Image Title

Search Results for Scale:

Bhaskar Gorti, Platform9 | Cloud Native at Scale


 

>>Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's all going? Making it super multi-Cloud is around the corner and public cloud is winning at the private cloud on premise and edge. Got a great guest here, Vascar go, D CEO of Platform nine. Just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you again. >>So Kubernetes is a blocker enabler by, with a question mark. I put on on that panel was really to discuss the role of Kubernetes. Now great conversation operations is impacted. What's thing about what you guys are doing a platform nine Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm, >>Right? Absolutely. In fact, things are moving very well and since they came to us it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know the application world is moving very fast in trying to become digital and cloud native. There are many options for you to run the infrastructure. The biggest blocking factor now is having a unified platform. And that's what where we come into >>Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days in 2000, 2001 when the first ASPs application service providers came out. Kind of a SaaS vibe, but that was kind of all kind of cloud-like >>It wasn't, >>And and web services started then too. So you saw that whole growth. Now fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>In fact, you know, as we were talking offline, I was in one of those asbs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in the journey somewhere. >>Everyone is going digital transformation here. Even on a so-called downturn recession that's upcoming inflation's here. It's interesting. This is the first downturn in the history of the world where the hyperscale clouds have, have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. Nope. Because pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud >>E Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing infrastructure is not just some, you know, new servers and new application tools. It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to >>Survive. I wanna get your thoughts on Super Cloud because one of the things Dave, Alan and I want to do with Super Cloud and calling at that was we, I I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like the not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, more dynamic, more real. >>I, yeah, I think the reason why we think super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud, but they're disconnected. Okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? But they're not connected. So you can say okay, it's more than one cloud. So it's you know, multi-cloud. But Supercloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch, you are looking at this as one unit. And that's where we see the, the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pane, a single platform for you to build your innovations on regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is to, as a pilots, to get the conversations flowing with with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third cloudworks in public cloud. We see the use cases on-premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that open stack. We need an orchestration and then containers had a good shot with, with Docker, they re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. What's, what's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere in the journey is going on and you know, most companies are, 70 plus percent of them have 1, 2, 3 container based, Kubernetes based applications now being rolled out. So it's very much here, it is in production at scale by many customers and it, the beauty of it is yes, open source, but the biggest gating factor is the skillset. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool and >>Just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores. There are thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency are key regulatory reasons. We also on-prem as an air gap version. >>Can you give an example on how you guys are deploying your platform to enable a super cloud experience for your customer? >>Right. So I'll give you two different examples. One is a very large networking company, public networking company. They have hundreds of products, hundreds of r and d teams that are building different different products. And if you look at few years back, each one was doing it on a different platforms but they really needed to bring the agility and they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact the customer says like, like the Maytag service person cuz we provide it as a service and it barely takes one or two people to maintain it for them. So >>It's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, whatever >>They want on their tools. They're using whatever app development tools they use, but they use our platform. >>And what benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely their speeding speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being used. >>So a big problem that's coming outta this super cloud event that we're, we're seeing and we heard it all here, ops and security teams. Cause they're kind of two part of one thing, but ops and great specifically need to catch up. Speedwise, are you delivering that value to ops and security? >>Right? So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering teams, >>So you were just two sides to that coin. You've got the dev side and then >>And the infrastructure >>Side. Okay, >>Another customer, I give you an example which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install rack in the store or they can't move everything to the cloud because the store operations have to be local. The menu changes based on it's classic edge. >>It's >>Classic edge, yeah. Right? They can't send it people to go install rack of servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that >>You say little service, like how big one like a box, like a small little >>Box, right? And all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up. Yeah, we provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage thousands >>Of them. True plugin >>Play two plugin play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the >>Location. So you guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud >>Native. Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native, is CNC foundation. And I think it's very well documented where >>Youcar, of course Detroit's >>Coming in, so, so it's already there, right? So we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloud native. Okay? You can't put to cloud, not you have to rewrite and redevelop your application and business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing lot of our customers in that journey. Now everybody wants to be cloud native, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to you use. Okay? So, so I think the complexities there, but the business benefits of agility and uniformity and customer experience are truly being done. >>And I'll give you an example, I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how Domino's actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered, they were the pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow through the application changes what the expectations >>Are >>For the customer. >>Customer, the customer's expectations change, right? Once you get used to a better customer experience, you will not, >>Thats got to wrap it up. I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super Cloud 22 is you've seen many cycles, you have in a lot of insights. I want to ask you, given your career where you've been and what you've done and now the CEO of Platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the, the big companies, you've seen the different waves. What's going on right now put into context this moment in time around Super Cloud. >>Sure. I think as you said, a lot of battles. Cars being, being at an asb, being in a realtime software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is, couple of parallels come to me. One is, think of it, which was forced to on us, like y2k, everybody around the world had to have a plan, a strategy, and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. And >>Disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it was an existence question. Yeah. I think we are at that pivotal moment now in companies trying to become digital and cloud native. You know, that is what I see >>Happening there. I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the game, it's just changing how you operate, >>How you think, and how you operate. See, if you think about the early days of eCommerce, just putting up a shopping cart then made you an e-commerce or e retailer or e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Nascar, thank you for coming on. Spend the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, We're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean Feer with Super Cloud 22 in the Cube. Thanks for >>Watching. Thank you. Thank you, John. >>Hello. Welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super cloud and its challenges, new opportunities around the solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.

Published Date : Oct 20 2022

SUMMARY :

Great to have you on. What's thing about what you guys are doing a platform nine Is your role there as CEO and So absolutely whether you are doing it in public clouds or private Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days So you saw that whole growth. In fact, you know, as we were talking offline, I was in one of those asbs And if you look at the tech trends, GDPs down, but not tech. not just some, you know, new servers and new application tools. you know, more, more dynamic, more real. the branch, you are looking at this as one unit. So you got containers you know, most companies are, 70 plus percent of them have 1, 2, 3 container It runs on the And if you look at few years back, each one was doing It's kinda like an SRE vibe. They want on their tools. to build, so their customers who are using product A and product B are seeing a similar set Speedwise, are you delivering that value to ops and security? So it it's, it's somewhere in the DevOps to infrastructure. So you were just two sides to that coin. that happens when you either order the product or go into the store and pick up your product or buy then they can't sell software people to go install the software and any change you wanna put through And all the person in the store has to do of the public clouds. So you guys got some success. How do you talk to customers? is the definition and what are the attributes and characteristics of what is truly a cloud native, Thousands and thousands of tools you could spend your time figuring out which I don't know anything about that, but the whole experience of how you order, One of the benefits of chatting with you here been on the app side, I did the infrastructure right and then tried to build our And disruptive. If you did not adapt and adapt and accelerate I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your customers? Spend the time to come in and share with our community and being part of Super Thank you, John. I hope you enjoyed this program.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
AmazonORGANIZATION

0.99+

PatrickPERSON

0.99+

Sean FeerPERSON

0.99+

DavePERSON

0.99+

JohnPERSON

0.99+

OracleORGANIZATION

0.99+

John FurPERSON

0.99+

2000DATE

0.99+

AlanPERSON

0.99+

oneQUANTITY

0.99+

NascarPERSON

0.99+

twoQUANTITY

0.99+

ThousandsQUANTITY

0.99+

2001DATE

0.99+

Bhaskar GortiPERSON

0.99+

thousandsQUANTITY

0.99+

OneQUANTITY

0.99+

two sidesQUANTITY

0.99+

eight years agoDATE

0.99+

Office 365TITLE

0.99+

more than one cloudQUANTITY

0.99+

two peopleQUANTITY

0.99+

GoogleORGANIZATION

0.99+

22 years laterDATE

0.98+

4,000 engineersQUANTITY

0.98+

over three yearsQUANTITY

0.98+

AzureTITLE

0.98+

Super CloudTITLE

0.98+

one unitQUANTITY

0.98+

DominoORGANIZATION

0.97+

first downturnQUANTITY

0.97+

20 years laterDATE

0.97+

bothQUANTITY

0.97+

2QUANTITY

0.97+

thousands of storesQUANTITY

0.96+

MaytagORGANIZATION

0.96+

todayDATE

0.96+

Vascar goPERSON

0.96+

Platform nineTITLE

0.96+

thousands of storesQUANTITY

0.95+

KubernetesTITLE

0.95+

One personQUANTITY

0.95+

two pluginQUANTITY

0.94+

Platform nineTITLE

0.94+

Platform nineORGANIZATION

0.94+

each oneQUANTITY

0.94+

two different examplesQUANTITY

0.94+

70 plus percentQUANTITY

0.93+

1QUANTITY

0.93+

DPERSON

0.93+

AzureORGANIZATION

0.93+

pandemicEVENT

0.93+

firstQUANTITY

0.92+

three little serversQUANTITY

0.92+

one thingQUANTITY

0.92+

hundreds of productsQUANTITY

0.92+

single platformQUANTITY

0.91+

ArlonORGANIZATION

0.91+

Super Cloud 22ORGANIZATION

0.87+

SupercloudORGANIZATION

0.87+

single paneQUANTITY

0.86+

OpenStackTITLE

0.86+

DetroitLOCATION

0.86+

50,000, 60,000QUANTITY

0.85+

CubaLOCATION

0.84+

Super Cloud 22ORGANIZATION

0.84+

Number twoQUANTITY

0.84+

YoucarORGANIZATION

0.8+

20 year oldQUANTITY

0.79+

3 containerQUANTITY

0.78+

Cloud NativeTITLE

0.77+

few years backDATE

0.77+

thousands ofQUANTITY

0.73+

storesQUANTITY

0.72+

SalesforceORGANIZATION

0.69+

platform nineTITLE

0.68+

third cloudworksQUANTITY

0.67+

hundreds of rQUANTITY

0.66+

Bich Le, Platform9 Cloud Native at Scale


 

>>Welcome back everyone, to the special presentation of Cloud Native at scale, the Cube and Platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here with Bickley, who's the chief architect and co-founder of Platform nine Pick. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or later, earlier when OpenStack was going. Great to see you and great to see congratulations on the success of Platform nine. Thank >>You very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now has realized, and you've seen what Docker's doing with the new docker, the open source Docker now just a success Exactly. Of containerization. Right? And now the Kubernetes layer that we've been working on for years is coming, Bearing fruit. This is huge. >>Exactly, Yes. >>And so as infrastructure, as code comes in, we talked to Bacar, talking about Super Cloud. I met her about, you know, the new Arlon, our, our lawn you guys just launched, the infrastructure's code is going to another level, and then it's always been DevOps infrastructure is code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon. Connect the dots for us. What is the state of infrastructures code today? >>So I think, I think I'm, I'm glad you mentioned it. Everybody or most people know about infrastructures code, but with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure is configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D. Instead, with Kubernetes, you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specify. So I think it's, it's a even better version of infrastructures code. Yeah, >>Yeah. And, and that really means it's developer just accessing resources. Okay. That declare, Okay, give me some compute, stand me up some, turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean now with open source, so popular, you don't have to have to write a lot of code, this code being developed. And so it's into integrations, configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you've got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these new, new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space. That's, >>I wrote a LinkedIn post today, it was comments about, you know, hey, enterprise is the new breed, the trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your >>View? It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we tried to do with this new project. Arlon. >>Yeah. So, so we're gonna get into our line in a second. I wanna get into the why Arlon. You guys announced that at our GoCon, which was put on here in Silicon Valley at the, at the community invite in two where they had their own little day over there at their headquarters. But before we get there, vascar, your CEO came on and he talked about Super Cloud at our in AAL event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or application specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system, so of deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection to the internet at the, the layer too is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, it's gonna continue. >>It's interesting. I just, when I wrote another post today on LinkedIn called the Silicon Wars AMD stock is down arm has been on a rise. We've remember pointing for many years now, that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a serviced layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd want to have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in in this community of, of co con, which we will be covering. So that brings up the whole what's next? You guys just announced Arlon at ar GoCon, which came out of Intuit. We've had Mariana Tessel at our super cloud event. She's the cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why arlon, why this announcement? Yeah, >>So the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and, you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built our lawn and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, >>And what's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, so let's get into what that means for up above and below the, the, this abstraction or thin layer below as the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads. At the end of the day, you, I talk to CXOs and IT folks that, that are now DevOps engineers. They care about the workloads and they want the infrastructure's code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened to need observability and they need to, to know that it's working. That's right. And here's my workloads running effectively. So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, right? >>So workloads, so Kubernetes has defined kind of a standard way to describe workloads and you can, you know, tell Kubernetes, I wanna run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem, like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases it is like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's coming like an EC two instance, spin up a cluster. We very, people used words like that. >>That's right. And before arlon you kind of had to do all of that using a different set of tools as, as I explained. So with Arlon you can kind of express everything together. You can say I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call a profile. And then you can stamp out your app, your applications and your clusters and manage them in a very, >>So essentially standard like creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook, deploy it. Now what there between say a script like I'm, I have scripts, I can just automate scripts >>Or yes, this is where that declarative API and infrastructures configuration comes in, right? Because scripts, yes you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things got controllers which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure has configuration is built kind of on it's super set of infrastructures code because it's >>An evolution. >>You need edge re's code, but then you can configure the code by just saying do it. You basically declaring it's saying Go, go do that. That's right. Okay, so, alright, so cloud native at scale, take me through your vision of what that means. Someone says, Hey, what does cloud native at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years. I mean people are now starting to figure out, okay, it's not as easy as it sounds. Kubernetes has value. We're gonna hear this year coan a lot of this. What does cloud native at scale mean? >>Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users there, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we try to address with Arran. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state, and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, so I'll put you on the spot. Rogue got Coan coming up and obviously this'll be shipping this segment series out before. What do you expect to see at this year? What's the big story this year? What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jogging for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time, there's ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of cub cons and I expect to continue and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, >>Well maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed, but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there are just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. >>Yeah. Vic, you've had an storied career, VMware over decades with them, obviously in 12 years with 14 years or something like that. Big number co-founder here at Platform now you's been around for a while at this game. We, man, we talked about OpenStack, that project you, we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a cloud a Rod team at that time. We would joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform Nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? Open Stack was an example where the Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will, a, platform nine will be there and we will, you know, take the innovations from the, the, the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yes. Yeah. I think the, the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart Yeah. On this segment, what is at scale, how many clusters do you see that would be a, a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you Yeah, I would you describe that when people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. Yeah. >>And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing, doing over $2 billion billions of transactions a year. And, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud Native at scale? >>The the hyper square? >>Yeah. Yeah. Abras, Azure, Google, >>You mean from a business perspective, they're, they have their own interests that, you know, that they're, they will keep catering to, They, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep Well, >>They got great I performance, I mean from a, from a hardware standpoint, yes. That's gonna be key, right? >>Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyperscalers really want to be in the game in terms of, you know, the, the new risk and arm ecosystems and the >>Platforms. Yeah. Not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, I remember our first year doing the cube. Oh, the cloud is one big distributed computer. It's, it's hardware and you got software and you got middleware. And he kinda over, well he kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. Yes, >>Exactly. >>It's, we're back in the same game. Thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super cloud Arlon open source and how to run large scale applications on the cloud, Cloud native develop for developers. And John Feer with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up.

Published Date : Oct 20 2022

SUMMARY :

Great to see you and great to see congratulations on the success And now the Kubernetes layer that we've been working on for years you know, the new Arlon, our, our lawn you guys just launched, So instead of telling the system, here's how I want my infrastructure by telling it, I mean now with open source, so popular, you don't have to have to write a lot of code, you know, the emergence of systems and layers to help you manage that complexity is becoming I wrote a LinkedIn post today, it was comments about, you know, hey, enterprise is the new breed, the trend of SaaS companies So you have this sprawl of tools. how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection to the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, all the variations around and, you know, compute storage networks the DevOps engineers, they get a a ways to So how do you guys look at the workload I wanna run this container this particular way, or you can It's coming like an EC two instance, spin up a cluster. So with Arlon you can kind of express And it's like a playbook, deploy it. tell the system what you want and then the system kind of figures You need edge re's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at this year? If you look at a stack necessary for hosting What's the, what are you most excited about as the chief architect? So the successor to Kubernetes, you know, I don't I think the, the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, What's the role the cloud play in the cloud Native at scale? you know, that they're, they will keep catering to, They, they will continue to find right? terms of, you know, the, the new risk and arm ecosystems It's, it's hardware and you got software and you got middleware. Thank you for coming on the segment.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul MorritzPERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

14 yearsQUANTITY

0.99+

12 yearsQUANTITY

0.99+

Mariana TesselPERSON

0.99+

Silicon ValleyLOCATION

0.99+

John FeerPERSON

0.99+

thousandsQUANTITY

0.99+

millionsQUANTITY

0.99+

tensQUANTITY

0.99+

VMwareORGANIZATION

0.99+

twoQUANTITY

0.99+

GoogleORGANIZATION

0.99+

LinkedInORGANIZATION

0.99+

hundredsQUANTITY

0.99+

ArlonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

next yearDATE

0.99+

BickleyPERSON

0.99+

arlonORGANIZATION

0.99+

first yearQUANTITY

0.98+

thousands of usersQUANTITY

0.98+

two thousandsQUANTITY

0.98+

todayDATE

0.98+

CubeORGANIZATION

0.98+

thousands of applicationsQUANTITY

0.98+

hundreds of clustersQUANTITY

0.98+

one thingQUANTITY

0.97+

KubernetesTITLE

0.97+

Platform nineORGANIZATION

0.97+

this yearDATE

0.97+

IntuitORGANIZATION

0.97+

over $2 billion billionsQUANTITY

0.97+

AbrasORGANIZATION

0.97+

GoConEVENT

0.97+

first timeQUANTITY

0.97+

BacarPERSON

0.96+

VicPERSON

0.96+

AnsiblesORGANIZATION

0.95+

oneQUANTITY

0.95+

OpenStackORGANIZATION

0.95+

EC twoTITLE

0.93+

AMDORGANIZATION

0.92+

earlier todayDATE

0.9+

vascarPERSON

0.9+

Bich LePERSON

0.9+

AzureORGANIZATION

0.89+

Platform nineORGANIZATION

0.88+

Open StackTITLE

0.87+

AALEVENT

0.86+

next couple yearsDATE

0.85+

Platform9ORGANIZATION

0.85+

PlatformORGANIZATION

0.83+

TerraformsORGANIZATION

0.83+

WashingtonLOCATION

0.82+

CoanTITLE

0.8+

one big distributed computerQUANTITY

0.78+

about eight years agoDATE

0.78+

CloudORGANIZATION

0.76+

Platform NineTITLE

0.74+

Madhura Maskasky, Platform9 | Cloud Native at Scale


 

(uplifting music) >> Hello and welcome to The Cube, here in Palo Alto, California for a special program on cloud-native at scale, enabling next generation cloud or SuperCloud for modern application cloud-native developers. I'm John Furrier, host of The Cube. My pleasure to have here Madhura Maskasky, co-founder and VP of Product at Platform9. Thanks for coming in today for this cloud-native at scale conversation. >> Thank you for having me. >> So, cloud-native at scale, something that we're talking about because we're seeing the next level of mainstream success of containers, Kubernetes and cloud-native developers, basically DevOps in the CICD pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the SuperCloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on SuperCloud as it fits to cloud-native as scales up? >> Yeah, you know, I think what's interesting, and I think the reason why SuperCloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud-native and cloud deployments have scaled, I think we've reached a point now where, instead of having the traditional data center style model where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right, where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private, on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving that direction. And so you got to refer that with a terminology that indicates the scale and complexity of it. And so I think SuperCloud is an appropriate term for that. >> So, you brought a couple things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. What even know what's around the corner. You got buildings, you got IOT, OT and IT kind of coming together, but you also got this idea of regions, global infrastructure is a big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale. These new challenges there. Can you share, because you got to have edge. So, hybrid cloud is a winning formula. Everybody knows that it's a steady state. >> Madhura: Yeah. >> But across multiple clouds brings in this new un-engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's going to happen. It's only going to get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because it's something business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the SuperCloud or across multiple edges and regions? >> Yeah, absolutely. So, I think, you know, in the context of this, this term of SuperCloud, I think, it's sometimes easier to visualize things in terms of two axes, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then, on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity but potentially manageable. But when you are expanding on both these axes you really get to a point where that scale really needs some well thought out, well structured solutions to address it. Right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when your scale is not at the level. >> Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We're seeing cloud-native becomes successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because about at scale, >> Madhura: Yeah. >> Challenges here. >> Yeah. Absolutely. And I think, you know, I like to call it, you know, the problem that the scale creates, you know, there's various problems, but I think one problem, one way to think about it is you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right. Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, it's not working. And the exact same problem now happens in these distributed environments, but at massive scale, right. Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right. And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster right. But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ballgame of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you got to make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So, I think that's another example of problems that occur. >> Okay. So, I have to ask about scale because there are a lot of multiple steps involved when you see the success of cloud native. You know, you see some, you know, some experimentation. They set up a cluster, say, it's containers and Kubernetes, and then you say, okay, we got this, we configure it. And then, they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you got to scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is. And when companies transition from, I got this to, oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >> Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the two factors of scale, as we talked about start expanding. I think, one of them is what I like to call the, you know, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with P zeros and P ones from support teams, et cetera. And those issues can be really difficult to triage. Right. And so, in the Kubernetes environment, this problem kind of multi-folds, it goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. And so, as you give that change to then run at your production edge location, like say your radio cell tower site or you hand it over to a customer to run it on their cluster, they might not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like (indistinct) hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is you have these distributed clusters at scale, you got to ensure someone's job is on the line to make sure that the security policies are configured properly. >> So, this is a huge problem. I love that comment. That's not happening on my system. It's the classic, you know, debugging mentality. >> Madhura: Yeah. >> But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >> Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what Arlon is, it's an open source project and it is a tool, it's a Kubernetes native tool for a complete end-to-end management of not just your clusters, but your clusters, all of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So, what Arlon lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >> So, what's the elevator pitch simply put for what dissolves in terms of the chaos you guys are reigning in, what's the bumper sticker? >> Yeah. >> What would it do? >> There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that assembly line brings, right? Arlon, and if you look at the logo we've designed, it's this funny little robot, and it's because when we think of Arlon, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets, you know, processed in a standardized way. And that's what Arlon really does. That's like deliver the pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for those. >> So keeping it smooth, the assembly line, things are flowing, CICD, pipelining. >> Madhura: Exactly. >> So, that's what you're trying to simplify that OPS piece for the developer. I mean, it's not really OPS, it's their OPS, it's coding. >> Yeah. Not just developer, the OPS, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middle layer of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly, monitoring and observability is integrated. And so, it solves problems for both those teams. >> Yeah, it's DevOps. So, the DevOps is the cloud-needed developer. The option teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >> Absolutely. Yeah. And, you know, Kubernetes really introduced or elevated this declarative management, right? Because you know, Kubernetes clusters are, or your, yeah, you know, specifications of components that go in Kubernetes are defined in declarative way, and Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it, and it does that using existing open source, well-known solutions. >> And, I want get into the benefits, what's in it for me as the customer, developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the current state of the product? You run the product group over there, Platform9, is it open source? And you guys have a product that's commercial. Can you explain the open-source dynamic? And first of all, why open source? >> Madhura: Yeah. >> And what is the consumption? I mean, open source is great, people want open source, they can download it, look up the code, but you know, maybe want to buy the commercial. So, I'm assuming you have that thought through, can you share? >> Madhura: Yeah. >> Open source and commercial relationship. >> Yeah. I think, you know, starting with why open source, I think, it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open-source technologies components, and then we, you know, make them available to our customers at scale through either a SaaS model or on-prem model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open-source economy, it's only right, I think in my mind that, we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with Fission, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why open source and also open source because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind a block box. >> Well, and that's what the developers want too. I mean, what we're seeing in reporting with SuperCloud is the new model of consumption is I want to look at the code and see what's in there. >> Madhura: That's right. >> And then also, if I want to use it, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I want to move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way is, well, but that's the benefit of open source. This is why standards and open source growing so fast, you have that confluence of, you know, a way for us to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian (indistinct) uses the dating metaphor, you know, hey, you know, I want to check it out first before I get married. >> Madhura: Right. >> And that's what open source. So, this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >> Absolutely. Yeah. Yeah. You know, I think in, you know, two things, I think one is just, you know, this cloud-native space is so vast that if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprise's use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so. Right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a Saas-hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open-source version and loved it and want to take it at scale and in production and need a partner to collaborate with, who can, you know, support them for that production environment. >> I have to ask you. Now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlon? What's in it for me? You know. 'Cause if I'm not enthused about it, I'm not going to be confident and it's going to be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlon? I'm a customer. >> Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public cloud-native Kubernetes, and then, we have our CICD pipelines that are automating the deployment of applications, et cetera. And then, there's this gray zone. And the gray zone is well before you can, your CICD pipelines can deploy the apps, somebody needs to do all of that groundwork of, you know, defining those clusters and yeah, you know, properly configuring them. And as these things start by being done hand grown. And then, as you scale, what typically enterprises would do today is they will have their homegrown DIY solutions for this. I mean, a number of folks that I talk to that have built Terraform automation, and then, you know, some of those key developers leave. So, it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course, technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think, (indistinct) would be delighted. The folks that we've talk, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on EKS Amazon, and we want to scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability to, >> Yeah, I think, people are scared. I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale, small mistakes can become large mistakes. This is something that is concerning to enterprises. And I think, this is going to come up at (indistinct) this year where enterprises are going to say, okay, I need to see SLAs. I want to see track record, I want to see other companies that have used it. >> Madhura: Yeah. >> How would you answer that question to, or challenge, you know, hey, I love this, but is there any guarantees? Is there any, what's the SLA, I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >> Yeah, absolutely. So, two parts to that, right? One is Arlon leverages existing open-source components, products that are extremely popular. Two specifically. One is Arlon uses ArgoCD, which is probably one of the highest rated and used CD open-source tools that's out there, right? It's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is Arlon also makes use of cluster API (indistinct), which is a Kubernetes' sub-component, right? For life cycle management of clusters. So, there is enough of, you know, community users, et cetera, around these two products, right? Or open-source projects that will find Arlon to be right up in their alley because they're already comfortable, familiar with ArgoCD. Now, Arlon just extends the scope of what ArgoCD can do. And so, that's one. And then, the second part is going back to your point of the comfort. And that's where, you know, Platform9 has a role to play, which is when you are ready to deploy Arlon at scale, because you've been, you know, playing with it in your (indistinct) test environments, you're happy with what you get with it, then Platform9 will stand behind it and provide that SLA. >> And what's been the reaction from customers you've talked to Platform9 customers with, that are familiar with Argo and then Arlon? What's been some of the feedback? >> Yeah, I think, the feedback's been fantastic. I mean, I can give examples of customers where, you know, initially, you know, when you are telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlon, and we talk about the fact that it uses ArgoCD they start opening up, they say, we have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So, we've had that kind of validation. We've had validation all the way at the beginning of Arlon before we even wrote a single line of code saying, this is something we plan on doing. And the customer said, if you had it today, I would've purchased it. So, it's been really great validation. >> All right. So, next question is, what is the solution to the customer? If I asked you, look at, I have, I'm so busy, my team's overworked. I got a skills gap, I don't need another project that's so I'm so tied up right now, and I'm just chasing my tail. How does Platform9 help me? >> Yeah, absolutely. So I think, you know, one of the core tenants of Platform9 has always been that, we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS-hosted manner for our customers, right? So, our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so, from a customer's perspective, one, something like Arlon will integrate with what they have, so, they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today, and, you know, give you an inventory. And then, >> So, customers have clusters that are growing, that's a sign, >> Correct. >> Call you guys. >> Absolutely. Either they have massive large clusters. Right. That they want to split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now, they have management challenges. >> So, especially, operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure >> Madhura: Yeah. >> And or scale out. >> That's right. Exactly. >> And you provide that layer of policy. >> Absolutely. Yes. >> That's the key value here. >> That's right. >> So, policy-based configuration for cluster scale up. >> Profile and policy-based, declarative configuration and life cycle management for clusters. >> If I asked you how this enables SuperCloud, what would you say to that? >> I think, this is one of the key ingredients to SuperCloud, right? If you think about a SuperCloud environment, there is at least few key ingredients that come to my mind that are really critical. Like they are, you know, life-saving ingredients at that scale. One is having a really good strategy for managing that scale. You know, in a, going back to assembly line in a very consistent, predictable way. So, that Arlon solves, then you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are going to happen and you're going to have to figure out, you know, how to solve them fast. And Arlon by the way, also helps in that direction, but you also need observability tools. And then, especially if you're running at on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make SuperCloud successful. And you know, Arlon flows in one, >> Okay, so now, the next level is, okay, that makes sense. It's under the covers kind of speak under the hood. >> Madhura: Yeah. >> How does that impact the app developers of the cloud-native modern application workflows? Because the impact to me seems the apps are going to be impacted. Are they going to be faster, stronger? I mean, what's the impact, if you do all those things as you mentioned, what's the impact of the apps? >> Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my OPS counterpart to do their part, right? And so, this really gives them, you know, the right tooling for that. >> So, this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full-stack developer to the more specialized role. But this is a key point, and I have to ask you because if this Arlon solution takes place, as you say, and the apps are going to be (indistinct), they're designed to do, the question is, what does the current pain look like? Are the apps breaking? What is the signals to the customer, >> Madhura: Yeah. >> That they should be calling you guys up into implementing Arlon, Argo, and on all the other goodness to automate, what does some of the signals, is it downtime? Is it failed apps, is it latency? What are some of the things that, >> Madhura: Yeah, absolutely. >> Would be indications of things are F'ed up a little bit. >> Yeah. More frequent down times, down times that are, that take longer to triage. And so your, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners, and they're extremely interested in this because the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own scripts. So, these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your mean time to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small, focused, nimble OPS team, which has an immediate impact on your budget. So, those are the signals. >> This is the cloud-native at scale situation, the innovation going on. Final thought is your reaction to the idea that, if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where IT used to be supporting the business, you know, the back office and the (indistinct) terminals and some PCs and handhelds. Now, if technology's running, the business is the business. >> Yeah. >> Company is the application. >> Yeah. >> So, it can't be down. So, there's a lot of pressure on CSOs and CIOs now and boards is saying, how is technology driving the top-line revenue? That's the number one conversation. >> Yeah. >> Do you see the same thing? >> Yeah, it's interesting. I think there's multiple pressures at the CXO, CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, the technology that's, you know, that's going to drive your top line is going to drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially, when you're talking about, let's say, retailers or those kinds of large-scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So, I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >> Final question. What does cloud-native at scale look like to you? If all the things happen the way we want them to happen, the magic wand, the magic dust, what does it look like? >> What that looks like to me is a CIO sipping at his desk on coffee, production is running absolutely smooth. And he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are just taking care of themselves. >> John: And the CIO doesn't exist and there's no CISO, there at the beach. >> (laughs) Yeah. >> Thank you for coming on, sharing the cloud-native at scale here on The Cube. Thank you for your time. >> Fantastic. Thanks for having me. >> Okay. I'm John Furrier here, for special program presentation, special programming cloud-native at scale, enabling SuperCloud modern applications with Platform9. Thanks for watching. (gentle music)

Published Date : Oct 20 2022

SUMMARY :

My pleasure to have here Madhura Maskasky, and the SuperCloud as we call it, Yeah, you know, I And that's just the beginning. Can you share your view on what So, I think, you know, Can you scope the And that is just, you know, Kubernetes, and then you say, I like to call the, you know, you know, debugging mentality. And you guys have a and along the sites of those in a traditional, let's say, you know, the assembly line, piece for the developer. Because developers, you know, there is, So, the DevOps is the Because you know, Kubernetes clusters are, And you guys have a look up the code, but you know, Open source and And we have, you know, created and built the developers want too. the application, if you will. And that's what open to go that route, you know, enthusiastic view of, you know, And so, and there's multiple, you know, And I think, this is going to I'm an enterprise, I got tight, you know, And that's where, you know, of customers where, you know, and I'm just chasing my tail. clusters that you have today, And now, they have management challenges. That's right. Absolutely. So, policy-based configuration and life cycle management for clusters. at on the public cloud, you Okay, so now, the next level is, Because the impact to me seems the way you expect them to, and I have to ask you Would be indications of points, which is, you know, supporting the business, you know, That's the number one conversation. the technology that's, you know, If all the things happen the What that looks like to me John: And the CIO doesn't Thank you for your time. Thanks for having me. for special program presentation,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Madhura MaskaskyPERSON

0.99+

JohnPERSON

0.99+

John FurrierPERSON

0.99+

MadhuraPERSON

0.99+

second partQUANTITY

0.99+

ArlonORGANIZATION

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

oneQUANTITY

0.99+

one siteQUANTITY

0.99+

TwoQUANTITY

0.99+

first generationQUANTITY

0.99+

two factorsQUANTITY

0.99+

bothQUANTITY

0.99+

two thingsQUANTITY

0.99+

each siteQUANTITY

0.99+

each componentQUANTITY

0.99+

firstQUANTITY

0.99+

Platform9ORGANIZATION

0.99+

one flavorQUANTITY

0.99+

ArgoORGANIZATION

0.98+

two partsQUANTITY

0.98+

secondQUANTITY

0.98+

SecondQUANTITY

0.98+

todayDATE

0.98+

SuperCloudTITLE

0.98+

AdrianPERSON

0.98+

tens of thousands of nodesQUANTITY

0.98+

one problemQUANTITY

0.98+

OneQUANTITY

0.98+

one nodeQUANTITY

0.98+

two productsQUANTITY

0.97+

tens of thousands of sitesQUANTITY

0.97+

one pictureQUANTITY

0.97+

The CubeORGANIZATION

0.96+

one endQUANTITY

0.96+

CloudFlareTITLE

0.96+

Platform9TITLE

0.95+

this yearDATE

0.95+

CXOORGANIZATION

0.95+

two axesQUANTITY

0.94+

three thingsQUANTITY

0.94+

EKSORGANIZATION

0.93+

single lineQUANTITY

0.92+

one exampleQUANTITY

0.91+

single clusterQUANTITY

0.91+

Platform9, Cloud Native at Scale


 

>>Everyone, welcome to the cube here in Palo Alto, California for a special presentation on Cloud native at scale, enabling super cloud modern applications with Platform nine. I'm John Furry, your host of The Cube. We've got a great lineup of three interviews we're streaming today. Mattor Makki, who's the co-founder and VP of Product of Platform nine. She's gonna go into detail around Arlon, the open source products, and also the value of what this means for infrastructure as code and for cloud native at scale. Bickley the chief architect of Platform nine Cube alumni. Going back to the OpenStack days. He's gonna go into why Arlon, why this infrastructure as code implication, what it means for customers and the implications in the open source community and where that value is. Really great wide ranging conversation there. And of course, Vascar, Gort, the CEO of Platform nine, is gonna talk with me about his views on Super Cloud and why Platform nine has a scalable solutions to bring cloud native at scale. So enjoy the program, see you soon. Hello and welcome to the cube here in Palo Alto, California for a special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Forry, host of the Cube. Pleasure to have here me Makowski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. >>Thank you for having >>Me. So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on Super cloud as it fits to cloud native as scales up? >>Yeah, you know, I think what's interesting, and I think the reason why Super Cloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model, where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think super cloud is a, is an appropriate term for >>That. So you brought a couple things I want to dig into. You mentioned Edge Notes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. Wouldn't even know what's around the corner. You got buildings, you got iot, o ot, and it kind of coming together, but you also got this idea of regions, global infrastructures, big part of it. I just saw some news around cloud flare shutting down a site here, there's policies being made at scale. These new challenges there. Can you share because you can have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because it's something business consequences as well, but there are technical challenge. Can you share your view on what the technical challenges are for the super cloud across multiple edges and >>Regions? Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that skill really needs some well thought out, well-structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when you scale, is not at the level. >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud native become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're talking about at scale Yep. Challenges here. >>Yeah, absolutely. And I think, you know, I I like to call it, you know, the, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is, you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, It's not working. The exact same problem now happens and these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer's site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on all of these various factors at their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >>Okay. So I have to ask about scale because there are a lot of multiple steps involved when you see the success cloud native, you know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can configure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotpot is. And when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the, the two factors of scale is we talked about start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and POS from support teams, et cetera. And those issues can be really difficult to try us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalates to a higher degree because yeah, you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say you radio sell tower site, or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did it, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like ishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that these security policies are configured properly. >>So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching, Can you share what our lawn is, this new product, What is it all about? Talk about this new introduction. >>Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arwan is, it's an open source project and it is a tool, it's a Kubernetes native tool for complete end to end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what alarm lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what this solves in, in terms of the chaos you guys are reigning in. What's the, what's the bumper sticker? Yeah, >>What would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right online. And if you look at the logo we've designed, it's this funny little robot. And it's because when we think of online, we, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well structured solution that's similar to an assembly line, which is taking each components, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage. But again, it gets, you know, processed in a standardized way. And that's what Arlon really does. That's like the I pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency >>For those. So keeping it smooth, the assembly on things are flowing. C C I CD pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops, it's coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, the developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of application that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secure properly, that they are logging, logs are being collected properly, monitoring and observability integrated. And so it solves problems for both those >>Teams. Yeah. It's DevOps. So the DevOps is the cloud native developer. The OP teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, Kubernetes really in introduced or elevated this declarative management, right? Because, you know, c communities clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so online addresses that problem at the heart of it, and it does that using existing open source well known solutions. >>Ed, do I wanna get into the benefits? What's in it for me as the customer developer? But I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over at platform nine, is it open source? And you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SaaS model on from model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fi, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why opensource and also opensource because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a block box. >>Well, and that's, that's what the developers want too. I mean, what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way that, Well, but that's, that's the benefit. Open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for helpers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating me metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think, and you know, two things. I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a SAS hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production >>Environment. I have to ask you now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlo? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo customer? >>Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native es, and then we have our C I CD pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS CD pipelines can deploy the apps. Somebody needs to do all of their groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think Spico would be delighted. The folks that we've talked, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on s Amazon and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us >>Stability. Yeah, I think people are scared, not sc I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises. And, and I think this is gonna come up at co con this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Lon uses Argo cd, which is probably one of the highest rated and used CD open source tools that's out there, right? It's created by folks that are as part of Intuit team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is arlon also makes use of cluster api capi, which is a ES sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with algo cd. Now Arlan just extends the scope of what Algo CD can do. And so that's one. And then the second part is going back to a point of the comfort. And that's where, you know, Platform nine has a role to play, which is when you are ready to deploy Alon at scale, because you've been, you know, playing with it in your DEF test environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that sla. >>And what's been the reaction from customers you've talked to Platform nine customers with, with, that are familiar with, with Argo and then Arlo? What's been some of the feedback? >>Yeah, I, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo CD and they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our line before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and, you know, give you an inventory and that, >>So customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. So >>Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yeah. And or scale out. >>That's right. Exactly. >>And you provide that layer of policy. >>Absolutely. >>Yes. That's the key value >>Here. That's right. >>So policy based configuration for cluster scale up >>Profile and policy based declarative configuration and life cycle management for clusters. >>If I asked you how this enables Super club, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there's at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a, going back to assembly line in a very consistent, predictable way so that our lot solves then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And alon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And, you know, alarm flows >>In one. Okay, so now the next level is, Okay, that makes sense. There's under the covers kind of speak under the hood. Yeah. How does that impact the app developers and the cloud native modern application workflows? Because the impact to me, seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge to their, where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for >>That. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full stack developer to the more specialized role. But this is a key point, and I have to ask you because if this Arlo solution takes place, as you say, and the apps are gonna be stupid, there's designed to do, the question is, what did, does the current pain look like of the apps breaking? What does the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo, and, and, and on all the other goodness to automate, What are some of the signals? Is it downtime? Is it, is it failed apps, Is it latency? What are some of the things that Yeah, absolutely would be in indications of things are effed up a little bit. >>Yeah. More frequent down times, down times that are, that take longer to triage. And so you are, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners. And they're extremely interested in this because the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your, your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you are looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your, So those are, those are the >>Signals. This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where it used to be supporting the business, you know, the back office and the IIA terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. The company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and see, and boards is saying, how is technology driving the top line revenue? That's the number one conversation. Yeah. Do you see that same thing? >>Yeah. It's interesting. I think there's multiple pressures at the CXO CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, that the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloudnative at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things with things. So just >>Taking care of, and the CIO doesn't exist. There's no CSO there at the beach. >>Yeah. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for having >>Me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching. Welcome back everyone to the special presentation of cloud native at scale, the cube and platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here at Bickley, who's the chief architect and co-founder of Platform nine b. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or well later, earlier when opens Stack was going. Great to see you and great to see congratulations on the success of platform nine. >>Thank you very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now was realized, and you've seen what Docker's doing with the new docker, the open source Docker now just a success Exactly. Of containerization, right? And now the Kubernetes layer that we've been working on for years is coming, bearing fruit. This is huge. >>Exactly. Yes. >>And so as infrastructure's code comes in, we talked to Bacar talking about Super Cloud, I met her about, you know, the new Arlon, our R lawn you guys just launched, the infrastructure's code is going to another level. And then it's always been DevOps infrastructure is code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon, connect the dots for us. What is the state of infrastructures code today? >>So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures code. But with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure as configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D instead with Kubernetes, you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specify. So I think it's, it's a even better version of infrastructures code. >>Yeah, yeah. And, and that really means it's developer just accessing resources. Okay. Not declaring, Okay, give me some compute, stand me up some, turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean now with open source, so popular, you don't have to have to write a lot of code. It's code being developed. And so it's into integration, it's configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these new, new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space that, >>That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is the new breed, the trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your >>View? It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we try to do with this new project. Arlon. >>Yeah. So, so we're gonna get into Arlan in a second. I wanna get into the why Arlon. You guys announced that at our GoCon, which was put on here in Silicon Valley at the, at the by intu. They had their own little day over there at their headquarters. But before we get there, Vascar, your CEO came on and he talked about Super Cloud at our inaugural event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or application specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system, so to deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection for the internet at the, the layer too is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, it's gonna continue. >>It's interesting. I just really wrote another post today on LinkedIn called the Silicon Wars AMD Stock is down arm has been on rise, we've remember pointing for many years now, that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a service layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd wanna have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in, in this community of co con, which will be a covering. So that brings up the whole what's next? You guys just announced our lawn at ar GoCon, which came out of Intuit. We've had Maria Teel at our super cloud event, She's a cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why our lawn, why this announcement? Yeah, >>So the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built AR lawn and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, And >>What's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, so let's get into what that means for up above and below the, the, this abstraction or thin layer below the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads at the end of the day, and I talk to CXOs and IT folks that, that are now DevOps engineers. They care about the workloads and they want the infrastructure's code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened. They need observability and they need to, to know that it's working. That's right. And here's my workloads running effectively. So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, right? >>So workloads, so Kubernetes has defined kind of a standard way to describe workloads and you can, you know, tell Kubernetes, I want to run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem, like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases it is like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's coming like an EC two instance, spin up a cluster. We've heard people used words like that. That's >>Right. And before arlon you kind of had to do all of that using a different set of tools as, as I explained. So with AR loan you can kind of express everything together. You can say I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call the profile. And then you can stamp out your app, your applications and your clusters and manage them in a very, So >>It's essentially standard, like creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook, just deploy it. Now what there is between say a script like I'm, I have scripts, I can just automate scripts >>Or yes, this is where that declarative API and infrastructure as configuration comes in, right? Because scripts, yes you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things are controllers which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure as configuration is built kind of on, it's a super set of infrastructures code because it's >>An evolution. >>You need edge's code, but then you can configure the code by just saying do it. You basically declaring saying Go, go do that. That's right. Okay, so, alright, so cloud native at scale, take me through your vision of what that means. Someone says, Hey, what does cloud native at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years. I mean people are now starting to figure out, okay, it's not as easy as it sounds. Kubernetes has value. We're gonna hear this year at CubeCon a lot of this, what does cloud native at scale >>Mean? Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users there, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we try to address with Arran. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state, and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, so I'll put you on the spot rogue, that CubeCon coming up and now this'll be shipping this segment series out before. What do you expect to see at this year? It's the big story this year. What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jockeying for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time and there's ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of coupon and I expect to continue and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, well >>Maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there are just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. >>Yeah. Vic, you've had an storied career VMware over decades with them within 12 years with 14 years or something like that. Big number co-founder here a platform. I you's been around for a while at this game, man. We talked about OpenStack, that project we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a Cloud Aati team at that time. We would joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform Nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? Opens Stack was an example and then Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will a, platform nine will be there and we will, you know, take the innovations from the the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yes. Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart this segment. What is at scale, how many clusters do you see that would be a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you, Yeah, how would you describe that? When people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. >>Yeah. And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing, doing over $2 billion billions of transactions a year and, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud need of its scale? >>The, the hyper squares? >>Yeah, yeah. A's Azure Google, >>You mean from a business perspective, they're, they have their own interests that, you know, that they're, they will keep catering to, they, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep well, >>They got great performance. I mean, from a, from a hardware standpoint, yes. That's gonna be key, >>Right? Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyper skaters really want to be in the game in terms of, you know, the, the new risk and arm ecosystems, the platforms. >>Yeah. Not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, I remember our first year doing the cube. Oh the cloud is one big distributed computer. It's, it's hardware and you got software and you got middleware and he kinda over, well he's kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. Yes, >>Exactly. >>It's, we're back in the same game. Thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super cloud Arlon open source and how to run large scale applications on the cloud, cloud native develop for developers. And John Furrier with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up. Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's it all going? Making it super multi-cloud is around the corner and public cloud is winning. Got the private cloud on premise and Edge. Got a great guest here, Vascar Gorde, CEO of Platform nine, just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you >>Again. So Kubernetes is a blocker enabler by, with a question mark I put on on there. Panel was really to discuss the role of Kubernetes. Now great conversation operations is impacted. What's just thing about what you guys are doing at Platform nine? Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm, right? >>Absolutely. In fact, things are moving very well and since they came to us, it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know, the application world is moving very fast in trying to become digital and cloud native. There are many options for you to run the infrastructure. The biggest blocking factor now is having a unified platform. And that's what where we come into >>Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days in 2000, 2001 when the first ASPs application service providers came out. Kind of a SaaS vibe, but that was kind of all kind of cloud-like >>It wasn't, >>And web services started then too. So you saw that whole growth. Now, fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>In fact, you know, as we were talking offline, I was in one of those ASPs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in the journey somewhere. >>Everyone is going digital transformation here. Even on a so-called downturn recession that's upcoming inflations sea year. It's interesting. This is the first downturn, the history of the world where the hyperscale clouds have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. Nope. Cause pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud. >>Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing infrastructure is not just some, you know, new servers and new application tools. It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to survive. >>I wanna get your thoughts on Super Cloud because one of the things Dave Alon and I want to do with Super Cloud and calling it that was we, I, I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like they're not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, More dynamic, more unreal. >>Yeah. I think the reason why we think Super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud, but they're disconnected. Okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? So, but they're not connected. So you can say, okay, it's more than one cloud. So it's, you know, multi-cloud. But super cloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch. You are looking at this as one unit. And that's where we see the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pan or a single platform for you to build your innovations on, regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is as a pilot to get the conversations flowing with, with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third Cloudworks in public cloud. We see the use cases on premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that open stack. We need an orchestration. And then containers had a good shot with, with Docker. They re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. >>What's, >>What's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere in the journey is going on. And you know, most companies are, 70 plus percent of them have 1, 2, 3 container based, Kubernetes based applications now being rolled out. So it's very much here. It is in production at scale by many customers. And it, the beauty of it is yes, open source, but the biggest gating factor is the skill set. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool and >>Just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores about thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency are key regulatory reasons. We also un on-prem as an air gap version. Can >>You give an example on how you guys are deploying your platform to enable a super cloud experience for your customer? Right. >>So I'll give you two different examples. One is a very large networking company, public networking company. They have hundreds of products, hundreds of r and d teams that are building different, different products. And if you look at few years back, each one was doing it on a different platforms, but they really needed to bring the agility. And they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact, the customer says like, like the Maytag service person, cuz we provide it as a service and it barely takes one or two people to maintain it for them. >>So it's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, >>Whatever they want on their tools. They're using whatever app development tools they use, but they use our platform. What >>Benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely they're speeding. Speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being used. >>So a big problem that's coming outta this super cloud event that we're, we're seeing and we heard it all here, ops and security teams. Cause they're kind of part of one thing, but option security specifically need to catch up speed wise. Are you delivering that value to ops and security? Right? >>So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering teams. So >>You working two sides to that coin. You've got the dev side and then >>And then infrastructure >>Side. >>Okay. Another customer that I give an example, which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores that are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install a rack in the store or they can't move everything to the cloud because the store operations has to be local. The menu changes based on it's classic edge. It's classic edge, yeah. Right? They can't send it people to go install rack access servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that >>You, you say little servers like how big one like a box, like a small little box, >>Right? And all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up. >>Yep. >>We provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage thousands of >>Them. True plug and play >>Two, plug and play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the locations. >>So you guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud native. >>Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native, is CNC foundation. And I think it's very well documented, very well. >>Tucan, of course Detroit's >>Coming so, so it's already there, right? So we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloud native. Okay? You can't put to cloud, not you have to rewrite and redevelop your application in business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing a lot of our customers in that journey. Now everybody wants to be cloudnative, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to use. Okay? So I think the complexity is there, but the business benefits of agility and uniformity and customer experience are truly being done. >>And I'll give you an example, I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how dominoes actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered. There were a pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow to the application changes what the expectations >>Are >>For the customer. Customer, >>The customer's expectations change, right? Once you get used to a better customer experience, you learn. >>That's to wrap it up. I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super Cloud 22 is you've seen many cycles, you have a lot of insights. I want to ask you, given your career where you've been and what you've done and now let's CEO platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the big companies, you've seen the different waves. What's going on right now put into context this moment in time around Super Cloud. >>Sure. I think as you said, a lot of battles. CARSs being been in an asb, being in a real time software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is a couple of paddles come to me. One is, think of it, which was forced to honors like y2k. Everybody around the world had to have a plan, a strategy, and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. >>And disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it was an existence question. Yeah. I think we are at that pivotal moment now in companies trying to become digital and cloudnative. You know, that is what I see >>Happening there. I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the gain, it's just changing how you operate, >>How you think and how you operate. See, if you think about the early days of e-commerce, just putting up a shopping cart that made you an e-commerce or e retailer or an e e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Nascar, thank you for coming on, spending the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, we're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean Fur with Super Cloud 22 in the Cube. Thanks for watching. >>Thank you. Thank you. >>Hello and welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super Cloud and its challenges, new opportunities around solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.

Published Date : Oct 19 2022

SUMMARY :

So enjoy the program, see you soon. a lot different, but kind of the same as the first generation. And so you gotta rougher and it kind of coming together, but you also got this idea of regions, So I think, you know, in in the context of this, the, Can you scope the scale of the problem? And I think, you know, I I like to call it, you know, And that is just, you know, one example of an issue that happens. you know, you see some, you know, some experimentation. which is, you know, you have your perfectly written code that is operating just fine on your And so as you give that change to then run at your production edge location, And you guys have a solution you're launching, Can you share what So what alarm lets you do in a in terms of the chaos you guys are reigning in. And if you look at the logo we've designed, So keeping it smooth, the assembly on things are flowing. Because developers, you know, there is, the developers are responsible for one picture of So the DevOps is the cloud native developer. And so online addresses that problem at the heart of it, and it does that using So I'm assuming you have that thought through, can you share open source and commercial relationship? products starting all the way with fi, which was a serverless product, you know, that we had built to buy, but also actually kind of date the application, if you will. I think one is just, you know, this, this, this cloud native space is so vast I have to ask you now, let's get into what's in it for the customer. And so, and there's multiple, you know, enterprises that we talk to, shared that this is a major challenge we have today because we have, you know, I'm an enterprise, I got tight, you know, I love the open source trying to It's created by folks that are as part of Intuit team now, you know, And the customer said, If you had it today, I would've purchased it. So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been that And now they have management challenges. Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure That's right. And alon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? And so this really gives them, you know, the right tooling for But this is a key point, and I have to ask you because if this Arlo solution of challenges, and those are the pain points, which is, you know, if you're looking to reduce your, not where it used to be supporting the business, you know, that, you know, that the, the technology that's, you know, that's gonna drive your top line is If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Taking care of, and the CIO doesn't exist. Thank you for your time. Thanks for having of Platform nine b. Great to see you Cube alumni. And now the Kubernetes layer that we've been working on for years is Exactly. you know, the new Arlon, our R lawn you guys just launched, you know, do step A, B, C, and D instead with Kubernetes, I mean now with open source, so popular, you don't have to have to write a lot of code. you know, the emergence of systems and layers to help you manage that complexity is becoming That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is the new breed, the trend of SaaS you know, you think you have things under control, but some people from various teams will make changes here in the industry technical, how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection for the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, all the variations around and you know, compute storage networks the DevOps engineers, they get a a ways to So how do you guys look at the workload side of it? like K native, where you can express your application in more at a higher level, It's coming like an EC two instance, spin up a cluster. And then you can stamp out your app, your applications and your clusters and manage them And it's like a playbook, just deploy it. You just tell the system what you want and then You need edge's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at this year? If you look at a stack necessary for hosting We would joke we, you know, about, about the dream. So the successor to Kubernetes, you know, I don't Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, They have some SaaS apps, but mostly it's the ecosystem. you know, that they're, they will keep catering to, they, they will continue to find I mean, from a, from a hardware standpoint, yes. terms of, you know, the, the new risk and arm ecosystems, It's, it's hardware and you got software and you got middleware and he kinda over, Great to have you on. What's just thing about what you guys are doing at Platform nine? clouds, you know, the application world is moving very fast in trying to Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days So you saw that whole growth. In fact, you know, as we were talking offline, I was in one of those And if you look at the tech trends, GDPs down, but not tech. some, you know, new servers and new application tools. you know, more, More dynamic, more unreal. So it's, you know, multi-cloud. the purpose of this event is as a pilot to get the conversations flowing with, with the influencers like yourselves And you know, most companies are, 70 plus percent of them have 1, 2, 3 container It runs on the edge, You give an example on how you guys are deploying your platform to enable a super And if you look at few years back, each one was doing So it's kinda like an SRE vibe. Whatever they want on their tools. to build, so their customers who are using product A and product B are seeing a similar set Are you delivering that value to ops and security? Our buyer is usually, you know, the product divisions of companies You've got the dev side and then enhance the customer experience that happens when you either order the product or go into And all the person in the store has to do like And so that dramatically brings the velocity for them. of the public clouds. So you guys got some success. How do you explain when someone says what's cloud native, what isn't cloud native? is the definition and what are the attributes and characteristics of what is truly a cloud native, Thousands and thousands of tools you could spend your time figuring I don't know anything about that, but the whole experience of how you order, For the customer. Once you get used to a better customer experience, One of the benefits of chatting with you here and been on the app side, I did the infrastructure right and then tried to build our If you did not adapt and adapt and accelerate I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your Nascar, thank you for coming on, spending the time to come in and share with our community and being part of Thank you. I hope you enjoyed this program.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
VascarPERSON

0.99+

Mattor MakkiPERSON

0.99+

DavePERSON

0.99+

AmazonORGANIZATION

0.99+

Paul MorritzPERSON

0.99+

Sean FurPERSON

0.99+

IBMORGANIZATION

0.99+

PatrickPERSON

0.99+

Vascar GordePERSON

0.99+

Adrian KaroPERSON

0.99+

John ForryPERSON

0.99+

John FurryPERSON

0.99+

John FurPERSON

0.99+

oneQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

50,000QUANTITY

0.99+

Dave AlonPERSON

0.99+

2000DATE

0.99+

Maria TeelPERSON

0.99+

14 yearsQUANTITY

0.99+

thousandsQUANTITY

0.99+

OracleORGANIZATION

0.99+

tensQUANTITY

0.99+

millionsQUANTITY

0.99+

GortPERSON

0.99+

AWSORGANIZATION

0.99+

twoQUANTITY

0.99+

NascarPERSON

0.99+

2001DATE

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

OneQUANTITY

0.99+

4,000 engineersQUANTITY

0.99+

one siteQUANTITY

0.99+

TwoQUANTITY

0.99+

second partQUANTITY

0.99+

VMwareORGANIZATION

0.99+

two peopleQUANTITY

0.99+

ArlonORGANIZATION

0.99+

hundredsQUANTITY

0.99+

Office 365TITLE

0.99+

MakowskiPERSON

0.99+

GoogleORGANIZATION

0.99+

todayDATE

0.99+

ArloORGANIZATION

0.99+

two sidesQUANTITY

0.99+

John FurrierPERSON

0.99+

two partsQUANTITY

0.99+

LinkedInORGANIZATION

0.99+

bothQUANTITY

0.99+

next yearDATE

0.99+

first generationQUANTITY

0.99+

22 years laterDATE

0.99+

1QUANTITY

0.99+

first downturnQUANTITY

0.99+

Platform nineORGANIZATION

0.99+

one unitQUANTITY

0.99+

two thingsQUANTITY

0.99+

firstQUANTITY

0.98+

one flavorQUANTITY

0.98+

more than one cloudQUANTITY

0.98+

two thousandsQUANTITY

0.98+

One personQUANTITY

0.98+

BickleyPERSON

0.98+

BacarPERSON

0.98+

12 yearsQUANTITY

0.98+

first timeQUANTITY

0.98+

GoConEVENT

0.98+

each siteQUANTITY

0.98+

thousands of storesQUANTITY

0.98+

AzureTITLE

0.98+

20 years laterDATE

0.98+

Bhaskar Gorti, Platform9 | Cloud Native at Scale


 

>>Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's it all going? Making it super multi-Cloud is around the corner and public cloud is winning. Got the private cloud on premise and Edge. Got a great guest here, Bacar, go deep CEO of Platform nine, just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you again. >>So Kubernetes is a blocker enabler by, with a question mark. I put on on that panel was really to discuss the role of Kubernetes. Now, great conversation operations is impacted. What's just thing about what you guys are doing at Platform nine? Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm, right? >>Absolutely. In fact, things are moving very well and since they came to us, it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know the application world is moving very fast in trying to become digital and cloud native. There are many options for you to run the infrastructure. The biggest blocking factor now is having a unified platform. And that's what where we come into >>Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days in 2000, 2001 when the first ASPs application service providers came out. Kind of a SaaS vibe, but that was kind of all kind of cloudlike. >>It wasn't, >>And and web services started then too. So you saw that whole growth. Now, fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>In fact, you know, as we were talking offline, I was in one of those asbs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in their journey somewhere. >>Everyone is going digital transformation here, even on a so-called downturn recession that's upcoming inflation's here. It's interesting. This is the first downturn, the history of the world where the hyperscale clouds have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. Nope. Because the pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud. >>Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing infrastructure is not just some, you know, new servers and new application tools. It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to survive. >>I wanna get your thoughts on Super Cloud because one of the things Dave Alon and I want to do with Super Cloud and calling at that was we, I I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like they're not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, more dynamic, more, more >>Real. I, yeah, I think the reason why we think super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud. But they're disconnected to, okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? So, but they're not connected. So you can say okay, it's more than one cloud. So it's you know, multi-cloud. But super cloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch, you are looking at this as one unit. And that's where we see the, the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pan, a single platform for you to build your innovations on regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is to, as a pilots, to get the conversations flowing with with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third cloudworks in public cloud. We see the use cases on-premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that OpenStack, we need an orchestration and then containers had a good shot with, with Docker, they re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. What's the, what's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere in the journey is going on and you know, most companies are, 70 plus percent of them have won two, three container based, Kubernetes based applications now being rolled out. So it's very much here, it is in production at scale by many customers and it, the beauty of it is yes, open source, but the biggest gating factor is the skill. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool and >>Just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores. There are thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency, our key regulatory reasons. We also run OnPrem as an air gap version. >>Can you give an example on how you guys are deploying your platform to enable a super cloud experience for your >>Customer? Right. So I'll give you two different examples. One is a very large networking company, public networking company. They have, I dunno, hundreds of products, hundreds of r and d teams that are building different, different products. And if you look at few years back, each one was doing it on a different platforms but they really needed to bring the agility and they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact the customer says like, like the Maytag service person cuz we provide it as a service and it barely takes one or two people to maintain it for them. >>So it's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, >>Whatever they want their tools, they're using whatever app development tools they use, but they use our platform. >>And what benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely they're speeding. Speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being >>Used. So a big problem that's coming outta this super cloud event that we're, we're seeing and we've heard it all here, ops and security teams, cuz they're kind of two part of one thing, but ops and security specifically need to catch up speed-wise. Are you delivering that value to ops and security? >>Right? So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering >>Teams, So you were just two sides of that coin. You've got the dev side and then and the infrastructure side. Okay, >>Another customer, like give an example, which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores that are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install rack in the store or they can't move everything to the cloud because the store operations have to be local. The menu changes based on it's classic edge if >>Classic >>Edge. Yeah. Right? They can't send it people to go install rack access servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that you >>Say little shares, like how big one like a box, like a small little box, >>Right? And all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up, we provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage thousands of >>Them. True plug and play >>Two, plug and play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the location. >>So you guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud >>Native. Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native is CNC foundation. And I think it's very well documented where you, well >>Tucan of course Detroit's >>Coming here, so, So it's already there, right? So we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloudnative, okay? You can't port to cloud, not you have to rewrite and redevelop your application and business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing lot of our customers in that journey. Now everybody wants to be cloud native, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to you use. Okay? So, so I think the complexity is there, but the business benefits of agility and uniformity and customer experience are truly being done. >>And I'll give you an example, I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how Domino's actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered, they were the pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow through the application changes what the expectations of are for the customer. >>Customer, the customer's expectations change, right? Once you get used to a better customer experience, you will not >>Best part. To wrap it up, I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super cloud 22 is you've seen many cycles, you have in a lot of insights. I want to ask you, given your career where you've been and what you've done and now the CEO of Platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the, the big companies, you've seen the different waves. What's going on right now Put into context this moment in time. Sure. Around Super >>Cloud. Sure. I think as you said, a lot of battles. Cars being, being in an asb, being in a real time software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is, couple of parallels come to me. One is, think of it, which was forced to on us like y2k, everybody around the world had to have a plan, a strategy and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. And >>Disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it wasn't existence. Question. Yeah, I think we are at that pivotal moment now in companies trying to become digital and cloud native and that is what I see >>Happening there. I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the gain, it's just changing how you operate, >>How you think and how you operate. See, if you think about the early days of e-commerce, just putting up a shopping cart then made you an e-commerce or e retailer or e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Mascar, thank you for coming on, spending the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, we're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean for with Super Cloud 22 in the Cube. Thanks for watching. >>Thank you. Thank you John. >>Hello. Welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super cloud and its challenges, new opportunities around solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.

