION | 0.67+ |
next 30 days | DATE | 0.65+ |
four | QUANTITY | 0.63+ |
these APIs | QUANTITY | 0.62+ |
second | QUANTITY | 0.54+ |
God | PERSON | 0.53+ |
every | QUANTITY | 0.53+ |
services | QUANTITY | 0.51+ |
H7 | COMMERCIAL_ITEM | 0.5+ |
application | QUANTITY | 0.48+ |
FIRE | ORGANIZATION | 0.38+ |
XML | TITLE | 0.38+ |
Breaking Analysis: Cloud players sound a cautious tone for 2023
>> From the Cube Studios in Palo Alto in Boston bringing you data-driven insights from the Cube and ETR. This is Breaking Analysis with Dave Vellante. >> The unraveling of market enthusiasm continued in Q4 of 2022 with the earnings reports from the US hyperscalers, the big three now all in. As we said earlier this year, even the cloud is an immune from the macro headwinds and the cracks in the armor that we saw from the data that we shared last summer, they're playing out into 2023. For the most part actuals are disappointing beyond expectations including our own. It turns out that our estimates for the big three hyperscaler's revenue missed by 1.2 billion or 2.7% lower than we had forecast from even our most recent November estimates. And we expect continued decelerating growth rates for the hyperscalers through the summer of 2023 and we don't think that's going to abate until comparisons get easier. Hello and welcome to this week's Wikibon Cube Insights powered by ETR. In this Breaking Analysis, we share our view of what's happening in cloud markets not just for the hyperscalers but other firms that have hitched a ride on the cloud. And we'll share new ETR data that shows why these trends are playing out tactics that customers are employing to deal with their cost challenges and how long the pain is likely to last. You know, riding the cloud wave, it's a two-edged sword. Let's look at the players that have gone all in on or are exposed to both the positive and negative trends of cloud. Look the cloud has been a huge tailwind for so many companies like Snowflake and Databricks, Workday, Salesforce, Mongo's move with Atlas, Red Hats Cloud strategy with OpenShift and so forth. And you know, the flip side is because cloud is elastic what comes up can also go down very easily. Here's an XY graphic from ETR that shows spending momentum or net score on the vertical axis and market presence in the dataset on the horizontal axis provision or called overlap. This is data from the January 2023 survey and that the red dotted lines show the positions of several companies that we've highlighted going back to January 2021. So let's unpack this for a bit starting with the big three hyperscalers. The first point is AWS and Azure continue to solidify their moat relative to Google Cloud platform. And we're going to get into this in a moment, but Azure and AWS revenues are five to six times that of GCP for IaaS. And at those deltas, Google should be gaining ground much faster than the big two. The second point on Google is notice the red line on GCP relative to its starting point. While it appears to be gaining ground on the horizontal axis, its net score is now below that of AWS and Azure in the survey. So despite its significantly smaller size it's just not keeping pace with the leaders in terms of market momentum. Now looking at AWS and Microsoft, what we see is basically AWS is holding serve. As we know both Google and Microsoft benefit from including SaaS in their cloud numbers. So the fact that AWS hasn't seen a huge downward momentum relative to a January 2021 position is one positive in the data. And both companies are well above that magic 40% line on the Y-axis, anything above 40% we consider to be highly elevated. But the fact remains that they're down as are most of the names on this chart. So let's take a closer look. I want to start with Snowflake and Databricks. Snowflake, as we reported from several quarters back came down to Earth, it was up in the 80% range in the Y-axis here. And it's still highly elevated in the 60% range and it continues to move to the right, which is positive but as we'll address in a moment it's customers can dial down consumption just as in any cloud. Now, Databricks is really interesting. It's not a public company, it never made it to IPO during the sort of tech bubble. So we don't have the same level of transparency that we do with other companies that did make it through. But look at how much more prominent it is on the X-axis relative to January 2021. And it's net score is basically held up over that period of time. So that's a real positive for Databricks. Next, look at Workday and Salesforce. They've held up relatively well, both inching to the right and generally holding their net scores. Same from Mongo, which is the brown dot above its name that says Elastic, it says a little gets a little crowded which Elastic's actually the blue dot above it. But generally, SaaS is harder to dial down, Workday, Salesforce, Oracles, SaaS and others. So it's harder to dial down because commitments have been made in advance, they're kind of locked in. Now, one of the discussions from last summer was as Mongo, less discretionary than analytics i.e. Snowflake. And it's an interesting debate but maybe Snowflake customers, you know, they're also generally committed to a dollar amount. So over time the spending is going to be there. But in the short term, yeah maybe Snowflake customers can dial down. Now that highlighted dotted red line, that bolded one is Datadog and you can see it's made major strides on the X-axis but its net score has decelerated quite dramatically. Openshift's momentum in the survey has dropped although IBM just announced that OpenShift has a a billion dollar ARR and I suspect what's happening there is IBM consulting is bundling OpenShift into its modernization projects. It's got a, that sort of captive base if you will. And as such it's probably not as top of mind to the respondents but I'll bet you the developers are certainly aware of it. Now the other really notable call out here is CloudFlare, We've reported on them earlier. Cloudflare's net score has held up really well since January of 2021. It really hasn't seen the downdraft of some of these others, but it's making major major moves to the right gaining market presence. We really like how CloudFlare is performing. And the last comment is on Oracle which as you can see, despite its much, much lower net score continues to gain ground in the market and thrive from a profitability standpoint. But the data pretty clearly shows that there's a downdraft in the market. Okay, so what's happening here? Let's dig deeper into this data. Here's a graphic from the most recent ETR drill down asking customers that said they were going to cut spending what technique they're using to do so. Now, as we've previously reported, consolidating redundant vendors is by far the most cited approach but there's two key points we want to make here. One is reducing excess cloud resources. As you can see in the bars is the second most cited technique and it's up from the previous polling period. The second we're not showing, you know directly but we've got some red call outs there. Reducing cloud costs jumps to 29% and 28% respectively in financial services and tech telco. And it's much closer to second. It's basically neck and neck with consolidating redundant vendors in those two industries. So they're being really aggressive about optimizing cloud cost. Okay, so as we said, cloud is great 'cause you can dial it up but it's just as easy to dial down. We've identified six factors that customers tell us are affecting their cloud consumption and there are probably more, if you got more we'd love to hear them but these are the ones that are fairly prominent that have hit our radar. First, rising mortgage rates mean banks are processing fewer loans means less cloud. The crypto crash means less trading activity and that means less cloud resources. Third lower ad spend has led companies to reduce not only you know, their ad buying but also their frequency of running their analytics and their calculations. And they're also often using less data, maybe compressing the timeframe of the corpus down to a shorter time period. Also very prominent is down to the bottom left, using lower cost compute instances. For example, Graviton from AWS or AMD chips and tiering storage to cheaper S3 or deep archived tiers. And finally, optimizing based on better pricing plans. So customers are moving from, you know, smaller companies in particular moving maybe from on demand or other larger companies that are experimenting using on demand or they're moving to spot pricing or reserved instances or optimized savings plans. That all lowers cost and that means less cloud resource consumption and less cloud revenue. Now in the days when everything was on prem CFOs, what would they do? They would freeze CapEx and IT Pros would have to try to do more with less and often that meant a lot of manual tasks. With the cloud it's much easier to move things around. It still takes some thinking and some effort but it's dramatically simpler to do so. So you can get those savings a lot faster. Now of course the other huge factor is you can cut or you can freeze. And this graphic shows data from a recent ETR survey with 159 respondents and you can see the meaningful uptick in hiring freezes, freezing new IT deployments and layoffs. And as we've been reporting, this has been trending up since earlier last year. And note the call out, this is especially prominent in retail sectors, all three of these techniques jump up in retail and that's a bit of a concern because oftentimes consumer spending helps the economy make a softer landing out of a pullback. But this is a potential canary in the coal mine. If retail firms are pulling back it's because consumers aren't spending as much. And so we're keeping a close eye on that. So let's boil this down to the market data and what this all means. So in this graphic we show our estimates for Q4 IaaS revenues compared to the "actual" IaaS revenues. And we say quote because AWS is the only one that reports, you know clean revenue and IaaS, Azure and GCP don't report actuals. Why would they? Because it would make them look even, you know smaller relative to AWS. Rather, they bury the figures in overall cloud which includes their, you know G-Suite for Google and all the Microsoft SaaS. And then they give us little tidbits about in Microsoft's case, Azure, they give growth rates. Google gives kind of relative growth of GCP. So, and we use survey data and you know, other data to try to really pinpoint and we've been covering this for, I don't know, five or six years ever since the cloud really became a thing. But looking at the data, we had AWS growing at 25% this quarter and it came in at 20%. So a significant decline relative to our expectations. AWS announced that it exited December, actually, sorry it's January data showed about a 15% mid-teens growth rate. So that's, you know, something we're watching. Azure was two points off our forecast coming in at 38% growth. It said it exited December in the 35% growth range and it said that it's expecting five points of deceleration off of that. So think 30% for Azure. GCP came in three points off our expectation coming in 35% and Alibaba has yet to report but we've shaved a bid off that forecast based on some survey data and you know what maybe 9% is even still not enough. Now for the year, the big four hyperscalers generated almost 160 billion of revenue, but that was 7 billion lower than what what we expected coming into 2022. For 2023, we're expecting 21% growth for a total of 193.3 billion. And while it's, you know, lower, you know, significantly lower than historical expectations it's still four to five times the overall spending forecast that we just shared with you in our predictions post of between 4 and 5% for the overall market. We think AWS is going to come in in around 93 billion this year with Azure closing in at over 71 billion. This is, again, we're talking IaaS here. Now, despite Amazon focusing investors on the fact that AWS's absolute dollar growth is still larger than its competitors. By our estimates Azure will come in at more than 75% of AWS's forecasted revenue. That's a significant milestone. AWS is operating margins by the way declined significantly this past quarter, dropping from 30% of revenue to 24%, 30% the year earlier to 24%. Now that's still extremely healthy and we've seen wild fluctuations like this before so I don't get too freaked out about that. But I'll say this, Microsoft has a marginal cost advantage relative to AWS because one, it has a captive cloud on which to run its massive software estate. So it can just throw software at its own cloud and two software marginal costs. Marginal economics despite AWS's awesomeness in high degrees of automation, software is just a better business. Now the upshot for AWS is the ecosystem. AWS is essentially in our view positioning very smartly as a platform for data partners like Snowflake and Databricks, security partners like CrowdStrike and Okta and Palo Alto and many others and SaaS companies. You know, Microsoft is more competitive even though AWS does have competitive products. Now of course Amazon's competitive to retail companies so that's another factor but generally speaking for tech players, Amazon is a really thriving ecosystem that is a secret weapon in our view. AWS happy to spin the meter with its partners even though it sells competitive products, you know, more so in our view than other cloud players. Microsoft, of course is, don't forget is hyping now, we're hearing a lot OpenAI and ChatGPT we reported last week in our predictions post. How OpenAI is shot up in terms of market sentiment in ETR's emerging technology company surveys and people are moving to Azure to get OpenAI and get ChatGPT that is a an interesting lever. Amazon in our view has to have a response. They have lots of AI and they're going to have to make some moves there. Meanwhile, Google is emphasizing itself as an AI first company. In fact, Google spent at least five minutes of continuous dialogue, nonstop on its AI chops during its latest earnings call. So that's an area that we're watching very closely as the buzz around large language models continues. All right, let's wrap up with some assumptions for 2023. We think SaaS players are going to continue to be sticky. They're going to be somewhat insulated from all these downdrafts because they're so tied in and customers, you know they make the commitment up front, you've got the lock in. Now having said that, we do expect some backlash over time on the onerous and generally customer unfriendly pricing models of most large SaaS companies. But that's going to play out over a longer period of time. Now for cloud generally and the hyperscalers specifically we do expect accelerating growth rates into Q3 but the amplitude of the demand swings from this rubber band economy, we expect to continue to compress and become more predictable throughout the year. Estimates are coming down, CEOs we think are going to be more cautious when the market snaps back more cautious about hiring and spending and as such a perhaps we expect a more orderly return to growth which we think will slightly accelerate in Q4 as comps get easier. Now of course the big risk to these scenarios is of course the economy, the FED, consumer spending, inflation, supply chain, energy prices, wars, geopolitics, China relations, you know, all the usual stuff. But as always with our partners at ETR and the Cube community, we're here for you. We have the data and we'll be the first to report when we see a change at the margin. Okay, that's a wrap for today. I want to thank Alex Morrison who's on production and manages the podcast, Ken Schiffman as well out of our Boston studio getting this up on LinkedIn Live. Thank you for that. Kristen Martin also and Cheryl Knight help get the word out on social media and in our newsletters. And Rob Hof is our Editor-in-Chief over at siliconangle.com. He does some great editing for us. Thank you all. Remember all these episodes are available as podcast. Wherever you listen, just search Breaking Analysis podcast. I publish each week on wikibon.com, at siliconangle.com where you can see all the data and you want to get in touch. Just all you can do is email me david.vellante@siliconangle.com or DM me @dvellante if you if you got something interesting, I'll respond. If you don't, it's either 'cause I'm swamped or it's just not tickling me. You can comment on our LinkedIn post as well. And please check out ETR.ai for the best survey data in the enterprise tech business. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching and we'll see you next time on Breaking Analysis. (gentle upbeat music)
SUMMARY :
From the Cube Studios and how long the pain is likely to last.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Alibaba | ORGANIZATION | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
January 2021 | DATE | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Rob Hof | PERSON | 0.99+ |
2.7% | QUANTITY | 0.99+ |
January | DATE | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
December | DATE | 0.99+ |
January of 2021 | DATE | 0.99+ |
five | QUANTITY | 0.99+ |
January 2023 | DATE | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
1.2 billion | QUANTITY | 0.99+ |
20% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
Databricks | ORGANIZATION | 0.99+ |
29% | QUANTITY | 0.99+ |
30% | QUANTITY | 0.99+ |
six factors | QUANTITY | 0.99+ |
second point | QUANTITY | 0.99+ |
24% | QUANTITY | 0.99+ |
2022 | DATE | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
X-axis | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
28% | QUANTITY | 0.99+ |
193.3 billion | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
38% | QUANTITY | 0.99+ |
7 billion | QUANTITY | 0.99+ |
21% | QUANTITY | 0.99+ |
Earth | LOCATION | 0.99+ |
25% | QUANTITY | 0.99+ |
Mongo | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Atlas | ORGANIZATION | 0.99+ |
two industries | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
six years | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
Red Hats | ORGANIZATION | 0.99+ |
35% | QUANTITY | 0.99+ |
four | QUANTITY | 0.99+ |
159 respondents | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Is Supercloud an Architecture or a Platform | Supercloud2
(electronic music) >> Hi everybody, welcome back to Supercloud 2. I'm Dave Vellante with my co-host John Furrier. We're here at our tricked out Palo Alto studio. We're going live wall to wall all day. We're inserting a number of pre-recorded interviews, folks like Walmart. We just heard from Nir Zuk of Palo Alto Networks, and I'm really pleased to welcome in David Flynn. David Flynn, you may know as one of the people behind Fusion-io, completely changed the way in which people think about storing data, accessing data. David Flynn now the founder and CEO of a company called Hammerspace. David, good to see you, thanks for coming on. >> David: Good to see you too. >> And Dr. Nelu Mihai is the CEO and founder of Cloud of Clouds. He's actually built a Supercloud. We're going to get into that. Nelu, thanks for coming on. >> Thank you, Happy New Year. >> Yeah, Happy New Year. So I'm going to start right off with a little debate that's going on in the community if you guys would bring out this slide. So Bob Muglia early today, he gave a definition of Supercloud. He felt like we had to tighten ours up a little bit. He said a Supercloud is a platform, underscoring platform, that provides programmatically consistent services hosted on heterogeneous cloud providers. Now, Nelu, we have this shared doc, and you've been in there. You responded, you said, well, hold on. Supercloud really needs to be an architecture, or else we're going to have this stove pipe of stove pipes, really. And then you went on with more detail, what's the information model? What's the execution model? How are users going to interact with Supercloud? So I start with you, why architecture? The inference is that a platform, the platform provider's responsible for the architecture? Why does that not work in your view? >> No, the, it's a very interesting question. So whenever I think about platform, what's the connotation, you think about monolithic system? Yeah, I mean, I don't know whether it's true or or not, but there is this connotation of of monolithic. On the other hand, if you look at what's a problem right now with HyperClouds, from the customer perspective, they're very complex. There is a heterogeneous world where actually every single one of this HyperClouds has their own architecture. You need rocket scientists to build a cloud applications. Always there is this contradiction between cost and performance. They fight each other. And I'm quoting here a former friend of mine from Bell Labs who work at AWS who used to say "Cloud is cheap as long as you don't use it too much." (group chuckles) So clearly we need something that kind of plays from the principle point of view the role of an operating system, that seats on top of this heterogeneous HyperCloud, and there's nothing wrong by having these proprietary HyperClouds, think about processors, think about operating system and so on, so forth. But in order to build a system that is simple enough, I think we need to go deeper and understand. >> So the argument, the counterargument to that, David, is you'll never get there. You need a proprietary system to get to market sooner, to solve today's problem. Now I don't know where you stand on this platform versus architecture. I haven't asked you, but. >> I think there are aspects of both for sure. I mean it needs to be an architecture in the sense that it's broad based and open and so forth. But you know, platform, you could say as long as people can instantiate it themselves, on their own infrastructure, as long as it's something that can be deployed as, you know, software defined, you don't want the concept of platform being the monolith, you know, combined hardware and software. So it really depends on what you're focused on when you're saying platform, you know, I'd say as long as they software defined thing, to where it can literally run anywhere. I mean, because I really think what we're talking about here is the original concept of cloud computing. The ability to run anything anywhere, without having to care about the physical infrastructure. And what we have today is not that, the cloud today is a big mainframe in the sky, that just happens to be large enough that once you select which region, generally you have enough resources. But, you know, nowadays you don't even necessarily have enough resources in one region. and then you're kind of stuck. So we haven't really gotten to that utility model of computing. And you're also asked to rewrite your application, you know, to abandon the conveniences of high performance file access. You got to rewrite it to use object storage stuff. We have to get away from that. >> Okay, I want to just drill on that, 'cause I think I like that point about, there's not enough availability, but on the developer cloud, the original AWS premise was targeting developers, 'cause at that time, you have to provision a Sun box get a Cisco DSU/CSU, now you get on the cloud. But I think you're giving up the scale question, 'cause I think right now, scale is huge, enterprise grade versus cloud for developers. >> That's Right. >> Because I mean look at, Amazon, Azure, they got compute, they got storage, they got queuing, and some stuff. If you're doing a startup, you throw your app up there, localhost to cloud, no big deal. It's the scale thing that gets me- >> And you can tell by the fact that, in regions that are under high demand, right, like in London or LA, at least with the clients we work with in the median entertainment space, it costs twice as much for the exact same cloud instances that do the exact same amount of work, as somewhere out in rural Canada. So why is it you have such a cost differential, it has to do with that supply and demand, and the fact that the clouds aren't really the ability to run anything anywhere. Even within the same cloud vendor, you're stuck in a specific region. >> And that was never the original promise, right? I mean it was, we turned it into that. But the original promise was get rid of the heavy lifting of IT. >> Not have to run your own, yeah, exactly. >> And then it became, wow, okay I can run anywhere. And then you know, it's like web 2.0. You know people say why Supercloud, you and I talked about this, why do you need a name for Supercloud? It's like web 2.0. >> It's what Cloud was supposed to be. >> It's what cloud was supposed to be, (group laughing and talking) exactly, right. >> Cloud was supposed to be run anything anywhere, or at least that's what we took it as. But you're right, originally it was just, oh don't have to run your own infrastructure, and you can choose somebody else's infrastructure. >> And you did that >> But you're still bound to that. >> Dave: And People said I want more, right? >> But how do we go from here? >> That's, that's actually, that's a very good point, because indeed when the first HyperClouds were designed, were designed really focus on customers. I think Supercloud is an opportunity to design in the right way. Also having in mind the computer science rigor. And we should take advantage of that, because in fact actually, if cloud would've been designed properly from the beginning, probably wouldn't have needed Supercloud. >> David: You wouldn't have to have been asked to rewrite your application. >> That's correct. (group laughs) >> To use REST interfaces to your storage. >> Revisist history is always a good one. But look, cloud is great. I mean your point is cloud is a good thing. Don't hold it back. >> It is a very good thing. >> Let it continue. >> Let it go as as it is. >> Yeah, let that thing continue to grow. Don't impose restrictions on the cloud. Just refactor what you need to for scale or enterprise grade or availability. >> And you would agree with that, is that true or is it problem you're solving? >> Well yeah, I mean it, what the cloud is doing is absolutely necessary. What the public cloud vendors are doing is absolutely necessary. But what's been missing is how to provide a consistent interface, especially to persistent data. And have it be available across different regions, and across different clouds. 'cause data is a highly localized thing in current architecture. It only exists as rendered by the storage system that you put it in. Whether that's a legacy thing like a NetApp or an Isilon or even a cloud data service. It's localized to a specific region of the cloud in which you put that. We have to delocalize data, and provide a consistent interface to it across all sites. That's high performance, local access, but to global data. >> And so Walmart earlier today described their, what we call Supercloud, they call it the Walmart cloud native platform. And they use this triplet model. They have AWS and Azure, no, oh sorry, no AWS. They have Azure and GCP and then on-prem, where all the VMs live. When you, you know, probe, it turns out that it's only stateless in the cloud. (John laughs) So, the state stuff- >> Well let's just admit it, there is no such thing as stateless, because even the application binaries and libraries are state. >> Well I'm happy that I'm hearing that. >> Yeah, okay. >> Because actually I have a lot of debate (indistinct). If you think about no software running on a (indistinct) machine is stateless. >> David: Exactly. >> This is something that was- >> David: And that's data that needs to be distributed and provided consistently >> (indistinct) >> Across all the clouds, >> And actually, it's a nonsense, but- >> Dave: So it's an illusion, okay. (group talks over each other) >> (indistinct) you guys talk about stateless. >> Well, see, people make the confusion between state and persistent state, okay. Persistent state it's a different thing. State is a different thing. So, but anyway, I want to go back to your point, because there's a lot of debate here. People are talking about data, some people are talking about logic, some people are talking about networking. In my opinion is this triplet, which is data logic and connectivity, that has equal importance. And actually depending on the application, can have the center of gravity moving towards data, moving towards what I call execution units or workloads. And connectivity is actually the most important part of it. >> David: (indistinct). >> Some people are saying move the logic towards the data, some other people, and you are saying actually, that no, you have to build a distributed data mesh. What I'm saying is actually, you have to consider all these three variables, all these vector in order to decide, based on application, what's the most important. Because sometimes- >> John: So the application chooses >> That's correct. >> Well it it's what operating systems were in the past, was principally the thing that runs and manages the jobs, the job scheduler, and the thing that provides your persistent data (indistinct). >> Okay. So we finally got operating system into the equation, thank you. (group laughs) >> Nelu: I actually have a PhD in operating system. >> Cause what we're talking about is an operating system. So forget platform or architecture, it's an operating environment. Let's use it as a general term. >> All right. I think that's about it for me. >> All right, let's take (indistinct). Nelu, I want ask you quick, 'cause I want to give a, 'cause I believe it's an operating system. I think it's going to be a reset, refactored. You wrote to me, "The model of Supercloud has to be open theoretical, has to satisfy the rigors of computer science, and customer requirements." So unique to today, if the OS is going to be refactored, it's not going to be, may or may not be Red Hat or somebody else. This new OS, obviously requirements are for customers too but is what's the computer science that is needed? Where are we, what's the missing? Where's the science in this shift? It's not your standard OS it's not like an- (group talks over each other) >> I would beg to differ. >> (indistinct) truly an operation environment. But the, if you think about, and make analogies, what you need when you design a distributed system, well you need an information model, yeah. You need to figure out how the data is located and distributed. You need a model for the execution units, and you need a way to describe the interactions between all these objects. And it is my opinion that we need to go deeper and formalize these operations in order to make a step forward. And when we design Supercloud, and design something that is better than the current HyperClouds. And actually that is when we design something better, you make a system more efficient and it's going to be better from the cost point of view, from the performance point of view. But we need to add some math into all this customer focus centering and I really admire AWS and their executive team focusing on the customer. But now it's time to go back and see, if we apply some computer science, if you try to formalize to build a theoretical model of cloud, can we build a system that is better than existing ones? >> So David, how do you- >> this is what I'm saying. >> That's a good question >> How do You see the operating system of a, or operating environment of a decentralized cloud? >> Well I think it's layered. I mean we have operating systems that can run systems quite efficiently. Linux has sort of one in the data center, but we're talking about a layer on top of that. And I think we're seeing the emergence of that. For example, on the job scheduling side of things, Kubernetes makes a really good example. You know, you break the workload into the most granular units of compute, the containerized microservice, and then you use a declarative model to state what is needed and give the system the degrees of freedom that it can choose how to instantiate it. Because the thing about these distributed systems, is that the complexity explodes, right? Running a piece of hardware, running a single server is not a problem, even with all the many cores and everything like that. It's when you start adding in the networking, and making it so that you have many of them. And then when it's going across whole different data centers, you know, so, at that level the way you solve this is not manually (group laughs) and not procedurally. You have to change the language so it's intent based, it's a declarative model, and what you're stating is what is intended, and you're leaving it to more advanced techniques, like machine learning to decide how to instantiate that service across the cluster, which is what Kubernetes does, or how to instantiate the data across the diverse storage infrastructure. And that's what we do. >> So that's a very good point because actually what has been neglected with HyperClouds is really optimization and automation. But in order to be able to do both of these things, you need, I'm going back and I'm stubborn, you need to have a mathematical model, a theoretical model because what does automation mean? It means that we have to put machines to do the work instead of us, and machines work with what? Formula, with algorithms, they don't work with services. So I think Supercloud is an opportunity to underscore the importance of optimization and automation- >> Totally agree. >> In HyperCloud, and actually by doing that, we can also have an interesting connotation. We are also contributing to save our planet, because if you think right now. we're consuming a lot of energy on this HyperClouds and also all this AI applications, and I think we can do better and build the same kind of application using less energy. >> So yeah, great point, love that call out, the- you know, Dave and I always joke about the old, 'cause we're old, we talk about, you know, (Nelu Laughs) old history, OS/2 versus DOS, okay, OS's, OS/2 is silly better, first threaded OS, DOS never went away. So how does legacy play into this conversation? Because I buy the theoretical, I love the conversation. Okay, I think it's an OS, totally see it that way myself. What's the blocker? Is there a legacy that drags it back? Is the anchor dragging from legacy? Is there a DOS OS/2 moment? Is there an opportunity to flip the script? This is- >> I think that's a perfect example of why we need to support the existing interfaces, Operating Systems, real operating systems like Linux, understands how to present data, it's called a file system, block devices, things that that plumb in there. And by, you know, going to a REST interface and S3 and telling people they have to rewrite their applications, you can't even consume your application binaries that way, the OS doesn't know how to pull that sort of thing. So we, to get to cloud, to get to the ability to host massive numbers of tenants within a centralized infrastructure, you know, we abandoned these lower level interfaces to the OS and we have to go back to that. It's the reason why DOS ultimately won, is it had the momentum of the install base. We're seeing the same thing here. Whatever it is, it has to be a real file system and not a come down file system >> Nelu, what's your reaction, 'cause you're in the theoretical bandwagon. Let's get your reaction. >> No, I think it's a good, I'll give, you made a good analogy between OS/2 and DOS, but I'll go even farther saying, if you think about the evolution operating system didn't stop the evolution of underlying microprocessors, hardware, and so on and so forth. On the contrary, it was a catalyst for that. So because everybody could develop their own hardware, without worrying that the applications on top of operating system are going to modify. The same thing is going to happen with Supercloud. You're going to have the AWSs, you're going to have the Azure and the the GCP continue to evolve in their own way proprietary. But if we create on top of it the right interface >> The open, this is why open is important. >> That's correct, because actually you're going to see sometime ago, everybody was saying, remember venture capitals were saying, "AWS killed the world, nobody's going to come." Now you see what Oracle is doing, and then you're going to see other players. >> It's funny, Amazon's trying to be more like Microsoft. Microsoft's trying to be more like Amazon and Google- Oracle's just trying to say they have cloud. >> That's, that's correct, (group laughs) so, my point is, you're going to see a multiplication of this HyperClouds and cloud technology. So, the system has to be open in order to accommodate what it is and what is going to come. Okay, so it's open. >> So the the legacy- so legacy is an opportunity, not a blocker in your mind. And you see- >> That's correct, I think we should allow them to continue to to to be their own actually. But maybe you're going to find a way to connect with it. >> Amazon's the processor, and they're on the 80 80 80 right? >> That's correct. >> You're saying you love people trying to get put to work. >> That's a good analogy. >> But, performance levels you say good luck, right? >> Well yeah, we have to be able to take traditional applications, high performance applications, those that consume file system and persistent data. Those things have to be able to run anywhere. You need to be able to put, put them onto, you know, more elastic infrastructure. So, we have to actually get cloud to where it lives up to its billing. >> And that's what you're solving for, with Hammerspace, >> That's what we're solving for, making it possible- >> Give me the bumper sticker. >> Solving for how do you have massive quantities of unstructured file data? At the end of the day, all data ultimately is unstructured data. Have that persistent data available, across any data center, within any cloud, within any region on-prem, at the edge. And have not just the same APIs, but have the exact same data sets, and not sucked over a straw remote, but at extreme high performance, local access. So how do you have local access to globally shared distributed data? And that's what we're doing. We are orchestrating data globally across all different forms of storage infrastructure, so you have a consistent access at the highest performance levels, at the lowest level innate built into the OS, how to consume it as (indistinct) >> So are you going into the- all the clouds and natively building in there, or are you off cloud? >> So This is software that can run on cloud instances and provide high performance file within the cloud. It can take file data that's on-prem. Again, it's software, it can run in virtual or on physical servers. And it abstracts the data from the existing storage infrastructure, and makes the data visible and consumable and orchestratable across any of it. >> And what's the elevator pitch for Cloud of Cloud, give that too. >> Well, Cloud of Clouds creates a theoretical model of cloud, and it describes every single object in the cloud. Where is data, execution units, and connectivity, with one single class of very simple object. And I can, I can give you (indistinct) >> And the problem that solves is what? >> The problem that solves is, it creates this mathematical model that is necessary in order to do other interesting things, such as optimization, using sata engines, using automation, applying ML for instance. Or deep learning to automate all this clouds, if you think about in the industrial field, we know how to manage and automate huge plants. Why wouldn't it do the same thing in cloud? It's the same thing you- >> That's what you mean by theoretical model. >> Nelu: That's correct. >> Lay out the architecture, almost the bones of skeleton or something, or, and then- >> That's correct, and then on top of it you can actually build a platform, You can create your services, >> when you say math, you mean you put numbers to it, you kind of index it. >> You quantify this thing and you apply mathematical- It's really about, I can disclose this thing. It's really about describing the cloud as a knowledge graph for every single object in the graph for node, an edge is a vector. And then once you have this model, then you can apply the field theory, and linear algebra to do operation with these vectors. And it's, this creates a very interesting opportunity to let the math do this thing for us. >> Okay, so what happens with hyperscale, or it's like AWS in your model. >> So in, in my model actually, >> Are they happy with this, or they >> I'm very happy with that. >> Will they be happy with you? >> We create an interface to every single HyperCloud. We actually, we don't need to interface with the thousands of APIs, but you know, if we have the 80 20 rule, and we map these APIs into this graph, and then every single operation that is done in this graph is done from the beginning, in an optimized manner and also automation ready. >> That's going to be great. David, I want us to go back to you before we close real quick. You've had a lot of experience, multiple ventures on the front end. You talked to a lot of customers who've been innovating. Where are the classic (indistinct)? Cause you, you used to sell and invent product around the old school enterprises with storage, you know that that trajectory storage is still critical to store the data. Where's the classic enterprise grade mindset right now? Those customers that were buying, that are buying storage, they're in the cloud, they're lifting and shifting. They not yet put the throttle on DevOps. When they look at this Supercloud thing, Are they like a deer in the headlights, or are they like getting it? What's the, what's the classic enterprise look like? >> You're seeing people at different stages of adoption. Some folks are trying to get to the cloud, some folks are trying to repatriate from the cloud, because they've realized it's better to own than to rent when you use a lot of it. And so people are at very different stages of the journey. But the one thing that's constant is that there's always change. And the change here has to do with being able to change the location where you're doing your computing. So being able to support traditional workloads in the cloud, being able to run things at the edge, and being able to rationalize where the data ought to exist, and with a declarative model, intent-based, business objective-based, be able to swipe a mouse and have the data get redistributed and positioned across different vendors, across different clouds, that, we're seeing that as really top of mind right now, because everybody's at some point on this journey, trying to go somewhere, and it involves taking their data with them. (John laughs) >> Guys, great conversation. Thanks so much for coming on, for John, Dave. Stay tuned, we got a great analyst power panel coming right up. More from Palo Alto, Supercloud 2. Be right back. (bouncy music)
SUMMARY :
and I'm really pleased to And Dr. Nelu Mihai is the CEO So I'm going to start right off On the other hand, if you look at what's So the argument, the of platform being the monolith, you know, but on the developer cloud, It's the scale thing that gets me- the ability to run anything anywhere. of the heavy lifting of IT. Not have to run your And then you know, it's like web 2.0. It's what Cloud It's what cloud was supposed to be, and you can choose somebody bound to that. Also having in mind the to rewrite your application. That's correct. I mean your point is Yeah, let that thing continue to grow. of the cloud in which you put that. So, the state stuff- because even the application binaries If you think about no software running on Dave: So it's an illusion, okay. (indistinct) you guys talk And actually depending on the application, that no, you have to build the job scheduler, and the thing the equation, thank you. a PhD in operating system. about is an operating system. I think I think it's going to and it's going to be better at that level the way you But in order to be able to and build the same kind of Because I buy the theoretical, the OS doesn't know how to Nelu, what's your reaction, of it the right interface The open, this is "AWS killed the world, to be more like Microsoft. So, the system has to be open So the the legacy- to continue to to to put to work. You need to be able to put, And have not just the same APIs, and makes the data visible and consumable for Cloud of Cloud, give that too. And I can, I can give you (indistinct) It's the same thing you- That's what you mean when you say math, and linear algebra to do Okay, so what happens with hyperscale, the thousands of APIs, but you know, the old school enterprises with storage, and being able to rationalize Stay tuned, we got a
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
David | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Nelu | PERSON | 0.99+ |
David Flynn | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
AWS | ORGANIZATION | 0.99+ |
London | LOCATION | 0.99+ |
John Furrier | PERSON | 0.99+ |
LA | LOCATION | 0.99+ |
Bob Muglia | PERSON | 0.99+ |
OS/2 | TITLE | 0.99+ |
Nir Zuk | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Hammerspace | ORGANIZATION | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Bell Labs | ORGANIZATION | 0.99+ |
Nelu Mihai | PERSON | 0.99+ |
DOS | TITLE | 0.99+ |
AWSs | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
twice | QUANTITY | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
today | DATE | 0.99+ |
Canada | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Supercloud | ORGANIZATION | 0.99+ |
Nelu Laughs | PERSON | 0.98+ |
thousands | QUANTITY | 0.98+ |
first | QUANTITY | 0.97+ |
Linux | TITLE | 0.97+ |
HyperCloud | TITLE | 0.97+ |
Cloud of Cloud | TITLE | 0.97+ |
one | QUANTITY | 0.96+ |
Cloud of Clouds | ORGANIZATION | 0.95+ |
GCP | TITLE | 0.95+ |
Azure | TITLE | 0.94+ |
three variables | QUANTITY | 0.94+ |
one single class | QUANTITY | 0.94+ |
single server | QUANTITY | 0.94+ |
triplet | QUANTITY | 0.94+ |
one region | QUANTITY | 0.92+ |
NetApp | TITLE | 0.92+ |
DOS OS/2 | TITLE | 0.92+ |
Azure | ORGANIZATION | 0.92+ |
earlier today | DATE | 0.92+ |
Cloud of Clouds | TITLE | 0.91+ |
Jack Greenfield, Walmart | A Dive into Walmart's Retail Supercloud
>> Welcome back to SuperCloud2. This is Dave Vellante, and we're here with Jack Greenfield. He's the Vice President of Enterprise Architecture and the Chief Architect for the global technology platform at Walmart. Jack, I want to thank you for coming on the program. Really appreciate your time. >> Glad to be here, Dave. Thanks for inviting me and appreciate the opportunity to chat with you. >> Yeah, it's our pleasure. Now we call what you've built a SuperCloud. That's our term, not yours, but how would you describe the Walmart Cloud Native Platform? >> So WCNP, as the acronym goes, is essentially an implementation of Kubernetes for the Walmart ecosystem. And what that means is that we've taken Kubernetes off the shelf as open source, and we have integrated it with a number of foundational services that provide other aspects of our computational environment. So Kubernetes off the shelf doesn't do everything. It does a lot. In particular the orchestration of containers, but it delegates through API a lot of key functions. So for example, secret management, traffic management, there's a need for telemetry and observability at a scale beyond what you get from raw Kubernetes. That is to say, harvesting the metrics that are coming out of Kubernetes and processing them, storing them in time series databases, dashboarding them, and so on. There's also an angle to Kubernetes that gets a lot of attention in the daily DevOps routine, that's not really part of the open source deliverable itself, and that is the DevOps sort of CICD pipeline-oriented lifecycle. And that is something else that we've added and integrated nicely. And then one more piece of this picture is that within a Kubernetes cluster, there's a function that is critical to allowing services to discover each other and integrate with each other securely and with proper configuration provided by the concept of a service mesh. So Istio, Linkerd, these are examples of service mesh technologies. And we have gone ahead and integrated actually those two. There's more than those two, but we've integrated those two with Kubernetes. So the net effect is that when a developer within Walmart is going to build an application, they don't have to think about all those other capabilities where they come from or how they're provided. Those are already present, and the way the CICD pipelines are set up, it's already sort of in the picture, and there are configuration points that they can take advantage of in the primary YAML and a couple of other pieces of config that we supply where they can tune it. But at the end of the day, it offloads an awful lot of work for them, having to stand up and operate those services, fail them over properly, and make them robust. All of that's provided for. >> Yeah, you know, developers often complain they spend too much time wrangling and doing things that aren't productive. So I wonder if you could talk about the high level business goals of the initiative in terms of the hardcore benefits. Was the real impetus to tap into best of breed cloud services? Were you trying to cut costs? Maybe gain negotiating leverage with the cloud guys? Resiliency, you know, I know was a major theme. Maybe you could give us a sense of kind of the anatomy of the decision making process that went in. >> Sure, and in the course of answering your question, I think I'm going to introduce the concept of our triplet architecture which we haven't yet touched on in the interview here. First off, just to sort of wrap up the motivation for WCNP itself which is kind of orthogonal to the triplet architecture. It can exist with or without it. Currently does exist with it, which is key, and I'll get to that in a moment. The key drivers, business drivers for WCNP were developer productivity by offloading the kinds of concerns that we've just discussed. Number two, improving resiliency, that is to say reducing opportunity for human error. One of the challenges you tend to run into in a large enterprise is what we call snowflakes, lots of gratuitously different workloads, projects, configurations to the extent that by developing and using WCNP and continuing to evolve it as we have, we end up with cookie cutter like consistency across our workloads which is super valuable when it comes to building tools or building services to automate operations that would otherwise be manual. When everything is pretty much done the same way, that becomes much simpler. Another key motivation for WCNP was the ability to abstract from the underlying cloud provider. And this is going to lead to a discussion of our triplet architecture. At the end of the day, when one works directly with an underlying cloud provider, one ends up taking a lot of dependencies on that particular cloud provider. Those dependencies can be valuable. For example, there are best of breed services like say Cloud Spanner offered by Google or say Cosmos DB offered by Microsoft that one wants to use and one is willing to take the dependency on the cloud provider to get that functionality because it's unique and valuable. On the other hand, one doesn't want to take dependencies on a cloud provider that don't add a lot of value. And with Kubernetes, we have the opportunity, and this is a large part of how Kubernetes was designed and why it is the way it is, we have the opportunity to sort of abstract from the underlying cloud provider for stateless workloads on compute. And so what this lets us do is build container-based applications that can run without change on different cloud provider infrastructure. So the same applications can run on WCNP over Azure, WCNP over GCP, or WCNP over the Walmart private cloud. And we have a private cloud. Our private cloud is OpenStack based and it gives us some significant cost advantages as well as control advantages. So to your point, in terms of business motivation, there's a key cost driver here, which is that we can use our own private cloud when it's advantageous and then use the public cloud provider capabilities when we need to. A key place with this comes into play is with elasticity. So while the private cloud is much more cost effective for us to run and use, it isn't as elastic as what the cloud providers offer, right? We don't have essentially unlimited scale. We have large scale, but the public cloud providers are elastic in the extreme which is a very powerful capability. So what we're able to do is burst, and we use this term bursting workloads into the public cloud from the private cloud to take advantage of the elasticity they offer and then fall back into the private cloud when the traffic load diminishes to the point where we don't need that elastic capability, elastic capacity at low cost. And this is a very important paradigm that I think is going to be very commonplace ultimately as the industry evolves. Private cloud is easier to operate and less expensive, and yet the public cloud provider capabilities are difficult to match. >> And the triplet, the tri is your on-prem private cloud and the two public clouds that you mentioned, is that right? >> That is correct. And we actually have an architecture in which we operate all three of those cloud platforms in close proximity with one another in three different major regions in the US. So we have east, west, and central. And in each of those regions, we have all three cloud providers. And the way it's configured, those data centers are within 10 milliseconds of each other, meaning that it's of negligible cost to interact between them. And this allows us to be fairly agnostic to where a particular workload is running. >> Does a human make that decision, Jack or is there some intelligence in the system that determines that? >> That's a really great question, Dave. And it's a great question because we're at the cusp of that transition. So currently humans make that decision. Humans choose to deploy workloads into a particular region and a particular provider within that region. That said, we're actively developing patterns and practices that will allow us to automate the placement of the workloads for a variety of criteria. For example, if in a particular region, a particular provider is heavily overloaded and is unable to provide the level of service that's expected through our SLAs, we could choose to fail workloads over from that cloud provider to a different one within the same region. But that's manual today. We do that, but people do it. Okay, we'd like to get to where that happens automatically. In the same way, we'd like to be able to automate the failovers, both for high availability and sort of the heavier disaster recovery model between, within a region between providers and even within a provider between the availability zones that are there, but also between regions for the sort of heavier disaster recovery or maintenance driven realignment of workload placement. Today, that's all manual. So we have people moving workloads from region A to region B or data center A to data center B. It's clean because of the abstraction. The workloads don't have to know or care, but there are latency considerations that come into play, and the humans have to be cognizant of those. And automating that can help ensure that we get the best performance and the best reliability. >> But you're developing the dataset to actually, I would imagine, be able to make those decisions in an automated fashion over time anyway. Is that a fair assumption? >> It is, and that's what we're actively developing right now. So if you were to look at us today, we have these nice abstractions and APIs in place, but people run that machine, if you will, moving toward a world where that machine is fully automated. >> What exactly are you abstracting? Is it sort of the deployment model or, you know, are you able to abstract, I'm just making this up like Azure functions and GCP functions so that you can sort of run them, you know, with a consistent experience. What exactly are you abstracting and how difficult was it to achieve that objective technically? >> that's a good question. What we're abstracting is the Kubernetes node construct. That is to say a cluster of Kubernetes nodes which are typically VMs, although they can run bare metal in certain contexts, is something that typically to stand up requires knowledge of the underlying cloud provider. So for example, with GCP, you would use GKE to set up a Kubernetes cluster, and in Azure, you'd use AKS. We are actually abstracting that aspect of things so that the developers standing up applications don't have to know what the underlying cluster management provider is. They don't have to know if it's GCP, AKS or our own Walmart private cloud. Now, in terms of functions like Azure functions that you've mentioned there, we haven't done that yet. That's another piece that we have sort of on our radar screen that, we'd like to get to is serverless approach, and the Knative work from Google and the Azure functions, those are things that we see good opportunity to use for a whole variety of use cases. But right now we're not doing much with that. We're strictly container based right now, and we do have some VMs that are running in sort of more of a traditional model. So our stateful workloads are primarily VM based, but for serverless, that's an opportunity for us to take some of these stateless workloads and turn them into cloud functions. >> Well, and that's another cost lever that you can pull down the road that's going to drop right to the bottom line. Do you see a day or maybe you're doing it today, but I'd be surprised, but where you build applications that actually span multiple clouds or is there, in your view, always going to be a direct one-to-one mapping between where an application runs and the specific cloud platform? >> That's a really great question. Well, yes and no. So today, application development teams choose a cloud provider to deploy to and a location to deploy to, and they have to get involved in moving an application like we talked about today. That said, the bursting capability that I mentioned previously is something that is a step in the direction of automatic migration. That is to say we're migrating workload to different locations automatically. Currently, the prototypes we've been developing and that we think are going to eventually make their way into production are leveraging Istio to assess the load incoming on a particular cluster and start shedding that load into a different location. Right now, the configuration of that is still manual, but there's another opportunity for automation there. And I think a key piece of this is that down the road, well, that's a, sort of a small step in the direction of an application being multi provider. We expect to see really an abstraction of the fact that there is a triplet even. So the workloads are moving around according to whatever the control plane decides is necessary based on a whole variety of inputs. And at that point, you will have true multi-cloud applications, applications that are distributed across the different providers and in a way that application developers don't have to think about. >> So Walmart's been a leader, Jack, in using data for competitive advantages for decades. It's kind of been a poster child for that. You've got a mountain of IP in the form of data, tools, applications best practices that until the cloud came out was all On Prem. But I'm really interested in this idea of building a Walmart ecosystem, which obviously you have. Do you see a day or maybe you're even doing it today where you take what we call the Walmart SuperCloud, WCNP in your words, and point or turn that toward an external world or your ecosystem, you know, supporting those partners or customers that could drive new revenue streams, you know directly from the platform? >> Great question, Steve. So there's really two things to say here. The first is that with respect to data, our data workloads are primarily VM basis. I've mentioned before some VMware, some straight open stack. But the key here is that WCNP and Kubernetes are very powerful for stateless workloads, but for stateful workloads tend to be still climbing a bit of a growth curve in the industry. So our data workloads are not primarily based on WCNP. They're VM based. Now that said, there is opportunity to make some progress there, and we are looking at ways to move things into containers that are currently running in VMs which are stateful. The other question you asked is related to how we expose data to third parties and also functionality. Right now we do have in-house, for our own use, a very robust data architecture, and we have followed the sort of domain-oriented data architecture guidance from Martin Fowler. And we have data lakes in which we collect data from all the transactional systems and which we can then use and do use to build models which are then used in our applications. But right now we're not exposing the data directly to customers as a product. That's an interesting direction that's been talked about and may happen at some point, but right now that's internal. What we are exposing to customers is applications. So we're offering our global integrated fulfillment capabilities, our order picking and curbside pickup capabilities, and our cloud powered checkout capabilities to third parties. And this means we're standing up our own internal applications as externally facing SaaS applications which can serve our partners' customers. >> Yeah, of course, Martin Fowler really first introduced to the world Zhamak Dehghani's data mesh concept and this whole idea of data products and domain oriented thinking. Zhamak Dehghani, by the way, is a speaker at our event as well. Last question I had is edge, and how you think about the edge? You know, the stores are an edge. Are you putting resources there that sort of mirror this this triplet model? Or is it better to consolidate things in the cloud? I know there are trade-offs in terms of latency. How are you thinking about that? >> All really good questions. It's a challenging area as you can imagine because edges are subject to disconnection, right? Or reduced connection. So we do place the same architecture at the edge. So WCNP runs at the edge, and an application that's designed to run at WCNP can run at the edge. That said, there are a number of very specific considerations that come up when running at the edge, such as the possibility of disconnection or degraded connectivity. And so one of the challenges we have faced and have grappled with and done a good job of I think is dealing with the fact that applications go offline and come back online and have to reconnect and resynchronize, the sort of online offline capability is something that can be quite challenging. And we have a couple of application architectures that sort of form the two core sets of patterns that we use. One is an offline/online synchronization architecture where we discover that we've come back online, and we understand the differences between the online dataset and the offline dataset and how they have to be reconciled. The other is a message-based architecture. And here in our health and wellness domain, we've developed applications that are queue based. So they're essentially business processes that consist of multiple steps where each step has its own queue. And what that allows us to do is devote whatever bandwidth we do have to those pieces of the process that are most latency sensitive and allow the queue lengths to increase in parts of the process that are not latency sensitive, knowing that they will eventually catch up when the bandwidth is restored. And to put that in a little bit of context, we have fiber lengths to all of our locations, and we have I'll just use a round number, 10-ish thousand locations. It's larger than that, but that's the ballpark, and we have fiber to all of them, but when the fiber is disconnected, and it does get disconnected on a regular basis. In fact, I forget the exact number, but some several dozen locations get disconnected daily just by virtue of the fact that there's construction going on and things are happening in the real world. When the disconnection happens, we're able to fall back to 5G and to Starlink. Starlink is preferred. It's a higher bandwidth. 5G if that fails. But in each of those cases, the bandwidth drops significantly. And so the applications have to be intelligent about throttling back the traffic that isn't essential, so that it can push the essential traffic in those lower bandwidth scenarios. >> So much technology to support this amazing business which started in the early 1960s. Jack, unfortunately, we're out of time. I would love to have you back or some members of your team and drill into how you're using open source, but really thank you so much for explaining the approach that you've taken and participating in SuperCloud2. >> You're very welcome, Dave, and we're happy to come back and talk about other aspects of what we do. For example, we could talk more about the data lakes and the data mesh that we have in place. We could talk more about the directions we might go with serverless. So please look us up again. Happy to chat. >> I'm going to take you up on that, Jack. All right. This is Dave Vellante for John Furrier and the Cube community. Keep it right there for more action from SuperCloud2. (upbeat music)
SUMMARY :
and the Chief Architect for and appreciate the the Walmart Cloud Native Platform? and that is the DevOps Was the real impetus to tap into Sure, and in the course And the way it's configured, and the humans have to the dataset to actually, but people run that machine, if you will, Is it sort of the deployment so that the developers and the specific cloud platform? and that we think are going in the form of data, tools, applications a bit of a growth curve in the industry. and how you think about the edge? and allow the queue lengths to increase for explaining the and the data mesh that we have in place. and the Cube community.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Steve | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Jack Greenfield | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Jack | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
Martin Fowler | PERSON | 0.99+ |
US | LOCATION | 0.99+ |
Zhamak Dehghani | PERSON | 0.99+ |
Today | DATE | 0.99+ |
each | QUANTITY | 0.99+ |
One | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
Starlink | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two things | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
three | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
each step | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
early 1960s | DATE | 0.98+ |
one | QUANTITY | 0.98+ |
a day | QUANTITY | 0.98+ |
GCP | TITLE | 0.97+ |
Azure | TITLE | 0.96+ |
WCNP | TITLE | 0.96+ |
10 milliseconds | QUANTITY | 0.96+ |
both | QUANTITY | 0.96+ |
Kubernetes | TITLE | 0.94+ |
Cloud Spanner | TITLE | 0.94+ |
Linkerd | ORGANIZATION | 0.93+ |
Cube | ORGANIZATION | 0.93+ |
triplet | QUANTITY | 0.92+ |
three cloud providers | QUANTITY | 0.91+ |
two core sets | QUANTITY | 0.88+ |
John Furrier | PERSON | 0.86+ |
one more piece | QUANTITY | 0.86+ |
SuperCloud2 | ORGANIZATION | 0.86+ |
two public clouds | QUANTITY | 0.86+ |
thousand locations | QUANTITY | 0.83+ |
Vice President | PERSON | 0.8+ |
10-ish | QUANTITY | 0.79+ |
WCNP | ORGANIZATION | 0.75+ |
decades | QUANTITY | 0.75+ |
three different major regions | QUANTITY | 0.74+ |
Breaking Analysis: CIOs in a holding pattern but ready to strike at monetization
>> From theCUBE Studios in Palo Alto and Boston, bringing you data-driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> Recent conversations with IT decision makers show a stark contrast between exiting 2023 versus the mindset when we were leaving 2022. CIOs are generally funding new initiatives by pushing off or cutting lower priority items, while security efforts are still being funded. Those that enable business initiatives that generate revenue or taking priority over cleaning up legacy technical debt. The bottom line is, for the moment, at least, the mindset is not cut everything, rather, it's put a pause on cleaning up legacy hairballs and fund monetization. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we tap recent discussions from two primary sources, year-end ETR roundtables with IT decision makers, and CUBE conversations with data, cloud, and IT architecture practitioners. The sources of data for this breaking analysis come from the following areas. Eric Bradley's recent ETR year end panel featured a financial services DevOps and SRE manager, a CSO in a large hospitality firm, a director of IT for a big tech company, the head of IT infrastructure for a financial firm, and a CTO for global travel enterprise, and for our upcoming Supercloud2 conference on January 17th, which you can register free by the way, at supercloud.world, we've had CUBE conversations with data and cloud practitioners, specifically, heads of data in retail and financial services, a cloud architect and a biotech firm, the director of cloud and data at a large media firm, and the director of engineering at a financial services company. Now we've curated commentary from these sources and now we share them with you today as anecdotal evidence supporting what we've been reporting on in the marketplace for these last couple of quarters. On this program, we've likened the economy to the slingshot effect when you're driving, when you're cruising along at full speed on the highway, and suddenly you see red brake lights up ahead, so, you tap your own brakes and then you speed up again, and traffic is moving along at full speed, so, you think nothing of it, and then, all of a sudden, the same thing happens. You slow down to a crawl and you start wondering, "What the heck is happening?" And you become a lot more cautious about the rate of acceleration when you start moving again. Well, that's the trend in IT spend right now. Back in June, we reported that despite the macro headwinds, CIOs were still expecting 6% to 7% spending growth for 2022. Now that was down from 8%, which we reported at the beginning of 2022. That was before Ukraine, and Fed tightening, but given those two factors, you know that that seemed pretty robust, but throughout the fall, we began reporting consistently declining expectations where CIOs are now saying Q4 will come in at around 3% growth relative to last year, and they're expecting, or should we say hoping that it pops back up in 2023 to 4% to 5%. The recent ETR panelists, when they heard this, are saying based on their businesses and discussions with their peers, they could see low single digit growth for 2023, so, 1%, 2%, 3%, so, this sort of slingshotting, or sometimes we call it a seesaw economy, has caught everyone off guard. Amazon is a good example of this, and there are others, but Amazon entered the pandemic with around 800,000 employees. It doubled that workforce during the pandemic. Now, right before Thanksgiving in 2022, Amazon announced that it was laying off 10,000 employees, and, Jassy, the CEO of Amazon, just last week announced that number is now going to grow to 18,000. Now look, this is a rounding error at Amazon from a headcount standpoint and their headcount remains far above 2019 levels. Its stock price, however, does not and it's back down to 2019 levels. The point is that visibility is very poor right now and it's reflected in that uncertainty. We've seen a lot of layoffs, obviously, the stock market's choppy, et cetera. Now importantly, not everything is on hold, and this downturn is different from previous tech pullbacks in that the speed at which new initiatives can be rolled out is much greater thanks to the cloud, and if you can show a fast return, you're going to get funding. Organizations are pausing on the cleanup of technical debt, unless it's driving fast business value. They're holding off on modernization projects. Those business enablement initiatives are still getting funded. CIOs are finding the money by consolidating redundant vendors, and they're stealing from other pockets of budget, so, it's not surprising that cybersecurity remains the number one technology priority in 2023. We've been reporting that for quite some time now. It's specifically cloud, cloud native security container and API security. That's where all the action is, because there's still holes to plug from that forced march to digital that occurred during COVID. Cloud migration, kind of showing here on number two on this chart, still a high priority, while optimizing cloud spend is definitely a strategy that organizations are taking to cut costs. It's behind consolidating redundant vendors by a long shot. There's very little evidence that cloud repatriation, i.e., moving workloads back on prem is a major cost cutting trend. The data just doesn't show it. What is a trend is getting more real time with analytics, so, companies can do faster and more accurate customer targeting, and they're really prioritizing that, obviously, in this down economy. Real time, we sometimes lose it, what's real time? Real time, we sometimes define as before you lose the customer. Now in the hiring front, customers tell us they're still having a hard time finding qualified site reliability engineers, SREs, Kubernetes expertise, and deep analytics pros. These job markets remain very tight. Let's stay with security for just a moment. We said many times that, prior to COVID, zero trust was this undefined buzzword, and the joke, of course, is, if you ask three people, "What is zero trust?" You're going to get three different answers, but the truth is that virtually every security company that was resisting taking a position on zero trust in an attempt to avoid... They didn't want to get caught up in the buzzword vortex, but they're now really being forced to go there by CISOs, so, there are some good quotes here on cyber that we want to share that came out of the recent conversations that we cited up front. The first one, "Zero trust is the highest ROI, because it enables business transformation." In other words, if I can have good security, I can move fast, it's not a blocker anymore. Second quote here, "ZTA," zero trust architecture, "Is more than securing the perimeter. It encompasses strong authentication and multiple identity layers. It requires taking a software approach to security instead of a hardware focus." The next one, "I'd love to have a security data lake that I could apply to asset management, vulnerability management, incident management, incident response, and all aspects for my security team. I see huge promise in that space," and the last one, I see NLP, natural language processing, as the foundation for email security, so, instead of searching for IP addresses, you can now read emails at light speed and identify phishing threats, so, look at, this is a small snapshot of the mindset around security, but I'll add, when you talk to the likes of CrowdStrike, and Zscaler, and Okta, and Palo Alto Networks, and many other security firms, they're listening to these narratives around zero trust. I'm confident they're working hard on skating to this puck, if you will. A good example is this idea of a security data lake and using analytics to improve security. We're hearing a lot about that. We're hearing architectures, there's acquisitions in that regard, and so, that's becoming real, and there are many other examples, because data is at the heart of digital business. This is the next area that we want to talk about. It's obvious that data, as a topic, gets a lot of mind share amongst practitioners, but getting data right is still really hard. It's a challenge for most organizations to get ROI and expected return out of data. Most companies still put data at the periphery of their businesses. It's not at the core. Data lives within silos or different business units, different clouds, it's on-prem, and increasingly it's at the edge, and it seems like the problem is getting worse before it gets better, so, here are some instructive comments from our recent conversations. The first one, "We're publishing events onto Kafka, having those events be processed by Dataproc." Dataproc is a Google managed service to run Hadoop, and Spark, and Flank, and Presto, and a bunch of other open source tools. We're putting them into the appropriate storage models within Google, and then normalize the data into BigQuery, and only then can you take advantage of tools like ThoughtSpot, so, here's a company like ThoughtSpot, and they're all about simplifying data, democratizing data, but to get there, you have to go through some pretty complex processes, so, this is a good example. All right, another comment. "In order to use Google's AI tools, we have to put the data into BigQuery. They haven't integrated in the way AWS and Snowflake have with SageMaker. Moving the data is too expensive, time consuming, and risky," so, I'll just say this, sharing data is a killer super cloud use case, and firms like Snowflake are on top of it, but it's still not pretty across clouds, and Google's posture seems to be, "We're going to let our database product competitiveness drive the strategy first, and the ecosystem is going to take a backseat." Now, in a way, I get it, owning the database is critical, and Google doesn't want to capitulate on that front. Look, BigQuery is really good and competitive, but you can't help but roll your eyes when a CEO stands up, and look, I'm not calling out Thomas Kurian, every CEO does this, and talks about how important their customers are, and they'll do whatever is right by the customer, so, look, I'm telling you, I'm rolling my eyes on that. Now let me also comment, AWS has figured this out. They're killing it in database. If you take Redshift for example, it's still growing, as is Aurora, really fast growing services and other data stores, but AWS realizes it can make more money in the long-term partnering with the Snowflakes and Databricks of the world, and other ecosystem vendors versus sub optimizing their relationships with partners and customers in order to sell more of their own homegrown tools. I get it. It's hard not to feature your own product. IBM chose OS/2 over Windows, and tried for years to popularize it. It failed. Lotus, go back way back to Lotus 1, 2, and 3, they refused to run on Windows when it first came out. They were running on DEC VAX. Many of you young people in the United States have never even heard of DEC VAX. IBM wanted to run every everything only in its cloud, the same with Oracle, originally. VMware, as you might recall, tried to build its own cloud, but, eventually, when the market speaks and reveals what seems to be obvious to analysts, years before, the vendors come around, they face reality, and they stop wasting money, fighting a losing battle. "The trend is your friend," as the saying goes. All right, last pull quote on data, "The hardest part is transformations, moving traditional Informatica, Teradata, or Oracle infrastructure to something more modern and real time, and that's why people still run apps in COBOL. In IT, we rarely get rid of stuff, rather we add on another coat of paint until the wood rots out or the roof is going to cave in. All right, the last key finding we want to highlight is going to bring us back to the cloud repatriation myth. Followers of this program know it's a real sore spot with us. We've heard the stories about repatriation, we've read the thoughtful articles from VCs on the subject, we've been whispered to by vendors that you should investigate this trend. It's really happening, but the data simply doesn't support it. Here's the question that was posed to these practitioners. If you had unlimited budget and the economy miraculously flipped, what initiatives would you tackle first? Where would you really lean into? The first answer, "I'd rip out legacy on-prem infrastructure and move to the cloud even faster," so, the thing here is, look, maybe renting infrastructure is more expensive than owning, maybe, but if I can optimize my rental with better utilization, turn off compute, use things like serverless, get on a steeper and higher performance over time, and lower cost Silicon curve with things like Graviton, tap best of breed tools in AI, and other areas that make my business more competitive. Move faster, fail faster, experiment more quickly, and cheaply, what's that worth? Even the most hard-o CFOs understand the business benefits far outweigh the possible added cost per gigabyte, and, again, I stress "possible." Okay, other interesting comments from practitioners. "I'd hire 50 more data engineers and accelerate our real-time data capabilities to better target customers." Real-time is becoming a thing. AI is being injected into data and apps to make faster decisions, perhaps, with less or even no human involvement. That's on the rise. Next quote, "I'd like to focus on resolving the concerns around cloud data compliance," so, again, despite the risks of data being spread out in different clouds, organizations realize cloud is a given, and they want to find ways to make it work better, not move away from it. The same thing in the next one, "I would automate the data analytics pipeline and focus on a safer way to share data across the states without moving it," and, finally, "The way I'm addressing complexity is to standardize on a single cloud." MonoCloud is actually a thing. We're hearing this more and more. Yes, my company has multiple clouds, but in my group, we've standardized on a single cloud to simplify things, and this is a somewhat dangerous trend, because it's creating even more silos and it's an opportunity that needs to be addressed, and that's why we've been talking so much about supercloud is a cross-cloud, unifying, architectural framework, or, perhaps, it's a platform. In fact, that's a question that we will be exploring later this month at Supercloud2 live from our Palo Alto Studios. Is supercloud an architecture or is it a platform? And in this program, we're featuring technologists, analysts, practitioners to explore the intersection between data and cloud and the future of cloud computing, so, you don't want to miss this opportunity. Go to supercloud.world. You can register for free and participate in the event directly. All right, thanks for listening. That's a wrap. I'd like to thank Alex Myerson, who's on production and manages our podcast, Ken Schiffman as well, Kristen Martin and Cheryl Knight, they helped get the word out on social media, and in our newsletters, and Rob Hof is our editor-in-chief over at siliconangle.com. He does some great editing. Thank you, all. Remember, all these episodes are available as podcasts wherever you listen. All you've got to do is search "breaking analysis podcasts." I publish each week on wikibon.com and siliconangle.com where you can email me directly at david.vellante@siliconangle.com or DM me, @Dante, or comment on our LinkedIn posts. By all means, check out etr.ai. They get the best survey data in the enterprise tech business. We'll be doing our annual predictions post in a few weeks, once the data comes out from the January survey. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, everybody, and we'll see you next time on "Breaking Analysis." (upbeat music)
SUMMARY :
This is "Breaking Analysis" and the director of engineering
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Jassy | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Thomas Kurian | PERSON | 0.99+ |
6% | QUANTITY | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
2023 | DATE | 0.99+ |
18,000 | QUANTITY | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
10,000 employees | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
January | DATE | 0.99+ |
2022 | DATE | 0.99+ |
January 17th | DATE | 0.99+ |
Boston | LOCATION | 0.99+ |
Lotus 1 | TITLE | 0.99+ |
2019 | DATE | 0.99+ |
June | DATE | 0.99+ |
8% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Snowflakes | ORGANIZATION | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
Lotus | TITLE | 0.99+ |
two factors | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
Dataproc | ORGANIZATION | 0.99+ |
three people | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
Supercloud2 | EVENT | 0.99+ |
Teradata | ORGANIZATION | 0.99+ |
1% | QUANTITY | 0.99+ |
3 | TITLE | 0.99+ |
Windows | TITLE | 0.99+ |
5% | QUANTITY | 0.99+ |
3% | QUANTITY | 0.99+ |
BigQuery | TITLE | 0.99+ |
Second quote | QUANTITY | 0.99+ |
4% | QUANTITY | 0.99+ |
DEC VAX | TITLE | 0.99+ |
Thanksgiving | EVENT | 0.98+ |
OS/2 | TITLE | 0.98+ |
7% | QUANTITY | 0.98+ |
last year | DATE | 0.98+ |
two primary sources | QUANTITY | 0.98+ |
each week | QUANTITY | 0.98+ |
Informatica | ORGANIZATION | 0.98+ |
pandemic | EVENT | 0.98+ |
first one | QUANTITY | 0.98+ |
siliconangle.com | OTHER | 0.97+ |
first answer | QUANTITY | 0.97+ |
2% | QUANTITY | 0.97+ |
around 800,000 employees | QUANTITY | 0.97+ |
50 more data engineers | QUANTITY | 0.97+ |
zero trust | QUANTITY | 0.97+ |
Snowflake | ORGANIZATION | 0.96+ |
single cloud | QUANTITY | 0.96+ |
2 | TITLE | 0.96+ |
today | DATE | 0.95+ |
ETR | ORGANIZATION | 0.95+ |
single cloud | QUANTITY | 0.95+ |
ORGANIZATION | 0.94+ | |
later this month | DATE | 0.94+ |
Bob Muglia, George Gilbert & Tristan Handy | How Supercloud will Support a new Class of Data Apps
(upbeat music) >> Hello, everybody. This is Dave Vellante. Welcome back to Supercloud2, where we're exploring the intersection of data analytics and the future of cloud. In this segment, we're going to look at how the Supercloud will support a new class of applications, not just work that runs on multiple clouds, but rather a new breed of apps that can orchestrate things in the real world. Think Uber for many types of businesses. These applications, they're not about codifying forms or business processes. They're about orchestrating people, places, and things in a business ecosystem. And I'm pleased to welcome my colleague and friend, George Gilbert, former Gartner Analyst, Wiki Bond market analyst, former equities analyst as my co-host. And we're thrilled to have Tristan Handy, who's the founder and CEO of DBT Labs and Bob Muglia, who's the former President of Microsoft's Enterprise business and former CEO of Snowflake. Welcome all, gentlemen. Thank you for coming on the program. >> Good to be here. >> Thanks for having us. >> Hey, look, I'm going to start actually with the SuperCloud because both Tristan and Bob, you've read the definition. Thank you for doing that. And Bob, you have some really good input, some thoughts on maybe some of the drawbacks and how we can advance this. So what are your thoughts in reading that definition around SuperCloud? >> Well, I thought first of all that you did a very good job of laying out all of the characteristics of it and helping to define it overall. But I do think it can be tightened a bit, and I think it's helpful to do it in as short a way as possible. And so in the last day I've spent a little time thinking about how to take it and write a crisp definition. And here's my go at it. This is one day old, so gimme a break if it's going to change. And of course we have to follow the industry, and so that, and whatever the industry decides, but let's give this a try. So in the way I think you're defining it, what I would say is a SuperCloud is a platform that provides programmatically consistent services hosted on heterogeneous cloud providers. >> Boom. Nice. Okay, great. I'm going to go back and read the script on that one and tighten that up a bit. Thank you for spending the time thinking about that. Tristan, would you add anything to that or what are your thoughts on the whole SuperCloud concept? >> So as I read through this, I fully realize that we need a word for this thing because I have experienced the inability to talk about it as well. But for many of us who have been living in the Confluence, Snowflake, you know, this world of like new infrastructure, this seems fairly uncontroversial. Like I read through this, and I'm just like, yeah, this is like the world I've been living in for years now. And I noticed that you called out Snowflake for being an example of this, but I think that there are like many folks, myself included, for whom this world like fully exists today. >> Yeah, I think that's a fair, I dunno if it's criticism, but people observe, well, what's the big deal here? It's just kind of what we're living in today. It reminds me of, you know, Tim Burns Lee saying, well, this is what the internet was supposed to be. It was supposed to be Web 2.0, so maybe this is what multi-cloud was supposed to be. Let's turn our attention to apps. Bob first and then go to Tristan. Bob, what are data apps to you? When people talk about data products, is that what they mean? Are we talking about something more, different? What are data apps to you? >> Well, to understand data apps, it's useful to contrast them to something, and I just use the simple term people apps. I know that's a little bit awkward, but it's clear. And almost everything we work with, almost every application that we're familiar with, be it email or Salesforce or any consumer app, those are applications that are targeted at responding to people. You know, in contrast, a data application reacts to changes in data and uses some set of analytic services to autonomously take action. So where applications that we're familiar with respond to people, data apps respond to changes in data. And they both do something, but they do it for different reasons. >> Got it. You know, George, you and I were talking about, you know, it comes back to SuperCloud, broad definition, narrow definition. Tristan, how do you see it? Do you see it the same way? Do you have a different take on data apps? >> Oh, geez. This is like a conversation that I don't know has an end. It's like been, I write a substack, and there's like this little community of people who all write substack. We argue with each other about these kinds of things. Like, you know, as many different takes on this question as you can find, but the way that I think about it is that data products are atomic units of functionality that are fundamentally data driven in nature. So a data product can be as simple as an interactive dashboard that is like actually had design thinking put into it and serves a particular user group and has like actually gone through kind of a product development life cycle. And then a data app or data application is a kind of cohesive end-to-end experience that often encompasses like many different data products. So from my perspective there, this is very, very related to the way that these things are produced, the kinds of experiences that they're provided, that like data innovates every product that we've been building in, you know, software engineering for, you know, as long as there have been computers. >> You know, Jamak Dagani oftentimes uses the, you know, she doesn't name Spotify, but I think it's Spotify as that kind of example she uses. But I wonder if we can maybe try to take some examples. If you take, like George, if you take a CRM system today, you're inputting leads, you got opportunities, it's driven by humans, they're really inputting the data, and then you got this system that kind of orchestrates the business process, like runs a forecast. But in this data driven future, are we talking about the app itself pulling data in and automatically looking at data from the transaction systems, the call center, the supply chain and then actually building a plan? George, is that how you see it? >> I go back to the example of Uber, may not be the most sophisticated data app that we build now, but it was like one of the first where you do have users interacting with their devices as riders trying to call a car or driver. But the app then looks at the location of all the drivers in proximity, and it matches a driver to a rider. It calculates an ETA to the rider. It calculates an ETA then to the destination, and it calculates a price. Those are all activities that are done sort of autonomously that don't require a human to type something into a form. The application is using changes in data to calculate an analytic product and then to operationalize that, to assign the driver to, you know, calculate a price. Those are, that's an example of what I would think of as a data app. And my question then I guess for Tristan is if we don't have all the pieces in place for sort of mainstream companies to build those sorts of apps easily yet, like how would we get started? What's the role of a semantic layer in making that easier for mainstream companies to build? And how do we get started, you know, say with metrics? How does that, how does that take us down that path? >> So what we've seen in the past, I dunno, decade or so, is that one of the most successful business models in infrastructure is taking hard things and rolling 'em up behind APIs. You take messaging, you take payments, and you all of a sudden increase the capability of kind of your median application developer. And you say, you know, previously you were spending all your time being focused on how do you accept credit cards, how do you send SMS payments, and now you can focus on your business logic, and just create the thing. One of, interestingly, one of the things that we still don't know how to API-ify is concepts that live inside of your data warehouse, inside of your data lake. These are core concepts that, you know, you would imagine that the business would be able to create applications around very easily, but in fact that's not the case. It's actually quite challenging to, and involves a lot of data engineering pipeline and all this work to make these available. And so if you really want to make it very easy to create some of these data experiences for users, you need to have an ability to describe these metrics and then to turn them into APIs to make them accessible to application developers who have literally no idea how they're calculated behind the scenes, and they don't need to. >> So how rich can that API layer grow if you start with metric definitions that you've defined? And DBT has, you know, the metric, the dimensions, the time grain, things like that, that's a well scoped sort of API that people can work within. How much can you extend that to say non-calculated business rules or governance information like data reliability rules, things like that, or even, you know, features for an AIML feature store. In other words, it starts, you started pragmatically, but how far can you grow? >> Bob is waiting with bated breath to answer this question. I'm, just really quickly, I think that we as a company and DBT as a product tend to be very pragmatic. We try to release the simplest possible version of a thing, get it out there, and see if people use it. But the idea that, the concept of a metric is really just a first landing pad. The really, there is a physical manifestation of the data and then there's a logical manifestation of the data. And what we're trying to do here is make it very easy to access the logical manifestation of the data, and metric is a way to look at that. Maybe an entity, a customer, a user is another way to look at that. And I'm sure that there will be more kind of logical structures as well. >> So, Bob, chime in on this. You know, what's your thoughts on the right architecture behind this, and how do we get there? >> Yeah, well first of all, I think one of the ways we get there is by what companies like DBT Labs and Tristan is doing, which is incrementally taking and building on the modern data stack and extending that to add a semantic layer that describes the data. Now the way I tend to think about this is a fairly major shift in the way we think about writing applications, which is today a code first approach to moving to a world that is model driven. And I think that's what the big change will be is that where today we think about data, we think about writing code, and we use that to produce APIs as Tristan said, which encapsulates those things together in some form of services that are useful for organizations. And that idea of that encapsulation is never going to go away. It's very, that concept of an API is incredibly useful and will exist well into the future. But what I think will happen is that in the next 10 years, we're going to move to a world where organizations are defining models first of their data, but then ultimately of their business process, their entire business process. Now the concept of a model driven world is a very old concept. I mean, I first started thinking about this and playing around with some early model driven tools, probably before Tristan was born in the early 1980s. And those tools didn't work because the semantics associated with executing the model were too complex to be written in anything other than a procedural language. We're now reaching a time where that is changing, and you see it everywhere. You see it first of all in the world of machine learning and machine learning models, which are taking over more and more of what applications are doing. And I think that's an incredibly important step. And learned models are an important part of what people will do. But if you look at the world today, I will claim that we've always been modeling. Modeling has existed in computers since there have been integrated circuits and any form of computers. But what we do is what I would call implicit modeling, which means that it's the model is written on a whiteboard. It's in a bunch of Slack messages. It's on a set of napkins in conversations that happen and during Zoom. That's where the model gets defined today. It's implicit. There is one in the system. It is hard coded inside application logic that exists across many applications with humans being the glue that connects those models together. And really there is no central place you can go to understand the full attributes of the business, all of the business rules, all of the business logic, the business data. That's going to change in the next 10 years. And we'll start to have a world where we can define models about what we're doing. Now in the short run, the most important models to build are data models and to describe all of the attributes of the data and their relationships. And that's work that DBT Labs is doing. A number of other companies are doing that. We're taking steps along that way with catalogs. People are trying to build more complete ontologies associated with that. The underlying infrastructure is still super, super nascent. But what I think we'll see is