Published Date : Oct 18 2022

SUMMARY :

Great to have you on. What's just thing about what you guys are doing at Platform nine? So absolutely whether you are doing it in public clouds or private Patrick, we were talking before we came on stage here about your background and we were kind of talking about the glory days So you saw that whole growth. In fact, you know, as we were talking offline, I was in one of those asbs And if you look at the tech trends, GDPs down, but not tech. just some, you know, new servers and new application tools. you know, more, more dynamic, more, more the branch, you are looking at this as one unit. So you got containers booming and Kubernetes as a new layer there. you know, most companies are, 70 plus percent of them have won two, It runs on the And if you look at few years back, each one was doing So it's kinda like an SRE vibe. to build, so their customers who are using product A and product B are seeing a similar set Are you delivering that value to ops and security? So it it's, it's somewhere in the DevOps to infrastructure. Teams, So you were just two sides of that coin. that happens when you either order the product or go into the store and pick up your product or buy then they can't sell software people to go install the software and any change you wanna put through And all the person in the store has to do like of the public clouds. So you guys got some success. How do you talk to customers? is the definition and what are the attributes and characteristics of what is truly a cloud native Thousands and thousands of tools you could spend your time figuring out which I don't know anything about that, but the whole experience of how you order, are for the customer. One of the benefits of chatting with you here been on the app side, I did the infrastructure right and then tried to build our And disruptive. If you did not adapt and adapt and accelerate I think that that e-commerce is interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your customers? after the event, to open up and look at the structural changes happening now and continue to look at it in Thank you John. I hope you enjoyed this program.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
PatrickPERSON

0.99+

AmazonORGANIZATION

0.99+

JohnPERSON

0.99+

SeanPERSON

0.99+

OracleORGANIZATION

0.99+

DavePERSON

0.99+

Dave AlonPERSON

0.99+

John FurPERSON

0.99+

oneQUANTITY

0.99+

BacarPERSON

0.99+

2000DATE

0.99+

twoQUANTITY

0.99+

50,000QUANTITY

0.99+

eight years agoDATE

0.99+

2001DATE

0.99+

Bhaskar GortiPERSON

0.99+

thousandsQUANTITY

0.99+

4,000 engineersQUANTITY

0.99+

OneQUANTITY

0.99+

MascarPERSON

0.99+

TwoQUANTITY

0.99+

GoogleORGANIZATION

0.99+

Office 365TITLE

0.99+

two peopleQUANTITY

0.99+

Super CloudTITLE

0.99+

first downturnQUANTITY

0.99+

thousands of storesQUANTITY

0.99+

DominoORGANIZATION

0.99+

two sidesQUANTITY

0.98+

one unitQUANTITY

0.98+

OpenStackTITLE

0.98+

bothQUANTITY

0.98+

more than one cloudQUANTITY

0.98+

AzureTITLE

0.98+

one thingQUANTITY

0.98+

22 years laterDATE

0.98+

One personQUANTITY

0.98+

20 years laterDATE

0.97+

each oneQUANTITY

0.97+

firstQUANTITY

0.96+

AzureORGANIZATION

0.96+

KubernetesTITLE

0.96+

70 plus percentQUANTITY

0.95+

todayDATE

0.95+

pandemicEVENT

0.95+

single platformQUANTITY

0.94+

threeQUANTITY

0.94+

over three yearsQUANTITY

0.94+

MaytagORGANIZATION

0.94+

ArlonORGANIZATION

0.93+

three little serversQUANTITY

0.93+

Super Cloud 22ORGANIZATION

0.92+

DetroitLOCATION

0.91+

Platform nineTITLE

0.91+

few years backDATE

0.9+

single panQUANTITY

0.89+

hundreds of productsQUANTITY

0.89+

TucanLOCATION

0.89+

Platform9ORGANIZATION

0.85+

CubaLOCATION

0.84+

Thousands and thousands of toolsQUANTITY

0.84+

two different examplesQUANTITY

0.84+

Platform nineORGANIZATION

0.83+

CloudnativeORGANIZATION

0.83+

Number twoQUANTITY

0.82+

Super Cloud 22ORGANIZATION

0.81+

thousands of storesQUANTITY

0.81+

third cloudworksQUANTITY

0.8+

20 year oldQUANTITY

0.8+

Platform nineTITLE

0.76+

SalesforceORGANIZATION

0.76+

DockerORGANIZATION

0.73+

productOTHER

0.73+

super cloudTITLE

0.71+

ScaleTITLE

0.7+

Madhura Maskasky, Platform9 Cloudnative at Scale


 

>>Hello everyone. Welcome to the cube here in Palo Alto, California for a special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Forer, host of the Cube. My pleasure to have here me Makoski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. Thank >>You for having >>Me. So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on super cloud as it fits to cloud native as scales up? >>Yeah. You know, I think what's interesting, and I think the reason why Super Cloud is a really good and a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model where you have a few large distributors of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of micro sites. These micro sites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think super cloud is a, is an appropriate term >>For that. So you brought a couple things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. We even know what's around the corner. You got buildings, you got I O D OT and IT kind of coming together. But you also got this idea of regions, global infrastructure is big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale. These new challenges there, can you share because you gotta have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's some business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the super cloud or across multiple edges and regions? >>Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have, deploy number of clusters in the Kubernetes space. And then on the other access you would have your distribution factor, right? Which is, do you have these tens of thousands of notes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when your scale is not at the level, >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud data become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're about at scale Yep. Challenges here. Yeah, >>Absolutely. And I think, you know, I I like to call it, you know, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is you know, it works on my cluster problem, right? So, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this change, everything was fantastic, it worked flawlessly on my machine, on production, it's not working. And the exact same problem now happens in these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that >>Occur. Okay. So I have to ask about scale because there are a lot of multiple steps involved when you see the success cloud native, you know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can figure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is. And when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the, the two factors of scale is we talked about start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and POS from support teams, et cetera. And those issues can be really difficult to triage us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalate to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say your radio cell tower site or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes like ishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that the security policies are configured >>Properly. So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >>Yeah, absolutely. I'm very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arwan is, it's an open source project and it is a tool, it's a Kubernetes native tool for complete end-to-end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what Arlan lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what dissolves in, in terms of the chaos you guys are reigning in, what's the, what's the bumper sticker? Yeah, >>What would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right? Lon. And if you look at the logo we've designed, it's this funny little robot, and it's because when we think of lon, we think of these enterprise large scale environments, you know, sprawling at scale creating chaos because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets, you know, processed in a standardized way. And that's what Alon really does. That's like the deliver pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for those. >>So keeping it smooth, the assembly line, things are flowing. See c i CD pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops is coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly, monitoring and observability is integrated. And so it solves problems for both those teams. >>Yeah, it's dev op, So the DevOps is the cloud needed developer, The kins have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, es really in introduced or elevated this declarative management, right? Because you know, Kubernetes clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlan addresses that problem at the heart of it, and it does that using existing open source, well known solutions. >>Medo, I want to get into the benefits, what's in it for me as the customer developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over there, Platform nine, is it open source? And you guys have a product that's commercial. Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share that open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SAS model or onpro model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fi, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why open source and also open source because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a blog box. >>Well, and that's, that's what the developers want too. And what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way it is. Well, but that's, that's the benefit. Open source. This is why standards and open source growing so fast, you have that confluence of, you know, a way fors to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think in, you know, two things, I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprise's use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a sa hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production environment. I >>Have to ask you now, let's get into what's in it for the customer. I'm a customer, why should I be enthused about Arlo? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo if I'm a >>Customer? Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you will hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native Kubernetes, and then we have our C I C D pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS CD pipelines can deploy the apps. Somebody needs to do all of that groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think spic would be delighted. The folks that we've spoken, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on s Amazon and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability. >>Yeah, I think people are scared. Not, I won't say scare, that's a a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises and, and I think this is gonna come up at Cuban this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the sla I'm an enterprise, I got tight, you know, I love the open source kind of free, fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Arlan uses Argo cd, which is probably one of the highest rated and used CD open source tools that's out there, right? It's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is arlon also makes use of cluster api capi, which is a sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with algo cd. Now Arlan just extends the scope of what Algo CD can do. And so that's one. And then the second part is going back to your point of the comfort. And that's where, you know, Platform nine has a role to play, which is when you are ready to deploy arlon at scale, because you've been, you know, playing with it in your dev tested environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that sla. >>And what's been the reaction from customers you've talked to Platform nine customers with, with, that are familiar with, with Argo and then Arlo? What's been some of the feedback? >>Yeah, I, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo cdn, they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our lawn before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SAS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customer's hands and offloading it to our hands, right? And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and, you know, give you an inventory. And so >>Customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. >>So especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yep. And or scale out. >>That's right. Exactly. And >>You provide that layer of policy. >>Absolutely. Yes. >>That's the key value >>Here. That's right. >>So policy based configuration for cluster scale >>Up, well profile and policy based declarative configuration and lifecycle management for >>Clusters. If I asked you how this enables Super Cloud, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there is at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale. You know, in a, going back to assembly line in a very consistent, predictable way. So that are land solves, then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And arlon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running at, on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And, you know, our long flows >>In one. Okay, so now the next level is, Okay, that makes sense. Is under the covers kind of speak under the hood. Yeah. How does that impact the app developers of the cloud native modern application workflows? Because the impact to me seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own these stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for >>That. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the fulls stack developer to the more specialized role. But this is a key point, and I have to ask you because if this, our low solution takes place, as you say, and the apps are gonna be stupid, they designed to do, the question is, what did, does the current pain look like? Are the apps breaking? What is the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo and, and all the other goodness to automate? What does some of the signals, is it downtime? Is it, is it failed apps, is it latency? What are some of the things that Yeah, absolutely. That would be indications of things are effed up a little bit. >>Yeah. More frequent down times, down times that are, that take longer to triage. And so your, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they're, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners, and they're extremely interested in this because the, the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own scripts. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your budget. So those are, those are the signals. >>This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application not where it used to be supporting the business, you know, the back office and the immediate terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. Company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and boards are saying, How is technology driving the top line revenue? That's the number one conversation. Yep. Do you see the same thing? >>Yeah, it's interesting. I think there's multiple pressures at the cx, OCI O level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, the, the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloud native at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are just taking >>Care and the CIO doesn't exist. There's no seeso there at the beach. >>Yep. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for >>Having me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching.

Published Date : Oct 18 2022

SUMMARY :

I'm John Forer, host of the Cube. a lot different, but kind of the same as the first generation. And so you gotta rougher that with a terminology that, Can you share your view on what the technical challenges So I think, you know, in in the context of this, the, this, Can you scope the scale of the problem? the problem that the scale creates, you know, there's various problems, but I think one, And that is just, you know, one example of an issue that happens. cloud native, you know, you see some, you know, some experimentation. you know, you have your perfectly written code that is operating just fine on your machine, And so as you give that change to then run at your production edge location, And you guys have a solution you're launching. So what Arlan lets you do in a then handing to the next stage where again, it gets, you know, processed in a standardized way. So keeping it smooth, the assembly line, things are flowing. Because developers, you know, there is, developers are responsible for one picture of Yeah, it's dev op, So the DevOps is the cloud needed developer, The kins have to kind of set policies. of that world of a single cluster, and when you actually talk about defining the clusters or defining And you guys have a product that's commercial. products starting all the way with fi, which was a serverless product, you know, that we had built to of date the application, if you will. choose to go that route, you know, once they have used the open source enthusiastic view of, you know, why I should be enthused about Arlo if I'm a And so, and there's multiple, you know, enterprises that we talk to, The folks that we've spoken, you know, spoken with, have been absolutely excited Is there any, what's the sla I'm an enterprise, I got tight, you know, I love the open source kind of free, It's created by folks that are as part of into team now, you know, you know, initially, you know, when you are, when you're telling them about your entire So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been that And now they have management challenges. So especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure And Absolutely. And arlon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things as you mentioned, And so this really gives them, you know, the right tooling for But this is a key point, and I have to ask you because if this, our low solution So these are the kinds of challenges, and those are the pain points, which is, you know, to be supporting the business, you know, the back office and the immediate terminals and some that, you know, the, the, the technology that's, you know, that's gonna drive your top line is gonna If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Care and the CIO doesn't exist. Thank you for your time. Thanks for at scale, enabling super cloud modern applications with Platform nine.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Madhura MaskaskyPERSON

0.99+

Adrian KaroPERSON

0.99+

John ForerPERSON

0.99+

John FurPERSON

0.99+

second partQUANTITY

0.99+

AmazonORGANIZATION

0.99+

TwoQUANTITY

0.99+

one siteQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

two thingsQUANTITY

0.99+

two partsQUANTITY

0.99+

two factorsQUANTITY

0.99+

one flavorQUANTITY

0.99+

bothQUANTITY

0.99+

tens of thousands of notesQUANTITY

0.99+

oneQUANTITY

0.99+

first generationQUANTITY

0.99+

each componentQUANTITY

0.99+

one pictureQUANTITY

0.99+

firstQUANTITY

0.98+

each siteQUANTITY

0.98+

todayDATE

0.98+

MedoPERSON

0.98+

SecondQUANTITY

0.98+

OneQUANTITY

0.98+

ArlanORGANIZATION

0.98+

secondQUANTITY

0.98+

tens of thousands of sitesQUANTITY

0.98+

three thingsQUANTITY

0.98+

ArgoORGANIZATION

0.98+

MakoskiPERSON

0.97+

two productsQUANTITY

0.97+

Platform nineTITLE

0.96+

one problemQUANTITY

0.96+

single lineQUANTITY

0.96+

ArlonORGANIZATION

0.95+

this yearDATE

0.95+

CloudFlareTITLE

0.95+

one nodeQUANTITY

0.95+

algo cdTITLE

0.94+

customersQUANTITY

0.93+

hundredsQUANTITY

0.92+

lonORGANIZATION

0.92+

ArlanPERSON

0.92+

arlonORGANIZATION

0.91+

one exampleQUANTITY

0.91+

KubernetesTITLE

0.9+

single clusterQUANTITY

0.89+

ArloORGANIZATION

0.89+

Platform nineORGANIZATION

0.87+

one wayQUANTITY

0.85+

day twoQUANTITY

0.85+

day oneQUANTITY

0.82+

CloudnativeORGANIZATION

0.8+

two accessQUANTITY

0.79+

one endQUANTITY

0.78+

CubanLOCATION

0.78+

Platform9ORGANIZATION

0.78+

AlonORGANIZATION

0.77+

thousandsQUANTITY

0.77+

Bich Le, Platform9 Cloud Native at Scale


 

>>Welcome back everyone, to the special presentation of Cloud Native at scale, the Cube and Platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here with Bickley, who's the chief architect and co-founder of Platform nine Pick. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or well later, earlier when OpenStack was going. Great to see you and great to see congratulations on the success of Platform nine. Thank >>You very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now has realized, and you've seen what Docker's doing with the new docker, the open source, Docker now just the success of containerization, right? And now the Kubernetes layer that we've been working on for years is coming, Bearing fruit. This is huge. >>Exactly. Yes. >>And so as infrastructures code comes in, we talked to Basco talking about Super Cloud. I met her about, you know, the new Arlon, our R lawn, and you guys just launched the infrastructures code is going to another level, and then it's always been DevOps infrastructures code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon. Connect the dots for us. What is the state of infrastructures code today? >>So I think, I think I'm, I'm glad you mentioned it. Everybody or most people know about infrastructures code, but with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure is configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D. Instead, with Kubernetes you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specified. So I think it's, it's a even better version of infrastructures code. Yeah, >>Yeah. And that really means it developer just accessing resources. Okay, not clearing, Okay, give me some compute. Stand me up some, Turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean, now with open source, so popular, you don't have to have to write a lot of code, this code being developed. And so it's integration, it's configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you've got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these, these new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space. The that's, >>I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. The trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your view? >>It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we try to do with this new project. Arlon. >>Yeah. So, so we're gonna get into Arlan in a second. I wanna get into the why Arlon. You guys announced that at our GoCon, which was put on here in Silicon Valley at the computer by, in two, where they had their own little day over there at their headquarters. But before we get there, Bacar, your CEO came on and he talked about Super Cloud at our in aural event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or application specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system. So the deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection for the internet at the, the layer two is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, >>It's >>Gonna >>Continue. It's interesting. I just, when I wrote another post today on LinkedIn called the Silicon Wars AMD stock is down arm has been on a rise. We've remember pointing for many years now, that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a service layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd wanna have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in in this community of, of co con, which will be a covering. So that brings up the whole what's next? You guys just announced our lawn at ar GoCon, which came out of Intuit. We've had Mariana Tessel at our super cloud event. She's the cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why our lawn, why this announcement? >>Yeah, so the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and, you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built Arlan and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, >>And what's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, So let's get into what that means for up above and below the, the, this abstraction or thin layer below as the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads. At the end of the day, you know, I talk to CXOs and IT folks that, that are now DevOps engineers. They care about the workloads and they want the infrastructure's code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened. They need observability and they need to, to know that it's working. That's right. And here's my workloads running effectively. So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, right? >>So workloads, so Kubernetes has defined kind of a standard way to describe workloads. And you can, you know, tell Kubernetes, I want to run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem, like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases, it's like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's coming like an EC two instance, spin up a cluster. We've heard people used words like that. That's >>Right. And before arlon, you kind of had to do all of that using a different set of tools as, as I explained. So with Arlon you can kind of express everything together. You can say, I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call a profile. And then you can stamp out your app, your applications, and your clusters and manage them in a very, So >>It's essentially standard, like creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook, deploy it. Now what's there is between say a script like I have scripts, I can just automate scripts >>Or yes, this is where that declarative API and infrastructures configuration comes in, right? Because scripts, yes, you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things about controllers, which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure has configuration is built kind of on its super set of infrastructures code because it's an evolution. You need edge retro's code, but then you can configure the code by just saying do it. You basically declaring it saying Go, go do that. That's right. Okay, So, all right, so Cloudnative at scale, take me through your vision of what that means. Someone says, Hey, what does cloudnative at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years? I mean, people are now starting to figure out, okay, it's not as easy as it sounds. Kubernetes has value. We're gonna hear this year at co con a lot of this, what does cloud native at scale >>Mean? Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users. There, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we, we try to address with Arlan. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state, and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, So I'll put you on the spot road that Coan coming up, and obviously this will be shipping this segment series out before. What do you expect to see at Coan this year? What's the big story this year? What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jocking for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time and there's their ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of cub cons and I expect to continue, and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, well >>Maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed, but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there're just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. Yeah. >>B, you've had a storied career VMware over decades with them, obviously with 12 years, with 14 years or something like that. Big number. Co-founder here, a platform. Now you guys been around for a while at this game. We, man, we talked about OpenStack, that project you, we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. And I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a cloud a Rod team at that time. We to joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? OpenStack was an example where the Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will a, platform nine will be there and we will, you know, take the innovations from the, the, the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yeah, I think the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart this segment. What is at scale, how many clusters do you see that would be a, a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you Yeah, how would you describe that? When people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. >>Yeah. And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing over $2 billion tran billions of transactions a year and, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud need of its scale? >>The, the hyperscalers? >>Yeah. A's Azure, Google >>You mean from a business perspective, technical, they're, they have their own interests that, you know, that they're, they will keep catering to, they, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep >>Well, they got great I performance, I mean from a, from a hardware standpoint, yes. That's gonna be key, right? >>Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyperscalers really want to be in the game in terms of, you know, the, the new risk and arm ecosystems and, and platforms. >>Yeah. Not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, and I remember our first year doing the cube, Oh, the cloud is one big distributed computer. It's, it's hardware and you got software and you got middleware and he kind of over, well he's kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. >>Yes, >>Exactly. It's, we're back in the same game. Vic, thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super Cloud Arlon open source and how to run large scale applications on the cloud. Cloud Native Phil for developers and John Furrier with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up.

Published Date : Oct 18 2022

SUMMARY :

Great to see you and great to see congratulations on the success And now the Kubernetes layer that we've been working on for years is Exactly. you know, the new Arlon, our R lawn, and you guys just launched the So I think, I think I'm, I'm glad you mentioned it. I mean, now with open source, so popular, you don't have to have to write a lot of code, you know, the emergence of systems and layers to help you manage that complexity is becoming I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. So you have this sprawl of tools. in the industry technical, how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection for the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, the state that you want and more consistency. the DevOps engineers, they get a a ways to At the end of the day, you know, And you can, you know, tell Kubernetes, It's coming like an EC two instance, spin up a cluster. So with Arlon you can kind of express everything And it's like a playbook, deploy it. tell the system what you want and then the system kind of figures You need edge retro's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at Coan this year? If you look at a stack necessary for hosting We to joke we, you know, about, about the dream. So the successor to Kubernetes, you know, I don't Yeah, I think the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, What's the role the you know, that they're, they will keep catering to, they, they will continue to find right? terms of, you know, the, the new risk and arm ecosystems It's, it's hardware and you got software and you got middleware and he kind of over, Vic, thank you for coming on the segment.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul MorritzPERSON

0.99+

IBMORGANIZATION

0.99+

AmazonORGANIZATION

0.99+

John FurrierPERSON

0.99+

thousandsQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

14 yearsQUANTITY

0.99+

12 yearsQUANTITY

0.99+

Mariana TesselPERSON

0.99+

tensQUANTITY

0.99+

AWSORGANIZATION

0.99+

BacarPERSON

0.99+

twoQUANTITY

0.99+

ArlonORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

hundredsQUANTITY

0.99+

next yearDATE

0.99+

BickleyPERSON

0.99+

VicPERSON

0.99+

over $2 billionQUANTITY

0.99+

GoogleORGANIZATION

0.99+

LinkedInORGANIZATION

0.99+

todayDATE

0.99+

hundreds of clustersQUANTITY

0.99+

thousands of usersQUANTITY

0.98+

thousands of applicationsQUANTITY

0.98+

KubernetesTITLE

0.98+

first yearQUANTITY

0.98+

AMDORGANIZATION

0.98+

one thingQUANTITY

0.98+

IntuitORGANIZATION

0.97+

CubeORGANIZATION

0.97+

two thousandsQUANTITY

0.97+

this yearDATE

0.97+

oneQUANTITY

0.96+

first timeQUANTITY

0.96+

EC twoTITLE

0.92+

Cloud NativeORGANIZATION

0.91+

Platform9ORGANIZATION

0.91+

OpenStackTITLE

0.91+

AnsiblesORGANIZATION

0.9+

GoConEVENT

0.89+

next couple yearsDATE

0.89+

OpenStackORGANIZATION

0.88+

DevOpsTITLE

0.88+

PhilPERSON

0.88+

CoanORGANIZATION

0.88+

arlonORGANIZATION

0.87+

earlier todayDATE

0.86+

Platform nineORGANIZATION

0.85+

nineORGANIZATION

0.85+

ArlonTITLE

0.84+

Platform nineTITLE

0.82+

one building blockQUANTITY

0.81+

TerraformsORGANIZATION

0.8+

WashingtonLOCATION

0.8+

about eight years agoDATE

0.8+

ArlanORGANIZATION

0.77+

layer twoQUANTITY

0.77+

millions ofQUANTITY

0.77+

Bich LePERSON

0.77+

ArgoTITLE

0.76+

AzureTITLE

0.76+

Platform9, Cloud Native at Scale


 

>>Hello, welcome to the Cube here in Palo Alto, California for a special presentation on Cloud native at scale, enabling super cloud modern applications with Platform nine. I'm John Furr, your host of The Cube. We had a great lineup of three interviews we're streaming today. Meor Ma Makowski, who's the co-founder and VP of Product of Platform nine. She's gonna go into detail around Arlon, the open source products, and also the value of what this means for infrastructure as code and for cloud native at scale. Bickley the chief architect of Platform nine Cube alumni. Going back to the OpenStack days. He's gonna go into why Arlon, why this infrastructure as code implication, what it means for customers and the implications in the open source community and where that value is. Really great wide ranging conversation there. And of course, Vascar, Gort, the CEO of Platform nine, is gonna talk with me about his views on Super Cloud and why Platform nine has a scalable solutions to bring cloudnative at scale. So enjoy the program. See you soon. Hello everyone. Welcome to the cube here in Palo Alto, California for special program on cloud native at scale, enabling next generation cloud or super cloud for modern application cloud native developers. I'm John Furry, host of the Cube. A pleasure to have here, me Makoski, co-founder and VP of product at Platform nine. Thanks for coming in today for this Cloudnative at scale conversation. Thank >>You for having me. >>So Cloudnative at scale, something that we're talking about because we're seeing the, the next level of mainstream success of containers Kubernetes and cloud native develop, basically DevOps in the C I C D pipeline. It's changing the landscape of infrastructure as code, it's accelerating the value proposition and the super cloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on super cloud as it fits to cloud native as scales up? >>Yeah, you know, I think what's interesting, and I think the reason why Super Cloud is a really good, in a really fit term for this, and I think, I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multi-cloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model where you have a few large distributions of infrastructure and workload at a few locations, I think the model is kind of flipped around, right? Where you have a large number of microsites, these microsites could be your public cloud deployment, your private on-prem infrastructure deployments, or it could be your edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you gotta rougher that with a terminology that, that, that indicates the scale and complexity of it. And so I think supercloud is a, is an appropriate term for that. >>So you brought a couple of things I want to dig into. You mentioned edge nodes. We're seeing not only edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning. Wouldn't even know what's around the corner. You got buildings, you got iot, ot, and IT kind of coming together, but you also got this idea of regions, global infras infrastructures, big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale, These new challenges there. Can you share because you can have edge. So hybrid cloud is a winning formula. Everybody knows that it's a steady state. Yeah. But across multiple clouds brings in this new un engineered area, yet it hasn't been done yet. Spanning clouds. People say they're doing it, but you start to see the toe in the water, it's happening, it's gonna happen. It's only gonna get accelerated with the edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's something business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the super cloud or across multiple edges and regions? >>Yeah, absolutely. So I think, you know, in in the context of this, the, this, this term of super cloud, I think it's sometimes easier to visualize things in terms of two access, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have deploy a number of clusters in the Kubernetes space. And then on the other axis you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site or do you have them distributed across tens of thousands of sites with one node at each site? Right? And if you have just one flavor of this, there is enough complexity, but potentially manageable. But when you are expanding on both these access, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this or when you, when you scale, is not at the level. >>Can you scope the complexity? Because I mean, I hear a lot of moving parts going on there, the technology's also getting better. We we're seeing cloud native become successful. There's a lot to configure, there's a lot to install. Can you scope the scale of the problem? Because we're talking about at scale Yep. Challenges here. Yeah, >>Absolutely. And I think, you know, I I like to call it, you know, the, the, the problem that the scale creates, you know, there's various problems, but I think one, one problem, one way to think about it is, is, you know, it works on my cluster problem, right? So I, you know, I come from engineering background and there's a, you know, there's a famous saying between engineers and QA and the support folks, right? Which is, it works on my laptop, which is I tested this chain, everything was fantastic, it worked flawlessly on my machine, on production, It's not working. The exact same problem now happens and these distributed environments, but at massive scale, right? Which is that, you know, developers test their applications, et cetera within the sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right? >>And the production deployment could be going at the radio cell tower at the edge location where a cluster is running there, or it could be sending, you know, these applications and having them run at my customer site where they might not have configured that cluster exactly the same way as I configured it, or they configured the cluster, right? But maybe they didn't deploy the security policies, or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors are their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ball game of issues come in the context of security, right? Because when you are deploying applications at scale in a distributed manner, you gotta make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >>Okay. So I have to ask about scale, because there are a lot of multiple steps involved when you see the success of cloud native. You know, you see some, you know, some experimentation. They set up a cluster, say it's containers and Kubernetes, and then you say, Okay, we got this, we can figure it. And then they do it again and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you gotta scale it. Then you're seeing security breaches, you're seeing configuration errors. This seems to be where the hotspot is in when companies transition from, I got this to, Oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >>Yeah, so, you know, I think it's interesting. There's multiple problems that occur when, you know, the two factors of scale, as we talked about, start expanding. I think one of them is what I like to call the, you know, it, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem, which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with p zeros and pos from support teams, et cetera. And those issues can be really difficult to triage us, right? And so in the Kubernetes environment, this problem kind of multi folds, it goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters and things work perfectly fine in those clusters because these clusters are typically handcrafted or a combination of some scripting and handcrafting. >>And so as you give that change to then run at your production edge location, like say your radio cell tower site, or you hand it over to a customer to run it on their cluster, they might not have not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so the things don't work. And when things don't work, triaging them becomes nightmarishly hard, right? It's just one of the examples of the problem, another whole bucket of issues is security, which is, is you have these distributed clusters at scale, you gotta ensure someone's job is on the line to make sure that these security policies are configured properly. >>So this is a huge problem. I love that comment. That's not not happening on my system. It's the classic, you know, debugging mentality. Yeah. But at scale it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching. Can you share what Arlon is this new product? What is it all about? Talk about this new introduction. >>Yeah, absolutely. Very, very excited. You know, it's one of the projects that we've been working on for some time now because we are very passionate about this problem and just solving problems at scale in on-prem or at in the cloud or at edge environments. And what arlon is, it's an open source project, and it is a tool, it's a Kubernetes native tool for complete end to end management of not just your clusters, but your clusters. All of the infrastructure that goes within and along the site of those clusters, security policies, your middleware, plug-ins, and finally your applications. So what our LA you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >>So what's the elevator pitch simply put for what dissolves in, in terms of the chaos you guys are reigning in, what's the, what's the bumper sticker? Yeah, what >>Would it do? There's a perfect analogy that I love to reference in this context, which is think of your assembly line, you know, in a traditional, let's say, you know, an auto manufacturing factory or et cetera, and the level of efficiency at scale that that assembly line brings, right? Our line, and if you look at the logo we've designed, it's this funny little robot. And it's because when we think of online, we think of these enterprise large scale environments, you know, sprawling at scale, creating chaos because there isn't necessarily a well thought through, well structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage. But again, it gets, you know, processed in a standardized way. And that's what arlon really does. That's like the deliver pitch. If you have problems of scale of managing your infrastructure, you know, that is distributed. Arlon brings the assembly line level of efficiency and consistency for >>Those. So keeping it smooth, the assembly on things are flowing. See c i CD pipe pipelining. Exactly. So that's what you're trying to simplify that ops piece for the developer. I mean, it's not really ops, it's their ops, it's coding. >>Yeah. Not just developer, the ops, the operations folks as well, right? Because developers, you know, there is, developers are responsible for one picture of that layer, which is my apps, and then maybe that middleware of applications that they interface with, but then they hand it over to someone else who's then responsible to ensure that these apps are secure properly, that they are logging, logs are being collected properly, monitoring and observability integrated. And so it solves problems for both >>Those teams. Yeah. It's DevOps. So the DevOps is the cloud needed developer's. That's right. The option teams have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >>Absolutely. Yeah. And, and, and, and you know, ES really in introduced or elevated this declarative management, right? Because, you know, s clusters are Yeah. Or your, yeah, you know, specifications of components that go in Kubernetes are defined a declarative way, and Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it, and it does that using existing open source well known solutions. >>And do I want to get into the benefits? What's in it for me as the customer developer? But I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the, what's the current state of the product? You run the product group over at Platform nine, is it open source? And you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? Yeah. And what is the consumption? I mean, open source is great, People want open source, they can download it, look up the code, but maybe wanna buy the commercial. So I'm assuming you have that thought through, can you share open source and commercial relationship? >>Yeah, I think, you know, starting with why open source? I think it's, you know, we as a company, we have, you know, one of the things that's absolutely critical to us is that we take mainstream open source technologies components and then we, you know, make them available to our customers at scale through either a SaaS model or on-prem model, right? But, so as we are a company or startup or a company that benefits, you know, in a massive way by this open source economy, it's only right, I think in my mind that we do our part of the duty, right? And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products starting all the way with fision, which was a serverless product, you know, that we had built to various other, you know, examples that I can give. But that's one of the main reasons why opensource and also open source, because we want the community to really firsthand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind, behind a block box. >>Well, and that's, that's what the developers want too. And what we're seeing in reporting with Super Cloud is the new model of consumption is I wanna look at the code and see what's in there. That's right. And then also, if I want to use it, I'll do it. Great. That's open source, that's the value. But then at the end of the day, if I wanna move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way that long. But that's, that's the benefit. Open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for developers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Karo uses the dating met metaphor, you know, Hey, you know, I wanna check it out first before I get married. Right? And that's what open source, So this is the new, this is how people are selling. This is not just open source, this is how companies are selling. >>Absolutely. Yeah. Yeah. You know, I think, and you know, two things. I think one is just, you know, this, this, this cloud native space is so vast that if you, if you're building a close flow solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case if they choose to do so, right? But at the same time, what's also critical to us is we are able to provide a supported version of it with an SLA that we, you know, that's backed by us, a SAS hosted version of it as well, for those customers who choose to go that route, you know, once they have used the open source version and loved it and want to take it at scale and in production and need, need, need a partner to collaborate with, who can, you know, support them for that production >>Environment. I have to ask you now, let's get into what's in it for the customer. I'm a customer. Yep. Why should I be enthused about Arla? What's in it for me? You know? Cause if I'm not enthused about it, I'm not gonna be confident and it's gonna be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlo? I'm a >>Customer. Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, you know, our customers, where this is a very kind of typical story that you hear, which is we have, you know, a Kubernetes distribution. It could be on premise, it could be public clouds, native Kubernetes, and then we have our C I C D pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is well before you can you, your CS c D pipelines can deploy the apps. Somebody needs to do all of that groundwork of, you know, defining those clusters and yeah. You know, properly configuring them. And as these things, these things start by being done hand grown. And then as the, as you scale, what typically enterprises would do today is they will have their home homegrown DIY solutions for this. >>I mean, the number of folks that I talk to that have built Terra from automation, and then, you know, some of those key developers leave. So it's a typical open source or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits the problem. And so that's that pitch. I think Ops FICO would be delighted. The folks that we've talk, you know, spoken with, have been absolutely excited and have, you know, shared that this is a major challenge we have today because we have, you know, few hundreds of clusters on ecos Amazon, and we wanna scale them to few thousands, but we don't think we are ready to do that. And this will give us the >>Ability to, Yeah, I think people are scared. Not sc I won't say scare, that's a bad word. Maybe I should say that they feel nervous because, you know, at scale small mistakes can become large mistakes. This is something that is concerning to enterprises. And, and I think this is gonna come up at co con this year where enterprises are gonna say, Okay, I need to see SLAs. I wanna see track record, I wanna see other companies that have used it. Yeah. How would you answer that question to, or, or challenge, you know, Hey, I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight, you know, I love the open source trying to free fast and loose, but I need hardened code. >>Yeah, absolutely. So, so two parts to that, right? One is Arlan leverages existing open source components, products that are extremely popular. Two specifically. One is Arlan uses Argo cd, which is probably one of the highest and used CD open source tools that's out there. Right's created by folks that are as part of into team now, you know, really brilliant team. And it's used at scale across enterprises. That's one. Second is Alon also makes use of Cluster api cappi, which is a Kubernetes sub-component, right? For lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products, right? Or, or, or open source projects that will find Arlan to be right up in their alley because they're already comfortable, familiar with Argo cd. Now Arlan just extends the scope of what City can do. And so that's one. And then the second part is going back to a point of the comfort. And that's where, you know, platform line has a role to play, which is when you are ready to deploy online at scale, because you've been, you know, playing with it in your DEF test environments, you're happy with what you get with it, then Platform nine will stand behind it and provide that >>Sla. And what's been the reaction from customers you've talked to Platform nine customers with, with that are familiar with, with Argo and then rlo? What's been some of the feedback? >>Yeah, I, I think the feedback's been fantastic. I mean, I can give you examples of customers where, you know, initially, you know, when you are, when you're telling them about your entire portfolio of solutions, it might not strike a card right away. But then we start talking about Arlan and, and we talk about the fact that it uses Argo adn, they start opening up, they say, We have standardized on Argo and we have built these components, homegrown, we would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of our land before we even wrote a single line of code saying this is something we plan on doing. And the customer said, If you had it today, I would've purchased it. So it's been really great validation. >>All right. So next question is, what is the solution to the customer? If I asked you, Look it, I have, I'm so busy, my team's overworked. I got a skills gap. I don't need another project that's, I'm so tied up right now and I'm just chasing my tail. How does Platform nine help me? >>Yeah, absolutely. So I think, you know, one of the core tenets of Platform nine has always been been that we try to bring that public cloud like simplicity by hosting, you know, this in a lot of such similar tools in a SaaS hosted manner for our customers, right? So our goal behind doing that is taking away or trying to take away all of that complexity from customers' hands and offloading it to our hands, right? And giving them that full white glove treatment, as we call it. And so from a customer's perspective, one, something like arlon will integrate with what they have so they don't have to rip and replace anything. In fact, it will, even in the next versions, it may even discover your clusters that you have today and you know, give you an inventory. And that will, >>So if customers have clusters that are growing, that's a sign correct call you guys. >>Absolutely. Either they're, they have massive large clusters, right? That they wanna split into smaller clusters, but they're not comfortable doing that today, or they've done that already on say, public cloud or otherwise. And now they have management challenges. So >>Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and reconfigure Yep. And or scale out. >>That's right. Exactly. And >>You provide that layer of policy. >>Absolutely. >>Yes. That's the key value here. >>That's right. >>So policy based configuration for cluster scale up, >>Well profile and policy based declarative configuration and lifecycle management for clusters. >>If I asked you how this enables supercloud, what would you say to that? >>I think this is one of the key ingredients to super cloud, right? If you think about a super cloud environment, there's at least few key ingredients that that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a, going back to assembly line in a very consistent, predictable way so that our lot solves then you, you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are gonna happen and you're gonna have to figure out, you know, how to solve them fast. And arlon by the way, also helps in that direction, but you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Super Cloud successful. And you know, our alarm fills in >>One. Okay. So now the next level is, Okay, that makes sense. Is under the covers kind of speak under the hood. Yeah. How does that impact the app developers and the cloud native modern application workflows? Because the impact to me, seems the apps are gonna be impacted. Are they gonna be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >>Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through, and any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge to their, where there's a split responsibility, right? I'm responsible for my code, I'm responsible for some of these other plugins, but I don't own the stack end to end. I have to rely on my ops counterpart to do their part, right? And so this really gives them, you know, the right tooling for that. >>So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, you're starting to see this fragmentation gone of the days of the full stack developer to the more specialized role. But this is a key point, and I have to ask you because if this RLO solution takes place, as you say, and the apps are gonna be stupid, they're designed to do, the question is, what did does the current pain look like of the apps breaking? What does the signals to the customer Yeah. That they should be calling you guys up into implementing Arlo, Argo and, and all the other goodness to automate? What are some of the signals? Is it downtime? Is it, is it failed apps, Is it latency? What are some of the things that Yeah, absolutely would be indications of things are effed up a little bit. Yeah. >>More frequent down times, down times that are, that take longer to triage. And so you are, you know, the, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they're, they have a number of folks on in the field that have to take these apps and run them at customer sites. And that's one of our partners. And they're extremely interested in this because they're the, the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution, if you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you are looking to manage these at scale environments with a relatively small, focused, nimble ops team, which has an immediate impact on your budget. So those are, those are the signals. >>This is the cloud native at scale situation, the innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application, not where it used to be supporting the business, you know, the back office and the maybe terminals and some PCs and handhelds. Now if technology's running, the business is the business. Yeah. Company's the application. Yeah. So it can't be down. So there's a lot of pressure on, on CSOs and CIOs now and boards is saying, How is technology driving the top line revenue? That's the number one conversation. Yep. Do you see that same thing? >>Yeah. It's interesting. I think there's multiple pressures at the CXO CIO level, right? One is that there needs to be that visibility and clarity and guarantee almost that, you know, that the, the technology that's, you know, that's gonna drive your top line is gonna drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right? Especially when you're talking about, let's say retailers or those kinds of large scale vendors, they many times make money by lowering the amount that they spend on, you know, providing those goods to their end customers. So I think those, both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >>Final question. What does cloudnative at scale look like to you? If all the things happen the way we want 'em to happen, The magic wand, the magic dust, what does it look like? >>What that looks like to me is a CIO sipping at his desk on coffee production is running absolutely smooth. And his, he's running that at a nimble, nimble team size of at the most, a handful of folks that are just looking after things, but things are >>Just taking care of the CIO doesn't exist. There's no ciso, they're at the beach. >>Yep. >>Thank you for coming on, sharing the cloud native at scale here on the cube. Thank you for your time. >>Fantastic. Thanks for >>Having me. Okay. I'm John Fur here for special program presentation, special programming cloud native at scale, enabling super cloud modern applications with Platform nine. Thanks for watching. Welcome back everyone to the special presentation of cloud native at scale, the cube and platform nine special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development. We're here with Bickley, who's the chief architect and co-founder of Platform nine Pick. Great to see you Cube alumni. We, we met at an OpenStack event in about eight years ago, or later, earlier when OpenStack was going. Great to see you and great to see congratulations on the success of platform nine. >>Thank you very much. >>Yeah. You guys have been at this for a while and this is really the, the, the year we're seeing the, the crossover of Kubernetes because of what happens with containers. Everyone now has realized, and you've seen what Docker's doing with the new docker, the open source Docker now just the success Exactly. Of containerization, right? And now the Kubernetes layer that we've been working on for years is coming, bearing fruit. This is huge. >>Exactly. Yes. >>And so as infrastructures code comes in, we talked to Bacar talking about Super Cloud, I met her about, you know, the new Arlon, our, our lawn, and you guys just launched the infrastructures code is going to another level, and then it's always been DevOps infrastructures code. That's been the ethos that's been like from day one, developers just code. Then you saw the rise of serverless and you see now multi-cloud or on the horizon, connect the dots for us. What is the state of infrastructure as code today? >>So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures code. But with Kubernetes, I think that project has evolved at the concept even further. And these dates, it's infrastructure is configuration, right? So, which is an evolution of infrastructure as code. So instead of telling the system, here's how I want my infrastructure by telling it, you know, do step A, B, C, and D instead with Kubernetes, you can describe your desired state declaratively using things called manifest resources. And then the system kind of magically figures it out and tries to converge the state towards the one that you specified. So I think it's, it's a even better version of infrastructures code. >>Yeah. And that really means it's developer just accessing resources. Okay. That declare, Okay, give me some compute, stand me up some, turn the lights on, turn 'em off, turn 'em on. That's kind of where we see this going. And I like the configuration piece. Some people say composability, I mean now with open source so popular, you don't have to have to write a lot of code, this code being developed. And so it's into integration, it's configuration. These are areas that we're starting to see computer science principles around automation, machine learning, assisting open source. Cuz you got a lot of code that's right in hearing software, supply chain issues. So infrastructure as code has to factor in these new dynamics. Can you share your opinion on these new dynamics of, as open source grows, the glue layers, the configurations, the integration, what are the core issues? >>I think one of the major core issues is with all that power comes complexity, right? So, you know, despite its expressive power systems like Kubernetes and declarative APIs let you express a lot of complicated and complex stacks, right? But you're dealing with hundreds if not thousands of these yamo files or resources. And so I think, you know, the emergence of systems and layers to help you manage that complexity is becoming a key challenge and opportunity in, in this space. >>That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. The trend of SaaS companies moving our consumer comp consumer-like thinking into the enterprise has been happening for a long time, but now more than ever, you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in. Now with open source, it's speed, simplification and integration, right? These are the new dynamic power dynamics for developers. Yeah. So as companies are starting to now deploy and look at Kubernetes, what are the things that need to be in place? Because you have some, I won't say technical debt, but maybe some shortcuts, some scripts here that make it look like infrastructure is code. People have done some things to simulate or or make infrastructure as code happen. Yes. But to do it at scale Yes. Is harder. What's your take on this? What's your view? >>It's hard because there's a per proliferation of methods, tools, technologies. So for example, today it's very common for DevOps and platform engineering tools, I mean, sorry, teams to have to deploy a large number of Kubernetes clusters, but then apply the applications and configurations on top of those clusters. And they're using a wide range of tools to do this, right? For example, maybe Ansible or Terraform or bash scripts to bring up the infrastructure and then the clusters. And then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the clusters. So you have this sprawl of tools. You, you also have this sprawl of configurations and files because the more objects you're dealing with, the more resources you have to manage. And there's a risk of drift that people call that where, you know, you think you have things under control, but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them. So I think there's real need to kind of unify, simplify, and try to solve these problems using a smaller, more unified set of tools and methodologies. And that's something that we try to do with this new project. Arlon. >>Yeah. So, so we're gonna get into Arlan in a second. I wanna get into the why Arlon. You guys announced that at AR GoCon, which was put on here in Silicon Valley at the, at the community meeting by in two, they had their own little day over there at their headquarters. But before we get there, vascar, your CEO came on and he talked about Super Cloud at our in AAL event. What's your definition of super cloud? If you had to kind of explain that to someone at a cocktail party or someone in the industry technical, how would you look at the super cloud trend that's emerging? It's become a thing. What's your, what would be your contribution to that definition or the narrative? >>Well, it's, it's, it's funny because I've actually heard of the term for the first time today, speaking to you earlier today. But I think based on what you said, I I already get kind of some of the, the gist and the, the main concepts. It seems like super cloud, the way I interpret that is, you know, clouds and infrastructure, programmable infrastructure, all of those things are becoming commodity in a way. And everyone's got their own flavor, but there's a real opportunity for people to solve real business problems by perhaps trying to abstract away, you know, all of those various implementations and then building better abstractions that are perhaps business or applications specific to help companies and businesses solve real business problems. >>Yeah, I remember that's a great, great definition. I remember, not to date myself, but back in the old days, you know, IBM had a proprietary network operating system, so of deck for the mini computer vendors, deck net and SNA respectively. But T C P I P came out of the osi, the open systems interconnect and remember, ethernet beat token ring out. So not to get all nerdy for all the young kids out there, look, just look up token ring, you'll see, you've probably never heard of it. It's IBM's, you know, connection for the internet at the, the layer two is Amazon, the ethernet, right? So if T C P I P could be the Kubernetes and the container abstraction that made the industry completely change at that point in history. So at every major inflection point where there's been serious industry change and wealth creation and business value, there's been an abstraction Yes. Somewhere. Yes. What's your reaction to that? >>I think this is, I think a saying that's been heard many times in this industry and, and I forgot who originated it, but I think that the saying goes like, there's no problem that can't be solved with another layer of indirection, right? And we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified, you know, computing and, and infrastructure management. And I believe this trend is going to continue, right? The next set of problems are going to be solved with these insertions of additional abstraction layers. I think that that's really a, yeah, it's gonna >>Continue. It's interesting. I just, when I wrote another post today on LinkedIn called the Silicon Wars AMD stock is down arm has been on a rise. We remember pointing for many years now that arm's gonna be hugely, it has become true. If you look at the success of the infrastructure as a service layer across the clouds, Azure, aws, Amazon's clearly way ahead of everybody. The stuff that they're doing with the silicon and the physics and the, the atoms, the pro, you know, this is where the innovation, they're going so deep and so strong at ISAs, the more that they get that gets come on, they have more performance. So if you're an app developer, wouldn't you want the best performance and you'd wanna have the best abstraction layer that gives you the most ability to do infrastructures, code or infrastructure for configuration, for provisioning, for managing services. And you're seeing that today with service MeSHs, a lot of action going on in the service mesh area in in this community of, of co con, which will be a covering. So that brings up the whole what's next? You guys just announced our lawn at Argo Con, which came out of Intuit. We've had Mariana Tessel at our super cloud event. She's the cto, you know, they're all in the cloud. So they contributed that project. Where did Arlon come from? What was the origination? What's the purpose? Why our lawn, why this announcement? >>Yeah, so the, the inception of the project, this was the result of us realizing that problem that we spoke about earlier, which is complexity, right? With all of this, these clouds, these infrastructure, all the variations around and, you know, compute storage networks and the proliferation of tools we talked about the Ansibles and Terraforms and Kubernetes itself. You can, you can think of that as another tool, right? We saw a need to solve that complexity problem, and especially for people and users who use Kubernetes at scale. So when you have, you know, hundreds of clusters, thousands of applications, thousands of users spread out over many, many locations, there, there needs to be a system that helps simplify that management, right? So that means fewer tools, more expressive ways of describing the state that you want and more consistency. And, and that's why, you know, we built our lawn and we built it recognizing that many of these problems or sub problems have already been solved. So Arlon doesn't try to reinvent the wheel, it instead rests on the shoulders of several giants, right? So for example, Kubernetes is one building block, GI ops, and Argo CD is another one, which provides a very structured way of applying configuration. And then we have projects like cluster API and cross plane, which provide APIs for describing infrastructure. So arlon takes all of those building blocks and builds a thin layer, which gives users a very expressive way of defining configuration and desired state. So that's, that's kind of the inception of, And >>What's the benefit of that? What does that give the, what does that give the developer, the user, in this case, >>The developers, the, the platform engineer, team members, the DevOps engineers, they get a a ways to provision not just infrastructure and clusters, but also applications and configurations. They get a way, a system for provisioning, configuring, deploying, and doing life cycle management in a, in a much simpler way. Okay. Especially as I said, if you're dealing with a large number of applications. >>So it's like an operating fabric, if you will. Yes. For them. Okay, so let's get into what that means for up above and below the the, this abstraction or thin layer below as the infrastructure. We talked a lot about what's going on below that. Yeah. Above our workloads. At the end of the day, you know, I talk to CXOs and IT folks that are now DevOps engineers. They care about the workloads and they want the infrastructures code to work. They wanna spend their time getting in the weeds, figuring out what happened when someone made a push that that happened or something happened. They need observability and they need to, to know that it's working. That's right. And is my workloads running effectively? So how do you guys look at the workload side of it? Cuz now you have multiple workloads on these fabric, >>Right? So workloads, so Kubernetes has defined kind of a standard way to describe workloads and you can, you know, tell Kubernetes, I want to run this container this particular way, or you can use other projects that are in the Kubernetes cloud native ecosystem like K native, where you can express your application in more at a higher level, right? But what's also happening is in addition to the workloads, DevOps and platform engineering teams, they need to very often deploy the applications with the clusters themselves. Clusters are becoming this commodity. It's, it's becoming this host for the application and it kind of comes bundled with it. In many cases it is like an appliance, right? So DevOps teams have to provision clusters at a really incredible rate and they need to tear them down. Clusters are becoming more, >>It's kinda like an EC two instance, spin up a cluster. We very, people used words like that. That's >>Right. And before arlon you kind of had to do all of that using a different set of tools as, as I explained. So with Armon you can kind of express everything together. You can say I want a cluster with a health monitoring stack and a logging stack and this ingress controller and I want these applications and these security policies. You can describe all of that using something we call a profile. And then you can stamp out your app, your applications and your clusters and manage them in a very, so >>Essentially standard creates a mechanism. Exactly. Standardized, declarative kind of configurations. And it's like a playbook. You deploy it. Now what's there is between say a script like I'm, I have scripts, I could just automate scripts >>Or yes, this is where that declarative API and infrastructures configuration comes in, right? Because scripts, yes you can automate scripts, but the order in which they run matters, right? They can break, things can break in the middle and, and sometimes you need to debug them. Whereas the declarative way is much more expressive and powerful. You just tell the system what you want and then the system kind of figures it out. And there are these things about controllers which will in the background reconcile all the state to converge towards your desire. It's a much more powerful, expressive and reliable way of getting things done. >>So infrastructure has configuration is built kind of on, it's as super set of infrastructures code because it's >>An evolution. >>You need edge's code, but then you can configure the code by just saying do it. You basically declaring and saying Go, go do that. That's right. Okay, so, alright, so cloud native at scale, take me through your vision of what that means. Someone says, Hey, what does cloud native at scale mean? What's success look like? How does it roll out in the future as you, not future next couple years? I mean people are now starting to figure out, okay, it's not as easy as it sounds. Could be nice, it has value. We're gonna hear this year coan a lot of this. What does cloud native at scale >>Mean? Yeah, there are different interpretations, but if you ask me, when people think of scale, they think of a large number of deployments, right? Geographies, many, you know, supporting thousands or tens or millions of, of users there, there's that aspect to scale. There's also an equally important a aspect of scale, which is also something that we try to address with Arran. And that is just complexity for the people operating this or configuring this, right? So in order to describe that desired state and in order to perform things like maybe upgrades or updates on a very large scale, you want the humans behind that to be able to express and direct the system to do that in, in relatively simple terms, right? And so we want the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible. So there's, I think there's gonna be a number and there have been a number of CNCF and cloud native projects that are trying to attack that complexity problem as well. And Arlon kind of falls in in that >>Category. Okay, so I'll put you on the spot road that CubeCon coming up and obviously this will be shipping this segment series out before. What do you expect to see at Coan this year? What's the big story this year? What's the, what's the most important thing happening? Is it in the open source community and also within a lot of the, the people jogging for leadership. I know there's a lot of projects and still there's some white space in the overall systems map about the different areas get run time and there's ability in all these different areas. What's the, where's the action? Where, where's the smoke? Where's the fire? Where's the piece? Where's the tension? >>Yeah, so I think one thing that has been happening over the past couple of cons and I expect to continue and, and that is the, the word on the street is Kubernetes is getting boring, right? Which is good, right? >>Boring means simple. >>Well, well >>Maybe, >>Yeah, >>Invisible, >>No drama, right? So, so the, the rate of change of the Kubernetes features and, and all that has slowed but in, in a, in a positive way. But there's still a general sentiment and feeling that there's just too much stuff. If you look at a stack necessary for hosting applications based on Kubernetes, there are just still too many moving parts, too many components, right? Too much complexity. I go, I keep going back to the complexity problem. So I expect Cube Con and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce further simplifications to, to the stack. >>Yeah. Vic, you've had an storied career, VMware over decades with them obviously in 12 years with 14 years or something like that. Big number co-founder here at Platform. Now you guys have been around for a while at this game. We, man, we talked about OpenStack, that project you, we interviewed at one of their events. So OpenStack was the beginning of that, this new revolution. And I remember the early days it was, it wasn't supposed to be an alternative to Amazon, but it was a way to do more cloud cloud native. I think we had a cloud ERO team at that time. We would to joke we, you know, about, about the dream. It's happening now, now at Platform nine. You guys have been doing this for a while. What's the, what are you most excited about as the chief architect? What did you guys double down on? What did you guys tr pivot from or two, did you do any pivots? Did you extend out certain areas? Cuz you guys are in a good position right now, a lot of DNA in Cloud native. What are you most excited about and what does Platform nine bring to the table for customers and for people in the industry watching this? >>Yeah, so I think our mission really hasn't changed over the years, right? It's been always about taking complex open source software because open source software, it's powerful. It solves new problems, you know, every year and you have new things coming out all the time, right? OpenStack was an example when the Kubernetes took the world by storm. But there's always that complexity of, you know, just configuring it, deploying it, running it, operating it. And our mission has always been that we will take all that complexity and just make it, you know, easy for users to consume regardless of the technology, right? So the successor to Kubernetes, you know, I don't have a crystal ball, but you know, you have some indications that people are coming up of new and simpler ways of running applications. There are many projects around there who knows what's coming next year or the year after that. But platform will a, platform nine will be there and we will, you know, take the innovations from the the community. We will contribute our own innovations and make all of those things very consumable to customers. >>Simpler, faster, cheaper. Exactly. Always a good business model technically to make that happen. Yes. Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into the scale. Final question before we depart this segment. What is at scale, how many clusters do you see that would be a watermark for an at scale conversation around an enterprise? Is it workloads we're looking at or, or clusters? How would you, Yeah, how would you describe that? When people try to squint through and evaluate what's a scale, what's the at scale kind of threshold? >>Yeah. And, and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large. But roughly speaking when we say, you know, large scale cluster deployments, we're talking about maybe hundreds, two thousands. >>Yeah. And final final question, what's the role of the hyperscalers? You got AWS continuing to do well, but they got their core ias, they got a PAs, they're not too too much putting a SaaS out there. They have some SaaS apps, but mostly it's the ecosystem. They have marketplaces doing over $2 billion billions of transactions a year and, and it's just like, just sitting there. It hasn't really, they're now innovating on it, but that's gonna change ecosystems. What's the role the cloud play in the cloud native of its scale? >>The, the hyperscalers, >>Yeahs Azure, Google. >>You mean from a business perspective? Yeah, they're, they have their own interests that, you know, that they're, they will keep catering to, they, they will continue to find ways to lock their users into their ecosystem of services and, and APIs. So I don't think that's gonna change, right? They're just gonna keep, >>Well they got great I performance, I mean from a, from a hardware standpoint, yes, that's gonna be key, right? >>Yes. I think the, the move from X 86 being the dominant way and platform to run workloads is changing, right? That, that, that, that, and I think the, the hyperscalers really want to be in the game in terms of, you know, the the new risk and arm ecosystems and the platforms. >>Yeah, not joking aside, Paul Morritz, when he was the CEO of VMware, when he took over once said, I remember our first year doing the cube. Oh the cloud is one big distributed computer, it's, it's hardware and he got software and you got middleware and he kind over, well he's kind of tongue in cheek, but really you're talking about large compute and sets of services that is essentially a distributed computer. >>Yes, >>Exactly. It's, we're back on the same game. Vic, thank you for coming on the segment. Appreciate your time. This is cloud native at scale special presentation with Platform nine. Really unpacking super cloud Arlon open source and how to run large scale applications on the cloud Cloud Native Phil for developers and John Furrier with the cube. Thanks for Washington. We'll stay tuned for another great segment coming right up. Hey, welcome back everyone to Super Cloud 22. I'm John Fur, host of the Cuba here all day talking about the future of cloud. Where's it all going? Making it super multi-cloud clouds around the corner and public cloud is winning. Got the private cloud on premise and edge. Got a great guest here, Vascar Gorde, CEO of Platform nine, just on the panel on Kubernetes. An enabler blocker. Welcome back. Great to have you on. >>Good to see you >>Again. So Kubernetes is a blocker enabler by, with a question mark. I put on on that panel was really to discuss the role of Kubernetes. Now great conversation operations is impacted. What's interest thing about what you guys are doing at Platform nine? Is your role there as CEO and the company's position, kind of like the world spun into the direction of Platform nine while you're at the helm? Yeah, right. >>Absolutely. In fact, things are moving very well and since they came to us, it was an insight to call ourselves the platform company eight years ago, right? So absolutely whether you are doing it in public clouds or private clouds, you know, the application world is moving very fast in trying to become digital and cloud native. There are many options for you do on the infrastructure. The biggest blocking factor now is having a unified platform. And that's what we, we come into, >>Patrick, we were talking before we came on stage here about your background and we were gonna talk about the glory days in 2000, 2001, when the first as piece application service providers came out, kind of a SaaS vibe, but that was kind of all kind of cloudlike. >>It wasn't, >>And and web services started then too. So you saw that whole growth. Now, fast forward 20 years later, 22 years later, where we are now, when you look back then to here and all the different cycles, >>I, in fact you, you know, as we were talking offline, I was in one of those ASPs in the year 2000 where it was a novel concept of saying we are providing a software and a capability as a service, right? You sign up and start using it. I think a lot has changed since then. The tooling, the tools, the technology has really skyrocketed. The app development environment has really taken off exceptionally well. There are many, many choices of infrastructure now, right? So I think things are in a way the same but also extremely different. But more importantly now for any company, regardless of size, to be a digital native, to become a digital company is extremely mission critical. It's no longer a nice to have everybody's in the journey somewhere. >>Everyone is going digital transformation here. Even on a so-called downturn recession that's upcoming inflation's here. It's interesting. This is the first downturn in the history of the world where the hyperscale clouds have been pumping on all cylinders as an economic input. And if you look at the tech trends, GDPs down, but not tech. >>Nope. >>Cuz the pandemic showed everyone digital transformation is here and more spend and more growth is coming even in, in tech. So this is a unique factor which proves that that digital transformation's happening and company, every company will need a super cloud. >>Everyone, every company, regardless of size, regardless of location, has to become modernize their infrastructure. And modernizing Infras infrastructure is not just some new servers and new application tools, It's your approach, how you're serving your customers, how you're bringing agility in your organization. I think that is becoming a necessity for every enterprise to survive. >>I wanna get your thoughts on Super Cloud because one of the things Dave Ante and I want to do with Super Cloud and calling it that was we, I, I personally, and I know Dave as well, he can, I'll speak from, he can speak for himself. We didn't like multi-cloud. I mean not because Amazon said don't call things multi-cloud, it just didn't feel right. I mean everyone has multiple clouds by default. If you're running productivity software, you have Azure and Office 365. But it wasn't truly distributed. It wasn't truly decentralized, it wasn't truly cloud enabled. It didn't, it felt like they're not ready for a market yet. Yet public clouds booming on premise. Private cloud and Edge is much more on, you know, more, more dynamic, more real. >>Yeah. I think the reason why we think super cloud is a better term than multi-cloud. Multi-cloud are more than one cloud, but they're disconnected. Okay, you have a productivity cloud, you have a Salesforce cloud, you may have, everyone has an internal cloud, right? So, but they're not connected. So you can say okay, it's more than one cloud. So it's you know, multi-cloud. But super cloud is where you are actually trying to look at this holistically. Whether it is on-prem, whether it is public, whether it's at the edge, it's a store at the branch. You are looking at this as one unit. And that's where we see the term super cloud is more applicable because what are the qualities that you require if you're in a super cloud, right? You need choice of infrastructure, you need, but at the same time you need a single pain, a single platform for you to build your innovations on regardless of which cloud you're doing it on, right? So I think Super Cloud is actually a more tightly integrated orchestrated management philosophy we think. >>So let's get into some of the super cloud type trends that we've been reporting on. Again, the purpose of this event is to, as a pilots, to get the conversations flowing with with the influencers like yourselves who are running companies and building products and the builders, Amazon and Azure are doing extremely well. Google's coming up in third cloudworks in public cloud. We see the use cases on premises use cases. Kubernetes has been an interesting phenomenon because it's become from the developer side a little bit, but a lot of ops people love Kubernetes. It's really more of an ops thing. You mentioned OpenStack earlier. Kubernetes kind of came out of that open stack. We need an orchestration and then containers had a good shot with, with Docker. They re pivoted the company. Now they're all in an open source. So you got containers booming and Kubernetes as a new layer there. What's the, what's the take on that? What does that really mean? Is that a new defacto enabler? It >>Is here. It's for here for sure. Every enterprise somewhere else in the journey is going on. And you know, most companies are, 70 plus percent of them have won two, three container based, Kubernetes based applications now being rolled out. So it's very much here, it is in production at scale by many customers. And the beauty of it is, yes, open source, but the biggest gating factor is the skill set. And that's where we have a phenomenal engineering team, right? So it's, it's one thing to buy a tool >>And just be clear, you're a managed service for Kubernetes. >>We provide, provide a software platform for cloud acceleration as a service and it can run anywhere. It can run in public private. We have customers who do it in truly multi-cloud environments. It runs on the edge, it runs at this in stores are thousands of stores in a retailer. So we provide that and also for specific segments where data sovereignty and data residency are key regulatory reasons. We also un OnPrem as an air gap version. >>Can you give an example on how you guys are deploying your platform to enable a super cloud experience for your >>Customer? Right. So I'll give you two different examples. One is a very large networking company, public networking company. They have, I dunno, hundreds of products, hundreds of r and d teams that are building different, different products. And if you look at few years back, each one was doing it on a different platforms but they really needed to bring the agility and they worked with us now over three years where we are their build test dev pro platform where all their products are built on, right? And it has dramatically increased their agility to release new products. Number two, it actually is a light out operation. In fact the customer says like, like the Maytag service person cuz we provide it as a service and it barely takes one or two people to maintain it for them. >>So it's kinda like an SRE vibe. One person managing a >>Large 4,000 engineers building infrastructure >>On their tools, >>Whatever they want on their tools. They're using whatever app development tools they use, but they use our platform. >>What benefits are they seeing? Are they seeing speed? >>Speed, definitely. Okay. Definitely they're speeding. Speed uniformity because now they're building able to build, so their customers who are using product A and product B are seeing a similar set of tools that are being used. >>So a big problem that's coming outta this super cloud event that we're, we're seeing and we've heard it all here, ops and security teams cuz they're kind of too part of one theme, but ops and security specifically need to catch up speed wise. Are you delivering that value to ops and security? Right. >>So we, we work with ops and security teams and infrastructure teams and we layer on top of that. We have like a platform team. If you think about it, depending on where you have data centers, where you have infrastructure, you have multiple teams, okay, but you need a unified platform. Who's your buyer? Our buyer is usually, you know, the product divisions of companies that are looking at or the CTO would be a buyer for us functionally cio definitely. So it it's, it's somewhere in the DevOps to infrastructure. But the ideal one we are beginning to see now many large corporations are really looking at it as a platform and saying we have a platform group on which any app can be developed and it is run on any infrastructure. So the platform engineering teams, >>You working two sides of that coin. You've got the dev side and then >>And then infrastructure >>Side side, okay. >>Another customer like give you an example, which I would say is kind of the edge of the store. So they have thousands of stores. Retail, retail, you know food retailer, right? They have thousands of stores that are on the globe, 50,000, 60,000. And they really want to enhance the customer experience that happens when you either order the product or go into the store and pick up your product or buy or browse or sit there. They have applications that were written in the nineties and then they have very modern AIML applications today. They want something that will not have to send an IT person to install a rack in the store or they can't move everything to the cloud because the store operations has to be local. The menu changes based on, It's a classic edge. It's classic edge. Yeah. Right. They can't send it people to go install rack access servers then they can't sell software people to go install the software and any change you wanna put through that, you know, truck roll. So they've been working with us where all they do is they ship, depending on the size of the store, one or two or three little servers with instructions that >>You, you say little servers like how big one like a net box box, like a small little >>Box and all the person in the store has to do like what you and I do at home and we get a, you know, a router is connect the power, connect the internet and turn the switch on. And from there we pick it up. >>Yep. >>We provide the operating system, everything and then the applications are put on it. And so that dramatically brings the velocity for them. They manage >>Thousands of them. True plug and play >>Two, plug and play thousands of stores. They manage it centrally. We do it for them, right? So, so that's another example where on the edge then we have some customers who have both a large private presence and one of the public clouds. Okay. But they want to have the same platform layer of orchestration and management that they can use regardless of the location. So >>You guys got some success. Congratulations. Got some traction there. It's awesome. The question I want to ask you is that's come up is what is truly cloud native? Cuz there's lift and shift of the cloud >>That's not cloud native. >>Then there's cloud native. Cloud native seems to be the driver for the super cloud. How do you talk to customers? How do you explain when someone says what's cloud native, what isn't cloud native? >>Right. Look, I think first of all, the best place to look at what is the definition and what are the attributes and characteristics of what is truly a cloud native, is CNC foundation. And I think it's very well documented where you, well >>Con of course Detroit's >>Coming here, so, so it's already there, right? So, so we follow that very closely, right? I think just lifting and shifting your 20 year old application onto a data center somewhere is not cloud native. Okay? You can't put to cloud native, you have to rewrite and redevelop your application and business logic using modern tools. Hopefully more open source and, and I think that's what Cloudnative is and we are seeing a lot of our customers in that journey. Now everybody wants to be cloudnative, but it's not that easy, okay? Because it's, I think it's first of all, skill set is very important. Uniformity of tools that there's so many tools there. Thousands and thousands of tools you could spend your time figuring out which tool to use. Okay? So I think the complexities there, but the business benefits of agility and uniformity and customer experience are truly them. >>And I'll give you an example. I don't know how clear native they are, right? And they're not a customer of ours, but you order pizzas, you do, right? If you just watch the pizza industry, how dominoes actually increase their share and mind share and wallet share was not because they were making better pizzas or not, I don't know anything about that, but the whole experience of how you order, how you watch what's happening, how it's delivered. There were a pioneer in it. To me, those are the kinds of customer experiences that cloud native can provide. >>Being agility and having that flow to the application changes what the expectations of the, for the customer. >>Customer, the customer's expectations change, right? Once you get used to a better customer experience, you learn >>Best car. To wrap it up, I wanna just get your perspective again. One of the benefits of chatting with you here and having you part of the Super Cloud 22 is you've seen many cycles, you have a lot of insights. I want to ask you, given your career where you've been and what you've done and now the CEO platform nine, how would you compare what's happening now with other inflection points in the industry? And you've been, again, you've been an entrepreneur, you sold your company to Oracle, you've been seeing the big companies, you've seen the different waves. What's going on right now put into context this moment in time around Super >>Cloud. Sure. I think as you said, a lot of battles. Cars being been, been in an asp, been in a realtime software company, being in large enterprise software houses and a transformation. I've been on the app side, I did the infrastructure right and then tried to build our own platforms. I've gone through all of this myself with a lot of lessons learned in there. I think this is an event which is happening now for companies to go through to become cloud native and digitalize. If I were to look back and look at some parallels of the tsunami that's going on is a couple of paddles come to me. One is, think of it, which was forced to honors like y2k. Everybody around the world had to have a plan, a strategy, and an execution for y2k. I would say the next big thing was e-commerce. I think e-commerce has been pervasive right across all industries. >>And disruptive. >>And disruptive, extremely disruptive. If you did not adapt and adapt and accelerate your e-commerce initiative, you were, it was an existence question. Yeah. I think we are at that pivotal moment now in companies trying to become digital and cloudnative that know that is what I see >>Happening there. I think that that e-commerce was interesting and I think just to riff with you on that is that it's disrupting and refactoring the business models. I think that is something that's coming out of this is that it's not just completely changing the game, it's just changing how you operate, >>How you think, and how you operate. See, if you think about the early days of eCommerce, just putting up a shopping cart didn't made you an eCommerce or an E retailer or an e e customer, right? Or so. I think it's the same thing now is I think this is a fundamental shift on how you're thinking about your business. How are you gonna operate? How are you gonna service your customers? I think it requires that just lift and shift is not gonna work. >>Mascar, thank you for coming on, spending the time to come in and share with our community and being part of Super Cloud 22. We really appreciate, we're gonna keep this open. We're gonna keep this conversation going even after the event, to open up and look at the structural changes happening now and continue to look at it in the open in the community. And we're gonna keep this going for, for a long, long time as we get answers to the problems that customers are looking for with cloud cloud computing. I'm Sean Feer with Super Cloud 22 in the Cube. Thanks for watching. >>Thank you. Thank you, John. >>Hello. Welcome back. This is the end of our program, our special presentation with Platform nine on cloud native at scale, enabling the super cloud. We're continuing the theme here. You heard the interviews Super Cloud and its challenges, new opportunities around the solutions around like Platform nine and others with Arlon. This is really about the edge situations on the internet and managing the edge multiple regions, avoiding vendor lock in. This is what this new super cloud is all about. The business consequences we heard and and the wide ranging conversations around what it means for open source and the complexity problem all being solved. I hope you enjoyed this program. There's a lot of moving pieces and things to configure with cloud native install, all making it easier for you here with Super Cloud and of course Platform nine contributing to that. Thank you for watching.

Published Date : Oct 18 2022

SUMMARY :

See you soon. but kind of the same as the first generation. And so you gotta rougher and IT kind of coming together, but you also got this idea of regions, So I think, you know, in in the context of this, the, this, Can you scope the scale of the problem? the problem that the scale creates, you know, there's various problems, but I think one, And that is just, you know, one example of an issue that happens. Can you share your reaction to that and how you see this playing out? which is, you know, you have your perfectly written code that is operating just fine on your And so as you give that change to then run at your production edge location, And you guys have a solution you're launching. So what our LA you do in a But again, it gets, you know, processed in a standardized way. So keeping it smooth, the assembly on things are flowing. Because developers, you know, there is, developers are responsible for one picture of So the DevOps is the cloud needed developer's. And so Arlon addresses that problem at the heart of it, and it does that using existing So I'm assuming you have that thought through, can you share open source and commercial relationship? products starting all the way with fision, which was a serverless product, you know, that we had built to buy, but also actually kind of date the application, if you will. I think one is just, you know, this, this, this cloud native space is so vast I have to ask you now, let's get into what's in it for the customer. And so, and there's multiple, you know, enterprises that we talk to, shared that this is a major challenge we have today because we have, you know, I'm an enterprise, I got tight, you know, I love the open source trying And that's where, you know, platform line has a role to play, which is when been some of the feedback? And the customer said, If you had it today, I would've purchased it. So next question is, what is the solution to the customer? So I think, you know, one of the core tenets of Platform nine has always been been that And now they have management challenges. Especially operationalizing the clusters, whether they want to kind of reset everything and remove things around and And And arlon by the way, also helps in that direction, but you also need I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? And so this really gives them, you know, the right tooling for that. So this is actually a great kind of relevant point, you know, as cloud becomes more scalable, So these are the kinds of challenges, and those are the pain points, which is, you know, if you're looking to to be supporting the business, you know, the back office and the maybe terminals and that, you know, that the, the technology that's, you know, that's gonna drive your top line is If all the things happen the way we want 'em to happen, The magic wand, the magic dust, he's running that at a nimble, nimble team size of at the most, Just taking care of the CIO doesn't exist. Thank you for your time. Thanks for Great to see you and great to see congratulations on the success And now the Kubernetes layer that we've been working on for years is Exactly. you know, the new Arlon, our, our lawn, and you guys just launched the So I think, I think I'm, I'm glad you mentioned it, everybody or most people know about infrastructures I mean now with open source so popular, you don't have to have to write a lot of code, you know, the emergence of systems and layers to help you manage that complexity is becoming That's, I wrote a LinkedIn post today was comments about, you know, hey, enterprise is a new breed. you know, you think you have things under control, but some people from various teams will make changes here in the industry technical, how would you look at the super cloud trend that's emerging? the way I interpret that is, you know, clouds and infrastructure, It's IBM's, you know, connection for the internet at the, this layer that has simplified, you know, computing and, the physics and the, the atoms, the pro, you know, this is where the innovation, the state that you want and more consistency. the DevOps engineers, they get a a ways to So how do you guys look at the workload native ecosystem like K native, where you can express your application in more at It's kinda like an EC two instance, spin up a cluster. And then you can stamp out your app, your applications and your clusters and manage them And it's like a playbook. You just tell the system what you want and then You need edge's code, but then you can configure the code by just saying do it. And that is just complexity for the people operating this or configuring this, What do you expect to see at Coan this year? If you look at a stack necessary for hosting We would to joke we, you know, about, about the dream. So the successor to Kubernetes, you know, I don't Yeah, I think the, the reigning in the chaos is key, you know, Now we have now visibility into But roughly speaking when we say, you know, They have some SaaS apps, but mostly it's the ecosystem. you know, that they're, they will keep catering to, they, they will continue to find terms of, you know, the the new risk and arm ecosystems it's, it's hardware and he got software and you got middleware and he kind over, Great to have you on. What's interest thing about what you guys are doing at Platform nine? clouds, you know, the application world is moving very fast in trying to Patrick, we were talking before we came on stage here about your background and we were gonna talk about the glory days in So you saw that whole growth. So I think things are in And if you look at the tech trends, GDPs down, but not tech. Cuz the pandemic showed everyone digital transformation is here and more And modernizing Infras infrastructure is not you know, more, more dynamic, more real. So it's you know, multi-cloud. So you got containers And you know, most companies are, 70 plus percent of them have won two, It runs on the edge, And if you look at few years back, each one was doing So it's kinda like an SRE vibe. Whatever they want on their tools. to build, so their customers who are using product A and product B are seeing a similar set Are you delivering that value to ops and security? Our buyer is usually, you know, the product divisions of companies You've got the dev side and then that happens when you either order the product or go into the store and pick up your product or like what you and I do at home and we get a, you know, a router is And so that dramatically brings the velocity for them. Thousands of them. of the public clouds. The question I want to ask you is that's How do you explain when someone says what's cloud native, what isn't cloud native? is the definition and what are the attributes and characteristics of what is truly a cloud native, Thousands and thousands of tools you could spend your time figuring out which I don't know anything about that, but the whole experience of how you order, Being agility and having that flow to the application changes what the expectations of One of the benefits of chatting with you here and been on the app side, I did the infrastructure right and then tried to build our own If you did not adapt and adapt and accelerate I think that that e-commerce was interesting and I think just to riff with you on that is that it's disrupting How are you gonna service your Mascar, thank you for coming on, spending the time to come in and share with our community and being part of Thank you, John. I hope you enjoyed this program.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
DavePERSON

0.99+

AmazonORGANIZATION

0.99+

PatrickPERSON

0.99+

Paul MorritzPERSON

0.99+

VascarPERSON

0.99+

Adrian KaroPERSON

0.99+

Sean FeerPERSON

0.99+

2000DATE

0.99+

John FurryPERSON

0.99+

oneQUANTITY

0.99+

IBMORGANIZATION

0.99+

50,000QUANTITY

0.99+

JohnPERSON

0.99+

twoQUANTITY

0.99+

John FurrPERSON

0.99+

Vascar GordePERSON

0.99+

John FurPERSON

0.99+

Meor Ma MakowskiPERSON

0.99+

Silicon ValleyLOCATION

0.99+

MakoskiPERSON

0.99+

thousandsQUANTITY

0.99+

14 yearsQUANTITY

0.99+

OracleORGANIZATION

0.99+

12 yearsQUANTITY

0.99+

2001DATE

0.99+

GortPERSON

0.99+

MascarPERSON

0.99+

AWSORGANIZATION

0.99+

Mariana TesselPERSON

0.99+

GoogleORGANIZATION

0.99+

hundredsQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

TwoQUANTITY

0.99+

OneQUANTITY

0.99+

millionsQUANTITY

0.99+

two partsQUANTITY

0.99+

tensQUANTITY

0.99+

LinkedInORGANIZATION

0.99+

next yearDATE

0.99+

ArlonORGANIZATION

0.99+

todayDATE

0.99+

KubernetesTITLE

0.99+

eight years agoDATE

0.99+

one siteQUANTITY

0.99+

ThousandsQUANTITY

0.99+

second partQUANTITY

0.99+

bothQUANTITY

0.99+

each componentQUANTITY

0.99+

AMDORGANIZATION

0.99+

Office 365TITLE

0.99+

one unitQUANTITY

0.99+

one flavorQUANTITY

0.99+

4,000 engineersQUANTITY

0.99+

first generationQUANTITY

0.99+

Super CloudTITLE

0.99+

Dave AntePERSON

0.99+

firstQUANTITY

0.99+

VicPERSON

0.99+

two sidesQUANTITY

0.99+

VMwareORGANIZATION

0.99+

two thousandsQUANTITY

0.99+

BickleyPERSON

0.98+

tens of thousands of nodesQUANTITY

0.98+

AzureTITLE

0.98+

two peopleQUANTITY

0.98+

each siteQUANTITY

0.98+

KubernetesPERSON

0.98+

super cloudTITLE

0.98+

One personQUANTITY

0.98+

two factorsQUANTITY

0.98+

ArlanORGANIZATION

0.98+

Bich Le, Platform9 | Cloud Native at Scale


 

foreign [Music] to the special presentation of cloud native at scale the cube and Platform 9 special presentation going in and digging into the next generation super cloud infrastructure as code and the future of application development we're here with dick Lee who's the Chief Architect and co-founder of platform nine pick great to see you Cube alumni we we met at openstack event in about eight years ago or later earlier uh when openstack was going great to see you and great congratulations on the success of platform nine thank you very much yeah you guys been at this for a while and this is really the the Year we're seeing the the crossover of kubernetes because of what happens with containers everyone now was realized and you've seen what docker's doing with the new Docker the open source Docker now just the success of containerization and now the kubernetes layer that we've been working on for years is coming bearing fruit this is huge exactly yes and so as infrastructure as code comes in we talked to baskar talking about super cloud I met her about you know the new Arlo our our lawn um you guys just launched the infrastructure's code is going to another level and it's always been devops infrastructure is code that's been the ethos that's been like from day one developers just code I think you saw the rise of serverless and you see now multi-cloud or on the horizon connect the dots for us what is the state of infrastructure as code today so I think I think um I'm glad you mentioned it everybody or most people know about infrastructure as code but with kubernetes I think that project has evolved at the concept even further and these days it's um infrastructure as configuration right so which is an evolution of infrastructure as code so instead of telling the system here's how I want my infrastructure by telling it you know do step a b c and d uh instead with kubernetes you can describe your desired State declaratively using things called manifest resources and then the system kind of magically figures it out and tries to converge the state towards the one that you specify so I think it's it's a even better version of infrastructure as code yeah and that really means it's developer just accessing resources okay that declare okay give me some compute stand me up some turn the lights on turn them off turn them on that's kind of where we see this going and I like the configuration piece some people say composability I mean now with open source so popular you don't have to have to write a lot of code this code being developed and so it's integration it's configuration these are areas that we're starting to see computer science principles around automation machine learning assisting open source because you've got a lot of code that's what you're hearing software supply chain issues so infrastructure as code has to factor in these new Dynamics can you share your opinion on these new dynamics of as open source grows the glue layers the configurations the integration what are the core issues I think one of the major core issues is with all that power comes complexity right so um You know despite its expressive Power Systems like kubernetes and declarative apis let you express a lot of complicated and complex Stacks right but you're dealing with um hundreds if not thousands of these yaml files or resources and so I think you know the emergence of systems and layers to help you manage that complexity is becoming a key Challenge and opportunity in this space I wrote a LinkedIn post today those comments about you know hey Enterprise is the new breed the trend of SAS companies moving uh our consumer consumer-like thinking into the Enterprise has been happening for a long time but now more than ever you're seeing it the old way used to be solve complexity with more complexity and then lock the customer in now with open source it's speed simplification and integration right these are the new Dynam power dynamics for developers so as companies are starting to now deploy and look at kubernetes what are the things that need to be in place because you have some I won't say technical debt but maybe some shortcuts some scripts here that make it look like infrastructure as code people have done some things to simulate or or make infrastructures code happen yes but to do it at scale yes is harder what's your take on this what's your view it's hard because there's a proliferation of of methods tools Technologies so for example today it's a very common for devops and platform engineering tools I mean sorry teams to have to deploy a large number of kubernetes clusters but then apply the applications and configurations on top of those clusters and they're using a wide range of tools to do this right for example maybe ansible or terraform or bash scripts to bring up the infrastructure and then the Clusters and then they may use a different set of tools such as Argo CD or other tools to apply configurations and applications on top of the Clusters so you have this sprawl of tools you also you also have this sprawl of configurations and files because the more objects you're dealing with the more resources you have to manage and there's a risk of drift that people call that where you know you think you have things under control but some people from various teams will make changes here and there and then before the end of the day systems break and you have no idea of tracking them so I think there's real need to kind of unify simplify and try to solve these problems using a smaller more unified set of tools and methodology apologies and that's something that we try to do with this new project Arlon yeah so so we're going to get to our line in a second I want to get to the yr lawn you guys announced that at argocon which was put on here in Silicon Valley at the community meeting by Intuit they had their own little day over their headquarters but before we get there um Bhaskar your CEO came on and he talked about super cloud at our inaugural event what's your definition of super cloud if you had to kind of explain that to someone at a cocktail party or someone in the industry technical how would you look at the super cloud Trend that's emerging has become a thing what's your what would be your contribution to that definition or the narrative well it's it's uh funny because I've actually heard of the term for the first time today speaking to you earlier today but I think based on what you said I I already get kind of some of the the gist and the the main Concepts it seems like uh super cloud the way I interpret that is you know um clouds and infrastructure um programmable infrastructure all of those things are becoming commodity in a way and everyone's got their own flavor but there's a real opportunity for people to solve real business Problems by perhaps trying to abstract away you know all of those various implementations and then building uh um better abstractions that are perhaps business or application specific to help companies and businesses solve real business problems yeah I remember it's a great great definition I remember not to date myself but back in the old days you know IBM had its proprietary Network operating system so the deck for the mini computer vintage deck net and sna respectively um but tcpip came out of the OSI the open systems interconnect and remember ethernet beat token ring out so not to get all nerdy for all the young kids out there look just look up token ring you'll see if I never heard of it it's IBM's you know a connection for the internet at the layer two is Amazon the ethernet right so if TCP could be the kubernetes and containers abstraction that made the industry completely change at that point in history so at every major inflection point where there's been serious industry change and wealth creation and business value there's been an abstraction Yes somewhere yes what's your reaction to that I think um this is um I think a saying that's been heard many times in this industry and I forgot who originated it but um I think the saying goes like there's no problem that can't be solved with another layer of indirection right and we've seen this over and over and over again where Amazon and its peers have inserted this layer that has simplified you know Computing and infrastructure management and I believe this trend is going to continue right the next set of problems are going to be solved with these insertions of additional abstraction layers I think that that's really a yeah it's going to continue it's interesting just when I wrote another post today on LinkedIn called the Silicon Wars AMD stock is down arm has been on the rise we've been reporting for many years now that arm's going to be huge it has become true if you look at the success of the infrastructure as a service layer across the clouds Azure AWS Amazon's clearly way ahead of everybody the stuff that they're doing with the Silicon and the physics and the atoms the pro you know this is where the Innovation they're going so deep and so strong at is the more that they get that gets gone they have more performance so if you're an app developer wouldn't you want the best performance and you'd want to have the best abstraction layer that gives you the most ability to do infrastructures code or infrastructure for configuration for provisioning for managing services and you're seeing that today with service meshes a lot of action going on in the service mesh area in this community of kubecon which we'll be covering so that brings up the whole what's next you guys just announced our lawn at argocon which came out of Intuit we've had Mariana Tesla out our supercloud event she's a CTO you know they're all in the cloud so there contributed that project where did Arlon come from what was the origination what's the purpose why our lawn why this announcement yeah so um the the Inception of the project this was the result of um us realizing that problem that we spoke about earlier which is complexity right with all of this these clouds these infrastructure all the variations around and you know compute storage networks and um the proliferation of tools we talked about the ansibles and terraforms and kubernetes itself you can think of that as another tool right we saw a need to solve that complexity problem and especially for people and users who use kubernetes at scale so when you have you know hundreds of clusters thousands of applications thousands of users spread out over many many locations there there needs to be a system that helps simplify that management right so that means fewer tools more expressive ways of describing the state that you want and more consistency and and that's why um you know we built um Arlon and we built it um recognizing that many of these problems or sub problems have already been solved so Arlon doesn't try to reinvent the wheel it instead rests on the shoulders of several Giants right so for example kubernetes is one building block get Ops and Argo CD is another one which provides a very structured way of applying configuration and then we have projects like cluster API and cross-plane which provide apis for describing infrastructure so Arlon takes all of those building blocks and um builds a thin layer which gives users a very expressive way of defining configuration and desired state so that's that's kind of the Inception and what's the benefit of that what does that give what does that give the developer the user in this case the developers the the platform engineer team members the devops engineers they uh get a ways to provision not just infrastructure and clusters but also applications and configurations they get away a system for provisioning configuring deploying and doing life cycle Management in a in a much simpler way okay especially as I said if you're dealing with a large number of applications so it's like an operating fabric if you will yes for them okay so let's get into what that means for up above and below the the abstraction or thin layer below is the infrastructure we talked a lot about what's going on below that yeah above our workloads at the end of the day and I talked to cxos and um I.T folks that are now devops Engineers they care about the workloads and they want the infrastructure's code to work they want to spend their time getting in the weeds figuring out what happened when someone made a push that that happened or something happened they need observability and they need to to know that it's working that's right and as my workloads running if effectively so how do you guys look at the workload side because now you have multiple workloads on these fabric right so workloads so kubernetes has defined kind of a standard way to describe workloads and you can you know tell kubernetes I want to run this container this particular way or you can use other projects that are in the kubernetes cloud native ecosystem like k-native where you can express your application in more at a higher level right but what's also happening is in addition to the workloads devops and platform engineering teams they need to very often deploy the applications with the Clusters themselves clusters are becoming this commodity it's it's becoming this um host for the application and it kind of comes bundled with it in many cases it's like an appliance right so devops teams have to provision clusters at a really incredible rate and they need to tear them down clusters are becoming more extremely like an ec2 instance spin up a cluster we've heard people used words like that that's right and before Arlon you kind of had to do all of that using a different set of tools as I explained so with our own you can kind of express everything together you can say I want a cluster with a health monitoring stack and a logging stack and this Ingress controller and I want these applications and these security policies you can describe all of that using something we call the profile and then you can stamp out your app your applications and your clusters and manage them in a very essentially standard that creates a mechanism it's standardized declarative kind of configurations and it's like a Playbook you just deploy it now what's this between say a script like I have scripts I can just automate Scripts or yes this is where that um declarative API and um infrastructures configuration comes in right because scripts yes you can automate scripts but the order in which they run matters right they can break things can break in the middle and um and sometimes you need to debug them whereas the declarative way is much more expressive and Powerful you just tell the system what you want and then the system kind of uh figures it out and there are these things called controllers which will in the background reconcile all the state to converge towards your desire to say it's a much more powerful expressive and reliable way of getting things done so infrastructure as configuration is built kind of on it's a superset of infrastructures code because different Evolution you need Edge restaurant's code but then you can configure The Code by just saying do it you're basically declaring and saying go go do that that's right okay so all right so Cloud native at scale take me through your vision of what that means someone says hey what is cloud native at scale mean what's success look like how does it roll out in the future as you that future next couple years I mean people are now starting to figure out okay it's not as easy as it sounds kubernetes has value we're going to hear this year kubecon a lot of this what is cloud native at scale mean yeah there are different interpretations but if you ask me when people think of scale they think of a large number of deployments right geographies many you know supporting thousands or tens or millions of users there's that aspect to scale there's also um an equally important aspect of scale which is also something that we try to address with Arlon and that is just complexity for the people operating this or configuring this right so in order to describe that desired State and in order to perform things like maybe upgrades or updates on a very large scale you want the humans behind that to be able to express and direct the system to do that in in relatively simple terms right and so we want uh the tools and the abstractions and the mechanisms available to the user to be as powerful but as simple as possible so there's I think there's going to be a number and there have been a number of cncf and Cloud native projects that are trying to attack that complexity problem as well and Arlon kind of Falls in in that category okay so I'll put you on the spot where I've got kubecon coming up and obviously this will be shipping this seg series out before what do you expect to see at kubecon issue it's the big story this year what's the what's the most important thing happening is it in the open source community and also within a lot of the the people jockeying for leadership I know there's a lot of projects and still there's some white space on the overall systems map about the different areas get runtime and observability in all these different areas what's the where's the action where's the smoke where's the fire where's the piece where's the tension yeah so uh I think uh one thing that has been happening over the past couple of coupons and I expect to continue and and that is uh the the word on the street is kubernetes getting boring right which is good right or I mean simple well um well maybe yeah invisible no drama right so so the rate of change of the kubernetes features and and all that has slowed but in a positive way um but um there's still a general sentiment and feeling that there's just too much stuff if you look at a stack necessary for uh hosting applications based on kubernetes they're just still too many moving Parts too many uh components right too much complexity I go I keep going back to the complexity problem so I expect kubecon and all the vendors and the players and the startups and the people there to continue to focus on that complexity problem and introduce a further simplifications uh to to the stack yeah Vic you've had a storied career VMware over decades with them uh obviously 12 years for the 14 years or something like that big number co-founder here platform I think it's been around for a while at this game uh we man we'll talk about openstack that project you we interviewed at one of their events so openstack was the beginning of that this new Revolution I remember the early days was it wasn't supposed to be an alternative to Amazon but it was a way to do more cloud cloud native I think we had a Colorado team at that time I mean it's a joke we you know about about the dream it's happening now now at platform nine you guys have been doing this for a while what's the what are you most excited about as the Chief Architect what did you guys double down on what did you guys pivot from or two did you do any pivots did you extend out certain areas because you guys are in a good position right now a lot of DNA in Cloud native um what are you most excited about and what is platform nine bring to the table for customers and for people in the industry watching this yeah so I think our mission really hasn't changed over the years right it's been always about taking complex open source software because open source software it's powerful it solves new problems you know every year and you have new things coming out all the time right openstack was an example within kubernetes took the World by storm but there's always that complexity of you know just configuring it deploying it running it operating it and our mission has always been that we will take all that complexity and just make it you know easy for users to consume regardless of the technology right so the successor to kubernetes you know I don't have a crystal ball but you know you have some indications that people are coming up of new and simpler ways of running applications there are many projects around there who knows what's coming uh next year or the year after that but platform will a Platform 9 will be there and we will you know take the Innovations from the the community we will contribute our own Innovations and make all of those things uh very consumable to customers simpler faster cheaper always a good business model technically to make that happen yeah I think the reigning in the chaos is key you know now we have now visibility into the scale final question before we depart you know this segment um what is that scale how many clusters do you see that would be a high a watermark for an at scale conversation around an Enterprise um is it workloads we're looking at or or clusters how would you yeah how would you describe that and when people try to squint through and evaluate what's a scale what's the at scale kind of threshold yeah and the number of clusters doesn't tell the whole story because clusters can be small in terms of the number of nodes or they can be large but roughly speaking when we say you know large-scale cluster deployments we're talking about um maybe a hundreds uh two thousands yeah and final final question what's the role of the hyperscalers you've got AWS continuing to do well but they got their core I asked they got a pass they're not too too much putting assess out there they have some SAS apps but mostly it's the ecosystem they have marketplaces doing over two billion dollars billions of transactions a year um and and it's just like just sitting there it has really they're now innovating on it but that's going to change ecosystems what's the role the cloud play and the cloud native at scale the the hyperscale yeah Abus Azure Google you mean from a business they have their own interests that you know that they're uh they will keep catering to they they will continue to find ways to lock their users into their ecosystem of uh services and and apis um so I don't think that's going to change right they're just going to keep well they got great uh performance I mean from a from a hardware standpoint yes that's going to be key right yes I think the uh the move from x86 being the dominant away and platform to run workloads is changing right that that that and I think the the hyperscalers really want to be in the game in terms of you know the the new risk and arm ecosystems and platforms yeah that joking aside Paul maritz when he was the CEO of VMware when he took over once said I remember our first year doing the cube the cloud is one big distributed computer it's it's hardware and you've got software and you got middleware and uh he kind of over these kind of tongue-in-cheek but really you're talking about large compute and sets of services that is essentially a distributed computer yes exactly it's we're back in the same game Vic thank you for coming on the segment appreciate your time this is uh Cloud native at scale special presentation with platform nine really unpacking super cloud rlon open source and how to run large-scale applications uh on the cloud cloud native philadelph4 developers and John Furrier with the cube thanks for watching and we'll stay tuned for another great segment coming right up foreign [Music]

Published Date : Oct 12 2022

SUMMARY :

the successor to kubernetes you know I

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Paul maritzPERSON

0.99+

IBMORGANIZATION

0.99+

12 yearsQUANTITY

0.99+

thousandsQUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

AmazonORGANIZATION

0.99+

14 yearsQUANTITY

0.99+

tensQUANTITY

0.99+

millionsQUANTITY

0.99+

hundredsQUANTITY

0.99+

AWSORGANIZATION

0.99+

dick LeePERSON

0.99+

John FurrierPERSON

0.99+

first yearQUANTITY

0.98+

VMwareORGANIZATION

0.98+

todayDATE

0.98+

thousands of usersQUANTITY

0.98+

thousands of applicationsQUANTITY

0.98+

twoQUANTITY

0.98+

Mariana TeslaPERSON

0.98+

over two billion dollarsQUANTITY

0.98+

two thousandsQUANTITY

0.98+

next yearDATE

0.98+

LinkedInORGANIZATION

0.98+

openstackORGANIZATION

0.97+

argoconORGANIZATION

0.97+

this yearDATE

0.96+

ArlonORGANIZATION

0.96+

kubeconORGANIZATION

0.96+

ColoradoLOCATION

0.95+

first timeQUANTITY

0.95+

oneQUANTITY

0.95+

IntuitORGANIZATION

0.95+

AMDORGANIZATION

0.94+

baskarPERSON

0.94+

earlier todayDATE

0.93+

one thingQUANTITY

0.92+

DockerTITLE

0.91+

GoogleORGANIZATION

0.91+

a lot of projectsQUANTITY

0.91+

hundreds of clustersQUANTITY

0.91+

AzureTITLE

0.9+

Platform9ORGANIZATION

0.88+

platform nineORGANIZATION

0.87+

CubeORGANIZATION

0.87+

about eight years agoDATE

0.84+

openstackEVENT

0.83+

next couple yearsDATE

0.8+

billions of transactions a yearQUANTITY

0.8+

Platform 9TITLE

0.8+

Platform 9ORGANIZATION

0.8+

platform nineORGANIZATION

0.79+

ArgoTITLE

0.78+

ArloORGANIZATION

0.75+

ec2TITLE

0.72+

over decadesQUANTITY

0.72+

cxosORGANIZATION

0.71+

nineQUANTITY

0.69+

one big distributed computerQUANTITY

0.68+

x86TITLE

0.67+

yearsQUANTITY

0.67+

BhaskarPERSON

0.64+

IngressORGANIZATION

0.63+

dockerTITLE

0.62+

Cloud Native atTITLE

0.62+

laterDATE

0.62+

yearQUANTITY

0.62+

PlaybookTITLE

0.61+

ArlonTITLE

0.57+

CEOPERSON

0.57+

Cloud native at scale: A Supercloud conversation with Madhura Maskasky, Platform9


 

(upbeat music) >> Hello, and welcome to theCUBE here in Palo Alto, California, for a special program on Cloud Native at Scale, Enabling Next Generation Cloud or Supercloud for Modern Application Cloud Native Developers. I'm John Furrier, host of theCUBE. My pleasure to have here, me Madhura Maskasky, Co-founder and VP of Product at Platform9. Thanks for coming in today for this cloud native at scale conversation. >> Thank you for having me. >> So cloud native at scale, something that we're talking about because we're seeing the next level of mainstream success of containers, Kubernetes and cloud native develop, basically DevOps in the CI/CD pipeline. It's changing the landscape of infrastructure as code. It's accelerating the value proposition. And the Supercloud as we call it, has been getting a lot of traction because this next generation cloud is looking a lot different, but kind of the same as the first generation. What's your view on Supercloud as it fits to cloud native, it scales up. >> Yeah, you know, I think what's interesting. And I think the reason why Supercloud is a really good and a really fit term for this. And I think I know my CEO was chatting with you as well, and he was mentioning this as well, but I think there needs to be a different term than just multicloud or cloud. And the reason is because as cloud native and cloud deployments have scaled, I think we've reached a point now where instead of having the traditional data center style model, where you have a few large distributions of infrastructure and workload at a few locations, I think the model's kind of flipped around, right? Where you have a large number of micro-sites. These micro-sites could be your public cloud deployment, your private OnPrem infrastructure deployment, or it could be your Edge environment, right? And every single enterprise, every single industry is moving in that direction. And so you got to refer that with a terminology that indicates the scale and complexity of it. And so I think Supercloud is an appropriate term for that. >> So you brought a couple things I want to dig into. You mentioned Edge nodes. We're seeing not only Edge nodes being the next kind of area of innovation, mainly because it's just popping up everywhere. And that's just the beginning, wouldn't even know what's around the corner. You got buildings, you got IoT, OT and IT kind of coming together, but you also got this idea of regions. Global infrastructure is a big part of it. I just saw some news around CloudFlare shutting down a site here. There's policies being made at scale, these new challenges there. Can you share, because you got to have Edge. So hybrid cloud is a winning formula. Everybody knows that, it's a steady state. But across multiple clouds brings in this new un-engineered area yet, It hasn't been done yet, Spanning Clouds. People say they're doing it, but you start to see the toe in the water. It's happening, it's going to happen. It's only going to get accelerated with the Edge and beyond globally. So I have to ask you, what is the technical challenges in doing this? Because there's something, business consequences as well, but there are technical challenges. Can you share your view on what the technical challenges are for the Supercloud across multiple edges and regions? >> Yeah, absolutely. So I think, you know, in the context of this term of Supercloud, I think it's sometimes easier to visualize things in terms of two axis, right? I think on one end you can think of the scale in terms of just pure number of nodes that you have deployed, a number of clusters in the Kubernetes space. And then on the other axis, you would have your distribution factor, right? Which is, do you have these tens of thousands of nodes in one site, or do you have them distributed across tens of thousands of sites, with one node at each site, right? And if you have just one flare of this, there is enough complexity, but potentially manageable. But when you are expanding on both these axis, you really get to a point where that scale really needs some well thought out, well structured solutions to address it, right? A combination of homegrown tooling, along with your, you know, favorite distribution of Kubernetes is not a strategy that can help you in this environment. It may help you when you have one of this, or when your scale is not at the level. >> Can you scope the complexity? Because, I mean, I hear a lot of moving parts going on there. The technology is also getting better. We're seeing cloud native become successful. There's a lot to configure. There's lot to install. Can you scope the scale of the problem because we're about at scale challenges here. >> Yeah absolutely, and I think I like to call it, you know, the problem that the scale creates, there's various problems. But I think one problem, one way to think about it is it works on my cluster problem, right? So, you know, I come from engineering background and there's a famous saying between engineers and QA, and the support folks, right. Which is, it works on my laptop, which is I tested this change, everything was fantastic. It worked flawlessly on my machine. On production, it's not working. The exact same problem now happens in these distributed environments, but at massive scale, right. Which is that, you know, developers test their applications, et cetera within these sanctity of their sandbox environments. But once you expose that change in the wild world of your production deployment, right. And the production deployment could be going at the radio cell tower at the Edge location where a cluster is running there. Or it could be sending, you know, these applications and having them run at my customer site, where they might not have configured that cluster exactly the same way as I configured it. Or they configured the cluster right. But maybe they didn't deploy the security policies, or they didn't deploy the other infrastructure plugins that my app relies on. All of these various factors add their own layer of complexity. And there really isn't a simple way to solve that today. And that is just, you know, one example of an issue that happens. I think another, you know, whole new ballgame of issues come in the context of security, right? Because when you are deploying applications at scale, in a distributed manner, you got to make sure someone's job is on the line to ensure that the right security policies are enforced regardless of that scale factor. So I think that's another example of problems that occur. >> Okay, so I have to ask about scale, because there are a lot of multiple steps involved when you see the success of cloud native, you know, you see some experimentation, they set up a cluster, say it's containers and Kubernetes. And then you say, okay, we got this. We configure it. And then they do it again, and again, they call it day two. Some people call it day one, day two operation, whatever you call it. Once you get past the first initial thing, then you got to scale it. Then you're seeing security breaches. You're seeing configuration errors. This seems to be where the hotspot is, in when companies transition from, I got this, to oh no, it's harder than I thought at scale. Can you share your reaction to that and how you see this playing out? >> Yeah, so, you know, I think it's interesting. There's multiple problems that occur when the two factors of scale, as we talked about, start expanding. I think one of them is what I like to call the, it works fine on my cluster problem, which is back in, when I was a developer, we used to call this, it works on my laptop problem. Which is, you know, you have your perfectly written code that is operating just fine on your machine, your sandbox environment. But the moment it runs production, it comes back with P 0s and POS from support teams, et cetera. And those issues can be really difficult to try us, right. And so in the Kubernetes environment, this problem kind of multi-folds. It goes, you know, escalates to a higher degree because you have your sandbox developer environments, they have their clusters, and things work perfectly fine in those clusters, because these clusters are typically handcrafted or a combination of some scripting and handcrafting. And so as you give that change to then run at your production Edge location, like say your radial cell power site, or you hand it over to a customer to run it on their cluster, they might not have configured that cluster exactly how you did, or they might not have configured some of the infrastructure plugins. And so things don't work. And when things don't work, triaging them becomes nightmarishly hard, right? It's just one of the examples of the problem. Another whole bucket of issues is security, which is, as you have these distributed clusters at scale. You got to ensure someone's job is on the line to make sure that the security policies are configured properly. >> So this is a huge problem. I love that comment. That's not happening on my system. It's the classic, you know, debugging mentality. But at scale, it's hard to do that with error prone. I can see that being a problem. And you guys have a solution you're launching, can you share what Arlon is? This new product? What is it all about? Talk about this new introduction. >> Yeah absolutely, I'm very, very excited. You know, it's one of the projects that we've been working on for some time now. Because we are very passionate about this problem and just solving problems at scale in OnPrem or in the cloud or at Edge environments. And what Arlon is, it's an open source project, and it is a tool, a Kubernetes native tool for complete end-to-end management of not just your clusters, but your clusters, all of the infrastructure that goes within and along the sites of those clusters, security policies, your middleware plugins, and finally your applications. So what Arlon lets you do in a nutshell is in a declarative way, it lets you handle the configuration and management of all of these components in at scale. >> So what's the elevator pitch simply put for what this solves in terms of the chaos you guys are reigning in, what's the bumper sticker. What did it do? >> There's a perfect analogy that I love to reference in this context, which is, think of your assembly line, you know, in a traditional, let's say an auto manufacturing factory, or et cetera, and the level of efficiency at scale that that assembly line brings, right. Arlon, and if you look at the logo we've designed, it's this funny little robot. And it's because when we think of Arlon, we think of these enterprise large scale environments, you know, sprawling at scale, creating chaos, because there isn't necessarily a well thought through, well-structured solution that's similar to an assembly line, which is taking each component, you know, addressing them, manufacturing, processing them in a standardized way, then handing to the next stage where again, it gets processed in a standardized way. And that's what Arlon really does. That's like the elevator pitch. If you have problems of scale, of managing your infrastructure, you know, that is distributed, Arlon brings the assembly line level of efficiency and consistency for those problems. >> So keeping it smooth, the assembly line, things are flowing, see CI/CD pipe-lining. So that's what you're trying to simplify that OPS piece for the developer. I mean, it's not really OPS, it's their OPS, it's coding. >> Yeah, not just developer the OPS, the operations folks as well, right. Because developers, you know, developers are responsible for one picture of that layer, which is my apps. And then maybe that middleware of applications that they interface with. But then they hand it over to someone else who's then responsible to ensure that these apps are secured properly, that they are logging, logs are being collected properly. Monitoring and observability is integrated. And so it solves problems for both those teams. >> Yeah, it's DevOps. So the DevOps is the cloud native developer. The OPS team have to kind of set policies. Is that where the declarative piece comes in? Is that why that's important? >> Absolutely, yeah. And you know, Kubernetes really introduced or elevated this declarative management, right. Because you know, Kubernetes clusters are you know your specifications of components that go in Kubernetes are defined in a declarative way. And Kubernetes always keeps that state consistent with your defined state. But when you go outside of that world of a single cluster, and when you actually talk about defining the clusters or defining everything that's around it, there really isn't a solution that does that today. And so Arlon addresses that problem at the heart of it. And it does that using existing open source, well known solutions. >> And do I want to get into the benefits, what's in it for me as the customer, developer, but I want to finish this out real quick and get your thoughts. You mentioned open source. Why open source? What's the current state of the product? You run the product group over there at Platform9. Is it open source, and you guys have a product that's commercial? Can you explain the open source dynamic? And first of all, why open source? And what is the consumption? I mean open source is great. People want opensource, they can download and look up the code, but maybe want to buy the commercial. So I'm assuming you have that thought through. Can you share open source and commercial relationship? >> Yeah, I think, you know, starting with why opensource? I think it's, you know, we, as a company, we have one of the things that's absolutely critical to us is that we take mainstream open source technologies, components, and then we make them available to our customers at scale through either a SaaS model or OnPrem model, right. But so as we are a company or startup, or a company that benefits, you know, in a massive way by this open source economy, it's only right I think in my mind that we do are part of the duty, right. And contribute back to the community that feeds us. And so, you know, we have always held that strongly as one of our principles. And we have, you know, created and built independent products, starting all the way with Fission, which was a serverless product that we had built, to various other examples that I can give. But that's one of the main reasons why open source. And also open source because we want the community to really first-hand engage with us on this problem, which is very difficult to achieve if your product is behind a wall, you know, behind a black box. >> Well, and that's what the developers want too. What we're seeing in reporting with Supercloud is the new model of consumption is I want to look at the code and see what's in there. >> That's right. >> And then also if I want to use it, I'll do it, great. That's open source, that's the value. But then at the end of the day, if I want to move fast, that's when people buy in. So it's a new kind of freemium, I guess, business model. I guess that's the way it is, but that's the benefit of open source. This is why standards and open source is growing so fast. You have that confluence of, you know, a way for developers to try before they buy, but also actually kind of date the application, if you will. We, you know, Adrian Kakroff uses the dating metaphor, you know, hey, you know, I want to check it out first before I get married. And that's what open source is. So this is the new, this is how people are selling. This is not just open source. This is how companies are selling. >> Absolutely, yeah, yeah. You know, I think two things, I think one is just, you know, this cloud native space is so vast that if you're building a cluster solution, sometimes there's also a risk that it may not apply to every single enterprises use cases. And so having it open source gives them an opportunity to extend it, expand it, to make it proper to their use case, if they choose to do so, right. But at the same time, what's also critical to us, is we are able to provide a supported version of it, with an SLA that's backed by us, a SaaS-hosted version of it as well for those customers who choose to go that route. You know, once they have used the open source version and loved it and want to take it at scale and in production and need a partner to collaborate with who can support them for that production environment. >> I have to ask you. Now let's get into what's in it for the customer? I'm a customer. Why should I be enthused about Arlon? What's in it for me? You know, 'cause if I'm not enthused about it, I'm not going to be confident, and it's going to be hard for me to get behind this. Can you share your enthusiastic view of, you know, why I should be enthused about Arlon, if I'm a customer. >> Yeah, absolutely. And so, and there's multiple, you know, enterprises that we talk to, many of them, are customers where this is a very kind of typical story that you will hear, which is we have a Kubernetes distribution. It could be On-Premise. It could be public cloud native Kubernetes. And then we have our CI/CD pipelines that are automating the deployment of applications, et cetera. And then there's this gray zone. And the gray zone is, well before you can, your CI/CD pipelines can deploy the apps, somebody needs to do all of their groundwork of, you know, defining those clusters, and yeah properly configuring them. And as these things start by being done hand-grown. And then as you scale, what typically enterprises would do today is they will have their homegrown DIY solutions for this. I mean, the number of folks that I talk to that have built Terraform automation, and then, you know, some of those key developers leave. So it's a typical open source, or typical, you know, DIY challenge. And the reason that they're writing it themselves is not because they want to. I mean, of course technology is always interesting to everybody, but it's because they can't find a solution that's out there that perfectly fits their problem. And so that's that pitch. I think OPS people would be delighted. The folks that we've talked, you know, spoken with have been absolutely excited and have shared that this is a major challenge we have today, because we have few hundreds of clusters on EKS, Amazon, and we want to scale them to few thousands, but we don't think we are ready to do that. And this will give us the ability to do that. >> Yeah, I think people are scared. I won't say scared, that's a bad word. Maybe I should say that they feel nervous because you know, at scale, small mistakes can become large mistakes. This is something that is concerning to enterprises. And I think this is going to come up at KubeCon this year where enterprises are going to say, okay, I need to see SLAs. I want to see track record. I want to see other companies that have used it. How would you answer that question to, or challenge, you know, hey I love this, but is there any guarantees? Is there any, what's the SLAs? I'm an enterprise, I got tight. You know, I love the open source trying to free, fast and loose, but I need hardened code. >> Yeah, absolutely. So two parts to that, right? One is Arlon leverages, existing opensource components, products that are extremely popular. Two specifically, one is Arlon uses Argo CD, which is probably one of the highest rated and used CD opensource tools that's out there, right. Created by folks that are as part of Intuit team now, you know, really brilliant team, and it's used at scale across enterprises. That's one. Second is Arlon also makes use of cluster API, CAPI, which is a Kubernetes sub-component, right for lifecycle management of clusters. So there is enough of, you know, community users, et cetera, around these two products or open source projects that will find Arlon to be right up in their alley, because they're already comfortable, familiar with Argo CD. Now Arlon just extends the scope of what Argo CD can do. And so that's one. And then the second part is going back to your point of the comfort. And that's where, you know, Platform9 has a role to play, which is when you are ready to deploy Arlon at scale, because you've been, you know playing with it in your DEV test environments, you're happy with what you get with it. Then Platform9 will stand behind it and provide that SLA. >> And what's been the reaction from customers you've talked to, Platform9 customers that are familiar with Argo, and then Arlo? What's been some of the feedback? >> Yeah, I think the feedback's been fantastic. I mean, I can give you examples of customers where you know, initially, when you're telling them about your entire portfolio of solutions, it might not strike a chord right away. But then we start talking about Arlon, and we talk about the fact that it uses Argo CD. They start opening up, they say, we have standardized on Argo, and we have built these components homegrown. We would be very interested. Can we co-develop? Does it support these use cases? So we've had that kind of validation. We've had validation all the way at the beginning of Arlon, before we even wrote a single line of code, saying this is something we plan on doing. And the customer said, if you had it today, I would've purchased it. So it's been really great validation. >> All right, so next question is what is the solution to the customer? If I asked you, look, I'm so busy. My team's overworked, I got a skills gap. I don't need another project. I'm so tied up right now, and I'm just chasing my tail. How does Platform9 help me? >> Yeah, absolutely. So I think, you know, one of the core tenants of Platform9 has always been, that we try to bring that public cloud like simplicity by hosting, you know, this and a lot of such similar tools in a SaaS hosted manner for our customers, right. So our goal behind doing that is taking away, or trying to take away all of that complexity from customer's hands and offloading it to our hands, right. And giving them that full white glove treatment as we call it. And so from a customer's perspective, one, something like Arlon will integrate with what they have, so they don't have to rip and replace anything. In fact, it will even in the next versions, it may even discover your clusters that you have today, and give you an inventory. >> So customers have clusters that are growing. That's a sign, call you guys. >> Absolutely, either they have massive, large clusters, right, that they want to split into smaller clusters, but they're not comfortable doing that today. Or they've done that already on say public cloud or otherwise. And now they have management challenges. >> So, especially operationalizing the clusters, whether they want to kind of reset everything and move things around, and reconfigure, and or scale out. >> That's right, exactly. >> And you provide that layer of policy. >> Absolutely, yes. >> That's the key value here. >> That's right. >> So policy based configuration for cluster scale up. >> Profile and policy based declarative configuration and life cycle management for clusters. >> If I asked you how this enables Supercloud, what would you say to that? >> I think this is one of the key ingredients to Supercloud, right? If you think about a Supercloud environment, there is at least few key ingredients that come to my mind that are really critical. Like they are, you know, life saving ingredients at that scale. One is having a really good strategy for managing that scale, you know, in a going back to assembly line, in a very consistent, predictable way. So that, Arlon solves. Then you need to compliment that with the right kind of observability and monitoring tools at scale, right? Because ultimately issues are going to happen, and you're going to have to figure out, you know, how to solve them fast. And Arlon, by the way also helps in that direction. But you also need observability tools. And then especially if you're running it on the public cloud, you need some cost management tools. In my mind, these three things are like the most necessary ingredients to make Supercloud successful. And you know, Arlon is one of them. >> Okay so now the next level is, okay, that makes sense is under the covers, kind of speak under the hood. How does that impact the app developers of the cloud native modern application workflows? Because the impact to me seems, the apps are going to be impacted. Are they going to be faster, stronger? I mean, what's the impact if you do all those things, as you mentioned, what's the impact of the apps? >> Yeah, the impact is that your apps are more likely to operate in production the way you expect them to, because the right checks and balances have gone through. And any discrepancies have been identified prior to those apps, prior to your customer running into them, right? Because developers run into this challenge today where there's a split responsibility, right. I'm responsible for my code. I'm responsible for some of these other plugins, but I don't own these stack end to end. I have to rely on my OPS counterpart to do their part, right. And so this really gives them the right tooling for that. >> This is actually a great kind of relevant point. You know, as cloud becomes more scalable, you're starting to see this fragmentation, gone are the days of the full stack developer, to the more specialized role. But this is a key point. And I have to ask you, because if this Arlo solution takes place, as you say, and the apps are going to do what they're designed to do, the question is what does the current pain look like? Are the apps breaking? What is the signals to the customer that they should be calling you guys up and implementing Arlo, Argo, and all the other goodness to automate, what are some of the signals? Is it downtime? Is it failed apps? Is it latency? What are some of the things that would be indications of things are effed up a little bit. >> Yeah, more frequent down times, down times that take longer to triage. And so your, you know, your mean times on resolution, et cetera, are escalating or growing larger, right? Like we have environments of customers where they have a number of folks in the field that have to take these apps, and run them at customer sites. And that's one of our partners. And they're extremely interested in this, because the rate of failures they're encountering for this, you know, the field when they're running these apps on site, because the field is automating their clusters that are running on sites using their own script. So these are the kinds of challenges. So those are the pain points, which is, you know, if you're looking to reduce your meantime to resolution. If you're looking to reduce the number of failures that occur on your production site, that's one. And second, if you're looking to manage these at scale environments with a relatively small focused nimble OPS team, which has an immediate impact on your budget. So those are the signals. >> This is the cloud native at scale situation. The innovation going on. Final thought is your reaction to the idea that if the world goes digital, which it is, and the confluence of physical and digital coming together, and cloud continues to do its thing, the company becomes the application. Not where IT used to be supporting the business, you know, the back office, and the immediate terminals and some PCs and handhelds. Now, if technology's running the business, is the business, company's the application. So it can't be down. So there's a lot of pressure on CSOs and CIOs now, and boards are saying, how is technology driving the top line revenue? That's the number one conversation. Do you see the same thing? >> Yeah, it's interesting. I think there's multiple pressures at the CSO, CIO level, right? One, is that there needs to be that visibility and clarity and guarantee almost that, you know, the technology that's going to drive your top line is going to drive that in a consistent, reliable, predictable manner. And then second, there is the constant pressure to do that while always lowering your costs of doing it, right. Especially when you're talking about, let's say retailers, or those kinds of large scale vendors, they many times make money by lowering the amount that they spend providing those goods to their end customers. So I think both those factors kind of come into play and the solution to all of them is usually in a very structured strategy around automation. >> Final question. What does cloud native at scale look like to you? If all the things happen the way we want 'em to happen, the magic wand, the magic dust, what does it look like? >> What that looks like to me is a CIO sipping at his desk on coffee. Production is running absolutely smooth. And he's running that at a nimble, nimble team size of, at the most, a handful of folks that are just looking after things, but things are just taking care of themselves. >> And the CIO doesn't exist. There's no CISO, they're at the beach. >> (laughing) Yeah. >> Madhura, thank you for coming on, sharing the cloud native at scale here on theCUBE. Thank you for your time. >> Fantastic, thanks for having me. >> Okay, I'm John Furrier here for special program presentation, special programming Cloud Native at Scale, Enabling Supercloud Modern Applications with Platform9. Thanks for watching. (upbeat music)