this infrastructure that exists today that's building learned models in the form of machine learning programs. You know, some of these incredible machine learning programs in foundation models like GPT and DALL-E and all of the things that are happening in these global scale models, but also all of that needs to get applied to the domains that are appropriate for a business. And I think we'll see the infrastructure developing for that, that can take this concept of learned models and put it together with more explicitly defined models. And this is where the concept of knowledge graphs come in and then the technology that underlies that to actually implement and execute that, which I believe are relational knowledge graphs. >> Oh, oh wow. There's a lot to unpack there. So let me ask the Colombo question, Tristan, we've been making fun of your youth. We're just, we're just jealous. Colombo, I'll explain it offline maybe. >> I watch Colombo. >> Okay. All right, good. So but today if you think about the application stack and the data stack, which is largely an analytics pipeline. They're separate. Do they, those worlds, do they have to come together in order to achieve Bob's vision? When I talk to practitioners about that, they're like, well, I don't want to complexify the application stack cause the data stack today is so, you know, hard to manage. But but do those worlds have to come together? And you know, through that model, I guess abstraction or translation that Bob was just describing, how do you guys think about that? Who wants to take that? >> I think it's inevitable that data and AI are going to become closer together? I think that the infrastructure there has been moving in that direction for a long time. Whether you want to use the Lakehouse portmanteau or not. There's also, there's a next generation of data tech that is still in the like early stage of being developed. There's a company that I love that is essentially Cross Cloud Lambda, and it's just a wonderful abstraction for computing. So I think that, you know, people have been predicting that these worlds are going to come together for awhile. A16Z wrote a great post on this back in I think 2020, predicting this, and I've been predicting this since since 2020. But what's not clear is the timeline, but I think that this is still just as inevitable as it's been. >> Who's that that does Cross Cloud? >> Let me follow up on. >> Who's that, Tristan, that does Cross Cloud Lambda? Can you name names? >> Oh, they're called Modal Labs. >> Modal Labs, yeah, of course. All right, go ahead, George. >> Let me ask about this vision of trying to put the semantics or the code that represents the business with the data. It gets us to a world that's sort of more data centric, where data's not locked inside or behind the APIs of different applications so that we don't have silos. But at the same time, Bob, I've heard you talk about building the semantics gradually on top of, into a knowledge graph that maybe grows out of a data catalog. And the vision of getting to that point, essentially the enterprise's metadata and then the semantics you're going to add onto it are really stored in something that's separate from the underlying operational and analytic data. So at the same time then why couldn't we gradually build semantics beyond the metric definitions that DBT has today? In other words, you build more and more of the semantics in some layer that DBT defines and that sits above the data management layer, but any requests for data have to go through the DBT layer. Is that a workable alternative? Or where, what type of limitations would you face? >> Well, I think that it is the way the world will evolve is to start with the modern data stack and, you know, which is operational applications going through a data pipeline into some form of data lake, data warehouse, the Lakehouse, whatever you want to call it. And then, you know, this wide variety of analytics services that are built together. To the point that Tristan made about machine learning and data coming together, you see that in every major data cloud provider. Snowflake certainly now supports Python and Java. Databricks is of course building their data warehouse. Certainly Google, Microsoft and Amazon are doing very, very similar things in terms of building complete solutions that bring together an analytics stack that typically supports languages like Python together with the data stack and the data warehouse. I mean, all of those things are going to evolve, and they're not going to go away because that infrastructure is relatively new. It's just being deployed by companies, and it solves the problem of working with petabytes of data if you need to work with petabytes of data, and nothing will do that for a long time. What's missing is a layer that understands and can model the semantics of all of this. And if you need to, if you want to model all, if you want to talk about all the semantics of even data, you need to think about all of the relationships. You need to think about how these things connect together. And unfortunately, there really is no platform today. None of our existing platforms are ultimately sufficient for this. It was interesting, I was just talking to a customer yesterday, you know, a large financial organization that is building out these semantic layers. They're further along than many companies are. And you know, I asked what they're building it on, and you know, it's not surprising they're using a, they're using combinations of some form of search together with, you know, textual based search together with a document oriented database. In this case it was Cosmos. And that really is kind of the state of the art right now. And yet those products were not built for this. They don't really, they can't manage the complicated relationships that are required. They can't issue the queries that are required. And so a new generation of database needs to be developed. And fortunately, you know, that is happening. The world is developing a new set of relational algorithms that will be able to work with hundreds of different relations. If you look at a SQL database like Snowflake or a big query, you know, you get tens of different joins coming together, and that query is going to take a really long time. Well, fortunately, technology is evolving, and it's possible with new join algorithms, worst case, optimal join algorithms they're called, where you can join hundreds of different relations together and run semantic queries that you simply couldn't run. Now that technology is nascent, but it's really important, and I think that will be a requirement to have this semantically reach its full potential. In the meantime, Tristan can do a lot of great things by building up on what he's got today and solve some problems that are very real. But in the long run I think we'll see a new set of databases to support these models. >> So Tristan, you got to respond to that, right? You got to, so take the example of Snowflake. We know it doesn't deal well with complex joins, but they're, they've got big aspirations. They're building an ecosystem to really solve some of these problems. Tristan, you guys are part of that ecosystem, and others, but please, your thoughts on what Bob just shared. >> Bob, I'm curious if, I would have no idea what you were talking about except that you introduced me to somebody who gave me a demo of a thing and do you not want to go there right now? >> No, I can talk about it. I mean, we can talk about it. Look, the company I've been working with is Relational AI, and they're doing this work to actually first of all work across the industry with academics and research, you know, across many, many different, over 20 different research institutions across the world to develop this new set of algorithms. They're all fully published, just like SQL, the underlying algorithms that are used by SQL databases are. If you look today, every single SQL database uses a similar set of relational algorithms underneath that. And those algorithms actually go back to system R and what IBM developed in the 1970s. We're just, there's an opportunity for us to build something new that allows you to take, for example, instead of taking data and grouping it together in tables, treat all data as individual relations, you know, a key and a set of values and then be able to perform purely relational operations on it. If you go back to what, to Codd, and what he wrote, he defined two things. He defined a relational calculus and relational algebra. And essentially SQL is a query language that is translated by the query processor into relational algebra. But however, the calculus of SQL is not even close to the full semantics of the relational mathematics. And it's possible to have systems that can do everything and that can store all of the attributes of the data model or ultimately the business model in a form that is much more natural to work with. >> So here's like my short answer to this. I think that we're dealing in different time scales. I think that there is actually a tremendous amount of work to do in the semantic layer using the kind of technology that we have on the ground today. And I think that there's, I don't know, let's say five years of like really solid work that there is to do for the entire industry, if not more. But the wonderful thing about DBT is that it's independent of what the compute substrate is beneath it. And so if we develop new platforms, new capabilities to describe semantic models in more fine grain detail, more procedural, then we're going to support that too. And so I'm excited about all of it. >> Yeah, so interpreting that short answer, you're basically saying, cause Bob was just kind of pointing to you as incremental, but you're saying, yeah, okay, we're applying it for incremental use cases today, but we can accommodate a much broader set of examples in the future. Is that correct, Tristan? >> I think you're using the word incremental as if it's not good, but I think that incremental is great. We have always been about applying incremental improvement on top of what exists today, but allowing practitioners to like use different workflows to actually make use of that technology. So yeah, yeah, we are a very incremental company. We're going to continue being that way. >> Well, I think Bob was using incremental as a pejorative. I mean, I, but to your point, a lot. >> No, I don't think so. I want to stop that. No, I don't think it's pejorative at all. I think incremental, incremental is usually the most successful path. >> Yes, of course. >> In my experience. >> We agree, we agree on that. >> Having tried many, many moonshot things in my Microsoft days, I can tell you that being incremental is a good thing. And I'm a very big believer that that's the way the world's going to go. I just think that there is a need for us to build something new and that ultimately that will be the solution. Now you can argue whether it's two years, three years, five years, or 10 years, but I'd be shocked if it didn't happen in 10 years. >> Yeah, so we all agree that incremental is less disruptive. Boom, but Tristan, you're, I think I'm inferring that you believe you have the architecture to accommodate Bob's vision, and then Bob, and I'm inferring from Bob's comments that maybe you don't think that's the case, but please. >> No, no, no. I think that, so Bob, let me put words into your mouth and you tell me if you disagree, DBT is completely useless in a world where a large scale cloud data warehouse doesn't exist. We were not able to bring the power of Python to our users until these platforms started supporting Python. Like DBT is a layer on top of large scale computing platforms. And to the extent that those platforms extend their functionality to bring more capabilities, we will also service those capabilities. >> Let me try and bridge the two. >> Yeah, yeah, so Bob, Bob, Bob, do you concur with what Tristan just said? >> Absolutely, I mean there's nothing to argue with in what Tristan just said. >> I wanted. >> And it's what he's doing. It'll continue to, I believe he'll continue to do it, and I think it's a very good thing for the industry. You know, I'm just simply saying that on top of that, I would like to provide Tristan and all of those who are following similar paths to him with a new type of database that can actually solve these problems in a much more architected way. And when I talk about Cosmos with something like Mongo or Cosmos together with Elastic, you're using Elastic as the join engine, okay. That's the purpose of it. It becomes a poor man's join engine. And I kind of go, I know there's a better answer than that. I know there is, but that's kind of where we are state of the art right now. >> George, we got to wrap it. So give us the last word here. Go ahead, George. >> Okay, I just, I think there's a way to tie together what Tristan and Bob are both talking about, and I want them to validate it, which is for five years we're going to be adding or some number of years more and more semantics to the operational and analytic data that we have, starting with metric definitions. My question is for Bob, as DBT accumulates more and more of those semantics for different enterprises, can that layer not run on top of a relational knowledge graph? And what would we lose by not having, by having the knowledge graph store sort of the joins, all the complex relationships among the data, but having the semantics in the DBT layer? >> Well, I think this, okay, I think first of all that DBT will be an environment where many of these semantics are defined. The question we're asking is how are they stored and how are they processed? And what I predict will happen is that over time, as companies like DBT begin to build more and more richness into their semantic layer, they will begin to experience challenges that customers want to run queries, they want to ask questions, they want to use this for things where the underlying infrastructure becomes an obstacle. I mean, this has happened in always in the history, right? I mean, you see major advances in computer science when the data model changes. And I think we're on the verge of a very significant change in the way data is stored and structured, or at least metadata is stored and structured. Again, I'm not saying that anytime in the next 10 years, SQL is going to go away. In fact, more SQL will be written in the future than has been written in the past. And those platforms will mature to become the engines, the slicer dicers of data. I mean that's what they are today. They're incredibly powerful at working with large amounts of data, and that infrastructure is maturing very rapidly. What is not maturing is the infrastructure to handle all of the metadata and the semantics that that requires. And that's where I say knowledge graphs are what I believe will be the solution to that. >> But Tristan, bring us home here. It sounds like, let me put pause at this, is that whatever happens in the future, we're going to leverage the vast system that has become cloud that we're talking about a supercloud, sort of where data lives irrespective of physical location. We're going to have to tap that data. It's not necessarily going to be in one place, but give us your final thoughts, please. >> 100% agree. I think that the data is going to live everywhere. It is the responsibility for both the metadata systems and the data processing engines themselves to make sure that we can join data across cloud providers, that we can join data across different physical regions and that we as practitioners are going to kind of start forgetting about details like that. And we're going to start thinking more about how we want to arrange our teams, how does the tooling that we use support our team structures? And that's when data mesh I think really starts to get very, very critical as a concept. >> Guys, great conversation. It was really awesome to have you. I can't thank you enough for spending time with us. Really appreciate it. >> Thanks a lot. >> All right. This is Dave Vellante for George Gilbert, John Furrier, and the entire Cube community. Keep it right there for more content. You're watching SuperCloud2. (upbeat music)
SUMMARY :
and the future of cloud. And Bob, you have some really and I think it's helpful to do it I'm going to go back and And I noticed that you is that what they mean? that we're familiar with, you know, it comes back to SuperCloud, is that data products are George, is that how you see it? that don't require a human to is that one of the most And DBT has, you know, the And I'm sure that there will be more on the right architecture is that in the next 10 years, So let me ask the Colombo and the data stack, which is that is still in the like Modal Labs, yeah, of course. and that sits above the and that query is going to So Tristan, you got to and that can store all of the that there is to do for the pointing to you as incremental, but allowing practitioners to I mean, I, but to your point, a lot. the most successful path. that that's the way the that you believe you have the architecture and you tell me if you disagree, there's nothing to argue with And I kind of go, I know there's George, we got to wrap it. and more of those semantics and the semantics that that requires. is that whatever happens in the future, and that we as practitioners I can't thank you enough John Furrier, and the
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Tristan | PERSON | 0.99+ |
George Gilbert | PERSON | 0.99+ |
John | PERSON | 0.99+ |
George | PERSON | 0.99+ |
Steve Mullaney | PERSON | 0.99+ |
Katie | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Charles | PERSON | 0.99+ |
Mike Dooley | PERSON | 0.99+ |
Peter Burris | PERSON | 0.99+ |
Chris | PERSON | 0.99+ |
Tristan Handy | PERSON | 0.99+ |
Bob | PERSON | 0.99+ |
Maribel Lopez | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Mike Wolf | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Merim | PERSON | 0.99+ |
Adrian Cockcroft | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Brian | PERSON | 0.99+ |
Brian Rossi | PERSON | 0.99+ |
Jeff Frick | PERSON | 0.99+ |
Chris Wegmann | PERSON | 0.99+ |
Whole Foods | ORGANIZATION | 0.99+ |
Eric | PERSON | 0.99+ |
Chris Hoff | PERSON | 0.99+ |
Jamak Dagani | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Caterpillar | ORGANIZATION | 0.99+ |
John Walls | PERSON | 0.99+ |
Marianna Tessel | PERSON | 0.99+ |
Josh | PERSON | 0.99+ |
Europe | LOCATION | 0.99+ |
Jerome | PERSON | 0.99+ |
ORGANIZATION | 0.99+ | |
Lori MacVittie | PERSON | 0.99+ |
2007 | DATE | 0.99+ |
Seattle | LOCATION | 0.99+ |
10 | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
Ali Ghodsi | PERSON | 0.99+ |
Peter McKee | PERSON | 0.99+ |
Nutanix | ORGANIZATION | 0.99+ |
Eric Herzog | PERSON | 0.99+ |
India | LOCATION | 0.99+ |
Mike | PERSON | 0.99+ |
Walmart | ORGANIZATION | 0.99+ |
five years | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Kit Colbert | PERSON | 0.99+ |
Peter | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Tanuja Randery | PERSON | 0.99+ |
W Curtis Preston, Druva V2
(energizing music) >> Welcome back, everyone to the Cube and Druva special presentation of why ransomware isn't your only problem. I'm John Furrier, host of The Cube. We're here with W. Curtis Preston, Curtis Preston as he is known in the industry, Chief Technical Cult Evangelist at Druva. Curtis, great to see you. We're here at why ransomware isn't your only problem. Great to see you. Thanks for coming on. >> Happy to be here. >> So we always see each other events now. Events are back, so it's great to have you here for this special presentation. The white paper from IDC really talks about this in detail. I can get your thoughts, and I'd like you to reflect on the analysis that we've been covering here and the survey data, how it lines up with the real world that you're seeing out there. >> Yeah, I think it's the survey results really, I'd like to say that they surprised me, but unfortunately they didn't. The data protection world has been this way or a while where there's this difference in belief or difference between the belief and the reality. And what we see is that there are a number of organizations that have been successfully hit by ransomware, paid the ransom and or lost data. And yet the same people that were surveyed, they had the high degrees of confidence in their backup system and you know, I could probably go on for an hour as to the various reasons why that would be the case, but I think that this long running problem that as long as I've been associated with backups, which, you know has been a while, it's that problem of, you know nobody wants to be the backup person. And people often just, they don't want to have anything to do with the backup system. And so it sort of exists in this vacuum. And so then management is like, oh the backup system's great, because the backup person often, you know, might say that it's great because maybe it's their job to say so. But the reality has always been very, very different. >> It's funny, you know, we're good boss, we got this covered. >> Good, it's all good, it's all good. >> Yeah, the fingers crossed, right? So again, this is the reality and as it becomes backup and recovery, which we've talked about many times on The Cube, certainly we have with you before, but now with ransomware also, the other thing is people get ransomware hit multiple times. So it's not only like to get hit once. So you know, this is a constant chasing the tail on some ends, but there are some tools out there that you guys have a solution. And so let's get into that. You know, you have had hands on backup experience. What are the points that surprise you the most about what's going on in this world and the realities of how people should be going forward? What's your take? >> Well, I would say that the one part in the survey that surprised me the most was people that had a huge, you know, that there was a huge percentage of people that said that they had a you know, a ransomware response, you know in readiness program. And you look at that and how could you be, that higher percentage of people be comfortable with their ransomware readiness program and you know which includes a number of things, right? There's the cyber attack aspect of responding to a ransomware attack, and then there's the recovery aspect. And so you believe that your company was ready for that, and then you go, and I think it was 67% of the people in the survey paid the ransom, which as as a person who, you know, has spent my entire career trying to help people successfully recover their data that number I think just hurt me the most is that, because you talked about reinfections. The surest way to guarantee that you get re-attacked and reinfected, is to pay the ransom. This goes back all the way, ransom since the beginning of time, right? Everyone knows if you pay the blackmail all you're telling people is that you pay blackmail. >> And you're in business, you're a good customer. ARR, (indistinct) >> Yeah, exactly. So the fact that, you know 60 what, two thirds, of the people that were attacked by ransomware paid the ransom, that one statistic just hurt my heart. >> Yeah, and I think this is the reality. I mean, we go back and even the psychology of the practitioners was, you know, it's super important to get back in recovery, and that's been around for a long time, but now that's an attack vector, okay? And there's dollars involved, like I said the ARR, I'm joking, but there's recurring revenue for the bad guys if they know you're paying up and if you're stupid enough not to change, you're tooling, right? So again, it works both ways. So I got to ask you, why do you think so many owners are unable to successfully respond after an attack? Is it because, they know it's coming, I mean, they're not that dumb. I mean, they have to know it's coming. Why aren't they responding successfully to this? >> I think it's a litany of things starting with the aspect that I mentioned before that nobody wants to have anything to do with the backup system, right? So nobody wants to be the one to raise their hand because if you're the one that raises their hand you know what, that's a good idea, Curtis why don't you look into that? Right, nobody wants to be-- >> Where's that guy now? He doesn't work here anymore. Yeah, but I hear where you come from. >> Exactly. >> Psychology. >> Yeah, so there's that. But then the second is that because of that no one's looking at the fact that backups are the attack vector, they become the attack vector. And so because they're the attack vector they have to be protected as much if not more than the rest of the environment. The rest of the environment can live off of active directory and you know, things like Okta so that you can have SSO and things like that. The backup environment has to be segregated in a very special way. Backups have to be stored completely separate from your environment. The login and authentication and authorization system needs to be completely separate from your typical environment, why? Because if that production environment is compromised now knowing that the attacks or that the backup systems are a significant portion of the attack vector, then if the production system is compromised then the backup system is compromised. So you've got to segregate all of that. And I just don't think that people are thinking about that. You know and they're using the same backup techniques that they've used for many, many years. >> So what you're saying is that the attack vectors and the attackers are getting smarter. They're saying, hey, we'll just take out the backup first so they can't backup, so we got the ransomware. It makes sense. >> Yeah, exactly. The largest ransomware group out there the Conti Ransomware Group, they are specifically targeting specific backup vendors. They know how to recognize the backup servers. They know how to recognize where the backups are stored and they are exfiltrating the backups first and then deleting them, and then letting you know you have ransom. >> Okay, so you guys have a lot of customers. They all kind of have the same problem. What's the patterns that you're seeing? How are they evolving? What are some of the things that they're implementing? What is the best practice? >> Well again, you've got to fully segregate that data. There are, and everything about how that data is stored and everything about how that data's created and accessed, there are ways to do that with other, you know with other commercial products. You can take a standard product and put a number of layers of defense on top of it or you can switch to the way Druva does things which is a SAS offering that stores your data completely in the cloud in our account, right? So your account could be completely compromised. That has nothing to do with our account. And the, it's a completely different authentication and authorization system. You've got multiple layers of defense between your computing environment and where we store your backups. So basically what you get by default with the way Druva stores your backups is the best you can get after doing many, many layers of defense on the other side and having to do all that work. With us, you just log in and you get all of that. >> I guess, how do you break the laws of physics? I guess that's the question here. >> Well, that's the other thing, is that by storing the data in the cloud, we do and I've said this a few times, that you get to break the laws of physics. And the only way to do that is time travel. And that's what... (chuckles) so yeah, so Druva has time travel. This isn't a criticism, by the way. I don't think this is our official position, but the idea is that the only way to restore data as fast as possible is to restore it before you actually need it. And that's what kind of, what I mean by time travel in that you basically, you configure your DR, your disaster recovery environment in Druva one time, and then we are pre restoring your data as often as you tell us to do to bring your DR environment up to the current environment as quickly as we can. So that in a disaster recovery scenario which is part of your ransomware response, right? Again, there are many different parts but when you get to actually restoring the data you should be able to just push a button and go. The data should already be restored. And that's the way that you break the laws of physics, is you break the laws of time. >> Well, everyone wants to know the next question, and this is the real big question is, are you from the future? >> Yeah. Very much the future. >> What's it like in the future? Back at recovery as a restorer, air gaping everything? >> Yeah. It, well it's a world where people don't have to worry about their backups. I like to use the phrase, get out of the backup business. Just get into the restore business. You know, I'm a grandfather now, and I love having a granddaughter and I often make the joke that if I've known how great grandkids were I would've skipped straight to them, right? Not possible. Just like this. Recoveries are great. Backups are really hard. So in the future, if you use a SAS data protection system and data resiliency system, you can just do recoveries and not have to worry about backups. >> Yeah. And what's great about your background is you've got a lot of historical perspective. I've seen that in the ways of innovation. Now it really is about the recovery and real time. So a lot of good stuff going on and got things automated things got to be rocking and rolling. >> Absolutely. Yeah, I do remember again, having worked so hard with many clients over the years, back then we worked so hard just to get the backup done. There was very little time to work on the recovery. And I really, I kid you not that our customers don't have to do all of those things that all of our competitors have to do to you know, to try to break the laws of physics. I've been fighting the laws of physics my entire career to get the backup done in the first place. Then to secure all the data, right, to air gap it and make sure that a ransomware attack isn't going to attack it. Our customers get to get straight to a fully automated disaster recovery environment that they get to test as often as possible and they get to do a full test by simply pressing a single button. And you know, I wish everybody had that ability. >> Yeah, I mean security's a big part of it. Data's in the middle of it. All this is now mainstream, front lines, great stuff. Curtis, great to have you on, bring that perspective, and thanks for the insight. Really appreciate it. >> Always happy to talk about my favorite subject. (bright music)
SUMMARY :
known in the industry, great to have you here because the backup person often, you know, It's funny, you know, we're good boss, and the realities of how that surprised me the most And you're in business, So the fact that, you of the practitioners was, you Yeah, but I hear where you come from. or that the backup systems is that the attack vectors and then letting you know you have ransom. What are some of the things is the best you can get after doing I guess that's the question here. And that's the way that you So in the future, if you use I've seen that in the ways of innovation. that they get to test as often as possible Curtis, great to have you on, Always happy to talk
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Curtis | PERSON | 0.99+ |
Curtis Preston | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
67% | QUANTITY | 0.99+ |
W. Curtis Preston | PERSON | 0.99+ |
Druva | ORGANIZATION | 0.99+ |
Druva | TITLE | 0.99+ |
Conti Ransomware Group | ORGANIZATION | 0.99+ |
second | QUANTITY | 0.99+ |
one time | QUANTITY | 0.99+ |
first | QUANTITY | 0.98+ |
IDC | ORGANIZATION | 0.98+ |
both ways | QUANTITY | 0.97+ |
one | QUANTITY | 0.97+ |
one part | QUANTITY | 0.97+ |
two thirds | QUANTITY | 0.94+ |
60 | QUANTITY | 0.94+ |
W Curtis Preston | PERSON | 0.93+ |
Cube | ORGANIZATION | 0.93+ |
an hour | QUANTITY | 0.92+ |
single button | QUANTITY | 0.92+ |
SAS | ORGANIZATION | 0.92+ |
once | QUANTITY | 0.84+ |
ARR | ORGANIZATION | 0.69+ |
each | QUANTITY | 0.64+ |
years | QUANTITY | 0.61+ |
Druva V2 | PERSON | 0.61+ |
Okta | TITLE | 0.61+ |
KubeCon + CloudNativeCon 2022 Preview w/ @Stu
>>Keon Cloud Native Con kicks off in Detroit on October 24th, and we're pleased to have Stewart Miniman, who's the director of Market Insights, hi, at, for hybrid platforms at Red Hat back in the studio to help us understand the key trends to look for at the events. Do welcome back, like old, old, old >>Home. Thank you, David. It's great to, great to see you and always love doing these previews, even though Dave, come on. How many years have I told you Cloud native con, It's a hoodie crowd. They're gonna totally call you out for where in a tie and things like that. I, I know you want to be an ESPN sportscaster, but you know, I I, I, I still don't think even after, you know, this show's been around for so many years that there's gonna be too many ties into Troy. I >>Know I left the hoodie in my off, I'm sorry folks, but hey, we'll just have to go for it. Okay. Containers generally, and Kubernetes specifically continue to show very strong spending momentum in the ETR survey data. So let's bring up this slide that shows the ETR sectors, all the sectors in the tax taxonomy with net score or spending velocity in the vertical axis and pervasiveness on the horizontal axis. Now, that red dotted line that you see, that marks the elevated 40% mark, anything above that is considered highly elevated in terms of momentum. Now, for years, the big four areas of momentum that shine above all the rest have been cloud containers, rpa, and ML slash ai for the first time in 10 quarters, ML and AI and RPA have dropped below the 40% line, leaving only cloud and containers in rarefied air. Now, Stu, I'm sure this data doesn't surprise you, but what do you make of this? >>Yeah, well, well, Dave, I, I did an interview with at Deepak who owns all the container and open source activity at Amazon earlier this year, and his comment was, the default deployment mechanism in Amazon is containers. So when I look at your data and I see containers and cloud going in sync, yeah, that, that's, that's how we see things. We're helping lots of customers in their overall adoption. And this cloud native ecosystem is still, you know, we're still in that Cambridge explosion of new projects, new opportunities, AI's a great workload for these type type of technologies. So it's really becoming pervasive in the marketplace. >>And, and I feel like the cloud and containers go hand in hand, so it's not surprising to see those two above >>The 40%. You know, there, there's nothing to say that, Look, can I run my containers in my data center and not do the public cloud? Sure. But in the public cloud, the default is the container. And one of the hot discussions we've been having in this ecosystem for a number of years is edge computing. And of course, you know, I want something that that's small and lightweight and can do things really fast. A lot of times it's an AI workload out there, and containers is a great fit at the edge too. So wherever it goes, containers is a good fit, which has been keeping my group at Red Hat pretty busy. >>So let's talk about some of those high level stats that we put together and preview for the event. So it's really around the adoption of open source software and Kubernetes. Here's, you know, a few fun facts. So according to the state of enterprise open source report, which was published by Red Hat, although it was based on a blind survey, nobody knew that that Red Hat was, you know, initiating it. 80% of IT execs expect to increase their use of enterprise open source software. Now, the CNCF community has currently more than 120,000 developers. That's insane when you think about that developer resource. 73% of organizations in the most recent CNCF annual survey are using Kubernetes. Now, despite the momentum, according to that same Red Hat survey, adoption barriers remain for some organizations. Stu, I'd love you to talk about this specifically around skill sets, and then we've highlighted some of the other trends that we expect to see at the event around Stu. I'd love to, again, your, get your thoughts on the preview. You've done a number of these events, automation, security, governance, governance at scale, edge deployments, which you just mentioned among others. Now Kubernetes is eight years old, and I always hear people talking about there's something coming beyond Kubernetes, but it looks like we're just getting started. Yeah, >>Dave, It, it is still relatively early days. The CMC F survey, I think said, you know, 96% of companies when they, when CMC F surveyed them last year, were either deploying Kubernetes or had plans to deploy it. But when I talked to enterprises, nobody has said like, Hey, we've got every group on board and all of our applications are on. It is a multi-year journey for most companies and plenty of them. If you, you look at the general adoption of technology, we're still working through kind of that early majority. We, you know, passed the, the chasm a couple of years ago. But to a point, you and I we're talking about this ecosystem, there are plenty of people in this ecosystem that could care less about containers and Kubernetes. Lots of conversations at this show won't even talk about Kubernetes. You've got, you know, big security group that's in there. >>You've got, you know, certain workloads like we talked about, you know, AI and ml and that are in there. And automation absolutely is playing a, a good role in what's going on here. So in some ways, Kubernetes kind of takes a, a backseat because it is table stakes at this point. So lots of people involved in it, lots of activities still going on. I mean, we're still at a cadence of three times a year now. We slowed it down from four times a year as an industry, but there's, there's still lots of innovation happening, lots of adoption, and oh my gosh, Dave, I mean, there's just no shortage of new projects and new people getting involved. And what's phenomenal about it is there's, you know, end user practitioners that aren't just contributing. But many of the projects were spawned out of work by the likes of Intuit and Spotify and, and many others that created some of the projects that sit alongside or above the, the, you know, the container orchestration itself. >>So before we talked about some of that, it's, it's kind of interesting. It's like Kubernetes is the big dog, right? And it's, it's kind of maturing after, you know, eight years, but it's still important. I wanna share another data point that underscores the traction that containers generally are getting in Kubernetes specifically have, So this is data from the latest ETR survey and shows the spending breakdown for Kubernetes in the ETR data set for it's cut for respondents with 50 or more citations in, in by the IT practitioners that lime green is new adoptions, the forest green is spending 6% or more relative to last year. The gray is flat spending year on year, and those little pink bars, that's 6% or down spending, and the bright red is retirements. So they're leaving the platform. And the blue dots are net score, which is derived by subtracting the reds from the greens. And the yellow dots are pervasiveness in the survey relative to the sector. So the big takeaway here is that there is virtually no red, essentially zero churn across all sectors, large companies, public companies, private firms, telcos, finance, insurance, et cetera. So again, sometimes I hear this things beyond Kubernetes, you've mentioned several, but it feels like Kubernetes is still a driving force, but a lot of other projects around Kubernetes, which we're gonna hear about at the show. >>Yeah. So, so, so Dave, right? First of all, there was for a number of years, like, oh wait, you know, don't waste your time on, on containers because serverless is gonna rule the world. Well, serverless is now a little bit of a broader term. Can I do a serverless viewpoint for my developers that they don't need to think about the infrastructure but still have containers underneath it? Absolutely. So our friends at Amazon have a solution called Fargate, their proprietary offering to kind of hide that piece of it. And in the open source world, there's a project called Can Native, I think it's the second or third can Native Con's gonna happen at the cncf. And even if you use this, I can still call things over on Lambda and use some of those functions. So we know Dave, it is additive and nothing ever dominates the entire world and nothing ever dies. >>So we have, we have a long runway of activities still to go on in containers and Kubernetes. We're always looking for what that next thing is. And what's great about this ecosystem is most of it tends to be additive and plug into the pieces there, there's certain tools that, you know, span beyond what can happen in the container world and aren't limited to it. And there's others that are specific for it. And to talk about the industries, Dave, you know, I love, we we have, we have a community event that we run that's gonna happen at Cubans called OpenShift Commons. And when you look at like, who's speaking there? Oh, we've got, you know, for Lockheed Martin, University of Michigan and I g Bank all speaking there. So you look and it's like, okay, cool, I've got automotive, I've got, you know, public sector, I've got, you know, university education and I've got finance. So all of you know, there is not an industry that is not touched by this. And the general wave of software adoption is the reason why, you know, not just adoption, but the creation of new software is one of the differentiators for companies. And that is what, that's the reason why I do containers, isn't because it's some cool technology and Kubernetes is great to put on my resume, but that it can actually accelerate my developers and help me create technology that makes me respond to my business and my ultimate end users. Well, >>And you know, as you know, we've been talking about the Supercloud a lot and the Kubernetes is clearly enabler to, to Supercloud, but I wanted to go back, you and John Furrier have done so many of, you know, the, the cube cons, but but go back to Docker con before Kubernetes was even a thing. And so you sort of saw this, you know, grow. I think there's what, how many projects are in CNCF now? I mean, hundreds. Hundreds, okay. And so you're, Will we hear things in Detroit, things like, you know, new projects like, you know, Argo and capabilities around SI store and things like that? Well, you're gonna hear a lot about that. Or is it just too much to cover? >>So I, I mean the, the good news, Dave, is that the CNCF really is, is a good steward for this community and new things got in get in. So there's so much going on with the existing projects that some of the new ones sometimes have a little bit of a harder time making a little bit of buzz. One of the more interesting ones is a project that's been around for a while that I think back to the first couple of Cube Cuban that John and I did service Mesh and Istio, which was created by Google, but lived under basically a, I guess you would say a Google dominated governance for a number of years is now finally under the CNCF Foundation. So I talked to a number of companies over the years and definitely many of the contributors over the years that didn't love that it was a Google Run thing, and now it is finally part. >>So just like Kubernetes is, we have SEO and also can Native that I mentioned before also came outta Google and those are all in the cncf. So will there be new projects? Yes. The CNCF is sometimes they, they do matchmaking. So in some of the observability space, there were a couple of projects that they said, Hey, maybe you can go merge down the road. And they ended up doing that. So there's still you, you look at all these projects and if I was an end user saying, Oh my God, there is so much change and so many projects, you know, I can't spend the time in the effort to learn about all of these. And that's one of the challenges and something obviously at Red Hat, we spend a lot of time figuring out, you know, not to make winners, but which are the things that customers need, Where can we help make them run in production for our, our customers and, and help bring some stability and a little bit of security for the overall ecosystem. >>Well, speaking of security, security and, and skill sets, we've talked about those two things and they sort of go hand in hand when I go to security events. I mean, we're at reinforced last summer, we were just recently at the CrowdStrike event. A lot of the discussion is sort of best practice because it's so complicated. And, and, and will you, I presume you're gonna hear a lot of that here because security securing containers now, you know, the whole shift left thing and shield right is, is a complicated matter, especially when you saw with the earlier data from the Red Hat survey, the the gaps are around skill sets. People don't have the skill. So should we expect to hear a lot about that, A lot of sort of how to, how to take advantage of some of these new capabilities? >>Yeah, Dave, absolutely. So, you know, one of the conversations going on in the community right now is, you know, has DevOps maybe played out as we expect to see it? There's a newer term called platform engineering, and how much do I need to do there? Something that I, I know your, your team's written a lot about Dave, is how much do you need to know versus what can you shift to just a platform or a service that I can consume? I've talked a number of times with you since I've been at Red Hat about the cloud services that we offer. So you want to use our offering in the public cloud. Our first recommendation is, hey, we've got cloud services, how much Kubernetes do you really want to learn versus you want to do what you can build on top of it, modernize the pieces and have less running the plumbing and electric and more, you know, taking advantage of the, the technologies there. So that's a big thing we've seen, you know, we've got a big SRE team that can manage that for use so that you have to spend less time worrying about what really is un differentiated heavy lifting and spend more time on what's important to your business and your >>Customers. So, and that's, and that's through a managed service. >>Yeah, absolutely. >>That whole space is just taken off. All right, Stu I'll give you the final word. You know, what are you excited about for, for, for this upcoming event and Detroit? Interesting choice of venue? Yeah, >>Look, first of off, easy flight. I've, I've never been to Detroit, so I'm, I'm willing to give it a shot and hopefully, you know, that awesome airport. There's some, some, some good things there to learn. The show itself is really a choose your own adventure because there's so much going on. The main show of QAN and cloud Native Con is Wednesday through Friday, but a lot of a really interesting stuff happens on Monday and Tuesday. So we talked about things like OpenShift Commons in the security space. There's cloud Native Security Day, which is actually two days and a SIG store event. There, there's a get up show, there's, you know, k native day. There's so many things that if you want to go deep on a topic, you can go spend like a workshop in some of those you can get hands on to. And then at the show itself, there's so much, and again, you can learn from your peers. >>So it was good to see we had, during the pandemic, it tilted a little bit more vendor heavy because I think most practitioners were pretty busy focused on what they could work on and less, okay, hey, I'm gonna put together a presentation and maybe I'm restricted at going to a show. Yeah, not, we definitely saw that last year when I went to LA I was disappointed how few customer sessions there were. It, it's back when I go look through the schedule now there's way more end users sharing their stories and it, it's phenomenal to see that. And the hallway track, Dave, I didn't go to Valencia, but I hear it was really hopping felt way more like it was pre pandemic. And while there's a few people that probably won't come because Detroit, we think there's, what we've heard and what I've heard from the CNCF team is they are expecting a sizable group up there. I know a lot of the hotels right near the, where it's being held are all sold out. So it should be, should be a lot of fun. Good thing I'm speaking on an edge panel. First time I get to be a speaker at the show, Dave, it's kind of interesting to be a little bit of a different role at the show. >>So yeah, Detroit's super convenient, as I said. Awesome. Airports too. Good luck at the show. So it's a full week. The cube will be there for three days, Tuesday, Wednesday, Thursday. Thanks for coming. >>Wednesday, Thursday, Friday, sorry, >>Wednesday, Thursday, Friday is the cube, right? So thank you for that. >>And, and no ties from the host, >>No ties, only hoodies. All right Stu, thanks. Appreciate you coming in. Awesome. And thank you for watching this preview of CubeCon plus cloud Native Con with at Stu, which again starts the 24th of October, three days of broadcasting. Go to the cube.net and you can see all the action. We'll see you there.