Published Date : Sep 20 2022

SUMMARY :

Co-founder and VP of Product at Platform9. And the Supercloud as we call it, And so you got to refer And that's just the beginning, So I think, you know, in the context Can you scope the complexity? And that is just, you know, And then you say, okay, we got this. And so as you give that change to then run It's the classic, you So what Arlon lets you do in a nutshell you guys are reigning in, Arlon, and if you look at that OPS piece for the developer. Because developers, you know, So the DevOps is the And you know, Kubernetes really introduced So I'm assuming you have or a company that benefits, you know, is the new model of consumption You have that confluence of, you know, I think one is just, you Can you share your enthusiastic view I mean, the number of folks that I talk to And I think this is going to And that's where, you know, where you know, initially, is what is the solution to the customer? clusters that you have today, That's a sign, call you guys. that they want to split operationalizing the clusters, So policy based configuration and life cycle management for clusters. for managing that scale, you know, Because the impact to me seems, the way you expect them to, and the apps are going to do for this, you know, the field that if the world goes and the solution to all of them If all the things happen the What that looks like to me And the CIO doesn't exist. Thank you for your time. for special program presentation,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Madhura MaskaskyPERSON

0.99+

Adrian KakroffPERSON

0.99+

John FurrierPERSON

0.99+

AmazonORGANIZATION

0.99+

MadhuraPERSON

0.99+

oneQUANTITY

0.99+

Palo Alto, CaliforniaLOCATION

0.99+

second partQUANTITY

0.99+

ArlonORGANIZATION

0.99+

bothQUANTITY

0.99+

firstQUANTITY

0.99+

tens of thousands of sitesQUANTITY

0.99+

one siteQUANTITY

0.99+

secondQUANTITY

0.99+

todayDATE

0.99+

two partsQUANTITY

0.99+

two factorsQUANTITY

0.99+

one nodeQUANTITY

0.99+

TwoQUANTITY

0.99+

first generationQUANTITY

0.99+

two productsQUANTITY

0.98+

two thingsQUANTITY

0.98+

each siteQUANTITY

0.98+

one problemQUANTITY

0.98+

each componentQUANTITY

0.98+

SupercloudORGANIZATION

0.98+

SecondQUANTITY

0.98+

tens of thousands of nodesQUANTITY

0.98+

ArloORGANIZATION

0.97+

KubeConEVENT

0.97+

Platform9ORGANIZATION

0.97+

single lineQUANTITY

0.97+

one endQUANTITY

0.96+

CloudFlareTITLE

0.96+

one wayQUANTITY

0.96+

ArgoORGANIZATION

0.96+

three thingsQUANTITY

0.96+

OneQUANTITY

0.95+

KubernetesTITLE

0.94+

one flareQUANTITY

0.94+

FissionORGANIZATION

0.93+

single clusterQUANTITY

0.93+

one pictureQUANTITY

0.93+

DevOpsTITLE

0.92+

EKSORGANIZATION

0.91+

this yearDATE

0.91+

one exampleQUANTITY

0.91+

CloudTITLE

0.9+

The New Data Equation: Leveraging Cloud-Scale Data to Innovate in AI, CyberSecurity, & Life Sciences


 

>> Hi, I'm Natalie Ehrlich and welcome to the AWS startup showcase presented by The Cube. We have an amazing lineup of great guests who will share their insights on the latest innovations and solutions and leveraging cloud scale data in AI, security and life sciences. And now we're joined by the co-founders and co-CEOs of The Cube, Dave Vellante and John Furrier. Thank you gentlemen for joining me. >> Hey Natalie. >> Hey Natalie. >> How are you doing. Hey John. >> Well, I'd love to get your insights here, let's kick it off and what are you looking forward to. >> Dave, I think one of the things that we've been doing on the cube for 11 years is looking at the signal in the marketplace. I wanted to focus on this because AI is cutting across all industries. So we're seeing that with cybersecurity and life sciences, it's the first time we've had a life sciences track in the showcase, which is amazing because it shows that growth of the cloud scale. So I'm super excited by that. And I think that's going to showcase some new business models and of course the keynotes Ali Ghodsi, who's the CEO Data bricks pushing a billion dollars in revenue, clear validation that startups can go from zero to a billion dollars in revenues. So that should be really interesting. And of course the top venture capitalists coming in to talk about what the enterprise dynamics are all about. And what about you, Dave? >> You know, I thought it was an interesting mix and choice of startups. When you think about, you know, AI security and healthcare, and I've been thinking about that. Healthcare is the perfect industry, it is ripe for disruption. If you think about healthcare, you know, we all complain how expensive it is not transparent. There's a lot of discussion about, you know, can everybody have equal access that certainly with COVID the staff is burned out. There's a real divergence and diversity of the quality of healthcare and you know, it all results in patients not being happy, and I mean, if you had to do an NPS score on the patients and healthcare will be pretty low, John, you know. So when I think about, you know, AI and security in the context of healthcare in cloud, I ask questions like when are machines going to be able to better meet or make better diagnoses than doctors? And that's starting. I mean, it's really in assistance putting into play today. But I think when you think about cheaper and more accurate image analysis, when you think about the overall patient experience and trust and personalized medicine, self-service, you know, remote medicine that we've seen during the COVID pandemic, disease tracking, language translation, I mean, there are so many things where the cloud and data, and then it can help. And then at the end of it, it's all about, okay, how do I authenticate? How do I deal with privacy and personal information and tamper resistance? And that's where the security play comes in. So it's a very interesting mix of startups. I think that I'm really looking forward to hearing from... >> You know Natalie one of the things we talked about, some of these companies, Dave, we've talked a lot of these companies and to me the business model innovations that are coming out of two factors, the pandemic is kind of coming to an end so that accelerated and really showed who had the right stuff in my opinion. So you were either on the wrong side or right side of history when it comes to the pandemic and as we look back, as we come out of it with clear growth in certain companies and certain companies that adopted let's say cloud. And the other one is cloud scale. So the focus of these startup showcases is really to focus on how startups can align with the enterprise buyers and create the new kind of refactoring business models to go from, you know, a re-pivot or refactoring to more value. And the other thing that's interesting is that the business model isn't just for the good guys. If you look at say ransomware, for instance, the business model of hackers is gone completely amazing too. They're kicking it but in terms of revenue, they have their own they're well-funded machines on how to extort cash from companies. So there's a lot of security issues around the business model as well. So to me, the business model innovation with cloud-scale tech, with the pandemic forcing function, you've seen a lot of new kinds of decision-making in enterprises. You seeing how enterprise buyers are changing their decision criteria, and frankly their existing suppliers. So if you're an old guard supplier, you're going to be potentially out because if you didn't deliver during the pandemic, this is the issue that everyone's talking about. And it's kind of not publicized in the press very much, but this is actually happening. >> Well thank you both very much for joining me to kick off our AWS startup showcase. Now we're going to go to our very special guest Ali Ghodsi and John Furrier will seat with him for a fireside chat and Dave and I will see you on the other side. >> Okay, Ali great to see you. Thanks for coming on our AWS startup showcase, our second edition, second batch, season two, whatever we want to call it it's our second version of this new series where we feature, you know, the hottest startups coming out of the AWS ecosystem. And you're one of them, I've been there, but you're not a startup anymore, you're here pushing serious success on the revenue side and company. Congratulations and great to see you. >> Likewise. Thank you so much, good to see you again. >> You know I remember the first time we chatted on The Cube, you weren't really doing much software revenue, you were really talking about the new revolution in data. And you were all in on cloud. And I will say that from day one, you were always adamant that it was cloud cloud scale before anyone was really talking about it. And at that time it was on premises with Hadoop and those kinds of things. You saw that early. I remember that conversation, boy, that bet paid out great. So congratulations. >> Thank you so much. >> So I've got to ask you to jump right in. Enterprises are making decisions differently now and you are an example of that company that has gone from literally zero software sales to pushing a billion dollars as it's being reported. Certainly the success of Data bricks has been written about, but what's not written about is the success of how you guys align with the changing criteria for the enterprise customer. Take us through that and these companies here are aligning the same thing and enterprises want to change. They want to be in the right side of history. What's the success formula? >> Yeah. I mean, basically what we always did was look a few years out, the how can we help these enterprises, future proof, what they're trying to achieve, right? They have, you know, 30 years of legacy software and, you know baggage, and they have compliance and regulations, how do we help them move to the future? So we try to identify those kinds of secular trends that we think are going to maybe you see them a little bit right now, cloud was one of them, but it gets more and more and more. So we identified those and there were sort of three or four of those that we kind of latched onto. And then every year the passes, we're a little bit more right. Cause it's a secular trend in the market. And then eventually, it becomes a force that you can't kind of fight anymore. >> Yeah. And I just want to put a plug for your clubhouse talks with Andreessen Horowitz. You're always on clubhouse talking about, you know, I won't say the killer instinct, but being a CEO in a time where there's so much change going on, you're constantly under pressure. It's a lonely job at the top, I know that, but you've made some good calls. What was some of the key moments that you can point to, where you were like, okay, the wave is coming in now, we'd better get on it. What were some of those key decisions? Cause a lot of these startups want to be in your position, and a lot of buyers want to take advantage of the technology that's coming. They got to figure it out. What was some of those key inflection points for you? >> So if you're just listening to what everybody's saying, you're going to miss those trends. So then you're just going with the stream. So, Juan you mentioned that cloud. Cloud was a thing at the time, we thought it's going to be the thing that takes over everything. Today it's actually multi-cloud. So multi-cloud is a thing, it's more and more people are thinking, wow, I'm paying a lot's to the cloud vendors, do I want to buy more from them or do I want to have some optionality? So that's one. Two, open. They're worried about lock-in, you know, lock-in has happened for many, many decades. So they want open architectures, open source, open standards. So that's the second one that we bet on. The third one, which you know, initially wasn't sort of super obvious was AI and machine learning. Now it's super obvious, everybody's talking about it. But when we started, it was kind of called artificial intelligence referred to robotics, and machine learning wasn't a term that people really knew about. Today, it's sort of, everybody's doing machine learning and AI. So betting on those future trends, those secular trends as we call them super critical. >> And one of the things that I want to get your thoughts on is this idea of re-platforming versus refactoring. You see a lot being talked about in some of these, what does that even mean? It's people trying to figure that out. Re-platforming I get the cloud scale. But as you look at the cloud benefits, what do you say to customers out there and enterprises that are trying to use the benefits of the cloud? Say data for instance, in the middle of how could they be thinking about refactoring? And how can they make a better selection on suppliers? I mean, how do you know it used to be RFP, you deliver these speeds and feeds and you get selected. Now I think there's a little bit different science and methodology behind it. What's your thoughts on this refactoring as a buyer? What do I got to do? >> Well, I mean let's start with you said RFP and so on. Times have changed. Back in the day, you had to kind of sign up for something and then much later you're going to get it. So then you have to go through this arduous process. In the cloud, would pay us to go model elasticity and so on. You can kind of try your way to it. You can try before you buy. And you can use more and more. You can gradually, you don't need to go in all in and you know, say we commit to 50,000,000 and six months later to find out that wow, this stuff has got shelf where it doesn't work. So that's one thing that has changed it's beneficial. But the second thing is, don't just mimic what you had on prem in the cloud. So that's what this refactoring is about. If you had, you know, Hadoop data lake, now you're just going to have an S3 data lake. If you had an on-prem data warehouse now you just going to have a cloud data warehouse. You're just repeating what you did on prem in the cloud, architected for the future. And you know, for us, the most important thing that we say is that this lake house paradigm is a cloud native way of organizing your data. That's different from how you would do things on premises. So think through what's the right way of doing it in the cloud. Don't just try to copy paste what you had on premises in the cloud. >> It's interesting one of the things that we're observing and I'd love to get your reaction to this. Dave a lot** and I have been reporting on it is, two personas in the enterprise are changing their organization. One is I call IT ops or there's an SRE role developing. And the data teams are being dismantled and being kind of sprinkled through into other teams is this notion of data, pipelining being part of workflows, not just the department. Are you seeing organizational shifts in how people are organizing their resources, their human resources to take advantage of say that the data problems that are need to being solved with machine learning and whatnot and cloud-scale? >> Yeah, absolutely. So you're right. SRE became a thing, lots of DevOps people. It was because when the cloud vendors launched their infrastructure as a service to stitch all these things together and get it all working you needed a lot of devOps people. But now things are maturing. So, you know, with vendors like Data bricks and other multi-cloud vendors, you can actually get much higher level services where you don't need to necessarily have lots of lots of DevOps people that are themselves trying to stitch together lots of services to make this work. So that's one trend. But secondly, you're seeing more data teams being sort of completely ubiquitous in these organizations. Before it used to be you have one data team and then we'll have data and AI and we'll be done. ' It's a one and done. But that's not how it works. That's not how Google, Facebook, Twitter did it, they had data throughout the organization. Every BU was empowered. It's sales, it's marketing, it's finance, it's engineering. So how do you embed all those data teams and make them actually run fast? And you know, there's this concept of a data mesh which is super important where you can actually decentralize and enable all these teams to focus on their domains and run super fast. And that's really enabled by this Lake house paradigm in the cloud that we're talking about. Where you're open, you're basing it on open standards. You have flexibility in the data types and how they're going to store their data. So you kind of provide a lot of that flexibility, but at the same time, you have sort of centralized governance for it. So absolutely things are changing in the market. >> Well, you're just the professor, the masterclass right here is amazing. Thanks for sharing that insight. You're always got to go out of date and that's why we have you on here. You're amazing, great resource for the community. Ransomware is a huge problem, it's now the government's focus. We're being attacked and we don't know where it's coming from. This business models around cyber that's expanding rapidly. There's real revenue behind it. There's a data problem. It's not just a security problem. So one of the themes in all of these startup showcases is data is ubiquitous in the value propositions. One of them is ransomware. What's your thoughts on ransomware? Is it a data problem? Does cloud help? Some are saying that cloud's got better security with ransomware, then say on premise. What's your vision of how you see this ransomware problem being addressed besides the government taking over? >> Yeah, that's a great question. Let me start by saying, you know, we're a data company, right? And if you say you're a data company, you might as well just said, we're a privacy company, right? It's like some people say, well, what do you think about privacy? Do you guys even do privacy? We're a data company. So yeah, we're a privacy company as well. Like you can't talk about data without talking about privacy. With every customer, with every enterprise. So that's obviously top of mind for us. I do think that in the cloud, security is much better because, you know, vendors like us, we're investing so much resources into security and making sure that we harden the infrastructure and, you know, by actually having all of this infrastructure, we can monitor it, detect if something is, you know, an attack is happening, and we can immediately sort of stop it. So that's different from when it's on prem, you have kind of like the separated duties where the software vendor, which would have been us, doesn't really see what's happening in the data center. So, you know, there's an IT team that didn't develop the software is responsible for the security. So I think things are much better now. I think we're much better set up, but of course, things like cryptocurrencies and so on are making it easier for people to sort of hide. There decentralized networks. So, you know, the attackers are getting more and more sophisticated as well. So that's definitely something that's super important. It's super top of mind. We're all investing heavily into security and privacy because, you know, that's going to be super critical going forward. >> Yeah, we got to move that red line, and figure that out and get more intelligence. Decentralized trends not going away it's going to be more of that, less of the centralized. But centralized does come into play with data. It's a mix, it's not mutually exclusive. And I'll get your thoughts on this. Architectural question with, you know, 5G and the edge coming. Amazon's got that outpost stringent, the wavelength, you're seeing mobile world Congress coming up in this month. The focus on processing data at the edge is a huge issue. And enterprises are now going to be commercial part of that. So architecture decisions are being made in enterprises right now. And this is a big issue. So you mentioned multi-cloud, so tools versus platforms. Now I'm an enterprise buyer and there's no more RFPs. I got all this new choices for startups and growing companies to choose from that are cloud native. I got all kinds of new challenges and opportunities. How do I build my architecture so I don't foreclose a future opportunity. >> Yeah, as I said, look, you're actually right. Cloud is becoming even more and more something that everybody's adopting, but at the same time, there is this thing that the edge is also more and more important. And the connectivity between those two and making sure that you can really do that efficiently. My ask from enterprises, and I think this is top of mind for all the enterprise architects is, choose open because that way you can avoid locking yourself in. So that's one thing that's really, really important. In the past, you know, all these vendors that locked you in, and then you try to move off of them, they were highly innovative back in the day. In the 80's and the 90's, there were the best companies. You gave them all your data and it was fantastic. But then because you were locked in, they didn't need to innovate anymore. And you know, they focused on margins instead. And then over time, the innovation stopped and now you were kind of locked in. So I think openness is really important. I think preserving optionality with multi-cloud because we see the different clouds have different strengths and weaknesses and it changes over time. All right. Early on AWS was the only game that either showed up with much better security, active directory, and so on. Now Google with AI capabilities, which one's going to win, which one's going to be better. Actually, probably all three are going to be around. So having that optionality that you can pick between the three and then artificial intelligence. I think that's going to be the key to the future. You know, you asked about security earlier. That's how people detect zero day attacks, right? You ask about the edge, same thing there, that's where the predictions are going to happen. So make sure that you invest in AI and artificial intelligence very early on because it's not something you can just bolt on later on and have a little data team somewhere that then now you have AI and it's one and done. >> All right. Great insight. I've got to ask you, the folks may or may not know, but you're a professor at Berkeley as well, done a lot of great work. That's where you kind of came out of when Data bricks was formed. And the Berkeley basically was it invented distributed computing back in the 80's. I remember I was breaking in when Unix was proprietary, when software wasn't open you actually had the deal that under the table to get code. Now it's all open. Isn't the internet now with distributed computing and how interconnects are happening. I mean, the internet didn't break during the pandemic, which proves the benefit of the internet. And that's a positive. But as you start seeing edge, it's essentially distributed computing. So I got to ask you from a computer science standpoint. What do you see as the key learnings or connect the dots for how this distributed model will work? I see hybrids clearly, hybrid cloud is clearly the operating model but if you take it to the next level of distributed computing, what are some of the key things that you look for in the next five years as this starts to be completely interoperable, obviously software is going to drive a lot of it. What's your vision on that? >> Yeah, I mean, you know, so Berkeley, you're right for the gigs, you know, there was a now project 20, 30 years ago that basically is how we do things. There was a project on how you search in the very early on with Inktomi that became how Google and everybody else to search today. So workday was super, super early, sometimes way too early. And that was actually the mistake. Was that they were so early that people said that that stuff doesn't work. And then 20 years later you were invented. So I think 2009, Berkeley published just above the clouds saying the cloud is the future. At that time, most industry leaders said, that's just, you know, that doesn't work. Today, recently they published a research paper called, Sky Computing. So sky computing is what you get above the clouds, right? So we have the cloud as the future, the next level after that is the sky. That's one on top of them. That's what multi-cloud is. So that's a lot of the research at Berkeley, you know, into distributed systems labs is about this. And we're excited about that. Then we're one of the sky computing vendors out there. So I think you're going to see much more innovation happening at the sky level than at the compute level where you needed all those DevOps and SRE people to like, you know, build everything manually themselves. I can just see the memes now coming Ali, sky net, star track. You've got space too, by the way, space is another frontier that is seeing a lot of action going on because now the surface area of data with satellites is huge. So again, I know you guys are doing a lot of business with folks in that vertical where you starting to see real time data acquisition coming from these satellites. What's your take on the whole space as the, not the final frontier, but certainly as a new congested and contested space for, for data? >> Well, I mean, as a data vendor, we see a lot of, you know, alternative data sources coming in and people aren't using machine learning< AI to eat out signal out of the, you know, massive amounts of imagery that's coming out of these satellites. So that's actually a pretty common in FinTech, which is a vertical for us. And also sort of in the public sector, lots of, lots of, lots of satellites, imagery data that's coming. And these are massive volumes. I mean, it's like huge data sets and it's a super, super exciting what they can do. Like, you know, extracting signal from the satellite imagery is, and you know, being able to handle that amount of data, it's a challenge for all the companies that we work with. So we're excited about that too. I mean, definitely that's a trend that's going to continue. >> All right. I'm super excited for you. And thanks for coming on The Cube here for our keynote. I got to ask you a final question. As you think about the future, I see your company has achieved great success in a very short time, and again, you guys done the work, I've been following your company as you know. We've been been breaking that Data bricks story for a long time. I've been excited by it, but now what's changed. You got to start thinking about the next 20 miles stair when you look at, you know, the sky computing, you're thinking about these new architectures. As the CEO, your job is to one, not run out of money which you don't have to worry about that anymore, so hiring. And then, you got to figure out that next 20 miles stair as a company. What's that going on in your mind? Take us through your mindset of what's next. And what do you see out in that landscape? >> Yeah, so what I mentioned around Sky company optionality around multi-cloud, you're going to see a lot of capabilities around that. Like how do you get multi-cloud disaster recovery? How do you leverage the best of all the clouds while at the same time not having to just pick one? So there's a lot of innovation there that, you know, we haven't announced yet, but you're going to see a lot of it over the next many years. Things that you can do when you have the optionality across the different parts. And the second thing that's really exciting for us is bringing AI to the masses. Democratizing data and AI. So how can you actually apply machine learning to machine learning? How can you automate machine learning? Today machine learning is still quite complicated and it's pretty advanced. It's not going to be that way 10 years from now. It's going to be very simple. Everybody's going to have it at their fingertips. So how do we apply machine learning to machine learning? It's called auto ML, automatic, you know, machine learning. So that's an area, and that's not something that can be done with, right? But the goal is to eventually be able to automate a way the whole machine learning engineer and the machine learning data scientist altogether. >> You know it's really fun and talking with you is that, you know, for years we've been talking about this inside the ropes, inside the industry, around the future. Now people starting to get some visibility, the pandemics forced that. You seeing the bad projects being exposed. It's like the tide pulled out and you see all the scabs and bad projects that were justified old guard technologies. If you get it right you're on a good wave. And this is clearly what we're seeing. And you guys example of that. So as enterprises realize this, that they're going to have to look double down on the right projects and probably trash the bad projects, new criteria, how should people be thinking about buying? Because again, we talked about the RFP before. I want to kind of circle back because this is something that people are trying to figure out. You seeing, you know, organic, you come in freemium models as cloud scale becomes the advantage in the lock-in frankly seems to be the value proposition. The more value you provide, the more lock-in you get. Which sounds like that's the way it should be versus proprietary, you know, protocols. The protocol is value. How should enterprises organize their teams? Is it end to end workflows? Is it, and how should they evaluate the criteria for these technologies that they want to buy? >> Yeah, that's a great question. So I, you know, it's very simple, try to future proof your decision-making. Make sure that whatever you're doing is not blocking your in. So whatever decision you're making, what if the world changes in five years, make sure that if you making a mistake now, that's not going to bite you in about five years later. So how do you do that? Well, open source is great. If you're leveraging open-source, you can try it out already. You don't even need to talk to any vendor. Your teams can already download it and try it out and get some value out of it. If you're in the cloud, this pay as you go models, you don't have to do a big RFP and commit big. You can try it, pay the vendor, pay as you go, $10, $15. It doesn't need to be a million dollar contract and slowly grow as you're providing value. And then make sure that you're not just locking yourself in to one cloud or, you know, one particular vendor. As much as possible preserve your optionality because then that's not a one-way door. If it turns out later you want to do something else, you can, you know, pick other things as well. You're not locked in. So that's what I would say. Keep that top of mind that you're not locking yourself into a particular decision that you made today, that you might regret in five years. >> I really appreciate you coming on and sharing your with our community and The Cube. And as always great to see you. I really enjoy your clubhouse talks, and I really appreciate how you give back to the community. And I want to thank you for coming on and taking the time with us today. >> Thanks John, always appreciate talking to you. >> Okay Ali Ghodsi, CEO of Data bricks, a success story that proves the validation of cloud scale, open and create value, values the new lock-in. So Natalie, back to you for continuing coverage. >> That was a terrific interview John, but I'd love to get Dave's insights first. What were your takeaways, Dave? >> Well, if we have more time I'll tell you how Data bricks got to where they are today, but I'll say this, the most important thing to me that Allie said was he conveyed a very clear understanding of what data companies are outright and are getting ready. Talked about four things. There's not one data team, there's many data teams. And he talked about data is decentralized, and data has to have context and that context lives in the business. He said, look, think about it. The way that the data companies would get it right, they get data in teams and sales and marketing and finance and engineering. They all have their own data and data teams. And he referred to that as a data mesh. That's a term that is your mock, the Gany coined and the warehouse of the data lake it's merely a node in that global message. It meshes discoverable, he talked about federated governance, and Data bricks, they're breaking the model of shoving everything into a single repository and trying to make that the so-called single version of the truth. Rather what they're doing, which is right on is putting data in the hands of the business owners. And that's how true data companies do. And the last thing you talked about with sky computing, which I loved, it's that future layer, we talked about multi-cloud a lot that abstracts the underlying complexity of the technical details of the cloud and creates additional value on top. I always say that the cloud players like Amazon have given the gift to the world of 100 billion dollars a year they spend in CapEx. Thank you. Now we're going to innovate on top of it. Yeah. And I think the refactoring... >> Hope by John. >> That was great insight and I totally agree. The refactoring piece too was key, he brought that home. But to me, I think Data bricks that Ali shared there and why he's been open and sharing a lot of his insights and the community. But what he's not saying, cause he's humble and polite is they cracked the code on the enterprise, Dave. And to Dave's points exactly reason why they did it, they saw an opportunity to make it easier, at that time had dupe was the rage, and they just made it easier. They was smart, they made good bets, they had a good formula and they cracked the code with the enterprise. They brought it in and they brought value. And see that's the key to the cloud as Dave pointed out. You get replatform with the cloud, then you refactor. And I think he pointed out the multi-cloud and that really kind of teases out the whole future and landscape, which is essentially distributed computing. And I think, you know, companies are starting to figure that out with hybrid and this on premises and now super edge I call it, with 5G coming. So it's just pretty incredible. >> Yeah. Data bricks, IPO is coming and people should know. I mean, what everybody, they created spark as you know John and everybody thought they were going to do is mimic red hat and sell subscriptions and support. They didn't, they developed a managed service and they embedded AI tools to simplify data science. So to your point, enterprises could buy instead of build, we know this. Enterprises will spend money to make things simpler. They don't have the resources, and so this was what they got right was really embedding that, making a building a managed service, not mimicking the kind of the red hat model, but actually creating a new value layer there. And that's big part of their success. >> If I could just add one thing Natalie to that Dave saying is really right on. And as an enterprise buyer, if we go the other side of the equation, it used to be that you had to be a known company, get PR, you fill out RFPs, you had to meet all the speeds. It's like going to the airport and get a swab test, and get a COVID test and all kinds of mechanisms to like block you and filter you. Most of the biggest success stories that have created the most value for enterprises have been the companies that nobody's understood. And Andy Jazz's famous quote of, you know, being misunderstood is actually a good thing. Data bricks was very misunderstood at the beginning and no one kind of knew who they were but they did it right. And so the enterprise buyers out there, don't be afraid to test the startups because you know the next Data bricks is out there. And I think that's where I see the psychology changing from the old IT buyers, Dave. It's like, okay, let's let's test this company. And there's plenty of ways to do that. He illuminated those premium, small pilots, you don't need to go on these big things. So I think that is going to be a shift in how companies going to evaluate startups. >> Yeah. Think about it this way. Why should the large banks and insurance companies and big manufacturers and pharma companies, governments, why should they burn resources managing containers and figuring out data science tools if they can just tap into solutions like Data bricks which is an AI platform in the cloud and let the experts manage all that stuff. Think about how much money in time that saves enterprises. >> Yeah, I mean, we've got 15 companies here we're showcasing this batch and this season if you call it. That episode we are going to call it? They're awesome. Right? And the next 15 will be the same. And these companies could be the next billion dollar revenue generator because the cloud enables that day. I think that's the exciting part. >> Well thank you both so much for these insights. Really appreciate it. AWS startup showcase highlights the innovation that helps startups succeed. And no one knows that better than our very next guest, Jeff Barr. Welcome to the show and I will send this interview now to Dave and John and see you just in the bit. >> Okay, hey Jeff, great to see you. Thanks for coming on again. >> Great to be back. >> So this is a regular community segment with Jeff Barr who's a legend in the industry. Everyone knows your name. Everyone knows that. Congratulations on your recent blog posts we have reading. Tons of news, I want to get your update because 5G has been all over the news, mobile world congress is right around the corner. I know Bill Vass was a keynote out there, virtual keynote. There's a lot of Amazon discussion around the edge with wavelength. Specifically, this is the outpost piece. And I know there is news I want to get to, but the top of mind is there's massive Amazon expansion and the cloud is going to the edge, it's here. What's up with wavelength. Take us through the, I call it the power edge, the super edge. >> Well, I'm really excited about this mostly because it gives a lot more choice and flexibility and options to our customers. This idea that with wavelength we announced quite some time ago, at least quite some time ago if we think in cloud years. We announced that we would be working with 5G providers all over the world to basically put AWS in the telecom providers data centers or telecom centers, so that as their customers build apps, that those apps would take advantage of the low latency, the high bandwidth, the reliability of 5G, be able to get to some compute and storage services that are incredibly close geographically and latency wise to the compute and storage that is just going to give customers this new power and say, well, what are the cool things we can build? >> Do you see any correlation between wavelength and some of the early Amazon services? Because to me, my gut feels like there's so much headroom there. I mean, I was just riffing on the notion of low latency packets. I mean, just think about the applications, gaming and VR, and metaverse kind of cool stuff like that where having the edge be that how much power there. It just feels like a new, it feels like a new AWS. I mean, what's your take? You've seen the evolutions and the growth of a lot of the key services. Like EC2 and SA3. >> So welcome to my life. And so to me, the way I always think about this is it's like when I go to a home improvement store and I wander through the aisles and I often wonder through with no particular thing that I actually need, but I just go there and say, wow, they've got this and they've got this, they've got this other interesting thing. And I just let my creativity run wild. And instead of trying to solve a problem, I'm saying, well, if I had these different parts, well, what could I actually build with them? And I really think that this breadth of different services and locations and options and communication technologies. I suspect a lot of our customers and customers to be and are in this the same mode where they're saying, I've got all this awesomeness at my fingertips, what might I be able to do with it? >> He reminds me when Fry's was around in Palo Alto, that store is no longer here but it used to be back in the day when it was good. It was you go in and just kind of spend hours and then next thing you know, you built a compute. Like what, I didn't come in here, whether it gets some cables. Now I got a motherboard. >> I clearly remember Fry's and before that there was the weird stuff warehouse was another really cool place to hang out if you remember that. >> Yeah I do. >> I wonder if I could jump in and you guys talking about the edge and Jeff I wanted to ask you about something that is, I think people are starting to really understand and appreciate what you did with the entrepreneur acquisition, what you do with nitro and graviton, and really driving costs down, driving performance up. I mean, there's like a compute Renaissance. And I wonder if you could talk about the importance of that at the edge, because it's got to be low power, it has to be low cost. You got to be doing processing at the edge. What's your take on how that's evolving? >> Certainly so you're totally right that we started working with and then ultimately acquired Annapurna labs in Israel a couple of years ago. I've worked directly with those folks and it's really awesome to see what they've been able to do. Just really saying, let's look at all of these different aspects of building the cloud that were once effectively kind of somewhat software intensive and say, where does it make sense to actually design build fabricate, deploy custom Silicon? So from putting up the system to doing all kinds of additional kinds of security checks, to running local IO devices, running the NBME as fast as possible to support the EBS. Each of those things has been a contributing factor to not just the power of the hardware itself, but what I'm seeing and have seen for the last probably two or three years at this point is the pace of innovation on instance types just continues to get faster and faster. And it's not just cranking out new instance types because we can, it's because our awesomely diverse base of customers keeps coming to us and saying, well, we're happy with what we have so far, but here's this really interesting new use case. And we needed a different ratio of memory to CPU, or we need more cores based on the amount of memory, or we needed a lot of IO bandwidth. And having that nitro as the base lets us really, I don't want to say plug and play, cause I haven't actually built this myself, but it seems like they can actually put the different elements together, very very quickly and then come up with new instance types that just our customers say, yeah, that's exactly what I asked for and be able to just do this entire range of from like micro and nano sized all the way up to incredibly large with incredible just to me like, when we talk about terabytes of memory that are just like actually just RAM memory. It's like, that's just an inconceivably large number by the standards of where I started out in my career. So it's all putting this power in customer hands. >> You used the term plug and play, but it does give you that nitro gives you that optionality. And then other thing that to me is really exciting is the way in which ISVs are writing to whatever's underneath. So you're making that, you know, transparent to the users so I can choose as a customer, the best price performance for my workload and that that's just going to grow that ISV portfolio. >> I think it's really important to be accurate and detailed and as thorough as possible as we launch each one of these new instance types with like what kind of processor is in there and what clock speed does it run at? What kind of, you know, how much memory do we have? What are the, just the ins and outs, and is it Intel or arm or AMD based? It's such an interesting to me contrast. I can still remember back in the very very early days of back, you know, going back almost 15 years at this point and effectively everybody said, well, not everybody. A few people looked and said, yeah, we kind of get the value here. Some people said, this just sounds like a bunch of generic hardware, just kind of generic hardware in Iraq. And even back then it was something that we were very careful with to design and optimize for use cases. But this idea that is generic is so, so, so incredibly inaccurate that I think people are now getting this. And it's okay. It's fine too, not just for the cloud, but for very specific kinds of workloads and use cases. >> And you guys have announced obviously the performance improvements on a lamb** does getting faster, you got the per billing, second billings on windows and SQL server on ECE too**. So I mean, obviously everyone kind of gets that, that's been your DNA, keep making it faster, cheaper, better, easier to use. But the other area I want to get your thoughts on because this is also more on the footprint side, is that the regions and local regions. So you've got more region news, take us through the update on the expansion on the footprint of AWS because you know, a startup can come in and these 15 companies that are here, they're global with AWS, right? So this is a major benefit for customers around the world. And you know, Ali from Data bricks mentioned privacy. Everyone's a privacy company now. So the huge issue, take us through the news on the region. >> Sure, so the two most recent regions that we announced are in the UAE and in Israel. And we generally like to pre-announce these anywhere from six months to two years at a time because we do know that the customers want to start making longer term plans to where they can start thinking about where they can do their computing, where they can store their data. I think at this point we now have seven regions under construction. And, again it's all about customer trice. Sometimes it's because they have very specific reasons where for based on local laws, based on national laws, that they must compute and restore within a particular geographic area. Other times I say, well, a lot of our customers are in this part of the world. Why don't we pick a region that is as close to that part of the world as possible. And one really important thing that I always like to remind our customers of in my audience is, anything that you choose to put in a region, stays in that region unless you very explicitly take an action that says I'd like to replicate it somewhere else. So if someone says, I want to store data in the US, or I want to store it in Frankfurt, or I want to store it in Sao Paulo, or I want to store it in Tokyo or Osaka. They get to make that very specific choice. We give them a lot of tools to help copy and replicate and do cross region operations of various sorts. But at the heart, the customer gets to choose those locations. And that in the early days I think there was this weird sense that you would, you'd put things in the cloud that would just mysteriously just kind of propagate all over the world. That's never been true, and we're very very clear on that. And I just always like to reinforce that point. >> That's great stuff, Jeff. Great to have you on again as a regular update here, just for the folks watching and don't know Jeff he'd been blogging and sharing. He'd been the one man media band for Amazon it's early days. Now he's got departments, he's got peoples on doing videos. It's an immediate franchise in and of itself, but without your rough days we wouldn't have gotten all the great news we subscribe to. We watch all the blog posts. It's essentially the flow coming out of AWS which is just a tsunami of a new announcements. Always great to read, must read. Jeff, thanks for coming on, really appreciate it. That's great. >> Thank you John, great to catch up as always. >> Jeff Barr with AWS again, and follow his stuff. He's got a great audience and community. They talk back, they collaborate and they're highly engaged. So check out Jeff's blog and his social presence. All right, Natalie, back to you for more coverage. >> Terrific. Well, did you guys know that Jeff took a three week AWS road trip across 15 cities in America to meet with cloud computing enthusiasts? 5,500 miles he drove, really incredible I didn't realize that. Let's unpack that interview though. What stood out to you John? >> I think Jeff, Barr's an example of what I call direct to audience a business model. He's been doing it from the beginning and I've been following his career. I remember back in the day when Amazon was started, he was always building stuff. He's a builder, he's classic. And he's been there from the beginning. At the beginning he was just the blog and it became a huge audience. It's now morphed into, he was power blogging so hard. He has now support and he still does it now. It's basically the conduit for information coming out of Amazon. I think Jeff has single-handedly made Amazon so successful at the community developer level, and that's the startup action happened and that got them going. And I think he deserves a lot of the success for AWS. >> And Dave, how about you? What is your reaction? >> Well I think you know, and everybody knows about the cloud and back stop X** and agility, and you know, eliminating the undifferentiated, heavy lifting and all that stuff. And one of the things that's often overlooked which is why I'm excited to be part of this program is the innovation. And the innovation comes from startups, and startups start in the cloud. And so I think that that's part of the flywheel effect. You just don't see a lot of startups these days saying, okay, I'm going to do something that's outside of the cloud. There are some, but for the most part, you know, if you saw in software, you're starting in the cloud, it's so capital efficient. I think that's one thing, I've throughout my career. I've been obsessed with every part of the stack from whether it's, you know, close to the business process with the applications. And right now I'm really obsessed with the plumbing, which is why I was excited to talk about, you know, the Annapurna acquisition. Amazon bought and a part of the $350 million, it's reported, you know, maybe a little bit more, but that isn't an amazing acquisition. And the reason why that's so important is because Amazon is continuing to drive costs down, drive performance up. And in my opinion, leaving a lot of the traditional players in their dust, especially when it comes to the power and cooling. You have often overlooked things. And the other piece of the interview was that Amazon is actually getting ISVs to write to these new platforms so that you don't have to worry about there's the software run on this chip or that chip, or x86 or arm or whatever it is. It runs. And so I can choose the best price performance. And that's where people don't, they misunderstand, you always say it John, just said that people are misunderstood. I think they misunderstand, they confused, you know, the price of the cloud with the cost of the cloud. They ignore all the labor costs that are associated with that. And so, you know, there's a lot of discussion now about the cloud tax. I just think the pace is accelerating. The gap is not closing, it's widening. >> If you look at the one question I asked them about wavelength and I had a follow up there when I said, you know, we riff on it and you see, he lit up like he beam was beaming because he said something interesting. It's not that there's a problem to solve at this opportunity. And he conveyed it to like I said, walking through Fry's. But like, you go into a store and he's a builder. So he sees opportunity. And this comes back down to the Martine Casada paradox posts he wrote about do you optimize for CapEx or future revenue? And I think the tell sign is at the wavelength edge piece is going to be so creative and that's going to open up massive opportunities. I think that's the place to watch. That's the place I'm watching. And I think startups going to come out of the woodwork because that's where the action will be. And that's just Amazon at the edge, I mean, that's just cloud at the edge. I think that is going to be very effective. And his that's a little TeleSign, he kind of revealed a little bit there, a lot there with that comment. >> Well that's a to be continued conversation. >> Indeed, I would love to introduce our next guest. We actually have Soma on the line. He's the managing director at Madrona venture group. Thank you Soma very much for coming for our keynote program. >> Thank you Natalie and I'm great to be here and will have the opportunity to spend some time with you all. >> Well, you have a long to nerd history in the enterprise. How would you define the modern enterprise also known as cloud scale? >> Yeah, so I would say I have, first of all, like, you know, we've all heard this now for the last, you know, say 10 years or so. Like, software is eating the world. Okay. Put it another way, we think about like, hey, every enterprise is a software company first and foremost. Okay. And companies that truly internalize that, that truly think about that, and truly act that way are going to start up, continue running well and things that don't internalize that, and don't do that are going to be left behind sooner than later. Right. And the last few years you start off thing and not take it to the next level and talk about like, not every enterprise is not going through a digital transformation. Okay. So when you sort of think about the world from that lens. Okay. Modern enterprise has to think about like, and I am first and foremost, a technology company. I may be in the business of making a car art, you know, manufacturing paper, or like you know, manufacturing some healthcare products or what have you got out there. But technology and software is what is going to give me a unique, differentiated advantage that's going to let me do what I need to do for my customers in the best possible way [Indistinct]. So that sort of level of focus, level of execution, has to be there in a modern enterprise. The other thing is like not every modern enterprise needs to think about regular. I'm competing for talent, not anymore with my peers in my industry. I'm competing for technology talent and software talent with the top five technology companies in the world. Whether it is Amazon or Facebook or Microsoft or Google, or what have you cannot think, right? So you really have to have that mindset, and then everything flows from that. >> So I got to ask you on the enterprise side again, you've seen many ways of innovation. You've got, you know, been in the industry for many, many years. The old way was enterprises want the best proven product and the startups want that lucrative contract. Right? Yeah. And get that beach in. And it used to be, and we addressed this in our earlier keynote with Ali and how it's changing, the buyers are changing because the cloud has enabled this new kind of execution. I call it agile, call it what you want. Developers are driving modern applications, so enterprises are still, there's no, the playbooks evolving. Right? So we see that with the pandemic, people had needs, urgent needs, and they tried new stuff and it worked. The parachute opened as they say. So how do you look at this as you look at stars, you're investing in and you're coaching them. What's the playbook? What's the secret sauce of how to crack the enterprise code today. And if you're an enterprise buyer, what do I need to do? I want to be more agile. Is there a clear path? Is there's a TSA to let stuff go through faster? I mean, what is the modern playbook for buying and being a supplier? >> That's a fantastic question, John, because I think that sort of playbook is changing, even as we speak here currently. A couple of key things to understand first of all is like, you know, decision-making inside an enterprise is getting more and more de-centralized. Particularly decisions around what technology to use and what solutions to use to be able to do what people need to do. That decision making is no longer sort of, you know, all done like the CEO's office or the CTO's office kind of thing. Developers are more and more like you rightly said, like sort of the central of the workflow and the decision making process. So it'll be who both the enterprises, as well as the startups to really understand that. So what does it mean now from a startup perspective, from a startup perspective, it means like, right. In addition to thinking about like hey, not do I go create an enterprise sales post, do I sell to the enterprise like what I might have done in the past? Is that the best way of moving forward, or should I be thinking about a product led growth go to market initiative? You know, build a product that is easy to use, that made self serve really works, you know, get the developers to start using to see the value to fall in love with the product and then you think about like hey, how do I go translate that into a contract with enterprise. Right? And more and more what I call particularly, you know, startups and technology companies that are focused on the developer audience are thinking about like, you know, how do I have a bottom up go to market motion? And sometime I may sort of, you know, overlap that with the top down enterprise sales motion that we know that has been going on for many, many years or decades kind of thing. But really this product led growth bottom up a go to market motion is something that we are seeing on the rise. I would say they're going to have more than half the startup that we come across today, have that in some way shape or form. And so the enterprise also needs to understand this, the CIO or the CTO needs to know that like hey, I'm not decision-making is getting de-centralized. I need to empower my engineers and my engineering managers and my engineering leaders to be able to make the right decision and trust them. I'm going to give them some guard rails so that I don't find myself in a soup, you know, sometime down the road. But once I give them the guard rails, I'm going to enable people to make the decisions. People who are closer to the problem, to make the right decision. >> Well Soma, what are some of the ways that startups can accelerate their enterprise penetration? >> I think that's another good question. First of all, you need to think about like, Hey, what are enterprises wanting to rec? Okay. If you start off take like two steps back and think about what the enterprise is really think about it going. I'm a software company, but I'm really manufacturing paper. What do I do? Right? The core thing that most enterprises care about is like, hey, how do I better engage with my customers? How do I better serve my customers? And how do I do it in the most optimal way? At the end of the day that's what like most enterprises really care about. So startups need to understand, what are the problems that the enterprise is trying to solve? What kind of tools and platform technologies and infrastructure support, and, you know, everything else that they need to be able to do what they need to do and what only they can do in the most optimal way. Right? So to the extent you are providing either a tool or platform or some technology that is going to enable your enterprise to make progress on what they want to do, you're going to get more traction within the enterprise. In other words, stop thinking about technology, and start thinking about the customer problem that they want to solve. And the more you anchor your company, and more you anchor your conversation with the customer around that, the more the enterprise is going to get excited about wanting to work with you. >> So I got to ask you on the enterprise and developer equation because CSOs and CXOs, depending who you talk to have that same answer. Oh yeah. In the 90's and 2000's, we kind of didn't, we throttled down, we were using the legacy developer tools and cloud came and then we had to rebuild and we didn't really know what to do. So you seeing a shift, and this is kind of been going on for at least the past five to eight years, a lot more developers being hired yet. I mean, at FinTech is clearly a vertical, they always had developers and everyone had developers, but there's a fast ramp up of developers now and the role of open source has changed. Just looking at the participation. They're not just consuming open source, open source is part of the business model for mainstream enterprises. How is this, first of all, do you agree? And if so, how has this changed the course of an enterprise human resource selection? How they're organized? What's your vision on that? >> Yeah. So as I mentioned earlier, John, in my mind the first thing is, and this sort of, you know, like you said financial services has always been sort of hiring people [Indistinct]. And this is like five-year old story. So bear with me I'll tell you the firewall story and then come to I was trying to, the cloud CIO or the Goldman Sachs. Okay. And this is five years ago when people were still like, hey, is this cloud thing real and now is cloud going to take over the world? You know, am I really ready to put my data in the cloud? So there are a lot of questions and conversations can affect. The CIO of Goldman Sachs told me two things that I remember to this day. One is, hey, we've got a internal edict. That we made a decision that in the next five years, everything in Goldman Sachs is going to be on the public law. And I literally jumped out of the chair and I said like now are you going to get there? And then he laughed and said like now it really doesn't matter whether we get there or not. We want to set the tone, set the direction for the organization that hey, public cloud is here. Public cloud is there. And we need to like, you know, move as fast as we realistically can and think about all the financial regulations and security and privacy. And all these things that we care about deeply. But given all of that, the world is going towards public load and we better be on the leading edge as opposed to the lagging edge. And the second thing he said, like we're talking about like hey, how are you hiring, you know, engineers at Goldman Sachs Canada? And he said like in hey, I sort of, my team goes out to the top 20 schools in the US. And the people we really compete with are, and he was saying this, Hey, we don't compete with JP Morgan or Morgan Stanley, or pick any of your favorite financial institutions. We really think about like, hey, we want to get the best talent into Goldman Sachs out of these schools. And we really compete head to head with Google. We compete head to head with Microsoft. We compete head to head with Facebook. And we know that the caliber of people that we want to get is no different than what these companies want. If you want to continue being a successful, leading it, you know, financial services player. That sort of tells you what's going on. You also talked a little bit about like hey, open source is here to stay. What does that really mean kind of thing. In my mind like now, you can tell me that I can have from given my pedigree at Microsoft, I can tell you that we were the first embraces of open source in this world. So I'll say that right off the bat. But having said that we did in our turn around and said like, hey, this open source is real, this open source is going to be great. How can we embrace and how can we participate? And you fast forward to today, like in a Microsoft is probably as good as open source as probably any other large company I would say. Right? Including like the work that the company has done in terms of acquiring GitHub and letting it stay true to its original promise of open source and community can I think, right? I think Microsoft has come a long way kind of thing. But the thing that like in all these enterprises need to think about is you want your developers to have access to the latest and greatest tools. To the latest and greatest that the software can provide. And you really don't want your engineers to be reinventing the wheel all the time. So there is something available in the open source world. Go ahead, please set up, think about whether that makes sense for you to use it. And likewise, if you think that is something you can contribute to the open source work, go ahead and do that. So it's really a two way somebody Arctic relationship that enterprises need to have, and they need to enable their developers to want to have that symbiotic relationship. >> Soma, fantastic insights. Thank you so much for joining our keynote program. >> Thank you Natalie and thank you John. It was always fun to chat with you guys. Thank you. >> Thank you. >> John we would love to get your quick insight on that. >> Well I think first of all, he's a prolific investor the great from Madrona venture partners, which is well known in the tech circles. They're in Seattle, which is in the hub of I call cloud city. You've got Amazon and Microsoft there. He'd been at Microsoft and he knows the developer ecosystem. And reason why I like his perspective is that he understands the value of having developers as a core competency in Microsoft. That's their DNA. You look at Microsoft, their number one thing from day one besides software was developers. That was their army, the thousand centurions that one won everything for them. That has shifted. And he brought up open source, and .net and how they've embraced Linux, but something that tele before he became CEO, we interviewed him in the cube at an Xcel partners event at Stanford. He was open before he was CEO. He was talking about opening up. They opened up a lot of their open source infrastructure projects to the open compute foundation early. So they had already had that going and at that price, since that time, the stock price of Microsoft has skyrocketed because as Ali said, open always wins. And I think that is what you see here, and as an investor now he's picking in startups and investing in them. He's got to read the tea leaves. He's got to be in the right side of history. So he brings a great perspective because he sees the old way and he understands the new way. That is the key for success we've seen in the enterprise and with the startups. The people who get the future, and can create the value are going to win. >> Yeah, really excellent point. And just really quickly. What do you think were some of our greatest hits on this hour of programming? >> Well first of all I'm really impressed that Ali took the time to come join us because I know he's super busy. I think they're at a $28 billion valuation now they're pushing a billion dollars in revenue, gap revenue. And again, just a few short years ago, they had zero software revenue. So of these 15 companies we're showcasing today, you know, there's a next Data bricks in there. They're all going to be successful. They already are successful. And they're all on this rocket ship trajectory. Ali is smart, he's also got the advantage of being part of that Berkeley community which they're early on a lot of things now. Being early means you're wrong a lot, but you're also right, and you're right big. So Berkeley and Stanford obviously big areas here in the bay area as research. He is smart, He's got a great team and he's really open. So having him share his best practices, I thought that was a great highlight. Of course, Jeff Barr highlighting some of the insights that he brings and honestly having a perspective of a VC. And we're going to have Peter Wagner from wing VC who's a classic enterprise investors, super smart. So he'll add some insight. Of course, one of the community session, whenever our influencers coming on, it's our beat coming on at the end, as well as Katie Drucker. Another Madrona person is going to talk about growth hacking, growth strategies, but yeah, sights Raleigh coming on. >> Terrific, well thank you so much for those insights and thank you to everyone who is watching the first hour of our live coverage of the AWS startup showcase for myself, Natalie Ehrlich, John, for your and Dave Vellante we want to thank you very much for watching and do stay tuned for more amazing content, as well as a special live segment that John Furrier is going to be hosting. It takes place at 12:30 PM Pacific time, and it's called cracking the code, lessons learned on how enterprise buyers evaluate new startups. Don't go anywhere.

Published Date : Jun 24 2021

SUMMARY :

on the latest innovations and solutions How are you doing. are you looking forward to. and of course the keynotes Ali Ghodsi, of the quality of healthcare and you know, to go from, you know, a you on the other side. Congratulations and great to see you. Thank you so much, good to see you again. And you were all in on cloud. is the success of how you guys align it becomes a force that you moments that you can point to, So that's the second one that we bet on. And one of the things that Back in the day, you had to of say that the data problems And you know, there's this and that's why we have you on here. And if you say you're a data company, and growing companies to choose In the past, you know, So I got to ask you from a for the gigs, you know, to eat out signal out of the, you know, I got to ask you a final question. But the goal is to eventually be able the more lock-in you get. to one cloud or, you know, and taking the time with us today. appreciate talking to you. So Natalie, back to you but I'd love to get Dave's insights first. And the last thing you talked And see that's the key to the of the red hat model, to like block you and filter you. and let the experts manage all that stuff. And the next 15 will be the same. see you just in the bit. Okay, hey Jeff, great to see you. and the cloud is going and options to our customers. and some of the early Amazon services? And so to me, and then next thing you Fry's and before that and appreciate what you did And having that nitro as the base is the way in which ISVs of back, you know, going back is that the regions and local regions. And that in the early days Great to have you on again Thank you John, great to you for more coverage. What stood out to you John? and that's the startup action happened the most part, you know, And that's just Amazon at the edge, Well that's a to be We actually have Soma on the line. and I'm great to be here How would you define the modern enterprise And the last few years you start off thing So I got to ask you on and then you think about like hey, And the more you anchor your company, So I got to ask you on the enterprise and this sort of, you know, Thank you so much for It was always fun to chat with you guys. John we would love to get And I think that is what you see here, What do you think were it's our beat coming on at the end, and it's called cracking the code,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Ali GhodsiPERSON

0.99+

Natalie EhrlichPERSON

0.99+

DavePERSON

0.99+

MicrosoftORGANIZATION

0.99+

Dave VellantePERSON

0.99+

NataliePERSON

0.99+

JeffPERSON

0.99+

AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

JohnPERSON

0.99+

GoogleORGANIZATION

0.99+

OsakaLOCATION

0.99+

UAELOCATION

0.99+

AlliePERSON

0.99+

IsraelLOCATION

0.99+

Peter WagnerPERSON

0.99+

John FurrierPERSON

0.99+

FacebookORGANIZATION

0.99+

TokyoLOCATION

0.99+

$10QUANTITY

0.99+

Sao PauloLOCATION

0.99+

Goldman SachsORGANIZATION

0.99+

FrankfurtLOCATION

0.99+

BerkeleyORGANIZATION

0.99+

Jeff BarrPERSON

0.99+

SeattleLOCATION

0.99+

$28 billionQUANTITY

0.99+

Katie DruckerPERSON

0.99+

$15QUANTITY

0.99+

Morgan StanleyORGANIZATION

0.99+

SomaPERSON

0.99+

IraqLOCATION

0.99+

2009DATE

0.99+

JuanPERSON

0.99+

Goldman SachsORGANIZATION

0.99+

$350 millionQUANTITY

0.99+

AliPERSON

0.99+

11 yearsQUANTITY

0.99+

UNLIST TILL 4/2 - Vertica @ Uber Scale


 

>> Sue: Hi, everybody. Thank you for joining us today, for the Virtual Vertica BDC 2020. This breakout session is entitled "Vertica @ Uber Scale" My name is Sue LeClaire, Director of Marketing at Vertica. And I'll be your host for this webinar. Joining me is Girish Baliga, Director I'm sorry, user, Uber Engineering Manager of Big Data at Uber. Before we begin, I encourage you to submit questions or comments during the virtual session. You don't have to wait, just type your question or comment in the question box below the slides and click Submit. There will be a Q and A session, at the end of the presentation. We'll answer as many questions as we're able to during that time. Any questions that we don't address, we'll do our best to answer offline. Alternately, you can also Vertica forums to post your questions there after the session. Our engineering team is planning to join the forums to keep the conversation going. And as a reminder, you can maximize your screen by clicking the double arrow button, in the lower right corner of the slides. And yet, this virtual session is being recorded, and you'll be able to view on demand this week. We'll send you a notification as soon as it's ready. So let's get started. Girish over to you. >> Girish: Thanks a lot Sue. Good afternoon, everyone. Thanks a lot for joining this session. My name is Girish Baliga. And as Sue mentioned, I manage interactive and real time analytics teams at Uber. Vertica is one of the main platforms that we support, and Vertica powers a lot of core business use cases. In today's talk, I wanted to cover two main things. First, how Vertica is powering critical business use cases, across a variety of orgs in the company. And second, how we are able to do this at scale and with reliability, using some of the additional functionalities and systems that we have built into the Vertica ecosystem at Uber. And towards the end, I also have a little extra bonus for all of you. I will be sharing an easy way for you to take advantage of, many of the ideas and solutions that I'm going to present today, that you can apply to your own Vertica deployments in your companies. So stick around and put on your seat belts, and let's go start on the ride. At Uber, our mission is to ignite opportunity by setting the world in motion. So we are focused on solving mobility problems, and enabling people all over the world to solve their local problems, their local needs, their local issues, in a manner that's efficient, fast and reliable. As our CEO Dara has said, we want to become the mobile operating system of local cities and communities throughout the world. As of today, Uber is operational in over 10,000 cities around the world. So, across our various business lines, we have over 110 million monthly users, who use our rides, services, or eat services, and a whole bunch of other services that we provide to Uber. And just to give you a scale of our daily operations, we in the ride business, have over 20 million trips per day. And that each business is also catching up, particularly during the recent times that we've been having. And so, I hope these numbers give you a scale of the amount of data, that we process each and every day. And support our users in their analytical and business reporting needs. So who are these users at Uber? Let's take a quick look. So, Uber to describe it very briefly, is a lot like Amazon. We are largely an operation and logistics company. And employee work based reflects that. So over 70% of our employees work in teams, which come under the umbrella of Community Operations and Centers of Excellence. So these are all folks working in various cities and towns that we operate around the world, and run the Uber businesses, as somewhat local businesses responding to local needs, local market conditions, local regulation and so forth. And Vertica is one of the most important tools, that these folks use in their day to day business activities. So they use Vertica to get insights into how their businesses are going, to deeply into any issues that they want to triage , to generate reports, to plan for the future, a whole lot of use cases. The second big class of users, are in our marketplace team. So marketplace is the engineering team, that backs our ride shared business. And as part of this, running this business, a key problem that they have to solve, is how to determine what prices to set, for particular rides, so that we have a good match between supply and demand. So obviously the real time pricing decisions they're made by serving systems, with very detailed and well crafted machine learning models. However, the training data that goes into this models, the historical trends, the insights that go into building these models, a lot of these things are powered by the data that we store, and serve out of Vertica. Similarly, in each business, we have use cases spanning all the way from engineering and back-end systems, to support operations, incentives, growth, and a whole bunch of other domains. So the big class of applications that we support across a lot of these business lines, is dashboards and reporting. So we have a lot of dashboards, which are built by core data analysts teams and shared with a whole bunch of our operations and other teams. So these are dashboards and reports that run, periodically say once a week or once a day even, depending on the frequency of data that they need. And many of these are powered by the data, and the analytics support that we provide on our Vertica platform. Another big category of use cases is for growth marketing. So this is to understand historical trends, figure out what are various business lines, various customer segments, various geographical areas, doing in terms of growth, where it is necessary for us to reinvest or provide some additional incentives, or marketing support, and so forth. So the analysis that backs a lot of these decisions, is powered by queries running on Vertica. And finally, the heart and soul of Uber is data science. So data science is, how we provide best in class algorithms, pricing, and matching. And a lot of the analysis that goes into, figuring out how to build these systems, how to build the models, how to build the various coefficients and parameters that go into making real time decisions, are based on analysis that data scientists run on Vertica systems. So as you can see, Vertica usage spans a whole bunch of organizations and users, all across the different Uber teams and ecosystems. Just to give you some quick numbers, we have over 5000 weekly active, people who run queries at least once a week, to do some critical business role or problem to solve, that they have in their day to day operations. So next, let's see how Vertica fits into the Uber data ecosystem. So when users open up their apps, and request for a ride or order food delivery on each platform, the apps are talking to our serving systems. And the serving systems use online storage systems, to store the data as the trips and eat orders are getting processed in real time. So for this, we primarily use an in house built, key value storage system called Schemaless, and an open source system called Cassandra. We also have other systems like MySQL and Redis, which we use for storing various bits of data to support serving systems. So all of this operations generates a lot of data, that we then want to process and analyze, and use for our operational improvements. So, we have ingestion systems that periodically pull in data from our serving systems and land them in our data lake. So at Uber a data lake is powered by Hadoop, with files stored on HDFS clusters. So once the raw data lines on the data lake, we then have ETL jobs that process these raw datasets, and generate, modeled and customize datasets which we then use for further analysis. So once these model datasets are available, we load them into our data warehouse, which is entirely powered by Vertica. So then we have a business intelligence layer. So with internal tools, like QueryBuilder, which is a UI interface to write queries, and look at results. And it read over the front-end sites, and Dashbuilder, which is a dash, board building tool, and report management tool. So these are all various tools that we have built within Uber. And these can talk to Vertica and run SQL queries to power, whatever, dashboards and reports that they are supporting. So this is what the data ecosystem looks like at Uber. So why Vertica and what does it really do for us? So it powers insights, that we show on dashboards as folks use, and it also powers reports that we run periodically. But more importantly, we have some core, properties and core feature sets that Vertica provides, which allows us to support many of these use cases, very well and at scale. So let me take a brief tour of what these are. So as I mentioned, Vertica powers Uber's data warehouse. So what this means is that we load our core fact and dimension tables onto Vertica. The core fact tables are all the trips, all the each orders and all these other line items for various businesses from Uber, stored as partitioned tables. So think of having one partition per day, as well as dimension tables like cities, users, riders, career partners and so forth. So we have both these two kinds of datasets, which will load into Vertica. And we have full historical data, all the way since we launched these businesses to today. So that folks can do deeper longitudinal analysis, so they can look at patterns, like how the business has grown from month to month, year to year, the same month, over a year, over multiple years, and so forth. And, the really powerful thing about Vertica, is that most of these queries, you run the deep longitudinal queries, run very, very fast. And that's really why we love Vertica. Because we see query latency P90s. That is 90 percentile of all queries that we run on our platform, typically finish in under a minute. So that's very important for us because Vertica is used, primarily for interactive analytics use cases. And providing SQL query execution times under a minute, is critical for our users and business owners to get the most out of analytics and Big Data platforms. Vertica also provides a few advanced features that we use very heavily. So as you might imagine, at Uber, one of the most important set of use cases we have is around geospatial analytics. In particular, we have some critical internal dashboards, that rely very heavily on being able to restrict datasets by geographic areas, cities, source destination pairs, heat maps, and so forth. And Vertica has a rich array of functions that we use very heavily. We also have, support for custom projections in Vertica. And this really helps us, have very good performance for critical datasets. So for instance, in some of our core fact tables, we have done a lot of query and analysis to figure out, how users run their queries, what kind of columns they use, what combination of columns they use, and what joints they do for typical queries. And then we have laid out our custom projections to maximize performance on these particular dimensions. And the ability to do that through Vertica, is very valuable for us. So we've also had some very successful collaborations, with the Vertica engineering team. About a year and a half back, we had open-sourced a Python Client, that we had built in house to talk to Vertica. We were using this Python Client in our business intelligence layer that I'd shown on the previous slide. And we had open-sourced it after working closely with Eng team. And now Vertica formally supports the Python Client as an open-source project, which you can download to and integrate into your systems. Another more recent example of collaboration is the Vertica Eon mode on GCP. So as most of or at least some of you know, Vertica Eon mode is formally supported on AWS. And at Uber, we were also looking to see if we could run our data infrastructure on GCP. So Vertica team hustled on this, and provided us early preview version, which we've been testing out to see how performance, is impacted by running on the Cloud, and on GCP. And so far, I think things are going pretty well, but we should have some numbers about this very soon. So here I have a visualization of an internal dashboard, that is powered solely by data and queries running on Vertica. So this GIF has sequence have different visualizations supported by this tool. So for instance, here you see a heat map, downgrading heat map of source of traffic demand for ride shares. And then you will see a bunch of arrows here about source destination pairs and the trip lines. And then you can see how demand moves around. So, as the cycles through the various animations, you can basically see all the different kinds of insights, and query shapes that we send to Vertica, which powers this critical business dashboard for our operations teams. All right, so now how do we do all of this at scale? So, we started off with a single Vertica cluster, a few years back. So we had our data lake, the data would land into Vertica. So these are the core fact and dimension tables that I just spoke about. And then Vertica powers queries at our business intelligence layer, right? So this is a very simple, and effective architecture for most use cases. But at Uber scale, we ran into a few problems. So the first issue that we have is that, Uber is a pretty big company at this point, with a lot of users sending almost millions of queries every week. And at that scale, what we began to see was that a single cluster was not able to handle all the query traffic. So for those of you who have done an introductory course, on queueing theory, you will realize that basically, even though you could have all the query is processed through a single serving system. You will tend to see larger and larger queue wait times, as the number of queries pile up. And what this means in practice for end users, is that they are basically just seeing longer and longer query latencies. But even though the actual query execution time on Vertica itself, is probably less than a minute, their query sitting in the queue for a bunch of minutes, and that's the end user perceived latency. So this was a huge problem for us. The second problem we had was that the cluster becomes a single point of failure. Now Vertica can handle single node failures very gracefully, and it can probably also handle like two or three node failures depending on your cluster size and your application. But very soon, you will see that, when you basically have beyond a certain number of failures or nodes in maintenance, then your cluster will probably need to be restarted or you will start seeing some down times due to other issues. So another example of why you would have to have a downtime, is when you're upgrading software in your clusters. So, essentially we're a global company, and we have users all around the world, we really cannot afford to have downtime, even for one hour slot. So that turned out to be a big problem for us. And as I mentioned, we could have hardware issues. So we we might need to upgrade our machines, or we might need to replace storage or memory due to issues with the hardware in there, due to normal wear and tear, or due to abnormal issues. And so because of all of these things, having a single point of failure, having a single cluster was not really practical for us. So the next thing we did, was we set up multiple clusters, right? So we had a bunch of identities clusters, all of which have the same datasets. So then we would basically load data using ingestion pipelines from our data lake, onto each of these clusters. And then the business intelligence layer would be able to query any of these clusters. So this actually solved most of the issues that I pointed out in the previous slide. So we no longer had a single point of failure. Anytime we had to do version upgrades, we would just take off one cluster offline, upgrade the software on it. If we had node failures, we would probably just take out one cluster, if we had to, or we would just have some spare nodes, which would rotate into our production clusters and so forth. However, having multiple clusters, led to a new set of issues. So the first problem was that since we have multiple clusters, you would end up with inconsistent schema. So one of the things to understand about our platform, is that we are an infrastructure team. So we don't actually own or manage any of the data that is served on Vertica clusters. So we have dataset owners and publishers, who manage their own datasets. Now exposing multiple clusters to these dataset owners. Turns out, it's not a great idea, right? Because they are not really aware of, the importance of having consistency of schemas and datasets across different clusters. So over time, what we saw was that the schema for the same tables would basically get out of order, because they were all the updates are not consistently applied on all clusters. Or maybe they were just experimenting some new columns or some new tables in one cluster, but they forgot to delete it, whatever the case might be. We basically ended up in a situation where, we saw a lot of inconsistent schemas, even across some of our core tables in our different clusters. A second issue was, since we had ingestion pipelines that were ingesting data independently into all these clusters, these pipelines could fail independently as well. So what this meant is that if, for instance, the ingestion pipeline into cluster B failed, then the data there would be older than clusters A and C. So, when a query comes in from the BI layer, and if it happens to hit B, you would probably see different results, than you would if you went to a or C. And this was obviously not an ideal situation for our end users, because they would end up seeing slightly inconsistent, slightly different counts. But then that would lead to a bad situation for them where they would not able to fully trust the data that was, and the results and insights that were being returned by the SQL queries and Vertica systems. And then the third problem was, we had a lot of extra replication. So the 20/80 Rule, or maybe even the 90/10 Rule, applies to datasets on our clusters as well. So less than 10% of our datasets, for instance, in 90% of the queries, right? And so it doesn't really make sense for us to replicate all of our data on all the clusters. And so having this set up where we had to do that, was obviously very suboptimal for us. So then what we did, was we basically built some additional systems to solve these problems. So this brings us to our Vertica ecosystem that we have in production today. So on the ingestion side, we built a system called Vertica Data Manager, which basically manages all the ingestion into various clusters. So at this point, people who are managing datasets or dataset owners and publishers, they no longer have to be aware of individual clusters. They just set up their ingestion pipelines with an endpoint in Vertica Data Manager. And the Vertica Data Manager ensures that, all the schemas and data is consistent across all our clusters. And on the query side, we built a proxy layer. So what this ensures is that, when queries come in from the BI layer, the query was forwarded, smartly and with knowledge and data about which cluster up, which clusters are down, which clusters are available, which clusters are loaded, and so forth. So with these two layers of abstraction between our ingestion and our query, we were able to have a very consistent, almost single system view of our entire Vertica deployment. And the third bit, we had put in place, was the data manifest, which were the communication mechanism between ingestion and proxy. So the data manifest basically is a listing of, which tables are available on which clusters, which clusters are up to date, and so forth. So with this ecosystem in place, we were also able to solve the extra replication problem. So now we basically have some big clusters, where all the core tables, and all the tables, in fact, are served. So any query that hits 90%, less so tables, goes to the big clusters. And most of the queries which hit 10% heavily queried important tables, can also be served by many other small clusters, so much more efficient use of resources. So this basically is the view that we have today, of Vertica within Uber, so external to our team, folks, just have an endpoint, where they basically set up their ingestion jobs, and another endpoint where they can forward their Vertica SQL queries. And they are so to a proxy layer. So let's get a little more into details, about each of these layers. So, on the data management side, as I mentioned, we have two kinds of tables. So we have dimension tables. So these tables are updated every cycle, so the list of cities list of drivers, the list of users and so forth. So these change not so frequently, maybe once a day or so. And so we are able to, and since these datasets are not very big, we basically swap them out on every single cycle. Whereas the fact tables, so these are tables which have information about our trips or each orders and so forth. So these are partition. So we have one partition roughly per day, for the last couple of years, and then we have more of a hierarchical partitions set up for older data. So what we do is we load the partitions for the last three days on every cycle. The reason we do that, is because not all our data comes in at the same time. So we have updates for trips, going over the past two or three days, for instance, where people add ratings to their trips, or provide feedback for drivers and so forth. So we want to capture them all in the row corresponding to that particular trip. And so we upload partitions for the last few days to make sure we capture all those updates. And we also update older partitions, if for instance, records were deleted for retention purposes, or GDPR purposes, for instance, or other regulatory reasons. So we do this less frequently, but these are also updated if necessary. So there are endpoints which allow dataset owners to specify what partitions they want to update. And as I mentioned, data is typically managed using a hierarchical partitioning scheme. So in this way, we are able to make sure that, we take advantage of the data being clustered by day, so that we don't have to update all the data at once. So when we are recovering from an cluster event, like a version upgrade or software upgrade, or hardware fix or failure handling, or even when we are adding a new cluster to the system, the data manager takes care of updating the tables, and copying all the new partitions, making sure the schemas are all right. And then we update the data and schema consistency and make sure everything is up to date before we, add this cluster to our serving pool, and the proxy starts sending traffic to it. The second thing that the data manager provides is consistency. So the main thing we do here, is we do atomic updates of our tables and partitions for fact tables using a two-phase commit scheme. So what we do is we load all the new data in temp tables, in all the clusters in phase one. And then when all the clusters give us access signals, then we basically promote them to primary and set them as the main serving tables for incoming queries. We also optimize the load, using Vertica Data Copy. So what this means is earlier, in a parallel pipelines scheme, we had to ingest data individually from HDFS clusters into each of the Vertica clusters. That took a lot of HDFS bandwidth. But using this nice feature that Vertica provides called Vertica Data Copy, we just load it data into one cluster and then much more efficiently copy it, to the other clusters. So this has significantly reduced our ingestion overheads, and speed it up our load process. And as I mentioned as the second phase of the commit, all data is promoted at the same time. Finally, we make sure that all the data is up to date, by doing some checks around the number of rows and various other key signals for freshness and correctness, which we compare with the data in the data lake. So in terms of schema changes, VDM automatically applies these consistently across all the clusters. So first, what we do is we stage these changes to make sure that these are correct. So this catches errors that are trying to do, an incompatible update, like changing a column type or something like that. So we make sure that schema changes are validated. And then we apply them to all clusters atomically again for consistency. And provide a overall consistent view of our data to all our users. So on the proxy side, we have transparent support for, replicated clusters to all our users. So the way we handle that is, as I mentioned, the cluster to table mapping is maintained in the manifest database. And when we have an incoming query, the proxy is able to see which cluster has all the tables in that query, and route the query to the appropriate cluster based on the manifest information. Also the proxy is aware of the health of individual clusters. So if for some reason a cluster is down for maintenance or upgrades, the proxy is aware of this information. And it does the monitoring based on query response and execution times as well. And it uses this information to route queries to healthy clusters, and do some load balancing to ensure that we award hotspots on various clusters. So the key takeaways that I have from the stock, are primarily these. So we started off with single cluster mode on Vertica, and we ran into a bunch of issues around scaling and availability due to cluster downtime. We had then set up a bunch of replicated clusters to handle the scaling and availability issues. Then we run into issues around schema consistency, data staleness, and data replication. So we built an entire ecosystem around Vertica, with abstraction layers around data management and ingestion, and proxy. And with this setup, we were able to enforce consistency and improve storage utilization. So, hopefully this gives you all a brief idea of how we have been able to scale Vertica usage at Uber, and power some of our most business critical and important use cases. So as I mentioned at the beginning, I have a interesting and simple extra update for you. So an easy way in which you all can take advantage of many of the features that we have built into our ecosystem, is to use the Vertica Eon mode. So the Vertica Eon mode, allows you to set up multiple clusters with consistent data updates, and set them up at various different sizes to handle different query loads. And it automatically handles many of these issues that I mentioned in our ecosystem. So do check it out. We've also been, trying it out on DCP, and initial results look very, very promising. So thank you all for joining me on this talk today. I hope you guys learned something new. And hopefully you took away something that you can also apply to your systems. We have a few more time for some questions. So I'll pause for now and take any questions.

Published Date : Mar 30 2020

SUMMARY :

Any questions that we don't address, So the first issue that we have is that,

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Girish BaligaPERSON

0.99+

UberORGANIZATION

0.99+

GirishPERSON

0.99+

10%QUANTITY

0.99+

one hourQUANTITY

0.99+

Sue LeClairePERSON

0.99+

90%QUANTITY

0.99+

AmazonORGANIZATION

0.99+

AWSORGANIZATION

0.99+

SuePERSON

0.99+

twoQUANTITY

0.99+

VerticaORGANIZATION

0.99+

DaraPERSON

0.99+

first issueQUANTITY

0.99+

less than a minuteQUANTITY

0.99+

MySQLTITLE

0.99+

FirstQUANTITY

0.99+

first problemQUANTITY

0.99+

third problemQUANTITY

0.99+

third bitQUANTITY

0.99+

less than 10%QUANTITY

0.99+

each platformQUANTITY

0.99+

secondQUANTITY

0.99+

one clusterQUANTITY

0.99+

oneQUANTITY

0.99+

second issueQUANTITY

0.99+

PythonTITLE

0.99+

todayDATE

0.99+

second phaseQUANTITY

0.99+

two kindsQUANTITY

0.99+

over 10,000 citiesQUANTITY

0.99+

over 70%QUANTITY

0.99+

each businessQUANTITY

0.99+

second thingQUANTITY

0.98+

second problemQUANTITY

0.98+

VerticaTITLE

0.98+

bothQUANTITY

0.98+

Vertica Data ManagerTITLE

0.98+

two-phaseQUANTITY

0.98+

firstQUANTITY

0.98+

90 percentileQUANTITY

0.98+

once a weekQUANTITY

0.98+

eachQUANTITY

0.98+

single pointQUANTITY

0.97+

SQLTITLE

0.97+

once a dayQUANTITY

0.97+

RedisTITLE

0.97+

one partitionQUANTITY

0.97+

under a minuteQUANTITY

0.97+

@ Uber ScaleORGANIZATION

0.96+

Robert Nishihara, Anyscale | AWS re:Invent 2022 - Global Startup Program


 

>>Well, hello everybody. John Walls here and continuing our coverage here at AWS Reinvent 22 on the queue. We continue our segments here in the Global Startup program, which of course is sponsored by AWS Startup Showcase, and with us to talk about any scale as the co-founder and CEO of the company, Robert and n, you are Robert. Good to see you. Thanks for joining us. >>Yeah, great. And thank you. >>You bet. Yeah. Glad to have you aboard here. So let's talk about Annie Scale, first off, for those at home and might not be familiar with what you do. Yeah. Because you've only been around for a short period of time, you're telling me >>Company's about >>Three years now. Three >>Years old, >>Yeah. Yeah. So tell us all about it. Yeah, >>Absolutely. So one of the biggest things happening in computing right now is the proliferation of ai. AI is just spreading throughout every industry has the potential to transform every industry. But the thing about doing AI is that it's incredibly computationally intensive. So if you wanna do do ai, you're not, you're probably not just doing it on your laptop, you're doing it across many machines, many gpu, many compute resources, and that's incredibly hard to do. It requires a lot of software engineering expertise, a lot of infrastructure expertise, a lot of cloud computing expertise to build the software infrastructure and distributed systems to really scale AI across all of the, across the cloud. And to do it in a way where you're really getting value out of ai. And so that is the, the problem statement that AI has tremendous potential. It's incredibly hard to do because of the, the scale required. >>And what we are building at any scale is really trying to make that easy. So trying to get to the point where, as a developer, if you know how to program on your laptop, then if you know how to program saying Python on your laptop, then that's enough, right? Then you can do ai, you can get value out of it, you can scale it, you can build the kinds of, you know, incredibly powerful applica AI applications that companies like Google and, and Facebook and others can build. But you don't have to learn about all of the distributed systems and infrastructure. It just, you know, we'll handle that for you. So that's, if we're successful, you know, that's what we're trying to achieve here. >>Yeah. What, what makes AI so hard to work with? I mean, you talk about the complexity. Yeah. A lot of moving parts. I mean, literally moving parts, but, but what is it in, in your mind that, that gets people's eyes spinning a little bit when they, they look at great potential. Yeah. But also they look at the downside of maybe having to work your way through Pike mere of sorts. >>So, so the potential is definitely there, but it's important to remember that a lot of AI initiatives fail. Like a lot of initiative AI initiatives, something like 80 or 90% don't make it out of, you know, the research or prototyping phase and inter production. Hmm. So, some of the things that are hard about AI and the reasons that AI initiatives can fail, one is the scale required, you know, moving. It's one thing to develop something on your laptop, it's another thing to run it across thousands of machines. So that's scale, right? Another is the transition from development and prototyping to production. Those are very different, have very different requirements. Absolutely. A lot of times it's different teams within a company. They have different tech stacks, different software they're using. You know, we hear companies say that when they move from develop, you know, once they prototype and develop a model, it could take six to 12 weeks to get that model in production. >>And that often involves rewriting a lot of code and handing it off to another team. So the transition from development to production is, is a big challenge. So the scale, the development to production handoff. And then lastly, a big challenge is around flexibility. So AI's a fast moving field, you see new developments, new algorithms, new models coming out all the time. And a lot of teams we work with, you know, they've, they've built infrastructure. They're using products out there to do ai, but they've found that it's sort of locking them into rigid workflows or specific tools, and they don't have the flexibility to adopt new algorithms or new strategies or approaches as they're being developed as they come out. And so they, but their developers want the flexibility to use the latest tools, the latest strategies. And so those are some of the main problems we see. It's really like, how do you scale scalability? How do you move easily from development and production and back? And how do you remain flexible? How do you adapt and, and use the best tools that are coming out? And so those are, yeah, just those are and often reasons that people start to use Ray, which is our open source project in any scale, which is our, our product. So tell >>Me about Ray, right? Yeah. Opensource project. I think you said you worked on it >>At Berkeley. That's right. Yeah. So before this company, I did a PhD in machine learning at Berkeley. And one of the challenges that we were running into ourselves, we were trying to do machine learning. We actually weren't infrastructure or distributed systems people, but we found ourselves in order to do machine learning, we found ourselves building all sorts of tools, ad hoc tools and systems to scale the machine learning, to be able to run it in a reasonable amount of time and to be able to leverage the compute that we needed. And it wasn't just us people all across, you know, machine learning researchers, machine learning practitioners were building their own tooling and infrastructure. And that was one of the things that we felt was really holding back progress. And so that's how we slowly and kind of gradually got into saying, Hey, we could build better tools here. >>We could build, we could try to make this easier to do so that all of these people don't have to build their own infrastructure. They can focus on the actual machine learning applications that they're trying to build. And so we started, Ray started this open source project for basically scaling Python applications and scaling machine learning applications. And, well, initially we were running around Berkeley trying to get all of our friends to try it out and, and adopt it and, you know, and give us feedback. And if it didn't work, we would debug it right away. And that slow, you know, that gradually turned into more companies starting to adopt it, bigger teams starting to adopt it, external contributors starting to, to contribute back to the open source project and make it better. And, you know, before you know it, we were hosting meetups, giving to talks, running tutorials, and the project was just taking off. And so that's a big part of what we continue to develop today at any scale, is like really fostering this open source community, growing the open source user base, making sure Ray is just the best way to scale Python applications and, and machine learning applications. >>So, so this was a graduate school project That's right. You say on, on your way to getting your doctorate and now you commercializing now, right? Yeah. I mean, so you're being able to offer it, first off, what a journey that was, right? I mean, who would've thought Absolutely. I guess you probably did think that at some point, but >>No, you know, when we started, when we were working on Ray, we actually didn't anticipate becoming a company, or we at least just weren't looking that far ahead. We were really excited about solving this problem of making distributed computing easy, you know, getting to the point where developers just don't have to learn about infrastructure and distributed systems, but get all the benefits. And of course, it wasn't until, you know, later on as we were graduating from Berkeley and we wanted to continue really taking this project further and, and really solving this problem that it, we realized it made sense to start a company. >>So help me out, like, like what, what, and I might have missed this, so I apologize if I did, but in terms of, of Ray's that building block and essential for your, your ML or AI work down the road, you know, what, what is it doing for me or what, what will it allow me to do in either one of those realms that I, I can't do now? >>Yeah. And so, so like why use Ray versus not using Ray? Yeah, I think the, the answer is that you, you know, if you're doing ai, you need to scale. It's becoming, if you don't find that to be the case today, you probably will tomorrow, you know, or the day after that. And so it's really increasingly, it's a requirement. It's not an option. And so if you're scaling, if you're trying to build these scalable applications you are building, you're either going to use Ray or, or something like Ray or you're going to build the infrastructure yourself and building the infrastructure yourself, that's a long journey. >>So why take that on, right? >>And many of the companies we work with don't want to be in the business of building and managing infrastructure. No. Because, you know, if they, they want their their best engineers to build their product, right? To, to get their product to market faster. >>I want, I want you to do that for me. >>Right? Exactly. And so, you know, we can really accelerate what these teams can do and, you know, and if we can make the infrastructure something they just don't have to think about, that's, that's why you would choose to use Ray. >>Okay. You know, between a and I and ml are, are they different animals in terms of what you're trying to get done or what Ray can do? >>Yeah, and actually I should say like, it's not just, you know, teams that are new teams that are starting out, that are using Ray, many companies that have built, already built their own infrastructure will then switch to using Ray. And to give you a few examples, like Uber runs all their deep learning on Ray, okay. And, you know, open ai, which is really at the frontier of training large models and, and you know, pushing the boundaries of, of ai, they train their largest models using Ray. You know, companies like Shopify rebuilt their entire machine learning platform using Ray, >>But they started somewhere else. >>They had, this is all, you know, like, it's not like the v1, you know, of their, of their machine learning infrastructure. This is like, they did it a different way before, this is like the second version or the third iteration of of, of how they're doing it. And they realize often it's because, you know, I mean in the case of, of Uber, just to give you one example, they built a system called hova for scaling deep learning on a bunch of GPUs. Right Now, as you scale deep learning on GPUs for them, the bottleneck shifted away from, you know, as you scale GPU's training, the bottleneck shifted away from training and to the data ingest and pre-processing. And they wanted to scale data ingest and pre-processing on CPUs. So now Hova, it's a deep learning framework. It doesn't do the data ingest and pre-processing on CPUs, but you can, if you run Hova on top of Ray, you can scale training on GPUs. >>And then Ray has another library called Ray Data you can, that lets you scale the ingest and pre-processing on CPUs. You can pipeline them together. And that allowed them to train larger models on more data before, just to take one example, ETA prediction, if you get in an Uber, it tells you what time you're supposed to arrive. Sure. That uses a deep learning model called d eta. And before they were able to train on about two weeks worth of data. Now, you know, using Ray and for scaling the data, ingestive pre-processing and training, they can train on much more data. You know, you can get more accurate ETA predictions. So that's just one example of the kind of benefit they were able to get. Right. Also, because it's running on top of, of Ray and Ray has this ecosystem of libraries, you know, they can also use Ray's hyper parameter tuning library to do hyper parameter tuning for their deep learning models. >>They can also use it for inference and you know, because these are all built on top of Ray, they inherit the like, elasticity and fault tolerance of running on top of Ray. So really it simplifies things on the infrastructure side cuz there's just, if you have Ray as common infrastructure for your machine learning workloads, there's just one system to, to kind of manage and operate. And if you are, it simplifies things for the end users like the developers because from their perspective, they're just writing a Python application. They don't have to learn how to use three different distributed systems and stitch them together and all of this. >>So aws, before I let you go, how do they come into play here for you? I mean, are you part of the showcase, a startup showcase? So obviously a major partner and major figure in the offering that you're presenting >>People? Yeah, well you can run. So any scale is a managed ray service. Like any scale is just the best way to run Ray and deploy Ray. And we run on top of aws. So many of our customers are, you know, using Ray through any scale on aws. And so we work very closely together and, and you know, we have, we have joint customers and basically, and you know, a lot of the value that any scale is adding on top of Ray is around the production story. So basically, you know, things like high availability, things like failure handling, retry alerting, persistence, reproducibility, these are a lot of the value, the values of, you know, the value that our platform adds on top of the open source project. A lot of stuff as well around collaboration, you know, imagine you are, you, something goes wrong with your application, your production job, you want to debug it, you can just share the URL with your, your coworker. They can click a button, reproduce the exact same thing, look at the same logs, you know, and, and, and figure out what's going on. And also a lot around, one thing that's, that's important for a lot of our customers is efficiency around cost. And so we >>Support every customer. >>Exactly. A lot of people are spending a lot of money on, on aws. Yeah. Right? And so any scale supports running out of the box on cheaper like spot instances, these preempt instances, which, you know, just reduce costs by quite a bit. And so things like that. >>Well, the company is any scale and you're on the show floor, right? So if you're having a chance to watch this during reinvent, go down and check 'em out. Robert Ashihara joining us here, the co-founder and ceo and Robert, thanks for being with us. Yeah. Here on the cube. Really enjoyed it. Me too. Thanks so much. Boy, three years graduate program and boom, here you are, you know, with off to the enterprise you go. Very nicely done. All right, we're gonna continue our coverage here on the Cube with more here from Las Vegas. We're the Venetian, we're AWS Reinvent 22 and you're watching the Cube, the leader in high tech coverage.

Published Date : Dec 1 2022

SUMMARY :

scale as the co-founder and CEO of the company, Robert and n, you are Robert. And thank you. for those at home and might not be familiar with what you do. Three years now. Yeah, So if you wanna do do ai, you're not, you're probably not just doing it on your laptop, It just, you know, we'll handle that for you. I mean, you talk about the complexity. can fail, one is the scale required, you know, moving. And how do you remain flexible? I think you said you worked on it you know, machine learning researchers, machine learning practitioners were building their own tooling And, you know, before you know it, we were hosting meetups, I guess you probably did think that at some point, distributed computing easy, you know, getting to the point where developers just don't have to learn It's becoming, if you don't find that to be the case today, No. Because, you know, if they, they want their their best engineers to build their product, And so, you know, we can really accelerate what these teams can do to get done or what Ray can do? And to give you a few examples, like Uber runs all their deep learning on Ray, They had, this is all, you know, like, it's not like the v1, And then Ray has another library called Ray Data you can, that lets you scale the ingest and pre-processing on CPUs. And if you are, it simplifies things for the end users reproduce the exact same thing, look at the same logs, you know, and, and, and figure out what's going on. these preempt instances, which, you know, just reduce costs by quite a bit. Boy, three years graduate program and boom, here you are, you know, with off to the enterprise you

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
RobertPERSON

0.99+

Robert NishiharaPERSON

0.99+

John WallsPERSON

0.99+

Robert AshiharaPERSON

0.99+

sixQUANTITY

0.99+

UberORGANIZATION

0.99+

RayPERSON

0.99+

Las VegasLOCATION

0.99+

Annie ScalePERSON

0.99+

90%QUANTITY

0.99+

ThreeQUANTITY

0.99+

BerkeleyLOCATION

0.99+

80QUANTITY

0.99+

GoogleORGANIZATION

0.99+

Three yearsQUANTITY

0.99+

PythonTITLE

0.99+

second versionQUANTITY

0.99+

tomorrowDATE

0.99+

FacebookORGANIZATION

0.99+

ShopifyORGANIZATION

0.99+

AWSORGANIZATION

0.99+

12 weeksQUANTITY

0.99+

todayDATE

0.99+

third iterationQUANTITY

0.99+

one systemQUANTITY

0.99+

one exampleQUANTITY

0.99+

RayORGANIZATION

0.98+

three yearsQUANTITY

0.98+

oneQUANTITY

0.97+

about two weeksQUANTITY

0.96+

firstQUANTITY

0.96+

thousands of machinesQUANTITY

0.92+

awsORGANIZATION

0.91+

one thingQUANTITY

0.91+

AnyscalePERSON

0.9+

hovaTITLE

0.84+

HovaTITLE

0.83+

VenetianLOCATION

0.81+

moneyQUANTITY

0.79+

Reinvent 22EVENT

0.78+

InventEVENT

0.76+

threeQUANTITY

0.74+

Startup ShowcaseEVENT

0.71+

RayTITLE

0.67+

Reinvent 22TITLE

0.65+

2022 - Global Startup ProgramTITLE

0.63+

thingsQUANTITY

0.62+

ceoPERSON

0.58+

BerkeleyORGANIZATION

0.55+

v1TITLE

0.47+

StartupOTHER

0.38+

Kevin Zawodzinski, Commvault & Paul Meighan, Amazon S3 & Glacier | AWS re:Invent 2022


 

(upbeat music) >> Welcome back friends. It's theCUBE LIVE in Las Vegas at the Venetian Expo, covering the first full day of AWS re:Invent 2022. I'm Lisa Martin, and I have the privilege of working much of this week with Dave Vellante. >> Hey. Yeah, it's good to be with you Lisa. >> It's always good to be with you. Dave, this show is, I can't say enough about the energy. It just keeps multiplying as I've been out on the show floor for a few minutes here and there. We've been having great conversations about cloud migration, digital transformation, business transformation. You name it, we're talking about it. >> Yeah, and I got to say the soccer Christians are really happy. (Lisa laughing) >> Right? Because the USA made it through. So that's a lot of additional excitement. >> That's true. >> People were crowded around the TVs at lunchtime. >> They were, they were. >> So yeah, but back to data. >> Back to data. We have a couple of guests here. We're going to be talking a lot with customer challenges, how they're helping to overcome them. Please welcome Kevin Zawodzinski, VP of Sales Engineering at COMMVAULT. >> Thank you. >> And Paul Meighan, Director of Product Management at AWS. Guys, it's great to have you on the program. Thank you for joining us. >> Thanks for having us. >> Thanks for having us. >> Isn't it great to be back in person? >> Paul: It really is. >> Kevin: Hell, yeah. >> You cannot replicate this on virtual, you just can't. It's nice to see how excited people are to be back. There's been a ton of buzz on our program today about Adam's keynote this morning. Amazing. A lot of synergies with the direction, Paul, that AWS is going in and where we're seeing its ecosystem as well. Paul, first question for you. Talk about, you know, in the customer environment, we know AWS is very customer obsessed. Some of the main challenges customers are facing today is they really continue this business transformation, this digital transformation, and they move to cloud native apps. What are some of those challenges and how do you help them eradicate those? >> Well, I can tell you that the biggest contribution that we make is really by focusing on the fundamentals when it comes to running storage at scale, right? So Amazon S3 is unique, distributed architecture, you know, it really does deliver on those fundamentals of durability, availability, performance, security and it does it at virtually unlimited scale, right? I mean, you guys have talked to a lot of storage folks in the industry and anyone who's run an estate at scale knows that doing that and executing on those fundamentals day after day is just super hard, right? And so we come to work every day, we focus on the fundamentals, and that focus allows customers to spend their time thinking about innovation instead of on how to keep their data durably stored. >> Well, and you guys both came out of the storage world. >> Right. >> Yeah, yeah. >> It was a box world, (Kevin laughs) and it ain't no more. >> Kevin: That's right, absolutely. >> It's a service and a service of scale. >> Kevin: Yeah. So architecture matters, right? >> Yeah. >> Yeah. >> Paul, talk a little bit about, speaking of innovation, talk about the evolution of S3. It's been around for a while now. Everyone knows it, loves it, but how has AWS architected it to really help meet customers where they are? >> Paul: Right. >> Because we know, again, there's that customer first focus. You write the press release down the road, you then follow that. How is it evolving? >> Well, I can tell you that architecture matters a lot and the architecture of Amazon S3 is pretty unique, right? I think, you know, the most important thing to understand about the architecture of S3 is that it is truly a regional service. So we're laid out across a minimum of 3 Availability Zones, or AZs, which are physically separated and isolated and have a distance of miles between them to protect against local events like floods and fires and power interruption, stuff like that. And so when you give us an object, we distribute that data across that minimum of 3 Availability Zones and then within multiple devices within each AZ, right? And so what that means is that when you store data with us, your data is on storage that's able to tolerate the failure of multiple devices with no impact to the integrity of your data, which is super powerful. And then again, super hard to do when you're trying to roll your own. So that's sort of a, like an overview of the architecture. In terms of how we think about our roadmap, you know, 90% of our roadmap comes directly from what customers tell us matters, and that's a tenant of how we think about customer obsession at AWS and it really is how we drive a roadmap. >> Right, so speaking of customers Kevin, what are customers asking you guys- >> Yeah. >> for, how does it relate to what you're doing with S3? >> Yeah, it's a wonderful question and one that is actually really appropriate for us being at re:Invent, right? So we got, last three years we've had customers here with us on stage talking about it. First of all, 3 years ago we did a virtual session, unfortunately, but glad to be back as you mentioned, with Coca-Cola and theirs was about scale and scope and really about how can we protect hundreds of thousands of objects, petabyte to data, in a simple and secure way, right. Then last year we actually met with a ACT, Inc. as well and co-presented with them and really talked about how we could protect modern workloads and their modern workloads around whether it was Aurora or as well as EKS and how they continue to evolve as well. And, last but not least it's going to be, this year we're talking with Illinois State University as well about how they're going to continue to grow, adapt and really leverage AWS and ourselves to further their support of their teachers and their staff. So that is really helping us quite a bit to continue to move forward. And the things we're doing, again, with our customer base it's really around, focused on what's important to them, right? Customer obsession, how are we working with that? How are we making sure that we're listening to them? Again, working with AWS to understand how can we evolve together and really ultimately their journeys. As you heard, even with those 3 examples they're all very different, right? And that's the point, is that everybody's at a different point in the journey. They're at a different place from a modernization perspective. So we're helping them evolve, as they're helping us evolve as well, and transform with AWS. >> So very mature COMMVAULT stack, the S3 bucket and all the other capabilities. Paul, you just talked about coming together- >> Right. >> Dave: for your customers. >> Yeah, yeah, absolutely. And just, you know, we were talking the other day, Paul and I were talking the other day, it's been, you know, we've worked with AWS, with integration since 2009, right? So a long time, right? I mean, for some that may not seem like a long time ago, but it is, right? It's, you know, over a decade of time and we've really advanced that integration considerably as well. >> What are some of the things that, I don't know if you had a chance to see the keynote this morning? >> Yeah, a little bit. >> What are some of the things that there was, and in fact this is funny, funny data point for you on data. One of my previous guests told me that Adam Selipsky spent exactly 52 minutes talking about data this morning. 52 minutes. >> Okay. >> That there's a data point. But talk about some of the things that he talked about, the direction AWS is going in, obviously new era in the last year. Talk about what you heard and how you think that will evolve the COMMVAULT-AWS relationship. >> Yeah, I think part of that is about flexibility, as Paul mentioned too, architecture matters, right? So as we evolve and some of the things that we pride ourselves on is that we developed our systems and our software and everything else to not worry about what do I have to build to today but how do I continue to evolve with my customer base? And that's what AWS does, right? And continues to do. So that's really how we would see the data environment. It's really about that integration. As they grow, as they add more features we're going to add more features as well. And we're right there with them, right? So there's a lot of things that we also talk about, Paul and I talk about, around, you know, how do we, like Graviton3 was brought up today around some of the innovations around that. We're supporting that with Auto Scale right now, right? So we're right there releasing, right when AWS releasing, co-developing things when necessary as well. >> So let's talk about security a little bit. First of all, what is COMMVAULT, right? You're not a security company but you're an adjacency to security. It's sort of, we're rethinking security. >> Kevin: Yep. >> including data protection, not a bolt-on anymore. You guys both have a background in that world and I'm sure that resonates. >> Yeah. >> So what is the security play here? What role does COMMVAULT play? I think we know pretty well what role AWS plays, but love to hear, Paul, your thoughts as well on security. >> Yeah, I'll start I guess. >> Go on Paul. >> Okay. Yeah, so on the security side of things, there's a quite a few things. So again, on the development side of things, we do things like file anomaly detection, so seeing patterns in data. We talked a lot about analytics as well in the keynote this morning. We look at what is happening in the customer environment, if there's something odd or out of place that's happening, we can detect that and we'll notify people. And we've seen that, we have case studies about that. Other things we do are simple, simple but elegant. Is with our security dashboard. So we'll use our security dashboard to show best practices. Are they using Multi-Factor Authentication? Are you viewing password complexity? You know, things like that. And allows people to understand from a security landscape perspective, how do we layer in protection with their other systems around security. We don't profess to be the security company, or a security company, but we help, you know, obviously add in those additional layers. >> And obviously you're securing, you know, the S3 piece of it. >> Mmmhmm. >> You know, from your standpoint because building it in. >> That's right. And we can tell you that for us, security is job zero. And anyone at AWS will tell you that, and not only that but it will always be our top priority. Right from the infrastructure on down. We're very focused on our shared responsibility model where we handle security from the hypervisor, or host operating system level, down to the physical security of the facilities in which our services run and then it's our customer's responsibility to build secure applications, right. >> Yeah. And you talk about Graviton earlier, Nitro comes into play and how you're, sort of, fencing off, you know, the various components of the system from the operating system, the VMs, and then that is designed in and that's a new evolution that it comes as part of the package. >> Yeah, absolutely. >> Absolutely. >> Paul, talk a little bit about, you know, security, talking about that we had so many conversations this year alone about the threat landscape and how it's dramatically changing, it's top of mind for everybody. Huge rise in ransomware attacks. Ransomware is now, when are we going to get hit? How often? What's the damage going to be? Rather than, are we going to get hit? It's, unfortunately it's progressed in that direction. How does ensuring data security impact how you're planning the roadmap at AWS and how are partners involved in shaping that? >> Right, so like I said, you know, 90% of our roadmap comes from what customers tell us matters, right? And clearly this is an issue that matters very much to customers right now, right? And so, you know, we're certainly hearing that from customers, and COMMVAULT, and partners like COMMVAULT have a big role to play in helping customers to secure and protect their applications, right? And that's why it's so critical that we come together here at re:Invent and we have a bunch of time here at the show with the COMMVAULT technical folks to talk through what they're hearing from customers and what we're hearing. And we have a number of regular touch points throughout the year as well, right? And so what COMMVAULT gets from the relationship is, sort of, early access and feedback into our features and roadmap. And what we get out of it really is that feedback from that large number of customers who interface with Amazon S3 through COMMVAULT. Who are using S3 as a backup target behind COMMVAULT, right? And so, you know, that partnership really allows us to get close to those customers and understand what really matters to them. >> Are you doing joint engineering, or is it more just, hey here you go COMMVAULT, here's the tools available, go, go build. Can you address that? >> Yeah, no, absolutely. There's definitely joint engineering like even things around, you know, data migration and movement of data, we integrate really well and we talk a lot about, hey, what are you, like as Paul mentioned, what are you seeing out there? We actually, I just left a conversation about an hour ago where we're talking about, you know, where are we seeing placement of data and how does that matter to, do you put it on, you know, instant access, or do you put it on Glacier, you know, what should be the best practices? And we tell them, again, some of the telemetry data that we have around what do we see customers doing, what's the patterns of data? And then we feed that back in and we use that to create joint solutions as well. >> You know, I wonder if we could talk about cloud, you know, optimization of cloud costs for a minute. That's obviously a big discussion point in the hallways with customers. And on your earnings call you guys talked about specifically some customers and they specifically mentioned, for example, pushing storage to lower cost tiers. So you brought up Glacier just then. What are you seeing in the field in that regard? How are customers taking advantage of that? And where does COMMVAULT play in, sort of, helping make that decision? >> You want to take part one or you want me to take it? >> I can take part one. I can tell you that, you know, we're very focused on helping customers optimize costs, however necessary, right? And, you know, we introduced intelligent hearing here at the show in 2019 and since launch it's helped customers to reduce costs by over $750 million, right? So that's a real commitment to optimizing costs on behalf of customers. We also launched, you know, later in 2020, Glacier Deep Archive, which is the lowest cost storage in the cloud. So it's an important piece of the puzzle, is to provide those storage options that can allow customers to match the workloads that are, that need to be on folder storage to the appropriate store. >> Yeah, and so, you know, S3 is not this, you know, backup and recovery system, not an archiving system and, you know, in terms of, but you have that intelligence in your platform. 'Cause when I heard that from the earnings call I was like, okay, how do customers then go about deciding what they can, you know, when it's all good times, like yeah, who cares? You know, just go, go, go. But when you got to tighten the belt, how do you guys? >> Yeah, and that goes back to understanding the data pattern. So some of that is we have intelligence and artificial intelligence and everything else and machine learning within our, so we can detect those patterns, right? We understand the patterns, we learn from that and we help customers right size, right. So ultimately we do see a blend, right? As Paul mentioned, we see, you know, hey I'm not going to put everything on Glacier necessarily upfront. Maybe they are, it all depends on their workloads and patterns. So we use the data that we collect from the different customers that we have to share those best practices out and create, you know, the right templates, so to speak, in ways for people to apply it. >> Guys, great joint, you talked about the joint engineering, joint go to market, obviously a very strong synergistic partnership between the two. A lot of excitement. This is only day one, I can only imagine what's going to be coming the next couple of days. But I have one final question for you, but I have same question for both of you. You had the chance to create your own bumper sticker, so you get a shiny new car and for some reason you want to put a bumper sticker on it. About COMMVAULT, what would it say? >> Yeah, so for me I would say comprehensive, yet simple, right? So ultimately about giving you all the bells and whistles but if you want to be very simple we can help you in every shape and form. >> Paul, what's your bumper sticker say about AWS? >> I would say that AWS starts with the customer and works backwards from there. >> Great one. >> Excellent. Guys- >> Kevin: Well done. >> it's been a pleasure to have you on the program. Thank you- >> Kevin: Thank you. >> for sharing what's going on, the updates on the AWS-COMMVAULT partnership and what's in it for customers. We appreciate it. >> Dave: Thanks you guys. >> Thanks a lot. >> Thank you. >> All right. For our guests and Dave Vellante, I'm Lisa Martin. You're watching theCUBE, the leader in live enterprise and emerging tech coverage. (upbeat music)

Published Date : Nov 30 2022

SUMMARY :

Vegas at the Venetian Expo, to be with you Lisa. It's always good to be with you. Yeah, and I got to say the Because the USA made it through. around the TVs at lunchtime. how they're helping to overcome them. have you on the program. and how do you help them eradicate those? and that focus allows customers to Well, and you guys both and it ain't no more. architecture matters, right? but how has AWS architected it to you then follow that. And so when you give us an object, and really about how can we protect and all the other capabilities. And just, you know, we What are some of the Talk about what you heard and how Paul and I talk about, around, you know, First of all, what is COMMVAULT, right? in that world and I'm sure that resonates. but love to hear, Paul, your but we help, you know, you know, the S3 piece of it. You know, from your standpoint And anyone at AWS will tell you that, sort of, fencing off, you know, What's the damage going to be? And so, you know, that partnership really Are you doing joint engineering, like even things around, you know, could talk about cloud, you know, We also launched, you know, Yeah, and so, you know, and create, you know, the right templates, You had the chance to create we can help you in every shape and form. and works backwards from there. have you on the program. the updates on the the leader in live enterprise

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Lisa MartinPERSON

0.99+

AWSORGANIZATION

0.99+

Kevin ZawodzinskiPERSON

0.99+

PaulPERSON

0.99+

Paul MeighanPERSON

0.99+

Adam SelipskyPERSON

0.99+

Dave VellantePERSON

0.99+

AdamPERSON

0.99+

KevinPERSON

0.99+

DavePERSON

0.99+

90%QUANTITY

0.99+

2019DATE

0.99+

LisaPERSON

0.99+

AmazonORGANIZATION

0.99+

3 Availability ZonesQUANTITY

0.99+

last yearDATE

0.99+

2009DATE

0.99+

Las VegasLOCATION

0.99+

ACT, Inc.ORGANIZATION

0.99+

3 examplesQUANTITY

0.99+

GlacierORGANIZATION

0.99+

52 minutesQUANTITY

0.99+

bothQUANTITY

0.99+

Illinois State UniversityORGANIZATION

0.99+

OneQUANTITY

0.99+

twoQUANTITY

0.99+

first questionQUANTITY

0.99+

over $750 millionQUANTITY

0.99+

3 years agoDATE

0.99+

S3TITLE

0.99+

this yearDATE

0.98+

COMMVAULTORGANIZATION

0.98+

eachQUANTITY

0.98+

CommvaultPERSON

0.98+

firstQUANTITY

0.97+

one final questionQUANTITY

0.97+

hundreds of thousands of objectsQUANTITY

0.97+

Florian Berberich, PRACE AISBL | SuperComputing 22


 

>>We're back at Supercomputing 22 in Dallas, winding down day four of this conference. I'm Paul Gillan, my co-host Dave Nicholson. We are talking, we've been talking super computing all week and you hear a lot about what's going on in the United States, what's going on in China, Japan. What we haven't talked a lot about is what's going on in Europe and did you know that two of the top five supercomputers in the world are actually from European countries? Well, our guest has a lot to do with that. Florian, bearish, I hope I pronounce that correctly. My German is, German is not. My strength is the operations director for price, ais, S B L. And let's start with that. What is price? >>So, hello and thank you for the invitation. I'm Flon and Price is a partnership for Advanced Computing in Europe. It's a non-profit association with the seat in Brussels in Belgium. And we have 24 members. These are representatives from different European countries dealing with high performance computing in at their place. And we, so far, we provided the resources for our European research communities. But this changed in the last year, this oral HPC joint undertaking who put a lot of funding in high performance computing and co-funded five PET scale and three preis scale systems. And two of the preis scale systems. You mentioned already, this is Lumi and Finland and Leonardo in Bologna in Italy were in the place for and three and four at the top 500 at least. >>So why is it important that Europe be in the top list of supercomputer makers? >>I think Europe needs to keep pace with the rest of the world. And simulation science is a key technology for the society. And we saw this very recently with a pandemic, with a covid. We were able to help the research communities to find very quickly vaccines and to understand how the virus spread around the world. And all this knowledge is important to serve the society. Or another example is climate change. Yeah. With these new systems, we will be able to predict more precise the changes in the future. So the more compute power you have, the better the smaller the grid and there is resolution you can choose and the lower the error will be for the future. So these are, I think with these systems, the big or challenges we face can be addressed. This is the climate change, energy, food supply, security. >>Who are your members? Do they come from businesses? Do they come from research, from government? All of the >>Above. Yeah. Our, our members are public organization, universities, research centers, compute sites as a data centers, but But public institutions. Yeah. And we provide this services for free via peer review process with excellence as the most important criteria to the research community for free. >>So 40 years ago when, when the idea of an eu, and maybe I'm getting the dates a little bit wrong, when it was just an idea and the idea of a common currency. Yes. Reducing friction between, between borders to create a trading zone. Yes. There was a lot of focus there. Fast forward to today, would you say that these efforts in supercomputing, would they be possible if there were not an EU super structure? >>No, I would say this would not be possible in this extent. I think when though, but though European initiatives are, are needed and the European Commission is supporting these initiatives very well. And before praise, for instance 2008, there were research centers and data centers operating high performance computing systems, but they were not talking to each other. So it was isolated praise created community of operation sites and it facilitated the exchange between them and also enabled to align investments and to, to get the most out of the available funding. And also at this time, and still today for one single country in Europe, it's very hard to provide all the different architectures needed for all the different kind of research communities and applications. If you want to, to offer always the latest technologies, though this is really hardly possible. So with this joint action and opening the resources for other research groups from other countries, you, we, we were able to, yeah, get access to the latest technology for different communities at any given time though. And >>So, so the fact that the two systems that you mentioned are physically located in Finland and in Italy, if you were to walk into one of those facilities and meet the people that are there, they're not just fins in Finland and Italians in Italy. Yeah. This is, this is very much a European effort. So this, this is true. So, so in this, in that sense, the geography is sort of abstracted. Yeah. And the issues of sovereignty that make might take place in in the private sector don't exist or are there, are there issues with, can any, what are the requirements for a researcher to have access to a system in Finland versus a system in Italy? If you've got a EU passport, Hmm. Are you good to go? >>I think you are good to go though. But EU passport, it's now it becomes complicated and political. It's, it's very much, if we talk about the recent systems, well first, let me start a praise. Praise was inclusive and there was no any constraints as even we had users from US, Australia, we wanted just to support excellence in science. And we did not look at the nationality of the organization, of the PI and and so on. There were quotas, but these quotas were very generously interpreted. So, and if so, now with our HPC joint undertaking, it's a question from what European funds, these systems were procured and if a country or being country are associated to this funding, the researchers also have access to these systems. And this addresses basically UK and and Switzerland, which are not in the European Union, but they were as created to the Horizon 2020 research framework. And though they could can access the systems now available, Lumi and Leono and the Petascale system as well. How this will develop in the future, I don't know. It depends to which research framework they will be associated or not. >>What are the outputs of your work at price? Are they reference designs? Is it actual semiconductor hardware? Is it the research? What do you produce? >>So the, the application we run or the simulation we run cover all different scientific domains. So it's, it's science, it's, but also we have industrial let projects with more application oriented targets. Aerodynamics for instance, for cars or planes or something like this. But also fundamental science like the physical elementary physics particles for instance or climate change, biology, drug design, protein costa, all these >>Things. Can businesses be involved in what you do? Can they purchase your, your research? Do they contribute to their, I'm sure, I'm sure there are many technology firms in Europe that would like to be involved. >>So this involving industry though our calls are open and is, if they want to do open r and d, they are invited to submit also proposals. They will be evaluated and if this is qualifying, they will get the access and they can do their jobs and simulations. It's a little bit more tricky if it's in production, if they use these resources for their business and do not publish the results. They are some, well, probably more sites who, who are able to deal with these requests. Some are more dominant than others, but this is on a smaller scale, definitely. Yeah. >>What does the future hold? Are you planning to, are there other countries who will be joining the effort, other institutions? Do you plan to expand your, your scope >>Well, or I think or HPC joint undertaking with 36 member states is quite, covers already even more than Europe. And yeah, clearly if, if there are other states interest interested to join that there is no limitation. Although the focus lies on European area and on union. >>When, when you interact with colleagues from North America, do you, do you feel that there is a sort of European flavor to supercomputing that is different or are we so globally entwined? No. >>So research is not national, it's not European, it's international. This is also clearly very clear and I can, so we have a longstanding collaboration with our US colleagues and also with Chap and South Africa and Canada. And when Covid hit the world, we were able within two weeks to establish regular seminars inviting US and European colleagues to talk to to other, to each other and exchange the results and find new collaboration and to boost the research activities. So, and I have other examples as well. So when we, we already did the joint calls US exceed and in Europe praise and it was a very interesting experience. So we received applications from different communities and we decided that we will review this on our side, on European, with European experts and US did it in US with their experts. And you can guess what the result was at the meeting when we compared our results, it was matching one by one. It was exactly the same. Recite >>That it, it's, it's refreshing to hear a story of global collaboration. Yeah. Where people are getting along and making meaningful progress. >>I have to mention you, I have to to point out, you did not mention China as a country you were collaborating with. Is that by, is that intentional? >>Well, with China, definitely we have less links and collaborations also. It's also existing. There, there was initiative to look at the development of the technologies and the group meet on a regular basis. And there, there also Chinese colleagues involved. It's on a lower level, >>Yes, but is is the con conversations are occurring. We're out of time. Florian be operations director of price, European Super Computing collaborative. Thank you so much for being with us. I'm always impressed when people come on the cube and submit to an interview in a language that is not their first language. Yeah, >>Absolutely. >>Brave to do that. Yeah. Thank you. You're welcome. Thank you. We'll be right back after this break from Supercomputing 22 in Dallas.