SUMMARY :
Red Hat back in the studio to help us understand the key trends to look for at the events. I know you want to be an ESPN sportscaster, but you know, I I, I, I still don't think even Now, that red dotted line that you And this cloud native ecosystem is still, you know, we're still in that Cambridge explosion And of course, you know, I want something that that's small and lightweight and Here's, you know, a few fun facts. I think said, you know, 96% of companies when they, when CMC F surveyed them last year, You've got, you know, certain workloads like we talked about, you know, AI and ml and that And it's, it's kind of maturing after, you know, eight years, but it's still important. oh wait, you know, don't waste your time on, on containers because serverless is gonna rule the world. And the general wave of software adoption is the reason why, you know, And you know, as you know, we've been talking about the Supercloud a lot and the Kubernetes is clearly enabler to, to Supercloud, definitely many of the contributors over the years that didn't love that it was a Google Run the observability space, there were a couple of projects that they said, Hey, maybe you can go merge down the road. securing containers now, you know, the whole shift left thing and shield right is, So, you know, one of the conversations going on in the community right now is, So, and that's, and that's through a managed service. All right, Stu I'll give you the final word. There, there's a get up show, there's, you know, k native day. I know a lot of the hotels right near the, where it's being held are all sold out. Good luck at the show. So thank you for that. Go to the cube.net and you can see all the action.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave | PERSON | 0.99+ |
David | PERSON | 0.99+ |
Lockheed Martin | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Detroit | LOCATION | 0.99+ |
50 | QUANTITY | 0.99+ |
CNCF | ORGANIZATION | 0.99+ |
October 24th | DATE | 0.99+ |
40% | QUANTITY | 0.99+ |
Stewart Miniman | PERSON | 0.99+ |
Friday | DATE | 0.99+ |
ORGANIZATION | 0.99+ | |
96% | QUANTITY | 0.99+ |
two days | QUANTITY | 0.99+ |
University of Michigan | ORGANIZATION | 0.99+ |
Stu | PERSON | 0.99+ |
CMC F | ORGANIZATION | 0.99+ |
80% | QUANTITY | 0.99+ |
Tuesday | DATE | 0.99+ |
John | PERSON | 0.99+ |
Wednesday | DATE | 0.99+ |
eight years | QUANTITY | 0.99+ |
Monday | DATE | 0.99+ |
last year | DATE | 0.99+ |
three days | QUANTITY | 0.99+ |
Red Hat | ORGANIZATION | 0.99+ |
second | QUANTITY | 0.99+ |
73% | QUANTITY | 0.99+ |
Thursday | DATE | 0.99+ |
LA | LOCATION | 0.99+ |
more than 120,000 developers | QUANTITY | 0.99+ |
two things | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
hundreds | QUANTITY | 0.99+ |
Hundreds | QUANTITY | 0.99+ |
first time | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
24th of October | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
KubeCon | EVENT | 0.98+ |
CubeCon | EVENT | 0.98+ |
CNCF Foundation | ORGANIZATION | 0.98+ |
cube.net | OTHER | 0.98+ |
last summer | DATE | 0.98+ |
Valencia | LOCATION | 0.98+ |
third | QUANTITY | 0.98+ |
Spotify | ORGANIZATION | 0.98+ |
Intuit | ORGANIZATION | 0.98+ |
last year | DATE | 0.98+ |
One | QUANTITY | 0.98+ |
cloud Native Security Day | EVENT | 0.97+ |
Kubernetes | TITLE | 0.97+ |
QAN | EVENT | 0.97+ |
ESPN | ORGANIZATION | 0.97+ |
W Curtis Preston, Druva
(bright inspirational music) >> Welcome back everyone to theCUBE and the Druva special presentation of, "Why Ransomware Isn't Your Only Problem." I'm John Furrier, host of theCUBE. We're here with W. Curtis Preston. Curtis Preston, as you know in the industry, Chief Technical Evangelist at Druva. Curtis, great to see you. We're here at, "Why Ransomware Isn't Your Only Problem." Great to see you. Thanks for coming on. >> Happy to be here. >> So we always see each other events, now events are back. So it's great to have you here for this special presentation. The White Paper from IDC really talks about this in detail. Like to get your thoughts, and I'd like you to reflect on the analysis that we've been covering here and the survey data, how it lines up with the real world that you're seeing out there. >> Yeah, I think it's... The survey results really I'd like to say that they surprised me, but unfortunately they didn't. The data protection world has been this way for a while where there's this difference in belief, or difference between the belief and the reality. And what we see is that there are a number of organizations that have been hit- successfully hit by ransomware, paid the ransom and/or lost data. And yet the same people that were surveyed they had high degrees of confidence in their backup system. And, you know, I could probably go on for an hour as to the various reasons why that would be the case, but I think that this long running problem that as long as I've been associated with backups, which, you know, has been a while, it's that problem of, you know, nobody wants to be the backup person. And people often just they don't want to have anything to do with the backup system. And so it sort of exists in this vacuum. And so then management is like, "Oh, the backup system's great," because the backup person often, you know, might say that it's great because maybe it's their job to say so. But the reality has always been very, very different. >> It's funny, you know, "We're good boss, we got this covered." >> Good. All good. It's all good. >> Fingers crossed, right? So again, this is the reality, and as it becomes backup and recovery, which we've talked about many times on theCUBE, certainly we have with you before, but now with ransomware, also, the other thing is people get ransomware hit multiple times. So it's not only like they get hit once. So, you know, this is a constant chasing the tail on some ends, but there are some tools out there. You guys have a solution. And so let's get into that. You know, you have had hands-on backup experience. What are the points that surprise you the most about what's going on in this world and the realities of how people should be going forward? What's your take? >> Well, I would say that the one part in the survey that surprised me the most was people that had a huge, you know, that there was a huge percentage of people that said that they had a, you know, a ransomware response, you know, and readiness program. And you look at that and how could you be, you know, that high a percentage of people be comfortable with their ransomware readiness program and a, you know, which includes a number of things, right? There's the cyber attack aspect of responding to a ransomware attack, and then there's the recovery aspect. And so you believe that your company was ready for that, and then you go, and I think it was 67% of the people in the survey paid the ransom, which as a person who, you know, has spent my entire career trying to help people successfully recover their data, that number I think just hurt me the most is that because you talked about re-infections the surest way to guarantee that you get re-attacked and reinfected is to pay the ransom. This goes back all the way to ransom since the beginning of time, right? Everyone knows if you pay the blackmail all you're telling people is that you pay blackmail. >> You're in business, you're a good customer. ALR for ransomware. >> Yeah. So, the fact that, you know, 60, what, two-thirds of the people that were attacked by ransomware paid the ransom. That one statistic just, just hurt my heart. >> Yeah. And I think this is the reality. I mean, we go back and even the psychology of the practitioners was, you know, super important to get back in recovery. And that's been around for a long time. But now that's an attack vector, okay? And there's dollars involved, like I said, ALR, I'm joking but there's recurring revenue for the for the bad guys if they know you're paying up and if you're stupid enough not to change you're tooling. Right? So again, it works both ways. So, I got to ask you, why do you think so many organizations are unable to successfully respond after an attack? Is it because- they know it's coming. I mean, they're not that dumb. I mean, they have to know it's coming. Why aren't they responding successfully to this? >> I think it's a litany of things starting with that aspect that I mentioned before that nobody wants to have anything to do with the backup system, right? So, nobody wants to be the one to raise their hand because if you're the one that raises their hand "You know what, that's a good idea, Curtis, why don't you look into that?" Right? Nobody wants to be responsible- >> Where's that guy now? He doesn't work here anymore. Yeah, but I hear where you coming from. Psychology (indistinct). >> Yeah. So there's that. But then the second is that because of that no one's looking at the fact that backups are the attack vector. They become the attack vector. And so because they're the attack vector they have to be protected as much, if not more, than the rest of the environment. The rest of the environment can live off of active directory and, you know, and things like Okta so that you can have SSO and things like that. The backup environment has to be segregated in a very special way. Backups have to be stored completely separate from your environment. The login and authentication and authorization system needs to be completely separate from your typical environment. Why? Because if you, if that production environment is compromised now knowing that the attacks or that the backup systems are a significant portion of the attack vector, if the production system is compromised then the backup system is compromised. So you've got to segregate all of that. And I just don't think that people are thinking about that. You know, and they're using the same backup techniques that they've used for many, many years. >> So what you're saying is that the attack vectors and the attackers are getting smarter. They're saying, "Hey, we'll just take out the backup first so they can't back-up. So we got the ransomware." >> Yeah, exactly. The largest ransomware group out there, the Conti ransomware group, they are specifically targeting specific backup vendors. They know how to recognize the backup servers. They know how to recognize where the backups are stored and they are exfiltrating the backups first and then deleting them and then letting you know you have ransom. Right? >> Okay, so you guys have a lot of customers They all kind of have the same- this problem. What's the patterns that you're seeing? How are they evolving? What are some of the things that they're implementing? What is the best practice? >> Well, again, you've got to fully segregate that data, There are, and everything about how that data is stored and everything about how that data is created and accessed. There are ways to do that with other, you know, with other commercial products. You can take a standard product and put a number of layers of defense on top of it or you can switch to the way Druva does things which is a SaaS offering that stores your data completely in the cloud in our account, right? So your account could be completely compromised. That has nothing to do with our account. And the- it's a completely different authentication and authorization system. You've got multiple layers of defense between your computing environment and where we store your backups. So basically what you get by default with the way Druva stores your backups is the best you can get after doing many, many layers of defense on the other side and having to do all that work with us. You just login and you get all of that. >> I guess how do you break the laws of physics? I guess that's the question here. >> Well, when, because that's the other thing is that by storing the data in the cloud, we do it, and I've said this a few times, that you get to break the laws of physics. And the only way to do that is to, is time travel. And that's what, so yeah. So Druva has time travel. What, and this is a courtisism by the way, I don't think this is our official position, but the idea is that the only way to restore data as fast as possible is to restore it before you actually need it. And that's what kind of what I mean by time travel. In that you, basically, you configure your DR, your disaster recovery environment in Druva one time. And then we are pre-restoring your data as often as you tell us to do, to bring your DR environment up to the, you know, the current environment as quickly as we can so that in a disaster recovery scenario which is part of your ransomware response, right? Again, there are many different parts but when you get to actually restoring the data you should be able to just push a button and go. The data should already be restored. And that's the, that's the way that you of physics is you break the laws of time. >> Well, I and everyone wants to know the next question, and this is the real big question is, are you from the future? (light chuckling) >> Yeah. Very much the future. >> What's it like in the future, back-up recovery, how's it restored? Is it air gapping everything? >> Yeah, it, well, it's a world where people don't have to worry about their backups. I like to use the phrase, "get out of the backup business. Just get into the restore business." I, you know, I'm a grandfather now and I love having a granddaughter and I often make the joke that if I'd have known how great grandkids were I would've skipped straight to them. Right? Not possible. Just like this. Recoveries are great. Backups are really hard. So, in the future, if you use a SaaS data protection system and data resiliency system, you can just do recoveries and not have to worry about backups. >> Yeah. And what's great about your background is you've got a lot of historical perspective. I've seen that in the ways of innovation now it's really is about the recovery and real time. So a lot of good stuff going on and got to think automated. Things got to be rocking and rolling. >> Absolutely. Yeah. I do remember, again, having worked so hard with many clients over the years, back then we worked so hard just to get the backup done. There was very little time to work on the recovery. And I really, I kid you not that our customers don't have to do all of those things that all of our competitors have to do to, you know, to try to break the laws of physics. I've been fighting the laws of physics my entire career to get the backup done in the first place. Then to secure all the data, right? To air gap it and make sure that a ransomware attack isn't going to attack it. Our customers get to get straight to a fully automated disaster recovery environment that they get to test as often as possible and they get to do a full test by simply pressing a single button. And you know, I wish that, I wish everybody had that ability. >> Yeah, I mean, security's a big part of it. Data's in the middle of it. All this is now mainstream front lines. Great stuff. Curtis, great to have you on, bring that perspective and thanks for the insight. Really appreciate it. >> Always happy to talk about my favorite subject. >> Alright. We'll be back in a moment. We'll have Stephen Manley, the CTO, and Anjan Srinivas, the GM and VP of Product Management will join me. You're watching theCUBE, the leader in high tech enterprise coverage. (gentle scientific music)
SUMMARY :
and the Druva special presentation of, So it's great to have you here because the backup person often, you know, It's funny, you know, It's all good. and the realities of how that said that they had a, you know, You're in business, by ransomware paid the ransom. of the practitioners was, you know, Yeah, but I hear where you coming from. or that the backup systems is that the attack vectors and then letting you know What's the patterns that you're seeing? is the best you can get I guess that's the question here. is that by storing the data So, in the future, if you use I've seen that in the ways of that they get to test as often Curtis, great to have you on, Always happy to talk and Anjan Srinivas, the GM
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Stephen Manley | PERSON | 0.99+ |
Curtis | PERSON | 0.99+ |
Curtis Preston | PERSON | 0.99+ |
Anjan Srinivas | PERSON | 0.99+ |
67% | QUANTITY | 0.99+ |
John Furrier | PERSON | 0.99+ |
W. Curtis Preston | PERSON | 0.99+ |
ALR | ORGANIZATION | 0.99+ |
60 | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
Druva | TITLE | 0.98+ |
IDC | ORGANIZATION | 0.98+ |
two-thirds | QUANTITY | 0.98+ |
Conti | ORGANIZATION | 0.98+ |
both ways | QUANTITY | 0.98+ |
Druva | ORGANIZATION | 0.98+ |
Why Ransomware Isn't Your Only Problem | TITLE | 0.98+ |
Why Ransomware Isn't Your Only Problem | TITLE | 0.97+ |
one time | QUANTITY | 0.96+ |
theCUBE | ORGANIZATION | 0.95+ |
one part | QUANTITY | 0.92+ |
one | QUANTITY | 0.91+ |
an hour | QUANTITY | 0.88+ |
Druva | PERSON | 0.86+ |
single button | QUANTITY | 0.83+ |
W Curtis Preston | PERSON | 0.83+ |
once | QUANTITY | 0.74+ |
each | QUANTITY | 0.59+ |
many years | QUANTITY | 0.58+ |
Okta | ORGANIZATION | 0.43+ |
Breaking Analysis: UiPath is a Rocket Ship Resetting its Course
>> From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> Like a marathon runner pumped up on adrenaline, UiPath sprinted to the lead in what is surely going to be a long journey toward enabling the modern automated enterprise. Now, in doing so the company has established itself as a leader in enterprise automation while at the same time, it got out over its skis on critical execution items and it disappointed investors along the way. In our view, the company has plenty of upside potential, but will have to slog through its current challenges, including restructuring its go-to market, prioritizing investments, balancing growth with profitability and dealing with a very difficult macro environment. Hello and welcome to this week's Wikibon Cube insights powered by ETR. In this Breaking Analysis and ahead of Forward 5, UiPath's big customer event, we once again dig into RPA and automation leader, UiPath, to share our most current data and view of the company's prospects relative to the competition and the market overall. Now, since the pandemic, four sectors have consistently outperformed in the overall spending landscape in the ETR dataset, cloud, containers, machine learning/AI, and robotic process automation. For the first time in a long time ML and AI and RPA have dropped below the elevated 40% line shown in this ETR graph with the red dotted line. The data here plots the net score or spending momentum for each sector with we put in video conferencing, we added it in simply to provide height to the vertical access. Now, you see those squiggly lines, they show the pattern for ML/AI and RPA, and they demonstrate the downward trajectory over time with only the most current period dropping below the 40% net score mark. While this is not surprising, it underscores one component of the macro headwinds facing all companies generally and UiPath specifically, that is the discretionary nature of certain technology investments. This has been a topic of conversation on theCUBE since the spring spanning data players like Mongo and Snowflake, the cloud, security, and other sectors. The point is ML/AI and RPA appear to be more discretionary than certain sectors, including cloud. Containers most likely benefit from the fact that much of the activity is spending on internal resources, staff like developers as much of the action in containers is free and open source. Now, security is not shown on this graphic, but as we've reported extensively in the last week at CrowdStrike's Falcon conference, security is somewhat less discretionary than other sectors. Now, as it relates to the big four that we've been highlighting since the pandemic hit, we're starting to see priorities shift from strategic investments like AI and automation to more tactical areas to keep the lights on. UiPath has not been immune to this downward pressure, but the company is still able to show some impressive metrics. Here's a snapshot chart from its investor deck. For the first time UiPath's ARR has surpassed $1 billion. The company now has more than 10,000 customers with a large number generating more than $100,000 in ARR. While not shown in this data, UiPath reported this month in its second quarter close that it had $191 million plus ARR customers, which is up 13% sequentially from its Q1. As well, the company's NRR is over 130%, which is very solid and underscores the low churn that we've previously reported for the company. But with that increased ARR comes slower growth. Here's some data we compiled that shows the dramatic growth in ARR, the blue bars, compared with the rapid deceleration and growth. That's the orange line on the right hand access there. For the first time UiPath's ARR growth dipped below 50% last quarter. Now, we've projected 34% and 25% respectively for the company's Q3 in Q4, which is slightly higher than the upper range of UiPath's CFO, Ashim Gupta's guidance from the last earnings call. That still puts UiPath exiting its fiscal year at a 25% ARR growth rate. While it's not unexpected that a company reaching $1 billion in ARR, that milestone, will begin to show lower, slower growth, net new ARR is well off its fiscal year '22 levels. The other perhaps more concerning factor is the company, despite strong 80% gross margins, remains unprofitable and free cash flow negative. New CEO, Rob Enslin, has emphasized the focus on profitability, and we'd like to see a consistent and more disciplined Rule of 40 or Rule of 45 to 50 type of performance going forward. As a result of this decelerating growth and lowered guidance stemming from significant macro challenges including currency fluctuations and weaker demand, especially in Europe and EP and inconsistent performance, the stock, as shown here, has been on a steady decline. What all growth stocks are facing, you know, challenges relative to inflation, rising interest rates, and looming recession, but as seen here, UiPath has significantly underperformed relative to the tech-heavy NASDAQ. UiPath has admitted to execution challenges, and it has brought in an expanded management team to facilitate its sales transition and desire to become a more strategic platform play versus a tactical point product. Now, adding to this challenge of foreign exchange issues, as we've previously reported unlike most high flying tech companies from Silicon Valley, UiPath has a much larger proportion of its business coming from locations outside of the United States, around 50% of its revenue, in fact. Because it prices in local currencies, when you convert back to appreciated dollars, there are less of them, and that weighs down on revenue. Now, we asked Breaking Analysis contributor, Chip Simonton, for his take on this stock, and he told us, "From a technical standpoint, there's really not much you can say, it just looks like a falling knife. It's trading at an all time low but that doesn't mean it can't go lower. New management with a good product is always a positive with a stock like this, but this is just a bad environment for UiPath and all growth stocks really, and," he added, "95% of money managers have never operated in this type of environment before. So that creates more uncertainty. There will be a bottom, but picking it in this high-inflation, high-interest rate world hasn't worked too well lately. There's really no floor to these stocks that don't have earnings, until you start to trade to cash levels." Well, okay, let's see, UiPath has $1.6 billion in cash in the balance sheet and no debt, so we're a long ways off from that target, the cash value with its current $7 billion valuation. You have to go back to April 2019 to UiPaths Series D to find a $7 billion valuation. So Simonton says, "The stock still could go lower." The valuation range for this stock has been quite remarkable from around $50 billion last May to $7 billion today. That's quite a swing. And the spending data from ETR sort of supports this story. This graphic here shows the net score or spending momentum granularity for UiPath. The lime green is new additions to the platform. The forest green is spending 6% or more. The gray is flat spending. The pink is spending down 6% or worse. And the bright red is churn. Subtract the red from the green and you get net score, which is that blue line. The yellow line is pervasiveness within the data set. Now, that yellow line is skewed somewhat because of Microsoft citations. There's a belief from some that competition from Microsoft is the reason for UiPath's troubles, but Microsoft is really delivering RPA for individuals and isn't an enterprise automation platform at least not today, but it's Microsoft, so you can't discount their presence in the market. And it probably is having some impact, but we think there are many other factors weighing on UiPath. Now, this is data through the July survey but taking a glimpse at the early October returns they're trending with the arrows, meaning less green more gray and red, which is going to lower UiPath's overall net score, which is consistent with the macro headwinds and the business performance that it's been seeing. Now, nonetheless, UiPath continues to get high marks from its customers, and relative to it's peers it maintains a leadership position. So this chart from ETR, shows net score or spending velocity in the vertical access, an overlap or presence in the dataset on the horizontal access. Microsoft continues to have a big presence, and as we mentioned, somewhat skews the data. UiPath has maintained its lead relative to automation anywhere on the horizontal access, and remains ahead of the legacy pack of business process and other RPA vendors. Solonis has popped up in the ETR data set recently as a process mining player and has a pretty high net score. It's a critical space UiPath has entered, via its acquisition of ProcessGold back in October 2019. Now, you can also see what we did is we added in the Gartner Magic Quadrant for robotic process automation. We didn't blow it up here but we circled the position of UiPath. You can see it's leading in both the vertical and the horizontal access, ahead of automation anywhere as well as Microsoft and others. Now, we're still not seeing the likes of SAP, Service Now, and Salesforce showing up in the ETR data, but these enterprise software vendors are in a reasonable position to capitalize on automation opportunities within their installed basis. This is why it's so important that UiPath transitions to an enterprise-wide horizontal play that can cut across multiple ERP, CRM, HCM, and service management platforms. While the big software companies can add automation to their respective stovepipes, and they're doing that, UiPath's opportunity is to bring automation to enable enterprises to build on top of and across these SaaS platforms that most companies are running. Now, on the chart, you see the red arrows slanting down. That signifies the expected trend from the upcoming October ETR survey, which is currently in the field and will run through early next month. Suffice it to say that there is downward spending pressure across the board, and we would expect most of these names, including UiPath, to dip below the 40% dotted line. Now, as it relates to the conversation about platform versus product, let's dig into that a bit more. Here's a graphic from UiPath's investor deck that underscores the move from product to platform. UiPath has expanded its platform from its initial on-prem point product to focus on automating tasks for individuals and back offices to a cloud-first platform approach. The company has added in technology from a number of acquisitions and added organically to those. These include, the previously mentioned, ProcessGold for process discovery, process documentation from the acquisition of StepShot, API automation via the acquisition of Cloud Elements, to its more recent acquisition of Re:infer, a natural language processing specialist. Now, we expect the platform to be a big focus of discussion at Forward 5 next week in Las Vegas. So let's close in on our expectations for the three-day event next week at the Venetian. UiPath's user conference has grown over the years and the Venetian should be by far be the biggest and most heavily attended in the company's history. We expect UiPath to really emphasize the role of automation, specifically in the context of digital transformation, and how UiPath has evolved, again, from point product to platform to support digital transformation. Expect to focus on platform maturity. When UiPath announced its platform intentions back in 2019, which was the last physical face-to-face customer event prior to COVID, it essentially was laying out a statement of direction. And over the past three years, it has matured the platform and taken it from vision to reality. You know, I said the last event, actually, the last event was 2021. Of course, theCUBE was there at the Bellagio in Las Vegas. But prior to that, 2019 is when they laid out that platform vision. Now, in a conjunction with this evolution, the company has evolved its partnerships, pairing up with the likes of Snowflake and the data cloud, CrowdStrike, to provide better security, and, of course, the big Global System Integrators, to help implement enterprise automation. And this is where we expect to hear a lot from customers. I've heard, there'll be over 100 speaking at the show about the outcomes and how they're digitally transforming. Now, I mentioned earlier that we haven't seen the big ERP and enterprise software companies show up yet in the ETR data, but believe me they're out there and they're selling automation and RPA and they're competing. So expect UiPath to position themselves and deposition those companies. Position UiPath as a layer above these bespoke platforms shown here on number four. With process discovery and task discovery, building automation across enterprise apps, and operationalizing process workflows as a horizontal play. And I'm sure there'll be some new graphics on this platform that we can share after the event that will emphasize this positioning. And finally, as we showed earlier in the platform discussion, we expect to hear a lot about the new platform capabilities and use cases, and not just RPA, but process mining, testing, testing automation, which is a new vector of growth for UiPath, document processing. And also, we expect UiPath to address its low code development capabilities to expand the number of people in the organization that can create automation capabilities and automations. Those domain experts is what we're talking about here that deeply understand the business but aren't software engineers. Enabling them is going to be really important, and we expect to hear more about that. And we expect this conference to set the tone for a new chapter in UiPath's history. The company's second in-person gathering, but the first one was last October. So really this is going to be sort of a build upon that, and many in-person events. For the first time this year, UiPath was one of the first to bring back its physical event, but we expect it to be bigger than what was at the Bellagio, and a lot of people were concerned about traveling. Although UiPath got a lot of customers there, but I think they're going to really up the game in terms of attendance this year. And really, that comparison is unfair because UiPath, again, it was sort of the middle of COVID last year. But anyway, we expect this new operations and go-to-market oriented focus from co-CEO, Rob Enslin, and new sales management, we're going to be, you know, hearing from them. And the so-called adult supervision has really been lacking at UiPath, historically. Daniel Dines will no doubt continue to have a big presence at the event and at the company. He's not a figurehead by any means. He's got a deep understanding of the product and the market and we'll be interviewing both Daniel and Rob Enslin on theCUBE to find out how they see the future. So tune in next week, or if you're in Las Vegas, definitely stop by theCUBE. If you're not go to thecube.net, you'll be able to watch all of our coverage. Okay, we're going to leave it there today. I want to thank Chip Simonton again for his input to today's episode. Thanks to Alex Morrison who's on production and manages our podcasts. Ken Schiffman, as well, from our Boston office, our Boston studio. Kristen Martin, and Cheryl Knight, they helped get the word out on social media and in our newsletters. And Rob Hof is our editor in chief over at SiliconANGLE that does some great editing. Thanks all. Remember, these episodes are all available as podcasts wherever you listen. All you got to do is search Breaking Analysis Podcasts. I publish each week on wikibon.com and siliconangle.com, and you could email me at david.vellante@siliconangle.com or DM me @dvellante. If you got anything interesting, I'll respond. If not, please keep trying, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (gentle techno music)
SUMMARY :
in Palo Alto in Boston, but the company is still able to show
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
UiPath | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Daniel | PERSON | 0.99+ |
April 2019 | DATE | 0.99+ |
October 2019 | DATE | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Rob Enslin | PERSON | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
40% | QUANTITY | 0.99+ |
Rob Hof | PERSON | 0.99+ |
$7 billion | QUANTITY | 0.99+ |
$191 million | QUANTITY | 0.99+ |
Las Vegas | LOCATION | 0.99+ |
$1 billion | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
$1.6 billion | QUANTITY | 0.99+ |
UiPaths | ORGANIZATION | 0.99+ |
NASDAQ | ORGANIZATION | 0.99+ |
Silicon Valley | LOCATION | 0.99+ |
next week | DATE | 0.99+ |
Europe | LOCATION | 0.99+ |
25% | QUANTITY | 0.99+ |
80% | QUANTITY | 0.99+ |
July | DATE | 0.99+ |
United States | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
last year | DATE | 0.99+ |
Ashim Gupta | PERSON | 0.99+ |
2019 | DATE | 0.99+ |
34% | QUANTITY | 0.99+ |
early October | DATE | 0.99+ |
more than $100,000 | QUANTITY | 0.99+ |
2021 | DATE | 0.99+ |
more than 10,000 customers | QUANTITY | 0.99+ |
last May | DATE | 0.99+ |
three-day | QUANTITY | 0.99+ |
Simonton | PERSON | 0.99+ |
Daniel Dines | PERSON | 0.99+ |
Boston | LOCATION | 0.99+ |
around $50 billion | QUANTITY | 0.99+ |
last week | DATE | 0.99+ |
early next month | DATE | 0.99+ |
last October | DATE | 0.99+ |
each week | QUANTITY | 0.99+ |
October | DATE | 0.99+ |
this year | DATE | 0.98+ |
siliconangle.com | OTHER | 0.98+ |
around 50% | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
both | QUANTITY | 0.98+ |
wikibon.com | OTHER | 0.98+ |
over 100 | QUANTITY | 0.98+ |
SiliconANGLE | ORGANIZATION | 0.98+ |
Dell A Blueprint for Trusted Infrastructure
the cyber security landscape has changed dramatically over the past 24 to 36 months rapid cloud migration has created a new layer of security defense sure but that doesn't mean csos can relax in many respects it further complicates or at least changes the ciso's scope of responsibilities in particular the threat surface has expanded and that creates more seams and cisos have to make sure their teams pick up where the hyperscaler clouds leave off application developers have become a critical execution point for cyber assurance shift left is the kind of new buzz phrase for devs but organizations still have to shield right meaning the operational teams must continue to partner with secops to make sure infrastructure is resilient so it's no wonder that in etr's latest survey of nearly 1500 cios and it buyers that business technology executives cite security as their number one priority well ahead of other critical technology initiatives including collaboration software cloud computing and analytics rounding out the top four but budgets are under pressure and csos have to prioritize it's not like they have an open checkbook they have to contend with other key initiatives like those just mentioned to secure the funding and what about zero trust can you go out and buy xero trust or is it a framework a mindset in a series of best practices applied to create a security consciousness throughout the organization can you implement zero trust in other words if a machine or human is not explicitly allowed access then access is denied can you implement that policy without constricting organizational agility the question is what's the most practical way to apply that premise and what role does infrastructure play as the enforcer how does automation play in the equation the fact is that today's approach to cyber resilient type resilience can't be an either or it has to be an and conversation meaning you have to ensure data protection while at the same time advancing the mission of the organization with as little friction as possible and don't even talk to me about the edge that's really going to keep you up at night hello and welcome to the special cube presentation a blueprint for trusted infrastructure made possible by dell technologies in this program we explore the critical role that trusted infrastructure plays in cyber security strategies how organizations should think about the infrastructure side of the cyber security equation and how dell specifically approaches securing infrastructure for your business we'll dig into what it means to transform and evolve toward a modern security infrastructure that's both trusted and agile first up are pete gear and steve kenniston they're both senior cyber security consultants at dell technologies and they're going to talk about the company's philosophy and approach to trusted infrastructure and then we're going to speak to paris arcadi who's a senior consultant for storage at dell technologies to understand where and how storage plays in this trusted infrastructure world and then finally rob emsley who heads product marketing for data protection and cyber security he's going to take a deeper dive with rob into data protection and explain how it has become a critical component of a comprehensive cyber security strategy okay let's get started pete gear steve kenniston welcome to the cube thanks for coming into the marlboro studios today great to be here dave thanks dave good to see you great to see you guys pete start by talking about the security landscape you heard my little rap up front what are you seeing i thought you wrapped it up really well and you touched on all the key points right technology is ubiquitous today it's everywhere it's no longer confined to a monolithic data center it lives at the edge it lives in front of us it lives in our pockets and smartphones along with that is data and as you said organizations are managing sometimes 10 to 20 times the amount of data that they were just five years ago and along with that cyber crime has become a very profitable enterprise in fact it's been more than 10 years since uh the nsa chief actually called cyber crime the biggest transfer of wealth in history that was 10 years ago and we've seen nothing but accelerating cyber crime and really sophistication of how those attacks are perpetrated and so the new security landscape is really more of an evolution we're finally seeing security catch up with all of the technology adoption all the build out the work from home and work from anywhere that we've seen over the last couple of years we're finally seeing organizations and really it goes beyond the i t directors it's a board level discussion today security's become a board level discussion yeah i think that's true as well it's like it used to be the security was okay the secops team you're responsible for security now you've got the developers are involved the business lines are involved it's part of onboarding for most companies you know steve this concept of zero trust it was kind of a buzzword before the pandemic and i feel like i've often said it's now become a mandate but it's it's it's still fuzzy to a lot of people how do you guys think about zero trust what does it mean to you how does it fit yeah i thought again i thought your opening was fantastic in in this whole lead into to what is zero trust it had been a buzzword for a long time and now ever since the federal government came out with their implementation or or desire to drive zero trust a lot more people are taking a lot more seriously because i don't think they've seen the government do this but ultimately let's see ultimately it's just like you said right if if you don't have trust to those particular devices uh applications or data you can't get at it the question is and and you phrase it perfectly can you implement that as well as allow the business to be as agile as it needs to be in order to be competitive because we're seeing with your whole notion around devops and the ability to kind of build make deploy build make deploy right they still need that functionality but it also needs to be trusted it needs to be secure and things can't get away from you yeah so it's interesting we attended every uh reinforce since 2019 and the narrative there is hey everything in this in the cloud is great you know and this narrative around oh security is a big problem is you know doesn't help the industry the fact is that the big hyperscalers they're not strapped for talent but csos are they don't have the the capabilities to really apply all these best practices they're they're playing whack-a-mole so they look to companies like yours to take their r your r d and bake it into security products and solutions so what are the critical aspects of the so-called dell trusted infrastructure that we should be thinking about yeah well dell trusted infrastructure for us is a way for us to describe uh the the work that we do through design development and even delivery of our it system so dell trusted infrastructure includes our storage it includes our servers our networking our data protection our hyper converged everything that infrastructure always has been it's just that today customers consume that infrastructure at the edge as a service in a multi-cloud environment i mean i view the cloud as really a way for organizations to become more agile and to become more flexible and also to control costs i don't think organizations move to the cloud or move to a multi-cloud environment to enhance security so i don't see cloud computing as a panacea for security i see it as another attack surface and another uh aspect in front that organizations and and security organizations and departments have to manage it's part of their infrastructure today whether it's in their data center in a cloud or at the edge i mean i think it's a huge point because a lot of people think oh data's in the cloud i'm good it's like steve we've talked about oh why do i have to back up my data it's in the cloud well you might have to recover it someday so i don't know if you have anything to add to that or any additional thoughts on it no i mean i think i think like what pete was saying when it comes to when it comes to all these new vectors for attack surfaces you know people did choose the cloud in order to be more agile more flexible and all that did was open up to the csos who need to pay attention to now okay where can i possibly be attacked i need to be thinking about is that secure and part of the part of that is dell now also understands and thinks about as we're building solutions is it is it a trusted development life cycle so we have our own trusted development life cycle how many times in the past did you used to hear about vendors saying you got to patch your software because of this we think about what changes to our software and what implementations and what enhancements we deliver can actually cause from a security perspective and make sure we don't give up or or have security become a whole just in order to implement a feature we got to think about those things yeah and as pete alluded to our secure supply chain so all the way through knowing what you're going to get when you actually receive it is going to be secure and not be tampered with becomes vitally important and pete and i were talking earlier when you have tens of thousands of devices that need to be delivered whether it be storage or laptops or pcs or or whatever it is you want to be you want to know that that that those devices are can be trusted okay guys maybe pete you could talk about the how dell thinks about it's its framework and its philosophy of cyber security and then specifically what dell's advantages are relative to the competition yeah definitely dave thank you so we've talked a lot about dell as a technology provider but one thing dell also is is a partner in this larger ecosystem we realize that security whether it's a zero trust paradigm or any other kind of security environment is an ecosystem uh with a lot of different vendors so we look at three areas one is protecting data in systems we know that it starts with and ends with data that helps organizations combat threats across their entire infrastructure and what it means is dell's embedding security features consistently across our portfolios of storage servers networking the second is enhancing cyber resiliency over the last decade a lot of the funding and spending has been in protecting or trying to prevent cyber threats not necessarily in responding to and recovering from threats right we call that resiliency organizations need to build resiliency across their organization so not only can they withstand a threat but they can respond recover and continue with their operations and the third is overcoming security complexity security is hard it's more difficult because of the things we've talked about about distributed data distributed technology and and attack surfaces everywhere and so we're enabling organizations to scale confidently to continue their business but know that all all the i.t decisions that they're making um have these intrinsic security features and are built and delivered in a consistent security so those are kind of the three pillars maybe we could end on what you guys see as the key differentiators that people should know about that that dell brings to the table maybe each of you could take take a shot at that yeah i think first of all from from a holistic portfolio perspective right the uh secure supply chain and the secure development life cycle permeate through everything dell does when building things so we build things with security in mind all the way from as pete mentioned from from creation to delivery we want to make sure you have that that secure device or or asset that permeates everything from servers networking storage data protection through hyper converge through everything that to me is really a key asset because that means you can you understand when you receive something it's a trusted piece of your infrastructure i think the other core component to think about and pete mentioned as dell being a partner for making sure you can deliver these things is that even though those are that's part of our framework these pillars are our framework of how we want to deliver security it's also important to understand that we are partners and that you don't need to rip and replace but as you start to put in new components you can be you can be assured that the components that you're replacing as you're evolving as you're growing as you're moving to the cloud as you're moving to a more on-prem type services or whatever that your environment is secure i think those are two key things got it okay pete bring us home yeah i think one of one of the big advantages of dell is our scope and our scale right we're a large technology vendor that's been around for decades and we develop and sell almost every piece of technology we also know that organizations are might make different decisions and so we have a large services organization with a lot of experienced services people that can help customers along their security journey depending on whatever type of infrastructure or solutions that they're looking at the other thing we do is make it very easy to consume our technology whether that's traditional on-premise in a multi-cloud environment uh or as a service and so the best of breed technology can be consumed in any variety of fashion and know that you're getting that consistent secure infrastructure that dell provides well and dell's forgot the probably top supply chain not only in the tech business but probably any business and so you can actually take take your dog food and then and allow other billionaire champagne sorry allow other people to you know share share best practices with your with your customers all right guys thanks so much for coming thank you appreciate it okay keep it right there after this short break we'll be back to drill into the storage domain you're watching a blueprint for trusted infrastructure on the cube the leader in enterprise and emerging tech coverage be right back concern over cyber attacks is now the norm for organizations of all sizes the impact of these attacks can be operationally crippling expensive and have long-term ramifications organizations have accepted the reality of not if but when from boardrooms to i.t departments and are now moving to increase their cyber security preparedness they know that security transformation is foundational to digital transformation and while no one can do it alone dell technologies can help you fortify with modern security modern security is built on three pillars protect your data and systems by modernizing your security approach with intrinsic features and hardware and processes from a provider with a holistic presence across the entire it ecosystem enhance your cyber resiliency by understanding your current level of resiliency for defending your data and preparing for business continuity and availability in the face of attacks overcome security complexity by simplifying and automating your security operations to enable scale insights and extend resources through service partnerships from advanced capabilities that intelligently scale a holistic presence throughout it and decades as a leading global technology provider we'll stop at nothing to help keep you secure okay we're back digging into trusted infrastructure with paris sarcadi he's a senior consultant for product marketing and storage at dell technologies parasaur welcome to the cube good to see you great to be with you dave yeah coming from hyderabad awesome so i really appreciate you uh coming on the program let's start with talking about your point of view on what cyber security resilience means to to dell generally but storage specifically yeah so for something like storage you know we are talking about the data layer name and if you look at cyber security it's all about securing your data applications and infrastructure it has been a very mature field at the network and application layers and there are a lot of great technologies right from you know enabling zero trust advanced authentications uh identity management systems and so on and and in fact you know with the advent of you know the the use of artificial intelligence and machine learning really these detection tools for cyber securities have really evolved in the network and the application spaces so for storage what it means is how can you bring them to the data layer right how can you bring you know the principles of zero trust to the data layer uh how can you leverage artificial intelligence and machine learning to look at you know access patterns and make intelligent decisions about maybe an indicator of a compromise and identify them ahead of time just like you know how it's happening and other ways of applications and when it comes to cyber resilience it's it's basically a strategy which assumes that a threat is imminent and it's a good assumption with the severity of the frequency of the attacks that are happening and the question is how do we fortify the infrastructure in the switch infrastructure to withstand those attacks and have a plan a response plan where we can recover the data and make sure the business continuity is not affected so that's uh really cyber security and cyber resiliency and storage layer and of course there are technologies like you know network isolation immutability and all these principles need to be applied at the storage level as well let me have a follow up on that if i may the intelligence that you talked about that ai and machine learning is that do you do you build that into the infrastructure or is that sort of a separate software module that that points at various you know infrastructure components how does that work both dave right at the data storage level um we have come with various data characteristics depending on the nature of data we developed a lot of signals to see what could be a good indicator of a compromise um and there are also additional applications like cloud iq is the best example which is like an infrastructure wide health monitoring system for dell infrastructure and now we have elevated that to include cyber security as well so these signals are being gathered at cloud iq level and other applications as well so that we can make those decisions about compromise and we can either cascade that intelligence and alert stream upstream for uh security teams um so that they can take actions in platforms like sign systems xtr systems and so on but when it comes to which layer the intelligence is it has to be at every layer where it makes sense where we have the information to make a decision and being closest to the data we have we are basically monitoring you know the various parallels data access who is accessing um are they crossing across any geo fencing uh is there any mass deletion that is happening or a mass encryption that is happening and we are able to uh detect uh those uh patterns and flag them as indicators of compromise and in allowing automated response manual control and so on for it teams yeah thank you for that explanation so at dell technologies world we were there in may it was one of the first you know live shows that that we did in the spring certainly one of the largest and i interviewed shannon champion and a huge takeaway from the storage side was the degree to which you guys emphasized security uh within the operating systems i mean really i mean powermax more than half i think of the features were security related but also the rest of the portfolio so can you talk about the the security aspects of the dell storage portfolio specifically yeah yeah so when it comes to data security and broadly data availability right in the context of cyber resiliency dell storage this you know these elements have been at the core of our um a core strength for the portfolio and the source of differentiation for the storage portfolio you know with almost decades of collective experience of building highly resilient architectures for mission critical data something like power max system which is the most secure storage platform for high-end enterprises and now with the increased focus on cyber security we are extending those core technologies of high availability and adding modern detection systems modern data isolation techniques to offer a comprehensive solution to the customer so that they don't have to piece together multiple things to ensure data security or data resiliency but a well-designed and well-architected solution by design is delivered to them to ensure cyber protection at the data layer got it um you know we were talking earlier to steve kenniston and pete gear about this notion of dell trusted infrastructure how does storage fit into that as a component of that sort of overall you know theme yeah and you know and let me say this if you could adjust because a lot of people might be skeptical that i can actually have security and at the same time not constrict my organizational agility that's old you know not an ore it's an end how do you actually do that if you could address both of those that would be great definitely so for dell trusted infrastructure cyber resiliency is a key component of that and just as i mentioned you know uh air gap isolation it really started with you know power protect cyber recovery you know that was the solution more than three years ago we launched and that was first in the industry which paved way to you know kind of data isolation being a core element of data management and uh for data infrastructure and since then we have implemented these technologies within different storage platforms as well so that customers have the flexibility depending on their data landscape they can approach they can do the right data isolation architecture right either natively from the storage platform or consolidate things into the backup platform and isolate from there and and the other key thing we focus in trusted infrastructure dell infra dell trusted infrastructure is you know the goal of simplifying security for the customers so one good example here is uh you know being able to respond to these cyber threats or indicators of compromise is one thing but an i.t security team may not be looking at the dashboard of the storage systems constantly right storage administration admins may be looking at it so how can we build this intelligence and provide this upstream platforms so that they have a single pane of glass to understand security landscape across applications across networks firewalls as well as storage infrastructure and in compute infrastructure so that's one of the key ways where how we are helping simplify the um kind of the ability to uh respond ability to detect and respond these threads uh in real time for security teams and you mentioned you know about zero trust and how it's a balance of you know not uh kind of restricting users or put heavy burden on you know multi-factor authentication and so on and this really starts with you know what we're doing is provide all the tools you know when it comes to advanced authentication uh supporting external identity management systems multi-factor authentication encryption all these things are intrinsically built into these platforms now the question is the customers are actually one of the key steps is to identify uh what are the most critical parts of their business or what are the applications uh that the most critical business operations depend on and similarly identify uh mission critical data where part of your response plan where it cannot be compromised where you need to have a way to recover once you do this identification then the level of security can be really determined uh by uh by the security teams by the infrastructure teams and you know another you know intelligence that gives a lot of flexibility uh for for even developers to do this is today we have apis um that so you can not only track these alerts at the data infrastructure level but you can use our apis to take concrete actions like blocking a certain user or increasing the level of authentication based on the threat level that has been perceived at the application layer or at the network layer so there is a lot of flexibility that is built into this by design so that depending on the criticality of the data criticality of the application number of users affected these decisions have to be made from time to time and it's as you mentioned it's it's a balance right and sometimes you know if if an organization had a recent attack you know the level of awareness is very high against cyber attacks so for a time you know these these settings may be a bit difficult to deal with but then it's a decision that has to be made by security teams as well got it so you're surfacing what may be hidden kpis that are being buried inside for instance the storage system through apis upstream into a dashboard so that somebody could you know dig into the storage tunnel extract that data and then somehow you know populate that dashboard you're saying you're automating that that that workflow that's a great example and you may have others but is that the correct understanding absolutely and it's a two-way integration let's say a detector an attack has been detected at a completely different layer right in the application layer or at a firewall we can respond to those as well so it's a two-way integration we can cascade things up as well as respond to threats that have been detected elsewhere um uh through the api that's great all right hey api for power skill is the best example for that uh excellent so thank you appreciate that give us the last word put a bow on this and and bring this segment home please absolutely so a dell storage portfolio um using advanced data isolation um with air gap having machine learning based algorithms to detect uh indicators of compromise and having rigor mechanisms with granular snapshots being able to recover data and restore applications to maintain business continuity is what we deliver to customers uh and these are areas where a lot of innovation is happening a lot of product focus as well as you know if you look at the professional services all the way from engineering to professional services the way we build these systems the way we we configure and architect these systems um cyber security and protection is a key focus uh for all these activities and dell.com securities is where you can learn a lot about these initiatives that's great thank you you know at the recent uh reinforce uh event in in boston we heard a lot uh from aws about you know detent and response and devops and machine learning and some really cool stuff we heard a little bit about ransomware but i'm glad you brought up air gaps because we heard virtually nothing in the keynotes about air gaps that's an example of where you know this the cso has to pick up from where the cloud leaves off but that was in front and so number one and number two we didn't hear a ton about how the cloud is making the life of the cso simpler and that's really my takeaway is is in part anyway your job and companies like dell so paris i really appreciate the insights thank you for coming on thecube thank you very much dave it's always great to be in these uh conversations all right keep it right there we'll be right back with rob emsley to talk about data protection strategies and what's in the dell portfolio you're watching thecube data is the currency of the global economy it has value to your organization and cyber criminals in the age of ransomware attacks companies need secure and resilient it infrastructure to safeguard their data from aggressive cyber attacks [Music] as part of the dell technologies infrastructure portfolio powerstor and powermax combine storage innovation with advanced security that adheres to stringent government regulations and corporate compliance requirements security starts with multi-factor authentication enabling only authorized admins to access your system using assigned roles tamper-proof audit logs track system usage and changes so it admins can identify suspicious activity and act with snapshot policies you can quickly automate the protection and recovery process for your data powermax secure snapshots cannot be deleted by any user prior to the retention time expiration dell technologies also make sure your data at rest stays safe with power store and powermax data encryption protects your flash drive media from unauthorized access if it's removed from the data center while adhering to stringent fips 140-2 security requirements cloud iq brings together predictive analytics anomaly detection and machine learning with proactive policy-based security assessments monitoring and alerting the result intelligent insights that help you maintain the security health status of your storage environment and if a security breach does occur power protect cyber recovery isolates critical data identifies suspicious activity and accelerates data recovery using the automated data copy feature unchangeable data is duplicated in a secure digital vault then an operational air gap isolates the vault from the production and backup environments [Music] architected with security in mind dell emc power store and powermax provides storage innovation so your data is always available and always secure wherever and whenever you need it [Music] welcome back to a blueprint for trusted infrastructure we're here with rob emsley who's the director of product marketing for data protection and cyber security rob good to see a new role yeah good to be back dave good to see you yeah it's been a while since we chatted last and you know one of the changes in in my world is that i've expanded my responsibilities beyond data protection marketing to also focus on uh cyber security marketing specifically for our infrastructure solutions group so certainly that's you know something that really has driven us to you know to come and have this conversation with you today so data protection obviously has become an increasingly important component of the cyber security space i i don't think necessarily of you know traditional backup and recovery as security it's to me it's an adjacency i know some companies have said oh yeah now we're a security company they're kind of chasing the valuation for sure bubble um dell's interesting because you you have you know data protection in the form of backup and recovery and data management but you also have security you know direct security capability so you're sort of bringing those two worlds together and it sounds like your responsibility is to to connect those those dots is that right absolutely yeah i mean i think that uh the reality is is that security is a a multi-layer discipline um i think the the days of thinking that it's one uh or another um technology that you can use or process that you can use to make your organization secure uh are long gone i mean certainly um you actually correct if you think about the backup and recovery space i mean people have been doing that for years you know certainly backup and recovery is all about the recovery it's all about getting yourself back up and running when bad things happen and one of the realities unfortunately today is that one of the worst things that can happen is cyber attacks you know ransomware malware are all things that are top of mind for all organizations today and that's why you see a lot of technology and a lot of innovation going into the backup and recovery space because if you have a copy a good copy of your data then that is really the the first place you go to recover from a cyber attack and that's why it's so important the reality is is that unfortunately the cyber criminals keep on getting smarter i don't know how it happens but one of the things that is happening is that the days of them just going after your production data are no longer the only challenge that you have they go after your your backup data as well so over the last half a decade dell technologies with its backup and recovery portfolio has introduced the concept of isolated cyber recovery vaults and that is really the you know we've had many conversations about that over the years um and that's really a big tenant of what we do in the data protection portfolio so this idea of of cyber security resilience that definition is evolving what does it mean to you yeah i think the the analyst team over at gartner they wrote a very insightful paper called you will be hacked embrace the breach and the whole basis of this analysis is so much money has been spent on prevention is that what's out of balance is the amount of budget that companies have spent on cyber resilience and cyber resilience is based upon the premise that you will be hacked you have to embrace that fact and be ready and prepared to bring yourself back into business you know and that's really where cyber resiliency is very very different than cyber security and prevention you know and i think that balance of get your security disciplines well-funded get your defenses as good as you can get them but make sure that if the inevitable happens and you find yourself compromised that you have a great recovery plan and certainly a great recovery plan is really the basis of any good solid data protection backup and recovery uh philosophy so if i had to do a swot analysis we don't have to do the wot but let's focus on the s um what would you say are dell's strengths in this you know cyber security space as it relates to data protection um one is we've been doing it a long time you know we talk a lot about dell's data protection being proven and modern you know certainly the experience that we've had over literally three decades of providing enterprise scale data protection solutions to our customers has really allowed us to have a lot of insight into what works and what doesn't as i mentioned to you one of the unique differentiators of our solution is the cyber recovery vaulting solution that we introduced a little over five years ago five six years parapatek cyber recovery is something which has become a unique capability for customers to adopt uh on top of their investment in dell technologies data protection you know the the unique elements of our solution already threefold and it's we call them the three eyes it's isolation it's immutability and it's intelligence and the the isolation part is really so important because you need to reduce the attack surface of your good known copies of data you know you need to put it in a location that the bad actors can't get to it and that really is the the the the essence of a cyber recovery vault interestingly enough you're starting to see the market throw out that word um you know from many other places but really it comes down to having a real discipline that you don't allow the security of your cyber recovery vault to be compromised insofar as allowing it to be controlled from outside of the vault you know allowing it to be controlled by your backup application our cyber recovery vaulting technology is independent of the backup infrastructure it uses it but it controls its own security and that is so so important it's like having a vault that the only way to open it is from the inside you know and think about that if you think about you know volts in banks or volts in your home normally you have a keypad on the outside think of our cyber recovery vault as having its security controlled from inside of the vault so nobody can get in nothing can get in unless it's already in and if it's already in then it's trusted exactly yeah exactly yeah so isolation is the key and then you mentioned immutability is the second piece yeah so immutability is is also something which has been around for a long time people talk about uh backup immunoability or immutable backup copies so immutability is just the the the additional um technology that allows the data that's inside of the vault to be unchangeable you know but again that immutability you know your mileage varies you know when you look across the uh the different offers that are out there in the market especially in the backup industry you make a very valid point earlier that the backup vendors in the market seems to be security washing their marketing messages i mean everybody is leaning into the ever-present danger of cyber security not a bad thing but the reality is is that you have to have the technology to back it up you know quite literally yeah no pun intended and then actually pun intended now what about the intelligence piece of it uh that's that's ai ml where does that fit for sure so the intelligence piece is delivered by um a solution called cybersense and cybersense for us is what really gives you the confidence that what you have in your cyber recovery vault is a good clean copy of data so it's looking at the backup copies that get driven into the cyber vault and it's looking for anomalies so it's not looking for signatures of malware you know that's what your antivirus software does that's what your endpoint protection software does that's on the prevention side of the equation but what we're looking for is we're looking to ensure that the data that you need when all hell breaks loose is good and that when you get a request to restore and recover your business you go right let's go and do it and you don't have any concern that what you have in the vault has been compromised so cyber sense is really a unique analytic solution in the market based upon the fact that it isn't looking at cursory indicators of of um of of of malware infection or or ransomware introduction it's doing full content analytics you know looking at you know has the data um in any way changed has it suddenly become encrypted has it suddenly become different to how it was in the previous scan so that anomaly detection is very very different it's looking for um you know like different characteristics that really are an indicator that something is going on and of course if it sees it you immediately get flagged but the good news is is that you always have in the vault the previous copy of good known data which now becomes your restore point so we're talking to rob emsley about how data protection fits into what dell calls dti dell trusted infrastructure and and i want to come back rob to this notion of and not or because i think a lot of people are skeptical like how can i have great security and not introduce friction into my organization is that an automation play how does dell tackle that problem i mean i think a lot of it is across our infrastructure is is security has to be built in i mean intrinsic security within our servers within our storage devices uh within our elements of our backup infrastructure i mean security multi-factor authentication you know elements that make the overall infrastructure secure you know we have capabilities that you know allow us to identify whether or not configurations have changed you know we'll probably be talking about that a little bit more to you later in the segment but the the essence is is um security is not a bolt-on it has to be part of the overall infrastructure and that's so true um certainly in the data protection space give us the the bottom line on on how you see dell's key differentiators maybe you could talk about dell of course always talks about its portfolio but but why should customers you know lead in to dell in in this whole cyber resilience space um you know staying on the data protection space as i mentioned the the the work we've been doing um to introduce this cyber resiliency solution for data protection is in our opinion as good as it gets you know the you know you've spoken to a number of our of our best customers whether it be bob bender from founders federal or more recently at delton allergies world you spoke to tony bryson from the town of gilbert and these are customers that we've had for many years that have implemented cyber recovery vaults and at the end of the day they can now sleep at night you know that's really the the peace of mind that they have is that the insurance that a data protection from dell cyber recovery vault a parapatex cyber recovery solution gives them you know really allows them to you know just have the assurance that they don't have to pay a ransom if they have a an insider threat issue and you know all the way down to data deletion is they know that what's in the cyber recovery vault is good and ready for them to recover from great well rob congratulations on the new scope of responsibility i like how you know your organization is expanding as the threat surface is expanding as we said data protection becoming an adjacency to security not security in and of itself a key component of a comprehensive security strategy rob emsley thank you for coming back in the cube good to see you again you too dave thanks all right in a moment i'll be back to wrap up a blueprint for trusted infrastructure you're watching the cube every day it seems there's a new headline about the devastating financial impacts or trust that's lost due to ransomware or other sophisticated cyber attacks but with our help dell technologies customers are taking action by becoming more cyber resilient and deterring attacks so they can greet students daily with a smile they're ensuring that a range of essential government services remain available 24 7 to citizens wherever they're needed from swiftly dispatching public safety personnel or sending an inspector to sign off on a homeowner's dream to protecting restoring and sustaining our precious natural resources for future generations with ever-changing cyber attacks targeting organizations in every industry our cyber resiliency solutions are right on the money providing the security and controls you need we help customers protect and isolate critical data from ransomware and other cyber threats delivering the highest data integrity to keep your doors open and ensuring that hospitals and healthcare providers have access to the data they need so patients get life-saving treatment without fail if a cyber incident does occur our intelligence analytics and responsive team are in a class by themselves helping you reliably recover your data and applications so you can quickly get your organization back up and running with dell technologies behind you you can stay ahead of cybercrime safeguarding your business and your customers vital information learn more about how dell technology's cyber resiliency solutions can provide true peace of mind for you the adversary is highly capable motivated and well equipped and is not standing still your job is to partner with technology vendors and increase the cost of the bad guys getting to your data so that their roi is reduced and they go elsewhere the growing issues around cyber security will continue to drive forward thinking in cyber resilience we heard today that it is actually possible to achieve infrastructure security while at the same time minimizing friction to enable organizations to move quickly in their digital transformations a xero trust framework must include vendor r d and innovation that builds security designs it into infrastructure products and services from the start not as a bolt-on but as a fundamental ingredient of the cloud hybrid cloud private cloud to edge operational model the bottom line is if you can't trust your infrastructure your security posture is weakened remember this program is available on demand in its entirety at thecube.net and the individual interviews are also available and you can go to dell security solutions landing page for for more information go to dell.com security solutions that's dell.com security solutions this is dave vellante thecube thanks for watching a blueprint for trusted infrastructure made possible by dell we'll see you next time
SUMMARY :
the degree to which you guys
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
tony bryson | PERSON | 0.99+ |
10 | QUANTITY | 0.99+ |
boston | LOCATION | 0.99+ |
hyderabad | LOCATION | 0.99+ |
steve kenniston | PERSON | 0.99+ |
second piece | QUANTITY | 0.99+ |
rob emsley | PERSON | 0.99+ |
two-way | QUANTITY | 0.99+ |
rob emsley | PERSON | 0.99+ |
dell technologies | ORGANIZATION | 0.99+ |
pete | PERSON | 0.99+ |
today | DATE | 0.99+ |
thecube.net | OTHER | 0.99+ |
dell.com | ORGANIZATION | 0.99+ |
gartner | ORGANIZATION | 0.98+ |
three eyes | QUANTITY | 0.98+ |
dave | PERSON | 0.98+ |
more than 10 years | QUANTITY | 0.98+ |
dell | ORGANIZATION | 0.98+ |
three areas | QUANTITY | 0.98+ |
five years ago | DATE | 0.98+ |
two key | QUANTITY | 0.98+ |
10 years ago | DATE | 0.98+ |
dell technologies | ORGANIZATION | 0.98+ |
both | QUANTITY | 0.97+ |
steve kenniston | PERSON | 0.97+ |
20 times | QUANTITY | 0.97+ |
first | QUANTITY | 0.97+ |
third | QUANTITY | 0.97+ |
cybersense | ORGANIZATION | 0.97+ |
nearly 1500 cios | QUANTITY | 0.96+ |
a lot more people | QUANTITY | 0.95+ |
one thing | QUANTITY | 0.95+ |
second | QUANTITY | 0.95+ |
steve | PERSON | 0.94+ |
cloud iq | TITLE | 0.94+ |
tens of thousands of devices | QUANTITY | 0.94+ |
pete gear | PERSON | 0.94+ |
more than three years ago | DATE | 0.93+ |
one | QUANTITY | 0.93+ |
powermax | ORGANIZATION | 0.93+ |
two worlds | QUANTITY | 0.93+ |
2019 | DATE | 0.92+ |
gilbert | LOCATION | 0.92+ |
one of the key ways | QUANTITY | 0.91+ |
Dell | ORGANIZATION | 0.91+ |
pandemic | EVENT | 0.91+ |
more than half | QUANTITY | 0.9+ |
each | QUANTITY | 0.9+ |
first place | QUANTITY | 0.89+ |
bender | PERSON | 0.89+ |
a lot of people | QUANTITY | 0.89+ |
zero trust | QUANTITY | 0.89+ |
last decade | DATE | 0.88+ |
Cloud native at scale: A Supercloud conversation with Madhura Maskasky, Platform9
(upbeat music) >> Hello, and welcome to theCUBE here in Palo Alto, California, for a special program on Cloud Native at Scale, Enabling Next Generation Cloud or Supercloud for Modern Application Cloud Native Developers. I'm John Furrier, host of theCUBE. My pleasure to have here, me Madhura Maskasky, Co-founder and VP of Product at Platform9. Thanks for coming in today for this cloud native at scale conversation. >> Thank you for having me. >> So cloud native at scale, something that we're talking about because we're seeing the next level of mainstream success of containers, Kubernetes and cloud native develop, basically DevOps in the CI/CD pipeline. It's changing the landscape of infrastructure as code. It's accelerating the value proposition. And the Supercloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on Supercloud as it fits to cloud native, it scales up. >> Yeah, you know, I think what's interesting. And I think the reason why Supercloud is a really good and a really fit term for this. And I think I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multicloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model, where you have a few large distributions of infrastructure and workload at a few locations, I think the model's kind of flipped around, right? Where you have a large number of micro-sites. These micro-sites could be your public cloud deployment, your private OnPrem infrastructure deployment, or it could be your Edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you got to refer that with a terminology that indicates the scale and complexity of it. And so I think Supercloud is an appropriate term for that. >> So you brought a couple things I want to dig into. You mentioned Edge nodes. We're seeing not only Edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning, wouldn't even know what's around the corner. You got buildings, you got IoT, OT and IT kind of coming together, but you also got this idea of regions. Global infrastructure is a big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale, these new challenges there. Can you share, because you got to have Edge. So hybrid cloud is a winning formula. Everybody knows that, it's a steady state. But across multiple clouds brings in this new un-engineered area yet, It hasn't been done yet, Spanning Clouds. People say they're doing it, but you start to see the toe in the water. It's happening, it's going to happen. It's only going to get accelerated with the Edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's something, business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the Supercloud across multiple edges and regions? >> Yeah, absolutely. So I think, you know, in the context of this term of Supercloud, I think it's sometimes easier to visualize things in terms of two axis, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have deployed, a number of clusters in the Kubernetes space. And then on the other axis, you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site, or do you have them distributed across tens of thousands of sites, with one node at each site, right? And if you have just one flare of this, there is enough complexity, but potentially manageable. But when you are expanding on both these axis, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling, along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this, or when your scale is not at the level. >> Can you scope the complexity? Because, I mean, I hear a lot of moving parts going on there. The technology is also getting better. We're seeing cloud native become successful. There's a lot to configure. There's lot to install. Can you scope the scale of the problem because we're about at scale challenges here. >> Yeah absolutely, and I think I like to call it, you know, the problem that the scale creates, there's various problems. But I think one problem, one way to think about it is it works on my cluster problem, right? So, you know, I come from engineering background and there's a famous saying between engineers and QA, and the support folks, right. Which is, it works on my laptop, which is I tested this change, everything was fantastic. It worked flawlessly on my machine. On production, it's not working. The exact same problem now happens in these distributed environments, but at massive scale, right. Which is that, you know, developers test their applications, et cetera within these sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right. And the production deployment could be going at the radio cell tower at the Edge location where a cluster is running there. Or it could be sending, you know, these applications and having them run at my customer site, where they might not have configured that cluster exactly the same way as I configured it. Or they configured the cluster right. But maybe they didn't deploy the security policies, or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ballgame of issues come in the context of security, right? Because when you are deploying applications at scale, in a distributed manner, you got to make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >> Okay, so I have to ask about scale, because there are a lot of multiple steps involved when you see the success of cloud native, you know, you see some experimentation, they set up a cluster, say it's containers and Kubernetes. And then you say, okay, we got this. We configure it. And then they do it again, and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you got to scale it. Then you're seeing security breaches. You're seeing configuration errors. This seems to be where the hotspot is, in when companies transition from, I got this, to oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >> Yeah, so, you know, I think it's interesting. There's multiple problems that occur when the two factors of scale, as we talked about, start expanding. I think one of them is what I like to call the, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem. Which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with P 0s and POS from support teams, et cetera. And those issues can be really difficult to try us, right. And so in the Kubernetes environment, this problem kind of multi-folds. It goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters, and things work perfectly fine in those clusters, because these clusters are typically handcrafted or a combination of some scripting and handcrafting. And so as you give that change to then run at your production Edge location, like say your radial cell power site, or you hand it over to a customer to run it on their cluster, they might not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so things don't work. And when things don't work, triaging them becomes nightmarishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, as you have these distributed clusters at scale. You got to ensure someone's job is on the line to make sure that the security policies are configured properly. >> So this is a huge problem. I love that comment. That's not happening on my system. It's the classic, you know, debugging mentality. But at scale, it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching, can you share what Arlon is? This new product? What is it all about? Talk about this new introduction. >> Yeah absolutely, I'm very, very excited. You know, it's one of the projects that we've been working on for some time now. Because we are very passionate about this problem and just solving problems at scale in OnPrem or in the cloud or at Edge environments. And what Arlon is, it's an open source project, and it is a tool, a Kubernetes native tool for complete end-to-end management of not just your clusters, but your clusters, all of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what Arlon lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >> So what's the elevator pitch simply put for what this solves in terms of the chaos you guys are reigning in, what's the bumper sticker. What did it do? >> There's a perfect analogy that I love to reference in this context, which is, think of your assembly line, you know, in a traditional, let's say an auto manufacturing factory, or et cetera, and the level of efficiency at scale that that assembly line brings, right. Arlon, and if you look at the logo we've designed, it's this funny little robot. And it's because when we think of Arlon, we think of these enterprise large scale environments, you know, sprawling at scale, creating chaos, because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets processed in a standardized way. And that's what Arlon really does. That's like the elevator pitch. If you have problems of scale, of managing your infrastructure, you know, that is distributed, Arlon brings the assembly line level of efficiency and consistency for those problems. >> So keeping it smooth, the assembly line, things are flowing, see CI/CD pipe-lining. So that's what you're trying to simplify that OPS piece for the developer. I mean, it's not really OPS, it's their OPS, it's coding. >> Yeah, not just developer the OPS, the operations folks as well, right. Because developers, you know, developers are responsible for one picture of that layer, which is my apps. And then maybe that middleware of applications that they interface with. But then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly. Monitoring and observability is integrated. And so it solves problems for both those teams. >> Yeah, it's DevOps. So the DevOps is the cloud native developer. The OPS team have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >> Absolutely, yeah. And you know, Kubernetes really introduced or elevated this declarative management, right. Because you know, Kubernetes clusters are you know your specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it. And it does that using existing open source, well known solutions. >> And do I want to get into the benefits, what's in it for me as the customer, developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the current state of the product? You run the product group over there at Platform9. Is it open source, and you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? And what is the consumption? I mean open source is great. People want opensource, they can download and look up the code, but maybe want to buy the commercial. So I'm assuming you have that thought through. Can you share open source and commercial relationship? >> Yeah, I think, you know, starting with why opensource? I think it's, you know, we, as a company, we have one of the things that's absolutely critical to us is that we take mainstream open source technologies, components, and then we make them available to our customers at scale through either a SaaS model or OnPrem model, right. But so as we are a company or startup, or a company that benefits, you know, in a massive way by this open source economy, it's only right I think in my mind that we do are part of the duty, right. And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products, starting all the way with Fission, which was a serverless product that we had built, to various other examples that I can give. But that's one of the main reasons why open source. And also open source because we want the community to really first-hand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind a black box. >> Well, and that's what the developers want too. What we're seeing in reporting with Supercloud is the new model of consumption is I want to look at the code and see what's in there. >> That's right. >> And then also if I want to use it, I'll do it, great. That's open source, that's the value. But then at the end of the day, if I want to move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way it is, but that's the benefit of open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for developers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Kakroff uses the dating metaphor, you know, hey, you know, I want to check it out first before I get married. And that's what open source is. So this is the new, this is how people are selling. This is not just open source. This is how companies are selling. >> Absolutely, yeah, yeah. You know, I think two things, I think one is just, you know, this cloud native space is so vast that if you're building a cluster solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case, if they choose to do so, right. But at the same time, what's also critical to us, is we are able to provide a supported version of it, with an SLA that's backed by us, a SaaS-hosted version of it as well for those customers who choose to go that route. You know, once they have used the open source version and loved it and want to take it at scale and in production and need a partner to collaborate with who can support them for that production environment. >> I have to ask you. Now let's get into what's in it for the customer? I'm a customer. Why should I be enthused about Arlon? What's in it for me? You know, 'cause if I'm not enthused about it, I'm not going to be confident, and it's going to be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlon, if I'm a customer. >> Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, are customers where this is a very kind of typical story that you will hear, which is we have a Kubernetes distribution. It could be On-Premise. It could be public cloud native Kubernetes. And then we have our CI/CD pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is, well before you can, your CI/CD pipelines can deploy the apps, somebody needs to do all of their groundwork of, you know, defining those clusters, and yeah properly configuring them. And as these things start by being done hand-grown. And then as you scale, what typically enterprises would do today is they will have their homegrown DIY solutions for this. I mean, the number of folks that I talk to that have built Terraform automation, and then, you know, some of those key developers leave. So it's a typical open source, or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits their problem. And so that's that pitch. I think OPS people would be delighted. The folks that we've talked, you know, spoken with have been absolutely excited and have shared that this is a major challenge we have today, because we have few hundreds of clusters on EKS, Amazon, and we want to scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability to do that. >> Yeah, I think people are scared. I won't say scared, that's a bad word. Maybe I should say that they feel nervous because you know, at scale, small mistakes can become large mistakes. This is something that is concerning to enterprises. And I think this is going to come up at KubeCon this year where enterprises are going to say, okay, I need to see SLAs. I want to see track record. I want to see other companies that have used it. How would you answer that question to, or challenge, you know, hey I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight. You know, I love the open source trying to free, fast and loose, but I need hardened code. >> Yeah, absolutely. So two parts to that, right? One is Arlon leverages, existing opensource components, products that are extremely popular. Two specifically, one is Arlon uses Argo CD, which is probably one of the highest rated and used CD opensource tools that's out there, right. Created by folks that are as part of Intuit team now, you know, really brilliant team, and it's used at scale across enterprises. That's one. Second is Arlon also makes use of cluster API, CAPI, which is a Kubernetes sub-component, right for lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products or open source projects that will find Arlon to be right up in their alley, because they're already comfortable, familiar with Argo CD. Now Arlon just extends the scope of what Argo CD can do. And so that's one. And then the second part is going back to your point of the comfort. And that's where, you know, Platform9 has a role to play, which is when you are ready to deploy Arlon at scale, because you've been, you know playing with it in your DEV test environments, you're happy with what you get with it. Then Platform9 will stand behind it and provide that SLA. >> And what's been the reaction from customers you've talked to, Platform9 customers that are familiar with Argo, and then Arlo? What's been some of the feedback? >> Yeah, I think the feedback's been fantastic. I mean, I can give you examples of customers where you know, initially, when you're telling them about your entire portfolio of solutions, it might not strike a chord right away. But then we start talking about Arlon, and we talk about the fact that it uses Argo CD. They start opening up, they say, we have standardized on Argo, and we have built these components homegrown. We would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of Arlon, before we even wrote a single line of code, saying this is something we plan on doing. And the customer said, if you had it today, I would've purchased it. So it's been really great validation. >> All right, so next question is what is the solution to the customer? If I asked you, look, I'm so busy. My team's overworked, I got a skills gap. I don't need another project. I'm so tied up right now, and I'm just chasing my tail. How does Platform9 help me? >> Yeah, absolutely. So I think, you know, one of the core tenants of Platform9 has always been, that we try to bring that public cloud like simplicity by hosting, you know, this and a lot of such similar tools in a SaaS hosted manner for our customers, right. So our goal behind doing that is taking away, or trying to take away all of that complexity from customer's hands and offloading it to our hands, right. And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like Arlon will integrate with what they have, so they don't have to rip and replace anything. In fact, it will even in the next versions, it may even discover your clusters that you have today, and give you an inventory. >> So customers have clusters that are growing. That's a sign, call you guys. >> Absolutely, either they have massive, large clusters, right, that they want to split into smaller clusters, but they're not comfortable doing that today. Or they've done that already on say public cloud or otherwise. And now they have management challenges. >> So, especially operationalizing the clusters, whether they want to kind of reset everything and move things around, and reconfigure, and or scale out. >> That's right, exactly. >> And you provide that layer of policy. >> Absolutely, yes. >> That's the key value here. >> That's right. >> So policy based configuration for cluster scale up. >> Profile and policy based declarative configuration and life cycle management for clusters. >> If I asked you how this enables Supercloud, what would you say to that? >> I think this is one of the key ingredients to Supercloud, right? If you think about a Supercloud environment, there is at least few key ingredients that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a going back to assembly line, in a very consistent, predictable way. So that, Arlon solves. Then you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are going to happen, and you're going to have to figure out, you know, how to solve them fast. And Arlon, by the way also helps in that direction. But you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Supercloud successful. And you know, Arlon is one of them. >> Okay so now the next level is, okay, that makes sense is under the covers, kind of speak under the hood. How does that impact the app developers of the cloud native modern application workflows? Because the impact to me seems, the apps are going to be impacted. Are they going to be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >> Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through. And any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right. I'm responsible for my code. I'm responsible for some of these other plugins, but I don't own these stack end to end. I have to rely on my OPS counterpart to do their part, right. And so this really gives them the right tooling for that. >> This is actually a great kind of relevant point. You know, as cloud becomes more scalable, you're starting to see this fragmentation, gone are the days of the full stack developer, to the more specialized role. But this is a key point. And I have to ask you, because if this Arlo solution takes place, as you say, and the apps are going to do what they're designed to do, the question is what does the current pain look like? Are the apps breaking? What is the signals to the customer that they should be calling you guys up and implementing Arlo, Argo, and all the other goodness to automate, what are some of the signals? Is it downtime? Is it failed apps? Is it latency? What are some of the things that would be indications of things are effed up a little bit. >> Yeah, more frequent down times, down times that take longer to triage. And so your, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they have a number of folks in the field that have to take these apps, and run them at customer sites. And that's one of our partners. And they're extremely interested in this, because the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges. So those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution. If you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small focused nimble OPS team, which has an immediate impact on your budget. So those are the signals. >> This is the cloud native at scale situation. The innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application. Not where IT used to be supporting the business, you know, the back office, and the immediate terminals and some PCs and handhelds. Now, if technology's running the business, is the business, company's the application. So it can't be down. So there's a lot of pressure on CSOs and CIOs now, and boards are saying, how is technology driving the top line revenue? That's the number one conversation. Do you see the same thing? >> Yeah, it's interesting. I think there's multiple pressures at the CSO, CIO level, right? One, is that there needs to be that visibility and clarity and guarantee almost that, you know, the technology that's going to drive your top line is going to drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right. Especially when you're talking about, let's say retailers, or those kinds of large scale vendors, they many times make money by lowering the amount that they spend providing those goods to their end customers. So I think both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >> Final question. What does cloud native at scale look like to you? If all the things happen the way we want 'em to happen, the magic wand, the magic dust, what does it look like? >> What that looks like to me is a CIO sipping at his desk on coffee. Production is running absolutely smooth. And he's running that at a nimble, nimble team size of, at the most, a handful of folks that are just looking after things, but things are just taking care of themselves. >> And the CIO doesn't exist. There's no CISO, they're at the beach. >> (laughing) Yeah. >> Madhura, thank you for coming on, sharing the cloud native at scale here on theCUBE. Thank you for your time. >> Fantastic, thanks for having me. >> Okay, I'm John Furrier here for special program presentation, special programming Cloud Native at Scale, Enabling Supercloud Modern Applications with Platform9. Thanks for watching. (upbeat music)