Published Date : Nov 18 2022

SUMMARY :

Well, our guest has a lot to do with that. And we have 24 members. And we saw this very recently with excellence as the most important criteria to the research Fast forward to today, would you say that these the exchange between them and also enabled to So, so the fact that the two systems that you mentioned are physically located in Finland nationality of the organization, of the PI and and so on. But also fundamental science like the physical Do they contribute to their, I'm sure, I'm sure there are many technology firms in business and do not publish the results. Although the focus lies on European area is different or are we so globally entwined? so we have a longstanding collaboration with our US colleagues and That it, it's, it's refreshing to hear a story of global I have to mention you, I have to to point out, you did not mention China as a country you the development of the technologies and the group meet Yes, but is is the con conversations are occurring. Brave to do that.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Paul GillanPERSON

0.99+

Florian BerberichPERSON

0.99+

BrusselsLOCATION

0.99+

FinlandLOCATION

0.99+

EuropeLOCATION

0.99+

USLOCATION

0.99+

European CommissionORGANIZATION

0.99+

DallasLOCATION

0.99+

ItalyLOCATION

0.99+

BolognaLOCATION

0.99+

twoQUANTITY

0.99+

24 membersQUANTITY

0.99+

FlorianPERSON

0.99+

United StatesLOCATION

0.99+

two systemsQUANTITY

0.99+

North AmericaLOCATION

0.99+

2008DATE

0.99+

BelgiumLOCATION

0.99+

AustraliaLOCATION

0.99+

fourQUANTITY

0.99+

threeQUANTITY

0.99+

todayDATE

0.99+

last yearDATE

0.99+

EUORGANIZATION

0.99+

CovidPERSON

0.99+

pandemicEVENT

0.99+

first languageQUANTITY

0.98+

two weeksQUANTITY

0.98+

firstQUANTITY

0.98+

CanadaLOCATION

0.98+

South AfricaLOCATION

0.97+

EuropeanOTHER

0.97+

36 member statesQUANTITY

0.97+

ChapORGANIZATION

0.97+

40 years agoDATE

0.97+

Horizon 2020TITLE

0.96+

HPCORGANIZATION

0.96+

FlonORGANIZATION

0.96+

EuropeanLOCATION

0.96+

day fourQUANTITY

0.94+

ChineseOTHER

0.93+

SwitzerlandLOCATION

0.92+

UKLOCATION

0.92+

aisORGANIZATION

0.91+

one of those facilitiesQUANTITY

0.86+

five supercomputersQUANTITY

0.86+

European UnionORGANIZATION

0.85+

Lumi andORGANIZATION

0.8+

LeonardoORGANIZATION

0.79+

three preis scale systemsQUANTITY

0.78+

one single countryQUANTITY

0.78+

China,LOCATION

0.78+

PriceORGANIZATION

0.76+

FinlandORGANIZATION

0.69+

EuropeORGANIZATION

0.68+

22OTHER

0.67+

500QUANTITY

0.66+

ChinaLOCATION

0.65+

five PETQUANTITY

0.64+

S B L.PERSON

0.6+

priceORGANIZATION

0.6+

scaleOTHER

0.58+

PetascaleTITLE

0.57+

Madhura Maskasky & Sirish Raghuram | KubeCon + CloudNativeCon NA 2022


 

(upbeat synth intro music) >> Hey everyone and welcome to Detroit, Michigan. theCUBE is live at KubeCon CloudNativeCon, North America 2022. Lisa Martin here with John Furrier. John, this event, the keynote that we got out of a little while ago was, standing room only. The Solutions hall is packed. There's so much buzz. The community is continuing to mature. They're continuing to contribute. One of the big topics is Cloud Native at Scale. >> Yeah, I mean, this is a revolution happening. The developers are coming on board. They will be running companies. Developers, structurally, will be transforming companies with just, they got to get powered somewhere. And, I think, the Cloud Native at Scale speaks to getting everything under the covers, scaling up to support developers. In this next segment, we have two Kube alumnis. We're going to talk about Cloud Native at Scale. Some of the things that need to be there in a unified architecture, should be great. >> All right, it's going to be fantastic. Let's go under the covers here, as John mentioned, two alumni with us, Madhura Maskasky joins us, co-founder of Platform9. Sirish Raghuram, also co-founder of Platform9 joins us. Welcome back to theCUBE. Great to have you guys here at KubeCon on the floor in Detroit. >> Thank you for having us. >> Thank you for having us. >> Excited to be here >> So, talk to us. You guys have some news, Madhura, give us the sneak peak. What's going on? >> Definitely, we are very excited. So, we have John, not too long ago we spoke about our very new open source project called Arlon. And, we were talking about the launch of Arlon in terms of its first release and etcetera. And, just fresh hot of the press, we, Platform9 had its 5.6 release which is its most recent release of our product. And there's a number of key interesting announcements that we'd like to share as part of that. I think, the prominent one is, Platform9 added support for EKS Kubernetes cluster management. And, so, this is part of our vision of being able to add value, no matter where you run your Kubernetes clusters, because, Kubernetes or cluster management, is increasingly becoming commodity. And, so, I think the companies that succeed are going to add value on top, and are going to add value in a way that helps end users, developers, DevOps solve problems that they encounter as they start running these environments, with a lot of scale and a lot of diversity. So, towards that, key features in the 5.6 six release. First, is the very first package release of the product online, which is the open source project that we've kicked off to do cluster and application, entire cluster management at scale. And, then there's few other very interesting capabilities coming out of that. >> I want to just highlight something and then get your thoughts on this next, this release 5.6. First of all, 5.6, it's been around for a while, five reps, but, now, more than ever, you mentioned the application in Ops. You're seeing WebAssembly trends, you're seeing developers getting more and more advanced capability. It's going to accelerate their ability to write code and compose applications. So, you're seeing a application tsunami coming. So, the pressure is okay, they're going to need infrastructure to run all that stuff. And, so, you're seeing more clusters being spun up, more intelligence trying to automate. So you got the automation, so you got the dynamic, the power dynamic of developers and then under the covers. What does 5.6 do to push the mission forward for developers? How would you guys summarize that for people watching? what's in it for them right now? >> So it's, I think going back to what you just said, right, the breadth of applications that people are developing on top of something like Kubernetes and Cloud Native, is always growing. So, it's not just a number of clusters, but also the fact that different applications and different development groups need these clusters to be composed differently. So, a certain version of the application may require some set of build components, add-ons, and operators, and extensions. Whereas, a different application may require something entirely different. And, now, you take this in an enterprise context, right. Like, we had a major media company that worked with us. They have more than 10,000 pods being used by thousands of developers. And, you now think about the breadth of applications, the hundreds of different applications being built. how do you consistently build, and compose, and manage, a large number of communities clusters with a a large variety of extensions that these companies are trying to manage? That's really what I think 5.6 is bringing to the table. >> Scott Johnston just was on here early as the CEO of Docker. He said there's more applications being pushed now than in the history of application development combined. There's more and more apps coming, more and more pressure on the system. >> And, that's where, if you go, there's this famous landscape chart of the CNCF ecosystem technologies. And, the problem that people here have is, how do they put it all together? How do they make sense of it? And, what 5.6 and Arlon and what Platform9 is doing is, it's helping you declaratively capture blueprints of these clusters, using templates, and be able to manage a small number of blueprints that helps you make order out of the chaos of these hundreds of different projects, that are all very interesting and powerful. >> So Project Arlon really helping developers produce the configuration and the deployment complexities of Kubernetes at scale. >> That's exactly right. >> Talk about the, the impact on the business side. Ease of use, what's the benefits for 5.6? What's does it turn into for a benefit standpoint? >> Yeah, I think the biggest benefit, right, is being able to do Cloud Native at Scale faster, and while still keeping a very lean Ops team that is able to spend, let's say 70 plus percent of their time, caring for your actual business bread and butter applications, and not for the infrastructure that serves it, right. If you take the analogy of a restaurant, you don't want to spend 70% of your time in building the appliances or setting up your stoves etcetera. You want to spend 90 plus percent of your time cooking your own meal, because, that is your core key ingredient. But, what happens today in most enterprises is, because, of the level of automation, the level of hands-on available tooling, being there or not being there, majority of the ops time, I would say 50, 70% plus, gets spent in making that kitchen set up and ready, right. And, that is exactly what we are looking to solve, online. >> What would a customer look like, or prospect environment look like that would be really ready for platform9? What, is it more apps being pushed, big push on application development, or is it the toil of like really inefficient infrastructure, or gaps in skills of people? What does an environment look like? So, someone needs to look at their environment and say, okay, maybe I should call platform9. What's it look like? >> So, we generally see customers fall into two ends of the barbell, I would say. One, is the advanced communities users that are running, I would say, typically, 30 or more clusters already. These are the people that already know containers. They know, they've container wise... >> Savvy teams. >> They're savvy teams, a lot of them are out here. And for them, the problem is, how do I manage the complexity at scale? Because, now, the problem is how do I scale us? So, that's one end of the barbell. The other end of the barbell, is, how do we help make Kubernetes accessible to companies that, as what I would call the mainstream enterprise. We're in Detroit in Motown, right, And, we're outside of the echo chamber of the Silicon Valley. Here's the biggest truth, right. For all the progress that we made as a community, less than 20% of applications in the enterprise today are running on Kubernetes. So, what does it take? I would say it's probably less than 10%, okay. And, what does it take, to grow that in order of magnitude? That's the other kind of customer that we really serve, is, because, we have technologies like Kube Word, which helps them take their existing applications and start adopting Kubernetes as a directional roadmap, but, while using the existing applications that they have, without refactoring it. So, I would say those are the two ends of the barbell. The early adopters that are looking for an easier way to adopt Kubernetes as an architectural pattern. And, the advanced savvy users, for whom the problem is, how do they operationally solve the complexity of managing at scale. >> And, what is your differentiation message to both of those different user groups, as you talked about in terms of the number of users of Kubernetes so far? The community groundswell is tremendous, but, there's a lot of opportunity there. You talked about some of the barriers. What's your differentiation? What do you come in saying, this is why Platform9 is the right one for you, in the both of these groups. >> And it's actually a very simple message. We are the simplest and easiest way for a new user that is adopting Kubernetes as an architectural pattern, to get started with existing applications that they have, on the infrastructure that they have. Number one. And, for the savvy teams, our technology helps you operate with greater scale, with constrained operations teams. Especially, with the economy being the way it is, people are not going to get a lot more budget to go hire a lot more people, right. So, that all of them are being asked to do more with less. And, our team, our technology, and our teams, help you do more with less. >> I was talking with Phil Estes last night from AWS. He's here, he is one of their engineer open source advocates. He's always on the ground pumping up AWS. They've had great success, Amazon Web Services, with their EKS. A lot of people adopting clusters on the cloud and on-premises. But Amazon's doing well. You guys have, I think, a relationship with AWS. What's that, If I'm an Amazon customer, how do I get involved with Platform9? What's the hook? Where's the value? What's the product look like? >> Yeah, so, and it kind of goes back towards the point we spoke about, which is, Kubernetes is going to increasingly get commoditized. So, customers are going to find the right home whether it's hyperscalers, EKS, AKS, GKE, or their own infrastructure, to run Kubernetes. And, so, where we want to be at, is, with a project like Arlon, Sirish spoke about the barbell strategy, on one end there is these advanced Kubernetes users, majority of them are running Kubernetes on AKS, right? Because, that was the easiest platform that they found to get started with. So, now, they have a challenge of running these 50 to 100 clusters across various regions of Amazon, across their DevTest, their staging, their production. And, that results in a level of chaos that these DevOps or platform... >> So you come in and solve that. >> That is where we come in and we solve that. And it, you know, Amazon or EKS, doesn't give you tooling to solve that, right. It makes it very easy for you to create those number of clusters. >> Well, even in one hyperscale, let's say AWS, you got regions and locations... >> Exactly >> ...that's kind of a super cloud problem, we're seeing, opportunity problem, and opportunity is that, on Amazon, availability zones is one thing, but, now, also, you got regions. >> That is absolutely right. You're on point John. And the way we solve it, is by using infrastructure as a code, by using GitOps principles, right? Where you define it once, you define it in a yaml file, you define exactly how for your DevTest environment you want your entire infrastructure to look like, including EKS. And then you stamp it out. >> So let me, here's an analogy, I'll throw out this. You guys are like, someone learns how to drive a car, Kubernetes clusters, that's got a couple clusters. Then once they know how to drive a car, you give 'em the sports car. You allow them to stay on Amazon and all of a sudden go completely distributed, Edge, Global. >> I would say that a lot of people that we meet, we feel like they're figuring out how to build a car with the kit tools that they have. And we give them a car that's ready to go and doesn't require them to be trying to... ... they can focus on driving the car, rather than trying to build the car. >> You don't want people to stop, once they get the progressions, they hit that level up on Kubernetes, you guys give them the ability to go much bigger and stronger. >> That's right. >> To accelerate that applications. >> Building a car gets old for people at a certain point in time, and they really want to focus on is driving it and enjoying it. >> And we got four right behind us, so, we'll get them involved. So that's... >> But, you're not reinventing the wheel. >> We're not at all, because, what we are building is two very, very differentiated solutions, right. One, is, we're the simplest and easiest way to build and run Cloud Native private clouds. And, this is where the operational complexity of trying to do it yourself. You really have to be a car builder, to be able to do this with our Platform9. This is what we do uniquely that nobody else does well. And, the other end is, we help you operate at scale, in the hyperscalers, right. Those are the two problems that I feel, whether you're on-prem, or in the cloud, these are the two problems people face. How do you run a private cloud more easily, more efficiently? And, how do you govern at scale, especially in the public clouds? >> I want to get to two more points before we run out of time. Arlon and Argo CD as a service. We previously mentioned up coming into KubeCon, but, here, you guys couldn't be more relevant, 'cause Intuit was on stage on the keynote, getting an award for their work. You know, Argo, it comes from Intuit. That ArgoCon was in Mountain View. You guys were involved in that. You guys were at the center of all this super cloud action, if you will, or open source. How does Arlon fit into the Argo extension? What is Argo CD as a service? Who's going to take that one? I want to get that out there, because, Arlon has been talked about a lot. What's the update? >> I can talk about it. So, one of the things that Arlon uses behind the scenes, is it uses Argo CD, open source Argo CD as a service, as its key component to do the continuous deployment portion of its entire, the infrastructure management story, right. So, we have been very strongly partnering with Argo CD. We, really know and respect the Intuit team a lot. We, as part of this effort, in 5.6 release, we've also put out Argo CD as a service, in its GA version, right. Because, the power of running Arlon along with Argo CD as a service, in our mind, is enabling you to run on one end, your infrastructure as a scale, through GitOps, and infrastructure as a code practices. And on the other end, your entire application fleet, at scale, right. And, just marrying the two, really gives you the ability to perform that automation that we spoke about. >> But, and avoid the problem of sprawl when you have distributed teams, you have now things being bolted on, more apps coming out. So, this is really solves that problem, mainly. >> That is exactly right. And if you think of it, the way those problems are solved today, is, kind of in disconnected fashion, which is on one end you have your CI/CD tools, like Argo CD is an excellent one. There's some other choices, which are managed by a separate team to automate your application delivery. But, that team, is disconnected from the team that does the infrastructure management. And the infrastructure management is typically done through a bunch of Terraform scripts, or a bunch of ad hoc homegrown scripts, which are very difficult to manage. >> So, Arlon changes sure, as they change the complexity and also the sprawl. But, that's also how companies can die. They're growing fast, they're adding more capability. That's what trouble starts, right? >> I think in two ways, right. Like one is, as Madhura said, I think one of the common long-standing problems we've had, is, how do infrastructure and application teams communicate and work together, right. And, you've seen Argo's really get adopted by the application teams, but, it's now something that we are making accessible for the infrastructure teams to also bring the best practices of how application teams are managing applications. You can now use that to manage infrastructure, right. And, what that's going to do is, help you ultimately reduce waste, reduce inefficiency, and improve the developer experience. Because, that's what it's all about, ultimately. >> And, I know that you just released 5.6 today, congratulations on that. Any customer feedback yet? Any, any customers that you've been able to talk to, or have early access? >> Yeah, one of our large customers is a large SaaS retail company that is B2C SaaS. And, their feedback has been that this, basically, helps them bring exactly what I said in terms of bring some of the best practices that they wanted to adopt in the application space, down to the infrastructure management teams, right. And, we are also hearing a lot of customers, that I would say, large scale public cloud users, saying, they're really struggling with the complexity of how to tame the complexity of navigating that landscape and making it consumable for organizations that have thousands of developers or more. And that's been the feedback, is that this is the first open source standard mechanism that allows them to kind of reuse something, as opposed to everybody feels like they've had to build ad hoc solutions to solve this problem so far. >> Having a unified infrastructure is great. My final question, for me, before I end up, for Lisa to ask her last question is, if you had to explain Platform9, why you're relevant and cool today, what would you say? >> If I take that? I would say that the reason why Platform9, the reason why we exist, is, putting together a cloud, a hybrid cloud strategy for an enterprise today, historically, has required a lot of DIY, a lot of building your own car. Before you can drive a car, or you can enjoy the car, you really learn to build and operate the car. And that's great for maybe a 100 tech companies of the world, but, for the next 10,000 or 50,000 enterprises, they want to be able to consume a car. And that's why Platform9 exists, is, we are the only company that makes this delightfully simple and easy for companies that have a hybrid cloud strategy. >> Why you cool and relevant? How would you say it? >> Yeah, I think as Kubernetes becomes mainstream, as containers have become mainstream, I think automation at scale with ease, is going to be the key. And that's exactly what we help solve. Automation at scale and with ease. >> With ease and that differentiation. Guys, thank you so much for joining me. Last question, I guess, Madhura, for you, is, where can Devs go to learn more about 5.6 and get their hands on it? >> Absolutely. Go to platform9.com. There is info about 5.6 release, there's a press release, there's a link to it right on the website. And, if they want to learn about Arlon, it's an open source GitHub project. Go to GitHub and find out more about it. >> Excellent guys, thanks again for sharing what you're doing to really deliver Cloud Native at Scale in a differentiated way that adds ostensible value to your customers. John, and I, appreciate your insights and your time. >> Thank you for having us. >> Thanks so much >> Our pleasure. For our guests and John Furrier, I'm Lisa Martin. You're watching theCUBE Live from Detroit, Michigan at KubeCon CloudNativeCon 2022. Stick around, John and I will be back with our next guest. Just a minute. (light synth outro music)

Published Date : Oct 28 2022

SUMMARY :

One of the big topics is Some of the things that need to be there Great to have you guys here at KubeCon So, talk to us. And, just fresh hot of the press, So, the pressure is okay, they're to what you just said, right, as the CEO of Docker. of the CNCF ecosystem technologies. produce the configuration and impact on the business side. because, of the level of automation, or is it the toil of One, is the advanced communities users of the Silicon Valley. in the both of these groups. And, for the savvy teams, He's always on the ground pumping up AWS. that they found to get started with. And it, you know, Amazon or you got regions and locations... but, now, also, you got regions. And the way we solve it, Then once they know how to drive a car, of people that we meet, to go much bigger and stronger. and they really want to focus on And we got four right behind us, And, the other end is, What's the update? And on the other end, your But, and avoid the problem of sprawl that does the infrastructure management. and also the sprawl. for the infrastructure teams to also bring And, I know that you of bring some of the best practices today, what would you say? of the world, ease, is going to be the key. to learn more about 5.6 there's a link to it right on the website. to your customers. be back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Madhura MaskaskyPERSON

0.99+

Lisa MartinPERSON

0.99+

JohnPERSON

0.99+

John FurrierPERSON

0.99+

LisaPERSON

0.99+

AWSORGANIZATION

0.99+

Sirish RaghuramPERSON

0.99+

MadhuraPERSON

0.99+

John FurrierPERSON

0.99+

DetroitLOCATION

0.99+

AmazonORGANIZATION

0.99+

Scott JohnstonPERSON

0.99+

30QUANTITY

0.99+

70%QUANTITY

0.99+

SirishPERSON

0.99+

50QUANTITY

0.99+

Amazon Web ServicesORGANIZATION

0.99+

twoQUANTITY

0.99+

Platform9ORGANIZATION

0.99+

two problemsQUANTITY

0.99+

Phil EstesPERSON

0.99+

100 tech companiesQUANTITY

0.99+

less than 20%QUANTITY

0.99+

less than 10%QUANTITY

0.99+

Silicon ValleyLOCATION

0.99+

Detroit, MichiganLOCATION

0.99+

FirstQUANTITY

0.99+

KubeConEVENT

0.99+

bothQUANTITY

0.99+

MotownLOCATION

0.99+

first releaseQUANTITY

0.99+

more than 10,000 podsQUANTITY

0.99+

DockerORGANIZATION

0.99+

firstQUANTITY

0.99+

two alumniQUANTITY

0.99+

two waysQUANTITY

0.99+

ArlonORGANIZATION

0.99+

5.6QUANTITY

0.98+

Mountain ViewLOCATION

0.98+

OneQUANTITY

0.98+

two more pointsQUANTITY

0.98+

oneQUANTITY

0.98+

EKSORGANIZATION

0.98+

last nightDATE

0.98+

Cloud NativeTITLE

0.98+

70 plus percentQUANTITY

0.97+

one endQUANTITY

0.97+

fourQUANTITY

0.97+

90 plus percentQUANTITY

0.97+

DevTestTITLE

0.97+

ArgoORGANIZATION

0.97+

50,000 enterprisesQUANTITY

0.96+

KubeORGANIZATION

0.96+

two endsQUANTITY

0.96+

IntuitORGANIZATION

0.96+

five repsQUANTITY

0.96+

todayDATE

0.96+

KubernetesTITLE

0.95+

GitOpsTITLE

0.95+

Cloud NativeTITLE

0.95+

platform9.comOTHER

0.95+

hundreds of different applicationsQUANTITY

0.95+

Deepthi Sigireddi, PlanetScale | KubeCon + CloudNativeCon NA 2022


 

(upbeat intro music) >> Good afternoon, fellow tech nerds. My name is Savannah Peterson, coming to you from theCube's Remote Studio here in Motown, Detroit, Michigan where we are at KubeCon. John, this is our 12th interview of the day. How are you feeling? >> I'm feeling fresh as the first interview. (Savannah laughs) As always. >> That delivery really implied a level of freshness. >> Let's go! No, this is only Day 1. In three days, reinvent. We go hardcore. These are great events. We get so much great content. The conversations are amazing. The guests are awesome. They're technical, they're smart, and they're making the difference in the future. So, this next segment about Scale MySQL should be awesome. >> I am very excited to introduce our next guest who actually has a Twitter handle that I think most people, at least of my gender in this industry would love to have. She is @ATechGirl. So you can go ahead and tweet her and tell her how great this interview is while we're live. Please welcome Deepthi Sigireddi. Thank you so much for being here with us. >> Thank you for having me. >> You're feeding us in. You've got two talks you're giving while we're here. >> Yes, yes. So tomorrow we will be talking about VTR, myself and one of the other maintainers of Vitess and on Friday we have the Vitess Maintainer Talk. All graduated projects get a maintainer talk. >> Wow, so you are like KubeCon VIP celebrity. >> Well, I hope so. >> Well, you're a maintainer and technical lead, also software engineer at the PlanetScale. But talk about the graduation process where that means to the project and the people involved. >> So Vitess graduated in 2019 and there are strict criteria for graduation and you don't just have to meet the minimum, you sort of have to over perform on the graduation criteria. Some of which are like there must be at least two large production deploys and people from those companies have to go in front of the CNCF committee that approves these things and say that, "Yes, this project is critical to our business." >> A lot of peer review, a lot of deployment success. >> Yes. >> Good consistency in the code. >> Deepthi: Community diversity. >> All that. >> All those things. >> Talk about the importance of this project. What is the top story that people should know about around the project? Why it exists, why it's important, why it's relevant, why it's cool. How would you answer that? >> So MySQL is now 30 years old and yet they are still- >> Makes me feel a little sidebar. (Deepthi laughs) Yeah. >> And yet even though there are many other newer databases, it continues to be used at many of the largest internet scale companies. And some of them, for example, Slack, GitHub, Square, they have grown to a level where they could not have if they had tried to do it with Vanilla MySQL that they started with, and the only reason they are where they are is Vitess. So that is I think the number one thing people should know about Vitess. >> And the origination story on notes say "Came from YouTube." >> Yes. So the way Vitess started was that YouTube was having problems with their MySQL deployment and they got tired of dealing with the site being down. So the founders of Vitess decided that they had to do something about it and they started building Vitess which started as a pretty small, relatively code-based with limited features, and over time they built charting and all of the other things that we have today. >> Well, this is exciting Savannah because we've seen this industry. Like with Facebook, when they started, everyone built their own stuff. MySQL was a great- >> Oh gosh, and everyone wanted to build it their way, reinventing the wheel. >> And MySQL was great. And then as it kind of broke when it grew, it got retrofitted. So, it was constantly being scaled up to the point where now you guys, if I get this right, said, "Hey, we're going to work on this. We're going to make it next-gen." So it's kind of like next-gen MySQL. Almost. >> Yes, yes. I would say that's pretty accurate, yeah. So there are still large companies which run their own MySQL and they have scaled it in their own way, but Vitess happens to be an open source way of scaling MySQL that people can adopt without having to build all of their own tooling around it. >> Speaking of that and growing, you just announced a new version today. >> Yes, yes. >> Tell us about that. >> The focus in this version was to make Vitess easier to use and to deploy. So in the past, there was one glaring gap in Vitess which was that Vitess did not automatically detect and repair MySQL level failures. With this release, we've actually closed that gap. And what that means for people using Vitess is that they will actually spend less time dealing with outages manually, or less human intervention, More automated recovery is what it means. The other thing we've released today is a new web UI. Vitess had a very old web UI, ugly, hard to maintain. Nobody liked it. But it was functional, except we couldn't add anything new to it because it was so old. So, the backend functionality kept advancing but the front end was kind of frozen. Now we have a next generation UI to which in upcoming releases we can add more and more functionality. >> So, it's extensible. They add things in. >> Deepthi: Oh yes, of course. Yeah. >> Awesome. What's the biggest thing that you like about the new situation? Is it more contributors are on board the UI? What's the fresh new impact that's happening in the community? What's getting you excited about with the current project? And the UI's great 'cause usability is important. >> Deepthi: Right. >> Scalability is important. >> I think Vitess solved the scalability problem way early and only now we are really grappling with the usability problem. So the hope and the desire is to make Vitess autopilot so that you reduce human intervention to a minimum once you deploy it. Obviously, you have to go through the process of deploying it. But once you've deployed it, it should just run itself. >> Runs at scale. So, the scale's huge? >> Deepthi: Yes. >> How many contributors are involved in the project? Can you give some numbers? Do you have any handy that you can speak to? >> Right. So, CNCF actually tracks these statistics for all the projects and we consolidated some numbers for the last two full calendar years, 2020 and 2021. We had over 400 contributors and 200 plus of them contributed code and the others contributed documentation issues, website changes, and things like that. So that gives- >> How about downloads? Download's good? >> Oh, okay. So we started publishing the current official Vitess Docker Image in 2018. And by October of 2020, we had about 3.8 million downloads. And by August of 2021, we had 5.2 million. And today, we have had over 10 million downloads- >> Wow! >> Of the main image. >> Starting to see a minute of that hockey stick that we all like to see. Seems like you're very clearly a community-first leader and it seems like that's in the PlanetScale and the test's DNA. Is that how the whole company culture views it? Would you say it's community-first business? >> PlanetScale is very much committed to Vitess as an open source project and to serving the Vitess community. So as part of my role at PlanetScale, some of the things I do are helping new contributors whether they are from PlanetScale or from outside PlanetScale. A number of PlanetScale engineers who don't work full-time on Vitess still contribute bug fixes and features to Vitess. We spend a significant amount of our energy helping users in our community Slack. The releases we do are mainly for the benefit of the community and PlanetScale is making those releases because for Planet Scale... Within PlanetScale, we actually do separate releases versus the public ones. >> One of the things that's coming up here at the show is deploying on Kubernetes. How does that look like? Everyone wants ease of use. Are you guys easy to use? >> Yes, yes. So PlanetScale also open sourced a Kubernetes operator for Vitess that people outside PlanetScale are using to run their production deployments of Vitess. Prior to that, there were Vitess users who actually built their own Kubernetes deployments of Vitess and they are still running those, but new users and new adopters of Vitess tend to use the Kubernetes operator that we are publishing. >> And you guys are the managed service for Vitess for the people that that's the business model for PlanetScale. >> Correct. So PlanetScale has a serverless database on demand which is built on Vitess. So if someone's starting something new and they just need a database, you sign up. It takes 30 seconds to get a database. Connect to it and start doing things with it. Versus if you are a large enterprise and you have a huge database deployment, you can migrate to PlanetScale, import all of your existing data, cut over with minimal downtime and then go, and then PlanetScale manages that. >> And why would they do that? What's the use case for that? Save time new development team or refactoring? >> Save time not being able to hire people with the skills to run it in-house. Not wanting to invest engineering resources in what businesses think is not their core competency. They want to focus on their business value. >> So, this database is a service in their whatever they're doing without adding more costs. >> Right. >> And speed. Okay, cool. How's that going? >> It's going well. >> Any feedback from customers in terms of why that there are any benefit statements you seek popping out? What are the big... What's the big aha when they... When people realize what they have here, what's the aha moment for them? Do they go, "Wow, this is awesome. It's so easy. Push a button. Migrate." Or is it... >> All of those. And people have actually seen cost savings when they've migrated from Amazon RDS to PlanetScale and we have testimonials from people who've said that, "It was so easy to use PlanetScale. Why would we try to do it ourselves?" >> It's the best thing a customer could say, right? We're all about being painkillers and solving some sort of problem. I think that that's a great opportunity to let you show off some of your customers. So, who is receiving this benefit? 'Cause I know PlanetScale specifically is for a certain style of business. >> Hmm. We have a list of customers on the website. >> Savannah: I was going to say you have a really- >> John: She's a software engineer. She's not marketing. >> You did sexy. >> You're doing a great job as much as marketing. >> So the reason I am bringing this up is because it's clear this is a solution for companies like Square, SoundCloud, Etsy, Jordan, and other exciting brands. So when you're talking about companies at scale, these companies are very much at scale, which is awesome. >> Yeah. >> What's next? What do you guys see the future for the project? >> I think we talked about that a little bit already. So, usability is a big thing. We did the new UI. It's not complete, right? Because over the last four years we've built more features into the backend which you can't yet access from the UI. So we want to be able for people to use things like online schema changes which is a big feature of Vitess. Doing schema changes without downtime from the UI. So, schema management from the UI. Vitess has something called VReplication which is the core technology that enables charting. And right now you can from the UI monitor your charting status, but you can't actually start charting from the UI. So more of the administrative functions we want to enable from the UI. >> John: Awesome. >> Last question. What are you personally most excited about this week being here with our wonderful community? >> I always enjoy being at KubeCon. This is my fifth or sixth in-person and I've done a couple of virtual ones. >> Savannah: Awesome. >> Because of the energy, because you get to meet people in person whom previously you've only met in Slack or maybe in a monthly community Zoom calls. We always have people come to our project booth. We have a project booth here for Vitess. People come to the company booth. PlanetScale has a booth. People come to our talks, ask questions. We end up having design discussions, architecture discussions. We get feedback on what is important to the people who show up here. That always informs what we do with the project in future releases. >> Perfect answer. I already mentioned that you can get a hold and in touch with Deepthi through her wonderful Twitter handle. Is there any other website or anything you want to shout out here before I do our close? >> vitess.io. V-I-T-E-S-S dot I-O is the Vitess website and planetscale.com is the PlanetScale website. >> Deepthi Sigireddi, thank you so much for being on the show with us today. John, thanks for keeping me company as always. >> You're welcome. >> And thank all of you for tuning into theCUBE. We will be here in Detroit, Michigan all week live from KubeCon and we hope to see you there. (gentle upbeat music)

Published Date : Oct 27 2022

SUMMARY :

interview of the day. as the first interview. implied a level of freshness. difference in the future. So you You've got two talks you're myself and one of the Wow, so you are like and the people involved. in front of the CNCF committee A lot of peer review, a What is the top story Yeah. and the only reason they are And the origination story and all of the other Well, this is exciting Savannah reinventing the wheel. to the point where now you guys, and they have scaled it in their own way, Speaking of that and growing, So in the past, there was So, it's extensible. Deepthi: Oh yes, of course. in the community? So the hope and the desire So, the scale's huge? and the others contributed And by August of 2021, we had 5.2 million. and the test's DNA. for the benefit of the community One of the things that's coming up here operator that we are publishing. for the people that and you have a huge database deployment, Save time not being able to hire people So, this database is a service How's that going? What are the big... and we have testimonials It's the best thing a customers on the website. John: She's a software engineer. You're doing a great So the reason I am bringing this up into the backend which you What are you personally and I've done a couple of virtual ones. Because of the energy, that you can get a hold V-I-T-E-S-S dot I-O is the Vitess website for being on the show with us today. and we hope to see you there.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
SavannahPERSON

0.99+

JohnPERSON

0.99+

Savannah PetersonPERSON

0.99+

DeepthiPERSON

0.99+

August of 2021DATE

0.99+

YouTubeORGANIZATION

0.99+

October of 2020DATE

0.99+

2019DATE

0.99+

30 secondsQUANTITY

0.99+

EtsyORGANIZATION

0.99+

5.2 millionQUANTITY

0.99+

FridayDATE

0.99+

SquareORGANIZATION

0.99+

2021DATE

0.99+

fifthQUANTITY

0.99+

2020DATE

0.99+

sixthQUANTITY

0.99+

2018DATE

0.99+

Deepthi SigireddiPERSON

0.99+

SoundCloudORGANIZATION

0.99+

VitessORGANIZATION

0.99+

MySQLTITLE

0.99+

JordanORGANIZATION

0.99+

GitHubORGANIZATION

0.99+

CNCFORGANIZATION

0.99+

FacebookORGANIZATION

0.99+

12th interviewQUANTITY

0.99+

tomorrowDATE

0.99+

todayDATE

0.99+

30 yearsQUANTITY

0.99+

Detroit, MichiganLOCATION

0.99+

over 400 contributorsQUANTITY

0.99+

SlackORGANIZATION

0.98+

CloudNativeConEVENT

0.98+

first interviewQUANTITY

0.98+

KubeConEVENT

0.98+

PlanetScaleORGANIZATION

0.98+

AmazonORGANIZATION

0.98+

Day 1QUANTITY

0.97+

200 plusQUANTITY

0.97+

OneQUANTITY

0.97+

Motown, Detroit, MichiganLOCATION

0.97+

VitessTITLE

0.97+

vitess.ioOTHER

0.96+

about 3.8 million downloadsQUANTITY

0.96+

oneQUANTITY

0.95+

three daysQUANTITY

0.94+

over 10 million downloadsQUANTITY

0.94+

Scale MySQLTITLE

0.94+

KubernetesTITLE

0.93+

this weekDATE

0.93+

two talksQUANTITY

0.92+

TwitterORGANIZATION

0.91+

SlackTITLE

0.9+

planetscale.comOTHER

0.89+

first businessQUANTITY

0.86+

NA 2022EVENT

0.84+

Day 2 Wrap Up | CrowdStrike Fal.Con 2022


 

(upbeat music) >> Okay, we're back to wrap up Fal.con 2022 CrowdStrike's customer event. You're watching theCUBE. My name is Dave Vellante. My co-host, Dave Nicholson, is on injured reserve today, so I'm solo. But I wanted to just give the audience a census to some of my quick takeaways. Really haven't given a ton of thought on this. We'll do review after we check out the videos and the transcripts, and do what we do at SiliconANGLE and theCUBE. I'd say the first thing is, look CrowdStrike continues to expand it's footprint. And, it's adding the identity module, through the preempt acquisition. Working very closely with managed service providers, MSPs, managed security service providers. Having an SMB play. So CrowdStrike has 20,000 customers. I think it could, it could 10X that, you know, over some period of time. As I've said earlier, it's on a path by mid-decade to be a 5 billion company, in terms of revenue. At the macro level, security is somewhat, I'd say it's less discretionary than some other investments. You know, you can, you can probably hold off buying a new storage device. You can maybe clean that up. You know, you might be able to hold off on some of your analytics, but at the end of the day, security is not completely non-discretionary. It's competing. The CISO is competing with other budgets. Okay? So it's, while it's less discretionary, it is still, you know, not an open checkbook for the CISO. Now, having said that, from CrowdStrike standpoint it has an excellent opportunity to consolidate tools. It's one of the biggest problems in the security business Go to Optiv and check out their security taxonomy. It'll make your eyes bleed. There's so many tools and companies that are really focused on one specialization. But really, what CrowdStrike can do with its 22 modules, to say, hey, we can give you ROI and consolidate those. And not only is it risk reduction, it's lowering the labor cost and labor intensity, so you can focus on other areas and free up the biggest problem that CISOs have. It's the lack of enough talent. So, really strong business value and value proposition. A lot of that is enabled by the architecture. We've talked about this. You can check out my breaking analysis that I dropped last weekend, on CrowdStrike. And, you know, can it become a generational company. But it's really built on a cloud-native architecture. George Kurtz and company, they shunned having an on-premise architecture. Much like Snowflake Frank Slootman has said, we're not doing a halfway house. We're going to put all our resources on a cloud-native architecture. The lightweight agent that allows them to add new modules and collect more data, and scale out. The purpose-built threat graph and and time series database, and asset graph that they've built. And very strong use of AI, to not only stop known malware, but stop unknown malware. Identify threats. Do that curation. And really, you know, support the SecOp teams. Product wise, I think the big three takeaways, and there were others, but the big three for me is EDR extending into XDR. You know, X is the extending for, in really, the core of endpoint detection and response, extending that further. Well, it seems to be a big buzzword these days. CrowdStrike, I think, is very focused on making a more complete, a holistic offering, beyond endpoint. And I think it's going to do very well in that space. They're not alone. There are others. It's a very competitive space. The second is identity. Through the acquisition of Preempt. CrowdStrike building that identity module. Partnering with leaders like Okta, to really provide that sort of, treating identity, if you will, as an endpoint. And then sort of Humio is now Falcon Log Scale. Bringing together, you know, the data and the observability piece, and the security piece, is kind of the three big product trends that I saw. I think the last point I'll make, before we wrap, is the ecosystem. The ecosystem here is good. It reminds me, I said, a number of times this week, of ServiceNow in 2013 I think the difference is, CrowdStrike has an SMB play it can go after many more customers, and actually have an even broader platform. And I think it can accelerate its ecosystem faster than ServiceNow was able to do that. I mean, it's got to be, sort of, an open and collaborative sort of ecosystem. You know, ServiceNow is kind of, more of, a one-way street. And I think the other piece of that ecosystem, that we see evolving, into IOT, into the operations technology and critical infrastructure. Which is so important, because critical infrastructure of nations is so vulnerable. We're seeing this in the Ukraine. Security is a key component now of any warfare. And going forward, it's always going to be a key component. Nation states are going to go after trust, or secure infrastructure, or critical infrastructure. Try to disable that and disrupt that. So securing those operation assets is going to be very critical. Not just the refrigerator and the coffee maker, but really going after those critical infrastructures. (chuckles) Getting asked to break. And the last thing I'll say, is the developer platform. We heard from ML that, the opportunity that's there, to build out a PaaS layer, super PaaS layer, if you will, so that developers can add value. I think if that happens, this ecosystem, which is breaking down, will explode. This is Dave Vellante, wrapping up at CrowdStrike, Fal.con 2022, Fal.con 2022. Go to SiliconAngle.com, for all the news. Check out theCUBE.net. You'll see these videos on demand and many others. Check out (indistinct).com for all the research. And look for where we'll be next. Of course, re:Invent is the big fall event, but there are many others in between. Thanks for watching. We're out. (music plays out)

Published Date : Sep 21 2022

SUMMARY :

is kind of the three big

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Dave VellantePERSON

0.99+

Frank SlootmanPERSON

0.99+

2013DATE

0.99+

10XQUANTITY

0.99+

5 billionQUANTITY

0.99+

20,000 customersQUANTITY

0.99+

22 modulesQUANTITY

0.99+

UkraineLOCATION

0.99+

CrowdStrikeEVENT

0.99+

George KurtzPERSON

0.99+

secondQUANTITY

0.98+

todayDATE

0.98+

OktaORGANIZATION

0.98+

CrowdStrikeORGANIZATION

0.97+

this weekDATE

0.96+

Fal.con 2022EVENT

0.95+

SiliconANGLEORGANIZATION

0.95+

first thingQUANTITY

0.94+

oneQUANTITY

0.92+

CISOORGANIZATION

0.92+

theCUBE.netOTHER

0.91+

indistinct).comOTHER

0.9+

theCUBEORGANIZATION

0.9+

ServiceNowTITLE

0.89+

MLORGANIZATION

0.87+

one specializationQUANTITY

0.87+

last weekendDATE

0.87+

InventEVENT

0.87+

PaaSTITLE

0.86+

CrowdStrike Fal.Con 2022EVENT

0.86+

OptivORGANIZATION

0.86+

SnowflakeORGANIZATION

0.85+

HumioORGANIZATION

0.82+

three big productQUANTITY

0.81+

Day 2QUANTITY

0.79+

one-wayQUANTITY

0.78+

ServiceNowORGANIZATION

0.71+

SecOpORGANIZATION

0.66+

threeQUANTITY

0.63+

SiliconAngle.comOTHER

0.61+

CrowdStrikeTITLE

0.59+

PreemptORGANIZATION

0.56+

Falcon Log ScaleOTHER

0.48+

midQUANTITY

0.44+

*****NEEDS TO STAY UNLISTED FOR REVIEW***** Ricky Cooper & Joseph George | VMware Explore 2022


 