SUMMARY :
Co-founder and VP of Product at Platform9. And the Supercloud as we call it, And so you got to refer And that's just the beginning, So I think, you know, in the context Can you scope the complexity? And that is just, you know, And then you say, okay, we got this. And so as you give that change to then run It's the classic, you So what Arlon lets you do in a nutshell you guys are reigning in, Arlon, and if you look at that OPS piece for the developer. Because developers, you know, So the DevOps is the And you know, Kubernetes really introduced So I'm assuming you have or a company that benefits, you know, is the new model of consumption You have that confluence of, you know, I think one is just, you Can you share your enthusiastic view I mean, the number of folks that I talk to And I think this is going to And that's where, you know, where you know, initially, is what is the solution to the customer? clusters that you have today, That's a sign, call you guys. that they want to split operationalizing the clusters, So policy based configuration and life cycle management for clusters. for managing that scale, you know, Because the impact to me seems, the way you expect them to, and the apps are going to do for this, you know, the field that if the world goes and the solution to all of them If all the things happen the What that looks like to me And the CIO doesn't exist. Thank you for your time. for special program presentation,
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Madhura Maskasky | PERSON | 0.99+ |
Adrian Kakroff | PERSON | 0.99+ |
John Furrier | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Madhura | PERSON | 0.99+ |
one | QUANTITY | 0.99+ |
Palo Alto, California | LOCATION | 0.99+ |
second part | QUANTITY | 0.99+ |
Arlon | ORGANIZATION | 0.99+ |
both | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
tens of thousands of sites | QUANTITY | 0.99+ |
one site | QUANTITY | 0.99+ |
second | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
two parts | QUANTITY | 0.99+ |
two factors | QUANTITY | 0.99+ |
one node | QUANTITY | 0.99+ |
Two | QUANTITY | 0.99+ |
first generation | QUANTITY | 0.99+ |
two products | QUANTITY | 0.98+ |
two things | QUANTITY | 0.98+ |
each site | QUANTITY | 0.98+ |
one problem | QUANTITY | 0.98+ |
each component | QUANTITY | 0.98+ |
Supercloud | ORGANIZATION | 0.98+ |
Second | QUANTITY | 0.98+ |
tens of thousands of nodes | QUANTITY | 0.98+ |
Arlo | ORGANIZATION | 0.97+ |
KubeCon | EVENT | 0.97+ |
Platform9 | ORGANIZATION | 0.97+ |
single line | QUANTITY | 0.97+ |
one end | QUANTITY | 0.96+ |
CloudFlare | TITLE | 0.96+ |
one way | QUANTITY | 0.96+ |
Argo | ORGANIZATION | 0.96+ |
three things | QUANTITY | 0.96+ |
One | QUANTITY | 0.95+ |
Kubernetes | TITLE | 0.94+ |
one flare | QUANTITY | 0.94+ |
Fission | ORGANIZATION | 0.93+ |
single cluster | QUANTITY | 0.93+ |
one picture | QUANTITY | 0.93+ |
DevOps | TITLE | 0.92+ |
EKS | ORGANIZATION | 0.91+ |
this year | DATE | 0.91+ |
one example | QUANTITY | 0.91+ |
Cloud | TITLE | 0.9+ |
Breaking Analysis: How CrowdStrike Plans to Become a Generational Platform
>> From theCUBE studios in Palo Alto in Boston bringing you data driven insights from theCUBE and ETR. This is "Breaking Analysis" with Dave Vellante. >> In just over 10 years, CrowdStrike has become a leading independent security firm with more than 2 billion in annual recurring revenue, nearly 60% ARR growth, and approximate $40 billion market capitalization, very high retention rates, low churn, and a path to 5 billion in revenue by mid decade. The company has joined Palo Alto Networks as a gold standard pure play cyber security firm. It has achieved this lofty status with an architecture that goes beyond a point product. With outstanding go to market and financial execution, some sharp acquisitions and an ever increasing total available market. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this "Breaking Analysis" and ahead of Falcon, Fal.Con, CrowdStrike's user conference, we take a deeper look into CrowdStrike, its performance, its platform, and survey data from our partner ETR. Now, the general consensus is that spending on Cyber is non-discretionary and is held up better than other technology sectors. While this is generally true, as this data shows, it's nuanced. Let's explore this a bit. First, this is a year-to-date chart of the stock performance of CrowdStrike relative to Palo Alto, the BUG ETF, which is a Cyber index, the NASDAQ and SentinelOne, a relatively new entrant to the IPO public markets. Now, as you can see the security sector as evidenced by the orange line, that Cyber ETF, is holding up better than the overall NASDAQ which is off 28% year-to-date. Palo Alto has held up incredibly well, the best, being off only around 4% year-to-date. Whereas CrowdStrike is off in the double digits this year. But up as we talked about in one of our last "Breaking Analysis" on Cyber, up from its lows this past May. Now, CrowdStrike had a very nice beat and raise on August 30th. But the stop didn't respond well initially. We asked "Breaking Analysis" contributor, Chip Simonton for his technical take and he stated that CrowdStrike has bounced around for the last three months in its current range. He said that Cyber stocks have held up better than the rest of the market, as we're showing. And now might be a good time to take a shot but he is cautious. FedEx had a warning today of a global recession and that's obvious case for a concern. You know, maybe some of these quality Cyber stocks like Palo Alto and CrowdStrike and Zscaler will outperform in a recession, but that play is not for the faint of heart. In fact, it's feeling like a longer, more drawn out tech lash than many had hoped. Perhaps as much as 12 to 18 months of bouncing around with sellers still in control, is generally the sentiment from Simonton. So in terms of Cyber spending being non-discretionary, we'd say it's less discretionary than other it sectors but the CISO still does not have an open wallet, as we've reported before. We've seen that spending momentum has decelerated in all sectors throughout the year. This is an across the board trend. Now, independent of the stock price, George Kurtz, CEO of CrowdStrike, he's running a marathon, not a sprint. And this company is running at a nice pace despite tough macro headwinds. The company is free cash flow positive and is in the black, or a non-GAAP operating profit basis and yet it's growing ARR at nearly 60%. Frank Slootman uses the term inherent profitability, meaning that the company could drive more profits if it wanted to dial down expenses especially in go to market costs. But that would be a mistake for a company like CrowdStrike, in our opinion. While it has an impressive nearly 20,000 customers, there are hundreds of thousands of customers that CrowdStrike could penetrate. So like Snowflake and Slootman, Kurtz is not taking its foot off the gas. Now, the fundamental strength of CrowdStrike and its secret sauce is its architecture and platform, in our view, so let's take a deeper look. CrowdStrike believes that the unstoppable breach is a myth. Now, CISOs don't agree with that because they assume they're going to get breached, but that's CrowdStrike's point of view, so lofty vision. CrowdStrike's mission is to consolidate the patchwork of solutions by introducing modules that go beyond point products. CrowdStrike has more than 20 modules, I think 22, that span a range of capabilities as shown in this table. Now, there are a few critical aspects of the CrowdStrike architecture that bear mentioning. First is the lightweight agent, that is fundamental. You know, we're used to thinking that agentless is good and agent is bad, but in this case, a powerful but small, slim and easy to install but unobtrusive agent has its advantages because it supports multiple CrowdStrike modules. The second point is CrowdStrike from the beginning has been dogmatic about getting all the telemetry data into the cloud. It sort of shunned doing bespoke on prem so that all the data could be analyzed. So the more agents that CrowdStrike installs around the world, the more data it has access to and the better its intelligence. Few companies have access to more data, perhaps Microsoft given it scale and size is an exception in that endpoint space. CrowdStrike has developed a purpose-built threat graph and analytics platform that allows it to quickly ingest in near real time key telemetry data and detect not only known malware, that's pretty straightforward, pretty much anybody could do that. But using machine intelligence, it can also detect unknown malware and other potentially malicious behavior using indicators of attack, IOC, or IOAs. Humio is shown here as a company that CrowdStrike bought for around 400 million in early 2020, early 2021. It's the company's Splunk killer and will serve as an observability platform. It's really starting to take off, that's a great market for them to go after. CrowdStrike, to try to put it into sort of a summary, uses a three pronged approach. First is it's next generation anti-virus, meaning it's SaaS base. SAS based solution that can do fast lookups to telemetry data and that data lives in the cloud. And this leverages cloud strikes proprietary threat graph. Now, the second is endpoint detection and response. CrowdStrike sends all endpoint activity to the cloud and can process the data in real time. CrowdStrike EDR allows you to search data history and its partners with threat intelligent platforms who push the data into CrowdStrike, the CrowdStrike cloud. This increases CloudStrike's observation space. It also has containment capabilities in EDR to fence off compromised system. Now, the third leg of the stool is CrowdStrike's world class manage hunting approach. Like many firms, CrowdStrike has a crack team of experts that is looking at the data, but CrowdStrike's advantage is the amount of data, that observation space that we just talked about, and near real time capabilities of the architecture thanks to that proprietary database that they've developed. And all this is built in the cloud and so it enables global scale. And of course, agility. Now, let's dig into some of the survey data and take a look at what ETR respondents are saying about the spending momentum for CrowdStrike in context with its peers. Here's a very recent dataset, the October preliminary data from the October dataset in ETR's survey. Eric Bradley shared with us, ETR's head of strategy, and he runs the round tables, he's a frequent "Breaking Analysis" contributor. This is an XY graph with Netcore or spending momentum on the vertical axis and the overlap or pervasiveness in the survey on the horizontal axis. That dotted red line at 40% indicates an elevated level of spending velocity. Anything above that, we consider really impressive. Note the CrowdStrike progression since the pandemic started. The two notable points are one, that CrowdStrike has remained consistently above that 40% mark and two, it has made notable progress to the right. You can see that sort of squiggly line consistently increasing its share with one little anomaly there in the early days of over a two-year period. The other call out here is Microsoft in the upper-right. We circled Microsoft as usual. Microsoft messes up the data because it's such a dominant player and has referenced earlier as a massive scale and very quality telemetry from its endpoints. Unlike AWS, Microsoft is a direct competitor of CrowdStrike's. Nonetheless, the sector remains very strong with lots of players. Cyber is a large and expanding TAM with too many point tools that CrowdStrike is well positioned to consolidate, in our view. Now, here's a more narrow view of that same XY graph. What it does is it takes out Microsoft to kind of normalize the data a bit and it compares a number of firms that specialize in endpoint, along with CrowdStrike such as Tanium which also has a lightweight agent, by the way, and appears to be doing pretty well. SentinelOne did a relatively recent IPO, took off, stock hasn't done as well since, as you saw earlier. Carbon Black which VMware bought for around $2 billion and Cylance which is the Blackberry pivot. Now, we've also for context included Palo Alto and Cisco because they are major players with the big presence in security and they've got solutions that compete with CrowdStrike. But you can see how CrowdStrike looms large with a higher net score than these others. Although Palo Alto is very impressive, as is Cisco, steady. But Palo Alto also, sorry, CrowdStrike also has a very steady posture instead of just looming on that X axis. Let's now take a look at XDR, extended detection and response. XDR is kind of this bit of a buzzword but CrowdStrike seems to be taking the mantle and trying to sort of own the category and define it, in our view. It's a natural evolution of endpoint detection and response, EDR. In a recent ETR Roundtable hosted by our colleague, Eric Bradley, the sentiment among several CIOs is that existing SIEM, security information and event management platforms are inadequate and some see XDR as a replacement for, or at least a strong compliment to SIEM. CISOs want a single view of their data. Hmm, you haven't heard that before. They want help prioritizing potentially high impact breaches and they want to automate the low level stuff because the problem is sometimes too much information becomes information overload and you can't prioritize. So they want to consolidate platforms. They want better co consistency. They have too many dashboards, too many stove pipes. They have difficulty scaling and they have inconsistent telemetry data. As one CISO said, it's a call out here. "If the regulatory requirement isn't there, I absolutely would get rid of my SIEM." So CrowdStrike, we feel, is in a good position to continue to gain, share and disrupt this space. And that's what Dave Nicholson and I will be looking for next week when theCUBE is at Fal.Con, CrowdStrike's user conference. We'll be there for two days at the area in Vegas. In addition to CrowdStrike CEO, we'll hear from government cyber experts. We always hear that at security conferences and the CEO of Mandiant. Google just the other day closed its $5 billion plus acquisition of Mandiant, which is a threat intelligence expert and MSSP. I'm going to hear a lot about MSSPs by the way. CrowdStrike is a growing MSSP base. We think that's a really interesting sector because many companies don't have a SOC. As many as 50% of companies in the United States don't have a security operations center. So they need help, that's where MSPs come in. At the conference, there'll be a real focus on the Falcon platform. And we expect CrowdStrike to educate the audience on its multiple modules and how to take advantage of the capabilities beyond endpoint. And we'll also be watching for the ecosystem conversations. We saw this at reinforced, for example, where CrowdStrike and Okta were presenting together to show how these companies products compliment each other in the marketplace. Sometimes it gets confusing when you hear that CrowdStrike has an identity product. Okta, of course, is the identity specialist. So we'll be helping extract that signal from the noise. Because a generational company must have a strong ecosystem. CrowdStrike is evolving and our belief is that it has some work to do to create a stronger partner flywheel, and we're eager to dig into that next week. So if you're at the event, please do stop by theCUBE, say hello to Dave Nicholson and myself. Okay, we're going to leave it there today. Many thanks to Chip Simonton and Eric Bradley for their input and contributions to today's episode. Thanks to Alex Myerson, who does production, he also manages our podcast, Ken Schiffman as well, in our Boston studios, Kristen Martin and Cheryl Knight help get the word out on social media and our newsletters, and Rob Hof is our editor in chief over at siliconangle.com. He does some wonderful editing and I really appreciate that. Remember, all these episodes are available as podcasts wherever you listen, just search "Breaking Analysis" Podcast. I publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante@siliconangle.com or DM me @DVellante or comment on our LinkedIn post. And please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching, and we'll see you next time on "Breaking Analysis". (upbeat music)
SUMMARY :
This is "Breaking Analysis" and is in the black, or a
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Dave Nicholson | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Frank Slootman | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
George Kurtz | PERSON | 0.99+ |
August 30th | DATE | 0.99+ |
October | DATE | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Rob Hof | PERSON | 0.99+ |
FedEx | ORGANIZATION | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
Vegas | LOCATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
Kristen Martin | PERSON | 0.99+ |
5 billion | QUANTITY | 0.99+ |
Mandiant | ORGANIZATION | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
28% | QUANTITY | 0.99+ |
two | QUANTITY | 0.99+ |
$5 billion | QUANTITY | 0.99+ |
two days | QUANTITY | 0.99+ |
ORGANIZATION | 0.99+ | |
12 | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
40% | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
United States | LOCATION | 0.99+ |
second point | QUANTITY | 0.99+ |
Okta | ORGANIZATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
Tanium | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
more than 2 billion | QUANTITY | 0.99+ |
early 2021 | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Blackberry | ORGANIZATION | 0.99+ |
next week | DATE | 0.99+ |
more than 20 modules | QUANTITY | 0.99+ |
nearly 20,000 customers | QUANTITY | 0.99+ |
18 months | QUANTITY | 0.99+ |
around $2 billion | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Palo Alto Networks | ORGANIZATION | 0.99+ |
this year | DATE | 0.98+ |
early 2020 | DATE | 0.98+ |
each week | QUANTITY | 0.98+ |
nearly 60% | QUANTITY | 0.98+ |
SentinelOne | ORGANIZATION | 0.98+ |
over 10 years | QUANTITY | 0.98+ |
Boston | LOCATION | 0.98+ |
today | DATE | 0.98+ |
CrowdStrike | TITLE | 0.98+ |
Humio | ORGANIZATION | 0.97+ |
ETR | ORGANIZATION | 0.97+ |
second | QUANTITY | 0.97+ |
Breaking Analysis: VMware Explore 2022 will mark the start of a Supercloud journey
>> From the Cube studios in Palo Alto and Boston, bringing you data driven insights from theCUBE and ETR, this is Breaking Analysis with Dave Vellante. >> While the precise direction of VMware's future is unknown, given the plan Broadcom acquisition, one thing is clear. The topic of what Broadcom plans will not be the main focus of the agenda at the upcoming VMware Explore event next week in San Francisco. We believe that despite any uncertainty, VMware will lay out for its customers what it sees as its future. And that future is multi-cloud or cross-cloud services, what we call Supercloud. Hello, and welcome to this week's Wikibon Cube Insights powered by ETR. In this breaking analysis, we drill into the latest survey data on VMware from ETR. And we'll share with you the next iteration of the Supercloud definition based on feedback from dozens of contributors. And we'll give you our take on what to expect next week at VMware Explorer 2022. Well, VMware is maturing. You can see it in the numbers. VMware had a solid quarter just this week, which was announced beating earnings and growing the top line by 6%. But it's clear from its financials and the ETR data that we're showing here that VMware's Halcion glory days are behind it. This chart shows the spending profile from ETR's July survey of nearly 1500 IT buyers and CIOs. The survey included 722 VMware customers with the green bars showing elevated spending momentum, ie: growth, either new or growing at more than 6%. And the red bars show lower spending, either down 6% or worse or defections. The gray bars, that's the flat spending crowd, and it really tells a story. Look, nobody's throwing away their VMware platforms. They're just not investing as rapidly as in previous years. The blue line shows net score or spending momentum and subtracts the reds from the greens. The yellow line shows market penetration or pervasiveness in the survey. So the data is pretty clear. It's steady, but it's not remarkable. Now, the timing of the acquisition, quite rightly, is quite good, I would say. Now, this next chart shows the net score and pervasiveness juxtaposed on an XY graph and breaks down the VMware portfolio in those dimensions, the product portfolio. And you can see the dominance of respondents citing VMware as the platform. They might not know exactly which services they use, but they just respond VMware. That's on the X axis. You can see it way to the right. And the spending momentum or the net score is on the Y axis. That red dotted line at 4%, that indicates elevated levels and only VMware cloud on AWS is above that line. Notably, Tanzu has jumped up significantly from previous quarters, with the rest of the portfolio showing steady, as you would expect from a maturing platform. Only carbon black is hovering in the red zone, kind of ironic given the name. We believe that VMware is going to be a major player in cross cloud services, what we refer to as Supercloud. For months, we've been refining the concept and the definition. At Supercloud '22, we had discussions with more than 30 technology and business experts, and we've gathered input from many more. Based on that feedback, here's the definition we've landed on. It's somewhat refined from our earlier definition that we published a couple weeks ago. Supercloud is an emerging computing architecture that comprises a set of services abstracted from the underlying primitives of hyperscale clouds, e.g. compute, storage, networking, security, and other native resources, to create a global system spanning more than one cloud. Supercloud is three essential properties, three deployment models, and three service models. So what are those essential elements, those properties? We've simplified the picture from our last report. We show them here. I'll review them briefly. We're not going to go super in depth here because we've covered this topic a lot. But supercloud, it runs on more than one cloud. It creates that common or identical experience across clouds. It contains a necessary capability that we call a superPaaS that acts as a cloud interpreter, and it has metadata intelligence to optimize for a specific purpose. We'll publish this definition in detail. So again, we're not going to spend a ton of time here today. Now, we've identified three deployment models for Supercloud. The first is a single instantiation, where a control plane runs on one cloud but supports interactions with multiple other clouds. An example we use is Kubernetes cluster management service that runs on one cloud but can deploy and manage clusters on other clouds. The second model is a multi-cloud, multi-region instantiation where a full stack of services is instantiated on multiple clouds and multiple cloud regions with a common interface across them. We've used cohesity as one example of this. And then a single global instance that spans multiple cloud providers. That's our snowflake example. Again, we'll publish this in detail. So we're not going to spend a ton of time here today. Finally, the service models. The feedback we've had is IaaS, PaaS, and SaaS work fine to describe the service models for Supercloud. NetApp's Cloud Volume is a good example in IaaS. VMware cloud foundation and what we expect at VMware Explore is a good PaaS example. And SAP HANA Cloud is a good example of SaaS running as a Supercloud service. That's the SAP HANA multi-cloud. So what is it that we expect from VMware Explore 2022? Well, along with what will be an exciting and speculation filled gathering of the VMware community at the Moscone Center, we believe VMware will lay out its future architectural direction. And we expect it will fit the Supercloud definition that we just described. We think VMware will show its hand on a set of cross-cloud services and will promise a common experience for users and developers alike. As we talked about at Supercloud '22, VMware kind of wants to have its cake, eat it too, and lose weight. And by that, we mean that it will not only abstract the underlying primitives of each of the individual clouds, but if developers want access to them, they will allow that and actually facilitate that. Now, we don't expect VMware to use the term Supercloud, but it will be a cross-cloud multi-cloud services model that they put forth, we think, at VMworld Explore. With IaaS comprising compute, storage, and networking, a very strong emphasis, we believe, on security, of course, a governance and a comprehensive set of data protection services. Now, very importantly, we believe Tanzu will play a leading role in any announcements this coming week, as a purpose-built PaaS layer, specifically designed to create a common experience for cross clouds for data and application services. This, we believe, will be VMware's most significant offering to date in cross-cloud services. And it will position VMware to be a leader in what we call Supercloud. Now, while it remains to be seen what Broadcom exactly intends to do with VMware, we've speculated, others have speculated. We think this Supercloud is a substantial market opportunity generally and for VMware specifically. Look, if you don't own a public cloud, and very few companies do, in the tech business, we believe you better be supporting the build out of superclouds or building a supercloud yourself on top of hyperscale infrastructure. And we believe that as cloud matures, hyperscalers will increasingly I cross cloud services as an opportunity. We asked David Floyer to take a stab at a market model for super cloud. He's really good at these types of things. What he did is he took the known players in cloud and estimated their IaaS and PaaS cloud services, their total revenue, and then took a percentage. So this is super set of just the public cloud and the hyperscalers. And then what he did is he took a percentage to fit the Supercloud definition, as we just shared above. He then added another 20% on top to cover the long tail of Other. Other over time is most likely going to grow to let's say 30%. That's kind of how these markets work. Okay, so this is obviously an estimate, but it's an informed estimate by an individual who has done this many, many times and is pretty well respected in these types of forecasts, these long term forecasts. Now, by the definition we just shared, Supercloud revenue was estimated at about $3 billion in 2022 worldwide, growing to nearly $80 billion by 2030. Now remember, there's not one Supercloud market. It comprises a bunch of purpose-built superclouds that solve a specific problem. But the common attribute is it's built on top of hyperscale infrastructure. So overall, cloud services, including Supercloud, peak by the end of the decade. But Supercloud continues to grow and will take a higher percentage of the cloud market. The reasoning here is that the market will change and compute, will increasingly become distributed and embedded into edge devices, such as automobiles and robots and factory equipment, et cetera, and not necessarily be a discreet... I mean, it still will be, of course, but it's not going to be as much of a discrete component that is consumed via services like EZ2, that will mature. And this will be a key shift to watch in spending dynamics and really importantly, computing economics, the things we've talked about around arm and edge and AI inferencing and new low cost computing architectures at the edge. We're talking not the near edge, like, Lowes and Home Depot, we're talking far edge and embedded devices. Now, whether this becomes a seamless part of Supercloud remains to be seen. Look, if that's how we see it, the current and the future state of Supercloud, and we're committed to keeping the discussion going with an inclusive model that gathers input from all parts of the industry. Okay, that's it for today. Thanks to Alex Morrison, who's on production, and he also manages the podcast. Ken Schiffman, as well, is on production in our Boston office. Kristin Martin and Cheryl Knight, they help us get the word out on social media and in our newsletters. And Rob Hoffe is our editor in chief over at Silicon Angle and does some helpful editing. Thank you, all. Remember these episodes, they're all available as podcasts, wherever you listen. All you got to do is search Breaking Analysis Podcast. I publish each week on wikibon.com and siliconangle.com. You can email me directly at david.vellante@siliconangle.com or DM me @Dvellante or comment on our LinkedIn posts. Please do check out etr.ai. They've got some great enterprise survey research. So please go there and poke around, And if you need any assistance, let them know. This is Dave Vellante for the Cube Insights powered by ETR. Thanks for watching, and we'll see you next time on Breaking Analysis. (lively music)
SUMMARY :
From the Cube studios and subtracts the reds from the greens.
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Morrison | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
Rob Hoffe | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Ken Schiffman | PERSON | 0.99+ |
David Floyer | PERSON | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
30% | QUANTITY | 0.99+ |
Boston | LOCATION | 0.99+ |
2022 | DATE | 0.99+ |
Lowes | ORGANIZATION | 0.99+ |
20% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
722 | QUANTITY | 0.99+ |
4% | QUANTITY | 0.99+ |
San Francisco | LOCATION | 0.99+ |
david.vellante@siliconangle.com | OTHER | 0.99+ |
2030 | DATE | 0.99+ |
Silicon Angle | ORGANIZATION | 0.99+ |
July | DATE | 0.99+ |
Broadcom | ORGANIZATION | 0.99+ |
Home Depot | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
next week | DATE | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
second model | QUANTITY | 0.99+ |
more than 6% | QUANTITY | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
more than one cloud | QUANTITY | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
nearly $80 billion | QUANTITY | 0.99+ |
about $3 billion | QUANTITY | 0.99+ |
more than 30 technology | QUANTITY | 0.99+ |
first | QUANTITY | 0.99+ |
this week | DATE | 0.98+ |
Supercloud | ORGANIZATION | 0.98+ |
each week | QUANTITY | 0.98+ |
one example | QUANTITY | 0.98+ |
three service models | QUANTITY | 0.98+ |
VMware Explore | EVENT | 0.98+ |
dozens of contributors | QUANTITY | 0.97+ |
today | DATE | 0.97+ |
NetApp | TITLE | 0.97+ |
this week | DATE | 0.97+ |
Supercloud | TITLE | 0.97+ |
SAP HANA | TITLE | 0.97+ |
VMworld Explore | ORGANIZATION | 0.97+ |
three essential properties | QUANTITY | 0.97+ |
three deployment models | QUANTITY | 0.97+ |
one cloud | QUANTITY | 0.96+ |
Tanzu | ORGANIZATION | 0.96+ |
each | QUANTITY | 0.96+ |
Moscone Center | LOCATION | 0.96+ |
wikibon.com | OTHER | 0.95+ |
SAP HANA Cloud | TITLE | 0.95+ |
Cube Insights | ORGANIZATION | 0.92+ |
single instantiation | QUANTITY | 0.9+ |
Breaking Analysis Further defining Supercloud W/ tech leaders VMware, Snowflake, Databricks & others
from the cube studios in palo alto in boston bringing you data driven insights from the cube and etr this is breaking analysis with dave vellante at our inaugural super cloud 22 event we further refined the concept of a super cloud iterating on the definition the salient attributes and some examples of what is and what is not a super cloud welcome to this week's wikibon cube insights powered by etr you know snowflake has always been what we feel is one of the strongest examples of a super cloud and in this breaking analysis from our studios in palo alto we unpack our interview with benoit de javille co-founder and president of products at snowflake and we test our super cloud definition on the company's data cloud platform and we're really looking forward to your feedback first let's examine how we defl find super cloudant very importantly one of the goals of super cloud 22 was to get the community's input on the definition and iterate on previous work super cloud is an emerging computing architecture that comprises a set of services which are abstracted from the underlying primitives of hyperscale clouds we're talking about services such as compute storage networking security and other native tooling like machine learning and developer tools to create a global system that spans more than one cloud super cloud as shown on this slide has five essential properties x number of deployment models and y number of service models we're looking for community input on x and y and on the first point as well so please weigh in and contribute now we've identified these five essential elements of a super cloud let's talk about these first the super cloud has to run its services on more than one cloud leveraging the cloud native tools offered by each of the cloud providers the builder of the super cloud platform is responsible for optimizing the underlying primitives of each cloud and optimizing for the specific needs be it cost or performance or latency or governance data sharing security etc but those primitives must be abstracted such that a common experience is delivered across the clouds for both users and developers the super cloud has a metadata intelligence layer that can maximize efficiency for the specific purpose of the super cloud i.e the purpose that the super cloud is intended for and it does so in a federated model and it includes what we call a super pass this is a prerequisite that is a purpose-built component and enables ecosystem partners to customize and monetize incremental services while at the same time ensuring that the common experiences exist across clouds now in terms of deployment models we'd really like to get more feedback on this piece but here's where we are so far based on the feedback we got at super cloud 22. we see three deployment models the first is one where a control plane may run on one cloud but supports data plane interactions with more than one other cloud the second model instantiates the super cloud services on each individual cloud and within regions and can support interactions across more than one cloud with a unified interface connecting those instantiations those instances to create a common experience and the third model superimposes its services as a layer or in the case of snowflake they call it a mesh on top of the cloud on top of the cloud providers region or regions with a single global instantiation a single global instantiation of those services which spans multiple cloud providers this is our understanding from a comfort the conversation with benoit dejaville as to how snowflake approaches its solutions and for now we're going to park the service models we need to more time to flesh that out and we'll propose something shortly for you to comment on now we peppered benoit dejaville at super cloud 22 to test how the snowflake data cloud aligns to our concepts and our definition let me also say that snowflake doesn't use the term data cloud they really want to respect and they want to denigrate the importance of their hyperscale partners nor do we but we do think the hyperscalers today anyway are building or not building what we call super clouds but they are but but people who bar are building super clouds are building on top of hyperscale clouds that is a prerequisite so here are the questions that we tested with snowflake first question how does snowflake architect its data cloud and what is its deployment model listen to deja ville talk about how snowflake has architected a single system play the clip there are several ways to do this you know uh super cloud as as you name them the way we we we picked is is to create you know one single system and that's very important right the the the um [Music] there are several ways right you can instantiate you know your solution uh in every region of a cloud and and you know potentially that region could be a ws that region could be gcp so you are indeed a multi-cloud solution but snowflake we did it differently we are really creating cloud regions which are superposed on top of the cloud provider you know region infrastructure region so we are building our regions but but where where it's very different is that each region of snowflake is not one in instantiation of our service our service is global by nature we can move data from one region to the other when you land in snowflake you land into one region but but you can grow from there and you can you know exist in multiple clouds at the same time and that's very important right it's not one single i mean different instantiation of a system is one single instantiation which covers many cloud regions and many cloud providers snowflake chose the most advanced level of our three deployment models dodgeville talked about too presumably so it could maintain maximum control and ensure that common experience like the iphone model next we probed about the technical enablers of the data cloud listen to deja ville talk about snow grid he uses the term mesh and then this can get confusing with the jamaicani's data mesh concept but listen to benoit's explanation well as i said you know first we start by building you know snowflake regions we have today furry region that spawn you know the world so it's a worldwide worldwide system with many regions but all these regions are connected together they are you know meshed together with our technology we name it snow grid and that makes it hard because you know regions you know azure region can talk to a ws region or gcp regions and and as a as a user of our cloud you you don't see really these regional differences that you know regions are in different you know potentially clown when you use snowflake you can exist your your presence as an organization can be in several regions several clouds if you want geographic and and and both geographic and cloud provider so i can share data irrespective of the the cloud and i'm in the snowflake data cloud is that correct i can do that today exactly and and that's very critical right what we wanted is to remove data silos and and when you instantiate a system in one single region and that system is locked in that region you cannot communicate with other parts of the world you are locking the data in one region right and we didn't want to do that we wanted you know data to be distributed the way customer wants it to be distributed across the world and potentially sharing data at world scale now maybe there are many ways to skin the other cat meaning perhaps if a platform does instantiate in multiple places there are ways to share data but this is how snowflake chose to approach the problem next question how do you deal with latency in this big global system this is really important to us because while snowflake has some really smart people working as engineers and and the like we don't think they've solved for the speed of light problem the best people working on it as we often joke listen to benoit deja ville's comments on this topic so yes and no the the way we do it it's very expensive to do that because generally if you want to join you know data which is in which are in different regions and different cloud it's going to be very expensive because you need to move you know data every time you join it so the way we do it is that you replicate the subset of data that you want to access from one region from other regions so you can create this data mesh but data is replicated to make it very cheap and very performant too and is the snow grid does that have the metadata intelligence yes to actually can you describe that a little bit yeah snow grid is both uh a way to to exchange you know metadata about so each region of snowflake knows about all the other regions of snowflake every time we create a new region diary you know the metadata is distributed over our data cloud not only you know region knows all the regions but knows you know every organization that exists in our clouds where this organization is where data can be replicated by this organization and then of course it's it's also used as a way to uh uh exchange data right so you can exchange you know beta by scale of data size and we just had i was just receiving an email from one of our customers who moved more than four petabytes of data cross-region cross you know cloud providers in you know few days and you know it's a lot of data so it takes you know some time to move but they were able to do that online completely online and and switch over you know to the diff to the other region which is failover is very important also so yes and no probably means typically no he says yes and no probably means no so it sounds like snowflake is selectively pulling small amounts of data and replicating it where necessary but you also heard him talk about the metadata layer which is one of the essential aspects of super cloud okay next we dug into security it's one of the most important issues and we think one of the hardest parts related to deploying super cloud so we've talked about how the cloud has become the first line of defense for the cso but now with multi-cloud you have multiple first lines of defense and that means multiple shared responsibility models and multiple tool sets from different cloud providers and an expanded threat surface so listen to benoit's explanation here please play the clip this is a great question uh security has always been the most important aspect of snowflake since day one right this is the question that every customer of ours has you know how you can you guarantee the security of my data and so we secure data really tightly in region we have several layers of security it starts by by encrypting it every data at rest and that's very important a lot of customers are not doing that right you hear these attacks for example on on cloud you know where someone left you know their buckets uh uh open and then you know you can access the data because it's a non-encrypted uh so we are encrypting everything at rest we are encrypting everything in transit so a region is very secure now you know you never from one region you never access data from another region in snowflake that's why also we replicate data now the replication of that data across region or the metadata for that matter is is really highly secure so snow grits ensure that everything is encrypted everything is you know we have multiple you know encryption keys and it's you know stored in hardware you know secure modules so we we we built you know snow grids such that it's secure and it allows very secure movement of data so when we heard this explanation we immediately went to the lowest common denominator question meaning when you think about how aws for instance deals with data in motion or data and rest it might be different from how another cloud provider deals with it so how does aws uh uh uh differences for example in the aws maturity model for various you know cloud capabilities you know let's say they've got a faster nitro or graviton does it do do you have to how does snowflake deal with that do they have to slow everything else down like imagine a caravan cruising you know across the desert so you know every truck can keep up let's listen it's a great question i mean of course our software is abstracting you know all the cloud providers you know infrastructure so that when you run in one region let's say aws or azure it doesn't make any difference as far as the applications are concerned and and this abstraction of course is a lot of work i mean really really a lot of work because it needs to be secure it needs to be performance and you know every cloud and it has you know to expose apis which are uniform and and you know cloud providers even though they have potentially the same concept let's say blob storage apis are completely different the way you know these systems are secure it's completely different the errors that you can get and and the retry you know mechanism is very different from one cloud to the other performance is also different we discovered that when we were starting to port our software and and and you know we had to completely rethink how to leverage blob storage in that cloud versus that cloud because just of performance too so we had you know for example to you know stripe data so all this work is work that's you know you don't need as an application because our vision really is that applications which are running in our data cloud can you know be abstracted of all this difference and and we provide all the services all the workload that this application need whether it's transactional access to data analytical access to data you know managing you know logs managing you know metrics all of these is abstracted too such that they are not you know tied to one you know particular service of one cloud and and distributing this application across you know many regions many cloud is very seamless so from that answer we know that snowflake takes care of everything but we really don't understand the performance implications in you know in that specific case but we feel pretty certain that the promises that snowflake makes around governance and security within their data sharing construct construct will be kept now another criterion that we've proposed for super cloud is a super pass layer to create a common developer experience and an enabler for ecosystem partners to monetize please play the clip let's listen we build it you know a custom build because because as you said you know what exists in one cloud might not exist in another cloud provider right so so we have to build you know on this all these this components that modern application mode and that application need and and and and that you know goes to machine learning as i say transactional uh analytical system and the entire thing so such that they can run in isolation basically and the objective is the developer experience will be identical across those clouds yes right the developers doesn't need to worry about cloud provider and actually our system we have we didn't talk about it but the marketplace that we have which allows actually to deliver we're getting there yeah okay now we're not going to go deep into ecosystem today we've talked about snowflakes strengths in this regard but snowflake they pretty much ticked all the boxes on our super cloud attributes and definition we asked benoit dejaville to confirm that this is all shipping and available today and he also gave us a glimpse of the future play the clip and we are still developing it you know the transactional you know unistore as we call it was announced in last summit so so they are still you know working properly but but but that's the vision right and and and that's important because we talk about the infrastructure right you mentioned a lot about storage and compute but it's not only that right when you think about application they need to use the transactional database they need to use an analytical system they need to use you know machine learning so you need to provide also all these services which are consistent across all the cloud providers so you can hear deja ville talking about expanding beyond taking advantage of the core infrastructure storage and networking et cetera and bringing intelligence to the data through machine learning and ai so of course there's more to come and there better be at this company's valuation despite the recent sharp pullback in a tightening fed environment okay so i know it's cliche but everyone's comparing snowflakes and data bricks databricks has been pretty vocal about its open source posture compared to snowflakes and it just so happens that we had aligotsy on at super cloud 22 as well he wasn't in studio he had to do remote because i guess he's presenting at an investor conference this week so we had to bring him in remotely now i didn't get to do this interview john furrier did but i listened to it and captured this clip about how data bricks sees super cloud and the importance of open source take a listen to goatzee yeah i mean let me start by saying we just we're big fans of open source we think that open source is a force in software that's going to continue for you know decades hundreds of years and it's going to slowly replace all proprietary code in its way we saw that you know it could do that with the most advanced technology windows you know proprietary operating system very complicated got replaced with linux so open source can pretty much do anything and what we're seeing with the data lake house is that slowly the open source community is building a replacement for the proprietary data warehouse you know data lake machine learning real-time stack in open source and we're excited to be part of it for us delta lake is a very important project that really helps you standardize how you lay out your data in the cloud and with it comes a really important protocol called delta sharing that enables you in an open way actually for the first time ever share large data sets between organizations but it uses an open protocol so the great thing about that is you don't need to be a database customer you don't even like databricks you just need to use this open source project and you can now securely share data sets between organizations across clouds and it actually does so really efficiently just one copy of the data so you don't have to copy it if you're within the same cloud so the implication of ellie gotzi's comments is that databricks with delta sharing as john implied is playing a long game now i don't know if enough about the databricks architecture to comment in detail i got to do more research there so i reached out to my two analyst friends tony bear and sanji mohan to see what they thought because they cover these companies pretty closely here's what tony bear said quote i've viewed the divergent lake house strategies of data bricks and snowflake in the context of their roots prior to delta lake databrick's prime focus was the compute not the storage layer and more specifically they were a compute engine not a database snowflake approached from the opposite end of the pool as they originally fit the mold of the classic database company rather than a specific compute engine per se the lake house pushes both companies outside of their original comfort zones data bricks to storage snowflake to compute engine so it makes perfect sense for databricks to embrace the open source narrative at the storage layer and for snowflake to continue its walled garden approach but in the long run their strategies are already overlapping databricks is not a 100 open source company its practitioner experience has always been proprietary and now so is its sql query engine likewise snowflake has had to open up with the support of iceberg for open data lake format the question really becomes how serious snowflake will be in making iceberg a first-class citizen in its environment that is not necessarily officially branding a lake house but effectively is and likewise can databricks deliver the service levels associated with walled gardens through a more brute force approach that relies heavily on the query engine at the end of the day those are the key requirements that will matter to data bricks and snowflake customers end quote that was some deep thought by by tony thank you for that sanjay mohan added the following quote open source is a slippery slope people buy mobile phones based on open source android but it's not fully open similarly databricks delta lake was not originally fully open source and even today its photon execution engine is not we are always going to live in a hybrid world snowflake and databricks will support whatever model works best for them and their customers the big question is do customers care as deeply about which vendor has a higher degree of openness as we technology people do i believe customers evaluation criteria is far more nuanced than just to decipher each vendor's open source claims end quote okay so i had to ask dodgeville about their so-called wall garden approach and what their strategy is with apache iceberg here's what he said iceberg is is very important so just to to give some context iceberg is an open you know table format right which was you know first you know developed by netflix and netflix you know put it open source in the apache community so we embrace that's that open source standard because because it's widely used by by many um many you know companies and also many companies have you know really invested a lot of effort in building you know big data hadoop solution or data like solution and they want to use snowflake and they couldn't really use snowflake because all their data were in open you know formats so we are embracing icebergs to help these companies move through the cloud but why we have been relentless with direct access to data direct access to data is a little bit of a problem for us and and the reason is when you direct access to data now you have direct access to storage now you have to understand for example the specificity of one cloud versus the other so as soon as you start to have direct access to data you lose your you know your cloud diagnostic layer you don't access data with api when you have direct access to data it's very hard to secure data because you need to grant access direct access to tools which are not you know protected and you see a lot of you know hacking of of data you know because of that so so that was not you know direct access to data is not serving well our customers and that's why we have been relented to do that because it's it's cr it's it's not cloud diagnostic it's it's you you have to code that you have to you you you need a lot of intelligence while apis access so we want open apis that's that's i guess the way we embrace you know openness is is by open api versus you know you access directly data here's my take snowflake is hedging its bets because enough people care about open source that they have to have some open data format options and it's good optics and you heard benoit deja ville talk about the risks of directly accessing the data and the complexities it brings now is that maybe a little fud against databricks maybe but same can be said for ollie's comments maybe flooding the proprietaryness of snowflake but as both analysts pointed out open is a spectrum hey i remember unix used to equal open systems okay let's end with some etr spending data and why not compare snowflake and data bricks spending profiles this is an xy graph with net score or spending momentum on the y-axis and pervasiveness or overlap in the data set on the x-axis this is data from the january survey when snowflake was holding above 80 percent net score off the charts databricks was also very strong in the upper 60s now let's fast forward to this next chart and show you the july etr survey data and you can see snowflake has come back down to earth now remember anything above 40 net score is highly elevated so both companies are doing well but snowflake is well off its highs and data bricks has come down somewhat as well databricks is inching to the right snowflake rocketed to the right post its ipo and as we know databricks wasn't able to get to ipo during the covet bubble ali gotzi is at the morgan stanley ceo conference this week they got plenty of cash to withstand a long-term recession i'm told and they've started the message that they're a billion dollars in annualized revenue i'm not sure exactly what that means i've seen some numbers on their gross margins i'm not sure what that means i've seen some numbers on their net retention revenue or net revenue retention again i'll reserve judgment until we see an s1 but it's clear both of these companies have momentum and they're out competing in the market well as always be the ultimate arbiter different philosophies perhaps is it like democrats and republicans well it could be but they're both going after a solving data problem both companies are trying to help customers get more value out of their data and both companies are highly valued so they have to perform for their investors to paraphrase ralph nader the similarities may be greater than the differences okay that's it for today thanks to the team from palo alto for this awesome super cloud studio build alex myerson and ken shiffman are on production in the palo alto studios today kristin martin and sheryl knight get the word out to our community rob hoff is our editor-in-chief over at siliconangle thanks to all please check out etr.ai for all the survey data remember these episodes are all available as podcasts wherever you listen just search breaking analysis podcasts i publish each week on wikibon.com and siliconangle.com and you can email me at david.vellante at siliconangle.com or dm me at devellante or comment on my linkedin posts and please as i say etr has got some of the best survey data in the business we track it every quarter and really excited to be partners with them this is dave vellante for the cube insights powered by etr thanks for watching and we'll see you next time on breaking analysis [Music] you
SUMMARY :
and and the retry you know mechanism is
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
netflix | ORGANIZATION | 0.99+ |
john furrier | PERSON | 0.99+ |
palo alto | ORGANIZATION | 0.99+ |
tony bear | PERSON | 0.99+ |
boston | LOCATION | 0.99+ |
sanji mohan | PERSON | 0.99+ |
ken shiffman | PERSON | 0.99+ |
both | QUANTITY | 0.99+ |
today | DATE | 0.99+ |
ellie gotzi | PERSON | 0.99+ |
VMware | ORGANIZATION | 0.99+ |
Snowflake | ORGANIZATION | 0.99+ |
siliconangle.com | OTHER | 0.99+ |
more than four petabytes | QUANTITY | 0.99+ |
first point | QUANTITY | 0.99+ |
kristin martin | PERSON | 0.99+ |
both companies | QUANTITY | 0.99+ |
first question | QUANTITY | 0.99+ |
rob hoff | PERSON | 0.99+ |
more than one | QUANTITY | 0.99+ |
second model | QUANTITY | 0.98+ |
alex myerson | PERSON | 0.98+ |
third model | QUANTITY | 0.98+ |
one region | QUANTITY | 0.98+ |
one copy | QUANTITY | 0.98+ |
one region | QUANTITY | 0.98+ |
five essential elements | QUANTITY | 0.98+ |
android | TITLE | 0.98+ |
100 | QUANTITY | 0.98+ |
first line | QUANTITY | 0.98+ |
Databricks | ORGANIZATION | 0.98+ |
sheryl | PERSON | 0.98+ |
more than one cloud | QUANTITY | 0.98+ |
first | QUANTITY | 0.98+ |
iphone | COMMERCIAL_ITEM | 0.98+ |
super cloud 22 | EVENT | 0.98+ |
each cloud | QUANTITY | 0.98+ |
each | QUANTITY | 0.97+ |
sanjay mohan | PERSON | 0.97+ |
john | PERSON | 0.97+ |
republicans | ORGANIZATION | 0.97+ |
this week | DATE | 0.97+ |
hundreds of years | QUANTITY | 0.97+ |
siliconangle | ORGANIZATION | 0.97+ |
each week | QUANTITY | 0.97+ |
data lake house | ORGANIZATION | 0.97+ |
one single region | QUANTITY | 0.97+ |
january | DATE | 0.97+ |
dave vellante | PERSON | 0.96+ |
each region | QUANTITY | 0.96+ |
one | QUANTITY | 0.96+ |
dave vellante | PERSON | 0.96+ |
tony | PERSON | 0.96+ |
above 80 percent | QUANTITY | 0.95+ |
more than one cloud | QUANTITY | 0.95+ |
more than one cloud | QUANTITY | 0.95+ |
data lake | ORGANIZATION | 0.95+ |
five essential properties | QUANTITY | 0.95+ |
democrats | ORGANIZATION | 0.95+ |
first time | QUANTITY | 0.95+ |
july | DATE | 0.94+ |
linux | TITLE | 0.94+ |
etr | ORGANIZATION | 0.94+ |
devellante | ORGANIZATION | 0.93+ |
dodgeville | ORGANIZATION | 0.93+ |
each vendor | QUANTITY | 0.93+ |
super cloud 22 | ORGANIZATION | 0.93+ |
delta lake | ORGANIZATION | 0.92+ |
three deployment models | QUANTITY | 0.92+ |
first lines | QUANTITY | 0.92+ |
dejaville | LOCATION | 0.92+ |
day one | QUANTITY | 0.92+ |
Breaking Analysis: AWS re:Inforce marks a summer checkpoint on cybersecurity
>> From theCUBE Studios in Palo Alto and Boston bringing you data driven insights from theCUBE and ETR. This is Breaking Analysis with Dave Vellante. >> After a two year hiatus, AWS re:Inforce is back on as an in-person event in Boston next week. Like the All-Star break in baseball, re:Inforce gives us an opportunity to evaluate the cyber security market overall, the state of cloud security and cross cloud security and more specifically what AWS is up to in the sector. Welcome to this week's Wikibon cube insights powered by ETR. In this Breaking Analysis we'll share our view of what's changed since our last cyber update in May. We'll look at the macro environment, how it's impacting cyber security plays in the market, what the ETR data tells us and what to expect at next week's AWS re:Inforce. We start this week with a checkpoint from Breaking Analysis contributor and stock trader Chip Simonton. We asked for his assessment of the market generally in cyber stocks specifically. So we'll summarize right here. We've kind of moved on from a narrative of the sky is falling to one where the glass is half empty you know, and before today's big selloff it was looking more and more like glass half full. The SNAP miss has dragged down many of the big names that comprise the major indices. You know, earning season as always brings heightened interest and this time we're seeing many cross currents. It starts as usual with the banks and the money centers. With the exception of JP Morgan the numbers were pretty good according to Simonton. Investment banks were not so great with Morgan and Goldman missing estimates but in general, pretty positive outlooks. But the market also shrugged off IBM's growth. And of course, social media because of SNAP is getting hammered today. The question is no longer recession or not but rather how deep the recession will be. And today's PMI data was the weakest since the start of the pandemic. Bond yields continue to weaken and there's a growing consensus that Fed tightening may be over after September as commodity prices weaken. Now gas prices of course are still high but they've come down. Tesla, Nokia and AT&T all indicated that supply issues were getting better which is also going to help with inflation. So it's no shock that the NASDAQ has done pretty well as beaten down as tech stocks started to look oversold you know, despite today's sell off. But AT&T and Verizon, they blamed their misses in part on people not paying their bills on time. SNAP's huge miss even after guiding lower and then refusing to offer future guidance took that stock down nearly 40% today and other social media stocks are off on sympathy. Meta and Google were off, you know, over 7% at midday. I think at one point hit 14% down and Google, Meta and Twitter have all said they're freezing new hires. So we're starting to see according to Simonton for the first time in a long time, the lower income, younger generation really feeling the pinch of inflation. Along of course with struggling families that have to choose food and shelter over discretionary spend. Now back to the NASDAQ for a moment. As we've been reporting back in mid-June and NASDAQ was off nearly 33% year to date and has since rallied. It's now down about 25% year to date as of midday today. But as I say, it had been, you know much deeper back in early June. But it's broken that downward trend that we talked about where the highs are actually lower and the lows are lower. That's started to change for now anyway. We'll see if it holds. But chip stocks, software stocks, and of course the cyber names have broken those down trends and have been trading above their 50 day moving averages for the first time in around four months. And again, according to Simonton, we'll see if that holds. If it does, that's a positive sign. Now remember on June 24th, we recorded a Breaking Analysis and talked about Qualcomm trading at a 12 X multiple with an implied 15% growth rate. On that day the stock was 124 and it surpassed 155 earlier this month. That was a really good call by Simonton. So looking at some of the cyber players here SailPoint is of course the anomaly with the Thoma Bravo 7 billion acquisition of the company holding that stock up. But the Bug ETF of basket of cyber stocks has definitely improved. When we last reported on cyber in May, CrowdStrike was off 23% year to date. It's now off 4%. Palo Alto has held steadily. Okta is still underperforming its peers as it works through the fallout from the breach and the ingestion of its Auth0 acquisition. Meanwhile, Zscaler and SentinelOne, those high flyers are still well off year to date, with Ping Identity and CyberArk not getting hit as hard as their valuations hadn't run up as much. But virtually all these tech stocks generally in cyber issues specifically, they've been breaking their down trend. So it will now come down to earnings guidance in the coming months. But the SNAP reaction is quite stunning. I mean, the environment is slowing, we know that. Ad spending gets cut in that type of market, we know that too. So it shouldn't be a huge surprise to anyone but as Chip Simonton says, this shows that sellers are still in control here. So it's going to take a little while to work through that despite the positive signs that we're seeing. Okay. We also turned to our friend Eric Bradley from ETR who follows these markets quite closely. He frequently interviews CISOs on his program, on his round tables. So we asked to get his take and here's what ETR is saying. Again, as we've reported while CIOs and IT buyers have tempered spending expectations since December and early January when they called for an 8% plus spending growth, they're still expecting a six to seven percent uptick in spend this year. So that's pretty good. Security remains the number one priority and also is the highest ranked sector in the ETR data set when you measure in terms of pervasiveness in the study. Within security endpoint detection and extended detection and response along with identity and privileged account management are the sub-sectors with the most spending velocity. And when you exclude Microsoft which is just dominant across the board in so many sectors, CrowdStrike has taken over the number one spot in terms of spending momentum in ETR surveys with CyberArk and Tanium showing very strong as well. Okta has seen a big dropoff in net score from 54% last survey to 45% in July as customers maybe put a pause on new Okta adoptions. That clearly shows in the survey. We'll talk about that in a moment. Look Okta still elevated in terms of spending momentum, but it doesn't have the dominant leadership position it once held in spend velocity. Year on year, according to ETR, Tenable and Elastic are seeing the biggest jumps in spending momentum, with SailPoint, Tanium, Veronis, CrowdStrike and Zscaler seeing the biggest jump in new adoptions since the last survey. Now on the downside, SonicWall, Symantec, Trellic which is McAfee, Barracuda and TrendMicro are seeing the highest percentage of defections and replacements. Let's take a deeper look at what the ETR data tells us about the cybersecurity space. This is a popular view that we like to share with net score or spending momentum on the Y axis and overlap or pervasiveness in the data on the X axis. It's a measure of presence in the data set we used to call it market share. With the data, the dot positions, you see that little inserted table, that's how the dots are plotted. And it's important to note that this data is filtered for firms with at least 100 Ns in the survey. That's why some of the other ones that we mentioned might have dropped off. The red dotted line at 40% that indicates highly elevated spending momentum and there are several firms above that mark including of course, Microsoft, which is literally off the charts in both dimensions in the upper right. It's quite incredible actually. But for the rest of the pack, CrowdStrike has now taken back its number one net score position in the ETR survey. And CyberArk and Okta and Zscaler, CloudFlare and Auth0 now Okta through the acquisition, are all above the 40% mark. You can stare at the data at your leisure but I'll just point out, make three quick points. First Palo Alto continues to impress and as steady as she goes. Two, it's a very crowded market still and it's complicated space. And three there's lots of spending in different pockets. This market has too many tools and will continue to consolidate. Now I'd like to drill into a couple of firms net scores and pick out some of the pure plays that are leading the way. This series of charts shows the net score or spending velocity or granularity for Okta, CrowdStrike, Zscaler and CyberArk. Four of the top pure plays in the ETR survey that also have over a hundred responses. Now the colors represent the following. Bright red is defections. We're leaving the platform. The pink is we're spending less, meaning we're spending 6% or worse. The gray is flat spend plus or minus 5%. The forest green is spending more, i.e, 6% or more and the lime green is we're adding the platform new. That red dotted line at the 40% net score mark is the same elevated level that we like to talk about. All four are above that target. Now that blue line you see there is net score. The yellow line is pervasiveness in the data. The data shown in each bar goes back 10 surveys all the way back to January 2020. First I want to call out that all four again are seeing down trends in spending momentum with the whole market. That's that blue line. They're seeing that this quarter, again, the market is off overall. Everybody is kind of seeing that down trend for the most part. Very few exceptions. Okta is being hurt by fewer new additions which is why we highlighted in red, that red dotted area, that square that we put there in the upper right of that Okta bar. That lime green, new ads are off as well. And the gray for Okta, flat spending is noticeably up. So it feels like people are pausing a bit and taking a breather for Okta. And as we said earlier, perhaps with the breach earlier this year and the ingestion of Auth0 acquisition the company is seeing some friction in its business. Now, having said that, you can see Okta's yellow line or presence in the data set, continues to grow. So it's a good proxy from market presence. So Okta remains a leader in identity. So again, I'll let you stare at the data if you want at your leisure, but despite some concerns on declining momentum, notice this very little red at these companies when it comes to the ETR survey data. Now one more data slide which brings us to our four star cyber firms. We started a tradition a few years ago where we sorted the ETR data by net score. That's the left hand side of this graphic. And we sorted by shared end or presence in the data set. That's the right hand side. And again, we filtered by companies with at least 100 N and oh, by the way we've excluded Microsoft just to level the playing field. The red dotted line signifies the top 10. If a company cracks the top 10 in both spending momentum and presence, we give them four stars. So Palo Alto, CrowdStrike, Okta, Fortinet and Zscaler all made the cut this time. Now, as we pointed out in May if you combined Auth0 with Okta, they jumped to the number two on the right hand chart in terms of presence. And they would lead the pure plays there although it would bring down Okta's net score somewhat, as you can see, Auth0's net score is lower than Okta's. So when you combine them it would drag that down a little bit but it would give them bigger presence in the data set. Now, the other point we'll make is that Proofpoint and Splunk both dropped off the four star list this time as they both saw marked declines in net score or spending velocity. They both got four stars last quarter. Okay. We're going to close on what to expect at re:Inforce this coming week. Re:Inforce, if you don't know, is AWS's security event. They first held it in Boston back in 2019. It's dedicated to cloud security. The past two years has been virtual and they announced that reinvent that it would take place in Houston in June, which everybody said, that's crazy. Who wants to go to Houston in June and turns out nobody did so they postponed the event, thankfully. And so now they're back in Boston, starting on Monday. Not that it's going to be much cooler in Boston. Anyway, Steven Schmidt had been the face of AWS security at all these previous events as the Chief Information Security Officer. Now he's dropped the I from his title and is now the Chief Security Officer at Amazon. So he went with Jesse to the mothership. Presumably he dropped the I because he deals with physical security now too, like at the warehouses. Not that he didn't have to worry about physical security at the AWS data centers. I don't know. Anyway, he and CJ Moses who is now the new CISO at AWS will be keynoting along with some others including MongoDB's Chief Information Security Officer. So that should be interesting. Now, if you've been following AWS you'll know they like to break things down into, you know, a couple of security categories. Identity, detection and response, data protection slash privacy slash GRC which is governance, risk and compliance, and we would expect a lot more talk this year on container security. So you're going to hear also product updates and they like to talk about how they're adding value to services and try to help, they try to help customers understand how to apply services. Things like GuardDuty, which is their threat detection that has machine learning in it. They'll talk about Security Hub, which centralizes views and alerts and automates security checks. They have a service called Detective which does root cause analysis, and they have tools to mitigate denial of service attacks. And they'll talk about security in Nitro which isolates a lot of the hardware resources. This whole idea of, you know, confidential computing which is, you know, AWS will point out it's kind of become a buzzword. They take it really seriously. I think others do as well, like Arm. We've talked about that on previous Breaking Analysis. And again, you're going to hear something on container security because it's the hottest thing going right now and because AWS really still serves developers and really that's what they're trying to do. They're trying to enable developers to design security in but you're also going to hear a lot of best practice advice from AWS i.e, they'll share the AWS dogfooding playbooks with you for their own security practices. AWS like all good security practitioners, understand that the keys to a successful security strategy and implementation don't start with the technology, rather they're about the methods and practices that you apply to solve security threats and a top to bottom cultural approach to security awareness, designing security into systems, that's really where the developers come in, and training for continuous improvements. So you're going to get heavy doses of really strong best practices and guidance and you know, some good preaching. You're also going to hear and see a lot of partners. They'll be very visible at re:Inforce. AWS is all about ecosystem enablement and AWS is going to host close to a hundred security partners at the event. This is key because AWS doesn't do it all. Interestingly, they don't even show up in the ETR security taxonomy, right? They just sort of imply that it's built in there even though they have a lot of security tooling. So they have to apply the shared responsibility model not only with customers but partners as well. They need an ecosystem to fill gaps and provide deeper problem solving with more mature and deeper security tooling. And you're going to hear a lot of positivity around how great cloud security is and how it can be done well. But the truth is this stuff is still incredibly complicated and challenging for CISOs and practitioners who are understaffed when it comes to top talent. Now, finally, theCUBE will be at re:Inforce in force. John Furry and I will be hosting two days of broadcast so please do stop by if you're in Boston and say hello. We'll have a little chat, we'll share some data and we'll share our overall impressions of the event, the market, what we're seeing, what we're learning, what we're worried about in this dynamic space. Okay. That's it for today. Thanks for watching. Thanks to Alex Myerson, who is on production and manages the podcast. Kristin Martin and Cheryl Knight, they helped get the word out on social and in our newsletters and Rob Hoff is our Editor in Chief over at siliconangle.com. You did some great editing. Thank you all. Remember all these episodes they're available, this podcast. Wherever you listen, all you do is search Breaking Analysis podcast. I publish each week on wikibon.com and siliconangle.com. You can get in touch with me by emailing avid.vellante@siliconangle.com or DM me @dvellante, or comment on my LinkedIn post and please do check out etr.ai for the best survey data in the enterprise tech business. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching and we'll see you in Boston next week if you're there or next time on Breaking Analysis (soft music)
SUMMARY :
in Palo Alto and Boston and of course the cyber names
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Alex Myerson | PERSON | 0.99+ |
Eric Bradley | PERSON | 0.99+ |
Steven Schmidt | PERSON | 0.99+ |
Cheryl Knight | PERSON | 0.99+ |
Verizon | ORGANIZATION | 0.99+ |
Dave Vellante | PERSON | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Chip Simonton | PERSON | 0.99+ |
Rob Hoff | PERSON | 0.99+ |
AT&T | ORGANIZATION | 0.99+ |
Microsoft | ORGANIZATION | 0.99+ |
January 2020 | DATE | 0.99+ |
Boston | LOCATION | 0.99+ |
IBM | ORGANIZATION | 0.99+ |
June 24th | DATE | 0.99+ |
Houston | LOCATION | 0.99+ |
ORGANIZATION | 0.99+ | |
Okta | ORGANIZATION | 0.99+ |
Kristin Martin | PERSON | 0.99+ |
July | DATE | 0.99+ |
SNAP | ORGANIZATION | 0.99+ |
Symantec | ORGANIZATION | 0.99+ |
CJ Moses | PERSON | 0.99+ |
John Furry | PERSON | 0.99+ |
Nokia | ORGANIZATION | 0.99+ |
6% | QUANTITY | 0.99+ |
Tesla | ORGANIZATION | 0.99+ |
Jesse | PERSON | 0.99+ |
40% | QUANTITY | 0.99+ |
CrowdStrike | ORGANIZATION | 0.99+ |
Four | QUANTITY | 0.99+ |
54% | QUANTITY | 0.99+ |
May | DATE | 0.99+ |
Palo Alto | ORGANIZATION | 0.99+ |
Qualcomm | ORGANIZATION | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Simonton | PERSON | 0.99+ |
JP Morgan | ORGANIZATION | 0.99+ |
8% | QUANTITY | 0.99+ |
14% | QUANTITY | 0.99+ |
Palo Alto | LOCATION | 0.99+ |
SailPoint | ORGANIZATION | 0.99+ |
TrendMicro | ORGANIZATION | 0.99+ |
Monday | DATE | 0.99+ |
15% | QUANTITY | 0.99+ |
McAfee | ORGANIZATION | 0.99+ |
Zscaler | ORGANIZATION | 0.99+ |
2019 | DATE | 0.99+ |
Fortinet | ORGANIZATION | 0.99+ |
two days | QUANTITY | 0.99+ |
June | DATE | 0.99+ |
45% | QUANTITY | 0.99+ |
10 surveys | QUANTITY | 0.99+ |
six | QUANTITY | 0.99+ |
CyberArk | ORGANIZATION | 0.99+ |
Thoma Bravo | ORGANIZATION | 0.99+ |
Tenable | ORGANIZATION | 0.99+ |
avid.vellante@siliconangle.com | OTHER | 0.99+ |
next week | DATE | 0.99+ |
SentinelOne | ORGANIZATION | 0.99+ |
early June | DATE | 0.99+ |
Meta | ORGANIZATION | 0.99+ |
MarTech Market Landscape | Investor Insights w/ Jerry Chen, Greylock | AWS Startup Showcase S2 E3
>>Hello, everyone. Welcome to the cubes presentation of the 80, but startup showcases MarTech is the focus. And this is all about the emerging cloud scale customer experience. This is season two, episode three of the ongoing series covering the exciting, fast growing startups from the cloud AWS ecosystem to talk about the future and what's available now, where are the actions? I'm your host John fur. Today. We joined by Cub alumni, Jerry Chen partner at Greylock ventures. Jerry. Great to see you. Thanks for coming on, >>John. Thanks for having me back. I appreciate you welcome there for season two. Uh, as a, as a guest star, >><laugh>, you know, Hey, you know, season two, it's not a one and done it's continued coverage. We, we got the episodic, uh, cube flicks model going >>Here. Well, you know, congratulations, the, the coverage on this ecosystem around AWS has been impressive, right? I think you and I have talked a long time about AWS and the ecosystem building. It just continues to grow. And so the coverage you did last season, all the events of this season is, is pretty amazing from the data security to now marketing. So it's, it's great to >>Watch. And 12 years now, the cube been running. I remember 2013, when we first met you in the cube, we just left VMware just getting into the venture business. And we were just riffing the next 80. No one really kind of knew how big it would be. Um, but we were kinda riffing on. We kind of had a sense now it's happening. So now you start to see every vertical kind of explode with the right digital transformation and disruption where you see new incumbents. I mean, new Newton brands get replaced the incumbent old guard. And now in MarTech, it's ripe for, for disruption because web two has gone on to web 2.5, 3, 4, 5, um, cookies are going away. You've got more governance and privacy challenges. There's a slew of kind of ad tech baggage, but yet lots of new data opportunities. Jerry, this is a huge, uh, thing. What's your take on this whole MarTech cloud scale, uh, >>Market? I, I think, I think to your point, John, that first the trends are correct and the bad and the good or good old days, the battle days MarTech is really about your webpage. And then email right there. There's, there's the emails, the only channel and the webpage was only real estate and technology to care about fast forward, you know, 10 years you have webpages, mobile apps, VR experiences, car experiences, your, your, your Alexa home experiences. Let's not even get to web three web 18, whatever it is. Plus you got text messages, WhatsApp, messenger, email, still great, et cetera. So I think what we've seen is both, um, explosion and data, uh, explosion of channel. So sources of data have increases and the fruits of the data where you can reach your customers from text, email, phone calls, etcetera have exploded too. So the previous generation created big company responses, Equa, you know, that exact target that got acquired by Oracle or, or, um, Salesforce, and then companies like, um, you know, MailChimp that got acquired as well, but into it, you're seeing a new generation companies for this new stack. So I, I think it's exciting. >>Yeah. And you mentioned all those things about the different channels and stuff, but the key point is now the generation shifts going on, not just technical generation, uh, and platform and tools, it's the people they're younger. They don't do email. They have, you know, proton mail accounts, zillion Gmail accounts, just to get the freebie. Um, they're like, they're, they'll do subscriptions, but not a lot. So the generational piece on the human side is huge. Okay. And then you got the standards, bodies thrown away, things like cookies. Sure. So all this is makes it for a complicated, messy situation. Um, so out of this has to come a billion dollar startup in my mind, >>I, I think multiple billion dollars, but I think you're right in the sense that how we want engage with the company branch, either consumer brands or business brands, no one wants to pick a phone anymore. Right? Everybody wants to either chat or DM people on Twitter. So number one, the, the way we engage is different, both, um, where both, how like chat or phone, but where like mobile device, but also when it's the moment when we need to talk to a company or brand be it at the store, um, when I'm shopping in real life or in my car or at the airport, like we want to reach the brands, the brands wanna reach us at the point of decision, the point of support, the point of contact. And then you, you layer upon that the, the playing field, John of privacy security, right? All these data silos in the cloud, the, the, the, the game has changed and become even more complicated with the startup. So the startups are gonna win. Will do, you know, the collect, all the data, make us secure in private, but then reach your customers when and where they want and how they want it. >>So I gotta ask you, because you had a great podcast just this week, published and snowflake had their event going on the data cloud, there's a new kind of SAS platform vibe going on. You're starting to see it play out. Uh, and one of the things I, I noticed on your podcast with the president of Hashi Corp, who was on people should listen to that podcast. It's on gray matter, which is the Greylocks podcast, uh, plug for you guys. He mentioned he mentions the open source dynamic, right? Sure. And, and I like what he, things, he said, he said, software business has changed forever. It's my words. Now he said infrastructure, but I'm saying software in general, more broader infrastructure and software as a category is all open source. One game over no debate. Right. You agree? >>I, I think you said infrastructure specifically starts at open source, but I would say all open source is one more or less because open source is in every bit of software. Right? And so from your operating system to your car, to your mobile phone, open source, not necessarily as a business model or, or, or whatever, we can talk about that. But open source as a way to build software distribute, software consume software has one, right? It is everywhere. So regardless how you make money on it, how you build software, an open source community ha has >>One. Okay. So let's just agree. That's cool. I agree with that. Let's take it to the next level. I'm a company starting a company to sell to big companies who pay. I gotta have a proprietary advantage. There's gotta be a way. And there is, I know you've talked about it, but I have my opinion. There is needs to be a way to be proprietary in a way that allows for that growth, whether it's integration, it's not gonna be on software license or maybe support or new open source model. But how does startups in the MarTech this area in general, when they disrupt or change the category, they gotta get value creation going. What's your take on, on building. >>You can still build proprietary software on top of open source, right? So there's many companies out there, um, you know, in a company called rock set, they've heavily open source technology like Rock's DB under the hood, but they're running a cloud database. That's proprietary snowflake. You talk about them today. You know, it's not open source technology company, but they use open source software. I'm sure in the hoods, but then there's open source companies, data break. So let's not confus the two, you can still build proprietary software. There's just components of open source, wherever we go. So number one is you can still build proprietary IP. Number two, you can get proprietary data sources, right? So I think increasingly you're seeing companies fight. I call this systems intelligence, right, by getting proprietary data, to train your algorithms, to train your recommendations, to train your applications, you can still collect data, um, that other competitors don't have. >>And then it can use the data differently, right? The system of intelligence. And then when you apply the system intelligence to the end user, you can create value, right? And ultimately, especially marketing tech, the highest level, what we call the system of engagement, right? If, if the chat bot the mobile UI, the phone, the voice app, etcetera, if you own the system of engagement, be a slack, or be it, the operating system for a phone, you can also win. So still multiple levels to play John in multiple ways to build proprietary advantage. Um, just gotta own system record. Yeah. System intelligence, system engagement. Easy, right? Yeah. >>Oh, so easy. Well, the good news is the cloud scale and the CapEx funded there. I mean, look at Amazon, they've got a ton of open storage. You mentioned snowflake, but they're getting a proprietary value. P so I need to ask you MarTech in particular, that means it's a data business, which you, you pointed out and we agree. MarTech will be about the data of the workflows. How do you get those workflows what's changing and how these companies are gonna be building? What's your take on it? Because it's gonna be one of those things where it might be the innovation on a source of data, or how you handle two parties, ex handling encrypted data sets. I don't know. Maybe it's a special encryption tool, so we don't know what it is. What's your what's, what's your outlook on this area? >>I, I, I think that last point just said is super interesting, super genius. It's integration or multiple data sources. So I think either one, if it's a data business, do you have proprietary data? Um, one number two with the data you do have proprietary, not how do you enrich the data and do you enrich the data with, uh, a public data set or a party data set? So this could be cookies. It could be done in Brad street or zoom info information. How do you enrich the data? Number three, do you have machine learning models or some other IP that once you collected the data, enriched the data, you know, what do you do with the data? And then number four is once you have, um, you know, that model of the data, the customer or the business, what do you deal with it? Do you email, do you do a tax? >>Do you do a campaign? Do you upsell? Do you change the price dynamically in our customers? Do you serve a new content on your website? So I think that workflow to your point is you can start from the same place, what to do with the data in between and all the, on the out the side of this, this pipeline is where a MarTech company can have then. So like I said before, it was a website to an email go to website. You know, we have a cookie fill out a form. Yeah. I send you an email later. I think now you, you can't just do a website to email, it's a website plus mobile apps, plus, you know, in real world interaction to text message, chat, phone, call Twitter, a whatever, you know, it's >>Like, it's like, they're playing checkers in web two and you're talking 3d chess. <laugh>, I mean, there's a level, there's a huge gap between what's coming. And this is kind of interesting because now you mentioned, you know, uh, machine learning and data, and AI is gonna factor into all this. You mentioned, uh, you know, rock set. One of your portfolios has under the hood, you know, open source and then use proprietary data and cloud. Okay. That's a configuration, that's an architecture, right? So architecture will be important in terms of how companies posture in this market, cuz MarTech is ripe for innovation because it's based on these old technologies, but there's tons of workflows, but you gotta have the data. Right. And so if I have the best journey map from a client that goes to a website, but then they go and they do something in the organic or somewhere else. If I don't have that, what good is it? It's like a blind spot. >>Correct. So I think you're seeing folks with the data BS, snowflake or data bricks, or an Amazon that S three say, Hey, come to my data cloud. Right. Which, you know, Snowflake's advertising, Amazon will say the data cloud is S3 because all your data exists there anyway. So you just, you know, live on S3 data. Bricks will say, S3 is great, but only use Amazon tools use data bricks. Right. And then, but on top of that, but then you had our SaaS companies like Oracle, Salesforce, whoever, and say, you know, use our qua Marketo, exact target, you know, application as a system record. And so I think you're gonna have a battle between, do I just work my data in S3 or where my data exists or gonna work my data, some other application, like a Marketo Ella cloud Z target, um, or, you know, it could be a Twilio segment, right. Was combination. So you'll have this battle between these, these, these giants in the cloud, easy, the castles, right. Versus, uh, the, the, the, the contenders or the, or the challengers as we call >>'em. Well, great. Always chat with the other. We always talk about castles in the cloud, which is your work that you guys put out, just an update on. So check out greylock.com. They have castles on the cloud, which is a great thesis on and a map by the way ecosystem. So you guys do a really good job props to Jerry and the team over at Greylock. Um, okay. Now I gotta ask kind of like the VC private equity sure. Market question, you know, evaluations. Uh, first of all, I think it's a great time to do a startup. So it's a good time to be in the VC business. I think the next two years, you're gonna find some nice gems, but also you gotta have that cleansing period. You got a lot of overvaluation. So what happened with the markets? So there's gonna be a lot of M and a. So the question is what are some of the things that you see as challenges for product teams in particular that might have that killer answer in MarTech, or might not have the runway if there's no cash, um, how do people partner in this modern era, cuz scale's a big deal, right? Mm-hmm <affirmative> you can measure everything. So you get the combination of a, a new kind of M and a market coming, a potential growth market for the right solution. Again, value's gotta be be there. What's your take on this market? >>I, I, I think you're right. Either you need runway, so cash to make it through, through this next, you know, two, three years, whatever you think the market Turmo is or two, you need scale, right? So if you're at a company of scale and you have enough data, you can probably succeed on your own. If not, if you're kind of in between or early to your point, either one focus, a narrower wedge, John, just like we say, just reduce the surface area. And next two years focus on solving one problem. Very, very well, or number two in this MarTech space, especially there's a lot of partnership and integration opportunities to create a complete solution together, to compete against kind of the incumbents. Right? So I think they're folks with the data, they're folks doing data, privacy, security, they're post focusing their workflow or marketing workflows. You're gonna see either one, um, some M and a, but I definitely can see a lot of Coopers in partnership. And so in the past, maybe you would say, I'm just raise another a hundred million dollars and do what you're doing today. You might say, look, instead of raising more money let's partner together or, or merge or find a solution. So I think people are gonna get creative. Yeah. Like said scarcity often is good. Yeah. I think forces a lot more focus and a lot more creativity. >>Yeah. That's a great point. I'm glad you brought that up up. Cause I didn't think you were gonna go there. I was gonna ask that biz dev activity is going to be really fundamental because runway combined with the fact that, Hey, you know, if you know, get real or you're gonna go under is a real issue. So now people become friends. They're like, okay, if we partner, um, it's clearly a good way to go if you can get there. So what advice would you give companies? Um, even most experienced, uh, founders and operators. This is a different market, right? It's a different kind of velocity, obviously architectural data. You mentioned some of those key things. What's the posture to partner. What's your advice? What's the combat man manual to kind of compete in this new biz dev world where some it's a make or break time, either get the funding, get the customers, which is how you get funding or you get a biz dev deal where you combine forces, uh, go to market together or not. What's your advice? >>I, I think that the combat manual is either you're partnering for one or two things, either one technology or two customers or sometimes both. So it would say which partnerships, youre doing for technology EG solution completers. Like you have, you know, this puzzle piece, I have this puzzle piece data and data privacy and let's work together. Um, or number two is like, who can help you with customers? And that's either a, I, they can be channel for you or, or vice versa or can share customers and you can actually go to market together and find customers jointly. So ideally you're partner for one, if not the other, sometimes both. And just figure out where in your life cycle do you need? Um, friends. >>Yeah. Great. My final question, Jerry, first of all, thanks for coming on and sharing your in insight as usual. Always. Awesome final question for the folks watching that are gonna be partnering and buying product and services from these startups. Um, there's a select few great ones here and obviously every other episode as well, and you've got a bunch you're investing in this, it's actually a good market for the ones that are lean companies that are lean and mean have value. And the cloud scale does provide that. So a lot of companies are getting it right, they're gonna break through. So they're clearly gonna be getting customers the buyer side, how should they be looking through the lens right now and looking at companies, what should they look for? Um, and they like to take chances with seeing that. So it's not so much, they gotta be vetted, but you know, how do they know the winners from the pretenders? >>You know, I, I think the customers are always smart. I think in the, in the, in the past in market market tech, especially they often had a budget to experiment with. I think you're looking now the customers, the buyer technologies are looking for a hard ROI, like a return on investment. And before think they might experiment more, but now they're saying, Hey, are you gonna help me save money or increase revenue or some hardcore metric that they care about? So I think, um, the startups that actually have a strong ROI, like save money or increased revenue and can like point empirically how they do that will, will, you know, rise to the top of, of the MarTech landscape. And customers will see that they're they're, the customers are smart, right? They're savvy buyers. They, they, they, they, they can smell good from bad and they're gonna see the strong >>ROI. Yeah. And the other thing too, I like to point out, I'd love to get your reaction real quick is a lot of the companies have DNA, any open source or they have some community track record where communities now, part of the vetting. I mean, are they real good people? >>Yeah. I, I think open stores, like you said, in the community in general, like especially all these communities that move on slack or discord or something else. Right. I think for sure, just going through all those forums, slack communities or discord communities, you can see what's a good product versus next versus bad. Don't go to like the other sites. These communities would tell you who's working. >>Well, we got a discord channel on the cube now had 14,000 members. Now it's down to six, losing people left and right. We need a moderator, um, to get on. If you know anyone on discord, anyone watching wants to volunteer to be the cube discord, moderator. Uh, we could use some help there. Love discord. Uh, Jerry. Great to see you. Thanks for coming on. What's new at Greylock. What's some of the things happening. Give a quick plug for the firm. When you guys working on, I know there's been some cool things happening, new investments, people moving. >>Yeah. Look we're we're Greylock partners, seed series a firm. I focus at enterprise software. I have a team with me that also does consumer investing as well as crypto investing like all firms. So, but we're we're seed series a occasionally later stage growth. So if you're interested, uh, FA me@jkontwitterorjgreylock.com. Thank you, John. >>Great stuff, Jerry. Thanks for coming on. This is the Cube's presentation of the, a startup showcase. MarTech is the series this time, emerging cloud scale customer experience where the integration and the data matters. This is season two, episode three of the ongoing series covering the hottest cloud startups from the ADWS ecosystem. Um, John farrier, thanks for watching.