(light corporate music) >> Welcome back, everyone, to VMware Explore 22. I'm John Furrier, host of theCUBE with Dave Vellante. Our 12th year covering VMware's User Conference, formerly known as VMworld, now rebranded as VMware Explore. Two great cube alumnus coming down the cube. Ricky Cooper, SVP, Worldwide Partner Commercials VMware, great to see you. Thanks for coming on. >> Thank you. >> We just had a great chat- >> Good to see you again. >> With the Discovery and, of course, Joseph George, vice president of Compute Industry Alliances. Great to have you on. Great to see you. >> Great to see you, John. >> So guys this year is very curious in VMware. A lot goin' on, the name change, the event. Big, big move. Bold move. And then they changed the name of the event. Then Broadcom buys them. A lot of speculation, but at the end of the day, this conference kind of, people were wondering what would be the barometer of the event. We're reporting this morning on the keynote analysis. Very good mojo in the keynote. Very transparent about the Broadcom relationship. The expo floor last night was buzzing. >> Mhm. >> I mean, this is not a show that's lookin' like it's going to be, ya' know, going down. >> Yeah. >> This is clearly a wave. We're calling it Super Cloud. Multi-Cloud's their theme. Clearly the cloud's happenin'. We not to date ourselves, but 2013 we were discussing on theCUBE- >> We talked about that. Yeah. Yeah. >> Discover about DevOps infrastructure as code- >> Mhm. >> We're full realization now of that. >> Yep. >> This is where we're at. You guys had a great partnership with VMware and HPE. Talk about where you guys see this coming together because customers are refactoring. They are lookin' at Cloud Native. The whole Broadcom visibility to the VMware customer bases activated them. They're here and they're leaning in. >> Yeah. >> What's going on? >> Yeah. Absolutely. We're seeing a renewed interest now as customers are looking at their entire infrastructure, bottoms up, all the way up the stack, and the notion of a hybrid cloud, where you've got some visibility and control of your data and your infrastructure and your applications, customers want to live in that sort of a cloud environment and so we're seeing a renewed interest. A lot of conversations we're having with customers now, a lot of customers committing to that model where they have applications and workloads running at the Edge, in their data center, and in the public cloud in a lot of cases, but having that mobility, having that control, being able to have security in their own, you know, in their control. There's a lot that you can do there and, obviously, partnering with VMware. We've been partners for so long. >> 20 years about. Yeah. Yeah. >> Yeah. At least 20 years, back when they invented stuff, they were inventing way- >> Yeah. Yeah. Yeah. >> VMware's got a very technical culture, but Ricky, I got to say that, you know, we commented earlier when Raghu was on, the CEO, now CEO, I mean, legendary product. I sent the trajectory to VMware. Everyone knows that. VMware, I can't know whether to tell it was VMware or HP, HP before HPE, coined hybrid- >> Yeah. >> 'Cause you guys were both on. I can't recall, Dave, which company coined it first, but it was either one of you guys. Nobody else was there. >> It was the partnership. >> Yes. I- (cross talking) >> They had a big thing with Pat Gelsinger. Dave, remember when he said, you know, he got in my grill on theCUBE live? But now you see- >> But if you focus on that Multi-Cloud aspect, right? So you've got a situation where our customers are looking at Multi-Cloud and they're looking at it not just as a flash in the pan. This is here for five years, 10 years, 20 years. Okay. So what does that mean then to our partners and to our distributors? You're seeing a whole seed change. You're seeing partners now looking at this. So, look at the OEMs, you know, the ones that have historically been vSphere customers are now saying, they're coming in droves saying, okay, what is the next step? Well, how can I be a Multi-Cloud partner with you? >> Yep. Right. >> How can I look at other aspects that we're driving here together? So, you know, GreenLake is a great example. We keep going back to GreenLake and we are partaking in GreenLake at the moment. The real big thing for us is going to be, right, let's make sure that we've got the agreements in place that support this SaaS and subscription motion going forward and then the sky's the limit for us. >> You're pluggin' that right into GreenLake, right? >> Well, here's why. Here's why. So customers are loving the fact that they can go to a public cloud and they can get an SLA. They come to a, you know, an On-Premise. You've got the hardware, you've got the software, you've got the, you know, the guys on board to maintain this through its life cycle. >> Right. I mean, this is complicated stuff. >> Yeah. >> Now we've got a situation where you can say, hey, we can get an SLA On-Premise. >> Yeah. And I think what you're seeing is it's very analogous to having a financial advisor just manage your portfolio. You're taking care of just submitting money. That's really a lot of what the customers have done with the public cloud, but now, a lot of these customers are getting savvy and they have been working with VMware Technologies and HPE for so long. They've got expertise. They know how they want their workloads architected. Now, we've given them a model where they can leverage the Cloud platform to be able to do this, whether it's On-Premise, The Edge, or in the public cloud, leveraging HPE GreenLake and VMware. >> Is it predominantly or exclusively a managed service or do you find some customers saying, hey, we want to manage ourself? How, what are you seeing is the mix there? >> It is not predominantly managed services right now. We're actually, as we are growing, last time we talked to HPE Discover we talked about a whole bunch of new services that we've added to our catalog. It's growing by leaps and bounds. A lot of folks are definitely interested in the pay as you go, obviously, the financial model, but are now getting exposed to all the other management that can happen. There are managed services capabilities, but actually running it as a service with your systems On-Prem is a phenomenal idea for all these customers and they're opening their eyes to some new ways to service their customers better. >> And another phenomenon we're seeing there is where partners, such as HPA, using other partners for various areas of their services implementation as well. So that's another phenomenon, you know? You're seeing the resale motion now going into a lot more of the services motion. >> It's interesting too, you know, I mean, the digital modernization that's goin' on. The transformation, whatever you want to call it, is complicated. >> Yeah. >> That's clear. One of the things I liked about the keynote today was the concept of cloud chaos. >> Yeah. >> Because we've been saying, you know, quoting Andy Grove at Intel, "Let chaos rain and rain in the chaos." >> Mhm. >> And when you have inflection points, complexity, which is the chaos, needs to be solved and whoever solves it kicks the inflection point, that's up into the right. So- >> Prime idea right here. Yeah. >> So GreenLake is- >> Well, also look at the distribution model and how that's changed. A couple of points on a deal. Now they're saying, "I'll be your aggregator. I'll take the strain and I'll give you scale." You know? "I'll give you VMware Scale for all, you know, for all of the various different partners, et cetera." >> Yeah. So let's break this down because this is, I think, a key point. So complexity is good, but the old model in the Enterprise market was- >> Sure. >> You solve complexity with more complexity. >> Yeah. >> And everybody wins. Oh, yeah! We're locked in! That's not what the market wants. They want some self-service. They want, as a service, they want easy. Developer first security data ops, DevOps, is already in the cycle, so they're going to want simpler. >> Yeah. >> Easier. Faster. >> And this is kind of why I'll say, for the big announcement today here at VMware Explore, around the VMware vSphere Distributed Services Engine, Project Monterey- >> Yeah. >> That we've talked about for so long, HPE and VMware and AMD, with the Pensando DPU, actually work together to engineer a solution for exactly that. The capabilities are fairly straightforward in terms of the technologies, but actually doing the work to do integration, joint engineering, make sure that this is simple and easy and able to be running HPE GreenLake, that's- >> That's invested in Pensando, right? >> We are. >> We're all investors. Yeah. >> What's the benefit of that? What's, that's a great point you made. What's the value to the customer, bottom line? That deep co-engineering, co-partnering, what does it deliver that others don't do? >> Yeah. Well, I think one example would be, you know, a lot of vendors can say we support it. >> Yep. >> That's great. That's actually a really good move, supporting it. It can be resold. That's another great move. I'm not mechanically inclined to where I would go build my own car. I'll go to a dealership and actually buy one that I can press the button and I can start it and I can do what I need to do with my car and that's really what this does is the engineering work that's gone on between our two companies and AMD Pensando, as well as the business work to make that simple and easy, that transaction to work, and then to be able to make it available as a service, is really what made, it's, that's why it's such a winner winner with our- >> But it's also a lower cost out of the box. >> Yep. >> Right. >> So you get in whatever. Let's call it 20%. Okay? But there's, it's nuanced because you're also on a new technology curve- >> Right. >> And you're able to absorb modern apps, like, you know, we use that term as a bromide, but when I say modern apps, I mean data-rich apps, you know, things that are more AI-driven not the conventional, not that people aren't doing, you know, SAP and CRM, they are, but there's a whole slew of new apps that are coming in that, you know, traditional architectures aren't well-suited to handle from a price performance standpoint. This changes that doesn't it? >> Well, you think also of, you know, going to the next stage, which is to go to market between the two organizations that before. At the moment, you know, HPE's running off doing various different things. We were running off to it again, it's that chaos that you're talking about. In cloud chaos, you got to go to market chaos. >> Yeah. >> But by simplifying four or five things, what are we going to do really well together? How do we embed those in GreenLake- >> Mhm. >> And be known in the marketplace for these solutions? Then you get a, you know, an organization that's really behind the go to market. You can help with sales activation the enablement, you know, and then we benefit from the scale of HPE. >> Yeah. >> What are those solutions I mean? Is it just, is it I.S.? Is it, you know, compute storage? >> Yeah. >> Is it, you know, specific, you know, SAP? Is it VDI? What are you seeing out there? >> So right now, for this specific technology, we're educating our customers on what that could be and, at its core, this solution allows customers to take services that normally and traditionally run on the compute system and run on a DPU now with Project Monterey, and this is now allowing customers to think about, okay, where are their use cases. So I'm, rather than going and, say, use it for this, we're allowing our customers to explore and say, okay, here's where it makes sense. Where do I have workloads that are using a lot of compute cycles on services at the compute level that could be somewhere else like networking as a great example, right? And allowing more of those compute cycles to be available. So where there are performance requirements for an application, where there is timely response that's needed for, you know, for results to be able to take action on, to be able to get insight from data really quick, those are places where we're starting to see those services moving onto something like a DPU and that's where this makes a whole lot more sense. >> Okay. So, to get this right, you got the hybrid cloud, right? >> [Ricky And Joseph] Yes. >> You got GreenLake and you got the distributed engine. What's that called the- >> For, it's HPE ProLiant- >> ProLiant with- >> The VMware- >> With vSphere. >> That's the compute- >> Distributed. >> Okay. So does the customer, how do you guys implement that with the customer? All three at the same time or they mix and match? What's that? How does that work? >> All three of those components. Yeah. So the beauty of the HP ProLiant with VMware vSphere-distributed services engine- >> Mhm. >> Also known as Project Monterey for those that are keeping notes at home- >> Mhm. >> It's, again, already pre-engineered. So we've already worked through all the mechanics of how you would have to do this. So it's not something you have to go figure out how you build, get deployment, you know, work through those details. That's already done. It is available through HPE GreenLake. So you can go and actually get it as a service in partnership with our customer, our friends here at VMware, and because, if you're familiar and comfortable with all the things that HP ProLiant has done from a security perspective, from a reliability perspective, trusted supply chain, all those sorts of things, you're getting all of that with this particular (indistinct). >> Sumit Dhawan had a great quote on theCUBE just an hour or so ago. He said you have to be early to be first. >> Yeah. (laughing) >> I love that quote. Okay. So you were- >> I fought the urge. >> You were first. You were probably a little early, but do you have a lead? I know you're going to say yes, okay. Let's just- >> Okay. >> Let's just assume that. >> Okay. Yeah. >> Relative to the competition, how do you know? How do you determine that? >> If we have a lead or not? >> Yeah. If you lead. If you're the best. >> We go to the source of the truth which is our customers. >> And what do they tell you? What do you look at and say, okay, now, I mean, when you have that honest conversation and say, okay, we are, we're first, we're early. We're keeping our lead. What are the things that you- >> I'll say it this way. I'll say it this way. We've been in a lot of businesses where there, where we do compete head-to-head in a lot of places. >> Mhm. >> And we know how that sales process normally works. We're seeing a different motion from our customers. When we talk about HPE GreenLake, there's not a lot of back and forth on, okay, well, let me go shop around. It is HP Green. Let's talk about how we actually build this solution. >> And I can tell you, from a VMware perspective, our customers are asking us for this the other way around. So that's a great sign is that, hey, we need to see this partnership come together in GreenLake. >> Yeah. >> It's the old adage that Amazon used to coin and Andy Jassy, you know, they do the undifferentiated heavy lifting. >> [Ricky And Joseph] Yeah. >> A lot of that's now Cloud operations. >> Mhm. >> Underneath it is infrastructure's code to the developer. >> That's right. >> That's at scale. >> That's right. >> And so you got a lot of heavy lifting being done with GreenLake- >> Right. >> Which is why there's no objections probably. >> Right. >> What's the choice? What are you going to shop? >> Yeah. >> There's nothing to shop around. >> Yeah, exactly. And then we've got, you know, that is really icing on the cake that we've, you know, that we've been building for quite some time and there is an understanding in the market that what we do with our infrastructure is hardened from a reliability and quality perspective. Like, times are tough right now. Supply chain issues, all that stuff. We've talked, all talked about it, but at HPE, we don't skimp on quality. We're going to spend the dollars and time on making sure we got reliability and security built in. It's really important to us. >> We had a great use case. The storage team, they were provisioning with containers. >> Yes. >> Storage is a service instantly we're seeing with you guys with VMware. Your customers' bringing in a lot of that into the mix as well. I got to ask 'cause every event we talk about AI and machine learning- >> Mhm. >> Automation and DevOps are now infiltrating in with the CICD pipeline. Security and data become a big conversation. >> [Ricky And Joseph] Agreed. >> Okay. So how do you guys look at that? Okay. You sold me on Green. Like, I've been a big fan from day one. Now, it's got maturity on it. I know it's going to get a lot more headroom to do. There's still a lot of work to do, but directionally it's pretty accurate, you know? It's going to be a success. There's still concern about security, the data layer. That's agnostic of environment, private cloud, hybrid, public, and Edge. So that's important and security- >> Great. >> Has got a huge service area. >> Yeah. >> These are on working progress. >> Yeah. Yeah. >> How do you guys view those? >> I think you've just hit the net on the head. I mean, I was in the press and journalist meetings yesterday and our answer was exactly the same. There is still so much work that can be done here and, you know, I don't think anybody is really emerging as a true leader. It's just a continuation of, you know, tryin' to get that right because it is what is the most important thing to our customers. >> Right. >> And the industry is really sort of catching up to that. >> And, you know, when you start talking about privacy and when you, it's not just about company information. It's about individuals' information. It's about, you know, information that, if exposed, actually could have real impact on people. >> Mhm. >> So it's more than just an I.T. problem. It is actually, and from HPE's perspective, security starts from when we're picking our suppliers for our components. Like, there are processes that we put into our entire trusted supply chain from the factory on the way up. I liken it to my golf swing. My golf swing. I slice right like you wouldn't believe. (John laughing) But when I go to the golf pros, they start me back at the mechanics, the foundational pieces. Here's where the problems are and start workin' on that. So my view is, our view is, if your infrastructure is not secure, you're goin' to have troubles with security as you go further up. >> Stay in the sandbox. >> Yeah. >> Yeah. So to speak, you know, they're driving range on the golf analogy there. I love that. Talk about supply chain security real quick because you mentioned supply chain on the hardware side. You're seeing a lot of open source and supply chain in software, trusted software. >> Yep. >> How does GreenLake look at that? How do you guys view that piece of it? That's an important part. >> Yeah. Security is one of the key pillars that we're actually driving as a company right now. As I said, it's important to our customers as they're making purchasing decisions and we're looking at it from the infrastructure all the way up to the actual service itself and that's the beauty of having something like HPE GreenLake. We don't have to pick, is the infrastructure or the middle where, or the top of stack application- >> It's (indistinct), right? >> It's all of it. >> Yeah. >> It's all of it. That matters. >> Quick question on the ecosystem posture. So- >> Sure. >> I remember when HP was, you know, one company and then the GSIs were a little weird with HP because of EDS, you know? You had data protector so we weren't really chatting up Veeam at the time, right? And as soon as the split happened, ecosystem exploded. Now you have a situation where you, Broadcom, is acquiring VMware. You guys, big Broadcom customer. Has your attitude changed or has it not because, oh, we meet with the customers already. Well, you've always said that, but have you have leaned in more? I mean, culturally, is HPE now saying, hmm, now we have some real opportunities to partner in new ways that we don't have to sleep with one eye open, maybe. (John laughing) >> So first of all, VMware and HPE, we've got a variety of different partners. We always have. >> Mhm. >> Well before any Broadcom announcement came along. >> Yeah, sure. >> We've been working with a variety of partners. >> And that hasn't changed. >> And that hasn't changed. And, if your question is, has our posture toward VMware changed at all, the answer's absolutely not. We believe in what VMware is doing. We believe in what our customers are doing with VMware and we're going to continue to work with VMware and partner with the (indistinct). >> And of course, you know, we had to spin out ourselves in November of last year, which I worked on, you know, the whole Dell thing. >> Yeah. We still had the same chairman. >> Yeah. There- (Dave chuckling) >> Yeah, but since then, I think what's really become very apparent and not, it's not just with HPE, but with many of our partners, many of the OEM partners, the opportunity in front of us is vast and we need to rely on each other to help us as, you know, solve the customer problems that are out there. So there's a willingness to overlook some things that, in the past, may have been, you know, barriers. >> But it's important to note also that it's not that we have not had history- >> Yeah. >> Right? Over, we've got over 200,000 customers join- >> Hundreds of millions of dollars of business- >> 100,000, over 10,000, or 100,000 channel partners that we all have in common. >> Yeah. Yeah. >> Yep. >> There's numerous- >> And independent of the whole Broadcom overhang there. >> Yeah. >> There's the ecosystem floor. >> Yeah. >> The expo floor. >> Right. >> I mean, it's vibrant. I mean, there's clearly a wave coming, Ricky. We talked about this briefly at HPE Discover. I want to get an update from your perspectives, both of you, if you don't mind weighing in on this. Clearly, the wave, we're calling it the Super Cloud, 'cause it's not just Multi-Cloud. It's completely different looking successes- >> Smart Cloud. >> It's not just vendors. It's also the customers turning into clouds themselves. You look at Goldman Sachs and- >> Yep. >> You know, I think every vertical will have its own power law of Cloud players in the future. We believe that to be true. We're still testing that assumption, but it's trending in when you got OPEX- >> [Ricky And Joseph] Right. >> Has to go to in-fund statement- >> Yeah. >> CapEx goes too. Thanks for the Cloud. All that's good, but there's a wave coming- >> Yeah. >> And we're trying to identify it. What do you guys see as this wave 'cause beyond Multi-Cloud and the obvious nature of that will end up happening as a state and what happens beyond that interoperability piece, that's a whole other story, and that's what everyone's fighting for, but everyone out in that ecosystem, it's a big wave coming. They've got their surfboards. They're ready to go. So what do you guys see? What is the next wave that everyone's jacked up about here? >> Well, I think that the Multi-Cloud is obviously at the epicenter. You know, if you look at the results that are coming in, a lot of our customers, this is what's leading the discussion and now we're in a position where, you know, we've brought many companies over the last few years. They're starting to come to fruition. They're starting to play a role in, you know, how we're moving forward. >> Yeah. >> Some of those are a bit more applicable to the commercial space. We're finding commercial customers that never bought from us before. Never. Hundreds and hundreds are coming through our partner networks every single quarter, you know? So brand new to VMware. The trick then is how do you nurture them? How do you encourage them? >> So new logos are comin' in. >> New logos are coming in all the time, all the time, from, you know, from across the ecosystem. It's not just the OEMs. It's all the way back- >> So the ecosystem's back of VMware. >> Unbelievably. So what are we doing to help that? There's two big things that we've announced in the recent weeks is that Partner Connect 2.0. When I talked to you about Multi-Cloud and what the (indistinct), you know, the customers are doing, you see that trend. Four, five different separate clouds that we've got here. The next piece is that they're changing their business models with the partners. Their services is becoming more and more apparent, et cetera, you know? And the use of other partners to do other services, deployment, or this stuff is becoming prevalent. Then you've got the distributors that I talked about with their, you know, their, then you route to market, then you route to business. So how do you encapsulate all of that and ensure your rewarding partners on all aspects of that? Whether it's deployment, whether it's test and depth, it's a points-based system we've put in place now- >> It's a big pie that's developing. The market's getting bigger. >> It's getting so much bigger. And then you help- >> I know you agree, obviously, with that. >> Yeah. Absolutely. In fact, I think for a long time we were asking the question of, is it going to be there or is it going to be here? Which was the wrong question. (indistinct cross talking) Now it's everything. >> Yeah. >> And what I think that, what we're seeing in the ecosystem, is that people are finding the spots that, where they're going to play. Am I going to be on the Edge? >> Yeah. >> Am I going to be on Analytics Play? Am I going to be, you know, Cloud Transition Play? There's a lot of players are now emerging and saying, we're- >> Yeah. >> We're, we now have a place, a part to play. And having that industry view not just of, you know, a commercial customer at that level, but the two of us are lookin' at Teleco, are looking at financial services, at healthcare, at manufacturing. How do these new ecosystem players fit into the- >> (indistinct) lifting. Everyone can see their position there. >> Right. >> We're now being asked for simplicity and talk to me about partner profitability. >> Yes. >> How do I know where to focus my efforts? Am I spread too thin? And, you know, that's, and my advice that the partner ecosystem out there is, hey, let's pick out spots together. Let's really go to, and then strategic solutions that we were talking about is a good example of that. >> Yeah. >> Sounds like composability to me, but not to go back- (laughing) Guys, thanks for comin' on. I think there's a big market there. I think the fog is lifted. People seeing their spot. There's value there. Value creation equals reward. >> Yeah. >> Simplicity. Ease of use. This is the new normal. Great job. Thanks for coming on and sharing. (cross talking) Okay. Back to live coverage after this short break with more day one coverage here from the blue set here in Moscone. (light corporate music)

Published Date : Sep 6 2022

SUMMARY :

coming down the cube. Great to have you on. A lot goin' on, the it's going to be, ya' know, going down. Clearly the cloud's happenin'. Yeah. Talk about where you guys There's a lot that you can Yeah. Yeah. Yeah. I got to say that, you know, but it was either one of you guys. (cross talking) Dave, remember when he said, you know, So, look at the OEMs, you know, So, you know, GreenLake They come to a, you know, an On-Premise. I mean, this is complicated stuff. where you can say, hey, Edge, or in the public cloud, as you go, obviously, the financial model, So that's another phenomenon, you know? It's interesting too, you know, I mean, One of the things I liked Because we've been saying, you know, And when you have Yeah. for all of the various but the old model in the with more complexity. is already in the cycle, so of the technologies, Yeah. What's, that's a great point you made. would be, you know, that I can press the cost out of the box. So you get in whatever. that are coming in that, you know, At the moment, you know, the enablement, you know, it, you know, compute storage? that's needed for, you know, So, to get this right, you You got GreenLake and you So does the customer, So the beauty of the HP ProLiant of how you would have to do this. He said you have to be early to be first. Yeah. So you were- early, but do you have a lead? If you're the best. We go to the source of the What do you look at and We've been in a lot of And we know how that And I can tell you, and Andy Jassy, you know, code to the developer. Which is why there's cake that we've, you know, provisioning with containers. a lot of that into the mix in with the CICD pipeline. I know it's going to get It's just a continuation of, you know, And the industry is really It's about, you know, I slice right like you wouldn't believe. So to speak, you know, How do you guys view that piece of it? is the infrastructure or the middle where, It's all of it. Quick question on the I remember when HP was, you know, So first of all, VMware and HPE, Well before any Broadcom a variety of partners. the answer's absolutely not. And of course, you know, on each other to help us as, you know, that we all have in common. And independent of the Clearly, the wave, we're It's also the customers We believe that to be true. Thanks for the Cloud. So what do you guys see? in a position where, you know, How do you encourage them? you know, from across the ecosystem. and what the (indistinct), you know, It's a big pie that's developing. And then you help- or is it going to be here? is that people are finding the spots that, view not just of, you know, Everyone can see their position there. simplicity and talk to me and my advice that the partner to me, but not to go back- This is the new normal.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave VellantePERSON

0.99+

Ricky CooperPERSON

0.99+

HPORGANIZATION

0.99+

DavePERSON

0.99+

Joseph GeorgePERSON

0.99+

AmazonORGANIZATION

0.99+

Sumit DhawanPERSON

0.99+

Pat GelsingerPERSON

0.99+

RickyPERSON

0.99+

five yearsQUANTITY

0.99+

AMDORGANIZATION

0.99+

FourQUANTITY

0.99+

Andy GrovePERSON

0.99+

TelecoORGANIZATION

0.99+

GreenLakeORGANIZATION

0.99+

20 yearsQUANTITY

0.99+

Goldman SachsORGANIZATION

0.99+

Andy JassyPERSON

0.99+

VMwareORGANIZATION

0.99+

20%QUANTITY

0.99+

2013DATE

0.99+

BroadcomORGANIZATION

0.99+

10 yearsQUANTITY

0.99+

John FurrierPERSON

0.99+

HPAORGANIZATION

0.99+

two companiesQUANTITY

0.99+

two organizationsQUANTITY

0.99+

twoQUANTITY

0.99+

HPEORGANIZATION

0.99+

yesterdayDATE

0.99+

JohnPERSON

0.99+

fourQUANTITY

0.99+

CapExORGANIZATION

0.99+

DellORGANIZATION

0.99+

VMware TechnologiesORGANIZATION

0.99+

MosconeLOCATION

0.99+

bothQUANTITY

0.99+

OPEXORGANIZATION

0.99+

Compute Industry AlliancesORGANIZATION

0.99+

HP GreenORGANIZATION

0.99+

Project MontereyORGANIZATION

0.98+

two big thingsQUANTITY

0.98+

five thingsQUANTITY

0.98+

todayDATE

0.98+

oneQUANTITY

0.98+

AMD PensandoORGANIZATION

0.98+

RaghuPERSON

0.98+

firstQUANTITY

0.98+

IntelORGANIZATION

0.98+

HPE DiscoverORGANIZATION

0.97+

over 200,000 customersQUANTITY

0.97+

vSphereORGANIZATION

0.97+

100,000QUANTITY

0.97+

VMware ExploreORGANIZATION

0.97+

one exampleQUANTITY

0.97+

this yearDATE

0.97+

Jason Collier, AMD | VMware Explore 2022


 

(upbeat music) >> Welcome back to San Francisco, "theCUBE" is live, our day two coverage of VMware Explore 2022 continues. Lisa Martin with Dave Nicholson. Dave and I are pleased to welcome Jason Collier, principal member of technical staff at AMD to the program. Jason, it's great to have you. >> Thank you, it's great to be here. >> So what's going on at AMD? I hear you have some juicy stuff to talk about. >> Oh, we've got a ton of juicy stuff to talk about. Clearly the Project Monterey announcement was big for us, so we've got that to talk about. Another thing that I really wanted to talk about was a tool that we created and we call it, it's the VMware Architecture Migration Tool, call it VAMT for short. It's a tool that we created and we worked together with VMware and some of their professional services crew to actually develop this tool. And it is also an open source based tool. And really the primary purpose is to easily enable you to move from one CPU architecture to another CPU architecture, and do that in a cold migration fashion. >> So we're probably not talking about CPUs from Tandy, Radio Shack systems, likely this would be what we might refer to as other X86 systems. >> Other X86 systems is a good way to refer to it. >> So it's interesting timing for the development and the release of a tool like this, because in this sort of X86 universe, there are players who have been delayed in terms of delivering their next gen stuff. My understanding is AMD has been public with the idea that they're on track for by the end of the year, Genoa, next gen architecture. So can you imagine a situation where someone has an existing set of infrastructure and they're like, hey, you know what I want to get on board, the AMD train, is this something they can use from the VMware environment? >> Absolutely, and when you think about- >> Tell us exactly what that would look like, walk us through 100 servers, VMware, 1000 VMs, just to make the math easy. What do you do? How does it work? >> So one, there's several things that the tool can do, we actually went through, the design process was quite extensive on this. And we went through all of the planning phases that you need to go through to do these VM migrations. Now this has to be a cold migration, it's not a live migration. You can't do that between the CPU architectures. But what we do is you create a list of all of the virtual machines that you want to migrate. So we take this CSV file, we import this CSV file, and we ask for things like, okay, what's the name? Where do you want to migrate it to? So from one cluster to another, what do you want to migrate it to? What are the networks that you want to move it to? And then the storage platform. So we can move storage, it could either be shared storage, or we could move say from VSAN to VSAN, however you want to set it up. So it will do those storage migrations as well. And then what happens is it's actually going to go through, it's going to shut down the VM, it's going to take a snapshot, it is going to then basically move the compute and/or storage resources over. And once it does that, it's going to power 'em back up. And it's going to check, we've got some validation tools, where it's going to make sure VM Tools comes back up where everything is copacetic, it didn't blue screen or anything like that. And once it comes back up, then everything's good, it moves onto the next one. Now a couple of things that we've got feature wise, we built into it. You can parallelize these tasks. So you can say, how many of these machines do you want to do at any given time? So it could be, say 10 machines, 50 machines, 100 machines at a time, that you want to go through and do this move. Now, if it did blue screen, it will actually roll it back to that snapshot on the origin cluster. So that there is some protection on that. A couple other things that are actually in there are things like audit tracking. So we do full audit logging on this stuff, we take a snapshot, there's basically kind of an audit trail of what happens. There's also full logging, SYS logging, and then also we'll do email reporting. So you can say, run this and then shoot me a report when this is over. Now, one other cool thing is you can also actually define a change window. So I don't want to do this in the middle of the afternoon on a Tuesday. So I want to do this later at night, over the weekend, you can actually just queue this up, set it, schedule it, it'll run. You can also define how long you want that change window to be. And what it'll do, it'll do as many as it can, then it'll effectively stop, finish up, clean up the tasks and then send you a report on what all was successfully moved. >> Okay, I'm going to go down the rabbit hole a little bit on this, 'cause I think it's important. And if I say something incorrect, you correct me. >> No problem. >> In terms of my technical understanding. >> I got you. >> So you've got a VM, essentially a virtual machine typically will consist of an entire operating system within that virtual machine. So there's a construct that containerizes, if you will, the operating system, what is the difference, where is the difference in the instruction set? Where does it lie? Is it in the OS' interaction with the CPU or is it between the construct that is the sort of wrapper around the VM that is the difference? >> It's really primarily the OS, right? And we've not really had too many issues doing this and most of the time, what is going to happen, that OS is going to boot up, it's going to recognize the architecture that it's on, it's going to see the underlying architecture, and boot up. All the major operating systems that we test worked fine. I mean, typically they're going to work on all the X86 platforms. But there might be instruction sets that are kind of enabled in one architecture that may not be in another architecture. >> And you're looking for that during this process. >> Well usually the OS itself is going to kind of detect that. So if it pops up, the one thing that is kind of a caution that you need to look for. If you've got an application that's explicitly using an instruction set that's on one CPU vendor and not the other CPU vendor. That's the one thing where you're probably going to see some application differences. That said, it'll probably be compatible, but you may not get that instruction set advantage in it. >> But this tool remediates against that. >> Yeah, and what we do, we're actually using VM Tools itself to go through and validate a lot of those components. So we'll look and make sure VM Tools is enabled in the first place, on the source system. And then when it gets to the destination system, we also look at VM Tools to see what is and what is not enabled. >> Okay, I'm going to put you on the spot here. What's the zinger, where doesn't it work? You already said cold, we understand, you can schedule for cold migrations, that's not a zinger. What's the zinger, where doesn't it work? >> It doesn't work like, live migrations just don't work. >> No live, okay, okay, no live. What about something else? What's the oh, you've got that version, you've got that version of X86 architecture, it-won't work, anything? >> A majority of those cases work, where it would fail, where it's going to kick back and say, hey, VM Tools is not installed. So where you would see this is if you're running a virtual appliance from some vendor, like insert vendor here that say, got a firewall, or got something like that, and they don't have VM Tools enabled. It's going to fail it out of the gate, and say, hey, VM Tools is not on this, you might want to manually do it. >> But you can figure out how to fix that? >> You can figure out how to do that. You can also, and there's a flag in there, so in kind of the options that you give it, you say, ignore VM Tools, don't care, move it anyway. So if you've got less, some VMs that are in there, but they're not a priority VM, then it's going to migrate just fine. >> Got It. >> Can you elaborate a little bit on the joint development work that AMD and VMware are doing together and the value in it for customers? >> Yeah, so it's one of those things we worked with VMware to basically produce this open source tool. So we did a lot of the core component and design and we actually engaged VMware Professional Services. And a big shout out to Austin Browder. He helped us a ton in this project specifically. And we basically worked, we created this, kind of co-designed, what it was going to look like. And then jointly worked together on the coding, of pulling this thing together. And then after that, and this is actually posted up on VMware's public repos now in GitHub. So you can go to GitHub, you can go to the VMware samples code, and you can download this thing that we've created. And it's really built to help ease migrations from one architecture to another. So if you're looking for a big data center move and you got a bunch of VMs to move. I mean, even if it's same architecture to same architecture, it's definitely going to ease the pain of going through and doing a migration of, it's one thing when you're doing 10 machines, but when you're doing 10,000 virtual machines, that's a different story. It gets to be quite operationally inefficient. >> I lose track after three. >> Yeah. >> So I'm good for three, not four. >> I was going to ask you what your target market segment is here. Expand on that a little bit and talk to me about who you're working with and those organizations. >> So really this is targeted toward organizations that have large deployments in enterprise, but also I think this is a big play with channel partners as well. So folks out there in the channel that are doing these migrations and they do a lot of these, when you're thinking about the small and mid-size organizations, it's a great fit for that. Especially if they're kind of doing that upgrade, the lift and shift upgrade, from here's where you've been five to seven years on an architecture and you want to move to a new architecture. This is really going to help. And this is not a point and click GUI kind of thing. It's command line driven, it's using PowerShell, we're using PowerCLI to do the majority of this work. And for channel partners, this is an excellent opportunity to put the value and the value add and VAR, And there's a lot of opportunity for, I think, channel partners to really go and take this. And once again, being open source. We expect this to be extensible, we want the community to contribute and put back into this to basically help grow it and make it a more useful tool for doing these cold migrations between CPU architectures. >> Have you seen any in the last couple of years of dynamics, obviously across the world, any industries in particular that are really leading edge for what you guys are doing? >> Yeah, that's really, really interesting. I mean, we've seen it, it's honestly been a very horizontal problem, pretty much across all vertical markets. I mean, we've seen it in financial services, we've seen it in, honestly, pretty much across the board. Manufacturing, financial services, healthcare, we have seen kind of a strong interest in that. And then also we we've actually taken this and presented this to some of our channel partners as well. And there's been a lot of interest in it. I think we presented it to about 30 different channel partners, a couple of weeks back about this. And I got contact from 30 different channel partners that said they're interested in basically helping us work on it. >> Tagging on to Lisa's question, do you have visibility into the AMD thought process around the timing of your next gen release versus others that are competitors in the marketplace? How you might leverage that in terms of programs where partners are going out and saying, hey, perfect time, you need a refresh, perfect time to look at AMD, if you haven't looked at them recently. Do you have any insight into that in what's going on? I know you're focused on this area. But what are your thoughts on, well, what's the buzz? What's the buzz inside AMD on that? >> Well, when you look overall, if you look at the Gartner Hype Cycle, when VMware was being broadly adopted, when VMware was being broadly adopted, I'm going to be blunt, and I'm going to be honest right here, AMD didn't have a horse in the race. And the majority of those VMware deployments we see are not running on AMD. Now that said, there's an extreme interest in the fact that we've got these very cored in systems that are now coming up on, now you're at that five to seven year refresh window of pulling in new hardware. And we have extremely attractive hardware when it comes to running virtualized workloads. The test cluster that I'm running at home, I've got that five to seven year old gear, and I've got some of the, even just the Milan systems that we've got. And I've got three nodes of another architecture going onto AMD. And when I got these three nodes completely maxed to the number of VMs that I can run on 'em, I'm at a quarter of the capacity of what I'm putting on the new stuff. So what you get is, I mean, we worked the numbers, and it's definitely, it's like a 30% decrease in the amount of resources that you need. >> That's a compelling number. >> It's a compelling number. >> 5%, 10%, nobody's going to do anything for that. You talk 30%. >> 30%. It's meaningful, it's meaningful. Now you you're out of Austin, right? >> Yes. >> So first thing I thought of when you talk about running clusters in your home is the cost of electricity, but you're okay. >> I'm okay. >> You don't live here, you don't live here, you don't need to worry about that. >> I'm okay. >> Do you have a favorite customer example that you think really articulates the value of AMD when you're in customer conversations and they go, why AMD and you hit back with this? >> Yeah. Actually it's funny because I had a conversation like that last night, kind of random person I met later on in the evening. We were going through this discussion and they were facing exactly this problem. They had that five to seven year infrastructure. It's funny, because the guy was a gamer too, and he's like, man, I've always been a big AMD fan, I love the CPUs all the way since back in basically the Opterons and Athlons right. He's like, I've always loved the AMD systems, loved the graphics cards. And now with what we're doing with Ryzen and all that stuff. He's always been a big AMD fan. He's like, and I'm going through doing my infrastructure refresh. And I told him, I'm just like, well, hey, talk to your VAR and have 'em plug some AMD SKUs in there from the Dells, HPs and Lenovos. And then we've got this tool to basically help make that migration easier on you. And so once we had that discussion and it was great, then he swung by the booth today and I was able to just go over, hey, this is the tool, this is how you use it, here's all the info. Call me if you need any help. >> Yeah, when we were talking earlier, we learned that you were at Scale. So what are you liking about AMD? How does that relate? >> The funny thing is this is actually the first time in my career that I've actually had a job where I didn't work for myself. I've been doing venture backed startups the last 25 years and we've raised couple hundred million dollars worth of investment over the years. And so one, I figured, here I am going to AMD, a larger corporation. I'm just like, am I going to be able to make it a year? And I have been here longer than a year and I absolutely love it. The culture at AMD is amazing. We still have that really, I mean, almost it's like that underdog mentality within the organization. And the team that I'm working with is a phenomenal team. And it's actually, our EVP and our Corp VP, were actually my executive sponsors, we were at a prior company. They were one of my executive sponsors when I was at Scale. And so my now VP boss calls me up and says, hey, I'm putting a band together, are you interested? And I was kind of enjoying a semi-retirement lifestyle. And then I'm just like, man, because it's you, yes, I am interested. And the group that we're in, the work that we're doing, the way that we're really focusing on forward looking things that are affecting the data center, what's going to be the data center like three to five years from now. It's exciting, and I am having a blast, I'm having the time of my life. I absolutely love it. >> Well, that relationship and the trust that you will have with each other, that bleeds into the customer conversations, the partner conversations, the employee conversations, it's all inextricably linked. >> Yes it is. >> And we want to know, you said three to five years out, like what? Like what? Just general futurist stuff, where do you think this is going. >> Well, it's interesting. >> So moon collides with the earth in 2025, we already know that. >> So we dialed this back to the Pensando acquisition. When you look at the Pensando acquisition and you look at basically where data centers are today, but then you look at where basically the big hyperscalers are. You look at an AWS, you look at their architecture, you specifically wrap Nitro around that, that's a very different architecture than what's being run in the data center. And when you look at what Pensando does, that's a lot of starting to bring what these real clouds out there, what these big hyperscalers are running into the grasps of the data center. And so I think you're going to see a fundamental shift. The next 10 years are going to be exciting because the way you look at a data center now, when you think of what CPUs do, what shared storage, how the networking is all set up, it ain't going to look the same. >> Okay, so the competing vision with that, to play devil's advocate, would be DPUs are kind of expensive. Why don't we just use NICs, give 'em some more bandwidth, and use the cheapest stuff. That's the competing vision. >> That could be. >> Or the alternative vision, and I imagine everything else we've experienced in our careers, they will run in parallel paths, fit for function. >> Well, parallel paths always exist, right? Otherwise, 'cause you know how many times you've heard mainframe's dead, tape's dead, spinning disk is dead. None of 'em dead, right? The reality is you get to a point within an industry where it basically goes from instead of a growth curve like that, it goes to a growth curve of like that, it's pretty flat. So from a revenue growth perspective, I don't think you're going to see the revenue growth there. I think you're going to see the revenue growth in DPUs. And when you actually take, they may be expensive now, but you look at what Monterey's doing and you look at the way that those DPUs are getting integrated in at the OEM level. It's going to be a part of it. You're going to order your VxRail and VSAN style boxes, they're going to come with them. It's going to be an integrated component. Because when you start to offload things off the CPU, you've driven your overall utilization up. When you don't have to process NSX on basically the X86, you've just freed up cores and a considerable amount of them. And you've also moved that to where there's a more intelligent place for that pack to be processed right, out here on this edge. 'Cause you know what, that might not need to go into the host bus at all. So you have just alleviated any transfers over a PCI bus, over the PCI lanes, into DRAM, all of these components, when you're like, but all to come with, oh, that bit needs to be on this other machine. So now it's coming in and it's making that decision there. And then you take and integrate that into things like the Aruba Smart Switch, that's running the Pensando technology. So now you got top of rack that is already making those intelligent routing decisions on where packets really need to go. >> Jason, thank you so much for joining us. I know you guys could keep talking. >> No, I was going to say, you're going to have to come back. You're going to have to come back. >> We've just started to peel the layers of the onion, but we really appreciate you coming by the show, talking about what AMD and VMware are doing, what you're enabling customers to achieve. Sounds like there's a lot of tailwind behind you. That's awesome. >> Yeah. >> Great stuff, thank you. >> It's a great time to be at AMD, I can tell you that. >> Oh, that's good to hear, we like it. Well, thank you again for joining us, we appreciate it. For our guest and Dave Nicholson, I'm Lisa Martin. You're watching "theCUBE Live" from San Francisco, VMware Explore 2022. We'll be back with our next guest in just a minute. (upbeat music)

Published Date : Aug 31 2022

SUMMARY :

Jason, it's great to have you. I hear you have some to easily enable you to move So we're probably good way to refer to it. and the release of a tool like this, 1000 VMs, just to make the math easy. And it's going to check, we've Okay, I'm going to In terms of my that is the sort of wrapper and most of the time, that during this process. that you need to look for. in the first place, on the source system. What's the zinger, where doesn't it work? It doesn't work like, live What's the oh, you've got that version, So where you would see options that you give it, And a big shout out to Austin Browder. I was going to ask you what and the value add and VAR, and presented this to some of competitors in the marketplace? in the amount of resources that you need. nobody's going to do anything for that. Now you you're out of Austin, right? is the cost of electricity, you don't live here, you don't They had that five to So what are you liking about AMD? that are affecting the data center, Well, that relationship and the trust where do you think this is going. we already know that. because the way you look Okay, so the competing Or the alternative vision, And when you actually take, I know you guys could keep talking. You're going to have to come back. peel the layers of the onion, to be at AMD, I can tell you that. Oh, that's good to hear, we like it.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

Jason CollierPERSON

0.99+

Dave NicholsonPERSON

0.99+

LisaPERSON

0.99+

50 machinesQUANTITY

0.99+

10 machinesQUANTITY

0.99+

JasonPERSON

0.99+

10 machinesQUANTITY

0.99+

100 machinesQUANTITY

0.99+

DavePERSON

0.99+

AMDORGANIZATION

0.99+

AustinLOCATION

0.99+

San FranciscoLOCATION

0.99+

San FranciscoLOCATION

0.99+

fiveQUANTITY

0.99+

threeQUANTITY

0.99+

100 serversQUANTITY

0.99+

seven yearQUANTITY

0.99+

theCUBE LiveTITLE

0.99+

10,000 virtual machinesQUANTITY

0.99+

LenovosORGANIZATION

0.99+

30%QUANTITY

0.99+

2025DATE

0.99+

AWSORGANIZATION

0.99+

fourQUANTITY

0.99+

oneQUANTITY

0.99+

10%QUANTITY

0.99+

30 different channel partnersQUANTITY

0.99+

five yearsQUANTITY

0.99+

earthLOCATION

0.99+

5%QUANTITY

0.99+

1000 VMsQUANTITY

0.99+

DellsORGANIZATION

0.99+

GitHubORGANIZATION

0.99+

seven yearsQUANTITY

0.98+

Austin BrowderPERSON

0.98+

a yearQUANTITY

0.98+

TandyORGANIZATION

0.98+

Radio ShackORGANIZATION

0.98+

VMwareORGANIZATION

0.98+

MontereyORGANIZATION

0.98+

todayDATE

0.97+

HPsORGANIZATION

0.97+

first timeQUANTITY

0.97+

TuesdayDATE

0.97+

ScaleORGANIZATION

0.97+

VM ToolsTITLE

0.97+

one thingQUANTITY

0.96+

last nightDATE

0.96+

about 30 different channel partnersQUANTITY

0.95+

firstQUANTITY

0.95+

AthlonsCOMMERCIAL_ITEM

0.95+

VxRailCOMMERCIAL_ITEM

0.95+

X86TITLE

0.94+

PensandoORGANIZATION

0.94+

VMware Explore 2022TITLE

0.94+

RyzenCOMMERCIAL_ITEM

0.94+

five yearsQUANTITY

0.93+

James Bion, DXC Technology | VMware Explore 2022


 

(upbeat music) >> Good afternoon. theCUBE is live at VMware Explorer. Lisa Martin here in San Francisco with Dave Nicholson. This is our second day of coverage talking all things VMware and it's ecosystem. We're excited to welcome from DXC Technology, James Bion, Hybrid Cloud and Multi Cloud Offering manager to have a conversation next. Welcome to the program. >> Thank you very much. >> Welcome. >> Talk to us a little bit about before we get into the VMware partnership, what's new at DXC? What's going on? >> So DXC is really evolving and revitalizing into more of a cloud orientated company. So we're already driving change in our customers at the moment. We take them on that cloud journey, but we're taking them in the right way, in a structured mannered way. So we are really excited about it, we're kicking off our Cloud First type, Cloud Right sort of story and helping customers on that journey. >> Yesterday in the keynote, VMware was talking about customers are on this Cloud chaos phase, they want to get to Cloud Smart. You're saying they want to get to Cloud Right. Talk to us about what DXC Cloud Right is, what does it mean? What does it enable businesses to achieve? >> That's a very good question. So DXC has come up with this concept of Cloud Right, we looked at it from a services and outcome. So what do customers want to achieve? And how do we get it successfully? This is not a technology conversation, this is about putting the right workloads at the right place, at the right time, at the right cost to get the right value for your business. It's not about just doing it for the sake of doing it, okay. There's a lot of changes it's not technology only you've got to change how people operate. You've got to work through the organizational change. You need to ensure that you have the right security in place to maintain it. And it's about value, really about value proposition. So we don't just focus on cost, we focus on operations of it, we focus on security of it. We focus on ensuring the value proposition of it and putting not just for one Cloud, it's the right place. Big focus on Hybrid and Multi Cloud solutions in particular, we're very excited about what's happening with VMware Cloud on maybe AWS or et cetera because we see there a real dynamic change for our customers where they can transition across to the right Cloud services, at the right time, at the right place, but minimal disruption to the actual operation of their business. Very easy to move a workload into that place using the same skilled resources, the same tools, the same environment that you have had for many years, the same SLAs. Customers don't want a variance in their SLAs, they just want an outcome at a right price and the right time. >> Right, what are some of the things going on with the VMware partnership and anything you know, here we are at this the event called the theme is "The Center of the Multi Cloud Universe", which I keep saying sounds like a Marvel movie, I think there needs to be some superheroes here. But how is DXC working with VMware to help customers that are in Multi Cloud by default, not by design? >> That's a very good one. So DXC works jointly with VMware for more than a thousand clients out there. Wide diversity of different clients. We go to market together, we work collaboratively to put roadmaps in place for our clients, it's a unified team. On top of that, we have an extremely good VMware practice, joint working VMware team working directly with DXC dedicated resources and we deliver real value for clients. For example, we have a customer experience zone, we have a customer innovation zone so we can run proof of concepts on all the different VMware technologies for customers. If they want to try something different, try and push the boundaries a little bit with the VMware products, we can do that for them. But at the end of the day we deliver outcome based services. We are not there to deliver a piece of software, but a technology which show the customer the value of the service that they've been receiving within that. So we bring the VMware fantastic technologies in and then we bring the DXC managed services which we do so well and we look after our customers and do the right thing for our customers. >> So what does the go-to market strategy look like from a DXC perspective? We say that there are a finite number of strategic seats at the customer table. DXC has longstanding deep relationships with customers, so does VMware and probably over a shorter period of time, the Hyper scale Cloud Providers. How are you approaching these relationships with customers? Is it you bringing in your friends from the cloud? Is it the cloud bringing in their friend DXC? What does it look like? >> So we have relationships with all of them, but were agnostic. So we are the people who bring it all together into that unified platform and services that the customers expect. VMware will bring us certainly to the table and we'll bring VMware to the table. Equally, we work very collaboratively with all the cloud providers and we work in deals together. They bring us deals, we bring them deals. So it works extremely well from that perspective, but of course it's a multi-cloud world these days. We don't just deal with one cloud provider, we'll normally have all of the different services to find the right place for our customers. >> Now, one thing that that's been mentioned from DXC is this idea that Cloud First which has been sort of a mantra that scores you points if you're a CIO lately, maybe that's not the best way to wake up in the morning. Why not saying, Cloud First? >> So we have a lot of clients who who've tried that Cloud First journey and they've aggressively taken on migration of workloads. And now that they've settled in a few of those they're discovering maybe the ROI isn't quite what they expected it was going to be. That transformation takes a long time, a very long time. We've seen some of the numbers around averaging a hundred apps can take up to seven years to transition and transform, that's a long time. It makes you almost less agile by doing the transformation quite ironically. So DXC's Cloud Right program really helps you to ensure that you assess those workloads correctly, you target the ones that are going to give you the best business value, possibly the best return on investment using our Cloud and advisory practice to do that. And then obviously off the back of that we've got our migration teams and our run services and our application modernization factories and our application platforms for that. So DXC Cloud Right can certainly help our customers on that journey and get that sort of Hybrid Multi Cloud solution that suits their particular outcomes, not just one Cloud provider. >> So Cloud Right isn't just Cloud migration? >> No. >> People sometimes confuse digital transformation with Cloud migration. >> Correct. >> So to be clear Cloud Right and DXC has the ability to work with customers on not just, oh, here, this is how we box it up and ship it out, but what makes sense to box up and ship out. >> Correct, and it's all about that whole end to end life cycle. Remember, this is not just a technology conversation, this is an end to end business conversation. It's the outcomes are important, not the technology. That's why you have good partners like DXC who will help you on that technology journey. >> Let's talk about in the dynamics of the market the last couple of years, we saw so many customers in every industry race to the Cloud, race to digitally transform. You bring up a good point of people interchangeably talking about digital transformation, Cloud migration, but we saw the massive adoption of SaaS technologies. What are you seeing? Are you seeing customers in that sort of Cloud chaos as VMware calls it? That you're coming in with the Cloud Right approach saying, let's actually figure out, you may have done this because of the pandemic maybe it was accelerated, you needed to facilitate collaboration or whatnot, but actually this is the right approach. Are you seeing a lot of customers in that situation? >> We are certainly seeing some customers going into that chaos world. Some of them are still in the early stages of their journey and are taking a more cautious step towards in particular, the companies that would die on systems to be up available all the time. Others have gone too far, the other are in extreme are in the chaos world. And our Cloud Right program will certainly help them to pull their chaos back in, identify what workloads are potentially running in the wrong place, get the framework in place for ensuring that security and governance is in place. Ensuring that we don't have a cost spend blowout in particular, make sure that security is key to everything that we do and operations is key to everything we do. We have our own intelligent Platform X, it's called, our service management platform which is really the engine that sits behind our delivery mechanism. And that's got a whole lot of AI analytics engines in there to identify things and proactively identify workload placements, workload repairs, scripting, and hyper automation behind that too, to keep available here and there. And that's really some of our Cloud Right story, it's not just sorting out the mess, it's sorting out and then running it for you in the right way. >> So what does a typical, a customer engagement look like for a customer in that situation? >> So we would obviously engage our client right advisory team and they would come in and sit down with your application owners, sit down with the business units, identify what success needs to look like. They do all the discovery, they'll run it through our engines to identify what workloads are in the right place, should go to the right place. Just 'cause you can do something doesn't mean you should do something and that's an important thing. So we will come back with that and say, this is where I think your cloud roadmap journey should be. And obviously that takes an intuitive process, but we then can pick off the key topics early at the right time and that low hanging fruit that's really going to drive that value for the customer. >> And where are your customer conversations these days? I mean from a Cloud perspective, digital transformation, we're seeing everything escalate up the C-suite? Are you engaging the executives in this conversation so that they really want to facilitate, let's do things the right way that's the most efficient that allows us as a business to do what we're best at? >> So where we've seen programs fail is where we don't have executive leadership and brought in from day one. So if you don't have that executive and business driver and business leadership, then you're definitely not going to be successful. So to answer your question, yes, of course we are, but we also working directly with the IT departments as well. >> So you just brought up an insight executive alignment, critically important. Based on what you've experienced in the real world, contrast that with the sort of message to the world that we hear constantly about Cloud and IT, what would be the most shocking thing that you can share with us that people might not be aware of? It's like what shocks you the most about the disconnect between what everybody talks about and the reality on the ground? Don't name any names of anyone, but give us an example of the like, this is what's really going on. >> So, we certainly are seeing that big sort of move into Cloud quickly, okay. And then the big bill shock comes and just moving a workload across doesn't mean you're in Cloud, it's a transition and transformation to the SaaS and power services, it's where you get your true value out of cloud. So the concept that just 'cause it's in Cloud it's cheap is not always the case. Doing it right in Cloud is definitely going to have some cost value, but it's going to bring other additional values to their business. It's going to give them agility, it's going to give them resilience. So if you look at all three of those platforms cost, agility, and resilience and live across all three of those, then you're definitely going to get the best outcomes. And we've certainly seen some of those where they haven't taken all of those into consideration, quite often it's cost is what drives it, not the other two. And if you can't keep operations up working efficiently then you are in a lot of trouble. >> So Cloud wrong comes with sticker shock. >> It certainly does. >> What's on the horizon for DXC? >> We're certainly seeing a big drive towards apps modernization and certainly help our customers on that journey. DXC is definitely a Cloud company, may that be on Hybrid Cloud, Private Cloud, Public Cloud, DXC is certainly leading that edge and pushing it forward. >> Excellent, James, thank you so much for joining us on the program today talking about what Cloud Right is, the right approach, how you're helping customers really get to that right approach with the people, the processes, and the technology. We appreciate your time. >> Thank you very much. >> For our guest and Dave Nicholson, I'm Lisa Martin. You're watching theCUBE live from VMware Explorer, 2022. Our next guest joins us momentarily so don't change the channel. (upbeat music)

Published Date : Aug 31 2022

SUMMARY :

Welcome to the program. in our customers at the moment. Yesterday in the keynote, Cloud, it's the right place. is "The Center of the But at the end of the day we of strategic seats at the customer table. that the customers expect. maybe that's not the best way are going to give you with Cloud migration. Right and DXC has the ability important, not the technology. in every industry race to the Cloud, to everything that we So we will come back with that and say, So to answer your question, and the reality on the ground? So the concept that just So Cloud wrong comes DXC is certainly leading that to that right approach with the people, so don't change the channel.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Dave NicholsonPERSON

0.99+

Lisa MartinPERSON

0.99+

James BionPERSON

0.99+

JamesPERSON

0.99+

San FranciscoLOCATION

0.99+

DXCORGANIZATION

0.99+

VMwareORGANIZATION

0.99+

AWSORGANIZATION

0.99+

second dayQUANTITY

0.99+

2022DATE

0.99+

twoQUANTITY

0.99+

Cloud RightTITLE

0.99+

todayDATE

0.98+

oneQUANTITY

0.98+

Cloud RightTITLE

0.98+

Cloud FirstTITLE

0.98+

more than a thousand clientsQUANTITY

0.98+

YesterdayDATE

0.97+

DXC TechnologyORGANIZATION

0.97+

DXCTITLE

0.97+

threeQUANTITY

0.96+

Hyper scaleORGANIZATION

0.94+

VMware CloudTITLE

0.94+

VMware ExplorerORGANIZATION

0.93+

last couple of yearsDATE

0.92+

up to seven yearsQUANTITY

0.89+

MarvelORGANIZATION

0.88+

CloudTITLE

0.88+

ExplorerTITLE

0.86+

Cloud SmartTITLE

0.82+

VMware Explore 2022TITLE

0.8+

one cloud providerQUANTITY

0.79+

one thingQUANTITY

0.79+

a hundred appsQUANTITY

0.76+

theCUBEORGANIZATION

0.75+

pandemicEVENT

0.73+

Hybrid CloudORGANIZATION

0.71+

Center of the Multi CloudEVENT

0.66+

PlatformTITLE

0.6+

day oneQUANTITY

0.58+

ProvidersORGANIZATION

0.55+

CloudOTHER

0.5+

UniverseTITLE

0.38+

FirstTITLE

0.38+

Manyam Mallela, Blueshift | AWS Startup Showcase S2 E3


 

(upbeat music) >> Welcome everyone to theCUBE's presentation of the AWS Startup Showcase. Topic is MarTech: Emerging Cloud-Scale Experience. This is season two, episode three of the ongoing series covering the exciting startups from the AWS ecosystem. Talk about their value proposition and their company and all the good stuff that's going on. I'm your host, John Furrier. And today we're excited to be joined by Manyam Mallela who's the co-founder and head of AI at Blueshift. Great to have you on here to talk about the Blueshift-Intelligent Customer Engagement, Made Simple. Thanks for joining us today. >> Thank you, John. Thank you for having me. >> So last time we did our intro video. We put it out in the web. Got great feedback. One of the things that we talked about, which is resonating out there in the viral Twitter sphere and in the thought leadership circles is this concept that you mentioned called 10X marketer. That idea that you have a solution that can provide 10X value. Kind of a riff on the 10X engineer in the DevOps cloud world. What does it mean? And how does someone get there? >> Yeah, fantastic. I think that's a great way to start our discussion. I think a lot of organizations, especially as of this current economic environment are looking to say, I have limited resources, limited budgets, how do I actually achieve digital and customer engagement that helps move the needle for my key metrics, whether it's average revenue per user, lifetime value of the user and frequent interactions. Above all, the more frequently a brand is able to interact with their customers, the better they understand them, the better they can actually engage them. And that usually leads to long term good outcomes for both customer and the brand and the organizations. So the way I see 10X marketer is that you need to have tools that give you that speed and agility without hindering your ability to activate any of the campaigns or experience that you want to create. And I see the roadblocks usually for many organizations, is that kind of threefold. One is your data silos. Usually data that is on your sites, does not talk to your app data, does not talk to your social data, does not talk to your CRM data and so forth. So how do I break those silos? The second is channel silos. I actually have customers who are only engaging on email or some are on email and mobile apps. Some are on email and mobile apps and maybe the OTT TV in a Roku or one of the connected TV experiences, or maybe in the future, another Web3 environments. How do I actually break those channel silos so that I get a comprehensive view of the customer and my marketing team can engage with all of them in respect to the channel? So break the channel silos. And the last part, what I call like some of the little talked about is I call the inside silo, which is that, not only do you need to have the data, but you also have to have a common language to share and talk about within your organizations. What are we learning from our customers? What do we translate our learning and insight on this common data platform or fabric into an action? And that requires the shared language of how do I actually know my customers and what do I do with them? Like either the inside silo as well. I think a lot of times organizations do get into this habit like each one speaks their own language, but they don't actually are talking the common language of what did we actually know about the real customer there. >> Yeah, and I think that's a great conversation because there's two, when you hear 10X marketer or 10X conversations, it implies a couple things. One is you're breaking an old way and bringing in something new. And the new is a force multiplier, in this case, 10X marketer. But this is the cloud scale so marketing executives, chiefs, staffs, chiefs of staffs of CMOs and their staffs. They want to get that scale. So marketing at scale is now the table stakes. Now budget constraints are there as well. So you're starting to see, okay, I need to do more with less. Now the big question comes up is ROI. So I want to have AI. I want to have all these force multipliers. What do I got to do with the old? How do I handle that? How do I bring the new in and operationalize it? And if that's the case, I'm making a change. So I have to ask you, what's your view on the ROI of AI marketing, because this is a key component 'cause you've got scale factor here. You've got to force multiplier opportunity. How do you get that ROI on the table? >> I think that as you rightly said, it's table stakes. And I think the ROI of AI marketing starts with one very key simple premise that today some of the tools allow you to do things one at a time. So I can actually say, "can I run this campaign today?" And you can scramble your team, hustle your way, get everybody involved and run that campaign. And then tomorrow I'd say like, Hey, I looked at the results. Can I do this again? And they're like, oh, we just asked for all of us to get that done. How do I do it tomorrow? How do I do it next week? How do I do it for every single week for the rest of the year? That's where I think the AI marketing is essentially taking your insight, taking your creativity, and creating a platform and a tool that allows you to run this every single day. And that's agility at scale. That is not only a scale of the customer base, but scale across time. And that AI-based automation is the key ROI piece for a lot of AI marketing practitioners. So Forrester, for example, did a comprehensive total economic impact study with our customers. And what they found out was actually the 781% ROI that they reported in that particular report is based on three key factors. One is being able to do experiences that are intelligent at scale, day in and day out. So do your targeting, do your recommendations. Not just one day, but do it every single day. And don't hold back yourself on being able to do that. >> I think they got to get the return. They got to get the sales too. This is the numbers. >> That's right. They actually have real dollars, real numbers attached to it. They have a calculator. You can actually go in and plug your own numbers and get what you might expect from your existing customer base. The second is that once you have a unified platform like ours, the 10X marketer that we're talking about is actually able to do more. It's sometimes actually, it's kind of counterintuitive to think that a smaller team does more. But in reality, what we have seen, that is the case. When you actually have the right tools, the smaller teams actually achieve more. And that's the redundant operations, conflicting insights that go away into something more coherent and comprehensive. And that's the second insight that they found. And the third is just having reporting and all of the things in one place means that you can amplify it. You can amplify it across your paid media channels. You can amplify it across your promotions programs and other partnerships that you're running. >> That's the key thing about platforms that people don't understand is that you have a platform and it enables a lot of value. In this case, force multiplier value. It enables more value than you pay for it. But the key is it enables customers to do things without a line of code, meaning it's a platform. They're innovating on top of it. And that's, I think, where the ROI comes in and this leads me where the next question is. I wanted to ask you is, not to throw a wet blanket on the MarTech industry, but I got to think of when I hear marketing automation, I kind of think old. I think old, inadequate antiquated technologies. I think email blasting and just some boring stuff that just gets siloed or it's bespoke from something else. Are marketing automation tools created equal? Does something like, what you guys are doing with SmartHub? Change that, and can you just talk about that 'cause it's not going to go away. It's just another level that's going to be abstracted away under the coverage. >> Yeah, great question. Certainly, email marketing has been practiced for two or three decades now and in some form or another. I think we went from essentially what people call list-based marketing. I have a list, let me keep blasting the same message to everybody and then hopefully something will come out of it. A little bit more of saying, then they can, okay, maybe now I have CRM database and can I do database marketing, which they will call like, "Hey, Hi John. Hi Manyam", which is the first name. And that's all they think will get the customer excited about because you'll call them by name, which is certainly helpful, but not enough. I think now what we call like, the new age that we live in is that we call it graph-based marketing. And the way we materialize that is that every single user is interacting with a brand with their offerings. So that this interaction graph that's happening across millions of customers, across thousands of content articles, videos, shows, products, items, and that graph actually has much richer knowledge of what the customer wants than the first names or list-based ones. So I think the next evolution of marketing automation, even though the industry has been there a while, there is a step change in what can actually be done at scale. And which is taking that interaction graph and making that a part of the experience for the customer, and that's what we enable. That's why we do think of that as a big step change from how people are being practicing list-based marketing. And within that, certainly there is a relation of curve as to how people approach AI marketing and they are in a different spectrum. Some people are still at list-based marketing. Some people are database marketing. And hopefully will move them to this new interaction graph-based marketing. >> Yeah and I think the context is key. I like how you bring up the graph angle on this because the graph databases imply there's a lot of different optionality around what's happened contextually both over time and currently and it adds to it. Makes it smarter. It's not just siloed, just one dimensional. It feels like it's got a lot there. This is clearly I'm a big fan of and I think this is the way to go. As you get more personalization, you get more data. Graphic database makes a lot of sense. So I have to ask you, this is a really cutting edge value proposition, who are the primary buyers and users in an organization that you guys are working with? >> Yeah, great question. So we typically have CMO organizations approaching us with this problem and they usually talk to their CIO organizations, their counterparts, and the chief information officers have been investing in data fabrics, data lakes, data warehouses for the better part of last decade or two, and have some very cutting edge technology that goes into organizing all this data. But that doesn't still solve the problem of how do I take this data and make a meaningful, relevant, authentic experience for the customer. That's the CMO problem. And CMO are now challenge with creating product level experience with every interaction and that's where we coming. So the CMO are the buyers of our SmartHub CDP platform. And we're looking for consolidating hundreds of tools that they had in the past and making that one or two channel marketers. Actually, the 10X marketer that we talk about. And you need the right tool on top of your data lakes and data warehouses to be able to do that. So CMO are also the real drivers of using this technology. >> I think that also place the ROI equation around ROI and having that unified platform. Great call out there. I got to ask you the question here 'cause this comes up a lot and when I hear you talking, I think, okay, all the great stuff you guys have there. But if I'm a company, I want to make my core competencies mine. I don't really want to outsource or buy something that's going to be core to my business. But at the same time as market shifts, the business changes. And sometimes people don't even know what business they're in at the end of the day. And as it gets more complicated too, by the way. So the question comes up with companies and I can see this clearly, do I buy it? Do I build it? When it comes to AI because that's a core competency. Wait a minute, AI. I'm going to maybe buy some chatbot technology. That's not really AI, but it feels like AI, but I'm a company, I want to buy it or build it. That's a choice. What do you see there? 'Cause you guys have a very comprehensive platform. It's hard to replicate, imitates, inimitable. So what's your customers doing with respect buy and build? And where do they get the core competency? What do they get to have as a core competency? >> Fantastic. I think certainly, AI as it applies to at the organization level, I've seen this at my previous organization that I was part of, and there will be product and financial applications that are using AI for the service of that organization. So we do see, depending upon the size of the organization having in-house AI and data science teams. They are focused on these long term problems that they are doing as part of their product itself. Adjacent to that, the CMO organization gets some resources, but not certainly a lot. I think the CMO organization is usually challenged with the task, but not given the hundred people data science and engineering team to be able to go solve that. So what we see among our customer base is that they need agile platform to do most of the things that they need to do on a day to day basis, but augmented with what our in-house data science they have. So we are an extensible platform. What we have seen is that half of our customers use us solely for the AI needs. The other half certainly uses both AI modules that we provide and are actually augmented with things that they've already built. And we do not have a fight in that ring. But we do acknowledge and we do provide the right hooks for getting the data out of our system and bringing their AI back into our system. And we think that at the end of the day, if you want agility for the CMO, there should not be any barriers. >> It's like they're in the data business and that's the focus. So I think with what I hear you saying is that with your technology and platform, you're enabling to get them to be in the data business as fast as possible. >> That's right. >> Versus algorithm business, which they could add to over time. >> Certainly they could add to. But I think the bulk of competencies for the CMO are on the creative side. And certainly wrangling with data pipelines day in and day out and wondering what actually happened to a pipeline in the middle of the night is not probably what they would want to focus on. >> Not their core confidence. Yeah, I got that. >> That's right. >> You can do all the heavy lifting. I love that. I got to ask you on the Blueshift side on customer experience consumption. how can someone experience the product before buying? Is there a trial or POC? What's the scale and scope of operationalizing and getting the Blueshift value proposition in them? >> Yeah, great. So we actually recently released a fantastic way to experience our product. So if you go to our website, there's only one call-to-action saying, explore Blueshift. And if you click on that, without asking, anything other than your business email address, you're shown the full product. You're given a guided tour of all the possibilities. So you can actually experience what your marketing team would be doing in the product. And they call it Project Rover. We launched it very recently and we are seeing fantastic reception to that. I think a lot of times, as you said, there is that question mark of like, I have a marketing team that is already doing X, Y, Z. Now you are asking me to implement Blueshift. How would they actually experience the product? And now they can go in and experience the product. It's a great way to get the gist of the product in 10 clicks. Much more than going through any number of videos or articles. I think people really want to say, let me do those 10 clicks. And I know what impression that I can get from platform. So we do think that's a great way to experience the product and it's easily available from the main website. >> It's in the value proposition. It isn't always a straight line. And you got that technology. And I got to ask from between your experience with the customers that you're talking to, prospects, and customers, where do you see yourself winning deals on Customer Engagement, Made Simple because the word customer engagement's been around for a while, and it's become, I won't say cliche, but there's been different generational evolutions of technology that made that possible. Obviously, we're living in an era of high velocity Omni-Channel, a lot of data, the graph databases you mentioned are in there, big part of it. Where are you winning deals? Where are customers pain points where you are solving that specifically? >> Yeah, great question. So the organizations that come to us usually have one of the dimensions of either they have offering complexity, which is what catalog of content or videos or items do they offer to the customers. And on the data complexity on the other side is to what the scale of customer base that I usually target. And that problem has not gone away. I think the customer engagement, even though has been around for a while, the problem of engaging those customers at scale hasn't gone away and it only is getting harder and harder and organizations that have, especially on what we call the business-to-consumer side where the bulk of what marketing organizations in a B2C segments are doing. I have tens to millions of customers and how do I engage them day in and day out. And I think that all that problem is only getting harder because consumer preferences keeps shifting all the time. >> And where's your sweet spot for your customer? What size? Can you just share the target organization? Is it medium enterprise, large B2C, B2B2C? What's the focus area? >> Yeah, great question. So we have seen like startups that are in Silicon Valley. I have now half a million monthly active users, how do I actually engage them to customers and clients like LendingTree and PayPal and Discovery and BBC who have been in the business for multiple decades, have tens of millions of customers that they're engaging with. So that's kind of our sweet spot. We are certainly not maybe for small shop with maybe a hundred plus customers. But as you reach the scale of tens of thousands of customers, you start seeing this problem. And then you start to look out for solutions that are beyond, especially list-based marketing and email blast. >> So as the scale, you can dial up and down, but you have to have some enough scale to get the data pattern. >> That's right. >> If I can connect the dots there. >> I would probably say, looking at a hundred thousand or more monthly active customer base, and then you're trying to ramp up your own growth based on what you're learning and to engage those customers. >> It's like a bulldozer. You need the heavy equipment. Great conversation. For the last minute we have here Manyam, give you a plug for the company. What's going on? What are you guys doing? What's new? Give some success stories, your latest achievements. Take a minute to give a plug for the company. >> Yeah, great. We have been recognized by Deloitte as the fastest growth startup two years in a row and continuing to be on that streak. We have released currently integrations with AWS partners and Snowflake partners and data lake partners that allow implementing Blueshift a much streamlined experience with bidirectional integrations. We have now hundred plus data connectors and data integrations in our system and that takes care of many of our needs. And now, I think organizations that have been budget constraint and are trying to achieve a lot with a small team are actually going to look at these solutions and say, "Can I get there?" and "Can I become that 10X marketing organization? And as you have said, agility at scale is very, very hard to achieve. Being able to take your marketing team and achieve 10X requires the right platform and the right solution. We are ready for it. >> And every company's in the data business that's the asset. You guys make that sing for them. It's good stuff. Love the 10X. Love the scale. Manyam Mallela, thanks for coming on. Co-founder, Head of AI at Blueshift. This is the AWS Startup Showcase season two, episode three of the ongoing series covering the exciting startups from the AWS ecosystem. I'm John Furrier, your host. Thanks for watching. >> Thank you, John. (upbeat music)

Published Date : Jun 29 2022

SUMMARY :

and all the good stuff that's going on. Thank you for having me. and in the thought leadership And that requires the shared language And if that's the case, Hey, I looked at the results. This is the numbers. and all of the things in one place is that you have a platform and making that a part of the the graph angle on this But that doesn't still solve the problem I got to ask you the question here that they need to do and that's the focus. which they could add to over time. for the CMO are on the creative side. Yeah, I got that. I got to ask you on the Blueshift side of all the possibilities. the graph databases you And on the data complexity And then you start to look out So as the scale, you and to engage those customers. For the last minute we have here Manyam, and the right solution. And every company's in the Thank you, John.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
John FurrierPERSON

0.99+

Manyam MallelaPERSON

0.99+

JohnPERSON

0.99+

10 clicksQUANTITY

0.99+

BBCORGANIZATION

0.99+

DeloitteORGANIZATION

0.99+

Silicon ValleyLOCATION

0.99+

oneQUANTITY

0.99+

next weekDATE

0.99+

tomorrowDATE

0.99+

781%QUANTITY

0.99+

AWSORGANIZATION

0.99+

hundred peopleQUANTITY

0.99+

ForresterORGANIZATION

0.99+

tensQUANTITY

0.99+

twoQUANTITY

0.99+

one dayQUANTITY

0.99+

two yearsQUANTITY

0.99+

OneQUANTITY

0.99+

BlueshiftORGANIZATION

0.99+

thirdQUANTITY

0.99+

DiscoveryORGANIZATION

0.99+

todayDATE

0.99+

thousandsQUANTITY

0.99+

second insightQUANTITY

0.99+

bothQUANTITY

0.99+

PayPalORGANIZATION

0.99+

Project RoverORGANIZATION

0.98+

secondQUANTITY

0.98+

ManyamPERSON

0.98+

10XQUANTITY

0.97+

MarTechORGANIZATION

0.97+

SmartHubORGANIZATION

0.97+

firstQUANTITY

0.97+

three decadesQUANTITY

0.96+

BlueshiftTITLE

0.96+

each oneQUANTITY

0.96+

one placeQUANTITY

0.96+

millionsQUANTITY

0.95+

tens of thousands of customersQUANTITY

0.95+

LendingTreeORGANIZATION

0.94+

last decadeDATE

0.94+

SnowflakeORGANIZATION

0.94+

hundreds of toolsQUANTITY

0.94+

three key factorsQUANTITY

0.92+

two channelQUANTITY

0.92+

TwitterORGANIZATION

0.91+

theCUBEORGANIZATION

0.91+

Startup ShowcaseEVENT

0.89+

halfQUANTITY

0.89+

hundred plusQUANTITY

0.89+

tens of millions of customersQUANTITY

0.87+

CMOTITLE

0.84+

MarTech: Emerging Cloud-Scale ExperienceTITLE

0.83+

half a million monthlyQUANTITY

0.82+

single dayQUANTITY

0.82+

single weekQUANTITY

0.81+

a hundred plus customersQUANTITY

0.81+

AWS Startup ShowcaseEVENT

0.81+

a hundred thousand or moreQUANTITY

0.77+

half of our customersQUANTITY

0.77+

season twoQUANTITY

0.75+

Daisy Urfer, Algolia & Jason Ling, Apply Digital | AWS Startup Showcase S2 E3


 

(introductory riff) >> Hey everyone. Welcome to theCUBE's presentation of the "AWS Startup Showcase." This is Season 2, Episode 3 of our ongoing series that features great partners in the massive AWS partner ecosystem. This series is focused on, "MarTech, Emerging Cloud-Scale Customer Experiences." I'm Lisa Martin, and I've got two guests here with me to talk about this. Please welcome Daisy Urfer, Cloud Alliance Sales Director at Algolia, and Jason Lang, the Head of Product for Apply Digital. These folks are here to talk with us today about how Algolia's Search and Discovery enables customers to create dynamic realtime user experiences for those oh so demanding customers. Daisy and Jason, it's great to have you on the program. >> Great to be here. >> Thanks for having us. >> Daisy, we're going to go ahead and start with you. Give the audience an overview of Algolia, what you guys do, when you were founded, what some of the gaps were in the market that your founders saw and fixed? >> Sure. It's actually a really fun story. We were founded in 2012. We are an API first SaaS solution for Search and Discovery, but our founders actually started off with a search tool for mobile platforms, so just for your phone and it quickly expanded, we recognize the need across the market. It's been a really fun place to grow the business. And we have 11,000 customers today and growing every day, with 30 billion searches a week. So we do a lot of business, it's fun. >> Lisa: 30 billion searches a week and I saw some great customer brands, Locost, NBC Universal, you mentioned over 11,000. Talk to me a little bit about some of the technologies, I see that you have a search product, you have a recommendation product. What are some of those key capabilities that the products deliver? 'Cause as we know, as users, when we're searching for something, we expect it to be incredibly fast. >> Sure. Yeah. What's fun about Algolia is we are actually the second largest search engine on the internet today to Google. So we are right below the guy who's made search of their verb. So we really provide an overall search strategy. We provide a dashboard for our end users so they can provide the best results to their customers and what their customers see. Customers want to see everything from Recommend, which is our recommended engine. So when you search for that dress, it shows you the frequently bought together shoes that match, things like that, to things like promoted items and what's missing in the search results. So we do that with a different algorithm today. Most in the industry rank and they'll stack what you would want to see. We do kind of a pair for pair ranking system. So we really compare what you're looking for and it gives a much better result. >> And that's incredibly critical for users these days who want results in milliseconds. Jason, you, Apply Digital as a partner of Algolia, talk to us about Apply Digital, what it is that you guys do, and then give us a little bit of insight on that partnership. >> Sure. So Apply Digital was originally founded in 2016 in Vancouver, Canada. And we have offices in Vancouver, Toronto, New York, LA, San Francisco, Mexico city, Sao Paulo and Amsterdam. And we are a digital experiences agency. So brands and companies, and startups, and all the way from startups to major global conglomerates who have this desire to truly create these amazing digital experiences, it could be a website, it could be an app, it could be a full blown marketing platform, just whatever it is. And they lack either the experience or the internal resources, or what have you, then they come to us. And and we are end-to-end, we strategy, design, product, development, all the way through the execution side. And to help us out, we partner with organizations like Algolia to offer certain solutions, like an Algolia's case, like search recommendation, things like that, to our various clients and customers who are like, "Hey, I want to create this experience and it's going to require search, or it's going to require some sort of recommendation." And we're like, "Well, we highly recommend that you use Algolia. They're a partner of ours, they've been absolutely amazing over the time that we've had the partnership. And that's what we do." And honestly, for digital experiences, search is the essence of the internet, it just is. So, I cannot think of a single digital experience that doesn't require some sort of search or recommendation engine attached to it. So, and Algolia has just knocked it out of the park with their experience, not only from a customer experience, but also from a development experience. So that's why they're just an amazing, amazing partner to have. >> Sounds like a great partnership. Daisy, let's point it back over to you. Talk about some of those main challenges, Jason alluded to them, that businesses are facing, whether it's e-commerce, SaaS, a startup or whatnot, where search and recommendations are concerned. 'Cause we all, I think I've had that experience, where we're searching for something, and Daisy, you were describing how the recommendation engine works. And when we are searching for something, if I've already bought a tent, don't show me more tent, show me things that would go with it. What are some of those main challenges that Algolia solution just eliminates? >> Sure. So I think, one of the main challenges we have to focus on is, most of our customers are fighting against the big guides out there that have hundreds of engineers on staff, custom building a search solution. And our consumers expect that response. You expect the same search response that you get when you're streaming video content looking for a movie, from your big retailer shopping experiences. So what we want to provide is the ability to deliver that result with much less work and hassle and have it all show up. And we do that by really focusing on the results that the customers need and what that view needs to look like. We see a lot of our customers just experiencing a huge loss in revenue by only providing basic search. And because as Jason put it, search is so fundamental to the internet, we all think it's easy, we all think it's just basic. And when you provide basic, you don't get the shoes with the dress, you get just the text response results back. And so we want to make sure that we're providing that back to our customers. What we see average is even, and everybody's going mobile. A lot of times I know I do all my shopping on my phone a lot of the time, and 40%-50% better relevancy results for our customers for mobile users. That's a huge impact to their use case. >> That is huge. And when we talked about patients wearing quite thin the last couple of years. But we have this expectation in our consumer lives and in our business lives if we're looking for SaaS or software, or whatnot, that we're going to be able to find what we want that's relevant to what we're looking for. And you mentioned revenue impact, customer churn, brand reputation, those are all things that if search isn't done well, to your point, Daisy, if it's done in a basic fashion, those are some of the things that customers are going to experience. Jason, talk to us about why Algolia, what was it specifically about that technology that really led Apply Digital to say, "This is the right partner to help eliminate some of those challenges that our customers could face?" >> Sure. So I'm in the product world. So I have the wonderful advantage of not worrying about how something's built, that is left, unfortunately, to the poor, poor engineers that have to work with us, mad scientist, product people, who are like, "I want, make it do this. I don't know how, but make it do this." And one of the big things is, with Algolia is the lift to implement is really, really light. Working closely with our engineering team, and even with our customers/users and everything like that, you kind of alluded to it a little earlier, it's like, at the end of the day, if it's bad search, it's bad search. It just is. It's terrible. And people's attention span can now be measured in nanoseconds, but they don't care how it works, they just want it to work. I push a button, I want something to happen, period. There's an entire universe that is behind that button, and that's what Algolia has really focused on, that universe behind that button. So there's two ways that we use them, on a web experience, there's the embedded Search widget, which is really, really easy to implement, documentation, and I cannot speak high enough about documentation, is amazing. And then from the web aspect, I'm sorry, from the mobile aspect, it's very API fort. And any type of API implementation where you can customize the UI, which obviously you can imagine our clients are like, "No we want to have our own front end. We want to have our own custom experience." We use Algolia as that engine. Again, the documentation and the light lift of implementation is huge. That is a massive, massive bonus for why we partnered with them. Before product, I was an engineer a very long time ago. I've seen bad documentation. And it's like, (Lisa laughing) "I don't know how to imple-- I don't know what this is. I don't know how to implement this, I don't even know what I'm looking at." But with Algolia and everything, it's so simple. And I know I can just hear the Apply Digital technology team, just grinding sometimes, "Why is a product guy saying that (mumbles)? He should do it." But it is, it just the lift, it's the documentation, it's the support. And it's a full blown partnership. And that's why we went with it, and that's what we tell our clients. It's like, listen, this is why we chose Algolia, because eventually this experience we're creating for them is theirs, ultimately it's theirs. And then they are going to have to pick it up after a certain amount of time once it's theirs. And having that transition of, "Look this is how easy it is to implement, here is all the documentation, here's all the support that you get." It just makes that transition from us to them beautifully seamless. >> And that's huge. We often talk about hard metrics, but ease of use, ease of implementation, the documentation, the support, those are all absolutely business critical for the organization who's implementing the software, the fastest time to value they can get, can be table stakes, and it can be on also a massive competitive differentiator. Daisy, I want to go back to you in terms of hard numbers. Algolia has a recent force or Total Economic Impact, or TEI study that really has some compelling stats. Can you share some of those insights with us? >> Yeah. Absolutely. I think that this is the one of the most fun numbers to share. We have a recent report that came out, it shared that there's a 382% Return on Investment across three years by implementing Algolia. So that's increase to revenue, increased conversion rate, increased time on your site, 382% Return on Investment for the purchase. So we know our pricing's right, we know we're providing for our customers. We know that we're giving them the results that we need. I've been in the search industry for long enough to know that those are some amazing stats, and I'm really proud to work for them and be behind them. >> That can be transformative for a business. I think we've all had that experience of trying to search on a website and not finding anything of relevance. And sometimes I scratch my head, "Why is this experience still like this? If I could churn, I would." So having that ability to easily implement, have the documentation that makes sense, and get such high ROI in a short time period is hugely differentiated for businesses. And I think we all know, as Jason said, we measure response time in nanoseconds, that's how much patience and tolerance we all have on the business side, on the consumer side. So having that, not just this fast search, but the contextual search is table stakes for organizations these days. I'd love for you guys, and on either one of you can take this, to share a customer example or two, that really shows the value of the Algolia product, and then also maybe the partnership. >> So I'll go. We have a couple of partners in two vastly different industries, but both use Algolia as a solution for search. One of them is a, best way to put this, multinational biotech health company that has this-- We built for them this internal portal for all of their healthcare practitioners, their HCPs, so that they could access information, data, reports, wikis, the whole thing. And it's basically, almost their version of Wikipedia, but it's all internal, and you can imagine the level of of data security that it has to be, because this is biotech and healthcare. So we implemented Algolia as an internal search engine for them. And the three main reasons why we recommended Algolia, and we implemented Algolia was one, HIPAA compliance. That's the first one, it's like, if that's a no, we're not playing. So HIPAA compliance, again, the ease of search, the whole contextual search, and then the recommendations and things like that. It was a true, it didn't-- It wasn't just like a a halfhearted implementation of an internal search engine to look for files thing, it is a full blown search engine, specifically for the data that they want. And I think we're averaging, if I remember the numbers correctly, it's north of 200,000 searches a month, just on this internal portal specifically for their employees in their company. And it's amazing, it's absolutely amazing. And then conversely, we work with a pretty high level adventure clothing brand, standard, traditional e-commerce, stable mobile application, Lisa, what you were saying earlier. It's like, "I buy everything on my phone," thing. And so that's what we did. We built and we support their mobile application. And they wanted to use for search, they wanted to do a couple of things which was really interesting. They wanted do traditional search, search catalog, search skews, recommendations, so forth and so on, but they also wanted to do a store finder, which was kind of interesting. So, we'd said, all right, we're going to be implementing Algolia because the lift is going to be so much easier than trying to do everything like that. And we did, and they're using it, and massively successful. They are so happy with it, where it's like, they've got this really contextual experience where it's like, I'm looking for a store near me. "Hey, I've been looking for these items. You know, I've been looking for this puffy vest, and I'm looking for a store near me." It's like, "Well, there's a store near me but it doesn't have it, but there's a store closer to me and it does have it." And all of that wraps around what it is. And all of it was, again, using Algolia, because like I said earlier, it's like, if I'm searching for something, I want it to be correct. And I don't just want it to be correct, I want it to be relevant. >> Lisa: Yes. >> And I want it to feel personalized. >> Yes. >> I'm asking to find something, give me something that I am looking for. So yeah. >> Yeah. That personalization and that relevance is critical. I keep saying that word "critical," I'm overusing it, but it is, we have that expectation that whether it's an internal portal, as you talked about Jason, or it's an adventure clothing brand, or a grocery store, or an e-commerce site, that what they're going to be showing me is exactly what I'm looking for, that magic behind there that's almost border lines on creepy, but we want it. We want it to be able to make our lives easier whether we are on the consumer side, whether we on the business side. And I do wonder what the Go To Market is. Daisy, can you talk a little bit about, where do customers go that are saying, "Oh, I need to Algolia, and I want to be able to do that." Now, what's the GTM between both of these companies? >> So where to find us, you can find us on AWS Marketplace which another favorite place. You can quickly click through and find, but you can connect us through Apply Digital as well. I think, we try to be pretty available and meet our customers where they are. So we're open to any options, and we love exploring with them. I think, what is fun and I'd love to talk about as well, in the customer cases, is not just the e-commerce space, but also the content space. We have a lot of content customers, things about news, organizations, things like that. And since that's a struggle to deliver results on, it's really a challenge. And also you want it to be relevant, so up-to-date content. So it's not just about e-commerce, it's about all of your solution overall, but we hope that you'll find us on AWS Marketplace or anywhere else. >> Got it. And that's a great point, that it's not just e-commerce, it's content. And that's really critical for some industry, businesses across industries. Jason and Daisy, thank you so much for joining me talking about Algolia, Apply Digital, what you guys are doing together, and the huge impact that you're making to the customer user experience that we all appreciate and know, and come to expect these days is going to be awesome. We appreciate your insights. >> Thank you. >> Thank you >> For Daisy and Jason, I'm Lisa Martin. You're watching "theCUBE," our "AWS Startup Showcase, MarTech Emerging Cloud-Scale Customer Experiences." Keep it right here on "theCUBE" for more great content. We're the leader in live tech coverage. (ending riff)

Published Date : Jun 29 2022

SUMMARY :

and Jason Lang, the Head of Give the audience an overview of Algolia, And we have 11,000 customers that the products deliver? So we do that with a talk to us about Apply Digital, And to help us out, we and Daisy, you were describing that back to our customers. that really led Apply Digital to say, And one of the big things is, the fastest time to value they and I'm really proud to work And I think we all know, as Jason said, And all of that wraps around what it is. I'm asking to find something, and that relevance and we love exploring with them. and the huge impact that you're making We're the leader in live tech coverage.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JasonPERSON

0.99+

Lisa MartinPERSON

0.99+

DaisyPERSON

0.99+

Jason LangPERSON

0.99+

LisaPERSON

0.99+

VancouverLOCATION

0.99+

Apply DigitalORGANIZATION

0.99+

2012DATE

0.99+

Sao PauloLOCATION

0.99+

AmsterdamLOCATION

0.99+

MexicoLOCATION

0.99+

twoQUANTITY

0.99+

Jason LingPERSON

0.99+

2016DATE

0.99+

LocostORGANIZATION

0.99+

San FranciscoLOCATION

0.99+

AlgoliaORGANIZATION

0.99+

LALOCATION

0.99+

NBC UniversalORGANIZATION

0.99+

40%QUANTITY

0.99+

New YorkLOCATION

0.99+

AWSORGANIZATION

0.99+

two guestsQUANTITY

0.99+

Daisy UrferPERSON

0.99+

OneQUANTITY

0.99+

two waysQUANTITY

0.99+

GoogleORGANIZATION

0.99+

11,000 customersQUANTITY

0.99+

382%QUANTITY

0.99+

HIPAATITLE

0.99+

bothQUANTITY

0.99+

TorontoLOCATION

0.99+

oneQUANTITY

0.99+

theCUBETITLE

0.98+

todayDATE

0.98+

first oneQUANTITY

0.98+

singleQUANTITY

0.98+

three yearsQUANTITY

0.98+

AlgoliaPERSON

0.98+

50%QUANTITY

0.97+

over 11,000QUANTITY

0.97+

30 billion searches a weekQUANTITY

0.96+

theCUBEORGANIZATION

0.94+

Justin Hotard, HPE | HPE Discover 2022


 

>>The cube presents HPE discover 2022 brought to you by HPE. >>Hey everyone. Welcome back to the Cube's coverage of HPE. Discover 22 live from the Sans expo center in Las Vegas. Lisa Martin, here with Dave Velante. We've an alumni back joining us to talk about high performance computing and AI, Justin ARD, EVP, and general manager of HPC and AI at HPE. That's a mouthful. Welcome back. >>It is no, it's great to be back and wow, it's great to be back in person as well. >>It's it's life changing to be back in person. The keynote this morning was great. The Dave was saying the energy that he's seen is probably the most out of, of any discover that you've been at and we've been feeling that and it's only day one. >>Yeah, I, I, I agree. And I think it's a Testament to the places in the market that we're leading the innovation we're driving. I mean, obviously the leadership in HPE GreenLake and, and enabling as a service for, for every customer, not just those in the public cloud, providing that, that capability. And then obviously what we're doing at HPC and AI breaking, uh, you know, breaking records and, uh, advancing the industry. So >>I just saw the Q2 numbers, nice revenue growth there for HPC and AI. Talk to us about the lay of the land what's going on, what are customers excited about? >>Yeah. You know, it's, it's a, it's a really fascinating time in this, in this business because we're, you know, we just, we just delivered the first, the world's first exo scale system. Right. And that's, uh, you know, that's a huge milestone for our industry, a breakthrough, you know, 13 years ago, we did the first Petta scale system. Now we're doing the first exo scale system, huge advance forward. But what's exciting too, is these systems are enabling new applications, new workloads, breakthroughs in AI, the beginning of being able to do proper quantum simulations, which will lead us to a much, you know, brighter future with quantum and then actually better and more granular models, which have the ability to really change the world. >>I was telling Lisa that during the pandemic we did, uh, exo scale day, it was like this co yep. You know, produce event. And we weren't quite at exo scale yet, but we could see it coming. And so it was great to see in frontier and, and the keynote you guys broke through that, is that a natural evolution of HPC or is this we entering a new era? >>Yeah, I, I think it's a new era and I think it's a new era for a few reasons because that, that breakthrough really, it starts to enable a different class of use cases. And it's combined with the fact that I think, you know, you look at where the rest of the enterprises data set has gone, right? We've got a lot more data, a lot more visibility to data. Um, but we don't know how to use it. And now with this computing power, we can start to create new insights and new applications. And so I think this is gonna be a path to making HPC more broadly available. And of course it introduces AI models at scale. And that's, that's really critical cause AI is a buzzword. I mean, lots of people say they're doing AI, but when you know, to, to build true intelligence, not, not effectively, you know, a machine that learns data and then can only handle that data, but to build true intelligence where you've got something that can continue to learn and understand and grow and evolve, you need this class of system. And so I think we're at, we're at the forefront of a lot of exciting innovation. H how, >>In terms of innovation, how important is it that you're able to combine as a service and HPC? Uh, what does that mean for, for customers for experimentation and innovation? >>You know, a couple things I've been, I've actually been talking to customers about that over the last day and a half. And, you know, one is, um, you think about these, these systems are, they're very large and, and they're, they're pretty, you know, pretty big bets if you're a customer. So getting early access to them right, is, is really key, making sure that they're, they can migrate their software, their applications, again, in our space, most of our applications are custom built, whether you're a, you know, a government or a private sector company, that's using these systems, you're, you're doing these are pretty specialized. So getting that early access is important. And then actually what we're seeing is, uh, with the growth and explosion of insight that we can enable. And some of the diversity of, you know, new, um, accelerator partners and new processors that are on the market is actually the attraction of diversity. And so making things available where customers can use multimodal systems. And we've seen that in this era, like our customer Lumi and Finland number, the number three fastest system in the world actually has two sides to their system. So there's a compute side, dense compute side and a dense accelerator side. >>So Oak Ridge national labs was on stage with Antonio this morning, the, the talking about frontier, the frontier system, I thought what a great name, very apropo, but it was also just named the number one to the super computing, top 500. That's a pretty big accomplishment. Talk about the impact of what that really means. >>Yeah. I, I think a couple things, first of all, uh, anytime you have this breakthrough of number one, you see a massive acceleration of applications. And if you really, if you look at the applications that were built, because when the us department of energy funded these Exoscale products or platforms, they also funded app a set of applications. And so it's the ability to get more accurate earth models for long term climate science. It's the ability to model the electrical grid and understand better how to build resiliency into that grid. His ability is, um, Dr. Te Rossi talked about a progressing, you know, cancer research and cancer breakthroughs. I mean, there's so many benefits to the world that we can bring with these systems. That's one element. The other big part of this breakthrough is actually a list, a lesser known list from the top 500 called the green 500. >>And that's where we measure performance over power consumption. And what's a huge breakthrough in this system. Is that not only to frontier debut at number one on the top 500, it's actually got the top two spots, uh, because it's got a small test system that also is up there, but it's got the top two spots on the green 500 and that's actually a real huge breakthrough because now we're doing a ton more computation at far lesser power. And that's really important cuz you think about these systems, ultimately you can, you can't, you know, continue to consume power linearly with scaling up performance. There's I mean, there's a huge issue on our impact on our environment, but it's the impact to the power grid. It's the impact to heat dissipation. There's a lot of complexities. So this breakthrough with frontier also enables us no pun intended to really accelerate, you know, the, the capacity and scale of these systems and what we can deliver. >>It feels like we're entering a new Renaissance of HPC. I mean, I'm old enough to remember. I, it was, it wasn't until recently my wife, not recently, maybe five, six years ago, my wife threw out my, my green thinking machines. T-shirt that Danny Hillis gave you guys probably both too young to remember, but you had thinking machines, Ken to square research convex tried to mini build a mini computer HPC. Okay. And there was a lot of innovation going on around that time and then it just became too expensive and, and, and other things X 86 happened. And, and, but it feels like now we're entering a, a new era of, of HPC. Is that valid or is it true? What's that mean for HPC as an industry and for industry? >>Yeah, I think, I think it's a BR I think it's a breadth. Um, it's a market that's opening and getting much more broader the number of applications you can run, you know, and we've traditionally had, you know, scientific applications, obviously there's a ton in energy and, and you know, physics and some of the traditional areas that obviously the department of energy sponsor, but, you know, we saw this with, with even the COVID pandemic, right? Our, our supercomputers were used to identify the spike protein to, to help and validate and test these vaccines and bring them to market and record time. We saw some of the benefits of these breakthroughs. And I think it's this combination of that, that we actually have the data, you know, it's, it's digital, it's captured, um, we're capturing it at, you know, at the edge, we're capturing it and, and storing it obviously more broadly. So we have the access to the data and now we have the compute power to run it. And the other big thing is the techniques around artificial intelligence. I mean, what we're able to do with neural networks, computer vision, large language models, natural language processing. These are breakthroughs that, um, one require these large systems, but two, as you give them a large systems, you can actually really enable acceleration of how sophisticated these, these applications can get. >>Let's talk about the impact of the convergence of HPC and AI. What are some of the things that you're seeing now and what are some of the things that we're gonna see? >>Yeah. So, so I, one thing I like to talk about is it's, it's really, it's not a convergence. I think it's it. Sometimes it gets a little bit oversimplified. It's actually, it's traditional modeling and simulation leveraging machine learning to, to refine the simulation. And this is a, is one of the things we talk about a lot in AI, right? It's using machine learning to actually create code in real time, rather than humans doing it, that ability to refine the model as you're running. So we have an example. We did a, uh, we, we actually launched an open source solution called smart SIM. And the first application of that was climate science. And it's what it's doing is it's actually learning the data from the model as the simulation is running to provide more accurate climate prediction. But you think about that, that could be run for, you know, anything that has a complex model. >>You could run that for financial modeling, you can use AI. And so we're seeing things like that. And I think we'll continue to see that the other side of that is using modeling and simulation to actually represent what you see in AI. So we were talking about the grid. This is one of the Exoscale compute projects you could actually use once you actually get, get the data and you can start modeling the behavior of every electrical endpoint in a city. You know, the, the meter in your house, the substation, the, the transformers, you can start measuring the FX of that. You can then build equations. Well, once you build those equations, you can then take a model, cuz you've learned what actually happens in the real world, build the equation. And then you can provide that to someone who doesn't need a extra scale supercomputer to run it, but that, you know, your local energy company can better understand what's happening and they'll know, oh, there's a problem here. We need to shift the grid or respond more, more dynamically. And hopefully that avoids brownouts or, you know, some of the catastrophic outages we've >>Seen so they can deploy that model, which, which inherently has that intelligence on sort of more cost effective systems and then apply it to a much broader range. Do any of those, um, smart simulations on, on climate suggest that it's, it's all a hoax. You don't have to answer that question. <laugh> um, what, uh, >>The temperature outside Dave might, might give you a little bit of an argument to that. >>Tell us about quantum, what's your point of view there? Is it becoming more stable? What's H HPE doing there? >>Yeah. So, so look, I think there's, there's two things to understand with quantum there's quantum hardware, right? Fundamentally, um, how, um, how that runs very differently than, than how we run traditional computers. And then there's the applications. And ultimately a quantum application on quantum hardware will be far more efficient in the future than, than anything else. We, we see the opportunity for, uh, much like we see with, you know, with HPC and AI, we just talked about for quantum to be complimentary. It runs really well with certain applications that fabricate themselves as quantum problems and some great examples are, you know, the, the life sciences, obviously quantum chemistry, uh, you see some, actually some opportunities in, in, uh, in AI and in other areas where, uh, quantum has a very, very, it, it just lends itself more naturally to the behavior of the problem. And what we believe is that in the short term, we can actually model quantum effectively on these, on these super computers, because there's not a perfect quantum hardware replacement over time. You know, we would anticipate that will evolve and we'll see quantum accelerators much. Like we see, you know, AI accelerators today in this space. So we think it's gonna be a natural evolution in progression, but there's certain applications that are just gonna be solved better by quantum. And that's the, that's the future we'll we'll run into. And >>You're suggesting if I understood it correctly, you can start building those applications and, and at least modeling what those applications look like today with today's technology. That's interesting because I mean, I, I think it's something rudimentary compared to quantum as flash storage, right? When you got rid of the spinning disc, it changed the way in which people thought about writing applications. So if I understand it, new applications that can take advantage of quantum are gonna change the way in which developers write, not one or a zero it's one and virtually infinite <laugh> combinations. >>Yeah. And I actually, I think that's, what's compelling about the opportunity is that you can, if you think about a lot of traditional the traditional computing industry, you always had to kind of wait for the hardware to be there, to really write, write, and test the application. And we, you know, we even see that with our customers and HPC and, and AI, right? They, they build a model and then they, they actually have to optimize it across the hardware once they deploy it at scale. And with quantum what's interesting is you can actually, uh, you can actually model and, and, and make progress on the software. And then, and then as the hardware becomes available, optimize it. And that's, you know, that's why we see this. We talk about this concept of quantum accelerators as, as really interesting, >>What are the customer conversations these days as there's been so much evolution in HPC and AI and the technology so much change in the world in the last couple of years, is it elevating up the CS stack in terms of your conversations with customers wanting to become familiar with Exoscale computing? For example? >>Yeah. I, I think two things, uh, one, one is we see a real rise in digital sovereignty and Exoscale and HPC as a core fund, you know, fundamental foundation. So you see what, um, you know, what Europe is doing with the, the, the Euro HPC initiative, as one example, you know, we see the same kind of leadership coming out of the UK with the system. We deployed with them in Archer two, you know, we've got many customers across the globe deploying next generation weather forecasting systems, but everybody feels, they, they understand the foundation of having a strong supercomputing and HPC capability and competence and not just the hardware, the software development, the scientific research, the, the computational scientists to enable them to remain competitive economically. It's important for defense purposes. It's important for, you know, for helping their citizens, right. And providing, you know, providing services and, and betterment. >>So that's one, I'd say that's one big theme. The other one is something Dave touched on before around, you know, as a service and why we think HP GreenLake will be, uh, a beautiful marriage with our, with our HPC and AI systems over time, which is customers also, um, are going to scale up and build really complex models. And then they'll simplify them and deploy them in other places. And so there's a number of examples. We see them, you know, we see them in places like oil and gas. We see them in manufacturing where I've gotta build a really complex model, figure out what it looks like. Then I can reduce it to a, you know, to a, uh, certain equation or application that I can then deploy. So I understand what's happening and running because you, of course, as much as I would love it, you're not gonna have, uh, every enterprise around the world or every endpoint have an exit scale system. Right. So, so that ability to, to, to really provide an as a service element with HP GreenLake, we think is really compelling. >>HP's move into HPC, the acquisitions you've made it really have become a differentiator for the company. Hasn't it? >>Yeah. And I, and I think what's unique about us today. If you look at the landscape is we're, we're really the only system provider globally. Yeah. You know, there are, there are local players that we compete with. Um, but we are the one true global system provider. And we're also the only, I would say the only holistic innovator at the system level to, to, you know, to credit my team on the work they're doing. But, you know, we're, we're also very committed to open standards. We're investing in, um, you know, in a number of places where we contribute the dev the software assets to open source, we're doing work with standards bodies to progress and accelerate the industry and enable the ecosystem. And, uh, and I think that, you know, ultimately the, the, the last thing I'd say is we, we are so connected in, um, with, through our, through the legacy or the, the legend of H Hewlett Packard labs, which now also reports into me that we have these really tight ties into advanced research and that some of that advanced research, which isn't just, um, around kind of core processing Silicon is really critical to enabling better applications, better use cases and accelerating the outcomes we see in these systems going forward. >>Can >>You double click on that? I, I, I wasn't aware that kind of reported into your group. Yeah. So, you know, the roots of HP are invent, right? Yeah. HP labs are, are renowned. It kinda lost that formula for a while. And now it's sounds like it's coming back. What, what, what are some of the cool things that you guys are working on? Well, >>You know, let me, let me start with a little bit of recent history. So we just talked about the exo scale program. I mean, that was a, that's a great example of where we had a public private partnership with the department of energy and it, and it wasn't just that we, um, you know, we built a system and delivered it, but if you go back a decade ago, or five years ago, there were, there were innovations that were built, you know, to accelerate that system. One is our Slingshot fabric as an example, which is a core enable of, of acceler, you know, of, of this accelerated computing environment, but others in software applications and services that allowed us to, you know, to really deliver a, a complete solution into the market. Um, today we're looking at things around trustworthy and ethical AI, so trustworthy AI in the sense that, you know, the models are accurate, you know, and that's, that's a challenge on two dimensions, cuz one is the, model's only as good as the data it's studying. >>So you need to validate that the data's accurate and then you need to really study how, you know, how do I make sure that even if the data is accurate, I've got a model that then, you know, is gonna predict the right things and not call a, a dog, a cat, or a, you know, a, a cat, a mouse or whatever that is. But so that's important. And, uh, so that's one area. The other is future system architectures because, um, as we've talked about before, Dave, you have this constant tension between the fabric, uh, you know, the interconnect, the compute and the, and the storage and, you know, constant, constantly balancing it. And so we're really looking at that, how do we do more, you know, shared memory access? How do we, you know, how do we do more direct rights? Like, you know, looking at some future system architectures and thinking about that. And we, you know, we think that's really, really critical in this part of the business because these heterogeneous systems, and not saying I'm gonna have one monolithic application, but I'm gonna have applications that need to take advantage of different code, different technologies at different times. And being able to move that seamlessly across the architecture, uh, we think is gonna be the, you know, a part of the, the hallmark of the Exoscale era, including >>Edge, which is a completely different animal. I think that's where some disruption is gonna gonna bubble up here in the next decade. >>So, yeah know, and, and that's, you know, that's the last thing I'd say is, is we look at AI at scale, which is another core part of the business that can run on these large clusters. That means getting all the way down to the edge and doing inference at scale, right. And, and inference at scale is, you know, I, I was, um, about a month ago, I was at the world economic forum. We were talking about the space economy and it's a great, you know, to me, it's the perfect example of inference, because if you get a set of data that you know, is, is out at Mars, it doesn't matter whether, you know, whether you wanna push all that data back to, uh, to earth for processing or not. You don't really have a choice, cuz it's just gonna take too long. >>Don't have that time. Justin, thank you so much for spending some of your time with Dave and me talking about what's going on with HBC and AI. The frontier just seems endless and very exciting. We appreciate your time on your insights. >>Great. Thanks so much. Thanks. >>Yes. And don't call a dog, a cat that I thought I learned from you. A dog at no, Nope. <laugh> Nope. <laugh> for Justin and Dave ante. I'm Lisa Martin. You're watching the Cube's coverage of day one from HPE. Discover 22. The cube is, guess what? The leader, the leader in live tech coverage will be right back with our next guest.

Published Date : Jun 28 2022

SUMMARY :

Welcome back to the Cube's coverage of HPE. It's it's life changing to be back in person. And then obviously what we're doing at HPC and AI breaking, uh, you know, breaking records and, I just saw the Q2 numbers, nice revenue growth there for HPC and AI. And that's, uh, you know, that's a huge milestone for our industry, a breakthrough, And so it was great to see in frontier and, and the keynote you guys broke through that, And it's combined with the fact that I think, you know, you know, one is, um, you think about these, these systems are, they're very large and, Talk about the impact of what that really means. And if you really, if you look at the applications that you know, continue to consume power linearly with scaling up performance. T-shirt that Danny Hillis gave you guys probably that obviously the department of energy sponsor, but, you know, we saw this with, with even the COVID pandemic, What are some of the things that you're seeing now and that could be run for, you know, anything that has a complex model. And hopefully that avoids brownouts or, you know, some of the catastrophic outages we've You don't have to answer that question. that fabricate themselves as quantum problems and some great examples are, you know, You're suggesting if I understood it correctly, you can start building those applications and, and at least modeling what And we, you know, we even see that with our customers and HPC And providing, you know, providing services and, and betterment. Then I can reduce it to a, you know, to a, uh, certain equation or application that I can then deploy. HP's move into HPC, the acquisitions you've made it really have become a differentiator for the company. at the system level to, to, you know, to credit my team on the work they're doing. So, you know, the roots of HP are invent, right? the sense that, you know, the models are accurate, you know, and that's, that's a challenge on two dimensions, And so we're really looking at that, how do we do more, you know, shared memory access? I think that's where some disruption is gonna gonna So, yeah know, and, and that's, you know, that's the last thing I'd say is, is we look at AI at scale, which is another core Justin, thank you so much for spending some of your time with Dave and me talking about what's going on with HBC The leader, the leader in live tech coverage will be right back with our next guest.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
Lisa MartinPERSON

0.99+

DavePERSON

0.99+

Dave VelantePERSON

0.99+

JustinPERSON

0.99+

Justin HotardPERSON

0.99+

HPEORGANIZATION

0.99+

two sidesQUANTITY

0.99+

Danny HillisPERSON

0.99+

Justin ARDPERSON

0.99+

HPORGANIZATION

0.99+

Las VegasLOCATION

0.99+

LisaPERSON

0.99+

Te RossiPERSON

0.99+

twoQUANTITY

0.99+

firstQUANTITY

0.99+

oneQUANTITY

0.99+

UKLOCATION

0.99+

two thingsQUANTITY

0.99+

two dimensionsQUANTITY

0.99+

one elementQUANTITY

0.99+

next decadeDATE

0.99+

LumiORGANIZATION

0.98+

HPCORGANIZATION

0.98+

13 years agoDATE

0.98+

MarsLOCATION

0.98+

five years agoDATE

0.98+

AntonioPERSON

0.97+

one exampleQUANTITY

0.97+

first applicationQUANTITY

0.97+

Oak RidgeORGANIZATION

0.97+

H Hewlett PackardORGANIZATION

0.97+

HBCORGANIZATION

0.96+

bothQUANTITY

0.96+

fiveDATE

0.96+

todayDATE

0.96+

six years agoDATE

0.95+

22QUANTITY

0.95+

one areaQUANTITY

0.94+

EVPPERSON

0.93+

about a month agoDATE

0.93+

COVID pandemicEVENT

0.92+

a decade agoDATE

0.91+

first exo scale systemQUANTITY

0.91+

HPE GreenLakeORGANIZATION

0.91+

one thingQUANTITY

0.89+

last dayDATE

0.89+

one big themeQUANTITY

0.88+

OneQUANTITY

0.88+

pandemicEVENT

0.87+

2022DATE

0.87+

two spotsQUANTITY

0.86+

this morningDATE

0.86+

day oneQUANTITY

0.85+

ExoscaleDATE

0.85+

zeroQUANTITY

0.84+

SlingshotORGANIZATION

0.82+

500QUANTITY

0.81+

GreenLakeCOMMERCIAL_ITEM

0.81+

KenPERSON

0.81+

Dr.PERSON

0.77+

earthLOCATION

0.76+

Q2DATE

0.76+

Sans expoLOCATION

0.76+

number oneQUANTITY

0.74+

Mike Miller, AWS | Amazon re:MARS 2022


 

>>Everyone welcome back from the cubes coverage here in Las Vegas for Aus re Mars. It's one of the re shows, as we know, reinvent is the big show. Now they have focus, shows reinforces coming up that security Remar is here. Machine learning, automation, robotics, and space. I'm John for your host, Michael Mike Miller here, director of machine learning thought leadership with AWS. Great to see you again. Yeah. Give alumni welcome back here. Back every time we got deep racer, always to talk >>About, Hey John, thanks for having me once again. It's great to be here. I appreciate it. >>So I want to get into the deep racer in context here, but first re Mars is a show. That's getting a lot of buzz, a lot of press. Um, not a lot of news, cuz it's not a newsy show. It's more of a builder kind of a convergence show, but a lot is happening here. It's almost a, a moment in time that I think's gonna be one of those timeless moments where we're gonna look back and saying that year at re Mars was an inflection point. It just seems like everything's pumping machine learning, scaling robotics is hot. It's now transforming fast. Just like the back office data center did years ago. Yeah. And so like a surge is coming. >>Yeah. >>What, what's your take of this show? >>Yeah. And all of these three or four components are all coming together. Right. And they're intersecting rather than just being in silos. Right. So we're seeing machine learning, enabled perception sort of on robots, um, applied to space and sort of these, uh, extra sort of application initiatives. Um, and that's, what's really exciting about this show is seeing all these things come together and all the industry-wide examples, um, of amazing perception and robotics kind of landing together. So, >>So the people out there that aren't yet inside the ropes of the show, what does it mean to them? This show? What, what, what they're gonna be what's in it for me, what's all this show. What does it mean? >>Yeah. It's just a glimpse into where things are headed. Right. And it's sort of the tip of the iceberg. It's sort of the beginning of the wave of, um, you know, these sort of advanced capabilities that we're gonna see imbued in applications, um, across all different industries. >>Awesome. Well, great to have you in the cube. Every time we have an event we wanna bring you on because deep racers become a, the hottest, I won't say cult following because it's no longer cult following. It's become massive following. Um, and which started out as an IOT, I think raspberry pie first time was like a, like >>A, we did a little camera initially camera >>And it was just a kind of a fun, little clever, I won't say hack, but just having a project that just took on a life OFS own, where are we? What's the update with racer you're here with the track. Yeah, >>Possibly >>You got the track and competing with the big dogs, literally dog, you got spot over there. Boston dynamics. >>Well we'll, we'll invite them over to the track later. Yeah. So deep razor, you know, is the fastest way to get hands on with machine learning. You know, we designed it as, uh, a way for developers to have fun while learning about this particular machine learning technique called reinforcement learning, which is all about using, uh, a simulation, uh, to teach the robot how to learn via trial and error. So deep racer includes a 3d racing simulator where you can train your model via trial and error. It includes the physical car. So you can take, uh, the model that you trained in the cloud, download it to this one 18th scale, um, kind of RC car. That's been imbued with an extra sensor. So we have a camera on the front. We've got an extra, uh, Intel, X, 86 processor inside here. Um, and this thing will drive itself, autonomously around the track. And of course what's a track and uh, some cars driving around it without a little competition. So we've got the deep racer league that sort of sits on top of this and adds a little spice to the whole thing. It's >>It's, it's like formula one for nerds. It really is. It's so good because a lot of people will have to readjust their models cuz they go off the track and I see people and it's oh my, then they gotta reset. This has turned into quite the phenomenon and it's fun to watch and every year it gets more competitive. I know you guys have a cut list that reinvent, it's almost like a, a super score gets you up. Yeah. Take, take us through the reinvents coming up. Sure. What's going on with the track there and then we'll get into some of the new adoption in terms of the people. >>Yeah, absolutely. So, uh, you know, we have monthly online races where we have a new track every month that challenges our, our developers to retrain their model or sort of tweak the existing model that they've trained to adapt for those new courses. Then at physical events like here at re Mars and at our AWS summits around the world, we have physical, uh, races. Um, and we crown a champion at each one of those races. You may have heard some cheering a minute ago. Yeah. That was our finals over there. We've got some really fast cars, fast models racing today. Um, so we take the winners from each of those two circuits, the virtual and the physical and they, the top ones of them come together at reinvent every year in November, December. Um, and we have a set of knockout rounds, championship rounds where these guys get the field gets narrowed to 10 racers and then those 10 racers, uh, race to hold up the championship cup and, um, earn, earn, uh, you know, a whole set of prizes, either cash or, or, you know, scholarships or, you know, tuition funds, whatever the, uh, the developer is most interested >>In. You know, I ask you this question every time you come on the cube because I I'm smiling. That's, it's so much fun. I mean, if I had not been with the cube anyway, I'd love to do this. Um, would you ever imagine when you first started this, that it would be such so popular and at the rise of eSports? So, you know, discord is booming. Yeah. The QB has a discord channel now. Sure, sure. Not that good on it yet, but we'll get there, but just the gaming culture, the nerd culture, the robotics clubs, the young people, just nerds who wanna compete. You never thought that would be this big. We, >>We were so surprised by a couple key things after we launched deep racer, you know, we envisioned this as a way for, you know, developers who had already graduated from school. They were in a company they wanted to grow their machine learning skills. Individuals could adopt this. What we saw was individuals were taking these devices and these concepts back to their companies. And they're saying, this is really fun. Like we should do something around this. And we saw companies like JPMC and Accenture and Morningstar into it and national Australia bank all adopting deep racer as a way to engage, excite their employees, but then also create some fun collaboration opportunities. Um, the second thing that was surprising was the interest from students. And it was actually really difficult for students to use deep racer because you needed an AWS account. You had to have a credit card. You might, you might get billed. There was a free tier involved. Um, so what we did this past year was we launched the deep racer student league, um, which caters to students 16 or over in high school or in college, uh, deep Razer student includes 10 hours a month of free training, um, so that they can train their models in the cloud. And of course the same series of virtual monthly events for them to race against each other and win, win prizes. >>So they don't have to go onto the dark web hack someone's credit card, get a proton email account just to get a deep Razer that's right. They can now come in on their own. >>That's right. That's right. They can log into that virtual the virtual environment, um, and get access. And, and one of the other things that we realized, um, and, and that's a common kind of, uh, realization across the industry is both the need for the democratization of machine learning. But also how can we address the skills gap for future ML learners? Um, and this applies to the, the, the world of students kind of engaging. And we said, Hey, you know, um, the world's gonna see the most successful and innovative ideas come from the widest possible range of participants. And so we knew that there were some issues with, um, you know, underserved and underrepresented minorities accessing this technology and getting the ML education to be successful. So we partnered with Intel and Udacity and launched the AI and ML scholarship program this past year. And it's also built on top of deep Bracer student. So now students, um, can register and opt into the scholarship program and we're gonna give out, uh, Udacity scholarships to 2000 students, um, at the end of this year who compete in AWS deep racer student racers, and also go through all of the learning modules online. >>Okay. Hold on, lets back up. Cuz it sounds, this sounds pretty cool. All right. So we kind went fast on that a little bit slow today at the end of the day. So if they sign up for the student account, which is lowered the batteries for, and they Intel and a desk, this is a courseware for the machine learning that's right. So in order to participate, you gotta take some courseware, check the boxes and, and, and Intel is paying for this or you get rewarded with the scholarship after the fact. >>So Intel's a partner of ours in, in putting this on. So it's both, um, helping kind of fund the scholarships for students, but also participating. So for the students who, um, get qualified for the scholarship and, and win one of those 2000 Udacity Nanodegree scholarships, uh, they also will get mentoring opportunities. So AWS and Intel, um, professionals will help mentor these students, uh, give them career advice, give them technical advice. C >>They'll they're getting smarter. Absolutely. So I'm just gonna get to data here. So is it money or credits for the, for the training? >>That's the scholarship or both? Yes. So, so the, the student training is free for students. Yep. They get 10 hours a month, no credits they need to redeem or anything. It's just, you log in and you get your account. Um, then the 2000, uh, Udacity scholarships, those are just scholarships that are awarded to, to the winners of the student, um, scholarship program. It's a four month long, uh, class on Python programming for >>AI so's real education. Yeah. It's like real, real, so ones here's 10 hours. Here's check the box. Here's here's the manual. Yep. >>Everybody gets access to that. That's >>Free. >>Yep. >>To the student over 16. Yes. Free. So that probably gonna increase the numbers. What kind of numbers are you looking at now? Yeah. In terms of scope to scale here for me. Yeah. Scope it >>Out. What's the numbers we've, we've been, uh, pleasantly surprised. We've got over 55,000 students from over 180 countries around the world that have signed up for the deep racer student program and of those over 30,000 have opted into that scholarship program. So we're seeing huge interest, um, from across the globe in, in this virtual students, um, opportunity, you know, and students are taking advantage of those 20 hours of learning. They're taking advantage of the fun, deep racer kind of hands on racing. Um, and obviously a large number of them are also interested in this scholarship opportunity >>Or how many people are in the AWS deep racer, um, group. Now, because now someone's gotta work on this stuff. It's went from a side hustle to like a full initiative. Well, >>You know, we're pretty efficient with what we, you know, we're pretty efficient. You've probably read about the two pizza teams at Amazon. So we keep ourselves pretty streamlined, but we're really proud of, um, what we've been able to bring to the table. And, you know, over those pandemic years, we really focused on that virtual experience in viewing it with those gaming kind of gamification sort of elements. You know, one of the things we did for the students is just like you guys, we have a discord channel, so not only can the students get hands on, but they also have this built in community of other students now to help support them bounce ideas off of and, you know, improve their learning. >>Awesome. So what's next, take us through after this event and what's going on for you more competitions. >>Yeah. So we're gonna be at the remainder of the AWS summits around the world. So places like Mexico city, you know, uh, this week we were in Milan, um, you know, we've got some AWS public sector, um, activities that are happening. Some of those are focused on students. So we've had student events in, um, Ottawa in Canada. We've had a student event in Japan. We've had a student event in, um, Australia, New Zealand. And so we've got events, both for students as well as for the professionals who wanna compete in the league happening around the world. And again, culminating at reinvent. So we'll be back here in Vegas, um, at the beginning of December where our champions will, uh, compete to ho to come. >>So you guys are going to all the summits, absolutely. Most of the summits or >>All of them, anytime there's a physical summit, we'll be there with a track and cars and give developers the opportunity to >>The track is always open. >>Absolutely. All >>Right. Well, thanks for coming on the cube with the update. Appreciate it, >>Mike. Thanks, John. It was great to be >>Here. Pleasure to know you appreciate it. Love that program. All right. Cube coverage here. Deep race are always the hit. It's a fixture at all the events, more exciting than the cube. Some say, but uh, almost great to have you on Mike. Uh, great success. Check it out free to students. The barrier's been lower to get in every robotics club. Every math club, every science club should be signing up for this. Uh, it's a lot of fun and it's cool. And of course you learn machine learning. I mean, come on. There's one to learn that. All right. Cube coverage. Coming back after this short break.

Published Date : Jun 23 2022

SUMMARY :

It's one of the re shows, It's great to be here. Just like the back office data center did years ago. So we're seeing machine learning, So the people out there that aren't yet inside the ropes of the show, what does it mean to them? It's sort of the beginning of the wave of, um, you know, these sort of advanced capabilities that Well, great to have you in the cube. What's the update with racer you're here with the track. You got the track and competing with the big dogs, literally dog, you got spot over there. So deep razor, you know, is the fastest way to some of the new adoption in terms of the people. So, uh, you know, we have monthly online races where we have a new track In. You know, I ask you this question every time you come on the cube because I I'm smiling. And of course the same series of virtual monthly events for them to race against So they don't have to go onto the dark web hack someone's credit card, get a proton email account just to get a deep Razer And, and one of the other things that we realized, um, and, So in order to participate, you gotta take some courseware, check the boxes and, and, and Intel is paying for this or So for the students So I'm just gonna get to data here. It's just, you log in and you get your account. Here's check the box. Everybody gets access to that. So that probably gonna increase the numbers. in this virtual students, um, opportunity, you know, and students are taking advantage of those 20 hours of Or how many people are in the AWS deep racer, um, group. You know, one of the things we did for the students is just So what's next, take us through after this event and what's going on for you more competitions. you know, uh, this week we were in Milan, um, you know, we've got some AWS public sector, So you guys are going to all the summits, absolutely. All Well, thanks for coming on the cube with the update. And of course you learn machine learning.

SENTIMENT ANALYSIS :

ENTITIES

EntityCategoryConfidence
JPMCORGANIZATION

0.99+

UdacityORGANIZATION

0.99+

JohnPERSON

0.99+

AccentureORGANIZATION

0.99+

AWSORGANIZATION

0.99+

MorningstarORGANIZATION

0.99+

Michael Mike MillerPERSON

0.99+

JapanLOCATION

0.99+

OttawaLOCATION

0.99+

MikePERSON

0.99+

Mike MillerPERSON

0.99+

VegasLOCATION

0.99+

AustraliaLOCATION

0.99+

AmazonORGANIZATION

0.99+

MilanLOCATION

0.99+

Las VegasLOCATION

0.99+

10 hoursQUANTITY

0.99+

10 racersQUANTITY

0.99+

IntelORGANIZATION

0.99+

New ZealandLOCATION

0.99+

four monthQUANTITY

0.99+

16QUANTITY

0.99+

over 30,000QUANTITY

0.99+

bothQUANTITY

0.99+

threeQUANTITY

0.99+

PythonTITLE

0.99+

two circuitsQUANTITY

0.99+

second thingQUANTITY

0.99+

CanadaLOCATION

0.99+

this weekDATE

0.98+

NovemberDATE

0.98+

over 55,000 studentsQUANTITY

0.98+

over 180 countriesQUANTITY

0.98+

firstQUANTITY

0.98+

eachQUANTITY

0.97+

todayDATE

0.97+

10 hours a monthQUANTITY

0.97+

two pizza teamsQUANTITY

0.95+

over 16QUANTITY

0.94+

18th scaleQUANTITY

0.94+

2000 studentsQUANTITY

0.93+

oneQUANTITY

0.92+

first timeQUANTITY

0.92+

waveEVENT

0.92+

four componentsQUANTITY

0.91+

BostonLOCATION

0.9+

years agoDATE

0.86+

this past yearDATE

0.86+

AusEVENT

0.86+

RemarTITLE

0.85+

pandemicEVENT

0.85+

20 hoursQUANTITY

0.82+

each one ofQUANTITY

0.82+

end of this yearDATE

0.81+

Mexico cityLOCATION

0.8+

racerTITLE

0.8+

a minute agoDATE

0.78+

DecemberDATE

0.77+

2000COMMERCIAL_ITEM

0.75+

QBORGANIZATION

0.72+

beginning of DecemberDATE

0.69+

MarsTITLE

0.68+

re MarsEVENT

0.65+

2022DATE

0.64+

86COMMERCIAL_ITEM

0.64+

deepTITLE

0.61+

lot of peopleQUANTITY

0.61+

raspberryORGANIZATION

0.59+