SUMMARY :
the cloud AWS ecosystem to talk about the future and what's available now, where are the actions? I appreciate you welcome there for season two. <laugh>, you know, Hey, you know, season two, it's not a one and done it's continued coverage. And so the coverage you did last season, all the events of this season is, So now you start to see every vertical kind of explode with the right digital transformation So sources of data have increases and the fruits of the data where you can reach your And then you got the standards, bodies thrown away, things like cookies. Will do, you know, Uh, and one of the things I, I noticed on your podcast with the president of Hashi Corp, So regardless how you make money on it, how you build software, But how does startups in the MarTech this area So let's not confus the two, you can still build proprietary software. or be it, the operating system for a phone, you can also win. might be the innovation on a source of data, or how you handle two parties, So I think either one, if it's a data business, do you have proprietary data? Do you serve a new content on your website? You mentioned, uh, you know, rock set. So you just, you know, live on S3 data. So you get the combination of a, a new kind of M and a market coming, a potential growth market for the right And so in the past, maybe you would say, I'm just raise another a hundred million dollars and do what you're doing today. get the customers, which is how you get funding or you get a biz dev deal where you combine forces, And that's either a, I, they can be channel for you or, or vice versa or can share customers and So it's not so much, they gotta be vetted, but you know, will, will, you know, rise to the top of, of the MarTech landscape. part of the vetting. just going through all those forums, slack communities or discord communities, you can see what's a If you know anyone on discord, So if you're interested, MarTech is the series this time, emerging cloud scale customer experience where the integration
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
MarTech | ORGANIZATION | 0.99+ |
John | PERSON | 0.99+ |
Jerry | PERSON | 0.99+ |
Jerry Chen | PERSON | 0.99+ |
Amazon | ORGANIZATION | 0.99+ |
Greylock | ORGANIZATION | 0.99+ |
CapEx | ORGANIZATION | 0.99+ |
2013 | DATE | 0.99+ |
14,000 members | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
one | QUANTITY | 0.99+ |
Oracle | ORGANIZATION | 0.99+ |
two | QUANTITY | 0.99+ |
Brad street | LOCATION | 0.99+ |
both | QUANTITY | 0.99+ |
three years | QUANTITY | 0.99+ |
10 years | QUANTITY | 0.99+ |
two customers | QUANTITY | 0.99+ |
ADWS | ORGANIZATION | 0.99+ |
12 years | QUANTITY | 0.99+ |
two parties | QUANTITY | 0.99+ |
John farrier | PERSON | 0.98+ |
Today | DATE | 0.98+ |
billion dollars | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
S3 | TITLE | 0.98+ |
Salesforce | ORGANIZATION | 0.98+ |
3 | OTHER | 0.97+ |
ORGANIZATION | 0.97+ | |
two things | QUANTITY | 0.97+ |
Hashi Corp | ORGANIZATION | 0.97+ |
John fur | PERSON | 0.97+ |
Greylock | PERSON | 0.97+ |
VMware | ORGANIZATION | 0.96+ |
one problem | QUANTITY | 0.96+ |
this week | DATE | 0.96+ |
Turmo | ORGANIZATION | 0.95+ |
One | QUANTITY | 0.95+ |
Greylocks | PERSON | 0.95+ |
4 | OTHER | 0.94+ |
One game | QUANTITY | 0.94+ |
5 | OTHER | 0.93+ |
80 | QUANTITY | 0.92+ |
first | QUANTITY | 0.92+ |
Cub | ORGANIZATION | 0.91+ |
Snowflake | ORGANIZATION | 0.91+ |
greylock.com | OTHER | 0.91+ |
billion dollar | QUANTITY | 0.91+ |
season two | QUANTITY | 0.91+ |
Rock | ORGANIZATION | 0.91+ |
Twilio | ORGANIZATION | 0.9+ |
Equa | ORGANIZATION | 0.9+ |
zillion | QUANTITY | 0.9+ |
Gmail | TITLE | 0.9+ |
Atri Basu & Necati Cehreli | Zebrium Root Cause as a Service
>>Okay. We're back with Ari Basu, who is Cisco's resident philosopher, who also holds a master's in computer science. We're gonna have to unpack that a little bit and Najati chair he who's technical lead at Cisco. Welcome guys. Thanks for coming on the cube. >>Happy to be here. Thanks a >>Lot. All right, let's get into it. We want you to explain how Cisco validated the SBRI technology and the proof points that, that you have, that it actually works as advertised. So first Outre tell first, tell us about Cisco tech. What does Cisco tech do? >>So T is otherwise it's an acronym for technical assistance center is Cisco's support arm, the support organization, and, you know, the risk of sounding like I'm spotting a corporate line. The, the easiest way to summarize what tag does is provide world class support to Cisco customers. What that means is we have about 8,000 engineers worldwide, and any of our Cisco customers can either go on our web portal or call us to open a support request. And we get about 2.2 million of these support requests a year. And what these support requests are, are essentially the customer will describe something that they need done some networking goal that they have, that they wanna accomplish. And then it's tax job to make sure that that goal does get accomplished. Now, it could be something like they're having trouble with an existing network solution, and it's not working as expected, or it could be that they're integrating with a new solution. >>They're, you know, upgrading devices, maybe there's a hardware failure, anything really to do with networking support and, you know, the customer's network goals. If they open up a case for request for help, then tax job is to, is to respond and make sure the customer's, you know, questions and requirements are met about 44% of these support requests are usually trivial and, you know, can be solved within a call or within a day. But the rest of tax cases really involve getting into the network device, looking at logs. It's a very technical role. It's a very technical job. You're look you're, you need to be conversing with network solutions, their designs protocols, et cetera. >>Wow. So 56% non-trivial. And so I would imagine you spend a lot of time digging through through logs. Is that, is that true? Can you quantify that like, you know, every month, how much time you spend digging through logs and is that a pain point? >>Yeah, it's interesting. You asked that because when we started this on this journey to augment our support engineers workflow with zebra solution, one of the things that we did was we went out and asked our engineers what their experience was like doing log analysis. And the anecdotal evidence was that on average, an engineer will spend three out of their eight hours reviewing logs, either online or offline. So what that means is either with the customer live on a WebEx, they're going to be going over logs, network, state information, et cetera, or they're gonna do it offline, where the customer sends them the logs, it's attached to a, you know, a service request and they review it and try to figure out what's going on and provide the customer with information. So it's a very large chunk of our day. You know, I said 8,000 plus engineers, and so three hours a day, that's 24,000 man hours a day spent on long analysis. >>Now the struggle with logs or analyzing logs is there by out of necessity. Logs are very contr contr. They try to pack a lot of information in a very little space. And this is for performance reasons, storage reasons, et cetera, BEC, but the side effect of that is they're very esoteric. So they're hard to read if you're not conversant, if you're not the developer who wrote these logs or you or you, aren't doing code deep dives. And you're looking at where this logs getting printed and things like that, it may not be immediately obvious or even after a low while it may not be obvious what that log line means or how it correlates to whatever problem you're troubleshooting. So it requires tenure. It requires, you know, like I was saying before, it requires a lot of knowledge about the protocol what's expected because when you're doing log analysis, what you're really looking for is a needle in a haystack. You're looking for that one anomalous event, that single thing that tells you this shouldn't have happened. And this was a problem right now doing that kind of anomaly detection requires you to know what is normal. It requires, you know, what the baseline is. And that requires a very in-depth understanding of, you know, the state changes for that network solution or product. So it requires time, tenure and expertise to do well. And it takes a lot of time even when you have that kind of expertise. >>Wow. So thank you, archery. And Najati, that's, that's about, that's almost two days a week for, for a technical resource. That's that's not inexpensive. So what was Cisco looking for to sort of help with this and, and how'd you stumble upon zebra? >>Yeah, so, I mean, we have our internal automation system, which has been running more than a decade now. And what happens is when a customer attaches a log bundle or diagnostic bundle into the service request, we take that from the Sr we analyze it and we represent some kind of information. You know, it can be alert or some tables, some graph to the engineer, so they can, you know, troubleshoot this particular issue. This is an incredible system, but it comes with its own challenges around maintenance to keep it up to date and relevant with Cisco's new products or new version of the product, new defects, new issues, and all kind of things. And when I, what I mean with those challenges are, let's say Cisco comes up with a product today. We need to come together with those engineers. We need to figure out how this bundle works, how it's structured out. >>We need to select individual logs, which are relevant and then start modeling these logs and get some values out of those logs, using pars or some rag access to come to a level that we can consume the logs. And then people start writing rules on top of that abstraction. So people can say in this log, I'm seeing this value together with this other value in another log, maybe I'm hitting this particular defect. So that's how it works. And if you look at it, the abstraction, it can fail the next time. And the next release when the development or the engineer decides to change that log line, which you write that rag X, or we can come up with a new version, which we completely change the services or processes, then whatever you have wrote needs to be re written for that new service. And we see that a lot with products, like for instance, WebEx, where you have a very short release cycle that things can change maybe the next week with a new release. >>So whatever you are writing, especially for that abstraction and for those rules are maybe not relevant with that new release. With that being sake, we have a incredible rule creation process and governance process around it, which starts with maybe a defect. And then it takes it to a level where we have an automation in place. But if you look at it, this really ties to human bandwidth. And our engineers are really busy working on, you know, customer facing, working on issues daily and sometimes creating these rules or these pars are not their biggest priorities, so they can be delayed a bit. So we have this delay between a new issue being identified to a level where we have the automation to detect it next time that some customer faces it. So with all these questions and with all challenges in mind, we start looking into ways of actually how we can automate these automations. >>So these things that we are doing manually, how we can move it a bit further and automate. And we had actually a couple of things in mind that we were looking for and this being one of them being, this has to be product agnostic. Like if Cisco comes up with a product tomorrow, I should be able to take it logs without writing, you know, complex regs, pars, whatever, and deploy it into this system. So it can embrace our logs and make sense of it. And we wanted this platform to be unsupervised. So none of the engineers need to create rules, you know, label logs. This is bad. This is good. Or train the system like which requires a lot of computational power. And the other most important thing for us was we wanted this to be not noisy at all, because what happens with noises when your level of false PE positives really high your engineers start ignoring the good things between that noise. >>So they start the next time, you know, thinking that this thing will not be relevant. So we want something with a lot or less noise. And ultimately we wanted this new platform or new framework to be easily adaptable to our existing workflows. So this is where we started. We start looking into the, you know, first of all, internally, if we can build this thing and also start researching it, and we came up to Zeum actually Larry, one of the co co-founders of Zeum. We came upon his presentation where he clearly explained why this is different, how this works, and it immediately clicked in. And we said, okay, this is exactly what we were looking for. We dived deeper. We checked the block posts where SBRI guys really explained everything very clearly there, they are really open about it. And most importantly, there is a button in their system. >>So what happens usually with AI ML vendors is they have this button where you fill in your details and sales guys call you back. And, you know, we explain the system here. They were like, this is our trial system. We believe in the system, you can just sign up and try it yourself. And that's what we did. We took our, one of our Cisco live DNA center, wireless platforms. We start streaming logs out of it. And then we synthetically, you know, introduce errors, like we broke things. And then we realized that zebra was really catching the errors perfectly. And on top of that, it was really quiet unless you are really breaking something. And the other thing we realized was during that first trial is zebra was actually bringing a lot of context on top of the logs. During those failures, we work with couple of technical leaders and they said, okay, if this failure happens, I I'm expecting this individual log to be there. And we found out with zebra, apart from that individual log, there were a lot of other things which gives a bit more context around the root columns, which was great. And that's where we wanted to take it to the next level. Yeah. >>Okay. So, you know, a couple things to unpack there. I mean, you have the dart board behind you, which is kind of interesting, cuz a lot of times it's like throwing darts at the board to try to figure this stuff out. But to your other point, Cisco actually has some pretty rich tools with AppD and doing observability and you've made acquisitions like thousand eyes. And like you said, I'm, I'm presuming you gotta eat your own dog food or drink your own champagne. And so you've gotta be tools agnostic. And when I first heard about Z zebra, I was like, wait a minute. Really? I was kind of skeptical. I've heard this before. You're telling me all I need is plain text and, and a timestamp. And you got my problem solved. So, and I, I understand that you guys said, okay, let's run a POC. Let's see if we can cut that from, let's say two days a week down to one day, a week. In other words, 50%, let's see if we can automate 50% of the root cause analysis. And, and so you funded a POC. How, how did you test it? You, you put, you know, synthetic, you know, errors and problems in there, but how did you test that? It actually works Najati >>Yeah. So we, we wanted to take it to the next level, which is meaning that we wanted to back test is with existing SARS. And we decided, you know, we, we chose four different products from four different verticals, data center, security, collaboration, and enterprise networking. And we find out SARS where the engineer put some kind of log in the resolution summary. So they closed the case. And in the summary of the Sr, they put, I identified these log lines and they led me to the roots and we, we ingested those log bundles. And we, we tried to see if Zeum can surface that exact same log line in their analysis. So we initially did it with archery ourself and after 50 tests or so we were really happy with the results. I mean, almost most of them, we saw the log line that we were looking for, but that was not enough. >>And we brought it of course, to our management and they said, okay, let's, let's try this with real users because the log being there is one thing, but the engineer reaching to that log is another take. So we wanted to make sure that when we put it in front of our users, our engineers, they can actually come to that log themselves because, you know, we, we know this platform so we can, you know, make searches and find whatever we are looking for, but we wanted to do that. So we extended our pilots to some selected engineers and they tested with their own SRSS. Also do some back testing for some SARS, which are closed in the past or recently. And with, with a sample set of, I guess, close to 200 SARS, we find out like majority of the time, almost 95% of the time the engineer could find the log they were looking for in zebra analysis. >>Yeah. Okay. So you were looking for 50%, you got to 95%. And my understanding is you actually did it with four pretty well known Cisco products, WebEx client DNA center, identity services, engine ISE, and then, then UCS. Yes. Unified pursuit. So you use actual real data and, and that was kind of your proof proof point, but Ari. So that's sounds pretty impressive. And, and you've have you put this into production now and what have you found? >>Well, yes, we're, we've launched this with the four products that you mentioned. We're providing our tech engineers with the ability, whenever a, whenever a support bundle for that product gets attached to the support request. We are processing it, using sense and then providing that sense analysis to the tech engineer for their review. >>So are you seeing the results in production? I mean, are you actually able to, to, to reclaim that time that people are spending? I mean, it was literally almost two days a week down to, you know, a part of a day, is that what you're seeing in production and what are you able to do with that extra time and people getting their weekends back? Are you putting 'em on more strategic tasks? How are you handling that? >>Yeah. So, so what we're seeing is, and I can tell you from my own personal experience using this tool, that troubleshooting any one of the cases, I don't take more than 15 to 20 minutes to go through the zebra report. And I know within that time either what the root causes or I know that zebra doesn't have the information that I need to solve this particular case. So we've definitely seen, well, it's been very hard to measure exactly how much time we've saved per engineer, right? What we, again, anecdotally, what we've heard from our users is that out of those three hours that they were spending per day, we're definitely able to reclaim at least one of those hours and, and what, even more importantly, you know, what the kind of feedback that we've gotten in terms of, I think one statement that really summarizes how Zebra's impacted our workflow was from one of our users. >>And they said, well, you know, until you provide us with this tool, log analysis was a very black and white affair, but now it's become really colorful. And I mean, if you think about it, log analysis is indeed black and white. You're looking at it on a terminal screen where the background is black and the text is white, or you're looking at it as a text where the background is white and the text is black, but what's what they're really trying to say. Is there hardly any visual cues that help you navigate these logs, which are so esoteric, so dense, et cetera. But what XRM does is it provides a lot of color and context to the whole process. So now you're able to quickly get to, you know, using their word cloud, using their interactive histogram, using the summaries of every incident. You're very quickly able to summarize what might be happening and what you need to look into. >>Like, what are the important aspects of this particular log bundle that might be relevant to you? So we've definitely seen that a really great use case that kind of encapsulates all of this was very early on in our experiment. There was, there was this support request that had been escalated to the business unit or the development team. And the tech engineer had really, they, they had an intuition about what was going wrong because of their experience because of, you know, the symptoms that they'd seen. They kind of had an idea, but they weren't able to convince the development team because they weren't able to find any evidence to back up what they thought was happening. And we, it was entirely happenstance that I happened to pick up that case and did an analysis using Seebri. And then I sat down with the attack engineer and we were very quickly within 15 minutes, we were able to get down to the exact sequence of events that highlighted what the customer thought was happening, evidence of what the, so not the customer, what the attack engineer thought was the, was a root cause. It was a rude pause. And then we were able to share that evidence with our business unit and, you know, redirect their resources so that we could change down what the problem was. And that really has been, that that really shows you how that color and context helps in log analysis. >>Interesting. You know, we do a fair amount of work in the cube in the RPA space, the robotic process automation and the narrative in the press when our RPA first started taking off was, oh, it's, you know, machines replacing humans, or we're gonna lose jobs. And, and what actually happened was people were just eliminating mundane tasks and, and the, the employee's actually very happy about it. But my question to you is, was there ever a reticence amongst your team? Like, oh, wow, I'm gonna, I'm gonna lose my job if the machine's gonna replace me, or have you found that people were excited about this and what what's been the reaction amongst the team? >>Well, I think, you know, every automation and AI project has that immediate gut reaction of you're automating away our jobs and so forth. And there is initially there's a little bit of reticence, but I mean, it's like you said, once you start using the tool, you realize that it's not your job, that's getting automated away. It's just that your job's becoming a little easier to do, and it's faster and more efficient. And you're able to get more done in less time. That's really what we're trying to accomplish here at the end of the day, rim will identify these incidents. They'll do the correlation, et cetera. But if you don't understand what you're reading, then that information's useless to you. So you need the human, you need the network expert to actually look at these incidents, but what we are able to skin away or get rid of is all of the fat that's involved in our, you know, in our process, like without having to download the bundle, which, you know, when it's many gigabytes in size, and now we're working from home with the pandemic and everything, you're, you know, pulling massive amounts of logs from the corporate network onto your local device that takes time and then opening it up, loading it in a text editor that takes time. >>All of these things are we're trying to get rid of. And instead we're trying to make it easier and quicker for you to find what you're looking for. So it's like you said, you take away the mundane, you take away the, the difficulties and the slog, but you don't really take away the work, the work still needs to be done. >>Yeah. Great guys. Thanks so much. Appreciate you sharing your story. It's quite, quite fascinating. Really. Thank you for coming on. >>Thanks for having us. >>You're very welcome. Okay. In a moment, I'll be back to wrap up with some final thoughts. This is Dave Valante and you're watching the, >>So today we talked about the need, not only to gain end to end visibility, but why there's a need to automate the identification of root cause problems and doing so with modern technology and machine intelligence can dramatically speed up the process and identify the vast majority of issues right out of the box. If you will. And this technology, it can work with log bundles in batches, or with real time data, as long as there's plain text and a timestamp, it seems Zebra's technology will get you the outcome of automating root cause analysis with very high degrees of accuracy. Zebra is available on Preem or in the cloud. Now this is important for some companies on Preem because there's really some sensitive data inside logs that for compliance and governance reasons, companies have to keep inside their four walls. Now SBRI has a free trial. Of course they better, right? So check it out@zebra.com. You can book a live demo and sign up for a free trial. Thanks for watching this special presentation on the cube, the leader in enterprise and emerging tech coverage on Dave Valante and.
SUMMARY :
Thanks for coming on the cube. Happy to be here. and the proof points that, that you have, that it actually works as advertised. Cisco's support arm, the support organization, and, you know, to do with networking support and, you know, the customer's network goals. And so I would imagine you spend a lot of where the customer sends them the logs, it's attached to a, you know, a service request and And that requires a very in-depth understanding of, you know, to sort of help with this and, and how'd you stumble upon zebra? some graph to the engineer, so they can, you know, troubleshoot this particular issue. And if you look at it, the abstraction, it can fail the next time. And our engineers are really busy working on, you know, customer facing, So none of the engineers need to create rules, you know, label logs. So they start the next time, you know, thinking that this thing will So what happens usually with AI ML vendors is they have this button where you fill in your And like you said, I'm, you know, we, we chose four different products from four different verticals, And we brought it of course, to our management and they said, okay, let's, let's try this with And my understanding is you actually did it with Well, yes, we're, we've launched this with the four products that you mentioned. and what, even more importantly, you know, what the kind of feedback that we've gotten in terms And they said, well, you know, until you provide us with this tool, And that really has been, that that really shows you how that color and context helps But my question to you is, was there ever a reticence amongst or get rid of is all of the fat that's involved in our, you know, So it's like you said, you take away the mundane, Appreciate you sharing your story. This is Dave Valante and you're watching the, it seems Zebra's technology will get you the outcome of automating root cause analysis with
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Ari Basu | PERSON | 0.99+ |
Dave Valante | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
one day | QUANTITY | 0.99+ |
50% | QUANTITY | 0.99+ |
95% | QUANTITY | 0.99+ |
Zeum | ORGANIZATION | 0.99+ |
eight hours | QUANTITY | 0.99+ |
SARS | ORGANIZATION | 0.99+ |
Najati | PERSON | 0.99+ |
56% | QUANTITY | 0.99+ |
Larry | PERSON | 0.99+ |
three hours | QUANTITY | 0.99+ |
UCS | ORGANIZATION | 0.99+ |
50 tests | QUANTITY | 0.98+ |
today | DATE | 0.98+ |
a week | QUANTITY | 0.98+ |
about 8,000 engineers | QUANTITY | 0.98+ |
one | QUANTITY | 0.98+ |
next week | DATE | 0.97+ |
about 2.2 million | QUANTITY | 0.97+ |
three | QUANTITY | 0.97+ |
one statement | QUANTITY | 0.97+ |
first trial | QUANTITY | 0.97+ |
WebEx | ORGANIZATION | 0.97+ |
three hours a day | QUANTITY | 0.96+ |
first | QUANTITY | 0.96+ |
Seebri | ORGANIZATION | 0.96+ |
15 minutes | QUANTITY | 0.96+ |
SBRI | ORGANIZATION | 0.95+ |
tomorrow | DATE | 0.95+ |
more than a decade | QUANTITY | 0.95+ |
about 44% | QUANTITY | 0.95+ |
Outre | ORGANIZATION | 0.93+ |
single thing | QUANTITY | 0.93+ |
more than 15 | QUANTITY | 0.93+ |
two days a week | QUANTITY | 0.93+ |
AppD | TITLE | 0.92+ |
a day | QUANTITY | 0.91+ |
Necati Cehreli | PERSON | 0.91+ |
four products | QUANTITY | 0.9+ |
couple | QUANTITY | 0.89+ |
Ari | PERSON | 0.89+ |
pandemic | EVENT | 0.87+ |
one thing | QUANTITY | 0.87+ |
SRSS | TITLE | 0.86+ |
almost 95% | QUANTITY | 0.86+ |
20 minutes | QUANTITY | 0.85+ |
two days a week | QUANTITY | 0.85+ |
Zebra | ORGANIZATION | 0.85+ |
a year | QUANTITY | 0.85+ |
8,000 plus engineers | QUANTITY | 0.83+ |
almost two days a week | QUANTITY | 0.82+ |
WebEx | TITLE | 0.82+ |
ISE | ORGANIZATION | 0.81+ |
Zebrium | ORGANIZATION | 0.81+ |
24,000 man hours a day | QUANTITY | 0.8+ |
thousand eyes | QUANTITY | 0.79+ |
Atri Basu | PERSON | 0.79+ |
DNA | ORGANIZATION | 0.76+ |
zebra | ORGANIZATION | 0.74+ |
out@zebra.com | OTHER | 0.74+ |
BEC | ORGANIZATION | 0.72+ |
four | QUANTITY | 0.72+ |
Zebra | TITLE | 0.71+ |
one anomalous event | QUANTITY | 0.71+ |
one of our users | QUANTITY | 0.67+ |
Najati | ORGANIZATION | 0.65+ |
200 | QUANTITY | 0.63+ |
Larry Lancaster & Rod Bagg, Zebrium | Zebrium Root Cause as a Service
(upbeat music) >> Full stack observability is all the rage today. As businesses lean into digital, customer experience becomes ever more important. Why? Well, it's obvious, fickle consumers can switch brands in the blink of an eye or the click of a mouse. Technology companies have sprung into action and the observability space is getting pretty crowded in an effort to simplify the process of figuring out the root cause of application performance problems without an army of PhDs and lab coats, also known as endlessly digging through logs, for example. We see decades old software companies that have traditionally done monitoring or log analytics and or application performance management stepping up their game. These established players, you know, they typically have deep feature sets and sometimes purpose-built tools that attack one particular segment of the marketplace. And now they're pivoting through M&A and some organic development trying to fill gaps in their portfolio. And then, you got all these new entrants coming to the market, claiming end to end visibility across the so-called modern cloud and now edge native stacks. Meanwhile, cloud players are gaining traction and participating through a combination of native tooling combined with strong ecosystems to address this problem. But, you know, recent survey research from ETR confirms our thesis that no one company has it all. Here's the thing. Customers just want to figure out the root cause as quickly and as efficiently as possible. It's one thing to observe the stack end to end, but the question is who is automating the observers? And that's why we're here today. Hello, my name is Dave Vellante and welcome to this special Cube presentation where we dig into root cause analysis, and specifically, how one company, Zebrium, is using unsupervised machine learning to detect anomalies and pinpoint root causes and delivering it as an automated service. And in this session, we have two deep dives. First, we're going to dig into this exciting new field of RCaaS, Root Cause As A Service with two of the founders and technical experts behind Zebrium. And then we bring in two technical experts from Cisco, an early Zebrium customer who ran a POC with Zebrium's service, automating and identifying root cause problems within four very well established and well known Cisco product lines, including WebEx Client and UCS. I was pretty amazed at the results and I think you'll be impressed as well. So thanks for being here. Let's get started. With me right now is Larry Lancaster, who's a founder and CTO of Zebrium. And he's joined by Rod Bagg, who's the founder and vice president of engineering at the company. Gents, welcome. Thanks for coming on. >> Thanks. >> Okay. >> It's good to be here. >> It's good to be here >> All right Rod, talk to me. Talk to me about software downtime, what root cause means, all the buzzwords in your domain, MTTR and SLO. What do we need to know? >> Yeah, I mean, it's like you said. I mean, it's extremely important to our customers and to most businesses out there to drive uptime and avoid as much downtime as possible. So, you know, when you think about it, all of these businesses, most companies nowadays, either their product is software and it's running, you know, running on the web and that's how you get a point click. Or the business depends on, you know, internal systems to drive their business and to run it. When that is down, that is hugely impacting to them. So if you take a look, you know, way back, you know, 20, 30 years ago, software was simple. You know, there wasn't much to it. It was pretty monolithic and maybe it took a couple of people to maintain it and keep it running. There wasn't really anything complicated about it. It was a single tenant piece of software. Today's software is so complicated, often running, you know, maybe hundreds of services to keep that or to actually implement what that software is doing. So as you point out, you know, enter the sort of observability space and the tools that are now in use to help monitor that software and make sure when something goes wrong, they know about it But there's kind of an interesting stat around the observability space. So when you look at observability in the context or through the lens of the cost of downtime, it's really interesting. So observability tools are about a $20 billion market, okay? But the cost of downtime, even with that in place, is still hundreds of billions of dollars. So you're not taking much of a bite out of what the real problem is. You have to solve root cause and get to that fast. So it's all great to know that something went wrong but you got to know why. And it's our contention here that, you know, really, when you take a look at the observability space, you have metrics, that's a great tool. I mean, there's lots of great tools out there, you know, around metrics monitoring that's going to tell you when something went wrong. It's very rarely it's going to tell you why. Similarly for tracing, it's going to point you to where the issue is. It's going to take you through that stack and probably pinpoint where you're being, you know where it's happening or where something is running slow, potentially. So that's great. But again, the root cause of why it's happening is going to be buried in log files. And I can expand on that a little bit more but you know, when you're a software developer and you're writing your software, those log files are a wealth of information. It's just a set of breadcrumbs that are littered with facts about how the software is behaving and why it's doing what it's doing, or why it went wrong. And it's that that really gets you to the root cause very fast. And that's our contention, is that these software systems are so complex nowadays and that the root cause is lying in those logs. So how do you get there fast? You know, we would contend that you better automate that or you are just doomed for failure. And that's where we come in. >> Great. >> Getting to that root cause. >> Thank you, Rod. You know, it's interesting you talk about the $20 billion market. There's an analogy with security, right? We spend 80, $100 billion a year on securing our infrastructure, and yet we lose probably closer to a trillion dollars a year in breaches. And there's a similar analogy here. 20 billion could be 5X in downtime impacts or more. Okay, let's go to Larry. Tell us a little bit more about Zebrium. I'm interested always to ask a founder why you started the company. Rod touched on that a little bit. You guys have invented this concept of RCaaS. What does it mean? What problems does it solve, and how does it solve the problem? Let's get into it. >> Yeah. Hey, thanks, Dave. So I think when you said, you know, who's automating the observer, that that's a great way to think about it because what observability really means is it's a property of a system that means you can see into it. You can observe the internal state and that makes it easier to troubleshoot, right? But the problem is if it's too complicated, you just push the bottleneck up to your eyeball. There's only so much a person can filter through manually, right? And I love the way you put that. So that's a great way to think about it is automating the observer. Now, of course, it means that, you know, you reduce your MTTR, you meet your service level objectives, all that stuff, you improve customer experience. That's all true, but it's important to step back and realize like we have cracked a real nut here. People have been trying to figure out how to automate this part of sort of the troubleshooting experience, this human part of finding the root cause indicators for a long time. And until Zebrium came along, I would argue, no one's really done it right. So, you know, I think it's also important you know, as we step back, we can probably look forward five to 10 years and say, everyone's going to look back and say how did we do all this manually? You're going to see this sort of last mile of observability and troubleshooting is going to be automated everywhere because otherwise, you know, people are just... They're not going to be able to scale their business. So, you know, I think one more thing that's important to point out is, you know, I think Zebrium, you know, it's one thing to have the technology but we've learned we need to deliver it right where people are today. You can't just expect people to dive into a new tool. So, you know, we're looking at, you know, if you look at Zebrium, you'll put us on your dashboard and we don't care what kind of a dashboard it is. It could be, you know Datadog, New Relic, Elastic, Dynatrace, Grafana AppDynamics, ScienceLogic, we don't care. You know, they're all our friends. So we're more interested in getting to that root cause than trying to fight, you know, these incumbents and all that stuff. Yep. >> Yeah. So, interesting. Again, another analogy I think about. You know, you talked about automation. If we're to look back and say this is what... We're never going to do this again, it's like provisioning loans. Nobody provisions loans anymore, it's all automated. >> Larry: (chuckling) That's right. >> So Larry, I'll stay with you, then the skeptic in me says, this sounds amazing, but if I, you know... It might be too good to be true. Tell us how it works. >> Larry: (chuckling) Yeah. So that's interesting. So Cisco came along and they were equally skeptical. So what they did was they took a couple of months and they did a very detailed study. And they got together 192 incidents across four product lines, where they knew that the root cause was in the logs. And they knew what that root cause was because they had had their best engineers, you know work on those cases and take detailed notes of the incidents that had taken place. And so they ran that data through the Zebrium software. And what they found was that in more than 95% of those incidents, Zebrium reflected the correct root cause indicators at the correct time. Like that blew us away. When we saw that kind of evidence, Dave, I have to tell you, everyone was just jumping up and down. It was like, you know, it was like the Apollo command center, you know when they finally, you know, touchdown on the moon kind of thing. So, you know, it's really an exciting point in time to be at the company, like just seeing everything finally being proven out according to this vision. I'm going to tell you one more story which is actually one of my favorites, because we got a chance to work with Seagate Lyve Cloud. So they're, you know, a hyper modern, you know, SaaS business, they're an S3 competitor. Zoom has their files stored on Lyve Cloud, you know, to let you know who they are. So essentially, what happened was they were in alpha, their early access, and they had an outage, and it was pretty bad. I mean, it went on for longer than a day, actually, before they were completely restored. And it was, you know, fortunately for them, it was early access. So no one was expecting, you know, uptime, you know, service level objectives and so on. But they were scared, because they realized, if something like this happens in production, you know, they're screwed. So what they did was they saw Zebrium. They went and did some research, they saw Zebrium. They went in a staging environment, recreated the exact (indistinct) that they had had. And what they saw was immediately, Zebrium pops up a root cause report that tells them exactly the root cause that they took over a day to find. These are the kind of stories that let us know we're onto something transformational. >> Dave: Yeah. That's great. I mean, you guys are jumping up and down, I'm sure. We're going to hear from Cisco later. I bet you, they were jumping up and down too because they didn't have to do all that heavy lifting anymore. So Rod, Larry's just sort of implying that, or actually, you guys both talked about that your tool is agnostic. So how does one actually use the service? How do I deploy it? >> Yeah. So let me step back. So when we talk about logs right? Like, you know, all these bread crumbs being in logs and everything else? So, you know, they are a great wealth of you know, information, but people hate dealing with them. I mean, they hate having to go in and figure out what log to look at. In fact, you know, we had one of our... Or we've heard from several of our customers now prior to using Zebrium, when they, you know, have some issue, and they know there's something wrong, something on their dashboard has told them that something's wrong, maybe a metric has, you know, taken a blip or something's happened that they know there's a problem. We've heard from them that it can take like a number of hours just to get to the right set of logs, like figuring out over these hundreds of services where the logs are, to get to them, maybe searching in a log manager. Just to get into the right context, even, can take hours. So, you know, that's obviously the problem we solve but, you know, we don't want them just looking at logs. I mean, you know, we don't want to put them back in the thing they don't like doing because people don't do that. They don't like doing it. So we put it up on the dashboard. So if something is going wrong with your metrics and that's the indicator, or maybe it's something with tracing that you're sort of digging through that you know something's wrong, we will be right on that same dashboard. So we're deployed as a SaaS service. You send us your logs, you click on one of our integrations and we integrate with all these tools that Larry's talked about. And when we detect anything that is a root cause report, it will show up on your dashboard in the same timeline as those blips in your metrics. So when you see something going wrong and you know there's an issue, take a look at the portion of your dashboard that is us, and we're going to tell you why. We're going to get you to the why that went wrong. No other work could be... You can, you know, also click down and click through to us so that you land up in our portal, if you want to do some more digging around, if you need to or whatever, maybe to get some context what have you, but it's fair that if you ever need to do that, the answer should be right there on your dashboard. And that that's how we expect people to use it. We don't want them digging in logs and going through things, we want it to be right in their workflow. >> Great. Thank you, Larry. So Rod, we talked about Cisco. We're going to hear more from them in a moment in Seagate. I would think this is like a perfect solution for a SaaS provider, anybody doing AI ops. Do you have some examples of those types of firms leaning into this? >> Rod: Yeah, a couple of great ones. Well, I mean, we've got many of them, but a couple that I'll touch on. We have an actual AI ops company that was looking for, you know, sort of some complimentary technology and so on. And so they decided to just put us through our paces by having one of their own SREs sign up for our service in our SaaS environment, and send the logs from their system to us, you know, and just see how we did. So it turned out we ended up talking back to this SRE like a week after he had installed the product, you know signed up and then, you know, started sending us logs. And, you know, he was hewing and hawing, saying that he was busy, like every SRE is, and that he didn't have a chance to really do much with us yet. And, you know, we were just, you know, having this conversation on the phone, and he comes to tell us that, yeah I've been busy because we had this, you know, terrible outage, like, you know, five days ago. And we said like, "Okay did you actually look on the Zebrium dashboard?" (chuckles) And he goes, "You know what? I didn't even think to do it yet. I mean, I'd just been so busy and frazzled." So we have an integration with that company, he hadn't put that integration in, so it wasn't in his dashboard yet, but it was certainly on ours. So he went there, and he looks and he looks on the day, you know, on the time range of when he had had this incident. And right at the very top of the page on our portal was that incident with that root cause. And he was flabbergasted. It literally would've saved him hours and hours and hours. They had this issue going on for over 24 hours. And we had the answer right there in five minutes, and it was crazy. And we get that kind of stories. It's just like the Seagate one. If you use us and you have a problem, we're going to detect it. And you're going to hear from Cisco how successful we are at detecting things. I mean, it'll be there when you have a problem. In SaaS companies, you know, one of our customers is Alchera. They do cost optimizations for cloud properties, you know, for AWS optimization, Google, Google cloud, and so on. But they use our software, and they have a lot of interaction, obviously with these cloud vendors and the APIs of those cloud vendors. So, you know, in order to figure out your costing at AWS, they're using all those APIs. So it turned out, you know, they had some issue where their services were breaking. And we had that root cause report right on the screen, again within five minutes, that was pointing to an API problem with Google. And they had changed one of their APIs and Alchera was not aware of it. So their stuff was breaking because of a change downstream that we had caught. And I'll just tell you one last one because it's somewhat related to one of these cloud vendors. You know, it was a big cloud vendor who had an outage a couple of months ago. And it's interesting because, you know, a lot of our customers will set up shared Slack channels with us, where we're monitoring or seeing their incidents as well as they are. So we get a little Slack representation of the incident that we detected for them or the root cause that we detected for them, and that's in a shared community channel. So we could see this happening when that AWS outage happened. We could see our customers getting impacted by that AWS outage, and the root cause of what was going on there in AWS that was impacting our customers that was showing up in our incidents. Now we didn't obviously, you know, have the very root cause of what was going on in AWS, per se but we were getting to the root cause of why our customer's applications were failing. And that was because of issues going on at AWS. >> Very interesting. I mean, I think one of your biggest challenges is going to be getting people's attention because these SREs are so busy, their hair's on fire. >> Rod: That's it. Right. (chuckling). You know, when you say, hey, (indistinct). >> I tell you, if you get their attention, they love it. I mean, this AI ops company, I didn't even tell you the punchline there, but, you know, they had this incident that occurred that we found. And quite literally, the next week, they ended up signing up as a paid customer. So... >> Dave: that's great. And Larry, to give you the last word. I mean, you know, Rod was talking about, you know, changes in APIs and you know, there's still a lot of scripts out there. You guys, if I understand it correctly, run both as a service in the cloud and you can run on-prem, which is important because there's a lot of sensitive information in logs that people are trying not to leave. >> Larry: That's right. Absolutely. >> Dave: But close it out here. >> Yeah. I mean, that's right, you can run it on-prem. Just like we run it in our cloud, you can run it in your cloud or on your own infrastructure. Now that's all true. You know, I think the one hurdle now that we have left as a company is getting the word out and getting people to believe that this is actually possible and try it for themselves. You don't believe it, do a POC, try it yourself. And you know, people have become so jaded by the lack of, you know, real, sort of, innovation in the software industry for the last 10 years that it's hard to get people to... But guys, you got to give it a shot, I'm telling you. I'm telling you right now, it works. And you'll hear more about that from one of our customers in a minute. >> All right guys, thanks so much. Great story. Really appreciate you sharing. >> Thank you. >> Yeah. Thanks Dave. Appreciate the time. >> Okay. In a moment, we're going to hear from Cisco who is the customer in this case example and a company that has... Look, they have quite an impressive suite of observability tooling, and they've done a pretty compelling proof of concept with Zebrium using real data on some Cisco products that you've heard of, like WebEx. So stay tuned and learn about how you can really take advantage of this new technology called Root Cause As A Service. You're watching theCube, the leader in enterprise and emerging tech coverage. (upbeat music)
SUMMARY :
you know, they typically All right Rod, talk to me. Or the business depends on, you know, and how does it solve the problem? And I love the way you put that. You know, you talked about automation. this sounds amazing, but if I, you know... So no one was expecting, you know, uptime, I mean, you guys are jumping up and down, We're going to get you to Do you have some examples and he looks on the day, you know, is going to be getting people's attention you say, hey, (indistinct). but, you know, they had And Larry, to give you the last word. Larry: That's right. by the lack of, you know, appreciate you sharing. you can really take advantage
SENTIMENT ANALYSIS :
ENTITIES
Entity | Category | Confidence |
---|---|---|
Dave Vellante | PERSON | 0.99+ |
Larry Lancaster | PERSON | 0.99+ |
Rod | PERSON | 0.99+ |
Dave | PERSON | 0.99+ |
Cisco | ORGANIZATION | 0.99+ |
Larry | PERSON | 0.99+ |
two | QUANTITY | 0.99+ |
AWS | ORGANIZATION | 0.99+ |
Zebrium | ORGANIZATION | 0.99+ |
$20 billion | QUANTITY | 0.99+ |
five | QUANTITY | 0.99+ |
20 billion | QUANTITY | 0.99+ |
Rod Bagg | PERSON | 0.99+ |
Seagate | ORGANIZATION | 0.99+ |
192 incidents | QUANTITY | 0.99+ |
UCS | ORGANIZATION | 0.99+ |
WebEx | ORGANIZATION | 0.99+ |
ORGANIZATION | 0.99+ | |
two technical experts | QUANTITY | 0.99+ |
Dynatrace | ORGANIZATION | 0.99+ |
New Relic | ORGANIZATION | 0.99+ |
ScienceLogic | ORGANIZATION | 0.99+ |
five minutes | QUANTITY | 0.99+ |
First | QUANTITY | 0.99+ |
Elastic | ORGANIZATION | 0.99+ |
next week | DATE | 0.99+ |
ETR | ORGANIZATION | 0.99+ |
Datadog | ORGANIZATION | 0.99+ |
Grafana AppDynamics | ORGANIZATION | 0.99+ |
five days ago | DATE | 0.99+ |
one | QUANTITY | 0.98+ |
more than 95% | QUANTITY | 0.98+ |
Alchera | ORGANIZATION | 0.98+ |
5X | QUANTITY | 0.98+ |
10 years | QUANTITY | 0.98+ |
both | QUANTITY | 0.98+ |
over a day | QUANTITY | 0.98+ |
Today | DATE | 0.97+ |
today | DATE | 0.97+ |
Zoom | ORGANIZATION | 0.97+ |
Seagate Lyve Cloud | ORGANIZATION | 0.97+ |
one company | QUANTITY | 0.96+ |